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Abstract. The paper studies the asymptotic analysis of a model coupling elastoplasticity and damage de-
pending on three parameters – governing viscosity, plastic hardening, and convergence rate of plastic strain
and displacement to equilibrium – as they vanish in different orders. The notion of limit evolution obtained
is proven to coincide in any case with a notion introduced by Crismale and Rossi in [CR19]; moreover, such
solutions are closely related to those obtained in the vanishing-viscosity limit by Crismale and Lazzaroni in
[CL16], for the analogous model where only the viscosity parameter was present.
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1. Introduction

Rate-independent processes model evolutionary phenomena where the external loading is much slower than
the internal oscillations of materials, while viscosities may be neglected. Despite a wide literature on the
subject (see [MR15] and references therein), a further understanding is needed of the relations between the
different notions of solution that have been proposed. In particular, a problem of interest in applications is
to determine which kind of solution captures the limiting behavior of dynamical systems for small viscosity
or inertia. For this reason, in this paper we compare different notions of solution, obtained with different
approximation methods as viscosities tend to zero at different rates (but with no inertia).

We focus on a rate-independent system modeling damage in an elasto-plastic body occupying a bounded
Lipschitz domain Ω ⊂ Rn, n ≥ 2. The model was advanced and first studied in [AMV14, AMV15], while the
existence of globally minimizing quasistatic evolutions (or, equivalently, Energetic solutions) was first proved
in [Cri16]. In [CL16, CR19], the vanishing-viscosity approach was instead exploited to find the so-called
Balanced Viscosity solutions, obtaining the rate-independent system as the limit of a viscously perturbed
system. Indeed, vanishing viscosity was advanced as a selection criterion for solutions with a mechanically
feasible behavior at jumps, motivated by the observation that Energetic solutions jump ‘too long and too
early’, cf. the characterization proved in [RS13] and the references therein. We refer to the pioneering [EM06],
and the subsequent [MRS12a, MRS16a], for the definition and properties of such solutions in the context of
an ‘abstract’ rate-independent system. The vanishing-viscosity technique has also been adopted in various
concrete applications, ranging from plasticity (cf., e.g., [DMDMM08, DMDS11, BFM12, FS13, Sol14]), to
damage, fracture, and fatigue (see for instance [KMZ08, LT11, KRZ13, Alm17, CL17, ACO19]).

In this paper we aim to gain further insight into the different ways of constructing Balanced Viscosity
solutions to the model for damage and plasticity from [AMV15], which were explored in [CL16] and [CR19].
We show that these notions of solutions essentially coincide if the hardening vanishes together with viscosities,
while they retain different features if the hardening parameter is positive. In particular, it turns out that perfect
plasticity coupled with damage may equivalently be approximated by means of processes where viscosity is
confined to the flow rule for damage, or with viscosity also in the momentum equation and in the plastic flow
rule.
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supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto
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The model. The rate-independent process we are going to address describes the evolution, in the time interval
(0,T ), of the displacement u : (0,T )×Ω→ Rn, of the plastic strain p : (0,T )×Ω→Mn×n

D , and of the damage
variable z : (0,T ) × Ω → [0, 1] that describes the soundness of the material: for z(t,x) = 1 (respectively,
z(t,x) = 0) the material is in the undamaged (fully damaged, resp.) state, at the time t ∈ (0,T ) and ‘locally’
around the point x ∈ Ω. In fact, the related PDE system consists of

- the momentum balance

−div σ = f in Ω× (0,T ) , σn = g on ΓNeu × (0,T ), (1.1a)

with f , g some external forces, n the outer unit normal vector to Ω, σ the stress tensor

σ = C(z)e in Ω× (0,T ), (1.1b)

C the elastic stress tensor, and e : (0,T )×Ω→Mn×n
sym the elastic strain; together with the plastic strain

p, the elastic strain e concurs to the kinematic admissibility condition for the strain E(u) = ∇u+∇uT

2 ,
i.e.

E(u) = e+ p in Ω× (0,T ); (1.1c)

- the flow rule for the damage variable z

∂R(ż) +Am(z) +W ′(z) 3 − 1
2C
′(z)e : e in Ω× (0,T ), (1.1d)

where ∂R : R⇒ R denotes the convex analysis subdifferential of the density of dissipation potential

R : R→ [0, +∞] defined by R(η) :=

{
κ|η| if η ≤ 0,

+∞ otherwise,

encompassing the unidirectionality in the evolution of damage, Am is the m-Laplacian operator, with
m > n

2 , and W is a suitable nonlinear, possibly nonsmooth, function;
- the flow rule for the plastic tensor

∂ṗH(z, ṗ) 3 σD in Ω× (0,T ), (1.1e)

with σD the deviatoric part of the stress tensor σ and H(z, ·) the density of the plastic dissipation
potential.

System (1.1a)–(1.1e) is complemented by the boundary conditions

u = w on ΓDir × (0,T ), σn = g on ΓNeu × (0,T ), ∂nz = 0 on ∂Ω× (0,T ), (1.1f)

where ΓDir is the Dirichlet part of the boundary ∂Ω and w a time-dependent Dirichlet loading, while ΓNeu is
the Neumann part of ∂Ω and g an assigned traction.

Alternative models for damage and plasticity have been analyzed in, e.g., [RV16, RV17, DRS19], albeit
from a different perspective. In fact, those papers address the rate-independent evolution of the damage
and plastic processes coupled with a rate-dependent momentum balance, featuring viscosity and even inertial
terms. Therefore, the resulting system has a mixed rate-dependent/independent character and is formulated in
terms of a weak, energetic-type notion of solution. Instead, both in [CL16] and [CR19], (two distinct) viscous
regularization procedures, described below, were advanced to construct Balanced Viscosity solutions to the
fully rate-independent system (1.1).

Balanced Viscosity solutions. In [CL16] the vanishing-viscosity approximation of system (1.1) was carried out
by perturbing the damage flow rule by a viscous term, which led to the viscously regularized system

− div σ = f with σ = C(z)e in Ω× (0,T ), (1.2a)

∂R(ż) + εż +Am(z) +W ′(z) 3 − 1
2C
′(z)e : e in Ω× (0,T ), (1.2b)

∂ṗH(z, ṗ) 3 σD in Ω× (0,T ), (1.2c)

supplemented by the boundary conditions

u = w on ΓDir × (0,T ), σn = g on ΓNeu × (0,T ), ∂nz = 0 on ∂Ω× (0,T ). (1.2d)

Passing to the limit in a reparameterized version of (1.2) led to a first construction of BV solutions to sys-
tem (1.1). We shall illustrate the notion of parameterized Balanced Viscosity solution thus obtained in the
forthcoming Section 3.2. In what follows, for quicker reference we will call the BV solutions from [CL16] BV0

solutions to system (1.1), where the subscript 0 indicates that the solutions are obtained in the limit as ε ↓ 0.
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In [CR19], a different construction of BV solutions to system (1.1) was proposed, based on a viscous reg-
ularization of the momentum balance and of the plastic flow rule, in addition to that of the damage flow
rule. This alternative approach was first proposed in [MRS16b] in a finite-dimensional context, and extended
to infinite-dimensional systems in the recent [MR21]. Both papers address the vanishing-viscosity analysis of
an abstract evolutionary system, that can be thought of as prototypical of rate-dependent systems in solid
mechanics, governing the evolution of an elastic variable u and of an internal variable z. In those papers, z has
relaxation time ε, while u has a viscous damping with relaxation time εα, α > 0. To emphasize the occurrence
of these three time scales (the time scale ε0 = 1 of the external loading, the relaxation time ε of z, and the -
possibly different - relaxation time εα of u), the term ‘multi-rate system’ was used in [MRS16b]. Therein, as
well as in [MR21], it was shown that, in the three cases α ∈ (0, 1), α = 1 and α > 1, the vanishing-viscosity
analysis as ε ↓ 0 leads to different notions of Balanced-Viscosity solutions, including in particular different
descriptions of time discontinuities. Indeed, the transition corresponding to a jump in time is characterized by
a PDE system. In contrast, in the case of global minimization, the only condition to be satisfied at jumps is
energy conservation.

Thus, along the lines of [MRS16b], in [CR19] the authors addressed the following, alternative, viscous
regularization of system (1.1):

− div(ενDE(u̇) + σ) = f in Ω× (0,T ), (1.3a)

∂R(ż) + εż +Am(z) +W ′(z) 3 − 1
2C
′(z)e : e in Ω× (0,T ), (1.3b)

∂ṗH(z, ṗ) + ενṗ+ µp 3 σD in Ω× (0,T ), (1.3c)

supplemented by the boundary conditions

u = w on ΓDir × (0,T ), (ενDE(u̇) + σ)n = g on ΓNeu × (0,T ), ∂nz = 0 on ∂Ω× (0,T ), (1.3d)

where D is a positive-definite fourth-order tensor. System (1.3) features a viscous regularization both in the
damage flow rule and in the displacement equation and the plastic flow rule. Let us now illustrate the role of
the various parameters appearing therein, namely the

- (vanishing-)viscosity parameter ε > 0,
- (vanishing-)hardening parameter µ > 0,
- additional parameter ν > 0, which was required to fulfill ν ≤ µ in order to get suitable a priori estimates.
We have referred to ν as a rate parameter, since it sets the mutual rate at which, on the one hand,
the displacement and the plastic strain converge to equilibrium and rate-independent evolution, and,
on the other hand, the damage parameter converges to rate-independent evolution. More precisely, if
ν > 0 stays fixed then u and p converge at the same rate as z, while their convergence occurs at a
faster rate if ν ↓ 0. This is clear if one chooses e.g. ν = µ = ε, so that the viscous terms E(u̇) and ṗ
in (1.3a) and (1.3c) are modulated by the coefficient ε2, as opposed to the coefficient ε in the damage
flow rule. Observe that, upon taking the vanishing-hardening limit µ ↓ 0, the constraint ν ≤ µ forces
the joint vanishing-viscosity and vanishing-hardening limit to occur at a faster rate for u and p than
for z.

We will refer to the vanishing-viscosity analyses in system (1.3) as full, as opposed to the partial vanishing-
viscosity approximation provided by system (1.2), where only the damage flow rule is regularized.

Indeed, in [CR19] three full vanishing-viscosity analyses have been carried out for system (1.3), leading to
three different notions of solution for system (1.1), possibly regularized by a hardening term. Let us briefly
illustrate them.

(1) BVµ,ν
0 solutions: The limit passage in a (reparameterized) version of (1.3) as ε ↓ 0, while the positive

parameters µ and ν stayed fixed, has led to BV solutions for a variant of the system (1.1), where the
plastic flow rule was regularized by the hardening term µp, i.e. for the rate-independent system with
hardening

− div(C(z)e) = f in Ω× (0,T ), (1.4a)

∂R(ż) +Am(z) +W ′(z) 3 − 1
2C
′(z)e : e in Ω× (0,T ), (1.4b)

∂ṗH(z, ṗ) + µp 3 σD in Ω× (0,T ), (1.4c)
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coupled with the boundary conditions

u = w on ΓDir × (0,T ), σn = g on ΓNeu × (0,T ) ∂nz = 0 on ∂Ω× (0,T ). (1.4d)

The BV solutions to system (1.4) thus constructed reflect their origin from a system viscously regular-
ized in all of the three variables u, z, p. In fact, in the jump regime the system may switch to viscous
behavior in the three variables u, z, and p. This means that the states of the system before and after
a time discontinuity are connected by a trajectory (reparameterized in a certain time scale), whose
evolution may be governed by viscosity in u, z, and p, similarly to (1.3). Since the convergence of u,
z, and p to elastic equilibrium and rate-independent evolution has occurred at the same rate (as ν > 0

stayed fixed), viscous behavior in u, z, and p may equally intervene in the jump regime. We shall refer
to such solutions as BVµ,ν

0 solutions to system (1.4). The subscript 0 suggests that they have been
obtained in the vanishing-viscosity limit ε ↓ 0, while the occurrence of the parameter µ keeps track of
the presence of hardening. Also the parameter ν appears in the notation, since it still features in the
limiting evolution as a coefficient of the viscous terms in the displacement equation and in the plastic
flow rule, which may be active in the jump regime.

(2) BVµ,0
0 solutions: The limit passage in a (reparameterized) version of (1.3) as ε ↓ 0 simultaneously

with ν ↓ 0, while µ > 0 stayed fixed, has again led to BV solutions for the rate-independent elasto-
plastic damage system with hardening (1.4). These solutions still have the feature that, in the jump
regime, the system may switch to viscous behavior in u, z, and p. However, the BV solutions thus
obtained reflect the fact that the convergence of u and p to elastic equilibrium and rate-independent
evolution has occurred at a faster rate (as ν ↓ 0) than that for z. To emphasize this, such solutions
were termed BV solutions to the multi-rate system for damage with hardening. We will refer to them
as BVµ,0

0 solutions to system (1.1). In this notation, the double occurrence of 0 relates to the fact that
such solutions were obtained in the limit ε, ν ↓ 0, as opposed to the BV0 solutions from [CL16] (arising
in the limit of system (1.3) as ε ↓ 0 and µ = ν = 0).

(3) BV0,0
0 solutions: The limit passage in a (reparameterized) version of (1.3) as ε, µ, ν ↓ 0 jointly led to

BV solutions to the multi-rate system for damage and perfect plasticity (1.1), again reflecting the fact
that the convergence of u and p to elastic equilibrium and rate-independent, perfectly plastic evolution
happened at a rate faster than that for z. The vanishing-viscosity solutions arising from this joint limit
will receive specific attention in this paper. In what follows, we will refer to them as BV0,0

0 solutions to
system (1.1). Here, the triple occurrence of 0 relates to the fact that such solutions were obtained in the
limit ε, µ, ν ↓ 0 and thus immediately suggests the comparison with the BV0 solutions from [CL16].

Our results. The aim of this paper is twofold:

(i) We propose to gain further insight into BV0,0
0 solutions to system (1.1) (cf. item #3 in the above

list). More precisely, first of all we shall provide a differential characterization of such solutions, cf.
Proposition 3.11 ahead. This will be compared with a corresponding characterization of BV0 solutions
proved in Proposition 3.5. Moreover, relying on Proposition 3.11, in Theorem 4.1 we will subsequently
prove that, after an initial phase in which z is constant while u and p, evolving by viscosity, relax to
elastic equilibrium and to rate-independent evolution, respectively, it turns out that u never leaves the
equilibrium, and p the rate-independent regime. Afterwards, the evolution of system (1.1) is captured
by the notion of BV0 solution as obtained in [CL16] by taking the vanishing-viscosity limit as ε ↓ 0

of system (1.2). In other words, viscosity in u and p (may) intervene only in an initial phase in the
reparameterized time scale, corresponding to a time discontinuity in the time scale of the loading. After
this initial phase, the BV0,0

0 solutions to the perfectly plastic system for damage (1.1) arising by the
full vanishing-viscosity approach of [CR19] comply with the same notion of solution of [CL16], where
viscosity for u and p was neglected.

We point out that an analogous characterization can be proved for the BVµ,0
0 solutions to the multi-

rate system with fixed hardening parameter µ > 0, obtained in the limit passage #2 of the above list;
see Remark 5.2 ahead.

(ii) We aim to ‘close the circle’ in the analysis of the singular limits of system (1.3), by showing that, for
two given sequences (µk)k, (νk)k ⊂ (0, +∞) with 0 < νk ≤ µk ↓ 0 as k →∞,
(1) BVµk,νk

0 solutions to the single-rate system with hardening converge as k →∞ to a BV0,0
0 solution

of the perfectly plastic damage system, which will be shown in Theorem 5.6 ahead;
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(2) BVµk,0
0 solutions to the multi -rate system with hardening converge as k →∞ to a BV0,0

0 solution,
cf. Theorem 5.3.

In particular, we will prove that the diagram in Figure 1 commutes.

BVµ,ν
0

µ ≥ ν > 0

Vµ,ν
ε

ε, ν,µ > 0
BV0,0

0

BVµ,0
0

µ > 0

ε
→

0

[C
R19

,§6
.1]

ε, ν,µ→ 0

[CR19,§7]

[CR19,§6.2]

ε, ν →
0

ν
≤
µ
→

0

(T
h
eo

re
m

5.
6)

µ
→

0

(T
h
eo

re
m

5.
3)

Figure 1. The diagram displays the asymptotic relations between different notions of solution. The
symbol Vµ,νε indicates solutions to the viscous system (1.3). Solid lines represent convergences (along
sequences) to the limiting solutions of type BVµ,ν0 , BVµ,00 , BV0,0

0 , already proved in [CR19, Sections 6.1,
6.2, 7]. Dashed lines represent convergences proved in the present paper, the corresponding theorems
being referred to in the diagram. Starting from Vµ,νε one may either pass to the limit as ε ↓ 0 and
then as µ, ν ↓ 0; or pass to the limit as ε, ν ↓ 0 and then as µ ↓ 0. Since there is no uniqueness, it is
not guaranteed that one gets the very same solution found in the joint limit ε, µ, ν ↓ 0. However, we
prove that through the three different procedures one finds evolutions satisfying the same notion of
solution. In this sense we may say that the diagram commutes.

We emphasize that these results establish asymptotic relations between BV solutions, already obtained as
vanishing-viscosity limits. These convergence analyses show that BV0,0

0 solutions are robust enough to capture
the asymptotic behavior of a wide class of BV solutions depending on different parameters. However, BV0,0

0

solutions reduce to BV0 solutions after an initial phase in which u and p converge to elastic equilibrium and
stability, respectively; in particular, if the initial conditions are at equilibrium, then the two notions of solution
coincide. This feature may be traced back to the convex character of perfect plasticity and to the multi-rate
character inherent to the system, since with ν ↓ 0 we have forced faster convergence to equilibrium in u and
stability in p.
Plan of the paper. In Section 2 we detail the setup of the problem, list our assumptions, and provide some
preliminary results. In Section 3 we illustrate the notion of BV0 solution to system (1.1) arising from the partial
vanishing-viscosity approach of [CL16], and that of BV0,0

0 solution via the full vanishing-viscosity analysis in
[CR19]. In Section 4 we establish Theorem 4.1, providing a complete characterization of BV0,0

0 solutions.
Section 5 is devoted to the vanishing-hardening analysis of BVµ,0

0 and BVµ,ν
0 solutions to the system with

hardening. The proofs of Theorems 5.3 and 5.6 rely on some technical results collected in the Appendix.

2. Setup and preliminaries

Throughout the paper we will use the following

Notation 2.1 (General notation and preliminaries). Let X be a Banach space. By 〈·, ·〉X we denote the duality
between X∗ and X or between (Xn)∗ and Xn (whenever X is a Hilbert space, 〈·, ·〉X will be the inner product),
while ‖ · ‖X stands for the norm in X or in Xn. The inner Euclidean product in Rn, n ≥ 1, is denoted by 〈·, ·〉
and the Euclidean norm in Rn by | · |. The symbol Br(0) stands for the open ball in Rn with radius r and
center 0.
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We write ‖·‖Lp for the Lp-norm on the space Lp(O;Rd), with O a measurable subset of Rn and 1 ≤ p < +∞,
and similarly ‖ · ‖Hm for the norm of the Sobolev-Slobodeskij space Hm(O), for 0 ≤ m ∈ R. The symbol
Mb(O;Rd) stands for the space of Rd-valued bounded Radon measures in O.

The space of symmetric (n×n)-matrices is denoted by Mn×n
sym , while the subspace of the deviatoric matrices

with null trace is denoted by Mn×n
D . One has Mn×n

sym = Mn×n
D ⊕ RI, where I is the identity matrix, i.e. any

η ∈ Mn×n
sym can be decomposed as η = ηD + tr(η)

n I, where ηD is the orthogonal projection of η onto Mn×n
D .

The latter is called the deviatoric part of η. The symbol Sym(Mn×n
D ;Mn×n

D ) stands for the set of symmetric
endomorphisms on Mn×n

D .
Given a function v : Ω × (0,T ) → R differentiable, w.r.t. time a.e. on Ω × (0,T ), its (almost everywhere

defined) partial time derivative is indicated by v̇ : Ω × (0,T ) → R. A different notation will be employed
when considering v as a (Bochner) function, from (0,T ) with values in a Lebesgue or Sobolev space X (with
the Radon-Nikodým property): if v ∈ AC([0,T ];X), then its (almost everywhere defined) time derivative is
indicated by v′ : (0,T )→ X.

The symbols c, c′, C, C ′ will denote positive constants whose precise value may vary from line to line (or
within the same line). We will sometimes employ the symbols Ii, i = 0, 1, ..., as place-holders for terms
appearing in inequalities: also in this case, such symbols may appear in different proofs with different meaning.

Function of bounded deformation. The state space for the displacement variable for the systems with hardening
will be

H1
Dir(Ω;Rn) := {u ∈ H1(Ω;Rn) : u = 0 on ΓDir}

(recall that ΓDir is the Dirichlet part of ∂Ω, cf. (2.Ω) ahead).
For the perfectly plastic damage system, displacements will belong to the space of functions of bounded

deformations, defined by

BD(Ω) := {u ∈ L1(Ω;Rn) : E(u) ∈ Mb(Ω;Mn×n
sym )},

with Mb(Ω;Mn×n
sym ) the space of Mn×n

sym -valued bounded Radon measures on Ω. We recall that Mb(Ω;Mn×n
sym )

can be identified with the dual of the space C0
0(Ω;Mn×n

sym ) of continuous Mn×n
sym -valued functions vanishing at

the boundary of Ω. The space BD(Ω) has a Banach structure if equipped with the norm

‖u‖BD(Ω) := ‖u‖L1(Ω;Rn) + ‖E(u)‖Mb(Ω;Mn×n
sym ).

Indeed, BD(Ω) is the dual of a normed space, cf. [TS80], and such duality provides a weak∗ convergence on
BD(Ω): a sequence (uk)k converges to u weakly∗ in BD(Ω) if uk ⇀ u in L1(Ω;Rn) and E(uk)

∗
⇀ E(u) in

Mb(Ω;Mn×n
sym ). It holds BD(Ω) ⊂ Ln/(n−1)(Ω;Rn). Up to subsequences, every bounded sequence in BD(Ω)

converges weakly∗, weakly in Ln/(n−1)(Ω;Rn), and strongly in Lp(Ω;Rn) for any 1 ≤ p < n
n−1 . Finally, we

recall that the trace u|∂Ω of a function u ∈ BD(Ω) is well defined and is an element in L1(∂Ω;Rn).

A divergence operator. First of all, we observe that any σ ∈ L2(Ω;Mn×n
sym ) such that div σ ∈ L2(Ω;Rn) induces

the distribution [σn] defined by

〈[σn],ψ〉∂Ω := 〈div σ,ψ〉L2 + 〈σ, E(ψ)〉L2 for every ψ ∈ H1(Ω;Rn). (2.1)

By [KT83, Theorem 1.2] and [DMDM06, (2.24)] we have that [σn] ∈ H−1/2(∂Ω;Rn); moreover, if σ ∈
C0(Ω;Mn×n

sym ), then the distribution [σn] fulfills [σn] = σn, where the right-hand side is the standard pointwise
product of the matrix σ and the normal vector n in ∂Ω.

For the treatment of the perfectly plastic system for damage it will be crucial to work with the space

Σ(Ω) := {σ ∈ L2(Ω;Mn×n
sym ) : div σ ∈ Ln(Ω;Rn), σD ∈ L∞(Ω;Mn×n

D )}. (2.2)

Furthermore, our choice of external loadings (see (2.8a)) will ensure that the stress fields σ that we consider,
at equilibrium, have the additional property that [σn] ∈ L∞(Ω;Rn) and σ ∈ Σ(Ω) (cf. Lemma 3.1). Therefore,
any of such fields induces a functional −Div σ ∈ BD(Ω)∗ via

〈−Div σ, v〉BD(Ω) := 〈−div σ, v〉
L

n
n−1 (Ω;Rn)

+ 〈[σn], v〉L1(ΓNeu;Rn) for all v ∈ BD(Ω). (2.3)

With slight abuse of notation, we shall denote by −Div σ also the restriction of the above functional to
H1(Ω;Rn)∗.
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The Am-Laplacian. The damage flow rule features a gradient regularizing contribution in terms of the Am-
Laplacian operator, that is defined from the bilinear form

am : Hm(Ω)×Hm(Ω)→ R, am(z1, z2) :=

∫
Ω

∫
Ω

(
∇z1(x)−∇z1(y)

)
·
(
∇z2(x)−∇z2(y)

)
|x− y|n+2(m−1)

dxdy with m >
n

2
.

Then,

Am : Hm(Ω)→ Hm(Ω)∗ is defined by 〈Am(z),w〉Hm(Ω) := am(z,w) for every z, w ∈ Hm(Ω).

The inner product 〈z1, z2〉Hm(Ω) :=
∫

Ω
z1z2 dx + am(z1, z2) makes Hm(Ω) a Hilbert space. Throughout the

paper we shall assume m > n
2 and rely on the compact embedding Hm(Ω) b C0(Ω).

2.1. Assumptions and preliminary results. This section and Sec. 2.2 collect all our assumptions on the consti-
tutive functions of the model and on the problem data. We will omit to invoke them explicitly in the statement
of the various results.

The reference configuration. In what follows we will assume that Ω ⊂ Rn, n ∈ {2, 3}, is a bounded Lipschitz
domain satisfying the so-called Kohn-Temam condition:

∂Ω Lipschitz, ∂Ω = ΓDir ∪ ΓNeu ∪ Σ with ΓDir, ΓNeu, Σ pairwise disjoint,

ΓDir and ΓNeu relatively open in ∂Ω, and ∂ΓDir = ∂ΓNeu = Σ their relative boundary in ∂Ω,

with Σ of class C2 and Hn−1(Σ) = 0, and with ∂Ω of class C2 in a neighborhood of Σ.

(2.Ω)

Notice that the additional C2 regularity is only required close to the set Σ where the Dirichlet and the Neumann
boundary meet. This is a technical assumption needed to interpret the stress-strain duality (2.9) as a measure.

The elasticity and viscosity tensors. We assume that the elastic tensor C : [0, +∞)→ Lin(Mn×n
sym ;Mn×n

sym ) fulfills
the following conditions

C ∈ C1,1([0, +∞); Lin(Mn×n
sym ;Mn×n

sym )), (2.C1)

z 7→ C(z)ξ : ξ is nondecreasing for every ξ ∈Mn×n
sym , (2.C2)

∃ γ1, γ2 > 0 ∀ z ∈ [0, +∞) ∀ ξ ∈Mn×n
sym : γ1|ξ|2 ≤ C(z)ξ : ξ ≤ γ2|ξ|2. (2.C3)

For the viscosity tensor D we require that

D ∈ C0(Ω; Sym(Mn×n
D ;Mn×n

D )), and (2.D1)

∃ δ1, δ2 > 0 ∀x ∈ Ω ∀A ∈Md×d
sym : δ1|A|2 ≤ D(x)A : A ≤ δ2|A|2. (2.D2)

Thus, D induces an equivalent (by a Korn-Poincaré-type inequality) Hilbert norm on H1
Dir(Ω;Rn), i.e.

‖u‖H1,D :=

(∫
Ω

DE(u) : E(u)dx

)1/2

and ∃KD > 0 ∀u ∈ H1
Dir(Ω;Rn) : ‖u‖H1,D ≤ KD‖E(u)‖L2 . (2.4)

The related ‘dual norm’ is

‖η‖(H1,D)∗ :=

(∫
Ω

D−1ξ : ξ

)1/2

for all η ∈ H1
Dir(Ω;Rn)∗ with η = Div ξ for some ξ ∈ Σ̃(Ω). (2.5)

The potential energy for the damage variable. In addition to the regularizing, nonlocal gradient contribution
featuring the bilinear form am, the z-dependent part of the mechanical energy functional shall feature a further
term with density W satisfying

W ∈ C2((0, +∞);R+) ∩ C0([0, +∞);R+∪{+∞}), (2.W1)

s2nW (s)→ +∞ as s→ 0+, (2.W2)

where W ∈ C0([0, +∞);R+ ∪ {+∞}) means that W (0) = ∞ and W (z) → +∞ if z ↓ 0, in accordance with
(2.W2).

Indeed, the energy contribution involvingW forces z to be strictly positive; consequently, the material never
reaches the most damaged state at any point.
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The plastic and the damage dissipation densities. The plastic dissipation potential shall reflect the requirement
that the admissible stresses belong to given constraint sets which, in turn, depend on the damage variable z.
More precisely, as in [CL16] we ask that the constraint sets (K(z))z∈[0,+∞) fulfill

K(z) ⊂Mn×n
D is closed and convex for all z ∈ [0, +∞), (2.K1)

∃ 0 < r̄ < R̄ ∀ 0 ≤ z1 ≤ z2 : Br̄(0) ⊂ K(z1) ⊂ K(z2) ⊂ BR̄(0), (2.K2)

∃CK > 0 ∀ z1, z2 ∈ [0, +∞) : dH (K(z1),K(z2)) ≤ CK |z1−z2|, (2.K3)

with dH the Hausdorff distance between two subsets of Mn×n
D , defined by

dH (K1,K2) := max

(
sup
x∈K1

dist(x,K2), sup
x∈K2

dist(x,K1)

)
.

The associated support function H : [0, +∞)×Mn×n
D → [0, +∞), defined by

H(z,π) := sup
σ∈K(z)

σ : π for all (z,π) ∈ [0, +∞)×Mn×n
D , (2.6)

will act as density function for the plastic dissipation potential, cf. (2.14) later on.
We choose as damage dissipation density the function R : R→ [0, +∞] given by

R(ζ) :=

{
−κζ if ζ ≤ 0,

+∞ otherwise,
(2.7)

with κ > 0 a constant related to the toughness of the material.

Body and surface forces, Dirichlet loading, and initial data. We assume that the volume force f and the
assigned traction g fulfill

f ∈ H1(0,T ;Ln(Ω;Rn)), g ∈ H1(0,T ;L∞(ΓNeu;Rn)). (2.8a)

The induced total load is the function

F : [0,T ]→ BD(Ω)∗, 〈F (t), v〉BD(Ω) := 〈f(t), v〉Ln/(n−1)(Ω;Rn) + 〈g(t), v〉L1(ΓNeu;Rn) for all v ∈ BD(Ω).

Furthermore, as customary for perfect plasticity, we shall impose a uniform safe load condition, namely that
there exists

ρ ∈ H1(0,T ;L2(Ω;Mn×n
sym )) with ρD ∈ H1(0,T ;L∞(Ω;Mn×n

D )) (2.8b)

and there exists α > 0 such that for every t ∈ [0,T ] (recall (2.1))

− div %(t) = f(t) a.e. on Ω, [%(t)n] = g(t) on ΓNeu, (2.8c)

ρD(t,x) + ξ ∈ K for a.a. x ∈ Ω and for every ξ ∈Mn×n
sym s.t. |ξ| ≤ α. (2.8d)

Observe that, combining (2.8a) with (2.8b)–(2.8d) yields −Div %(t) = F (t) for all t ∈ [0,T ].
As for the time-dependent Dirichlet boundary condition w, we assume that

w ∈ H1(0,T ;H1(Rn;Rn)). (2.8e)

Finally, we shall consider initial data q0 = (u0, z0, p0) with

u0 ∈ H1
Dir(Ω;Rn), z0 ∈ Hm(Ω) with W (z0) ∈ L1(Ω) and z0 ≤ 1 in Ω, p0 ∈ L2(Ω;Mn×n

D ). (2.8f)

The stress-strain duality. For the treatment of the perfectly plastic damage system it is essential to resort to
a suitable notion of stress-strain duality that we borrow from [KT83, DMDM06], also relying on [FG12] for
the extension to Lipschitz boundaries satisfying (2.Ω). Following [DMDM06] we introduce the class A(w) of
admissible displacements and strains associated with a function w ∈ H1(Rn;Rn), that is

A(w) := {(u, e, p) ∈BD(Ω)× L2(Ω;Mn×n
sym )×Mb(Ω ∪ ΓDir;Mn×n

D ) :

E(u) = e+ p in Ω, p = (w − u)�n H n−1 on ΓDir},

where n denotes the normal vector to ∂Ω and � the symmetrized tensorial product. The space of admissible
plastic strains is

Π(Ω) := {p ∈ Mb(Ω ∪ ΓDir;Mn×n
D ) : ∃ (u,w, e) ∈ BD(Ω)×H1(Rn;Rn)× L2(Ω;Mn×n

sym ) s.t. (u, e, p) ∈ A(w)}.
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Given σ ∈ Σ(Ω) (cf. (2.2)), p ∈ Π(Ω), and u, e such that (u, e, p) ∈ A(w) we define

〈[σD : p],ϕ〉 := −
∫

Ω

ϕσ · (e−E(w)) dx−
∫

Ω

σ · [(u−w)�∇ϕ] dx−
∫

Ω

ϕ (div σ) · (u−w) dx (2.9)

for every ϕ ∈ C∞c (Rn); in fact, this definition is independent of u and e. Under these assumptions, σ ∈
Lr(Ω;Mn×n

sym ) for every r < ∞, and [σD : p] is a bounded Radon measure with ‖[σD : p]‖1 ≤ ‖σD‖L∞‖p‖1 in
Rn. Restricting such measure to Ω ∪ ΓDir, we set

〈σD | p〉 := [σD : p](Ω ∪ ΓDir). (2.10)

By (2.Ω) and (2.9), since u ∈ BD(Ω) ⊂ L
n

n−1 (Ω;Rn), we get the following integration by parts formula, valid
if the distribution [σn] defined in (2.1) belongs to ∈ L∞(ΓNeu;Rn):

〈σD | p〉 = −〈σ, e− E(w)〉L2(Ω;Mn×n
sym ) + 〈−div σ,u− w〉

L
n

n−1 (Ω;Rn)
+ 〈[σn],u− w〉L1(ΓNeu;Rn)

for every σ ∈ Σ(Ω) and (u, e, p) ∈ A(w). We refer to [FG12] for the properties mentioned above.

2.2. Energetics. A key ingredient for the construction of BV solutions to the rate-independent systems (1.1)
(damage with perfect plasticity) and (1.4) (damage and plasticity with hardening) is the observation that
their rate-dependent regularizations (1.2) and (1.3) have a gradient-system structure. Namely, they can be
reformulated in terms of the generalized gradient flow

∂Ψ(q′(t)) + DE(t, q(t)) 3 0 in Q∗, a.e. in (0,T ),

for suitable choices of
- the state space Q for the triple q = (u, z, p);
- the driving energy functional E : (0,T )×Q→ R ∪ {+∞};
- the dissipation potential Ψ : Q→ [0, +∞], with convex analysis subdifferential ∂Ψ : Q⇒ Q∗,

as rigorously proved in [CR19]. Observe that also the rate-independent systems (1.1) and (1.4) have a gradient
structure that is, however, only formal due to the fact that the functions u, z, and pmay have jumps as functions
of time. Nonetheless, for our analysis it is crucial to detail the energetics underlying both the rate-dependent
and the rate-independent systems.

The state spaces. The state space for the rate-dependent/independent damage systems with hardening is

QH := H1
Dir(Ω;Rn)×Hm(Ω)× L2(Ω;Mn×n

D ).

For the rate-independent damage system with perfect plasticity, the displacements are just functions of bounded
deformation and the plastic strains are only bounded Radon measures on Ω∪ΓDir, so that the associated state
space is

QPP := {q = (u, z, p) ∈BD(Ω)×Hm(Ω)×Mb(Ω ∪ ΓDir;Mn×n
D ) :

e := E(u)− p ∈ L2(Ω;Mn×n
sym ), u� n H n−1 + p = 0 on ΓDir}.

(2.11)

Observe that in the definition of QPP it is in fact required that (u, e, p) ∈ A(0): indeed, the condition u �
n H n−1 + p = 0 is a relaxation of the homogeneous Dirichlet condition u = 0 on ΓDir.

The energy functionals. The energy functional governing the rate-dependent and rate-independent systems
with hardening (1.3) and (1.4), respectively, consists of

(1) a contribution featuring the elastic energy

Q(z, e) =

∫
Ω

1
2C(z)e : edx;

(2) the potential energy for the damage variable and for the hardening term;
(3) the time-dependent volume and surface forces.

Namely, for µ > 0 given, Eµ : [0,T ]×QH → R ∪ {+∞} is defined by

Eµ(t,u, z, p) := Q(z, E(u+w(t))−p) +

∫
Ω

(
W (z)+

µ

2
|p|2
)

dx+
1

2
am(z, z)− 〈F (t),u+ w(t)〉H1(Ω;Rn).

In what follows, we will use the short-hand notation

e(t) := E(u+w(t))−p

for the elastic part of the strain tensor.
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The energy functional for the rate-independent perfectly plastic damage system (1.1) is E0 : [0,T ]×QPP →
R∪{+∞} given by

E0(t,u, z, p) := Q(z, e(t)) +

∫
Ω

W (z) dx+
1

2
am(z, z)− 〈F (t),u+ w(t)〉BD(Ω). (2.12)

Observe that
dom(E0) = [0,T ]×D with D = {q ∈ QPP : W (z) ∈ L1(Ω)}. (2.13)

The dissipation potentials. The dissipation density R from (2.7) clearly induces an integral functional R :

L1(Ω) → [0, +∞]. However, since the damage flow rule will be posed in Hm(Ω)∗ (cf. (2.20) ahead), we will
restrict R to the space Hm(Ω), denoting the restriction by the same symbol. Hence, we will work work with
the functional

R : Hm(Ω)→ [0, +∞], R(ζ) =

∫
Ω

R(ζ(x))dx (2.14)

and with its convex analysis subdifferential ∂R : Hm(Ω) ⇒ Hm(Ω)∗. We will often use the following charac-
terization of ∂R, due to the 1-homogeneity of the potential R:

χ ∈ ∂R(ζ) ⇔

{
R(ζ̃) ≥ 〈χ, ζ̃〉Hm for all ζ̃ ∈ Hm(Ω)

R(ζ) ≤ 〈χ, ζ〉Hm

. (2.15)

For the systems with hardening (i.e. (1.3) and (1.4)), the plastic dissipation potential H : C0(Ω; [0, +∞))×
L1(Ω;Mn×n

D )→ R is defined by

H(z,π) :=

∫
Ω

H(z(x),π(x))dx, (2.16)

where H is given by (2.6) and π is a place-holder for the plastic rate ṗ. Its convex analysis subdifferential
∂πH : C0(Ω; [0, +∞))× L1(Ω;Mn×n

D )⇒ L∞(Ω;Mn×n
D ), w.r.t. the second variable π, given by

ω ∈ ∂πH(z,π) if and only if H(z, %)−H(z,π) ≥
∫

Ω

ω(%− π)dx for all % ∈ L1(Ω;Mn×n
D ),

fulfills
ω ∈ ∂πH(z,π) if and only if ω(x) ∈ ∂πH(z(x),π(x)) for a.a.x ∈ Ω. (2.17)

A characterization analogous to (2.17) holds for the subdifferential ∂πH(z, ·) : L1(Ω;Mn×n
D )⇒ L∞(Ω;Mn×n

D ).
In order to handle the perfectly plastic system for damage, the plastic dissipation potential H(z, ·) has to

be extended to the space Mb(Ω ∪ ΓDir;Mn×n
D ). We define HPP : C0(Ω; [0, 1])×Mb(Ω ∪ ΓDir;Mn×n

D )→ R by

HPP(z,π) :=

∫
Ω∪ΓDir

H

(
z(x),

dπ

dµ
(x)

)
dµ(x),

where µ ∈ Mb(Ω ∪ ΓDir;Mn×n
D ) is a positive measure such that π � µ and dπ

dµ is the Radon-Nikodým derivative
of p with respect to µ; by one-homogeneity of H(z(x), ·), the definition of HPP does not depend of µ. For
the theory of convex functions of measures we refer to [GS64]. By [AFP05, Proposition 2.37], for every
z ∈ C0(Ω; [0, 1]) the functional p 7→ HPP(z, p) is convex and positively one-homogeneous. We recall that by
Reshetnyak’s lower semicontinuity theorem, if (zk)k ⊂ C0(Ω; [0, 1]) and (πk)k ⊂ Mb(Ω ∪ ΓDir;Mn×n

D ) are such
that zk → z in C0(Ω) and πk ⇀ π weakly∗ in Mb(Ω ∪ ΓDir;Mn×n

D ), then

HPP(z,π) ≤ lim inf
k→+∞

HPP(zk,πk).

Finally, from [FG12, Proposition 3.9] it follows that for every σ ∈ Kz(Ω)

H

(
z,

dp

d|p|

)
|p| ≥ [σD : p] as measures on Ω ∪ ΓDir. (2.18)

In particular, we have
HPP(z, p) ≥ sup

σ∈Kz(Ω)

〈σD | p〉 for every p ∈ Π(Ω). (2.19)

The (partially) viscously regularized system (1.2) also features the 2-homogeneous dissipation potential

R2(ζ) :=

∫
Ω

1
2 |ζ(x)|2 dx,
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while the (fully) viscously regularized system (1.3) additionally involves the quadratic potentials

V2,ν(v) :=

∫
Ω

ν
2DE(v) : E(v)dx, H2,ν(π) =

∫
Ω

ν
2 |π|

2 dx.

The gradient structure for system (1.3). It was proved in [CR19, Lemma 3.3] that for every t ∈ [0,T ] the
functional (u, z, p) = q 7→ Eµ(t, q) is Fréchet differentiable on its domain [0,T ]×D, with D = {(u, z, p) ∈ QH :

z > 0 in Ω}, and that for all q ∈ QH the function t 7→ Eµ(t, q) belongs to H1(0,T ). Relying on this, it was
shown that system (1.3) reformulates as the generalized gradient system

∂q′Ψε,ν(q(t), q′(t)) + DqEµ(t, q(t)) 3 0 in Q∗H for a.a. t ∈ (0,T ), (2.20)

involving the overall dissipation potential

Ψν(q, q′) := V2,ν(u′) + R(z′) + R2(z′) + H(z, p′) + H2,ν(p′)

and its rescaled version

Ψε,ν(q, q′) :=
1

ε
Ψν(q, εq′) =

∫
Ω

εν
2 DE(u′):E(u′)dx+ R(z′) +

∫
Ω

ε
2 |z
′|2 dx+ H(z, p′) +

∫
Ω

εν
2 |p
′|2 dx.

3. The partial versus the full vanishing-viscosity approach

In this section we aim to gain further insight into the notion of BV0,0
0 solution to system (1.1) arising from

the full vanishing-viscosity approach of [CR19] and compare it with the BV0 concept from [CL16]. In order
to properly introduce both notions, it can be useful to recall the reparameterized energy-dissipation balance
where one passes to the limit to obtain Balanced Viscosity solutions.

At this heuristic stage, we will treat the partial vanishing-viscosity approximation of [CL16] and the full
approximation of [CR19] in a unified way, although at the level of the viscous approximation in [CL16] there
is the significant difference that the plastic strain evolves rate-independently. Still, we will disregard this and
instead focus on the similarities between the rate-dependent systems (1.3) (wherefrom the BV0,0

0 solutions of
[CR19] stem), and (1.2) (wherefrom the BV0 solutions of [CL16]). In fact, (1.2) can be formally obtained from
[CR19] by setting ν = µ = 0. That is why, in what follows to fix the main ideas we will illustrate the limit
passage in the energy-dissipation balance associated with system (1.3).

Throughout this section and the remainder of the paper, we will suppose that the assumptions of Sec. 2 are
in force without explicitly invoking them.

The energy-dissipation balance for the viscous system. As observed in [CR19, Proposition 3.4], a curve q =

(u, z, p) ∈ H1(0,T ;QH) is a solution to (1.3), namely to the generalized gradient system (2.20), if and only if
it satifies the energy-dissipation balance∫ t

0

(
Ψε,ν(q(r), q′(r)) + Ψ∗ε,ν(q(r),−DqEµ(r, q(r)))

)
dr + Eµ(t, q(t)) = Eµ(0, q(0)) +

∫ t

0

∂tEµ(r, q(r))dr (3.1)

for every t ∈ [0,T ]. Let us now consider a family (qµε,ν) of solutions to (2.20). In [CR19] suitable a priori
estimates, uniform w.r.t. the parameters ε, ν,µ > 0, for the length (measured in an appropriate norm) of
the curves qµε,ν were derived. Based on such estimates it is possible to reparameterize such curves, obtaining
parameterized curves defined on an ‘artificial’ time interval [0,S]

(tµε,ν , qµε,ν) : [0,S]→ [0,T ]×QH with tµε,ν := (sµε,ν)−1, qµε,ν := qµε,ν ◦ tµε,ν

and sµε,ν (suitable) arclength functions associated with the curves (qµε,ν). Now, in terms of the parameterized
curves (tµε,ν , qµε,ν), (3.1) translates into the reparameterized energy-dissipation balance

E(tµε,ν(s), qµε,ν(s)) +

∫ s

0

Mµ,ν
ε (tµε,ν(r), qµε,ν(r), (tµε,ν)′(r), (qµε,ν)′(r))dr

= E(tµε,ν(0), qµε,ν(0)) +

∫ s

0

∂tE(tµε,ν(r), qµε,ν(r)) (tµε,ν)′(r)dr

(3.2)

featuring the functional Mµ,ν
ε : [0,T ]×QH × (0, +∞)×QH → [0, +∞]

Mµ,ν
ε (t, q, t′, q′) := R(z′) + H(z, p′) + M

µ,ν
ε,red(t, q, t′, q′) (3.3)
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with the reduced functional

M
µ,ν
ε,red defined by M

µ,ν
ε,red(t, q, t′, q′) :=

ε

2t′
Dν(q′)2 +

t′

2ε
(D∗,µν (t, q))2,

and

Dν(q′) :=
√
ν‖u′(t)‖2H1,D+‖z′(t)‖2L2+ν‖p′(t)‖2L2 ,

D∗,µν (t, q) :=

√
1

ν
‖−DuEµ(t, q)‖2(H1,D)∗ + d̃L2(−DzEµ(t, q), ∂R(0))2 +

1

ν
dL2(−DpEµ(t, q), ∂πH(z, 0))2 .

(3.4)

In (3.4), ‖ · ‖H1,D and ‖ · ‖(H1,D)∗ are the norms introduced in (2.4) and (2.5), while the distance functional
d̃L2(Ω)(·, ∂R(0)) : Hm(Ω)∗ → [0, +∞] is defined by

d̃L2(Ω)(χ, ∂R(0))2 := min
γ∈∂R(0)

f2(χ−γ) with f2(β) :=

{
‖β‖2L2(Ω) if β ∈ L2(Ω),

+∞ if β ∈ Hm(Ω)∗ \ L2(Ω).
(3.5)

Clearly, the functional Mµ,ν
ε from (3.3) encompasses, in the energy-dissipation balance (3.2), the competition

between viscous dissipation and tendency to relax towards equilibrium & rate-independent behavior. In fact,
viscous dissipation is encoded in the term Dν(q′), which is modulated by the viscosity parameter ε. In turn,
the relaxation to rate-independent behavior is encompassed in the term D∗,µν (t, q), modulated by 1

ε .
Now, the concepts of BV0 and BV0,0

0 solutions to system (1.1) are defined in terms of parameterized energy-
dissipation balances akin to (3.2). These energy identities involve a (positive) vanishing-viscosity potential M
that is defined on [0,T ] ×QPP × [0, +∞) ×QPP (recall that QPP is the state space for the perfectly plastic
damage system, cf. (2.11)). At least formally, M arises as Γ-limit

- of the functionals (M0,0
ε )ε as ε ↓ 0, in the case of the vanishing-viscosity analysis in [CL16] (recall that

system (1.2) is formally a particular case of (1.3), with ν = µ = 0);
- of (Mµ,ν

ε )ε,ν,µ as ε, ν, µ ↓ 0, in the case of the joint vanishing-viscosity and hardening analysis in [CR19].
However, in order to rigorously define the vanishing-viscosity contact potentials M relevant for the two concepts
of BV solutions we will need to provide some technical preliminaries in the following section.

3.1. Preliminary definitions. The vanishing-viscosity potentials at the core of the definitions of BV0 solutions
in [CL16] and BV0,0

0 solutions in [CR19] have a structure akin to that of the functional Mµ,ν
ε from (3.3), but

they are tailored to the driving energy E0 (2.12) for the perfectly plastic system. Recalling the definition of
Mµ,ν
ε , it is thus clear that, in order to define such vanishing-viscosity potentials, one needs suitable surrogates

of the (D,H1)∗-norm of DuE0(t, q), and of the L2-distance of DpE0(t, q) from the stable set ∂πH(z, 0), cf.
(3.4). Indeed, such quantities are no longer well defined for the functional E0 at every (t, q) ∈ [0,T ] ×QPP;
instead, note that the L2-distance, in the sense of (3.5), of DzE0(t, q) from the stable set ∂R(0) still makes
sense. Following [CR19, Sec. 7], we will set at every (t, q) ∈ dom(E0) = [0,T ]×D (cf. (2.13))

SuE0(t, q) := sup
ηu∈H1

Dir(Ω;Rn)
‖ηu‖(H1,D)≤1

〈−Div σ(t)− F (t), ηu〉H1
Dir(Ω;Rn), (3.6a)

WpE0(t, q) := sup
ηp∈L2(Ω;Mn×n

D )
‖ηp‖L2≤1

(
〈σD(t), ηp〉L2(Ω;Mn×n

D ) −H(z, ηp)
)

. (3.6b)

with σ(t) = C(z)e(t) and e(t) = E(u + w(t)) − p. Observe that the expressions in (3.6a) and (3.6b) are well
defined since e(t) and, a fortiori, σ(t) are elements in L2(Ω;Mn×n

sym ) whenever (u, z, p) ∈ QPP. Formulae (3.6a)
and (3.6b) have been inspired by the obvious fact that

‖ζ‖(H1,D)∗ = sup
ηu∈H1

Dir(Ω;Rn)
‖ηu‖(H1,D)≤1

〈ζ, ηu〉H1
Dir(Ω;Rn) for every ζ ∈ H1

Dir(Ω;Rn)∗,

and by the formula

dL2(ς, ∂πH(z, 0)) = sup
η∈L2(Ω;Mn×n

D )
‖η‖L2≤1

(
〈ς, η〉L2(Ω;Mn×n

D ) −H(z, η)
)

for every ς ∈ L2(Ω;Mn×n
D ),
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which was proved in [CR19, Lemma 3.6]. In particular, we note that for every q ∈ D

WpE0(t, q) = dL2(σD(t), ∂πH(z, 0)), (3.7a)

while

SuE0(t, q) = ‖ −Div σ(t)− F (t)‖(H1,D)∗ if u ∈ H1
Dir(Ω;Rn). (3.7b)

For later use, we also record here the following result.

Lemma 3.1. For every (t, q) ∈ [0,T ]×D there holds

SuE0(t, q) = WpE0(t, q) = 0 ⇐⇒

σ(t) ∈ Kz(Ω) , −div σ(t) = f(t) a.e. in Ω , [σ(t)n] = g(t) H n−1-a.e. on ΓNeu,
(3.8)

with σ(t) = C(z)e(t) and e(t) = E(e+ w(t))− p.

Proof. The implication ⇒ was proved in [CR19, Lemma 7.4]. A close perusal of the proof, also mimicking the
convexity arguments from [DMDM06, Prop. 3.5], also yields the converse implication. �

We then set
D∗(t, q) :=

√
(SuE0(t, q))2 + (WpE0(t, q))2. (3.9)

We are now in a position to define the vanishing-viscosity contact potentials involved in the definitions of BV

solutions in [CL16] and [CR19]. We will use the notation I{0} for the indicator function of the singleton {0},
namely

I{0}(ξ) =

{
0 if ξ = 0,

+∞ otherwise
for all ξ ∈ R.

3.2. BV0 solutions via the partial vanishing-viscosity approach. The vanishing-viscosity contact potential for
the BV0 solutions from [CL16] is the functional

M0 : [0,T ]×QPP × [0, +∞)×QPP → [0, +∞], M0(t, q, t′, q′) = R(z′) + HPP(z, p′) + M0,red(t, q, t′, q′),

(3.10a)
where for q = (u, z, p) and q′ = (u′, z′, p′) we have

M0,red(t, q, t′, q′) = I{0}(D
∗(t, q)) + M̃0,red(t, q, t′, q′) (3.10b)

and

if t′ > 0, M̃0,red(t, q, t′, q′) := I{0}(d̃L2(−DzE0(t, q), ∂R(0))),

if t′ = 0, M̃0,red(t, q, t′, q′) :=

{
‖z′‖L2 d̃L2(−DzE0(t, q), ∂R(0)) if d̃L2(−DzE0(t, q), ∂R(0)) < +∞,

+∞ otherwise
.

(3.10c)
Observe that the definition of M0(t, q, 0, q′) again reflects, in the jump regime, the tendencies of the system
to evolve viscously and to relax towards equilibrium and rate-independent evolution. However, here viscous
dissipation only affects the damage variable. Likewise, rate-independent behavior is solely encompassed by the
relation d̃L2(−DzE0(t, q), ∂R(0)) = 0.

Let us now detail the properties of the parameterized curves providing BV0 solutions.

Definition 3.2. We call a parameterized curve (t, q) = (t, u, z, p) : [0,S]→ [0,T ]×QPP admissible if it satisfies

t : [0,S]→ [0,T ] is nondecreasing, (3.11a)

(t, u, z, p) ∈ AC
(
[0,S]; [0,T ]×BD(Ω)×Hm(Ω)×Mb(Ω ∪ ΓDir;Mn×n

D )
)
, (3.11b)

e = E(u + w(t))− p ∈ AC([0,S];L2(Ω;Mn×n
sym )), (3.11c)

t is constant in every connected component of A◦ = {s ∈ (0,S) : d̃L2(−DzE0(t(s), q(s)), ∂R(0)) > 0}. (3.11d)

We will denote by A(0,S; [0,T ]×QPP) the class of admissible parameterized curves from [0,S] to [0,T ]×QPP.

We are now in a position to give the definition of Balanced Viscosity solution in the sense of [CL16].
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Definition 3.3. We call an admissible parameterized curve (t, q) = (t, u, z, p) ∈ A(0,S; [0,T ]×QPP) a Balanced
Viscosity solution for the perfectly plastic damage system (1.1) in the sense of [CL16] (a BV0,0

0 solution, for
short), if it satisfies the energy-dissipation balance

E0(t(s2), q(s2)) +

∫ s2

s1

M0(t(r), q(r), t′(r), q′(r))dr = E0(t(s1), q(s1)) +

∫ s2

s1

∂tE0(t(r), q(r))dr (3.12)

for every 0 ≤ s1 ≤ s2 ≤ S.

The existence of BV0 solutions was proved in [CL16, Thm. 5.4] under the condition that the initial data
q0 = (u0, z0, p0) for the perfectly plastic damage system (1.1) fulfill (2.8f) and the additional condition that

DqE0(0, q0) =
(
−Div σ0 − F (0),Am(z0) +W ′(z0) + 1

2C
′(z0)e0 : e0,µp0 − (σ0)D

)
∈ L2(Ω;Rn×R×Mn×n

D ).

(3.13)

3.3. A differential characterization for BV0 solutions. We now aim to provide a differential characterization
for the notion of BV solution from Definition 3.2, in terms of a suitable system of subdifferential inclusions for
the displacement variable (which in fact shall satisfy the elastic equilibrium equation), the damage variable,
and the plastic strain. In order to properly formulate the flow rule governing the latter, we need the following
result; the proof of one implication can be found [CL16], in turn based on arguments from [DMDM06].

Lemma 3.4. Let an admissible parameterized curve (t, q) = (t, u, e, p) ∈ A(0,S; [0,T ]×QPP) satisfy

HPP(z(s), p′(s)) = 〈σD(s) | p′(s)〉 for a.a. s ∈ (0,S) (3.14)

with σ(s) = C(z(s))e(s), e(s) = e(t(s)), and 〈· | ·〉 the stress-strain duality from (2.10).
Then, (t, q) satisfies Hill’s maximum work principle

H

(
z(s),

dp′(s)

d|p′(s)|

)
|p′(s)| = [σD(s) : p′(s)] for a.a. s ∈ (0,S), (3.15)

where the above equality holds in the sense of measures on Ω∪ΓDir, with [σD(s) : p′(s)] the distribution defined in
(2.9). Furthermore, defining µ(s) := Ln+ |p′(s)| for every s ∈ [0,S], there exists σ̂D(s) ∈ L∞µ(s)(Ω∪ΓDir;Mn×n

D )

such that for almost all s ∈ (0,S) the following properties hold:

σ̂D(s) = σD(s) Ln-a.e. on Ω, (3.16a)

[σD(s) : p′(s)] =

(
σ̂D(s):

dp′(s)

d|p′(s)|

)
|p′(s)| on Ω ∪ ΓDir, (3.16b)

∂πH

(
z(s),

dp′(s)

d|p′(s)|

)
3 σ̂D(s) for |p′(s)|-a.e. x ∈ Ω ∪ ΓDir. (3.16c)

Conversely, (3.16) imply (3.15) which, in turn, gives (3.14).

Proof. We refer to [CL16, Prop. 6.5] for the proof of the fact that (3.14) implies (3.15) and (3.16). In turn,
recalling (2.15), from (3.16c) we infer that

H

(
z(s),

dp′(s)

d|p′(s)|

)
=

(
σ̂D(s):

dp′(s)

d|p′(s)|

)
|p′(s)|-a.e. inΩ ∪ ΓDir.

Combining this with (3.16a) and (3.16b) we conclude (3.15), which yields (3.14) in view of the definition (2.16)
of HPP, and of the definition (2.10) of the stress-strain duality product. �

It is in the sense of (3.16) that we need to understand the (formally written) inclusion ∂πH(z, p′ 3 σD.
We are now in a position to prove the following differential characterization for the concept of BV solution

from [CL16]. We mention in advance that, for notational simplicity, in (3.18b) we have simply written z′(s) in
place of J(z′(s)), with J : L2(Ω)→ Hm(Ω)∗ the Riesz operator.

Proposition 3.5. An admissible parameterized curve (t, q) ∈ A(0,S; [0,T ]×QPP) is a BV0 solution to system
(1.1) if and only if there exists a measurable function λz : [0,S]→ [0, 1] such that

t′(s)λz(s) = 0 for a.a. s ∈ (0,S), (3.17)
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and (t, q) satisfies for a.a. s ∈ (0,S)

σ(s) ∈ Kz(s)(Ω), −divσ(s) = f(t(s)) a.e. in Ω, [σ(t(s))n] = g(t(s)) H n−1-a.e. on ΓNeu, (3.18a)

(1−λz(s)) ∂R(z′(s)) + λz(s) z
′(s) + (1−λz(s))

[
Amz(s)+W ′(z(s))+ 1

2C
′(z(s))e(s) : e(s)

]
3 0 in Hm(Ω)∗,

(3.18b)

∂πHPP(z(s), p′(s)) 3 σD(s) in the sense of (3.16). (3.18c)

In fact, (3.18a) holds at every s ∈ (0,S].

Remark 3.6. System (3.18) illustrates in a clear way how viscous behavior, only w.r.t. the variable z, may arise
in the jump regime, namely when the system still evolves while t′ = 0 (i.e. the external time, recorded by the
function t, is frozen). In that case, the parameter λz may be non-zero, thus activating the viscous contribution
to the flow rule (3.18b).

Prior to carrying out the proof of Proposition 3.5, we record the following key chain-rule inequality, whose
proof may be immediately inferred from that of [CR19, Lemma 7.6] (cf. also Lemma 3.13 ahead).

Lemma 3.7. Along any admissible parameterized curve

(t, q) ∈ A(0,S; [0,T ]×QPP) s.t. M0(t, q, t′, q′) < +∞ a.e. in (0,S),

we have that s 7→ E0(t(s), q(s)) is absolutely continuous on [0,S] and there holds

− d

ds
E0(t(s), q(s)) + ∂tE0(t(s), q(s)) t′(s)

= −〈DzE0(t(s), q(s)), z′(s)〉Hm + 〈σD(s) | p′(s)〉+ 〈Divσ(s)+F (t(s)), u′(s)〉BD

≤M0(t(s), q(s), t′(s), q′(s)) for a.a. s ∈ (0,S).

(3.19)

As an immediate consequence of Lemma 3.7 we have the following characterization of the BV0 solutions
from Definition 3.2, which complements the other characterizations provided in [CL16, Prop. 5.3].

Corollary 3.8. An admissible parameterized curve (t, q) ∈ A(0,S; [0,T ]×QPP) is a BV0 solution to system
(1.1) if and only if the function [0,S] 3 s 7→ E0(t(s), q(s)) is absolutely continuous and there holds

− d

ds
E0(t(s), q(s)) + ∂tE0(t(s), q(s)) t′(s)

= −〈DzE0(t(s), q(s)), z′(s)〉Hm + 〈σD(s) | p′(s)〉+ 〈Divσ(s)+F (t(s)), u′(s)〉BD = M0(t(s), q(s), t′(s), q′(s))

(3.20)
for almost all s ∈ (0,S).

We are now in a position to carry out the

Proof of Proposition 3.5. By Corollary 3.8, BV0 solutions in the sense of Def. 3.2 can be characterized in terms
of (3.20), whence we deduce that M0(t(s), q(s), t′(s), q′(s)) <∞ for almost all s ∈ (0,S). Therefore,

D∗(t(s), q(s)) = 0 for a.a. s ∈ (0,S). (3.21)

In turn, (3.21) is equivalent to the validity of (3.18a). Observe that (3.18a) extends to every s ∈ [0,S] by
the continuity of the functions s 7→ σ(s), s 7→ f(t(s)), s 7→ g(t(s)) and by the continuity w.r.t. the Hausdorff
distance of s 7→ Kz(s)(Ω) thanks to (2.K3).

In view of (3.21) and recalling the definition (3.10) of M0, (3.20) can be then rewritten as

−〈DzE0(t(s), q(s)), z′(s)〉Hm − R(z′(s))− M̃0,red(t(s), q(s), t′(s), q′(s)) = HPP(z(s), p′(s))− 〈σD(s) | p′(s)〉

for a.a. s ∈ (0,S). Now, on the one hand the right-hand side of the above equality is positive thanks to (2.19).
On the other hand, let ω ∈ ∂R(0) satisfy d̃L2(−DzE0(t, q), ∂R(0)) = ‖−DzE0(t(s), q(s))−ω‖L2 . Then, we may
estimate the left-hand side of the above equality via

〈−DzE0(t(s), q(s)), z′(s)〉Hm − R(z′(s))− M̃0,red(t(s), q(s), t′(s), q′(s))

= 〈−DzE0(t(s), q(s))−ω, z′(s)〉Hm − M̃0,red(t(s), q(s), t′(s), q′(s))︸ ︷︷ ︸
T1

+ 〈ω, z′(s)〉Hm − R(z′(s))︸ ︷︷ ︸
T2

≤ 0,
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where we have used that T1 ≤ 0 by the very definition of M̃0,red (cf. (3.10c)), while T2 ≤ 0 thanks to (2.15).
Therefore, (3.20) is ultimately equivalent to

〈−DzE0(t(s), q(s))−ω, z′(s)〉Hm = M̃0,red(t(s), q(s), t′(s), q′(s)) for a.a. s ∈ (0,S), (3.22a)

〈ω, z′(s)〉Hm = R(z′(s)) for a.a. s ∈ (0,S), (3.22b)

〈σD(s) | p′(s)〉 = HPP(z(s), p′(s)) for a.a. s ∈ (0,S) (3.22c)

for every ω ∈ ∂R(0) such that ‖−DzE0(t(s), q(s))−ω‖L2 = d̃L2(Ω)(−DzE0(t, q), ∂R(0)).
Now, the same argument as in, e.g., [KRZ13, Prop. 5.1] allows us to infer that (3.22a) and (3.22b) are

equivalent to (3.18b), together with (3.17). In turn, by Lemma 3.4 it follows that (3.22c) is equivalent to
(3.16). All in all, we have shown the equivalence between (3.20) and (3.17)&(3.18). This concludes the
proof. �

3.4. BV solutions via the full vanishing-viscosity approach. The vanishing-viscosity contact potential for the
BV solutions from [CR19] is the functional M0,0

0 : [0,T ]×QPP × [0, +∞)×QPP → [0, +∞] defined via

M
0,0
0 (t, q, t′, q′) := R(z′) + HPP(z, p′) + M

0,0
0,red(t, q, t′, q′) (3.23a)

where for q = (u, z, p) and q′ = (u′, z′, p′) we have

if t′ > 0, M
0,0
0,red(t, q, t′, q′) :=


0 if


SuE0(t, q) = 0,

d̃L2(−DzE0(t, q), ∂R(0)) = 0, and

WpE0(t, q) = 0,

+∞ otherwise,

(3.23b)

if t′ = 0, M
0,0
0,red(t, q, t′, q′) :=


D(u′, p′)D∗(t, q) if z′ = 0,

‖z′‖L2 d̃L2(−DzE0(t, q), ∂R(0)) if D∗(t, q) = 0

and d̃L2(−DzE0(t, q), ∂R(0)) < +∞,

+∞ otherwise,
(3.23c)

with
D(u′, p′) :=

√
‖u′‖2H1,D+‖p′‖2

L2(Ω;Mn×n
D )

and D∗ from (3.9). (3.23d)

As previously remarked, for every (t, q) ∈ [0,T ]×QPP we have that SuE0(t, q) < +∞ and WpE0(t, q) < +∞,
hence D∗(t, q) < +∞ and the product D(u′, p′)D∗(t, q) is well defined as soon as u′ ∈ H1(Ω;Rn) and p′ ∈
L2(Ω;Mn×n

D ); otherwise, we mean D(u′, p′)D∗(t, q) = +∞.
The (reduced) vanishing-viscosity contact potentials M0,red from (3.10b) and M

0,0
0,red differ from each other,

both in their definition for t′ > 0 and for t′ = 0. For t′ > 0, M0,0
0,red has to additionally enforce elastic equilibrium

(i.e. SuE0(t, q) = 0) and the stability constraint that σD ∈ ∂πH(z, 0) (i.e. WpE0(t, q) = 0) since, for the fully
rate-dependent viscous systems, these costraints are no longer fulfilled. Accordingly, viscous behavior in u and
p may intervene in the jump regime of the rate-independent limit system. This is encoded in the new term
D(u′, p′)D∗(t, q) featuring in (3.23c), which appears in the energy-dissipation balance at jumps (i.e. for t′ = 0),
when z′ = 0.

The following definition specifies the properties of the parameterized curves that are BV0,0
0 solutions and is

to be compared with Definition 3.2 of admissible parameterized curves in the sense of [CL16].

Definition 3.9. We call a parameterized curve (t, q) = (t, u, z, p) : [0,S]→ [0,T ]×QPP admissible in an enhanced
sense (‘enhanced admissible’ for short) if it satisfies (3.11a), (3.11b), (3.11c) and, in addition,

(u, p) ∈ ACloc(B◦;H1(Ω;Rn)×L2(Ω;Mn×n
D )), where B◦ := {s ∈ (0,S) : D∗(t(s), q(s)) > 0}, (3.24a)

t is constant in every connected component of B◦. (3.24b)

We will denote by EA(0,S; [0,T ]×QPP) the class of enhanced admissible parameterized curves from [0,S] to
[0,T ]×QPP.

Hence, enhanced admissible curves enjoy better spatial regularity, with u(·) ∈ H1(Ω;Rn) and p(·) ∈
L2(Ω;Mn×n

D ), in the set in which either SuE0(t(·), q(·)) > 0 or WpE0(t(·), q(·)) > 0. With that definition
at hand, we are now in a position to give the definition of BV solution in the sense of [CR19].
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Definition 3.10. We call an enhanced admissible parameterized curve (t, q) = (t, u, z, p) ∈ EA(0,S; [0,T ]×QPP)

a Balanced Viscosity solution for the perfectly plastic damage system (1.1) in the sense of [CR19] (a BV0,0
0

solution, for short), if it satisfies the energy-dissipation balance

E0(t(s2), q(s2)) +

∫ s2

s1

M
0,0
0 (t(r), q(r), t′(r), q′(r))dr = E0(t(s1), q(s1)) +

∫ s2

s1

∂tE0(t(r), q(r))dr (3.25)

for every 0 ≤ s1 ≤ s2 ≤ S.

The existence of BV0,0
0 solutions to system (1.1) was proved in [CR19, Thm. 7.9] for initial data q0 = (u0, z0, p0)

complying with (2.8f) and (3.13).

3.5. A differential characterization for BV0,0
0 solutions. In this section we provide a differential characteriza-

tion for BV0,0
0 solutions. Preliminarily, we need to make precise in which sense we are going to understand

the subdifferential inclusions governing the evolution of the reparameterized displacement and of the plastic
variables. Indeed, by formally writing

−λdivDE(u′)− (1−λ)Divσ = (1−λ)F (t) a.e. in (0,S),

with λ : [0,S]→ [0, 1] a measurable function (below we will have λ = λu,p), we shall mean

−Divσ(s) = F (t(s)) in BD(Ω)∗ if λ(s) = 0, (3.26a){
u′(s) ∈ H1

Dir(Ω;Rn),

−λ(s)divDE(u′(s))− (1−λ(s))Divσ(s) = (1−λ(s))F (t(s)) in H1(Ω;Rn)∗
if λ(s) > 0, (3.26b)

where in (3.26) Divσ(s) denotes the restriction of the functional from (2.3) to H1(Ω;Rn). In particular, let us
emphasize that, when λ > 0 the displacement variable enjoys additional spatial regularity, and the quasistatic
momentum balance (3.26b) allows for test functions in H1(Ω;Rn). Likewise, by writing

(1−λ)∂πHPP(z, p′) + λp′ 3 (1−λ)σD

with λ : [0,S]→ [0, 1] a measurable function, we shall mean

∂πHPP(z(s), p′(s)) 3 σD(s) in the sense of (3.16) if λ(s) = 0, (3.27a){
p′(s) ∈ L2(Ω;Mn×n

D ),

(1−λ(s))∂πH(z(s), p′(s)) + λ(s)p′(s) 3 (1−λ(s))σD(s) a.e. in Ω
if λ(s) > 0. (3.27b)

Namely, the plastic flow rule improves to a pointwise-in-space formulation in the set {λ > 0}, whereas in the
set {λ = 0} it only holds in the weak form (3.16).

We are now in a position to state our differential characterization of BV0,0
0 solutions. Observe that the

definition of enhanced admissible curve is tailored to the subdifferential inclusions (3.29).

Proposition 3.11. An enhanced admissible parameterized curve (t, q) ∈ EA(0,S; [0,T ]×QPP) is a BV0,0
0 solution

to system (1.1) if and only if there exist two measurable functions λu,p λz : [0;S]→ [0; 1] such that

t′(s)λu,p(s) = t′(s)λz(s) = 0 for a.a. s ∈ (0,S), (3.28a)

λu,p(s)(1−λz(s)) = 0 for a.a. s ∈ (0,S), (3.28b)

and the curves (t, q) satisfy for a.a. s ∈ (0,S) the system of subdifferential inclusions

− λu,p(s)divDE(u′(s))− (1−λu,p(s))Divσ(s) = (1−λu,p(s))F (t(s)), (3.29a)

(1−λz(s)) ∂R(z′(s)) + λz(s) z
′(s) + (1−λz(s))

(
Amz(s)+W ′(z(s))+ 1

2C
′(z(s))e(s) : e(s)

)
3 0 in Hm(Ω)∗,

(3.29b)

(1−λu,p(s)) ∂πHPP(z(s), p′(s)) + λu,p(s) p
′(s) 3 (1−λu,p(s))σD(s), (3.29c)

where (3.29a) and (3.29c) need to be interpreted as (3.26) and (3.27), respectively.

Remark 3.12. In comparison to the differential characterization for BV0 solutions provided by system (3.5),
system (3.29) features two parameters, instead of one. Both λz and λu,p have the role of activating the viscous
contributions to the damage flow rule, and to the displacement equation/plastic flow rule, respectively, in the
jump regime (i.e. when t′ = 0). In fact, the viscous terms in (3.29a) and (3.29c) are modulated by the same
parameter, which reflects the fact that viscous behavior intervenes for the variables u and p equally (or, in
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other terms, that u and p relax to elastic equilibrium and rate-independent evolution at the same rate, faster
than z).

As in the case of Prop. 3.5, the proof of Prop. 3.11 will rely on a suitable chain-rule inequality, which we
recall below.

Lemma 3.13. [CR19, Lemma 7.6] Along any enhanced admissible parameterized curve

(t, q) ∈ EA(0,S; [0,T ]×QPP) s.t. M
0,0
0 (t, q, t′, q′) < +∞ a.e. in (0,S)

we have that

s 7→ E0(t(s), q(s)) is absolutely continuous on [0,S] and there holds for a.a. s ∈ (0,S)

− d

ds
E0(t(s), q(s)) + ∂tE0(t(s), q(s)) t′(s)

= −〈DzE0(t(s), q(s)), z′(s)〉Hm + 〈σD(s) | p′(s)〉+ 〈Divσ(s)+F (t(s)), u′(s)〉BD

≤M
0,0
0 (t(s), q(s), t′(s), q′(s)).

(3.30)

For later use, we also record the following consequence of the chain-rule inequality, cf. [CR19, Proposition 7.7].

Corollary 3.14. An enhanced admissible parameterized curve (t, q) = (t, u, z, p) ∈ EA(0,S; [0,T ]×QPP) is a
BV0,0

0 solution if and only if it satisfies one of the following equivalent conditions:

(1) the energy-dissipation balance (3.25) holds as the inequality ≤;
(2) (t, q) fulfills (3.30) as a chain of equalities, i.e.

− d

ds
E0(t(s), q(s)) + ∂tE0(t(s), q(s)) t′(s)

= −〈DzE0(t(s), q(s)), z′(s)〉Hm + 〈σD(s) | p′(s)〉+ 〈Divσ(s)+F (t(s)), u′(s)〉BD

= M
0,0
0 (t(s), q(s), t′(s), q′(s)) for a.a. s ∈ (0,S).

(3.31)

We are now in a position to carry out the

Proof of Proposition 3.11. We exploit the characterization of BV0,0
0 solutions in terms of the chain of equalities

(3.31). Now, we shall distinguish three cases:
Case 1: t′(s) > 0. Then, by the definition (3.23) of M

0,0
0 , from M

0,0
0 (t(s), q(s), t′(s), q′(s)) < ∞ we infer

d̃L2(−DzE0(t(s), q(s)), ∂R(0)) = 0 and

SuE0(t(s), q(s)) = WpE0(t(s), q(s)) = 0.

By (3.8), The latter property is equivalent to (3.18a), hence we find the validity of (3.29a) with λu,p(s) = 0.
All in all, identity (3.31) reduces to

〈σD(s) | p′(s)〉 −HPP(z(s), p′(s)) = 〈DzE0(t(s), q(s)), z′(s)〉Hm + R(z′(s)). (3.32)

Now, since σ(s) ∈ Kz(s) for a.a. s ∈ (0,S), by (2.18) the above left-hand-side is negative. On the other hand,
from d̃L2(−DzE0(t(s), q(s)), ∂R(0)) = 0 we infer that R(v) ≥ 〈−DzE0(t(s), q(s)), v〉Hm for every v ∈ Hm(Ω).
Therefore, the above right-hand side is positive. Hence, both sides are equal to zero. From

HPP(z(s), ṗ′(s)) = 〈σD(s) | p′(s)〉 (3.33)

we infer (recall Lemma 3.4) that (3.29c) holds with λu,p(s) = 0. Likewise, from

R(z′(s)) = −〈DzE0(t(s), q(s)), z′(s)〉Hm , (3.34)

recalling (2.15) we deduce that −DzE0(t(s), q(s) ∈ ∂R(z′(s)), i.e. the validity of (3.29b) with λz(s) = 0.
Conversely, from (3.29b) with λz(s) = 0 and (3.29c) with λu,p(s) = 1 we deduce (3.33) and (3.34), respec-

tively, hence (3.32) which, in this case, is equivalent to (3.31).
Case 2: t′(s) = 0 and s ∈ B◦ (with B◦ the set from (3.24a)). Then, from M

0,0
0 (t(s), q(s), t′(s), q′(s)) < ∞ we

infer that
z′(s) = 0, (3.35)
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and (3.31) reduces to

〈σD(s), p′(s)〉L2 + 〈Divσ(s)+F (t(s)), u′(s)〉H1

= H(z(s), p′(s)) + D(u′(s), p′(s))D∗(t(s), q(s))

= H(z(s), p′(s)) +
√
‖u′(s)‖2H1,D+‖p′(s)‖2

L2(Ω;Mn×n
D )

√
‖Divσ(s)+F (t(s))‖2(H1,D)∗+dL2(σD(s), ∂πH(z, 0))2 .

(3.36)
For (3.36), we have used that, on the left-hand side, the duality pairing involving u′ is between H1(Ω;Rn) and
H1(Ω;Rn)∗ since the admissible curve (t, q) enjoys the enhanced spatial regularity u′ ∈ H1(Ω;Rn) on the set
B◦. In turn, the right-hand side of (3.36) has been rewritten in view of (3.7). Likewise, HPP(z(s), p′(s)) =

H(z(s), p′(s)) and the stress-strain duality reduces to the scalar product in L2 because p′(s) ∈ L2(Ω;Mn×n
sym ).

Let us now consider a measurable selection s 7→ ζ(s) ∈ ∂πH(z(s), 0) such that

dL2(σD(s), ∂πH(z, 0)) = ‖σD(s)−ζ(s)‖L2(Ω;Mn×n
D ).

Then, (3.36) rewrites as

〈σD(s)− ζ(s), p′(s)〉L2 + 〈Divσ(s)+F (t(s)), u′(s)〉H1

−
√
‖u′(s)‖2H1,D+‖p′(s)‖2

L2(Ω;Mn×n
D )

√
‖Divσ(s)+F (t(s))‖2(H1,D)∗+‖σD(s)−ζ(s)‖2

L2(Ω;Mn×n
D )

= H(z(s), p′(s))− 〈ζ(s), p′(s)〉L2 .

While the left-hand side is negative by Cauchy-Schwarz inequality, the right-hand side is positive since ζ(s) ∈
∂πH(z(s), 0), cf. (2.15). All in all, we conclude that both sides are equal to zero. Now, combining the fact that
ζ(s) ∈ ∂πH(z(s), 0) with the identity

H(z(s), p′(s)) = 〈ζ(s), p′(s)〉L2

and again resorting to (2.15), we find that

ζ(s) ∈ ∂πH(z(s), p′(s)). (3.37)

From the equality√
‖u′(s)‖2H1,D+‖p′(s)‖2

L2(Ω;Mn×n
D )

√
‖Divσ(s)+F (t(s))‖2(H1,D)∗+‖σD(s)−ζ(s)‖2

L2(Ω;Mn×n
D )

= 〈σD(s)− ζ(s), p′(s)〉L2 + 〈Divσ(s)+F (t(s)), u′(s)〉H1

we infer that

− λ̃(s)divDE(u′(s)) = Divσ(s) + F (t(s)) in H1
Dir(Ω;Rn)∗, (3.38a)

λ̃(s)p′(s) = σD(s)−ζ(s) a.e. in Ω , (3.38b)

with λ̃(s) =

√
‖Divσ(s)+F (t(s))‖2(H1,D)∗+‖σD(s)−ζ(s)‖2

L2(Ω;Mn×n
D )√

‖u′(s)‖2H1,D+‖p′(s)‖2
L2(Ω;Mn×n

D )

. (3.38c)

Combining (3.35), (3.37), and (3.38) we deduce the validity of system (3.29) with

λz(s) = 1 and λu,p(s) =
λ̃(s)

1 + λ̃(s)
∈ (0, 1).

Conversely, it can be easily checked that, if t′(s) = 0 and s ∈ B◦, the validity of system (3.29) yields (3.36),
hence (3.31).
Case 3: t′(s) = 0 and s /∈ B◦. Hence, D∗(t(s), q(s)) = 0, yielding

−Divσ(s) = F (t(s)),

i.e. (3.29a) with λu,p(s) = 0. Then, (3.31) reduces to

〈−DzE0(t(s), q(s)), z′(s)〉Hm + 〈σD(s) | p′(s)〉

= R(z′(s)) + ‖z′(s)‖L2 d̃L2(−DzE0(t(s), q(s)), ∂R(0)) + HPP(z(s), p′(s))
(3.39)

and, arguing in the same way as in the proof of Proposition 3.5 we conclude the validity of (3.29b) and (3.29c)
with λu,p(s) = 0 and some λz(s) ≥ 0.

Conversely, it can be proved that (3.29b) and (3.29c) with λu,p(s) = 0 and some λz(s) ≥ 0 yield (3.39).
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With this, we conclude the proof. �

4. A complete characterization of BV0,0
0 solutions

The main result of this section is the following theorem, whose proof adapts that of [MRS16b, Prop. 5.5].

Theorem 4.1. Let (t, q) ∈ EA(0,S; [0,T ]×QPP) be a BV0,0
0 solution to the perfectly plastic rate-independent

system for damage (1.1). Suppose that (t, q) is non-degenerate, namely that

t′(s) + ‖u′(s)‖H1(Ω) + ‖z′(s)‖Hm(Ω) + ‖p′(s)‖L2(Ω) > 0 for a.a. s ∈ (0,S). (4.1)

Set
S := {s ∈ [0,S] : D∗(t(s), q(s)) = 0}.

Then, S is either empty or it has the form [s∗,S] for some s∗ ∈ [0,S].

(a) Assume s∗ > 0, then for s ∈ [0, s∗) = [0,S] \S we have t(s) ≡ t(0) and z(s) ≡ z(0), whereas

D∗(t(0), q(0)) > 0 (4.2a)

and (u, p) is a solution to the system

− λu,p(s)divDE(u′(s))− (1−λu,p(s))DivC(z(0))e(s) = (1−λu,p(s))F (t(s)) ,

(1−λu,p(s)) ∂πH(z(0), p′(s)) + λu,p(s) p
′(s) 3 (1−λu,p(s)) (C(z(0))e(s))D.

(4.2b)

(b) Suppose that s∗ < S. Then, D∗(t(s), q(s)) ≡ 0 for every s ∈ S = [s∗,S], and the curve (t, q) is a BV

solution to system (1.1) in the sense of Definition 3.3.

Thus, Theorem 4.1 provides a complete characterization of (non-degenerate) BV0,0
0 solutions. It asserts that,

if a BV0,0
0 solution (t, q) starts from an unstable datum q0 with D∗(0, q0) > 0, then during an initial interval

the damage variable z is frozen and the pair (u, p) evolves, possibly governed by viscosity in both variables.
If it reaches, at some time s∗, the state in which elastic equilibrium (SuE0(t(s∗), q(s∗)) = 0) and the plastic
constraint (WpE0(t(s∗), q(s∗)) = 0) are fulfilled, then it never leaves that state afterwards, and subsequently
(t, q) behaves as a BV0 solution.

Proof. Step 1: As in the proof of [MRS16b, Prop. 5.5], we start by analyzing the behavior of a BV0,0
0 solution

(t, q) on an interval (s1, s2) ⊂ [0,S] \S. Since D∗(t(s), q(s)) > 0 for all s ∈ (s1, s2), we read from (3.29a) and
(3.29c) that λu,p > 0 on (s1, s2). Thus, (3.28a) yields t′ ≡ 0 on (s1, s2), so that t(s) ≡ t(s1) for all s ∈ [s1, s2].
Furthermore, (3.28b) gives λz ≡ 1 on (s1, s2). Combining this with (3.29b) we gather that z′ ≡ 0 on (s1, s2),
so that z(s) ≡ z(s1) for all s ∈ [s1, s2]. From (4.1) we conclude that

u′(s) 6= 0 or p′(s) 6= 0 for a.a. s ∈ (s1, s2), (4.3a)

and, therefore, from (3.29a) and (3.29c) we infer that λu,p(s) < 1 for almost all s ∈ (s1, s2). Hence, the
evolution of (t, q) in (s1, s2) is characterized by property (4.3a), joint with the previously found

t(s) ≡ t(s1), z(s) ≡ z(s1) for all s ∈ [s1, s2], (4.3b)

− divDE(u′(s))− λ̂(s)Divσ(s) = λ̂(s)F (t(s1)) for a.a. s ∈ (s1, s2), (4.3c)

λ̂(s)ζ(s) + p′(s) 3 λ̂(s)σD(s) for a.a. s ∈ (s1, s2) , (4.3d)

with λ̂ :=
1−λu,p

λu,p
=

√
‖u′‖2H1,D+‖p′‖2

L2(Ω;Mn×n
D )

D∗(t, q)

(observe that λ̂ = λ̃−1 with λ̃ from, (3.38)). In turn, it can be easily checked that, for a given function
λ̂ : (s1, s2)→ [0, +∞), the Cauchy problem for system (4.3b)—(4.3d) does admit a unique solution.
Step 2: Since the function [0,S] 3 s 7→ D∗(t(s), q(s)) is lower semicontinuous by [CR19, Lemma 7.8], the set
S is closed, hence its complement [0,S] \S is relatively open, and thus it is the finite or countable union of
disjoint intervals. Its connected components are of the form (s1,S], (s2, s3), [0, s4) or [0,S] (if S = Ø). By the
lower semicontinuity of s 7→ D∗(t(s), q(s)), it is immediate to check that sj ∈ S for all j ∈ {1, . . . , 4}.

Now, we aim to show that connected components of the type (s1,S] and (s2, s3) cannot occur. To this
end, let us study the properties of the BV0,0

0 solution (t, q) on an interval of the type (s1,S] or (s2, s3), with
s1, s2 ∈ S. Since D∗(t(sj), q(sj)) = 0, we have that SuE0(t(sj), q(sj)) = WpE0(t(sj), q(sj)) = 0 for j = 1, 2.
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As shown in Step 1, the evolution on the intervals (s1,S) and (s2, s3) is characterized by (4.3). Recall that
system (4.3b)–(4.3d) admits a unique solution. Now, since SuE0(t(sj), q(sj)) = WpE0(t(sj), q(sj)) = 0 for
j = 1, 2, it is immediate to check that the constant functions û(s) ≡ u(sj) and p̂(s) ≡ p(sj) provide the unique
solution to (4.3b)–(4.3d). Thus, we conclude that BV0,0

0 solution (t, q) on an interval of the type (s1,S] or
(s2, s3) must be constant, which is a contradiction to (4.3a).

Therefore, [0,S] \ S does not possess connected components of the form (s1,S] or (s2, s3). Hence, either
S = Ø, or S = [s∗,S] for some s∗ > 0. In the latter case, the calculations from Step 1 show that on
[0,S] \S = [0, s∗) the evolution of (t, q) is characterized by (4.2).
Step 3: Suppose that s∗ < S. Clearly, D∗(t(s), q(s)) ≡ 0 for every s ∈ S = [s∗,S]. Hence it satisfies system
(3.29) with λu,p(s) ≡ 0 for every s ∈ [s∗,S], which coincides with system (3.18). This concludes the proof. �

5. Vanishing-hardening limit of BV solutions

In this section we carry out the asymptotic analysis as the hardening parameter µ tends to 0 for the BV

solutions to system (1.4), both in the single-rate case (i.e., for BVµ,ν
0 solutions, with 0 < ν ≤ µ), and in the

multi-rate case (i.e, for BVµ,0
0 solutions). Indeed, we first address the latter case in Section 5.1 ahead, while

the former will be sketched in Sec. 5.2. For both analyses, we will resort to some technical results collected in
the Appendix.

5.1. Vanishing-hardening analysis for multi-rate solutions. As recalled in the Introduction, BV solutions to
the multi-rate system with hardening have been constructed in [CR19] (cf. Theorem 6.13 therein) by passing
to the limit in the (reparameterized) version of (1.3) as the viscosity parameter ε tends to 0 simultaneously
with the rate parameter ν ↓ 0, while the hardening parameter µ > 0 stayed fixed. The solutions accordingly
obtained, hereafter referred to as BVµ,0

0 solutions, thus account for multiple rates in the system with hardening.
In particular, like for BV0,0

0 solutions, the way in which viscous behavior in u, z, and p manifests itself in the
jump regime reflects the fact that the convergence of u and p to elastic equilibrium and rate-independent
evolution has occurred at a faster rate (as ν ↓ 0) than that for z, cf. Remark 5.2 ahead.

In order to recall the definition of BVµ,0
0 solutions for fixed µ > 0, we need to introduce the related vanishing-

viscosity contact potential

M
µ,0
0 : [0,T ]×QH × [0, +∞)×QH → [0, +∞],

M
µ,0
0 (t, q, t′, q′) := R(z′) + H(z, p′) + M

µ,0
0,red(t,u, z, p, t′,u′, z′, p′)

where

if t′ > 0, M
µ,0
0,red(t, q, t′, q′) :=


0 if


−DuEµ(t, q) = 0,

−DzEµ(t, q) ∈ ∂R(0), and

−DpEµ(t, q) ∈ ∂πH(z, 0),

+∞ otherwise,

(5.1a)

if t′ = 0, M
µ,0
0,red(t, q, t′, q′) :=


D(u′, p′)D∗,µ(t, q) if z′ = 0,

‖z′‖L2 d̃L2(−DzEµ(t, q), ∂R(0)) if D∗,µ(t, q) = 0

and d̃L2(−DzEµ(t, q), ∂R(0)) < +∞,

+∞ otherwise.
(5.1b)

In (5.1) we have employed the notation

D(u′, p′) :=
√
‖u′‖2H1,D+‖p′‖2

L2(Ω;Mn×n
D )

,

D∗,µ(t, q) :=
√
‖−DuEµ(t, q)‖2(H1,D)∗+dL2(−DpEµ(t, q), ∂πH(z, 0))2.

(5.1c)

We are now in a position to recall the notion of solution to system (1.4) from [CR19, Def. 6.10]. Observe
that it involves (reparameterized) curves that are absolutely continuous on the whole interval [0,S], with values
in QH.
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Definition 5.1. We call a parameterized curve (t, q) = (t, u, z, p) ∈ AC([0,S]; [0,T ]×QH) a (parameterized)
Balanced Viscosity solution to the multi-rate system with hardening (1.4) (a BVµ,0

0 solution, for short), if
t : [0,S]→ [0,T ] is nondecreasing and (t, q) fulfills for all 0 ≤ s ≤ S the energy-dissipation balance

Eµ(t(s), q(s)) +

∫ s

0

M
µ,0
0 (t(τ), q(τ), t′(τ), q′(τ))dτ = Eµ(t(0), q(0)) +

∫ s

0

∂tEµ(t(τ), q(τ)) t′(τ)dτ . (5.2)

We say that (t, q) is non-degenerate if it fulfills (4.1).

Remark 5.2. In [CR19, Prop. 6.11] a characterization was provided for BVµ,0
0 solutions in terms of a subdif-

ferential system that features two positive parameters λu,p and λz activating viscous terms in the displacement
equation & plastic flow rule, and in the damage flow rule, respectively. We refrain from recalling that system
because it is completely analogous to (3.29) (with the same switching conditions (3.28)).

Accordingly, repeating the very same arguments as in the proof of Theorem 4.1, it is possible to provide an
additional characterization of BVµ,0

0 solutions completely analogous to that from the latter result. In particular,
if a BVµ,0

0 solution (t, q) originates from an unstable datum q0 with D∗,µ(0, q0) > 0, then, during an initial
interval the damage variable z is frozen and the pair (u, p) evolves, possibly in a viscous way. If (t, q) reaches, at
some time s∗, the state in which elastic equilibrium (−DuEµ(t, q) = 0) and stability (−DpEµ(t, q) ∈ ∂πH(z, 0))
are fulfilled, then it never leaves that state afterwards, and subsequently behaves as a Balanced Viscosity
solution with viscous behavior in the variable z, only (namely, the counterpart, for the system with hardening,
of the BV0 concept).

We mention in advance that the analogue of Theorem 4.1 does not hold, instead, for BVµ,ν
0 solutions.

We now consider a vanishing sequence (µk)k and set µ = µk. By [CR19, Theorem 6.13], under the assump-
tions of Section 2 and (3.13) (cf. also Remark 5.4 below), for any fixed k there exists a parameterized Balanced
Viscosity solution (tk, qk) in the sense of the previous definition. Moreover, for the sequence (tk, qk)k we may
assume the validity of the following a priori estimates:
∃C > 0 ∀ k ∈ N for a.a. s ∈ (0,S) : t′k(s)+‖u′k(s)‖W 1,1(Ω)+‖z′k(s)‖Hm(Ω)+‖p′k(s)‖L1(Ω)+

√
µk ‖p′k(s)‖L2(Ω)

+‖e′k(s)‖L2(Ω)+D(u′k(s), p′k(s))D∗,µk(tk(s), qk(s)) ≤ C.

(5.3)
Indeed, the existence of a sequence (tk, qk)k enjoying the bounds (5.3) follows by time-discretization, cf. [CR19,
Prop. 4.4], and by a reparameterization argument. Up to a further time reparameterization we may also assume
that the solutions are non-degenerate, cf. (4.1) and [CR19, Remark 6.9].

Theorem 5.3. Let (µk)k be a vanishing sequence and (tk, qk)k be a sequence of BVµk,0
0 solutions to system (1.4),

such that estimate (5.3) holds.
Then, there exist a (not relabeled) subsequence and a curve (t, q) = (t, u, z, p) ∈ EA(0,S; [0,T ]×QPP) such

that

(1) for all s ∈ [0,S] the following convergences hold as k → +∞

tk(s)→ t(s), uk(s)
∗
⇀ u(s) in BD(Ω), zk(s) ⇀ z(s) in Hm(Ω),

ek(s) ⇀ e(s) in L2(Ω;Mn×n
sym ), pk(s)

∗
⇀ p(s) in Mb(Ω ∪ ΓDir;Mn×n

D );
(5.4)

(2) there exists C > 0 such that for a.e. s ∈ (0,S) there holds

t′(s)+‖u′(s)‖BD(Ω)+‖z′(s)‖Hm(Ω)+‖p′(s)‖Mb(Ω∪ΓDir;Mn×n
D )

+‖e′(s)‖L2(Ω;Mn×n
sym )+D(u′(s), p′(s))D∗(t(s), q(s)) ≤ C;

(5.5)

(3) (t, q) is a Balanced Viscosity solution for the perfectly plastic damage system (1.1) in the sense of
Definition 3.10.

Remark 5.4. The validity of Theorem 5.3 extends to sequences (tk, qk)k originating from initial data qk0 =

(uk0 , zk0 , pk0)k fulfilling

‖uk0‖H1
Dir(Ω) + ‖zk0‖Hm(Ω) + ‖W (zk0 )‖L1(Ω) + ‖pk0‖L2(Ω) + ‖DqE0(0, qk0 )‖L2(Ω) ≤ C

with C independent of k.
In particular, the last condition yields µk pk0 → 0 in L2(Ω;Mn×n

D ), as needed for (5.10) below.

Proof. The proof is divided in two steps.
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Step 1: Compactness. For later use, we observe that, due to estimate (5.3),

∃R > 0 ∀ k ∈ N ∀ s ∈ [0,S] : ‖uk(s)‖BD(Ω) + ‖zk(s)‖Hm(Ω) + ‖pk(s)‖Mb(Ω∪ΓDir) ≤ R. (5.6)

By the assumptions on initial data and external loading and by (5.3), we have sups∈[0,S] Eµk
(tk(s), qk(s)) ≤ C

for a constant independent of k. In particular, this implies that, as k →∞,

µk pk(s)→ 0 in L2(Ω;Mn×n
D ) for every s ∈ [0,S]. (5.7)

In view of (5.3), we find a (not relabeled) subsequence and a Lipschitz curve (t, q) ∈W 1,∞([0,S]; [0,T ]×QPP)

such that the following convergences hold as k →∞

tk
∗
⇀ t in W 1,∞(0,S; [0,T ]), uk

∗
⇀ u in W 1,∞(0,S; BD(Ω)), (5.8a)

zk
∗
⇀ z in W 1,∞(0,S;Hm(Ω)), (5.8b)

ek
∗
⇀ e in W 1,∞(0,S;L2(Ω;Mn×n

sym )), pk
∗
⇀ p in W 1,∞(0,S; Mb(Ω ∪ ΓDir;Mn×n

D )), (5.8c)

where e = E(u+w(t))− p. Furthermore, an argument based on the Ascoli-Arzelà theorem (cf. [AGS08, Prop.
3.3.1]) also yields

uk → u in C0([0,S]; BD(Ω)w∗), (5.9a)

ek → e in C0([0,S];L2(Ω;Mn×n
sym )w), (5.9b)

zk → z in C0([0,S];Hm(Ω)w), (5.9c)

pk → p in C0([0,S]; Mb(Ω ∪ ΓDir;Mn×n
D )w∗). (5.9d)

Indeed, convergences (5.9a) and (5.9d) are to be intended in the spaces C0([0,S]; (BD(Ω), dBD,weak∗)) and
in C0([0,S]; (Mb(Ω ∪ ΓDir;Mn×n

D ), dMb,weak∗)), where dBD,weak∗ and dMb,weak∗ metrize the weak∗ topologies of
BD(Ω) and Mb(Ω ∪ ΓDir;Mn×n

D ), respectively, on the balls of radius R that contain (uk)k and (pk)k, resp. (cf.
(5.6); here we use that BD(Ω) is the dual of a separable space). The second and third convergences have an
analogous meaning. Hence, (5.4) follows.

With the very same arguments as in the proof of [CR19, Prop. 7.9], based on the estimate

∃C > 0 ∀ k ∈ N for a.a. s ∈ (0,S) : D(u′k(s), p′k(s))D∗,µk(tk(s), qk(s)) ≤ C,

we also prove the enhanced regularity (t, q) ∈ EA(0,S; [0,T ]×QPP).
Step 2: energy-dissipation upper estimate. By Corollary 3.14, it is sufficient to show that the pair (t, q) complies
with the energy-dissipation inequality

E0(t(s), q(s)) +

∫ s

0

M
0,0
0 (t(r), q(r), t′(r), q′(r))dr ≤ E0(t(0), q(0)) +

∫ s

0

∂tE0(t(τ), q(τ))dτ

for every s ∈ [0,S]. We start from (5.2) for the solution (tk, qk) with µ = µk. It is straightforward to see that

E0(t(s), q(s)) ≤ lim inf
k→+∞

Eµk
(t(s), q(s)), E0(t(0), q(0)) = lim

k→+∞
Eµk

(t(0), q(0)), (5.10)

and ∫ s

0

∂tE0(t(τ), q(τ))dτ = lim
k→+∞

∫ s

0

∂tEµk
(tk(τ), qk(τ))dτ .

It remains to show that∫ s

0

M
0,0
0 (t(r), q(r), t′(r), q′(r))dr ≤ lim inf

k→+∞

∫ s

0

M
µk,0
0 (tk(r), qk(r), t′k(r), q′k(r))dr. (5.11)

In fact, it will be sufficient to obtain the above estimate only for the reduced functionals M0,0
0,red and M

µk,0
0,red. In

view of (3.23) we distinguish two cases. Let A := {s ∈ [0,S] : t′(s) > 0}.
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Case t′ > 0. We prove that the function s 7→ M
0,0
0,red(t(s), q(s), t′(s), q′(s)) is finite for a.a. s ∈ A. We apply

Lemma A.1 ahead with the choices fk := tk, f := t. Thus, we conclude that for a.a. s ∈ A there is a
subsequence (kj)j and, for every j, there is skj ∈ (0,S) such that |skj−s| < 1

j and t′kj (skj ) > 0. In particular,
M
µk,0
0 (tkj (skj ), qkj (skj ), t′kj (skj ), q′kj (skj )) = 0. By (3.23), (5.7), convergences (5.9), and Lemma A.2 ahead,

we obtain

SuE0(t(s), q(s)) = 0, −DzE0(t(s), q(s)) ∈ ∂R(0), WpE0(t(s), q(s)) = 0 for a.a. s ∈ A,

which is equivalent to state that M
0,0
0,red(t(s), q(s), t′(s), q′(s)) = 0. Hence, we obviously have the pointwise

estimate

M
0,0
0,red(t(s), q(s), t′(s), q′(s)) ≤ lim inf

k→+∞
M
µk,0
0,red(tk(s), qk(s), t′k(s), q′k(s)) for a.a. s ∈ A. (5.12)

Case t′ = 0. By virtue of Lemma A.2, we are in a position to apply Lemma A.3 below in the context of the
space Q := QPP, with S the ball of radius R from (5.6), to the functionals Mk := M

µk,0
0,red and M0 := M

0,0
0,red,

with M
µk,0
0,red extended to R × (QPP\QH) × R × (QPP\QH) by setting M

µk,0
0,red(t, q, t′, q′) = +∞ when q or

q′ ∈ QPP\QH. We may then observe that the Γ-lim inf estimate (A.2) in Lemma A.3 follows from Lemma A.2.
Thus, we conclude∫

(0,s)\A
M

0,0
0,red(t(r), q(r), 0, q′(r))dr ≤ lim inf

k→+∞

∫
(0,s)\A

M
µk,0
0,red(tk(r), qk(r), t′k(r), q′k(r))dr.

All in all, (5.11) follows.
This finishes the proof. �

5.2. Vanishing-hardening analysis for single-rate solutions. BV solutions to the single-rate system with hard-
ening have been obtained in [CR19, Section 6.1] by performing the asymptotic analysis of the reparame-
terized energy-dissipation balance (3.2) as the viscosity parameter ε tends to 0, while keeping the hard-
ening and the rate parameters µ and ν fixed. That is why we refer to them as BVµ,ν

0 solutions to the
system with hardening. Their definition involves the corresponding vanishing-viscosity contact potential
M
µ,ν
0 : [0,T ]×QH × [0, +∞)×QH → [0, +∞] given by

M
µ,ν
0 (t, q, t′, q′) := R(z′) + H(z, p′) + M

µ,ν
0,red(t, q, t′, q′), where

if t′ > 0, M
µ,ν
0,red(t, q, t′, q′) :=


0 if


−DuEµ(t, q) = 0,

−DzEµ(t, q) ∈ ∂R(0), and

−DpEµ(t, q) ∈ ∂πH(z, 0),

+∞ otherwise,

(5.13a)

if t′ = 0, M
µ,ν
0,red(t, q, 0, q′) := Dν(q′)D∗,µν (t, q). (5.13b)

For better readability, we also recall that

Dν(q′) :=
√
ν‖u′(t)‖2H1,D+‖z′(t)‖2L2+ν‖p′(t)‖2L2 ,

D∗,µν (t, q) :=

√
1

ν
‖−DuEµ(t, q)‖2(H1,D)∗ + d̃L2(−DzEµ(t, q), ∂R(0))2 +

1

ν
dL2(−DpEµ(t, q), ∂πH(z, 0))2.

It is worthwhile to remark that the reduced functional Mµ,ν
0,red, at t

′ = 0, simultaneously encompasses viscosity
for the three variables u, z, and p. Instead, its counterpart M

µ,0
0,red for BVµ,0

0 solutions features, in the jump
regime t′ = 0, a viscous contribution in the variables (u, p) when z′ = 0, and viscosity in z when D∗,µ(t, q) = 0,
i.e. when u is at elastic equilibrium and p is locally stable.

We are now in a position to recall the notion of BVµ,ν
0 solution, cf. [CR19, Definition 6.2].

Definition 5.5. We call a parameterized curve (t, q) = (t, u, z, p) ∈ AC([0,S]; [0,T ]×QH) a (parameterized)
Balanced Viscosity solution to the single-rate system with hardening (1.4) (a BVµ,ν

0 solution, for short), if
t : [0,S]→ [0,T ] is nondecreasing and (t, q) fulfills for all 0 ≤ s ≤ S the energy-dissipation balance

Eµ(t(s), q(s)) +

∫ s

0

M
µ,ν
0 (t(τ), q(τ), t′(τ), q′(τ))dτ = Eµ(t(0), q(0)) +

∫ s

0

∂tEµ(t(τ), q(τ)) t′(τ)dτ . (5.14)

We say that (t, q) is non-degenerate if it fulfills (4.1).
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Let us now address the asymptotic analysis of the above solutions for a vanishing sequence (µk)k. As
mentioned in the Introduction, in the construction of BVµ,ν

0 solutions the rate parameter is always supposed
smaller than the hardening parameter, which forces us to also consider a sequence (νk)k such that νk ≤ µk
for all k ∈ N, so that νk → 0 as well. In fact, the technical condition νk ≤ µk comes into play in the proof
of [CR19, Prop. 4.4]. The latter result and [CR19, Theorem 6.8] ensure the existence of BVµk,νk

0 solutions
(tk, qk)k enjoying the following a priori estimates

∃C > 0 ∀ k ∈ N for a.a. s ∈ (0,S) : t′k(s)+‖u′k(s)‖W 1,1(Ω)+‖z′k(s)‖Hm(Ω)+‖p′k(s)‖L1(Ω)+
√
µk ‖p′k(s)‖L2(Ω)

+‖e′k(s)‖L2(Ω)+Dνk(u′k(s), p′k(s))D∗,µk
νk

(tk(s), qk(s)) ≤ C
(5.15)

(and, up to a reparametrization, the non-degeneracy condition).
In Theorem 5.6 below we are going to show that, as the hardening and rate parameters µk and νk vanish,

(up to a subsequence) BVµk,νk
0 solutions converge to a BV0,0

0 solution of system (1.1).

Theorem 5.6. Let (µk)k, (νk)k be two vanishing sequences, and let (tk, qk)k be a sequence of BVµk,νk
0 solutions

to system (1.4) such that estimate (5.15) holds.
Then, there exist a (not relabeled) subsequence and a curve (t, q) = (t, u, z, p) ∈ EA(0,S; [0,T ]×QPP) such

that items (1), (2), (3) of the statement of Theorem 5.3 hold.

Proof. The argument is split in the same steps as the proof of Theorem 5.3.
Step 1: Compactness. With minor changes, from estimate (5.15) we derive estimate (5.6) and convergences
(5.8) and (5.9), whence convergences (5.4), for the sequence of BVµk,νk

0 solutions. Analogously, for the limiting
curve (t, q) estimate (5.5) holds.
Step 2a: energy-dissipation upper estimate when t′ > 0. The analogue of (5.12) at all s ∈ A := {s ∈ [0,S] :

t′(s) > 0} can be obtained in the same way as in the proof of Theorem 5.3, taking into account that

M
µk,0
0,red(t, q, t′, q′) = M

µk,νk
0,red (t, q, t′, q′) whenever t′ > 0.

Step 2b: energy-dissipation upper estimate when t′ = 0. We will now show that∫
(0,s)\A

M
0,0
0,red(t(r), q(r), 0, q′(r))dr ≤ lim inf

k→+∞

∫
(0,s)\A

M
µk,νk
0,red (tk(r), qk(r), t′k(r), q′k(r))dr. (5.16)

As in the proof of Thm. 5.3, we will apply Lemma A.3 below in the context of the space Q := QPP, with S the
ball of radius R from (5.6), to the functionals Mk := M

µk,νk
0,red (extended to R × (QPP\QH) × R × (QPP\QH)

as described for M
µk,0
0,red in the proof of Thm 5.3), and M0 := M

0,0
0,red. With this aim, we only need to check

that the Γ-liminf estimate in (A.2) holds in our context. Clearly, it is sufficient to check that for any sequence
(tk, qk, t′k, q′k)k with (tk, qk, t′k, q′k)

∗
⇀ (t, q, 0, q′) in R× S × R×QPP as k →∞ there holds

M
0,0
0,red(t, q, 0, q′) ≤ lim inf

k→+∞
M
µk,νk
0,red (tk, qk, t′k, q′k). (5.17)

The above estimate easily follows from Lemma A.2 in the case in which (tk)k admits a strictly positive
subsequence. Instead, if there exists k̄ ∈ N such that t′k ≡ 0 for k ≥ k̄, then M

µk,νk
0,red (tk, qk, t′k, q′k) =

Dνk(q′k)D∗,µk
νk

(tk, qk) for all k ≥ k̄ and we may argue in the following way. When z′ = 0 and D∗(t, q) = 0 we
use that

M
µk,νk
0,red (tk, qk, t′k, q′k) ≥

{
D(u′k, p′k)D∗,µk(tk, qk),

‖z′k‖L2 d̃L2(Ω)(−DzEµk
(tk, qk), ∂R(0)) ,

which follows by neglecting some terms in the expression for Mµk,νk
0,red . Then, as in Thm. 5.3 we use Lemma A.2

to pass to the limit in the two terms on the right-hand side of the above inequality in the cases z′ = 0 and
D∗,µ(t, q) = 0, respectively. In the remaining case ‖z′‖L2D∗(t, q) > 0, it holds limk→∞M

µk,νk
0,red (tk, qk, t′k, q′k) =

+∞: indeed, by Lemma A.2 and since z′k ⇀ z′ in L2(Ω), we have that ‖z′k‖L2D∗,µk(tk, qk) > c for a suitable
c > 0. Since

M
µk,νk
0,red (tk, qk, t′k, q′k) ≥ 1

√
νk
‖z′k‖L2D∗,µk(tk, qk),

we again conclude estimate (5.17) as (µk)k and (νk)k vanish.
Thus, by Lemma A.3, we have proven (5.16). This finishes the proof. �
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Appendix A. Some technical results

We collect the results employed in the proofs of Theorems 5.3 and 5.6.

Lemma A.1. Let f, fk : [0,S] → [0,T ] be nondecreasing functions such that fk → f uniformly. Let A := {s ∈
[0,S] : f ′(s) > 0}. Then for a.a. s ∈ A there is a subsequence kj and, for every j, there is skj ∈ (0,S) such
that |skj−s| < 1

j and f ′kj (skj ) > 0.

Proof. Let
Ξ := {s ∈ A : ∃ k(s) ∀ k > k(s) ∃ δk f ′k(σ) = 0 for a.a. σ ∈ (s− δk, s+ δk)}.

We shall prove that Ξ is at most countable, which implies the statement of the lemma. Let s1, s2 ∈ Ξ. Then
one has f(s1) 6= f(s2); indeed, since f is nondecreasing, f(s1) = f(s2) would imply that f is constant in (s1, s2),
which is in contrast with the assumption s1, s2 ∈ A (and thus f ′(s1), f ′(s2) > 0). Let now yik := fk(si) for
i = 1, 2. Since yik → f(si) for i = 1, 2, for k sufficiently large one has |y1

k − y2
k| > 1

2 |f(s
1) − f(s2)| > 0. Let

φk ∈ BV(0,T ) denote the inverse function of fk. It turns out that y1
k, y2

k are both jump points of φk for every
k > max{k(s1), k(s2)}. Since the jump points of a BV function are countable, it follows that Ξ is countable,
too. �

Lemma A.2. [CR19, Lemma 7.8] Let tk → t in [0,T ], µk → 0, (qk)k = (uk, zk, pk)k ⊂ QPP such that the
following convergences hold as k → +∞: qk

∗
⇀ q = (u, z, p) in QPP, e(tk) = E(uk + w(tk)) − pk → e(t) =

E(u+ w(t))− p in L2(Ω;Mn×n
sym ) and µk pk → 0 in L2(Ω;Mn×n

D ). Then

SuE0(t, q) ≤ lim inf
k→+∞

‖DuEµk
(tk, qk)‖(H1,D)∗ , (A.1a)

d̃L2(−DzE0(t, q), ∂R(0)) ≤ lim inf
k→+∞

d̃L2(−DzEµk
(tk, qk), ∂R(0)), (A.1b)

WpE0(t, q) ≤ lim inf
k→+∞

dL2(−DpEµk
(tk, qk), ∂πH(zk, 0)). (A.1c)

We borrow our final auxiliary result from [MR21]. The proof, therein developed in the case of a sequence
(tk, qk) with values in R×Q with Q a reflexive space, can be straightforwardly adapted to the case of the dual
of a separable space.

Lemma A.3. [MR21, Prop. 5.2] Let Q be the dual of a separable Banach space, let S be a weakly∗ closed subset
of Q, and let (Mk)k, M0 : R×S×R×Q→ [0,∞] be measurable and weakly∗ lower semicontinuous functionals
fulfilling the Γ-lim inf estimate(

(tk, qk, t′k, q′k)
∗
⇀ (t, q, t′, q′) in R× S × R×Q as k →∞

)
=⇒ M0(t, q, t′, q′) ≤ lim inf

k→∞
Mk(tk, qk, t′k, q′k).

(A.2)
Suppose that, the functionals M0(t, q, ·, ·) and Mk(t, q, ·, ·) are convex for every k ∈ N and (t, q) ∈ R× S. Let
(tk, qk), (t, q) ⊂ AC([a, b];R× S) fulfill

tk(s)→ t(s), qk(s)
∗
⇀ q(s) for all s ∈ [a, b], (t′k, q′k) ⇀ (t′, q′) in L1(a, b;R×Q).

Then,

lim inf
k→∞

∫ b

a

Mk(tk(s), qk(s), t′k(s), q′k(s))ds ≥
∫ b

a

M0(t(s), q(s), t′(s), q′(s))ds.
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