INTEGRAL REPRESENTATION AND I'-CONVERGENCE FOR
FREE-DISCONTINUITY PROBLEMS WITH p(-)-GROWTH

GIOVANNI SCILLA, FRANCESCO SOLOMBRINO, AND BIANCA STROFFOLINI

ABSTRACT. An integral representation result for free-discontinuity energies defined on the space
GSBV?PO) of generalized special functions of bounded variation with variable exponent is proved,
under the assumption of log-Holder continuity for the variable exponent p(x). Our analysis is
based on a variable exponent version of the global method for relaxation devised in [11] for
a constant exponent. We prove I'-convergence of sequences of energies of the same type, we
identify the limit integrands in terms of asymptotic cell formulas and prove a non-interaction
property between bulk and surface contributions.

1. INTRODUCTION

Originally introduced in the setting of image restoration [46], free-discontinuity functionals
are by now ubiquitous in the mathematical modeling of elastic solids with surface discontinu-
ities, including phenomena as fracture, damage, or material voids. If u is the variable of the
problem (representing, e.g., the output image or the deformation of the solid), these problems
are characterized by the competition between a “bulk” energy, usually taking the form of a
variational integral

/ f(z,u(x), Vu(x)) dz (1.1)
Q

where () is a reference configuration, and a “surface” energy of the form

/ 9(z,ut (), u” (z), vu(z)) dH L (z) (1.2)
where J, is the set of discontinuities of v with normal v,. This latter term is, for instance,
accounting for the “cost” of an interface in the image (enforcing optimal segmentation), or for
the energy spent to produce a crack ([38, B34]). If one imposes a p-growth assumption of the
form
clgl” < f(z,u, &) < C(L+[E)

with p > 1 on the bulk integrand f, and g > « > 0, then the existence of minimizers is guaranteed
in the space of Generalized Special functions of Bounded Variation (GSBV') whenever f is
quasiconvex and g BV -elliptic, see [6]. In particular, compactness of minimizing sequences with
respect to the convergence in measure can be recovered by AMBROSIO’s results ([3], [4]) if some

lower order fidelity terms are included in the problem, or some boundary data are considered
(see [39]).

A wide attention has been also paid, over the last two decades, to the theory of variational
limits of free-discontinuity functionals, with applications in various contexts, such as homog-
enization, dimension reduction, or atomistic-to-continuum approximations. Starting from the
first results on the subspace SBV of special functions of bounded variation [I1} 13}, 14] and on
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piecewise constant functions [5], this analysis has been further improved to deal with function-
als and variational limits on GSBVP (generalized special functions of bounded variation with
p-integrable bulk density), see, e.g., [7, &, 9] 10, 16, 31, B5]. Most of these results are based on
the so-called global method for relaxzation, which has been developed by BOUCHITTE, FONSECA,
LEONI, AND MASCARENHAS in [I1, [12]. This very powerful method is essentially based on com-
paring asymptotic Dirichlet problems on small balls with different boundary data depending
on the local properties of the functions and allows one to characterize limit energy densities in
terms of cell formulas. Recently, it has also been used for analyzing the limit behavior of free-
discontinuity problems in the space GSBD of generalized functions of bounded deformations,
involving the symmetric gradient, see for example [15] 18, 20} 23], with applications to crack
energies in linear elastic materials.

The topic of the present paper are, instead, free discontinuity problems in variable exponent
spaces. These spaces were originally considered by the Russian school, see [49] and the Czech
one [43]. Subsequently, motivated by models for the behavior of composite materials, ZHIKOV
initiated the so-called theory of variational integrals with non standard growth in the mid 80’s.
Since then, the subject of variable exponent spaces has undergone a large interest, both from
the standpoint of regularity theory (see [50] for the scalar case and [21] 2] for the vectorial one)
and in view of applications ranging from electrorheological fluids right up to homogenization,
see [47), [48], 511 52], and the references in |24} 29]. Motivated by the aforementioned applications,
in [22] Coscia AND Mucct analyzed the I'-convergence of variational integrals of the form
with a p(z)-growth condition

cJeP@ < f(x,u,) < O+ [€P@), (1.3)

where p(z) > 1+ 6 > 1 is a variable exponent, in the Sobolev space Wl’p(')(Q;]Rm). They
proved that the I'-limit of these energies is still an integral functional of the same type and
growth, under a key assumption on the modulus of continuity of the variable exponent, the
so-called log-Holder continuity, see below. In some sense, this condition says that we can
freeze the exponent on small balls around a point, as pointed out in [28, Lemma 3.2] (see also
Lemmabelow). As such, it is particularly suitable for blow-up methods: for instance, in [I] it
allows the authors to prove the singular part of the measure representation of relaxed functionals
with growth disappears. More in general, log-Holder continuity plays a central role in the
theory of functionals with p(z)-growth, as ZHIKOV proved in [50] that such functionals exhibit
the Lavrentiev phenomenon if it is violated.

In recent years, variational problems in spaces of functions of bounded variation with variable
integrability exponent on the gradient have been proposed, especially in the setting of image
restoration. In the pioneering paper [19] CHEN, LEVINE AND RAO proposed for the first time
a model considering a kind of intermediate regime between the TV model and the isotropic
diffusion away from the edges (see also [40)] for a related model, [44] for simulations, and [41] for
a I'-convergence result). Observe that in these models, the value p(x) = 1 is allowed. A related,
but different, point of view takes instead into account the coupling of a strictly superlinear bulk
energy (1.1)) under the growth conditions with a surface energy , which can be seen
as a variable-exponent version of Mumford-Shah-type functionalsﬂ This kind of functionals
will constitute the object of the present paper. From an analytical point of view, they were
considered in [26]. There, provided the bulk integrand is quasiconvex and the exponent is log-
Holder continuous, a lower semicontinuity result for sequences with bounded energy has been
proved, which entails well-posedness of such variational problems in the subspace SBVP() of

IIndeed, for such functionals, also in the case of a constant integrability exponent it is customary to assume
p > 1, in order to get the scale separation effect we describe later on.
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SBYV functions with p(-)-integrable gradients (again, if some lower order terms are added to the
problem in order to apply Ambrosio’s compactness Theorem).

Description of our results. This leads us to the purpose of the present paper. Our focus
is to study the I'-convergence (with respect to the convergence in measure) for functionals
F;j: GSBVPO(Q;R™) — [0, +00) of the form

Fw) = [ @ Vu@) do+ [ (o)) - @) (1.9
for each u € GSBVPO)(Q;R™), where [u](x) := uT(z) — u~(z). The variable exponent p(-) is
assumed to be log-Holder continuous, with p(z) > p~ > 1 for all = (see . We assume that
the bulk integrands f; satisfy (1.3|) uniformly in j, while the surface integrands g; satisfy

0<a§g](:c,§,y)§ﬂ

Under a fairly general set of assumptions, devised in [16], we are able to show that the I'-limit is
again an integral functional of the same form (Theorem . Furthermore, as shown in Section
due to the assumption p(z) > p~ > 1 a separation of scales effect takes place, exactly as in
the case of a constant exponent: bulk and surface effects decouple in the limit. Namely, the
bulk limit density f. is completely determined by taking the I'-limit of the functionals in
the Sobolev space W1P() while the surface limit density goo can be recovered from the sole g;'’s
via an asymptotic cell formula on piecewise constant functions, that is GSBV functions whose
gradient is a.e. equal to 0 .

As we mentioned, for the proof of Theorem we follow quite closely the global method for
relazation of [I1]. The main point is recovering an integral representation for functionals

F: GSBVPO(Q;R™) x B(Q) — [0, 400)

(here B(2) denote the Borel subsets of 2) that satisfy the standard abstract conditions to be
Borel measure in the second argument, lower semicontinuity with respect to the convergence in
measure, and local in the first argument. In addition, we require a coercivity and control con-
dition of variable exponent type: there exist 0 < a < 8 such that for any u € GS BVP(')(Q; R™)
and B € B(§2) we have

a</ |VulP@ dz + HI(J, N B)) < F(u,B) < ,3(/ (1 + |[Vu[P®))de + HIL(J, N B)).
B B

The result is proved in Theorem [3.I] The proof strategy recovers the integral bulk and surface
densities as blow-up limits of cell minimization formulas, as a consequence of the estimates in
Lemmas[3.7and[3.10] In particular, in this latter the interplay between the asymptotic estimates
and the variable exponent setting causes some nontrivial difficulties, which are overcome by
means of assumption . It allows us to estimate the asymptotic distance between a suitable
modification of v and its blow-up at jump points in some variable exponent space, keeping
bounded some constants which depend on the oscillation of p(-) in a small ball around the
blow-up point (see equation ) The log-Holder continuity assumption plays also a crucial
role in Theorem 5.2 where separation of scales for the bulk energy is shown. There, a Lusin-
type approximation for SBV functions is used to reduce the asymptotic minimization problems
defining the cell formula for the bulk energy to the (variable exponent) Sobolev setting. Again,

via ([2.4]) it is possible to estimate the rest term coming from this approximation (see equations
;-y

Our results can be also adapted to the case where the surface integrands g;’s satisfy a more
general growth condition, as in [16], namely

« ng(x7<7y) < 5(1+ ‘CD
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This can be done by first establishing the integral representation in the SBVP?() case for func-
tionals which satisfy

a(/BvuM der/ mB(1+|[u]|)dfﬂdl) < F(u, B)

u <5(/3(1+|Vup<w>)dx+/MB(1+|[u]|)<md1).

The analysis can be reconducted to this setting by a perturbation trick: one considers a small

perturbation of the functional, depending on the jump opening, to represent functionals on
SBVP(). Then, by letting the perturbation parameter vanish and by truncating functions
suitably, the representation can be extended to GSBVP(). In order to do this, one can follow
quite closely the arguments in [16], with some minor changes due to the variable exponent
setting: for the sake of completeness and self-containedness, statements and proofs are given in
Appendix [A]

Outline of the paper. The paper is structured as follows. In Section [2] we fix the basic notation
and recall some basic facts about Lebesgue spaces with variable exponent (Section . Then,
in Section we introduce the space GSBVP(), and prove some regularity and compactness
properties useful in the sequel. Section [3] is entirely devoted to the proof of the integral rep-
resentation result in GSBVP(), Specifically, in Section we prove a fundamental estimate,
which is a key tool for the global method, Section The proofs of the necessary blow-up
properties are postponed to Sections and In Section [4] we prove a I'-convergence result
for sequences of free-discontinuity functionals defined on GSBVP(). The identification of the I'-
limit is contained in Section[f] Eventually, in Appendix [A] we develop the analysis of Sections
and [ for free-discontinuity energies with a weaker growth condition from above in the surface
term.

2. BASIC NOTATION AND PRELIMINARIES

We start with some basic notation. Let  C R? be open, bounded with Lipschitz boundary.
Let A(£) be the family of open subsets of €, and denote by B(2) the family of Borel sets
contained in 2. For every x € R? and ¢ > 0 we indicate by B.(z) C R? the open ball with
center z and radius e. If x = 0, we will often use the shorthand B.. For z, y € R%, we use
the notation z -y for the scalar product and |z| for the Euclidean norm. Moreover, we let
S?1 := {x € R?: |x| = 1}, we denote by R™*¢ the set of m x d matrices and by R¢ the set
R\ {0}. The m-dimensional Lebesgue measure of the unit ball in R™ is indicated by 7, for every
m € N. We denote by £¢ and H* the d-dimensional Lebesgue measure and the k-dimensional
Hausdorff measure, respectively. For A C R%, ¢ > 0, and zy € R¢ we set

Ac oy =10 +e(A — x0). (2.1)

The closure of A is denoted by A. The diameter of A is indicated by diam(A). Given two sets
A1, Ay C R, we denote their symmetric difference by A;/AAs. We write y 4 for the characteristic
function of any A C R?, which is 1 on A and 0 otherwise. If A is a set of finite perimeter, we
denote its essential boundary by 0*A, see [6, Definition 3.60]. The notation L°(E;R™) will be
used for the space of Lebesgue measurable function from some measurable set £ C R™ to R™,
endowed with the convergence in measure.

2.1. Variable exponent Lebesgue spaces. We briefly recall the notions of variable expo-
nents and variable exponent Lebesgue spaces. We refer the reader to [29] for a comprehensive
treatment of the topic.
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A measurable function p : Q — [1, +00) will be called a variable exponent. Correspondingly,
for every A C Q) we define

pj :=ess supp(x) and p, :=ess infp(x),
zEA €A
while pg and p, will be denoted by pT and p~, respectively.

For a measurable function u : Q — R™ we define the modular as

o) = [ @) da
and the (Luxembourg) norm
[ull r ) = Inf{A > 02 gp(y(u/A) < 1}.

The wvariable exponent Lebesque space Lp(')(Q) is defined as the set of measurable functions u
such that g,.y(u/)\) < +oo for some A > 0. In the case p* < +o0, LP0) () coincides with the set
of functions such that g,(.)(u) is finite. It can be checked that || - || s()(q) is a norm on LPO)(Q).
Moreover, if p* < +o00, it holds that

1

a B
op(y ()" < lull ey ) < 0p) () ?™ (2.2)
if ||| Lp()(q) > 1, while an analogous inequality holds by exchanging the role of p~ and pt if
0< ||u||Lp(.)(Q) < 1. Another useful property of the modular, in the case p™ < +oo0, is the
following one:

min{\" AP Yopy (1) < gpy(Au) < max{ X", AP Yop(y (w) (2.3)
for all A > 0.
We say that a function p :  — R is log-Holder continuous on 2 if
C 1
3C >0 h that - < -V Q —yl < <. 2.4
>0 such that |p(z) p(y)!__logm_y‘, Ty e, fo—yl<g (2.4)

We recall the following geometric meaning of the p log-Holder continuity (see, e.g., [28]
Lemma 3.2]).

Lemma 2.1. Let p : Q — [1,400) be a bounded, continuous variable exponent. The following
conditions are equivalent:

(i) p is log-Holder continuous;
(ii) for all open balls B, we have

LYB) PP < ¢

The following lemma provides an extension to the variable exponent setting of the well-known
embedding property of classical Lebesgue spaces (see, e.g., [29, Corollary 3.3.4]).

Lemma 2.2. Let p,q be measurable variable exponents on ), and assume that Ed(Q) < +o0.
Then LPO)(Q) — LIO(Q) if and only if ¢(x) < p(x) for L¥-a.e. x in Q. The embedding constant

) o d d AEA-Ht .4 (1)~
is less or equal to the minimum between 2(1 4+ L%(2)) and 2max{L*(Q)'a ¢’ [ L%Q)'« 2’ }.

The following result generalizes the concept of Lebesgue points to the variable exponent
Lebesgue spaces (see, e.g., [39, Theorem 3.1]).
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Theorem 2.3. Let pT := esssup p(z) < 4+0o. If u € LPO(R?) then
zeR4
. p(¥)
tim 4 [ Ju(y) — u@)P® ay =0
B:(x)

e—=0¢

for a.e. x € R

2.2. The space GSBV?!). Poincaré-type inequality. We denote by SBV?()(Q;R™) the
set of functions u € SBV(;R™) with Vu € LPO(Q;R™*?) and HY1(J,) < +oo. Here,
Vu denotes the approximate gradient, while J, stands for the (approximate) jump set with
corresponding normal v, and one-sided limits u™ and u~. We say that u € GSBVP(‘)(Q;Rm)
if for every ¢ € C1(R™) with the support of V¢ compact, the composition ¢ o u belongs to
SBVPY (Q; R™),

From the inclusion LPO)(Q) € LP™ (Q) and [4], one can also deduce that for u € GSBVP()(Q)
the approzimate gradient Vu exists L%a.e. in Q.

Lemma 2.4 (Approximate gradient). Let Q C RY be open, bounded (with Lipschitz boundary),
let p: Q — [1,+00] be a variable exponent, and u € GSBVPO) (Q;R™). Then for L%-a.e. zo € Q
there exists a matriz in R™*?, denoted by Vu(zo), such that

lim Efdﬁd({x € B.(x0): [ul@) = u(wo) = Vuu(zo)(x — zo)|

e—0

>Q}>:0f07’allg>0.

|z — x|

In order to state a Poincaré-Wirtinger inequality in GSBVP(), we first fix some notation,
following [IT], 17]. With given a = (a1,...,am), b = (b1,...,by) € R™, we denote a A b :=
(min(aq,b1),...,min(am, by)) and a V b := (max(a1,by), ..., max(am, by,)). Let B be a ball in
RZ. For every measurable function v : B — R™, with v = (uy, ..., un), we set

Ui (8;B) := ((u1)«(8;B),y ..., (um)«(s; B)), med(u; B) := ux (;E‘%B);B) ,
where
(ui)«(s; B) :=inf{t e R: [{u; <t} N B| > s} for 0 < s < £4B),
fori=1,...,m.

For every u € GSBVP()(Q; R™) such that

we define

4
T’(U; B) = Ux ((27iSOHd_1(Ju N B)) - >B> )

d_
7" (u; B) 1= us (Ed(B) — (271507'[d_1(<]u N B)) -t ;B> ,
and the truncation operator
Tpu(z) := (u(z) A" (u; B)) V 7' (u; B) (2.5)
where i is the dimensional constant in the relative isoperimetric inequality.

We recall the following Poincaré-Wirtinger inequality for SBV functions with small jump set
in a ball, which was first proven in the scalar setting in |27, Theorem 3.1], and then extended to
vector-valued functions in [I7, Theorem 2.5]. In the statement below, the case p > d is discussed
in [6, Remark 4.15].
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Theorem 2.5. Let u € SBV(B;R™) and assume that
d
1

(27130Hd-1(Ju N B))ﬁ < 5LU(B). (2.6)
If 1 <p<d then
</ |Tpu — med(u; B)[P" dx> ’ < Hisop(d = 1) </ |Vul|P dx> ’ (2.7)
B d—p B
and .
LM({Tpu # u} N B) <2 (2sH (LN B)) T (2.8)

where p* := ddfpp.

If p > d, inequality (2.7) holds with p* replaced by an arbitrary q € [1,400).

Remark 2.6. More generally, Theorem holds for functions in GSBV (£2; R™) and for balls
B CC Q, by applying the scalar result in SBV to truncated functions u} := M A u; vV —M for
every ¢ = 1,...,m, up to understand Vu and J, in a weaker sense.

The analogous result in GSBVP() is as follows.
Theorem 2.7. Let p: Q — (1,400) be measurable and such that
eitherp” >d or 1<p <d, pr<(p)*. (2.9)
Let B cC Q and u € GSBVPO)(B;R™), and assume that holds. Then

i, 1 1
|1Tu — med(u; B) || oo (pgmy < c(1+ LYB))2LYB)* v 5m IVt Lo (gmay (2.10)

for some constant ¢ depending on p~,d, and
d

LU({Tpu#u} 0 B) <2 (23eH ™ (LN B)) T (2.11)

Proof. In view of Remark we are reduced to prove the validity of (2.10]). For this, it will
suffice to write (2.7) for p = p~, and then the desired inequality will be a consequence of ([2.9))
and Lemma 2.2 O

A first consequence of Theorem is the following compactness result, which can be seen
as the GSBVP() counterpart of [27, Theorem 3.5]. Motivated by the blow-up analysis of
Lemma [3.7] we will prove the result for a fixed ball and a uniformly convergent sequence of
continuous variable exponents satisfying (2.9)) (see also [26l, Theorem 4.1] for a related result
under the additional stronger assumption )

Theorem 2.8. Let B C Q be a ball, (p;)jen be a sequence of variable exponents p;j : B —
(1, 400) complying uniformly with (2.9) and converging uniformly to some p: B — (1,400) in
B. Let {uj}jen € GSBVPiU)(B;R™) be such that

sup/ [Vu;[Pi® dy < 400,  lim Hd_l(Juj NB)=0. (2.12)
jeENJB J—+too

Then there exist a function ug € WVPU)(B;R™) and a subsequence (not relabeled) of {u;} such
that

/B |Tpuj; — med(uj; B) — upP?® dy — 0, uj — med(uj; B) = ug L% —a.e. in B. (2.13)
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Proof. For every j € N, we set

— . +
p; = inf p;(y), p; =supp;(y).
7= ). 2 = s i)
Correspondingly, we define
p :=lim infpj_ , pT:=lim supp;' .
J—+0o0 j—+oo

We set for brevity u; := Tpuj — med(uj; B). Let > 0 be fixed such that py, =p —n>1land
p,,J]r =pt+n< (p,;, )" Note that, for j large enough, we have

py <p; <pi(-)<p; <ps onB.

By virtue of (2.9)), (2.10)), the definition of Tpu; and (2.12)) we have

_ - d—1
?lélg <||uj||Lpn(B;Rm) + HVU]||LP77(B;Rmxd) +HT (Ju; N B)) < +00.

This implies, by [4, Theorem 2.2] that there exists ug € GSBVPn (B;R™) and a subsequence
(not relabeled) u; such that @; — ug in measure and

H (Juy N B) < liminf H ™ (Jpyu, NB) = 0. (2.14)
J—+0oo
With , since pf{ < (p; )", we get that \ﬂj\p; is equiintegrable, hence ; strongly converges
to up in LP:VF(B ;R™). With Lemma and the definition of %; we then get the first assertion
in (2.13). With (2.14)), we have ug € W12 (B;R™). Now, for each > 0 we further have

Sup/ |Vuj|75(y)_" dy < C < +o0
JENJB

by the uniform convergence of p;. With the weak-L! convergence of Vi, to Vug and loffe’s
Theorem (see [42]), we get

/ ‘VUO,ﬁ(y)fn dy < C
B

with a bound independent of 7. Applying the monotone convergence Theorem in the set
{|Vuo| > 1} we get ug € WHPO)(B;R™). The second assertion in (2.13) follows from (2.11)

and (2.12). O

To conclude this section, we recall the following result on the approximation of GSBV func-
tions with piecewise constant functions (see [37, Theorem 4.9]), which can be seen as a piecewise
Poincaré inequality and essentially relies on the BV coarea formula. We refer the reader for a
proof to [36, Theorem 2.3], although the argument can be retrieved in previous literature (see,
e.g., [4, [14]).

Theorem 2.9. Let d > 1 and z € GSBV ({; R™) with
V2]l L urmxay + HEH(J2) < +oo.

Let D C Q be a Borel set with finite perimeter. Let 6 > 0 be fized. Then there exists a
partition (P)72, of D, made of sets of finite perimeter, and a piecewise constant function zpc =
Yooy bixp, such that
o
(i) Y HTH (@ RN DY) <6;
1=1

(i2) 11z = Zpell Lo (Drm) < CQ_IHVZHLl(D;Rmxd)}
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for a dimensional constant ¢ = c(d) > 0, where D' denotes the set of points with density
one. If, in addition, the i-th component 2' satisfies the bound ||2"||p(pry < M, then also

HZIZ‘)(:HLOO(D;R) S M holds.
3. THE INTEGRAL REPRESENTATION RESULT
In this section we will establish an integral representation result in the space GSBV?() (Q;R™)

for m € N, where the variable exponent p : Q — (1, 400) complies with the following assumptions

(P1) p~ > 1 and p* < +oc;
(P2) p is log-Holder continuous on € (see (2.4)).

We consider functionals F: GSBVPO)(Q;R™) x B(Q) — [0, +00) with the following general
assumptions:

(Hy) F(u,-) is a Borel measure for any u € GSBVP()(Q;R™);

(Hg) F(-,A) is lower semicontinuous with respect to convergence in measure on ) for any
A e A(Q);

(H3) F(-,A) is local for any A € A(f), in the sense that if u,v € GSBVPO)(Q;R™) satisfy
u=wv a.e. in A, then F(u, A) = F(v, A);

(H4) there exist 0 < a < f such that for any u € GSBVPO)(Q;R™) and B € B(Q) we have

a(/ VP d:r+7-ld_1(JuﬂB)> < F(u, B) gﬂ(/(lJr IVu]p(”))der?-ld_l(JuﬁB)).
B B

For every u € GSBVPO) (Q;R™) and A € A(Q) we define

myr(u,A) = inf {F(v,A): v=wu in a neighborhood of 0A}. (3.1)
vEGSBVPL) (QR™)

Moreover, for zg € Q, up € R™, and £ € R™*4 we introduce the affine functions Loouost: R4 —
R™ by

Cagu0,6 () = uo +€&(x — 20), (3.2)
and, for a,b € R™, v € S ! we define Ugo,aby R? — R™ by

" (2) = a if (x —xz)-v>0,
E A ¥ if (x —x9)-v <0.

The main result of this section is the following integral representation theorem.

(3.3)

Theorem 3.1 (Integral representation in GSBVP(')). Let Q C R? be open, bounded with Lips-
chitz boundary, let m € N. Letp: Q — (1,+00) be a variable exponent complying with|(P1)H(P2)]
and suppose that F: GSBVPO(Q;R™) x B(Q) — [0, +00) satisfies . Then

Flu, B) :/Bf(f”v“(x%w(x))dﬂ/ 9t (@), 0 (@), vale)) A (@)

u

for all w € GSBVPO) (Q;R™) and B € B(Q), where f is given by
m]:(gxo,’U,o{) BE('%'O)>

g, Ug, §) = limsu 3.4
f(@o, uo,§) nsup el (3.4)
for all xg € Q, ug € R™, £ € R™*? and g is given by
xo,a,0,V B
g(xg,a,b,v) = limsup M (a0 Be(20)) (3.5)

e—=0 ’Yd—1€d_1
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for all zo € Q, a,b € R™, and v € S4 1.

3.1. Fundamental estimate. In this section we prove an important tool in the proof of the
integral representation, namely a fundamental estimate in GSBVP() for functionals F.

Lemma 3.2 (Fundamental estimate in GSBVP(')). Let Q C R? be open and bounded, and let

p: Q= (1,400) be a variable exponent in Q) satisfying|(P1). Letn > 0 and let D', D", E € A(Q
with D' cC D", and set § = %dist(D’,@D”). For every functional F satisfying

cmd and for every u € GSBVPO)(D';R™), v € GSBVPV)(E;R™) there exists a function
@ € C°(R%[0,1]) such that w = pu + (1 — @)v € GSBVPO)(D' U E;R™) satisfies

_ p(z)
W) dz + L% (D' U E),

(i) F(w,D'UE)<(1 +n)(.7:(u,D”) +.7:(U,E)) + M/ (

F
(i) w=uon D andw=v on E\ D", (3.6)
where F := (D"\D'YNE and M = M(D', D", E,p*,n) > 0 depends only on D', D" E,p*,n, but
is independent of u and v. Moreover, if for ¢ > 0 and z¢g € R? we have D., D! E. ., CQ,

g,T0’ g,T07
then

M(D, D// Es,xoaPJrﬂ?) :M(DlvD,/aE’p+an)a (37)

€,x0° e,x0?

_ p(z)
o <luvl> dr,
Fe,zo (55

where we used the notation introduced in ([2.1).

and the remainder term 1is

Proof. We choose k € N such that

Y80 (3.8)

kZmax{ ,
non
and for 2 =1,...,k, we set

5i
Diyq = {x e D" dist(z,D') < ];} :

We then have Dy := D' CC Dy CC ... CC Dg4q CC D”. Correspondingly, let ¢; € C§°(Dit1)
with 0 < ¢; <1 and ¢; = 1 in a neighborhood U; of D;. Note that ||V;|leo < %.

Let u € GSBVPO(D";R™) and v € GSBVP)(E;R™) be such that u — v € LPO((D"\
D')N E;R™), as otherwise the result is trivial. We define the function w; = p;u + (1 — @;)v €
GSBVPO) (D' U E;R™) (this can be easily proved as in [22, Lemma 2.11]), where u and v are
extended arbitrarily outside D” and E, respectively. Letting I; = D” N (D;y1 \ D;) we get by

()] and [(TT3]

F(w;, D" UE) (u, (D' UE)NU;) + F(v, E\ supp @;) + F(w;, I)

< Flu
< F(u,D")+ F(v,E) + F(w;, I;). (3.9)
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For the last term, we compute using |(Hy)

Flw ) < 8 /I (1 + [V P@) de + BHE (o, O )
<B /I‘u + |@iVu + (1 — ;) Vo + Vi(u — 0)|P@) de + SHIH((J, U Jy) N )
< BLUL) + 3718 /I (TP + Vo) 4|91 — o) da
+BHT (TN L) + Bsztd‘l(Jv NnI)
<8, )+ Flo, 1) + (20T 37g / (W)p(x) dx + BLY(T).
Consequently, recalling and using we find iy € {1, ..., k} such that
k
F(wiy, Iiy) < ;;F(wiab)

|u— v

p(x)
<n(F(u,D") + F(v,E)) +M/F< 5 > dz + nLY(F),

where M := (2k)P" - 37" ~18k~1. This along with (3.9) concludes the proof of (3.6) by set-
ting w = w;,. To see the scaling property , it suffices to use the cut-off functions ¢ €

C((Dis1)emo; [0,1]) i = 1,..., k, defined by ¢5(z) = @i(zo + Z=2) for & € (Dit1)ezo- This

concludes the proof. O

3.2. The global method. This section is entirely devoted to the proof of Theorem As a
first step, we show that F and myx, defined by (3.1]), have the same Radon-Nikodym derivative
with respect to the measure

W= £l lo + HA1 | June - (3.10)

Lemma 3.3. Let p : Q — (1,400) be a variable exponent satisfying [(P1)} Suppose that F
satisfies . Let u € GSBVPO (4 R™) and p as in (3.10). Then for p-a.e. xo € Q we

have
g T Be00) (o Be(a))
e>0 p(Be(r9)) &0 p(B(z9))

The proof of this lemma is postponed to the end of this section. The second step in the proof
of Theorem is that, asymptotically as ¢ — 0, the minimization problems mgz(u, B:(x0))

and mz(uh"™, Be(x0)) coincide for L%a.e. zy € €, where we write G52 := £, (20) Vu(zo) fOT

brevity, see (3.2]).

Lemma 3.4. Let p : Q@ — (1,+00) be a Riemann-integrable variable exponent satisfying |[(P1)|
Suppose that F satisfies (Hy)| and |(Hs)H(Hy)| and let u € GSBVPO(Q;R™). Then for L%-a.e.
xo € Q we have

i mz(u, B:(z0)) .. mz(ab0'", B (z0))
im ——————— = lim sup d
e—0 YdE e—0 Yd€

(3.11)

The final step is that, asymptotically as ¢ — 0, the minimization problems mz(u, Be(x¢)) and

m}-(af’v‘érf, B.(z0)) coincide for H% '-a.e. g € J,, where we write ﬂ;%rf = Ut (20),u- (20) wa (20)

for brevity, see (3.3]).
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Lemma 3.5. Let p : Q — (1,400) be a variable exponent satisfying [(P1)H(P2)l Suppose that
F satisfies |(Hy)| and [(H3)[{(H4)| and let v € GSBVPO (Q:R™). Then for H* '-a.e. 29 € J, we
have

m]:(asy’cl(l)rf7 Be (xO ))

ed—1

mz(u, B-(70))
o1

lim
e=0  Yd-1

We defer the proof of Lemma [3.4] and Lemma [3.5] to Section [3.3] and Section [3.4] respectively.
Now, we proceed to prove Theorem

= lim sup (3.12)

e—0 Yd—1

Proof of Theorem[3.1] In view of the assumption [(Hy)| on F and of the Besicovitch derivation
theorem (cf. [0, Theorem 2.22]), we need to show that

dF(u,-)

ard (z0) = f(wo,u(wo), Vu(zg)), for LI:-a.e. zg € €, (3.13)
(m(m) = g(wo,u™ (z0),u” (z0), vu(z0)), for H¥ t-ae. zg € Ju, (3.14)

where f and g were defined in (3.4 and (3.5)), respectively.
By Lemma and the fact that lim. _o(v4e%) " (B (z0)) = 1 for L%a.e. 2y € Q we deduce

AP )y T Be(@0) _ oy mr(u, Be(ao) _ | m0r(u, Be(0))
dcd YT - -

e—0  u(B:(x9)) e—0  u(Be(xg)) e—0 Yqe

for L£%a.e. xg € . Then, (3.13)) follows from ([3.4) and Lemma By Lemma and the fact
that lim._0(v4_16%"1) " u(B-(x0)) = 1 for H¥ t-a.e. g € J, we deduce

< 00

dF(u,-) (29) = lim F(u, Be(x0)) _ lim mz(u, B:(x0)) — im mr(u, B:(x0))
dH1| 4, e=0  p(Be(z0)) =0 p(Be(zo)) e=0  yg_qedl
for Hi '-a.e. 29 € J,. Now, (3.14) follows from (3.5 and Lemma O

In the remaining part of the section we prove Lemma [3.3] For this, we need to fix some
notation. For § > 0 and A € A(Q), we define

m&(u, A) = inf { Zool mpr(u, B;): B; C A pairwise disjoint balls, diam(B;) < 4,

i=
(e 9]
’u<A \ Ui:l Bi) - O} ’
where p is defined in (3.10). As m%(u, A) is decreasing in &, we can also introduce

m’(u, A) = ;ig[l)m‘sj_—(u,A). (3.15)

In the following lemma, we prove that F and m% coincide under our assumptions.

Lemma 3.6. Let p: Q — (1,+00) be complying with (P1). Suppose that F satisfies (H1)—-(Hy)
and let u € GSBVPO)(Q;R™). Then, for all A € A(Q) there holds F(u, A) = m¥(u, A).

Proof. We can follow the argument of [I1, Lemma 4] (see also [12, Lemma 3.3]). We start by
proving the inequality m*(u, A) < F(u, A). For each ball B C A we have mr(u, B) < F(u, B)
by definition. By we get m‘}(u,A) < F(u, A) for all § > 0, whence the assertion follows
taking into account ([3.15|).
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We now address the reverse inequality. We fix A € A(Q) and § > 0. Let (B?); be balls as in
the definition of m%(u, A) such that

Zcil my(u, BY) < md%(u, A) + 0. (3.16)
By the definition of mr, we find U? € GSBVP(')(BZ‘-S;R”L) such that Uf = v in a neighborhood
of dB? and
F(od, BY) < mp(u, BY) + 5£9(BY). (3.17)
We define
VO = 21:1 U?XBf + UX o for n € N, v = Zi:1 vfng + ux g, (3.18)

where Ng’" = Q\ UL, B and N§ := Q\ U2, BY. By construction, we have that each v%" lies
in GSBVPO)(Q;R™) and that

sup (/ |V1)5’”(x) ]p(x) dx + Hdl(Jva,n)> < 400 (3.19)
Q

neN
by (3.16)—(3.17) and (H4)l Moreover, v>™ — 1% pointwise a.e. in 2, and then in measure
on Q. Then, [4 Theorem 2.2] combined with the compactness in L° of (v>") yields v° €
GSBVP™ (Q;R™) and Voo™ — Vo weakly in LP~ (Q; R™*4). Now, by Ioffe’s Theorem (see [42])

and (3.19) we get

/ |V (2)[P®) dz < lim inf/ (Vo™ ()P da < +00,
QO n—+oo [

whence v° € GSBVPO) (Q; R™). We have

Z F!, B+ F(u, N, nA) < Zzl (mz(u, BY) + 6L%(BY))
< mf(u, A)+6(1+ £4A)), (3.20)
where we also used the fact that u(N N A) = F(u, N; N A) = 0 by the definition of (B?); and
For later purpose, we also note by that this implies
V0l Lo (amxay + H (T N A) < ca™ (m(u, A) +6(1 + L(4))). (3.21)

We now claim that

w® = u — fu‘s — 0 in measure on A. (3.22)

With this, usmgm -, and we will get the requlred inequality m’%-(u, A) > F(u, A)
in the limit as § — 0. To prove , we first note that w’| zgs€ GSBVP™ (B?;R™) has trace

ZEero on (9BZ‘5 . Then, setting for every M > 0
wM = (=M VvV uw’) A M,
from the classical Poincaré inequality we get
1Ml 1 (s oy < | DM [(BY)

whence
M| 1 Ay < 05\Dw5’Ml(U?ile) < C5|DwM|(A),

where | Dw®M |(A) is bounded in view of (3.21)) and the fact that u € GSBV (A;R™), since

| DwM|(A /\vu5\dx+/ V| dz + 2M (Hd YJsnA)+HET, mA)) < 400.
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This implies w»" — 0 in L'(A;R™), and then in measure on A, as § — 0 for every M > 0.
Now, with fixed M =1 and € € (0,1) we have

E={zecA: W(x)>c}C{recA: [w'i(z)>e},
whence Ed(Eg ) — 0 as § — 0, thus proving (3.22]). The proof is concluded. O

Proof of Lemma([3.3. We may follow the same argument as in [1I, Proofs of Lemma 5 and
Lemma 6], by explomng also Lemma [3.6) m We then omit the details. U

To conclude the proof of Theorem it remains to prove Lemmas and This is the
subject of the following two sections.

3.3. The bulk density. This section is devoted to the proof of Lemma[3.4 With the following
lemma, we analyze the blow-up at points with approximate gradient, which exists for £%a.e.
point in €2 by Lemma It is noteworthy that in order to develop the blow-up arguments

of this section, it will suffice to consider a Riemann integrable exponent p satisfying |(P1)} as
L%a.e. x € Qis a continuity point for p. On the contrary, the stronger assumption will be

crucial in Section [3.4] when dealing with the surface scaling.

Lemma 3.7. Let p: Q — (1,+00) be a Riemann integrable variable exponent complying with
. Let u € GSBVPO) (Q;R™). Then for L%-a.e. zg € Q and L'-a.e. o € (0,1) there exists a
sequence u, € GSBVPO) (B, (z0);R™) such that

(i) ue = u in Be(x0)\Boe(xo), hn% g~ (d+1) Cd({u #u} N B:(xg)) =0;

_ _ p(x)
(i7) lim &~ <|”€ u(zo) ;“(mom x0)|> dz =0; (3.23)
Bcrs 1'0

e—0

(#3) lim e "HY(J,.) =
e—0

If, in addition, u € SBVPO)(Q;R™), then u. also satisfies

(i) lim e_(d+1)/ |ue —u|dz =0,
Bs($0)

e—0

e—0

(iii)’ Tim e~ / fuc]] M4 = 0

€

Proof. 1t will suffice to treat the scalar case m = 1. Let xg € Q be such that

(a) lim 5_d/ |Vu(z) — Vu(zg ‘p dz =0;
B (z0)

e—0
(b) lim e ~d94=1(J, N Bo(20)) = 0; (3.24)
(c) il_r)r(l) 6_d£d<{x € B.(xo): Jul@) = u(zo) —EVu(xo)(:L’ = o)l > Q}) =0 for all p > 0.

Properties (a) and (c) hold for £%a.e. 2o € Q by Theorem since |[Vu| € LPO)(Q; R™*?) and
by Lemma respectively, while (b) follows from the fact that .J, is countably H?~!-rectifiable
(see, e.g., [6]). We can also assume that z( is a continuity point for p(z); hence, it is not
restrictive to assume that holds, up to replacing 2 with a fixed neighborhood of xy where
it is satisfied.

We set u.(z) := M, define the truncated functions T.te := Tg_ ()t as in (2.5), and

€

ve(x) := u(zo) + eT s ().
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Note that
|Vve| < |Vu|  L%ae. (3.25)

and J,. C Jy, H Y (J, \Ju) = 0. This along with (3.24)(b) implies (3.23)(i1).
We notice that (3.24)(b) implies also (2.6) for ¢ small enough, which combined with (2.11))
gives

1
E”A?ﬂ*&%¢uwwmﬁ@MMa—dﬂﬁﬂwﬁﬁ@m&u@>

d
4(27i50) @1 _ 4 (3.26)
u

as ¢ — 0.

Therefore, for every sequence ¢ — 0 one can find a subsequence (not relabeled) such that, for
Llae. o€ (0,1),

11(8Bye(20)) = H 1 (0Bye(20) N Jy.) =0,
0.

hm e~ MM ({v. # u} N OBye(x0)) = (3.27)

Now, we fix a sequence ¢ — 0 and consider a subsequence (not relabeled) and o € (0,1) for
which (3.27) holds. We then define

u (l‘) _ Us(l') in Bas($0)a
c u(xz)  in Be(xo)\Boe(xo) -

From the definition of u. and the argument of (3.26])) we get the assertions in (z) We now

prove ( i). We set u:(y) := us(xo + €y). Then for s € [0,e% we have (u ) (8; Boe(xg)) =
(ﬂg)*(s/e B,) and, in turn,

7' (tUe; By) = 7' (tic; Boe(x0)) , 7" (te; By) = 7" (llie; Boe(o)) , med(e; B,) = med(iic; Boe(x)) -

We have
Tsﬂa(mo + Ey) = Taaa(y) )
so, recalling that u. = v. in Bye(x0), (3.23])(i4) can be rephrased as

[ 122 ) = Vuteo) -y dy - 0, (3.25)
Bs
as € — 0, where we have set
pe(y) ==p(zo +ey), Y€ Bo.
From (3.24))(a)-(b) we infer
/ Vi@ dy < ¢, limHY(Jz. N B,) =0.
Bs e—0

Then, by virtue of Theorem there exist a function uy € W'P(0)(B,:R) and a subsequence
(not relabeled) of {u.} such that

/ T (y) — med(iie; By) — o ® dy — 0, 1i. — med(iiu: By) — Tl L% — ave. in B, .
Bs

The assertion (3.28) will then follow once we prove that
lim med(t,; By) =0. (3.29)

e—0
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For this, notice that (3.24))(c) implies o (y) = Vu(xg)-y for LI-a.e. y € B,. The a.e. convergence
in measure of u; — med(us; B,) to Vu(xp) - y is now enough to reproduce the proof of [I1], eq.
(21)], and obtain (3.29). We therefore omit the details.

If u € SBVPO) (Q; R™), we may fix 2o € Q such that, in addition to (3.24)(a), (3-24)(c) holds

in the stronger form

lim e~(@+D) / () — u(zo) — V(o) (x — 20)| dz = 0,
Bg(xo)

e—0

and also property

lim &~ / ]| M4 = 0 (3.30)
JuﬂBg(m())

e—0

is satisfied. Then as a consequence of Fubini’s Theorem, we can fix o € (0, 1) such that H4~*(J,N
0Bge(x0)) = 0 and

lim e~ ¢ /{)B - lu(x) — u(zo) — Vu(zo)(x — xo)|dH L =0. (3.31)
oe(Z0

e—0

Now, we can define the sequence u. as above and prove (i), (i7) and (iii). Assertion (i) will
follow from (ii7), (3.31)), (¢) and Holder’s inequality, since ue = u in Be(x0)\Bge(20)-

Finally, since by construction it holds that |[uc]| < |[u]| H4 !-a.e., property (iii)’ is a conse-

quence of (3.30)).
O

We are now in a position to prove Lemma[3.4] which will follow as a consequence of Lemma 3.8
and Lemma 3.9

Lemma 3.8. Let p : Q — (1,+00) be a Riemann integrable variable exponent satisfying |(P1)|
Suppose that F satisfies [(Hy)| and |(H3){(Hy)| and let v € GSBVPO(Q;R™). Then for L-a.e.
xo € Q we have

_bulk
lim mr(u, B:(z0)) < lim sup mz (i, Be(70))

3.32
=0 Yae? e—0 Yae? ( )

Proof. We will prove the assertion for those points z¢ € €2 for which the statement of Lemma
holds and lim. _o(vqe?) ' 1u(Be(20)) = 1. This holds for L%a.e. zo € Q. Also, by Lemma
we know that for £%a.e. zo €
B B
A ecgffo)) iy (s ;(3«"0))
e—0 Yd€ e—0 Yd€
Let (us): be the sequence of Lemma and we fix o € (0,1) such that (3.23))(i¢) holds. We
write 0 =1 — 6 for some 6 € (0, 1).
Given z. € GSBVP() (B(1-30)c(20); R™) such that 2. = a‘;glk in a neighborhood of 9B 1 _3¢) (7o)
and

< +o0. (3.33)

F (22, Ba—30)c(0)) < mp(u™, Bi_s0)c(20)) + vae™, (3.34)
we extend it to z. € GSBVP)(B.(x);R™) by setting z. = ub"* outside B1_36)c(70). Now, we
apply Lemma [3.2) with u and v replaced by z. and u., respectively, and

DL ., = Ba_s9)-(x0), DL, := Ba_pe(20), Ecny = Cep(x0), (3.35)
where, to enlighten the notation, we denote by C¢ g(wo) the annulus B.(x0)\B(1—_46)(70). Note

that Cc g(x0) = (C1o(20))e,z, according to notation (2.1]), where Cy g(20) := Bi(x0)\B(1_10)(x0)-
Also, LYC1 p(w0)) = 7a(1 — (1 — 40)%) — 0 as § — 0.
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With fixed 7 > 0, we then find w, € GSBVP() (B, (x0); R™) such that w. = u. on Be(z0)\B(1-¢)=(0)
and
F(we, Be(z0)) < (141) (]:(Zsa B(l—@)a('rO)) + F (e, CE,Q(xO)))
(3.36)

|ze — ue|

M (
(B(1-6)e (z0)\B(1-26)< (z0)) €

p(z)
) dir + 4 (Bu(xo))

Recalling the definition of u., we have w. = u. = w in a neighborhood of 0B.(xp). Moreover,
since z. = ub"¥ outside B(1-36)=(w0), by virtue of (3.23))(ii) we conclude that

lim g_d/ <\Ze - ?M)p(x) dz
e=0 (B1-0)e(z0)\B(1-20)c (0)) €

_ bulk) P(*)
= lim e_d/ M dz =0.
e=0 B1_6)(0) &

From this and (3.36]) we infer that there exists a non-negative sequence (o)., vanishing as ¢ — 0,
such that

(3.37)

F(we, Be(20)) < (1+ 1) (F(2e, Bu_g)e(20)) + F(ue, Ce p(20))) + %0 + vae™. (3.38)

We set for brevity

(Vu(zo) P := max{|Vu(zo) [P, [Vu(zo)|""}. (3.39)
Then, by using that 2. = a2 on B.(z0) \ B1—_30)=(w0) C C-g(z0), and ((3.34]) we

compute

"r(zaaB(l—G)s(xO)) ‘F(ZE7B(1—39)E(:EO)) ]:(ﬂbulk Cz—:,@(xO»

lim sup ) < limsup y + lim sup o y
e—0 € e—0 € e—0 €
~bulk
mr(u ", B x ~
< timsup P A B0l )1 1 ()P
e—0

. m (b, B(1_39)-(20))
< (1-360)%1 0
< (1= 36) tmeup (1 — 30)ed

+BLYCrg(20)) (1 + [Vu(zo) ).

(3.40)

On the other hand, by we also obtain
F(ue, Cep(w0)) < B /ce,g(zo)(l + | Vue ) dz + BHI (S, N Ceg(0)))
< BLYCep(w0)) + 8 /C . (Ve ") da + BHY (Ju, 1 Ceg(20)).-
=,0(z0
Now, taking into account (3.23))(iii) we get
F(ue, Cep(20))

lim sup —a < BLYCy g(x0)) + limsup fd/c ( |V |P@ de . (3.41)
£,0\T0

e—0 e—0
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Since |Vue| < |Vu| L%a.e., we have, with (3.24)(a),

lim sup % / |V [P da
€ 05,0(10

e—0

< lim sup ﬁd/ |Vu[P®) do
Ce 0(z0)

e—0

(3.42)
< limsup2?' ! <€ [ 19u- Vaa)r as + mv@t(xonﬁcd(qﬁ(xo)))
e—0 €% JBe(x0)
< 2771 BIVu(m0) PLYUC o (20)) -
Combining (3.41)) with (3.42) we finally get
lim sup 122 G200 5 14(0 4 (20)) (1 + 27 (Vo)) (3.43)

e—0 ed

Recall that w. = u in a neighborhood of 0B.(z¢). This along with (3.38]), (3.40), (3.43) and
0 — 0 yields

BE 1 €9 Bs
lim Md(xo)) < limsup ]:(w—d(aj‘o))
e—0 ’ng -0 ’Yds
- bulk B
< (1+n) (1 - 36)?limsup m (T, ’d e(0))
e—0 YdE
+ (L m)Br L4 Crolao)) (1 +27 [Vu(ao) P) + 1,

whence ([3.32]) follows up to passing to 7,6 — 0. The proof is concluded.

O
Lemma 3.9. Under the assumptions of Lemma for L%-a.e. xg € Q we have
B m (a2, B, (z
lim —m}-(u, e(0)) > lim sup 7 o (20)) (3.44)
e—0 ydsd e—0 ’}/dEd

Proof. We can restrict the proof to those points g € €2 considered in Lemma Let n > 0,
o =1— 0 fixed as in Lemma and let (u.): be the sequence provided by Lemma An
argument based on Fubini’s Theorem (see and ) shows that for each € > 0 we can
find s € (1 — 46,1 — 360) such that

HIY (OB (20) N (Ju, U Jy)) =0, forall e > 0,

lim e~ ({u # uc} N 9By (o)) = 0. (3.45)

From now on, the argument of the proof closely follows that of Lemma[3.8] We choose a sequence
Ze € GSBVP(')(B%(H?()); R™) such that z. = u in a neighborhood of 9B (z¢) and
F(2e, Bse(w0)) < mg(u, Bs:(20)) + ’7d5d+1 . (3.46)

Setting z. = u. outside Bs:(xg), we extend it to z. € GSBVP(')(BE(QUO);R’”). Now, we apply
Lemma with u and v replaced by z. and u”"¥, respectively, and the same choice for the sets

€T
D. .., DZ,, and E. 4, as in Lemma see (13.35)).
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By virtue of Lemma we then find w,. € GSBVP(')(BE(xO);Rm) such that w, = agglk on
Be(20)\B(1-)c(w0) and

Flwe, Be()) < (14 1) (F 2, Bag)e(w0) + F(ahe'™, Ceplao))

p(z)
<M> dz + nLY(B.(x0)).
(B(1—6)e (z0)\B(1—26)< (z0)) €

Since 2. = u. outside B(;_39).(z9) from the choice of s, by arguing as in Lemma see in
particular (3.37) and (3.38)), we find a non-negative sequence (g:)c, vanishing as ¢ — 0, such
that

Flwe, Bo(w0)) < (1+ 1) (F(z, Baope(w0) + F(i™, Ceo(a0))) +lee + 4™y, (3.47)
We now proceed to the estimate of the terms in (3.47)). Using that z. = u. on B:(xg)\ Bse(zo) C

Ceo(x0), m m and ( we obtain

F(ze, B(l—@)e(xO)) < m]:(u, Bge(20)) + 'Yd5d+1 + B%d_l(aBss(IO) N (Ju. U Ju))

+M

(3.48)
+ f(usa 05,0(330)) .
Now, with (3.43]) and (3.45)) and the fact that se < (1 — 36)s we get
F(ze, Bii_gye(z By ~
limsup 2t - 0@0) gy qup E: 5(”“’0)) + BLYCL) (1 + [Vu(xo)[P)
e—0 € e—0 (se)
B -
< (1 -36) " limsup “W + 8 L4CLo(w0) (1 + [Vu(xo)P)
e—0
(3.49)
where |Vu(z0)|P is defined as in
The analogous of the estimate for F ( bun‘ ,Cep in -, the estimates , ,
and g, — 0 give
lim sup F(we, Be(20)) 55@0)) < (1+n)(1 —36)%limsup mz(u, Be(wo)) ?g(wo))
e—0 € e—0 €

+2(1 + 1) B LYCY p(20)) (1 + [Vu(20)P) + van -

Finally, letting 1 and 6 to 0, and recalling that w. = a‘;glk in a neighborhood of 0B.(zg), we
can write

mf(alx)glk7B€(x0)) ]:(waBE(l'O))

lim sup = < limsup y
e—0 Yd€ e—0 Yd€
B B
< limsupwj(xo)) — lim Mj(m)) 7
e—0 Yd€ e—0 YdE
and this concludes the proof of (3.44)). 0

3.4. The surface density. The proof of Lemma [3.5| requires the analysis of the blow-up at the
jump points of function u. To this aim, we need a refinement of the results of [11, Lemma 3] to
the case of a variable exponent p(-). This requires a careful analysis of the asymptotic behavior
of some constants, where the assumption of log-Hélder continuity of the variable exponent p(-),

see plays a crucial role.

We state and prove the announced blow-up properties for u € GSBV?() around each jump
point xg € J,,.
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Lemma 3.10. Assume that p : Q — (1,400) be continuous and complying with |(P2)|. Let
u € GSBVPO(Q;R™). Then for H* *-a.e. zg € Jy, for L' -a.e. o € (0,1) and for every e > 0
there exists a function . € GSBVPO)(B.(x0); R™) with v = v, () such that

(i) H*M(Ja.\Ju) N Be(20)) =0,

(i) lim e @V / Vi [P de =0,
e—0 Be(wo)

P— p(x) (3.50)
(i) lim e~ @D / = _w dz =0,
e—0 Boe(w0) IS
(iv) e = u on Be(x0)\Bge(zo)
and
lim e~ 9L%{x € Bo(xo) : e #u}) =0. (3.51)
e—0
If, in addition, u € SBVP(')(Q;R’“), we also have
lim &~ / e () — u(@)] de = 0, (3.52)
e—0 Be(%0)

and

lim e (41 / |[@]| dHEt = ][a;‘;rf]\?-ld_l(ﬂo NE)  for all Borel sets E C By(xo),
JaeME= 2,

e—0

(3.53)
where 1y is the hyperplane passing through xo with normal vy (xg).

Proof. We first note that since |[Vu[P() € LY(Q), the points xo € J, can be fixed such that
lim e~ (@1 IVuP® dz = 0 (3.54)
e—0 BE(IO)

(see, e.g., [30, Section 2.4.3, Theorem 3]). Further, since J,, is (d — 1)-rectifiable, there exists a
sequence of compact sets K such that .J, = (J;2; K; U N, for some N such that HI"Y(N) =0,

and each Kj is a subset of a C' hypersurface. Then, in a neighborhood B.,(y) C 2 of each
point y € Kj, up to a rotation, we may find a C! function L R4 — R such that
K; 01 Buyly) © {o = (2',24) € Buyly) : 24 = T5(a)}.
We now define the function w € GSBVPU) (B, (y); R™) by setting
w(z) = (', zq) ?f xzqg > Tj(2'),
w(@, —xqg+2L;(2"))  if xqg <Tj(2').
Notice indeed that by construction we have |Vw| < C|Vul a.e., hence w € GSBVP) (B, (y); R™).

Furthemore, J, N B, (y) C Be,(y)\K;. Now, following the argument of [I1, Lemma 3], we can
fix zg € B.,(y) N K; with the following properties:
. 1
T(zo), lim sy / lw —ut(20)|dz =0, (3.55)
Be(z0)NK;

wlx =Uu
( 0) e—0t+

and for fixed n > 0 (small enough) there exists (a smaller, if necessary) €9 > 0 such that

/ \Vw|? dz + HI¥ (T N Be(p)) < e~ (3.56)
B (o)
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holds, for all € < g, for ¢ = p,,. Moreover, if we set for every ¢ > 0

p. = inf p(x), pj = sup p(x),
z€B:(x0) x€B:(10)

combining with (3.54) we have that (3.56) is indeed satisfied for ¢ = p_.

Now, fix ¢ such that (3.56)) holds. Define T.w(z) := Tp_ (zo)w(x) as in (2.5)) with u = w and
B = B.(x(). From the Poincaré inequality (2.7]), (3.56) and for any ¢ < r < ¢* we have

/ |Tew — med(w; Be(zg))|" da
BE(Z'O)

< / I Tow — med(w; Be(z0))|? dz [£Y(B.)] 7
BE(‘TO)

q

< (Q'Yisoq*(d_ 1))T </B (z0) |vw|qd$> [Ed(Bs)]l_qL*

r rd=1) g r(d—q)
q

S C(d7 Q7 T)T/qs 1

r r(g—=1)
:C(d7Q7r)77q5 qq +d7

1_
s

1 T
where C(d, q,7) :=  2Visoq*(d — 1)y, ¢ | . Since arguing as for the proof of [I1} eq. (34)] we
d

can prove that

r(g—=1)
/ |med(w, Be(z0)) — v (z0)|" dz < n"e Tt
B (z0)
for € small enough, collecting the previous estimates we finally obtain

1 _ ot r r _(r=a)
/ e = o)l dz < 2max{C(d,q,r)n7,n"}e . (3.57)
Ed_l B5($0) €

If we define the function z as
(', zq) if zqg < Tj(2'),
z(x) = , ) ,
w(@', —xq+2L(2"))  if xg >T(2),
then z complies with the ([3.55)-(3.56)), up to replacing w with z and u™ (x¢) with «~ (z¢). Hence,

an analogous estimate as in (3.57) can be inferred for the sequence T;z defined as the truncation
T'B. (20)% of the function z. We then set

Tow(x) if zg >Tj(a),
ue(z) = . ,
T.z(x) ifxg <Tj(2'),
and we have
(r=q)

1 e 7§:urf ! r —
S )<|u€°> dr < 2max{C(d,q,r)ns,n"}e =, Vrele,qd), (3.58)
Boe(zo

Arguing exactly as in [11, Lemma 3], we also have

lim e~ L% {x € Bo(20) : ue #u}) =0. (3.59)
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Now, an analogous argument as for (3.26)) shows that for every sequence € — 0 one can find
a subsequence (not relabeled) such that, for £!-a.e. o € (0,1),

(1(0Bye(20)) = H Y (0Bye(20) N Jy) =0,
lim e MY ({u. # u} N OBye(x0)) = 0.

We then define

() = ue(z) in Bgye(x0),
c u(x in B:(20)\Bse(x0) -

follow from the definition and (3.54)), while (3.51) is

Now, property (3.50)) (¢), (i¢) and (iv
iii), with fixed n > 0, the estimate (3.58) with ¢ = p_

immediate from (3.59). As for (3.50))

and r = p implies that

T —

pd _d )

1 ja. — azrt\ o -
) S R do < 2max{C(d,pz,pI)nre 7 Yo % (3.60)
oe(Z0

for & small enough. Observe that, by its definition, the constant C(d,p-,pt) is a bounded
function of €. Now, since

o () o pd
1 il — usurf 1 i — usurf
— |5710 dz <e+ — ‘871"0 dx
€ Boe (CCO) € € Bas(xo)

pd _d e

< e+ 2max{C(d, p-,pl)nr 777p6 }5 P,

)

and with p < pg, assertion (i) in (3.50) will follow sending e — 0 first and then n — 0, once

we note that
_ (pd —p2)
limsupe re <
e—0

for some constant ¢; by virtue of |(Ps)

Assertion (3.52)) for a function u € SBV (€2;R™) can be obtained exactly as in [11, Lemma 3]
as a consequence of Holder’s inequality, combining (3.58|), written for » = ¢ = pg,, and the

property
lim Ed/ lu(x) — ’S“rf( )]dz =0.
B:(z0)

e—0

‘We omit further details.

Concerning (3.53)), we begin by observing that, if u € SBV (; R™) for H4 -a.e. xg € J, we

have
1
lim / (14 |[u])dHT Tt =0. (3.61)
(JuNBe (0))\

e—0 €d 1
If we now set

7j’surf( ) — {T/(w’ Bg(l‘g)) N U+(aj0) v T”(w7 Ba(x())) if zg > Fj(x,) s

7'(2, Be(x0)) Au(20) V 7'(2, Be(20))  if wg < Tj(a),

with (3.55)), (3.56)), (3.61), and since truncations are 1-Lipschitz, we get

1 _
lim lue — 2“;2 | dH! =
Ju

e—0 Ed 1

€



FREE-DISCONTINUITY PROBLEMS WITH p(-)-GROWTH 23

Now, as shown in [IT, Remark 2, Formula (39)], one has componentwise
lim sup 7 (wi, Be(20)) > uj (z0), liminf 7' (w;, Be(20)) < u; (o)
e—0 e—0

and the same properties also hold for z. With this, one has, for all £ C By (),

1 1
lim — d-1 _ lig b qgd-1
811101 gd—1 /JuEﬂEs,zO |[uc]| dH |[u]|(z0) EHIOl cd—1 H (Jue N Ee )

= [[u]| (zo)H' (o N E)

since the last property is satisfied at H% !-a.e. zo € J,, by the definition of measure-theoretic
normal to a rectifiable set. This is clearly equivalent to (3.53)). O

We now prove Lemma The two inequalities in (3.12)) will be shown with Lemma and
Lemma [3.12] below.

Lemma 3.11. Let p : Q — (1,+00) be a variable exponent satisfying [P1)H(P2)} Suppose that
F satisfies |(Hy)| and |(Hz)H(Hy)| and let uw € GSBVPO) (Q; R™). Then for H* 1-a.e. 29 € J, we
have

m B, m ,asurva x
;%W < lim sup 7 (U3, d_ﬁl( 0))
- e—0 Yd—1€

(3.62)

Proof. Let 4. be the sequence of Lemma let 2y be such that Lemma holds, and set
v :=vy(zp). By Lemma for H ae. zo € J, NQ we have

dF (u, ) _ F(u, Be(xo)) _ . mz(u, Be(x))

— =lim ————— = lim ——————** < 0. 3.63

H L, ) T B ) A et (3.68)

Let n > 0 and o € (0,1) be fixed such that Lemma holds, and set ¢ = 1 — 6 for

some 6 € (0,1). We consider a sequence z. € GSBVP(')(B(1_39)E(3:0);Rm) with z, = ﬂ?c%rf in a
neighborhood of 9B(1_34. (7o) and

F (%, Ba—sp)-(z0)) < mz(@52, B1_3p)(20)) + Ya—16% (3.64)
We extend Z. to a function in GSBVP) (B, (xo); R™) by setting z. = ast outside B1-36)=(0).
Now, we apply Lemma with v and v replaced by Z. and u., respectively, and D(’M0 =

B1-29)<(70), Dl , = B1_p)e(w0) and E¢ 2, := C¢ g(70), where C. g(z0) still denotes the annulus
B (20)\B(1-40)=(70) (see (3.35)). We then find w. € GSBVP) (B, (x0); R™) such that @, = .
on Be(x0)\B(1-6):(70) and
F(U_]Ea B€<1’0)) < (1 + 77) (]:(2& B(1—9)8<$0)) + 'F(@Sv CE,Q(;UO)))
<\zs — e | (3.65)
(B(1-9)e(20)\B(1-20)c (20)) €

In particular, by (3.50))(iv) we have that w. = z. = u in a neighborhood of 0B:(xy). By
(3-50) (é4i) and the fact that z. = aS™™ outside B(1_39)c(70) we get

lim e~ (@+1) / (’Za — e )p(x) dzx
e=0 (B(1—6)e (20)\B(1 -2y« (x0)) €

_ _ p(z)
— lim 5—(d+1)/ w dz =0
e=0 B(1_¢)e(z0) €

p(z)
+M ) dz 4+ nLY(B.(z0)) .

(3.66)
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Plugging in (3.65)) we find that, for a suitable non-negative vanishing sequence g, it holds that
F(we, Be(w0)) < (1+n) (F(Z, Ba-g)e(20)) + F(te, Cep(w0))) + " oe +vae™n.  (3.67)

In order to estimate the terms in (3.67)), using that z. = @5 on B.(w0)\ B(1-30)-(20) C Cz0(z0),
[(Hy)l |(Hq)l and (3.64) we compute

. F(Ze, Bi—g)e(w0)) _ . F(Ze, B(1—30)c(20)) . F(ast, C. g(x0))
lim sup - < lim sup — + lim sup -
e—0 Yd—1€ e—0 Yd—1€ e—0 Yd-1€
m ,L—Lsurf’ B T
< limj(l)lp al xow 1;?9)5( ) + ’YdB ) H(C1,p(z0) N1o)
& — —
mz (a3, Be(20))

<(1- 3(9)d_1 lim sup
e—0 Yd—1

+B(1—(1-40)"),
where we denote by Iy the hyperplane passing through xy with normal v, (xg).
To estimate the remaining term, observe that by rectifiability of J, and (3.50) (i) it holds

. BHT (Ja. N Cepl@o)) _ . BHI(JuN Ceplao))
lim sup - < lim )
e—0 Yd-1€ e=0 Yd-1€ (3.69)
= Cuaan) N TIo) = B (1 (1 - 40)).
With this, using [(H4)| and (3.50))(i7) we infer

M ’chs,o(xo)(l + ’VﬁE’p(:v)) dz

e (3.68)

BHI(Ju. N Cep(z0))

lim su < lim su + lim su
e—0 P %fl—lﬁd_1 e—=0 P 'Yd—lfd_l e—=0 P 7d—1€d_1
= B(1— (1 —46)").
(3.70)

Finally, collecting the estimates in (3.67)), (3.68) and (3.70)), recalling that o — 0 and that
W = u in a neighborhood of dB.(zy), we obtain

M Bale) P, Be(a))
e—0 Yd 1Ed_ 1 - P d-1
_ e—0 Yd—1€

m —surf, B
<(14n)(1- 36’)le1 lim sup #(, d_sl(%))
e—0 Yd—1€

+26(1+n)(1 - (1-40)"1),
whence (3.62)) follows up to passing to 1,6 — 0. The proof is concluded.

O
Lemma 3.12. Under the assumptions of Lemma for H¥ 1 -a.e. xo € J, we have
B m ﬂsurf7B T
lim —mf(u, =(z0)) > lim sup 7, (o)) (3.71)
e=0  yg-1edt e—0 Yq-1€971

Proof. Let . be the sequence of Lemma and let # € (0,1), n > 0 be fixed. From (3.51)) it
follows that

0<e (@D /01 HI ({u # @} N OBye(20)) do = %Ld({u # iz} N Be(x0)) = 0
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as € — 0. Then for each € > 0 we can find o € (1 — 46,1 — 36) such that

1(0Bye(x0)) = H 1 (0Bye(20) N (Ja, UJy)) =0,  for all € > 0,

lim e~ 1! ({u # @} N 9Bye(w0)) = 0. (3.72)

We consider a sequence z. € GSBVP(')(BUE(xO);Rm) with z. = u in a neighborhood of
0Bye () and

}"(zg, ng(xg)) < m;(u, Bge(ajo)) + vg_16%. (3.73)

We extend z. to a function in GSBVP(')(Bg(xO);Rm) by setting z. = @, outside Bye(zg). By
applying Lemma with u and v replaced by z. and ﬂi%rf, respectively, and the same choice
for the sets D’ D!, and E. ;, as in Lemma we find w, € GSBVP) (B, (xg);R™) such

e,x0r Ye,xo
that w. = @™ on B:(20)\B(1_p). and

F(ie, Bo(@o)) < (14 n) (F(ze, Bug)e(@0)) + F(@5, Cep(w0)))

,asurf

p(z)
xo) dz + nLY(Be(x0)) -

(‘Za -
+ M
(B1-6)e(0)\B(1-20)c(20)) €

We notice that, as a consequence of the choice of o, 2. = . outside B(;_3p) (o). Then, by virtue
of (3.50))5, we can find a non-negative sequence g., vanishing as e — 0, such that

F(u_jt‘a Be(-ro)) < (1 + 77) ('F(zea B(l—@)a(xﬁ)) + ‘F(asxl(l)rf7 05,9(1'0)))
+e oo+ myae.

We now estimate each term in the right hand side of (3.74). Taking into account |(Hp)} [(Ha)l
(3.73)), the fact that z. = 4. on Be(x0)\Bse(xo) and the choice of o, we get

(3.74)

F(ze, Ba—g)e(w0)) <mr(u, By, (z0)) +va—1% + BH* ({@e # u} U Ju U Ja,) N OBy, (x0))
+ f(ﬂg7 CE’Q((L’O)) .

(3.75)
Now, with (3.70]), (3.72]) and o < (1 — 36) we then obtain
F(ze, B(1— , B,
lim sup (ze, Bu ;zsl(ﬁo)) < lim sup mr ( dg_(lxo)) +B8(1 —(1—46)%h
e—0 Yd-1€ e—0 Vd-1€ (3.76)
B :
< (1 —36)limsup M + 61— (1 —40)771Y),
e—0 Yd—-1€
and, as already proven in (3.68)),
F —surf7 C
lim sup 7 L0 ;fl(x())) < B(1— (1—49)%Y. (3.77)
e—0 Yd—1€

Collecting the estimates (3.74)), (3.76), (3.77) and using 0. — 0 we infer

<(1+mn) ((1 —36)% lim sup M

lim sup —}—(U_JE’ B:(x0))

e—0 ”)’dflgd_l e—0 ')’d715d_1

+26(1—(1— 49)(“)) .
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Finally, since w. = ﬂi‘érf in a neighborhood of dB.(z¢), and using the arbitrariness of 7 and 6,
we derive

m 7surva .. B
i PR B0) T, Beleo)
e—0 Yd—1€7 e—0 Yd—1E™
B
< lim sup mr(u, ;(9100))
e—0 Yd—1E™
_ iy Bl Belan)
e—0 Yd—1E"
The proof of (3.71)) is concluded. O

4. I'-CONVERGENCE

In this section, we present a general I'-convergence result for functionals : GS BY»() (Q;R™)x
A(2) = [0,400) of the form

F(u,A) = /Af(a;, Vu(z)) dz + /J i, g(z, [u](z), vy (x)) dAH (2) (4.1)

for each u € GSBVPL) (Q; R™) and each A € A(Q), where [u](z) := u* (2) —u~ () (we refer the
reader to [25] for an exhaustive treatment of the topic). To formulate the result, we adopt the
notation of Section [3| and define the minimization problems mzr(u, A) and the functions £y 4, ¢

and Uy, o4 as in (3.1), (3.2)) and (3.3)), respectively.
Let 0 < a < 8 < 400 and 1 < ¢ < +00 be fixed constants. We assume that f: RExR™*4 —
[0, +00) satisfies the following assumptions:

(f1) (measurability) f is Borel measurable on R?xR™*;
(f2) (lower and upper bound) for every x € R? and every ¢ € R™*4,

aléglPt) < f(x,€) < B+ [€PV),

and that g: Rdegnde_l — [0, +00) complies with the following assumptions:

(g1) (measurability) g is Borel measurable on R xR xS
(92) (estimate for c|¢1| < [(2|) for every x € R? and every v € S¥~! we have

g(x,C1,v) < g(w,(2,v)
for every (1, (2 € Rf" with ¢[Gi] < [Cal;
(93) (lower and upper bound) for every x € R%, ¢ € RJ, and v € S%!

a<g(z,(v)<B;

(g4) (symmetry) for every x € R%, ¢ € R, and v € ST!
Q(SU,C, V) = g(l‘, _Cv _V)‘

For future reference, we also introduce the property
(g5) (estimate for |(1] < |Ca|) for every z € R? and every v € S¥~! we have

9(z,C1,v) < cglx,(2,v)
for every <17 CQ c RgL with Kl‘ < ’CQ’
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Notice that assumption implies with ¢ := g

The first main result is the following.
Theorem 4.1 (I'-convergence). Let @ C R? be open. Let (f;); and (g;); be sequences of
functions satisfying |(fOH(£2)| and [(g1)H(g4)| respectively. Let Fj: GSBVPO(Q;R™) x A(Q) —
[0,4+00) be the corresponding sequence of functionals given in . Then, there exists a func-
tional Fao: GSBVPL) (Q:R™) x A(Q) — [0, +00) and a subsequence (not relabeled) such that

Fool(,A) =T- lim F;(-,A)  with respect to convergence in measure on A
j—o0

for all A € A(Q). Moreover, for every u € GSBVPO)(Q;R™) and A € A(Q) we have that
Foo(u, A) = / foo(z,u(z), Vu(z)) dz + / Gool(z,ut (z), u™ (2), vy (z) dHT (), (4.2)
A

wNA

where foo = foo(T0,u0,&) is given by [B3.4) for all zg € Q, ug € R™, £ € R™¥4, and g =
Goo (0, @, b,v) is given by [3.5)) for all zg € 2, a,b € R™, and v € S1.

We will prove the compactness of I'-convergence via the localization technique for I'-convergence
(see [25, Ch. 14-20] for the general method), where the main ingredient is the fundamental
estimate in GSBVP(), proven with Lemma The representation in terms of the densi-
ties fo and goo then will follow by the integral representation result of Theorem Indeed,
since each F; is invariant under translations of u, then also F, as I'-limit, satisfies the same

property. Thus, from Theorem in particular (3.4)—(3.5)), we infer that foo = foo(%0,&),
Joo = Joo(o,a — b, V) so that F, has the form

Foo(u, A) = /Afoo (z, Vu(z)) dz + / Gool, [u] (), vy (z)) dH Y (2) (4.3)

JuNA
and the densities foo, goo can be computed as

mr (Lo 0¢, Be(0))

o, &) = limsup , 4.4

foo( 0 5) -0 ,.ngd ( )
m B

Joo (0, ¢, v) = limsup F (o .0, B (20)) , (4.5)

e—0 Ya-18971
for all 29 € Q, £ e R™*? ¢ € R™ and v € S 1.
For our purposes, it will be useful to consider functionals Z : LY(£; R™) x A(Q) — [0, +o<]
defined as
))d BVPU(A;R™
T(u, A) {fA f(z,Vu(z))dz, we GSBVPY(A;R™), (4.6)

otherwise.

We recall a result concerning the existence of suitable truncations of a measurable function u
by which functionals F as above almost decrease (see [16, Lemma 4.1]). For our purposes, the
statement below is formulated in the p(-)-setting, and since the adaptation of the original proof
requires only minor changes, we omit the details.

Lemma 4.2. Let F be as in ([4.1), where we assume that f satisfies [[fD(f2)] and g satisfies
[(gD)l[(g2)] [(g4)] and[(g5)} Let T be asin ([£.6). Let n, A > 0. Then there exists > X depending on
n, A, a, B, ¢ such that the following holds: for every open set A C Q and for everyu € L°(R?, R™)
such that u| s € GSBVPO) (A, R™), there exists @ € L>®°(R%, R™) such that ti|4 € SBVPO) (A, R™)
and

(1) || < p on RY;
(ii) @ =u L%a.e. in {|u| < \};
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(ii1) F(i, A) < (1+n)F(u, A) + BLYAAN{[u] > A}).

Moreover, there exists 0 with the same properties of U such that (iii) holds for the functional T
with ¥ in place of 4.

Let (F;); be a sequence of functionals of the form (4.1)). We start by proving some properties
of the I'-liminf and I'-limsup with respect to the topology of the convergence in measure. To
this end, we define

Fl(u,A) =T — lirginf]:j(u7 A) = inf { liminf Fj(uj, A) : u; — u in measure on A},
n—00 j—00
Fo(u, A) := T — limsup Fj(u, A) = inf { lim sup F;(u;, A) : u; — u in measure on A} (4.7)
n—00 j—00
for all u € GSBVPO) (Q;R™) and A € A(R).
Lemma 4.3 (Properties of I-liminf and I'-limsup). Let Q C R? be an open set, and
F;j: GSBVPO(Q;R™) x A(Q) — [0,00) be a sequence of functionals as in (4.1)), where we assume

that f; and g; comply with |(f1H(f2)| and|(g1)H(g4)|, respectively, for all j € N. Define F., and
F2 as in (4.7), and write, for brevity,

Glu, A) == / VPO de + HEL (T, N A).
A

Then we have
() Flo(u,A) < Fl (u,B), Fl(u, A) < FZ(u,B) whenever A C B,
) aG(u, A) < Fio(u, A) < Fil(u, A) < BG(u, A) + BLI(A),
(iii) Foo(u, A) =suppcca Foo(t, B),  Foo(u,A) =suppcca Faoo(u, B)  whenever A € A(S),
) Fiolu, AU B) < Fl (u, A) + Fio(u, B),
Fl(u, AU B) < Fl(u, A) + FL(u, B)  whenever A, B € A(f), (4.8)

where o, B have been introduced in|(f2) and|(g3)|

Proof. The monotonicity property (i) follows from the fact that Fj(u,-) are measures. The
upper bound in (ii) can be inferred choosing the constant sequence u; = u in (4.7) and taking

into account the upper bounds in|(f2)|and [(¢3)} For what concerns the lower bound in (ii), we
consider an (almost) optimal sequence (v;); in (4.7). Then, with the lower bounds in and

we get

sup aG(v;, A) < +00.

JEN
Now, since v; — u in measure on A, by arguing as in the proof of Lemma and exploiting the
lower semicontinuity inequalities

/ |Vu(z)[P® dz < lim inf/ V() |P® da < 400,
A J=ree JA

HI (T, N A) < liminf (T, N A),
J—+oo
we easily obtain the lower bound.
In order to prove (iii) and (iv), we preliminary show that for every U,V and W open subsets
of Q, with V CcC W cC U, we have

Fl(uw,U) < Fro(u, W) + Foo(u, U\V), Fr(u,U) < FL(u,W)+ FL(u,U\V). (4.9)



FREE-DISCONTINUITY PROBLEMS WITH p(-)-GROWTH 29

We confine ourselves to the proof of the first assertion in (4.9)), the other one being similar. Let
(u;); and (v;); be sequences in GSBVP)(Q; R™) converging in measure to u on W and U\V,
respectively, such that

]:c,>o(u7 W)= ljlg_ﬁgof ]:J'(uj? W), ]:éo(ua U\V) = ljlgl_igf}-](vjv U\V) . (4.10)

We may assume, up to passing to a not relabeled subsequence, that each liminf above is a limit.
We fix n € (0,1) and A > 0 such that

BLYUN{|ul > A}) <7. (4.11)
By virtue of Lemma there exists p > A such that, for every k¥ > 1 we can find 4;, €
SBVPO(W;R™) N L®(W;R™), with |y, | < g, 95, € SBVPO(U\V;R™) N L®(U\V;R™), with
9j,| < 1, such that 4, = u; L%a.e. in W N {|uj| < A}, 95, = v; L&a.e. in (U\V)N{|v;] <A}
and

Filiaje, W) < (L) Fy(ug, W) + BLYAW 0 {[uy] 2 A}),
Fi (05, U\V) < (1 +1) F(v5, U\V) 4+ BLYUNV) N {Jvs] = A}).
We apply Lemma with n above, D" := W, E := U\V, u = 4;,, v = 0j,, for some D’ with

V cc D' cc W. Note that W\D' c U\V. We then find a function w;, € SBVP")(U;R™) N
L>°(U;R™) such that

E(wjk7 U) < (1 + 77) (‘Fj(ﬁjm W) + E(ﬁjkﬂ U\V))

(4.12)

e — 6. [\ P®) 4.13
+M <|“Jk 5 W) dz +LYD' UE). (419)
W\D

Note that, by the dominated convergence in measure, ij, — 9;, — 0 in LPO(W\D';R™) as
k — 4o00. Moreover, recalling (3.6)(ii), we have that w;, — u in measure on U as k — 4o00. By
a diagonal argument this implies, in particular, that

Flow,U) < limint F, (i, V). (4.14)

Note also that, from (4.11)) and the convergence in measure of both u;, and v;, to u, we have
LYW N {lujel =2} < and - LYUNV) 0 {[o | 2 A}) <7

for k large enough. Then, combining (4.12) with (4.13), (4.10) and passing to the limit as
k — +o00, and then letting  — 0T, assertion (4.9) follows.

We now prove the inner regularity of F._, the first property in (iii). Combining (4.8)(ii) and
(4.9) we find

Flo(w,U) < Flo(u, W) + 8G(u, U\V) + BLYUNV) .

Now, we can choose V CC U and U in such a way that £4(U\V) and G(u, U\V) be arbitrarily

small, and recalling that F._(u,-) is an increasing set function by (4.8))(i), we obtain (4.8))(iii)
for F._. The proof of the analogous property for F/_ is similar.

We conclude by showing property (iv) for F/_. First, we note that it is not restrictive to assume
that AN B # (), otherwise the inequalities in (iv) are straightforward. It is well known (see, e.g.,
[5, Proof of Lemma 5.2]) that given n > 0, one can choose in € open sets U CC U’ CC A and
V cC V' cC B such that U'NV' =, and G(u, (AUB)\ (UUV))+ L4L(AUB)\ (UUV)) <.
Then using, (4.8))(i),(ii) and we get

Foolu, AUB) < FL(u, U UV') + Fl (u, (AUB)\U UV) < Fl (u,U") + Fo (u, V') + B

< Flo(u, A) + Fi(u, B) + B,
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where we also used F. (u, U’ UV’") < F. (u,U’) + F.(u, V') which holds due to U' NV’ = ).
Since 1 was arbitrary, the statement follows. O

We can now prove Theorem

Proof of Theorem[{.1l First, we prove the existence of the I'-limit by applying an abstract com-
pactness result for [-convergence, see [25, Theorem 16.9]. This implies the existence of an
increasing sequence of integers (ji)x such that F._ and F/, defined in with respect to (ji)k
satisfy
(Flo)—(u, A) = (F&) - (u, A)

for all u € GSBVPO)(Q;R™) and A € A(Q), where (F.)_ and (F")_ denote the inner regular
envelopes of F._ and FZ,, respectively. By (4.8))(iii) we know that 77, and F., are inner regular,
and thus they both coincide with their respective inner regular envelopes. This shows that the
I-limit, denoted by Fu := Fl, = F/L, exists for all u € GSBVPO)(Q;R™) and all A € A(Q).

We now check that Fo, satisfies assumptions [(H;)H(H4)| of the integral representation result,
Theorem [3.1] First, the definition in and the locality of each F; show that F(:, A) is local
according to |(Hs)| for any A € A(£2). Moreover, Fuo (-, A) complies with for any A € A(Q)
in view of [25, Remark 16.3]. Now, since Fo, is increasing, superadditive, inner regular (see [25]
Proposition 16.12 and Remark 16.3]) and subadditive by (4.8)(iv), the De Giorgi-Letta criterion
(see [25, Theorem 14.23]) ensures that Fiu(u,-) can be extended to a Borel measure. Thus,
also is satisfied. Eventually, by (4.8))(ii) we get Therefore, we can conclude that Fuo
admits a representation of the form (4.2)). O

5. IDENTIFICATION OF THE I'-LIMIT

In this section we identify the structure of the I'-limit provided by Theorem by showing
a separation of scales effect; i.e., that there is no interaction between the bulk and surface
densities, as fo is only determined by (f;); and go is only determined by (g;);.

We assume that f: RIxR™*? — [0, +00) satisfies and the following: for every
z € R? and every ¢ € R™*4,

(f3) (continuity in &) for every x € R? we have
|f(@,&) — f(z,&)] <wi (& — &N+ f(z,&) + f(z,&))
for every &, & € Rm*4;
and that g: RIXRI' xS4—1 — [0, +-00) satisfies [(g1)} |(g2)} |(g3)} |(g4)| and complies with

(g6) (continuity in ¢) for every 2 € R? and every v € S9~! we have

’g(IIZ,CQ,V) —g(:L',Cl,I/)| < w2(’(1 - CQD(Q(Qf,Cl,V) —i—g(:L',CQ,I/))

for every (1, (2 € Rf', where wy: [0,4+00) — [0,+00) is a nondecreasing continuous
function such that w2 (0) = 0.

5.1. Identification of the bulk density. We start with the identification of the bulk density.
To do this, we restrict functionals F as in (4.1]) to Sobolev functions W1P()(Q; R™). Indeed,
since every Sobolev function has a H? !-negligible jump set we have

F(u, A) = / f(z,Vu)dz, for all u e WHPO(Q; R™). (5.1)
Q

We set, for every £ € R™*4,

Zg = 507075 y (52)
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where £ ,.¢ is defined as in (3.2). In analogy to (3.1), for every u € Wl’p(')(Q;Rm) and
A € A(Q2) we define

ml’p(')(u, A) = inf {F(v,A): v=wu in a neighborhood of 0A}. (5.3)
4 veWLPO) (Q;R™)

We consider the functionals Fj : L1 (Q; R™) x A(2) — [0, +00] defined as
. lzp(') . m
Fy(u, A) i {fA fi(z,Vu(z))de, veW (Q;R™),

+00 otherwise.
where f; satisfies|( f1)I(f2){and |(f3) for every j € N. We then have the following I'-convergence
result.

Proposition 5.1. The functionals F;(-, A) I'-converge (up to a not relabeled subsequence) as
j — oo in the strong topology of L'(Q;R™) to the functional F(-, A) for every A € A(S),
where

F(u,A) = / fsob(z, Vu(z)) dz (5.4)
A
and 150)
P g Bg
fsob(x, &) := limsup my £7d (z)) . forallz € Q and £ € R™*4, (5.5)
e—0t Yd€
Moreover, fs, is a Carathéodory function satisfying |(f2)| and it holds that
Lp() (7 Lp(-) (7
mp " (lg, Be(2)) m " (lg, Be(x))
fsob(x,€) = limsup lim inf f fd ° = lim sup lim sup 5 {d ° . (5.6)
et J—too Yd€ e—0t  j—o+too Yd€

Proof. The proof of the I'-convergence result and the integral representation can be ob-
tained as in [22, Theorem 4.1 and 4.2]. The characterization follows by adapting the
global method of Section to the variable exponent Sobolev setting, while is a standard
consequence of the I'-convergence. We omit the details. U

We can now proceed with the announced identification of the bulk density.

Theorem 5.2. Under the assumptions of Theorem and assumption |(f3)| on the sequence
(f5), let fsob and foo be defined as in ((5.5) and (4.4)), respectively. Then, for allu € GSBVPO)(Q;R™)

we have that

foo(z, Vu(x)) = foob(z, Vu(z)) for Ll:ae. z € Q. (5.7)
Proof. We show the two inequalities in ((5.7). We first prove

foolx, Vu(z)) < foob(z, Vu(z)) for L&ae. z € Q. (5.8)

First, in view of (3.1) and (5.3), we get mz(le, B:(z)) < m}ép(')(f&BE(:p)) for all £ € R™*4,
where we recall the notation /¢ introduced in (5.2). Then (3.4]) implies

Z B 1,p(+) E B
foo(x,&) = lim sup W < lim sup e ’(y i’d =(2)) , (5.9)
e—0t d e—0t d
while by (5.5) and (5.1)) we find
fsob(, &) = limsup my (e, 5(:13)) (5.10)

d
e—0t+ Ya€

Thus, since both fo and fs1, are continuous with respect to £ by |(f3), combining (5.9)—(5.10)
we obtain (/5.8]).
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We now prove the reverse inequality
fsob(, V() < foolz, Vu(z)) for L:ae. z € Q. (5.11)

First, from the Radon-Nikodym Theorem we have that

Foola, Vu(a)) = lim 200 Be@)

< 400 5.12
e—0+ vaed (5.12)

holds for £L%-a.e. z € Q. Let (uj) be a sequence of measurable functions such that u; €
GSBVPO) (Q; R™)
uj — u in measure on @  and  lim Fj(u;,Q) = F(u, Q).
J—r+oo

Since u € GSBVPO)(Q;R?), by virtue of Lemma the approximate gradient Vu(z) exists for
L%a.e. x € Q. Then, since (5.11)) needs to hold for £L%a.e. = € 2, we may assume that (5.12)
holds at z and that Vu(z) exists. Since F(u,-) is a Radon measure, there exists a subsequence
(er) C (0,+00) with e \, 0 as k — 400 such that F(u, 0B, (z)) = 0 for every k € N and such
that (5.6) holds along (ex), namely

lvp() 0
m " (bg iz, Be,. (7))
fsob(l',vu(l’)) = lim limSup Fi Vu(z) €k .

5.13
k—+00 js400 ’ngg ( )

Moreover, with fixed 1 € (0, 1), since (u;) is a recovery sequence and F(u,-) is a Radon measure,
for every k € N we can find jr € N (depending also on 1) such that, for every j > ji it holds

that
Fj(uj, Bey (z)) _ F(u, B (2))

d d
Yd€ Yd€,

Now, we have to modify the sequence (u;) to construct a competitor for the minimization

+7. (5.14)

<

problem m}r’f (')(EVu(x), B.(z)) which defines fsp.
We introduce the functions
W () = uj(x + epy) — uj(x) and  ut(y) = u(z + ery) — u(z)

J for y € B;.
€k €k

Then, since u; — u in measure on {2, we have that ujk — u®* in measure on By as j — +o0. In
addition, by a diagonal argument and up to passing to a larger ji € N, we also have

g 1= uj: — ZVu(a:) in measure on Bj as k — +o0. (5.15)
By virtue of (5.13)), we may choose (ji)r such that also

Lp() (7.
fsob(flz', Vu(x)) = lim Fi, ( ; k
k—+o0 ,ydgk

holds. Finally, taking into account (4.1)), (5.12)), (5.14) and with a change of variables we find

F(u, Be

limsup [ fj. (v +ery, Vig(y))dy < lim (uis(x)) +n = foolz,Vu(z)) +n. (5.17)
k—+oo J B k—r+oo Vd€},

Let Zj, be defined as in (4.6)), with fj, (x + €y, -) in place of f(z,-), and set

pe(y) =plx +epy), yeDB.

(5.16)

We define, accordingly,

+ — .
:= sup pi = inf pi(y).
Py i= Sup p W), 1y Jnf P ()
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Let A > |Vu(z)|. Then, by virtue of Lemma[4.2 there exists > X such that, for every k, we can
find a function 0, € SBVP+()(By; RY)NL®(By; RY) such that o = iy, L%a.e. in ByN{|ix| < A},
|0k| < p and

T (%, B1) < (1 + 1) Tp.(tig, By) + BLYBy N {|ig] > N\}). (5.18)
Moreover, with and the fact that |y, )| < |Vu(z)| < X in By, we get

O — E_Vu(@ in measure on B; as k — +o00 (5.19)

and L4(By N {|ax| > A\}) < e}, for k large enough. Taking into account [(£2)l [(¢3)l (.18) and a
change of variables we get

. 1+
O‘/ ‘vvk‘pk(y) dy < d77 / fin (Y, Vg, (v)) dy + Beg
Bl Ek €k (x)

o g o g 1 _
—H? l(‘]f)k NBy) < Tde 1(Jug'k N Be, () < d/ i (v, [ujk]7yujk)d7-ld ! )
Ek ¢ €k J Juj, NBey (@)

for k large enough. Then, with (5.12)) and (5.14)), we can find a constant M > 0 independent of
k and 7 such that

/ \VirP*Ody < M and  HY(Jy, N By) < Mey,, (5.20)
By

for k large enough, and
|Dsf)k|(Bl) < 2MM<€I@ . (5.21)

Now, we regularize the sequence (0) in order to obtain a sequence wy € Wl’pk(')(Bl;Rm)
such that

[ fuo e VinG) dy < /B Fiu (@ + ery, Vin(y) dy + 1. (5.22)
1 1

For this, we may adapt to the variable exponent setting the argument for the proof of [16,
Theorem 5.2(b), Step 1], devised for a constant exponent q. We just provide the main steps of
this adaptation.

For fixed t > 0, we first define the sets

‘Dsﬁk’(Br(y)) 3
————= <t forevery r >0 with B,.(y) C By ; ,
LB, W) ’ e

S;; = Jf;k U {y € By |V@k(y)| >
<|D5@kr<31> [ |wk<y>|dy>
k

\Vo)) ()
(e,

R! 2:{y€B12

N[ =+

We claim that
2.5¢

IN

LB, \RY})

2.

IN

54 S F4+1 rd
|D%0g|(By) + 2P+ - 5

t SZ

Indeed, the first inequality follows from the Vitali Covering Lemma, arguing exactly as in [10,

Theorem 5.2(b), Step 1]. The second inequality follows from the first one, using that w >1

on S;. Now, taking into account ([5.20)), we get

2. 54 oL +1 . 5d 0T

Do |(By) + ——— . 5.23
D)+ — (523)

LYB1\R}) <
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Choosing

1

ty = (Q,UMEk)_pl:_l
we have t;, > 1 for k large enough and, taking into account ({5.21)), from (/5.23)) we obtain

0 £L4B\R*) < 254 4 27 1. 590

By virtue of Lemma and since p,, —1 > p~ — 1> 0, it holds now
py

B < OO Y < o

for k large. We then conclude that

+ —~
e LY B\R*) < C(2- 5% + 20"+ . 500) = M, (5.24)
whence, in particular, since €5, < 1 for k large enough, we get
T W
£4(B)\R}}) < —5 = M(@2uMep)n " < Myl . (5.25)
t k
k

Now, by a Lusin’s type approximation argument (see, e.g., [30]), one can construct a sequence
of Lipschitz functions () on Bj, with Lip(2x) < ¢4t for some constant c¢q depending only on
the dimension, such that 3; = 05 L£%a.e. in RZ’“. Setting p := p(x), we claim that (Zx) are
bounded in W'P(By;RY). Indeed, with and we first have

+ — +
/ V25, |PE®) dy < 2Pi 1 ( / ) |Vor[Pr®) dy + max{cF | &} ,cd(Bl\R;k)>
B R

k

(5.26)
< UM + max{c] & }M) =: My, .

Note that p = pg(0) for every k € N. Then, since (p — pr(y))T < p,‘f —p;, and ¢, > 1 for k large
enough, with (5.25)) for every y € By we get

_ =
‘ng‘(p—pk(y)fr < CZk Py tZk Pe < O (5.27)
Finally, with ((5.26]) and (5.27)), by a simple inequality we obtain

/ V2P dy < LY By) +/ |V 25| PP T |72, [P qy
By B (5.28)

< ﬁd(Bl) + CMdJ, .

Then, by applying [33, Lemma 1.2] to (2;), we find a sequence of Lipschitz functions (wy)
which satisfy W, € WYP(By;R™), |Vig|P equi-integrable uniformly with respect to k, and
LA({2), # 1y}) — 0 as k — +oo. Since |2 < p in By, we may assume also that [y < p L%-a.e.
in Bj. An inspection to the proof of [33] Lemma 1.2] shows that (wy) can be chosen in such a
way that

Lip(wy) < cq Lip(Zk) (5.29)
holds.

We claim that (|Viy|P*()) is equi-integrable on B; uniformly with respect to k. Indeed,
arguing as for (5.27: we first get, for every y € By,

’vwk’(pk(y)—ﬁﬁ < é;lpifp;titfpi <C. (5.30)
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Then, for every fixed F C By, arguing as for (5.28)) and taking into account ([5.30]) we obtain

/|vwk\pk ) dy < LYE /ywwk(y) P Wiy, [P dy

(5.31)

gﬁd(E)+C/ |V |P dy .
E

This and the equi-integrability of |V [P imply the claim.
Moreover, from ((5.25)), and since by (5.19)) the equibounded sequence (wy — ZVu(ac)) tends to

0 in measure on Bi, we have

p=

Ed({wk # 0 }) < Mpé‘ler_l , and / |wg, — ZVu (z) |pk dy -0 (5.32)
B1

as k — +oo.
In order to prove ((5.22)), we notice that

Fie (@ + exy, Vi (y)) dy < /B fin (@ + exy, Vor(y)) dy + /{ . fi(@ + exy, Vi (y)) dy -
1 WEFVE

Now, taking into account the equi-integrability of (| Vi, [P+()), the upper bound and (5.32)),
for e, small enough we get

By

/ [ (@ + epy, Vag(y)) dy < n,
{w,#0r }

whence ((5.22)) follows.

Finally, we have to modify the sequence (wy) in such a way that it attains the boundary
datum /v, in a neighborhood of dB;. We know that the functionals Zy(u, A) above for

u € WhPrO)(A;R™) and A € A(Q) satisfy uniformly the Fundamental Estimate proved in
Lemma Namely, corresponding to the fixed 7 above, there exist a constant C;, > 0 and a
sequence (Wy,) in WHPkC)(By; R™) with Wy, = {u(z) in a neighborhood of &B; for all k € N such
that

I (Wi, B1) < (1+ 1) (Zi(wk, Br) + T (bgu(z), B1\B1-y)) + C, / |t — Lo [P*) dy + yan -
(5.33)
Now, taking into account |(£2)} (5.32) and the fact that £4(B;\B1_,) < dn, we get

lim sup Zy (W, B1) < (1 + n) limsup Zy, (g, B1) + dn(1 +n)B(1 + |[Vu(z)P) +van.  (5.34)

k——+o0 k—+o00

Then, with (5.17)), (5.22) and recalling the definition of Zj, we obtain
lim sup Zy, (Wi, B1) < (1 +n)(foo (2, Vu(2)) +n) +dn(1 +n)B(1 + [Vu(z)P) +van.  (5.35)

k—4o00
Setting
Wi (y) = exwi((y — ) fex) + Zvu(x)x for y € B, (),
we have Wy, € WHPO) (B, (z); R™) and
1

A = — j W dy . .
T B = g [ 5l V) ay (5.36)
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Moreover, since Wy, = K_VU(I) in a neighborhood of 0By, it follows that wj = EVU(QU) in a neigh-

borhood of 0Bx, (x). Then, with (5.3)), (5.1) and (5.36)) we obtain

m 3" Ty ey, Bey (7))

d
YdE

< Ty (W, By),
whence passing to the limsup as k — +oo, recalling (5.35)), and then letting n — 07, we get

m 7 (g2, Bey ()

Ik

< Jfoo(, Vu(z)) .

lim sup y
k—+o0 YdE

The assertion (5.11]) then follows from (/5.16]). O

5.2. Identification of the surface density. We conclude our analysis with the identification
of the surface density. We will prove that it coincides with the asymptotic surface density of
functionals F; when restricted to the space SBV,.(A,R™) of those functions u € SBV (A,R™)

such that Vu = 0 L%a.e. in A and H4"1(J,) < +oo0.
In order to do that, we consider the sequence of surface energies
/ gi(z, [u], v)dHTY ifuls € GSBVPO (A, R™),
Gji(u, A) == S Jyna

+00 otherwise in LO(R?, R™),

(5.37)

and, correspondingly, we define the sequence of minimum problems

mgjc(uw,g’,,,A) := inf {Gj(u, A):u e LORYLR™), ula € SBVpe(A,R™), u = uy(, near 8A} ,

(5.38)
where u, ¢, coincides with ugz ¢, defined in (3.3).

Since, to the best of our knowledge, a I'-convergence result for functionals G; whose densities
g;j explicitly depend on the jump [u] is still missing in literature, with Theorem below we
will show directly that

mgjc(ux,[u](x),uu ) Ba (-7;)>

g . for H¥ lae. x € J,.

Joo(, [u)(x), 1) = limsup lim
e—0+ J—too Yd—1

We also remark that, in the proof below, Theorem [2.9] allows for a quick construction in Step
2.3 of an optimal sequence of piecewise constant functions (cfr. the more involved arguments in
[16, Theorem 5.2, (c)-(d)], whose compliance with the present setting was not investigated).

Theorem 5.3. Let Q C R? be open and p : Q — (1,+00) be a continuous variable exponent.

Let (f;); and (gj); be sequences functions satisfying |(f1H(f3)| and [(g1)], ((g2)} |(g3)} |(94)| and
respectively. Let goo be defined by (4.5)). Then, for all u € GSBVP(')(Q,R’”) we have that

Goo(, [u](z), v (2)) = gpe(@, [u](2), vu(2)), for Hi -a.e. x € Jy, (5.39)

where

mPC Ugp ¢y Be(x
gpc(l’,C,V) ;= limsup lim G ( e 8( ))

5.40
N Ya—1€971 (5.40)
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Proof. For every x € R?%, ¢ € R?*, and v € S*~! we define

m{ (ta,¢ ., Be (7))

d(x,¢,v) = hi?ipljiinl&f PO , (5.41)
g"(z,¢,v) := limsup lim sup mgf(uagz,?g(x)) (5.42)
e—0t  j—+oo Yd—1€
Step 1. We start with the proof of the inequality
9oo(@, ¢ v) < g2, C,v). (5.43)

For this, we fix a triple (z,¢,v) € RY x RI* x S9~! and 0 < 5 < 1. By the definition of mgjc

(see (5.38)), for every j there exists u; € LO(RY,R™), with uj| B (2) € SBVpe(Be(x), R™), such
that u; = uy ¢, in a neighborhood of 0B.(x) and

Gj(uj, Be(x)) < mg]c(uaagjy, B.(z)) +ne® (5.44)
Now, given A > |(|, by virtue of Lemma for every j there exists 4; such that
Fylity, Bo(a)) < (1+ ) F(uy, Bo(@)) + BL(Bula) O {Jus] > A}).

Moreover, @ = u ¢, in a neighborhood of dB:(z), |i;| < p in R? and, from the chain rule,
Vi, =0 L%a.e. in B.(z). Consequently, the functions vj defined for every j € N as

. i B
b {0 B (5.49
Uz e in R\ Be(x)

satisfy vj|la € SBVpe(A,R™) for every A € A(Q2) and, from the definition, also the uniform
bound

lvj] <p in RY. (5.46)

Now, axguing s for the proof of [T, eq. (5.4, with 5} (g2] ana [gB) (whic holds with ¢ = £)
we find that for every j

HIY( Ty, N Be(z)) < Mge™, (5.47)

where My := %(ﬁfyd,l +1).

Since vj € SBVpe(B:(x),R™) and — hold, we can apply the compactness result
[6l, Theorem 4.8] to deduce the existence of a function v € SBV,¢(B:(z),R™) N L>®(B:(z),R™)
and a subsequence (not relabelled) converging in measure to v on B.(z). We extend v to RY
by setting v = uy ¢, in R?\ B:(z) and observe that v|4 € SBV,c(A4,R™) for every A € A(Q).
Moreover, by the definitions of v; and v and by , the convergence in measure on B.(z)
implies that |v| < u L%a.e. in R%

In particular, for A = B(y.(z) we have U‘B(Hme(x) € SBVpe(B(14m)e(x),R™) and v =
Ug ¢y M Bigy)e(z) \ B:(x), which combined with the I'-convergence of F;(:, B(1yy).(7)) to
F (-, B(14n)s (7)) with respect to the convergence in measure gives

m]:(ux,g,,, B(1+n)€($)) < .F(U, B(1+n)5($)) < lim inf ]:j(vja B(1+77)5<$)) . (548)

Jj—+oo
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Taking into account the upper bounds in and ( m- we obtain
Fj(vjs Bayn)e(@)) < Fj(vj, Be(x)) + Fj(ua s Bainye(@) \ Be(2))
< (14 0)Fj(ujs Be()) + Bra(l +2%)e? + Gj(ug ¢ Baine () \ Be(x))
< (L4 0)Gj(uj, Be(2)) + Bra(3 + 27 + Bya—r (L + )™ = 1)e™!
< (14 n) mES (ug ¢, B(2)) + B7a(3 + 2%)e? + Cane™
where Cy := 2 + By4-1(2¢97! — 1). This inequality, together with , gives
07t B () < (1 1) i inf B (g, Belw) + Ba(3 + 22 + Cane™!

Now, dividing both the sides by y4_1e%~!, taking the limsup as ¢ — 07, and recalling (5.41))
and (4.5), we obtain

(14 7)" goo(, ¢, v) < (14 1)g (2, ¢, v) + ——C4,

Yd—1
whence by taking the limit as n — 07 we get ([5.43)).
Step 2. We now prove
9" (z, [u)(2), vu(2)) < goo(z, [u](2), vu(z)) (5.49)

for H¥ lae. z € J, N A.

We will prove (5.49) for functions u which belong to SBVP() (A, R™) N L>®(A,R™), while the
general case of (unbounded) functions in GSBVP()(A,R™) can be obtained from the previous

case by constructing a sequence of truncations of function u as in the Step 5 of [16, Proof of
Theorem 5.2(d)].

Let A € A(Q), u € SBVPO(AR™)NL®(A,R™). Let n € (0,1). We fix z € J,, such that, by
setting ¢ := [u](x) and v := v, (z), we have

¢ #0, (5.50)
1

lim / w(y) — ug e (y)|PY) dy = 0, 5.51)
=0+ (1€)? /B, () | w0l (
- F(u, Bye(w))
=1 ! :
goo(-%(a l/) 6_1>%1+ 'Ydfl(ng)d_l
Note that (5.50) and (5.51)) are satisfied for H? !-a.e. z € J, for p(-) = 1 (see, e.g., [6, Definition
3.67 and Theorem 3.78]). This, combined with the boundedness of both u and w, ¢, implies
the (5.51)) for any variable exponent such that p~ > 1 and p* < 4o00. Also ((5.52) holds for
H?¥ 1 a.e. z € J,, thanks to a generalized version of the Besicovitch Differentiation Theorem
(see [45] and [32, Sections 1.2.1-1.2.2]).
We extend u to R? by setting u = 0 on R?\ A. By the I'-convergence of F(-, A) to F(-, A)
there exists a sequence (u;) converging to u in L°(R%, R™) such that
lim Fj(u;, A) = F(u, A).

k—+o00

(5.52)

Since F(u,-) is a finite Radon measure, we have that F(u,0B,.(x)) = 0 for all € > 0 such
that B,.(r) C A, except for a countable set. As a consequence (u;) is a recovery sequence for

F(u,-) also in By (x); i.e.,
lim Fj(uj, Bye(x)) = F(u, Bye(x)), (5.53)

k——+o0

for all € > 0 except for a countable set. Let ¢ be such that (5.53|) holds.
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We now fix A > max{||u|| o (ga gmy, [(|} and p as in Lemma . Then for every j there exists
v; such that

Fj(vjs Bye(@)) < (14 0)F;(uj, Bye(w) + BLY(Bye () 0 {luj| > A})

and |v;] < p in R%. We deduce that v; — u in Lp(')(]Rd,Rm) as well as

loc

lim sup Fj(vj, Bpe(2)) < (1 + 1) F(u, Bye(x)).

Jj—+o0
Hence there exists jo(¢) > 0 such that whenever j > jo(e)
05y Bre(@)) < (14 ) F (. Bye()) + ()" (5.54)
We now modify each v; in order to obtain a function z; which is an admissible competitor in

the j-th minimization problem defining ¢"(z, (, v).

Step 2.1. We first define the blow-up function v5 at x as

vj-(y) =vj(z+ey) foryeB,,

and the blow-up variable exponent at x as
pe(y) :==p(z +ey) forye By.

Now, we modify v; so that it agrees with the boundary datum wug¢, in a neighbourhood
of B,. To this end, we apply the Fundamental Estimate (Lemma to the functionals
Fje: (SBVPO)(B, R™) N L®(B,,R™)) x A(B,) — [0, +00) defined as

Fie(v, A) = /Afj(w + ey, Vo(y))dy + /J » gi(z + ey, [v)(y), ve(y))dH " (), (5.55)

where A(B,)) denotes the class of open subsets in B,,.
Let K, C By, be a compact set such that

B (£4(By \ Ky) + HTH (I 1 (B, \ Ky))) < (5.56)

Then, the argument of the proof of Lemma [3.2] allows us to deduce the existence of a constant
M, > 0 and a finite family of cut-off functions ¢1,...,¢on € C°(B,) such that 0 < ¢; <1 in
By, ¢; = 1 in a neighbourhood of K, and

]:J',E(’[)Ja” Bn) <(1+n) (fj,s(vge" Bn) + fj,e(“ﬂ,c,w By \ Kn))

M, /B 05 () — w0 (B)P® dy + 7an®, (5.57)
n

where 97 1= ¢;;05 + (1 — ¢4, )uo,¢, for a suitable i; € {1,..., N}. It is clear from the definition
that
|05 < p in By (5.58)

and 95 = ug ¢, in a neighborhood of 0B,;. By the upper bounds in and and by (/5.56)),
we deduce that

Fje(o g By \ Ky) <11
Since v; — u in LPO)(By(2),R™), it follows that

v;(-) =vj(z+e-) »u(z+e-) in LP=0(B,,R™) as j — +oo. (5.59)
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Therefore, from ((5.57) and (5.59)) we have

lim sup F; (95, By) < (1 + n)(lim sup Fj (v, By) + nd)

Jj—+oo Jj—+oo

+ My, / lu(z +ey) — uo (@)W dy + yan™ . (5.60)
Bn

Step 2.2. We now show that Vo7 is small in LP= -norm for j large and & small. By the definition
of 05 we have

7551 < Cylles — oo Ao (5.61)

Lpe_(B’flvaXd LPE_ (B”Iva B”hRde)7

where the constant C;; > 0 is an upper bound for ||V;, ||~ (B, rm)-

We now estimate separately the two terms in the right-hand side of (5.61)). Concerning the
first term, by (5.59) we can find ji(e) > jo(g) such that, for j > j1(¢) and from (5.51)), we have

195 = 007y

< loj () —ulz +e) + [lu(z + &) —uo ()l (5.62)

_ _ <
LvE (B R™) 1oz (By ) = “IE)

where wr(e) is independent of j and w;(e) — 0 as e — 0.

As for the second term in (5.61), by the definition of v5, the lower bound in and the
positivity of g;, for € small enough we have that

/ \VvﬂpS(y)dy < 5:ve—d/ Vv, PW) dy
n Bye (@)

< /B ( fi(y, Vu;)dy (5.63)

a

< gPe 1 . }—j(vjaan(x))
— a 2gd—l :

Now, by (b.52]) there exists 9 > 0 such that for every 0 < € < g¢ satisfying (5.53)) we can find
ja(g) > j1(e) such that, taking into account also (5.63), we have

d—1_p: —1
/ Vospe@dy < 7S (g (. v) +1) (5.64)
B, a
for every j > ja(e). Finally, collecting (5.61)), (5.62)), and (5.64]) we conclude that

Vo5 <wir(e) (5.65)

Ljﬂg (B”hRde)
for every 0 < € < g satisfying (5.53)) and every j > jo(e), where wy; () is independent of j and
wrr(e) > 0ase — 0F.

Step 2.83. As a next step, we need to modify 05 to make it piecewise constant.

Let (1,...,(q be the coordinates of (. By (5.50)) for every 0 < e < ¢ satisfying (5.53|) there
exists an integer N, > 0, with N% < p and N% < |¢;] for every i with ¢; # 0, such that,

N. — 400 and wyr(e) Ne — 07 as ¢ = 0. (5.66)

Note that, by (5.58), we have |05 < 2p — N% in B,,.
Since by the functions 95 are equibounded in LY(B,; R™) for every fixed e, by virtue
of Theorem applied with 0 := N||[V5[|1(p, grm=4) We can find a partition (Pf’j)fil of By
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made of sets of finite perimeter and a piecewise constant function w; = Yoo bix pes such that
!
the following properties hold: for every 0 < € < g¢ satisfying (5.53)) and for every j > ja(e)

w5 = up ¢, in a neighborhood of 9B, (5.67)
A 1

ij - U]E‘HLOO(BW,]RW) < E < W, (5.68)

w5 [ Lo (B, mm) < 24, (5.69)

HIH((Jus \ Jor) N By) < wrri(e), (5.70)

where wyrr(g) := ¢(d, p)wrr(e)Ne is independent of j and wyyr(g) — 07 as e — 0F. Note that

(5.68) and (5.70]) follow from Theorem (zz) and (7), respectively.

Step 2.4. Recalling the definition of F; (95, By) (see (5.55)) and taking into account (5.60), we
have

Jj——+oo

timsup [ gyt ey, [55)). s (0) A1 )
J@]E_ NBy

< (14 ) (Tmsup Fy. (05, By) + %) + M, / [u + e y) — o (y) P dy +yan.
e o (5.71)

Moreover, with the upper bound in |(f2) and (5.64)), the volume integral in the right hand side
of (b.71]) can be estimated as

d—1€pg—1

/Bn filw+ey, Vo5(y)) dy < /3/Bn<1+|w§|p€<'>> dy < B (v + (g (@, ¢, ¥) +1))

for every 0 < e < gq satisfying (5.53)) and every j > jo(c).
By (5.55)) again, this inequality and ([5.71]) yield in particular that

j—+oo

fimsup [ (o -+ ey, (55055 (1) A1 )
Jﬁ?mBn

j—+o0

<O mtmsw [ gylat e bl ) aH )
v;?m n

1_pr—1
Ya—1n* e

+ 28 (van + (9oc (@, C,v) + 1) (5.72)

M, / (e + £ ) — to.co (4) ¥ dy + c(d)r?
B7I

where ¢(d) := 2 + 4.
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Now, rewriting in terms of v; the surface integral in the right hand side and combining with

(5.54)) and (5.72)) we obtain

Jj—+oo

timsup [ gy(o -+ e, 65100055 ) ()
€M By

Yaan® e 7

< (1+ 77)28%1 F(u, Bye()) + 21 + 28 (%md + (goo (2, ¢, v) + 1)) (5.73)

M, / u(z + e) — o (y)P*¥ dy + c(dy
B"I

We now estimate the left-hand side in (5.73). Exploiting the assumptions|(g3)} |(g4) |(g6), and
the properties of @;: and w? we claim that

[ et i) ) a1
TN By

<[ it e [5)0)vs (00) AR )+ v (o) + v )
JosNBy

(5.74)

where wyy () and wy (£) are independent of j and tend to 01 as e — 0". There, the key estimate
is

|95 (2 + ey, [05](y), ves (y)) — g5(x + ey, [wi](y), vz (1))
< wa(|[05](y) — [wil(w)D) (g5 (2 + ey, [65]1(y), ves (1)) + gj(2 + ey, [w](y), v

< 4B%w2 (21|05 — w5l oo (1, mm))

(1))

J

for H" lae. y € J@]s, N Jwgs_. The claim follows then from (5.68)), (5.70) and the bounds on g; .
Now, ([5.74]) together with (5.73)) gives

fimsup [ g ey, 0] ), v () 41O )
Jw;:_ ﬂBn

Jj—+oo
1

<1+ 77)2561771 F(u, Bye(2)) + 2n% + wryv (€) + wy (€) (5.75)

d—lepg—l

e (9oc (@, ,v) + 1)

My [ e+ en) — uocu )P0 dy + el
B"7

+2p (%md +

Defining 25 (y) := w;((y—x)/e) for every y € Bye(z), we clearly have that 25 € SBV,,c(Bye(x), R™)

and 25 = ug ¢, in a neighborhood of OB;(z). Then, rewriting (5.75) in terms of the functions

z? we find
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. 1 . 1
thSruP ng?(ux,w, Bye(2)) < hgiuP ngf(%,c,m Bye(x))
J—r+oo J—rtoo

1
< limsup/ i(y, [25)(y), Ve dudt
(o) e 9, [25](y), vz () (v)

Jj—4oo

WIV(E) i OJV(8)

< (1—1—?7)2 F(u, Bye(z)) + 2ne +

(ng)d—l nd—l nd—l
d— gp;_l
+ 25 (%m + VlT(goo(w, ¢ v)+ 1))
M,
+ ?7‘%1 B lu(z + ey) — o (y)|P*Y dy + e(d)n.
1

Finally, dividing by ~4_1, taking the limsup as ¢ — 0" and using (5.42)), (5.51)), and (5.52)), we
obtain

g"(x,¢,v) < (1+n)*goo(w,C,v) + Cn,
with C := (2874 + ¢(d))/vd-1. Recalling the definition of { and v, we obtain that

g" (x, [u)(2), vu(2)) < (1 +1)?goo (=, [u](2), vu(z)) + Cn
holds true for H" -a.e. x € J, N A. Taking the limit as n — 07 we get
9" (2, [u](2), vu(2)) < goo(z, [u](2), vu(z))
for H" 1-a.e. x € J, N A, thus proving (5.49) for u € SBVPO)(A,R™) N L®(A,R™).
Finally, since by definition ¢’ < ¢”, combining (5.43)) and (5.49) we get (5.39))-(5.40). This

concludes the proof.
O

APPENDIX A. A I'-CONVERGENCE RESULT WITH WEAKER GROWTH CONDITIONS FROM
ABOVE

In this section we will prove a I'-convergence result for energies whose surface densities satisfy
a weaker assumption than |(g3)| of Section 4l To do this, we will also take advantage an integral
representation result on SBVP() (see Theorem [A.1) via a perturbation argument.

Let (fj)jen and (g;)jen be sequences of functions satisfying |(f1)H(f2)[ and |(g1)} |(g2)} [(g4)}
respectively. In place of we require each g; to comply with the additional property

(93") (lower and upper bound) for every z € R%, ¢ € RZ, and v € S%!
a<g(z,(v) < B+,

together with |(g5)
Correspondingly, we define the functionals &; : LO(€; R™) x A(Q) — [0, +o0] as

iz, Vu(x))dx i(z, lul(z), vy =1 (g if u PC) (A R™
ey [ @@ G [ o M@ ) @), il 6BV ARR)

400, otherwise.
(A1)
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A.1. Integral representation: the SBVP() case. In this section we discuss the minor modifi-
cations needed in order to obtain an integral representation result for functionals F: SBVP() (;R™) x

B(2) — [0, +00), satisfying assumptions |(H; )H(Hs)| and the following
(H,) there exist 0 < a < 8 such that for any u € SBVP0)(Q; R™) and B € B(Q2) we have

a(/B\VuV’(‘T) dx+/MB(1 + |[u]y)de1) < F(u, B)

gﬁ(/B(l—HVuV’(“))dx—ir/J mB(1+|[u]y)0171¢d1).
’ (A.2)

For every u € SBVPO)(Q;R™) and A € A(Q) we define

mpr(u, A) = inf {F(v,A) : v=wu in a neighborhood of 0A}. (A.3)
veSBVP() (Q;R™)

The main result of this section is the following integral representation theorem.

Theorem A.1 (Integral representation in SBVP()). Let Q C R? be open, bounded with Lipschitz
boundary, let m € N. Let p : Q — (1,+00) be a variable exponent complying with [(P1)}{(P2)]
and suppose that F: SBVPO(Q;R™) x B(Q) — [0,400) satisfies [(H1)H(Hs)| and [(H})| Then

F.B) = [ faue). Vu@)dot [ glaut @) @).m@) @

NB
for all w € SBVPO) (Q;R™) and B € B(Q), where f is given by

mr Loy uo.¢, Be(20))

=1 A4
f(zo,u0,§) i sup el (A.4)
for all zg € Q, ug € R™, £ € R™*? and Laguo.e 05 in (3.2), g is given by
xo,a,0,V B
g(xg,a,b,v) = limsup M7 (e 0.0, Be(20)) (A.5)

e—=0 ’Yd—1€d_1

for all zg € Q, a,b € R™, v € S and Ugg.aby 05 in (3.3), and mx is defined in (A.3).

concerns with GSBVP() functions. For this, Lemma | Lemma (3.4] and Lemma ‘ are re-
placed by the corresponding S BV?() versions, Lemma [A.2] Lemma [A.3|and Lemma |A.4| below,
respectively. We will briefly list the main changes in the proofs due to the different assumption

(H3)

Lemma A.2. Let p: Q — (1,400) be a variable exponent satisfying|(P1)H(P2). Suppose that F
satisfies |(Hy)H{(Hz3)| and (H)). Let u € SBVPO(Q;R™) and p be defined as

The proof of Theorem [A-T] can be obtained by adapting the argument of Theorem [3.1], which
3.3
R

=L + 1+ Jut —u VHT e (A.6)
Then for p-a.e. o € ) we have

im 2 Be@o)) _  mr(u, Be(20))
e>0 p(Be(z0)) &0 p(Be(z0))
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Proof. The only needed modification concerns the proof of Lemma Indeed, under as-
sumption for u € SBVPO(Q;R™) the same construction provides a sequence v®" in
SBVPO)(Q; R™) such that

sup (/ |Voom (2)[P@) dg +/ o™ d’Hd_1> < +00. (A.7)
neN Q J,8,n

Then, an analogous compactness argument, based on [, Theorem 2.1] yields v € SBVP™ (Q; R™),
which can be improved to v° € SBVp(')(Q;Rm) by using loffe’s theorem and the weak conve-
gence of the gradients, exactly as in Lemma Finally, assumption does not change
B21). 0

Note that the Fundamental estimate (3.6)), proven with Lemma still holds if we replace
by

Lemma A.3. Let p: Q — (1,400) be a Riemann-integrable variable exponent satisfying |(P1)|
Suppose that F satisfies [(Hy)| and [(H3)l{(H))| and let w € SBVPO(Q;R™). Then for L%-a.e.
xg € Q we have

li mf(“? BE(CCO)) s mf(agglkaBE(xO))
im ———————= = limsup 7
e—0 Ya€ e—0 Yd€

(A.8)

Proof. The proof of “<” inequality in (A.8)) can be obtained with the same construction of
Lemma applied to the sequence (u.) complying with Lemma [3.7)()-(ii4) and (i)', (éii)’.
Applying the Fundamental estimate with the same choice of sets as in (3.35)) and by assump-

tion we get

Flue,Ceafeo) <8 [ (14 V@) de 4.5 (1 -+ [fucll) dpe
Cs,G(xO) Jugmcsﬁ(x(])

whence by Lemma [3.7(ii1), (iii)’, (3.42) we obtain the analogous of (3.43)), and this concludes
the proof of the first inequality in (A.8)).

The reverse inequality in (A.8)) can be proved following the argument of Lemma For this,
we first notice that since u. satisfies Lemma [3.7)(¢)’, in addition to (3.45) we may require that

lim e =@ / lut —uZ[dHIE =0, (A.9)
aBse(l‘o)

e—0

where uZ and u™ denote the inner and outer traces at dBs.(xg) of u. and u, respectively. Then,
estimates and (with the additional term 3 [y . [u —uz[dH! in the left hand
side) can be established. Finally, combining (3.43)), (3.45)), (IA_QB and the fact that se < (1—36)e,
we obtain also (3.49). This will suffice to conclude the argument of Lemma and then the
proof of the inequality “>” in . O

Lemma A.4. Let p: Q — (1,400) be a variable exponent satisfying|(P1)H(P2). Suppose that F
satisfies |(Hy)| and [(H3)l|(H,)| and let w € SBVPO) (Q; R™). Then for H* -a.e. zo € J, we have

Y mr(u, Be(rg)) . mz (a5, Be(20))
im ————————> = limsup ]
e=0  Yg—1€ e—0 Yd—1€

(A.10)

Proof. The construction of Lemmal[3.11]can be performed using the sequence (. ) which complies
with Lemma [3.10)(7)-(iv), (3.52]) and (3.53)), thus obtaining the analogous of estimates (3.67))
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and (3.68) where the constant 3 is replaced by B(1 + |[aS¥"]]). Now, taking into account |(H/)
(3.50) (i7), (3.69) and (3.53)), we obtain the analogous of (3.70)); i.e.,
F(te, C
lim sup F e, Ceo(20)) 6§Ef0))
e—0 Yd—1€

< B(L+ [y N — (1 —46)") .

With this, we can easily infer the upper inequality in (A.10]).

As for the reverse inequality, given (u.) as above, by (3.52) we may require, in addition to

(3.72), also the property
lim e~ (@=1) / lut —az |dHIt =0, (A.11)
OBse(x0)

e—0

where ut and 4. have the same meaning as in Lemma Then we repeat the argument of

Lemma where (3.75)) is now replaced by
F(ze, B1—g)e(w0)) gm]:(u, B, (550)) + ya—18? + pH (({@e # ut U Jy U Ja.) N OB, (20))

+ 8 lut — 4z | AR + F(te, Cep(x0)) -
OBse(x0)
Now, as a consequence of (3.72)), (5.21)), (A.11)) and the fact that o < (1 — 36) we then obtain
F(ze, Bi_g)e(x , B
lim sup (2 @ 511( 0)) <(1 —30)d_1limsup —m]:(u 553130))
e—0 Yd—1€ e—0 Yd—1€
+ ﬁ(l + [ (1 = (1 - 40)47h),

which corresponds to (3.75). The estimate now reads
J—_'( surf C 9($0))

w()?

< B+ [N = (1 - 40)"7h)

lim sup 1
e—0 Yd—1€

whence the conclusion follows exactly in the same way as in Lemma We omit further
details. 0

A.2. I'-convergence. Let o > 0. We define the family of perturbed functionals £7 : LO(; R™) x
A(Q) = [0,400], j € N, as

/fy z, Vu( ))dx-l-/J mAg;’(ﬂc, [u](z), vo(x)) dH N 2),  if u| a4 SBVPO(A;R™),

400, otherwise,

E7 (u, A)

(A.12)

where
95 (z, ¢, v) = gj(z, ¢, v) + ol(]. (A.13)

First, we prove a I'-convergence result for the perturbed functionals 5]‘7 .

Theorem A.5 (I-convergence of perturbed functionals). Let @ C R? be open. Let (f;); and
(95); be sequences of functions satisfying|(f1)H(f2)| and|(g1)} [(g2)} |(g3")] |(g4)} [(g5)}, respectively.
Let 0 > 0 and &7 : SBVPO(Q;R™) x A(Q) — [0,+00) be the sequence of functionals given in

(A.12). Then, there exists a functional £ : SBVPO)(Q; R™)x A(Q) — [0, +00) and a subsequence
(not relabeled) such that

E7(-,A) =T-lim &7(-,A)  with respect to convergence in measure on A
j—00
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forall A€ A(Q). Let f and g%, be defined as
meo (gmo,’lL(){? B€(x0))

7 (20, up, &) = limsu A.l4
f ( 0, &0 f) EHOP ,ngd ( )
for all zg € Q, ug € R™, £ € R™*4, gnd
o \Uzx 14 B
42, (0, ¢, v) = lim sup Y o.c0r: | =(20)) (A.15)
e—0 Yd—1€
for all zp € Q, ¢ € R™, and v € S, where mgo is as in (A.3) with F = £°.
Then, for every u € SBVPO)(Q;R™) and A € A(Q) we have that
E%(u, A) = / [ (z,u(z), Vu(z)) dz + / 9% (z, [u](x), vu(z)) dH L (2) . (A.16)
A JuNA

Proof. The proof of Theorem [AZ|can be obtained along the lines of the argument of Theorem [£.1]
We then briefly sketch the proof, referring the reader to Theorem for further details.

We start by observing that some properties of the I'-liminf and I'-limsup with respect to the
topology of the convergence in measure, established in Lemma for functionals 7, still hold
true for £7. To this end, we define

(&Y (u,A) :=T — linnl>i£f &7 (u, A) = inf { 11]n_1>£f &7 (uj, A) : uj — u in measure on A},
(E7)"(u, A) =T — linisup &7 (u, A) = inf { limsup €7 (uj, A) : uj — u in measure on A}
n—00 j—o0
(A.17)

for all u € SBVPO)(Q;R™) and A € A(RQ).

Then the analogous of assertions (i), (¢i7) and (iv) of Lemma [4.3|still hold true for (£7)" and
(£9)", since the arguments are based on Lemma [4.2] and Lemma Setting

H(u, A) = / VPO dz + / (14 |[u]]) dHe-?
A JuNA
we only have to check that

min{a, o }H(u, A) < (%) (u, A) < (£9)"(u, A) < (B + o) H(u, A) + BLI(A). (A.18)

The upper bound for (£7)" in (A.18) can be inferred choosing the constant sequence u; = u in

(A 17) and taking into account [(f2)] the definition of g9 (equation (A.13)) together with |(g3')
For what concerns the lower bound in (A.18), we consider an (almost) optimal sequence (v;);

in (AI7). Then, with [72]] (A-13) and [(g3] we get

sup min{e, o }H (vj, A) < +00.
JEN

Now, since v; — u in measure on A, we may appeal to the closure property of SBV (see, e.g.,
[0, Theorem 4.7]). Then, by arguing as in the proof of Lemma and exploiting the lower
semicontinuity inequalities

/ |Vau(z)|P@) de < lim inf/ |Vv;(x) P@) dg < 400,
A J=roo Ja

/ O([ull) a4 < liminf [ 0([v;]]) dHEL,
JuNA

J—+oo Jo;NA

for any concave function 6 : (0,4+00) — (0,400), we easily obtain the lower bound.
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The existence of the I'-limit is still a consequence of the abstract result [25, Theorem 16.9], in
view of the inner regularity of both (£7) and (£7)”. Since (A.18)) implies [(H)| the functional
E7 = (E7) = (€79)" satisfies all the assumptions of Theorem This concludes the proof. [

Now, we are in position to deduce the I'-convergence result for the family of functionals &;,
defined in . The argument of the proof is analogous to that of [16, Theorem 5.1], but with
some simplifications due to the fact that, by virtue of Theorem we do not need to use the
I'-convergence of the restrictions to LP() of our functionals.

Theorem A.6. Let X be a countable subset of (0,+00), with 0 € ¥. Assume that for every
o € X there exists a functional 7 : L°(Q;R™) x A(Q) — [0, +-00] such that for every A € A(RQ)
the sequence E7 (-, A) defined in I'-converges to £(-, A) in LY(R%:R™). Let 2 and g2,
be the functions defined in and , respectively. Let fO : R? x R™*% — [0, +00] and
g% : RET x R x S9=1 — [0, +00] be the functions defined as

fool@, &) = nf [ (x,€) = lim f&(x,¢), (A.19)
oEY] O—O%%JF
Goe (G v) = inf % (x,C,v) = lim g2 (w.C,v). (A.20)
0'0-—6>Z

Then, the functionals E;(-, A) defined in (A1) T-converge in L°(R%R™) to the functional
EO(-, A) given by

E%u, A) = / fgo (x, u(x), Vu(:c)) dx —I—/ ggo(:v, [u](z), vu(z)) d?—[d_l(x) , (A.21)
A JuNA
for every A € A(Q) and u € GSBVPL) (A;R™).

Proof. 1t follows from (A.4)) and (A.5)) that fZ < f72 and g7} < ¢22 for 0 < 01 < 3. Then, by
the Monotone Convergence Theorem we have

E%u, A) = lim £%(u, A) (A.22)
"

for every A € A(Q) and every u € LO(R, R™) with u|4 € SBVPO) (A, R™).
Let &, &": LY(RY, R™)x A(Q2) — [0, +00] be defined by
E'(-,A) :==T-liminf (-, A) and &"(-, A) :=T-limsup&;(-, 4),
J—r+oo j—+o0

where we use the topology of LO(R? R™). We subdivide the rest of the proof into steps.
Step 1: First, for every A € A(Q), u € LO(RY, R™) with u|4 € SBVP()(A,R™) and for every
o € X we have £"(u, A) < E7(u, A), whence by (A.22]) we immediately get

E"(u, A) < E%u, A). (A.23)
Step 2: We claim that
E%u, A) < &'(u, A) (A.24)
for every A € A(Q) and every u € L®(R% R™).
With fixed A and u as above, by I'-convergence there exists a sequence (u;) converging to u
in LO(R% R™) such that
&' (u, A) = liminf & (u;, A). (A.25)

k—4o00
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Let us fix A > [|u|| oo (ge gmy and o > 0. By Lemmathere exist p > A, independent of j, and

a sequence (v;) C L%°(R? R™), converging to u in measure on bounded sets, such that for every
7 we have

]| oo (Re Ry < 45 (A.26)
vi =u; Llhae. in {juj| <N}, (A.27)
E(u3, A) < (14 0)8; (g, A) + BLYUAN {Jus] = M. (A.28)

If £(u;, A) < +o00, by the lower bounds in and (A.28) the function v; belongs to
GSBVPU) (A, R™) and

(1+0) B

a

d-1
By (A.12) and (A.26|) this implies that
7 (vj, A) < Ej(vj, A) + 20pH (], N A),
which, in its turn, by (A.28)) and (A.29), leads to

E(uj, 4)+ 2 LYAN (uy] = A)). (A.29)

£7(vj, A) < (1 +0) (1 + 22") Ei(uj, A) + 3 <1 + 22") LUAN {Jus| > A).

This inequality trivially holds also when &;(u;, A) = 4o00. Therefore, using (A.25) and the
inequality ||ul| oo (re gm) < A, by I'-convergence we get
2
£%(u, A) < (1 +0) (1 + "’“‘) &' (u, A)

(07

for every o € ¥. By (A.22)), passing to the limit as ¢ — 0" we obtain (A.24)) whenever
u € L®(RY,R™).
Step 3: We now prove that

E"(u, A) < E%u, A)  for every u € L°(RY, R™) and every A € A(Q). (A.30)

Let us fix v and A. It is enough to prove the inequality when u|4 € GSBV?0) (A, R™). By
Lemma for every o > 0 and for every integer j > 1 there exists u; € L°°(R%,R™), with
uj|a € SBVPU (A, R™), such that u; = u L%a.e. in {|u| < j} and

€%z, A) < (1+0)E°(u, A) + BLUAN {Ju] = j}).
By (A:23)) we have " (u;, A) < E%(uj, A), hence
E"(uj, A) < (1+0)E%(u, A) + BLYAN {Ju = j}).

Since u; — u in measure on bounded sets, passing to the limit as j — 400, by the lower
semicontinuity of the I'-limsup we deduce

E"(u, A) < (14 0)E%u, A).

Thus, letting o — 01 we obtain (A.30]).
Step 4: We now prove that

E%u, A) < &'(u, A) for every u € L°(RY, R™) and every A € A(). (A.31)

Given an open set A, it is enough to prove the inequality for a function u such that u|4 €
GSBVPU)(A,R™), since otherwise £'(u, A) = +oo due to the lower bounds in and
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By Lemma for every o > 0 and every integer j > 1 there exists u; € L®(RY R™), with

ujla € SBVPU(A,R™), such that
uj =u L%a.e. in {ju| <j},
uf = vt Hlae in J, N {juF| <}, (A.32)

E'(uj, A) < (1+0)E (u, A) + BLYUAN{[u] > j}).
By (A.24) we have %uj, A) < &'(uj, A), which combined with (A.32)) gives

/ foo(, V) d93+/ 9% (@, [u), v) AHIH < (14 0)&' (u, A) + BLYAN {Ju] > j3).
An{lul <7} JunAn{jut |50 u- <4}

Letting j — 400 we get

)= [ Voot [ e ful ) dHI < (14 ) 4),
A JuNA

and then sending o — 0" we obtain (A.31]).

The I'-convergence of £;(-, A) to E°(-, A) in LO(R4, R™) follows from (A-30) and (A-31)). This
concludes the proof. O
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