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Abstract. We provide a sufficient condition for lower semicontinuity of nonautonomous noncoercive
surface energies defined on the space of GSBDp functions, whose dependence on the x-variable is W 1,1

or even BV : the notion of nonautonomous symmetric joint convexity, which extends the analogous
definition devised for autonomous integrands in [31] where the conservativeness of the approximating
vector fields is assumed. This condition allows to extend to our setting a nonautonomous chain formula
in SBV obtained in [5], and this is a key tool in the proof of the lower semicontinuity result. This new
joint convexity can be checked explicitly for some classes of surface energies arising from variational
models of fractures in inhomogeneous materials.
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1. Introduction

The modern variational approach to the quasistatic growth of brittle cracks in elastic materials, proposed
by Francfort and Marigo [30] following on Griffith’s theory [36], assumes that at each time the equilibrium of
a crack is the result of the balance between the bulk elastic energy released (due to the crack growth) and
the surface energy dissipated to produce a new portion of crack. In the formulation of the related variational
problems, the energy dissipated to produce the crack can be described by a surface integral of the type

K(u) :=

∫
Ω∩Ju

ϕ(x, u−, u+, νu) dHd−1, (1.1)

where Ω denotes the reference configuration, u the displacement field, Ju the crack surface and Hd−1 denotes
the (d − 1)-dimensional Hausdorff measure. In the case of a constant density in (1.1), ϕ coincides with the
“toughness” of the material and K(u) is proportional to the measure of the crack Hd−1(Ju). More in general, ϕ
may depend on the crack opening [u] := u+−u−, where u+ and u− are the traces of u on both sides of its jump
set Ju, thus modeling a cohesive or Barenblatt type fracture (see [7]). The anisotropies and inhomogeneities in
the body are taken into account through the possible dependence of ϕ on the normal νu to Ju and the position
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x. The bulk elastic energy released during the crack formation is modeled by a functional of the form

W(u) :=

∫
Ω

W (x,∇u) dx , (1.2)

where ∇u is the deformation gradient and the potential W (x, ξ) is typically assumed to be a Carathéodory
function; i.e., measurable in x and continuous in ξ for a.e. x, such that W (x, ·) is convex and W (x, ξ) ≥ c|ξ|p,
p > 1, for a.e. x ∈ Ω.

A key ingredient to prove the existence of minimizers for functionals of the type

u→ E(u) := W(u) +K(u) (1.3)

is the lower semicontinuity of surface integrals (1.1). Within the weak theory in the space (G)SBV of (gener-
alized) special functions of bounded variation, the problem of finding sufficient conditions for the lower semi-
continuity of functionals like (1.1) has been addressed e.g. in [1–3, 6, 20, 22, 23]. One of these conditions is
the BV -ellipticity of the integrand, introduced by Ambrosio and Braides in [3]. More recently, aiming to de-
scribe the evolution in plasticity and elastoplasticity and the formation of microstructures, the space GSBD of
“generalized special functions of bounded deformation”, introduced in [19], has been considered as the proper
functional space. Many progresses in this direction, in particular concerning the study of free-discontinuity
problems, can be found in the recent literature, see [11–13,15–17,31–33].

The scope of this paper is to study the lower semicontinuity in GSBD of nonautonomous surface integrals of
the type (1.1) where the surface integrand ϕ depends explicitly and possibly in a discontinuous way on the space
variable x, and without any coercivity assumption. Our contribution is then motivated by obtaining the well
posedness on GSBDp (here p stands for the exponent of summability of e(u) := 1

2 (∇u+∇uT ), the approximate
symmetrized gradient) of variational problems associated to energies E(u).

The existence of minimizers for the functional (1.3) is guaranteed in SBDp by the compactness result [8,
Theorem 1.1], provided one has an a priori bound for u in L∞. Unfortunately, it is hard to obtain such a
bound, which is in fact quite unrealistic in Fracture Mechanics. To overcome this difficulty, the landing in the
space GSBDp of the generalised SBDp functions is needed. Our main goal is to prove a lower semicontinuity
result in GSBDp for functionals as (1.3), along sequences {un} in GSBDp(Ω;Rd) such that un → u in measure
on Ω and ∥e(un)∥p, Hd−1(Jun

) are uniformly bounded with respect to n ∈ N. Indeed, the bulk energy (1.2)
here depends only on the symmetric part of ∇u. It is worth mentioning that we have to consider in (1.3) the
additional term

∫
Ω
Ψ(|u|) dx, for a continuous Ψ such that lim

s→+∞
Ψ(s) = +∞. This is only needed to apply the

compactness result in GSBDp (see [19, Theorem 11.3]) and, actually, should be dropped in favor of Dirichlet
boundary conditions, provided we agree to work in the larger space GSBDp

∞, recently introduced in [17]. Since
the lower semicontinuity of this additional term is trivial, and the bulk term W(u) is lower semicontinuous by
convexity, only the problem of the lower semicontinuity of the surface term (1.1) has to be addressed.

In the autonomous case a necessary and sufficient condition for the lower semicontinuity is the BD-ellipticity
introduced in [31], by adapting to the BD setting the notion of BV -ellipticity. Both the conditions are very
difficult to check directly. If on the one hand, a sufficient condition for the BV -ellipticity is the joint convexity ;
i.e., the existence of continuous vector fields gj : Rd → Rd such that

ϕ(r, t, ξ) = sup
j∈N

⟨gj(r)− gj(t), ξ⟩ for all (r, t, ξ) ∈ Rd × Rd × Rd ,

on the other in [31] the notion of symmetric joint convexity was introduced as a sufficient condition for BD-
ellipticity, by requiring the further condition that for every j ∈ N the vector fields gj are conservative. Roughly
speaking, this latter ensures that an integration by part formula holds in the BD context. Nevertheless, while the
joint convexity (and the BV -ellipticity) are nowadays well-understood for both autonomous and nonautonomous
surface integrals (see [3, 6, 23]), the analogous problems in the modern setting of GSBD are still largely open.
The few examples of lower semicontinuous functionals in BD present in literature (see [14, 21, 31, 34, 37] and
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the references therein) are mostly concerning with the autonomous setting. In the rare cases where an explicit
dependence on the spatial variable is allowed, the integrands are assumed to be continuous in x (see, for
instance, [13]), or a coercivity assumption in the gradient variable is required, as in [37] where ϕ(x, ·) is a
Finsler metric.

Our results: we address the problem of the lower semicontinuity for surface integrands ϕ depending explicitly
on the spatial variable x. The new feature is that ϕ may possibly be discontinuous with respect to x, but in a
“controlled” way, as it admits a BV -regularity. We also renounce to any coercivity assumption, so that finding
sufficient conditions for the lower semicontinuity is non trivial and involves the regularity of ϕ at x. Firstly, we
assume a W 1,1-dependence in x and introduce the notion of nonautonomous (NA) symmetric jointly convex
integrand. Namely, we require the existence of a sequence of nonautonomous vector fields gj : Ω × Rd → Rd
such that

ϕ(x, r, t, ξ) = sup
j∈N

⟨gj(x, r)− gj(x, t), ξ⟩ for all (x, r, t, ξ) ∈ Ω× Rd × Rd × Rd (1.4)

and each gj satisfies some conditions including the W 1,1 dependence w.r.t. x and the conservativeness, see (G1)
and (G6).

In order to prove the lower semicontinuity result for the corresponding functionals, a crucial tool is a nonau-
tonomous chain rule formula (proven in Theorem 3.2) for the divergence of the composition v(x) = gj(x, u(x))
with u ∈ GSBDp. This formula is obtained by combining the analogous in SBV [5] with a recent approximation
result due to Chambolle and Crismale (see [12]), and extends to the nonautonomous setting the integration by
parts formula provided by [31, Lemma 5.3], and to the GSBDp setting the nonautonomous chain rule [5, Theo-
rem 2.2] itself. Section 4 is devoted to the proof of main result, the lower semicontinuity theorem (Theorem 4.5):
every surface integral with a nonautonomous symmetric jointly convex integrand is lower semicontinuous on
GSBDp. We first prove the assertion for those integrands that can be represented as in (1.4) with vector fields
gj(x, r) satisfying all the assumptions (G1)–(G6) of the nonautonomous chain rule, Theorem 3.2. Then we
obtain the general case in a standard way via regularization of the approximating vector fields.

As a next step, in Section 5, we relax all our results to allow the functions for a more general BV -dependence
on x, by introducing the notion of BV symmetric jointly convex function. Note that this is a generalization of the
NA symmetric joint convexity only for certain integrands (cf. the discussion at the beginning of Section 5). In
particular, as a nontrivial example, in Proposition 5.2 we prove the BV symmetric joint convexity for integrands
of the form

ϕ(x, r, t, ξ) := κ(x, ξ) , (1.5)

where κ(·, ξ) ∈ BV (cf. (K1′)) and κ(x, ·) is even, positively 1-homogeneous, and convex for a.e. x. Despite of
its simple structure, this example already contains some features related to the nonautonomous setting. Indeed,
the explicit construction of the vector fields gj(x, r) relies on a classical approximation result for real-valued
convex functions due to De Giorgi (see Lemma 2.4), which provides an explicit formula for the approximating
affine functions.

We rediscover some approximation arguments developed in [23] to obtain a lower semicontinuity result in
GSBDp for BV symmetric jointly convex integrands, see Proposition 5.5. The key point there is the proof of
the result for “splitting-type” integrands of the form

ϕ(x, r, t, ξ) := a(x)κ(r, t, ξ) , (1.6)

where a is a BV function and κ is symmetric jointly convex (Proposition 5.3). Indeed, a can be approximated
from below by W 1,1 functions, and Theorem 4.5 can be applied to the approximating NA symmetric jointly
convex functions. Then, again an approximation argument by means of functions as in (1.6) gives the lower
semicontinuity for functionals whose integrands are strictly positive and BV symmetric jointly convex. Eventu-
ally, in Section 6 we apply our lower semicontinuity results to prove the existence of minimizers for functionals
of the type (1.3).

We conclude the presentation of our results mentioning that a further issue to be addressed is the intro-
duction of a notion of “nonautonomous BD-ellipticity” together with the investigation of its connections with
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NA/BV symmetric joint convexity. This problem seems to be as interesting as challenging with the available
mathematical tools, and therefore has to be deferred to future studies.

2. Preliminaries

2.1. Notation

Let Ω be a bounded open subset of Rd. We denote by A(Ω) the family of all open subsets A of Ω and by
B(Ω) the σ-algebra of all Borel subsets B of Ω. For a set E ⊂ Ω, we will often denote by Ec its complement
Ω\E.
Let Ld denote the Lebesgue measure on Rd and Hd−1 the Hausdorff measure of dimension (d− 1) on Rd. We
denote by ⟨·, ·⟩ the standard Euclidean scalar product on Rd. Sd−1 is the unit sphere. We denote by Mm×n the
set of real m × n matrices, and by Mn×n

sym the set of all real symmetric n × n matrices. Given a matrix A, AT

stands for the transpose of A and tr(A) for its trace. Given two matrices A,B ∈ Mm×n, the Frobenius scalar

product will be denoted by A : B := tr(ATB), while |A| :=
√
tr(ATA) will indicate the associated norm. For

x ∈ Ω and ρ > 0, we denote by Bρ(x) the open ball centred at x with radius ρ. We will denote by C(X;Y ) the
space of continuous functions from X to Y , while by C1

c (X) and C∞
c (X) the spaces of C1 and C∞ functions

with compact support on X, respectively. The symbols Lp(X) and W k,p(X) stand for the classical Lebesgue
and Sobolev spaces defined on X, respectively.

2.2. BV and SBV functions.

For a general survey on the spaces of BV and SBV functions we refer for instance to [6]. Below, we just
recall some basic definitions useful in the sequel.

If u ∈ L1
loc(Ω;Rm) and x ∈ Ω, the precise representative of u at x is defined as the unique value ũ(x) ∈ Rm

such that

lim
ρ→0+

1

ρd

∫
Bρ(x)

|u(y)− ũ(x)|dx = 0 .

The set of points in Ω where the precise representative of x is not defined is called the approximate singular set
of u and denoted by Su. We say that a point x ∈ Ω is an approximate jump point of u if there exist a, b ∈ Rm
and ν ∈ Sd−1, such that a ̸= b and

lim
ρ→0+

−
∫

B+
ρ (x,ν)

|u(y)− a|dy = 0 and lim
ρ→0+

−
∫

B−
ρ (x,ν)

|u(y)− b|dy = 0

where B±
ρ (x, ν) := {y ∈ Bρ(x) : ⟨y − x, ν⟩ ≷ 0}. The triplet (a, b, ν) is uniquely determined by the previous

formulas, up to a permutation of a, b and a change of sign of ν, and it is denoted by (u+(x), u−(x), νu(x)). The
Borel functions u+ and u− are called the upper and lower approximate limit of u at the point x ∈ Ω. The set
of approximate jump points of u is denoted by Ju.

The space BV (Ω;Rm) of functions of bounded variation is defined as the set of all u ∈ L1(Ω;Rm) whose
distributional gradient Du is a bounded Radon measure on Ω with values in the space Mm×d of m×d matrices.
Moreover, the usual decomposition

Du = ∇uLd +Dcu+ (u+ − u−)⊗ νuHd−1⌊Ju
holds, where ∇u is the Radon-Nikodým derivative of Du with respect to the Lebesgue measure and Dcu is the
Cantor part of Du. For the sake of simplicity, we denote by Dsu = Dcu+ (u+ − u−)⊗ νuHd−1⌊Ju.

We recall that the space SBV (Ω;Rm) of special functions of bounded variation is defined as the set of all
u ∈ BV (Ω;Rm) such that Dsu is concentrated on Su; i.e., |Dsu|(Ω \ Su) = 0. Finally, for p > 1 the space
SBV p(Ω;Rm) is the set of u ∈ SBV (Ω;Rm) with ∇u ∈ Lp(Ω;Mm×d) and Hd−1(Su) <∞.
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2.3. GBD and GSBD functions

In this section we recall some basic definitions and results on generalized functions with bounded deformation,
as introduced in [19]. Throughout the paper we will use standard notations for the space (G)SBD, referring
the reader to [4, 8, 38] for a detailed treatment on the topic.

Let ξ ∈ Rd\{0} and Πξ = {y ∈ Rd : ⟨ξ, y⟩ = 0}. If Ω ⊂ Rd and y ∈ Πξ we set Ωξ,y := {t ∈ R : y + tξ ∈ Ω}.
Given u : Ω → Rd, d ≥ 2, we define uξ,y : Ωξ,y → R by uξ,y(t) := ⟨u(y + tξ), ξ⟩.
We then have the following definitions:

(i) An Ld-measurable function u : Ω → Rd belongs to GBD(Ω;Rd) if there exists a positive bounded Radon
measure λu such that, for all τ ∈ C1(Rd) with − 1

2 ≤ τ ≤ 1
2 and 0 ≤ τ ′ ≤ 1, and all ξ ∈ Sd−1, the distributional

derivative Dξ(τ(⟨u, ξ⟩)) is a bounded Radon measure on Ω whose total variation satisfies

|Dξ(τ(⟨u, ξ⟩))| (B) ≤ λu(B)

for every Borel subset B of Ω.
(ii) A function u ∈ GBD(Ω;Rd) belongs to the subset GSBD(Ω;Rd) of special functions of bounded defor-

mation if, in addition, for every ξ ∈ Sd−1 and Hd−1-a.e. y ∈ Πξ, it holds that uξ,y ∈ SBVloc(Ωξ,y).
We recall that the inclusions BD(Ω;Rd) ⊂ GBD(Ω;Rd) and SBD(Ω;Rd) ⊂ GSBD(Ω;Rd) hold (see [19,

Remark 4.5]). Although they are, in general, strict, relevant properties of BD functions are retained also in
this weak setting. In particular, GBD-functions have an approximate symmetric differential e(u)(x) at Ld-a.e.
x ∈ Ω. Furthermore the jump set Ju of a GBD-function is Hd−1-rectifiable (this is proven in [19, Theorem 6.2
and Theorem 9.1]).

Let p > 1. The space GSBDp(Ω;Rd) is defined as

GSBDp(Ω;Rd) := {u ∈ GSBD(Ω;Rd) : e(u) ∈ Lp(Ω;Md×d
sym) , Hd−1(Ju) < +∞} .

Given a functional E : GSBDp(Ω;Rd) → [0,+∞], we say that E is lower semicontinuous in GSBDp if for
every (un)n ⊂ GSBDp(Ω;Rd) converging in measure to u ∈ GSBDp(Ω;Rd) and such that

sup
n∈N

[∫
Ω

|e(un)|p dx+Hd−1(Jun
)

]
< +∞ ,

we have

E(u) ≤ lim inf
n→+∞

E(un) .

2.4. Approximation results

Let us recall some well known approximation results.
The first one is very general and concerns the lower semicontinuity of a functional whose integrand is the

supremum of a sequence of integrands corresponding to lower semicontinuous functionals. For our purposes, we
formulate the statement in GSBDp.

Lemma 2.1. Let h, hj : Ω× Rd × Rd × Rd → [0,+∞), j ∈ N, be Borel functions such that

(i) the functionals Fhj
defined by

Fhj
(u,Ω) :=

∫
Ω∩Ju

hj(x, u
−, u+, νu) dHd−1

are lower semicontinuous in GSBDp(Ω;Rd) for every j ∈ N;
(ii) h(x, r, t, ξ) = supj∈N hj(x, r, t, ξ) for all (x, r, t, ξ) ∈ (Ω \ N) × Rd × Rd × Rd, where N ⊂ Ω is a Borel

set with Hd−1(N) = 0.
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Then, also

Fh(u,Ω) :=
∫
Ω∩Ju

h(x, u−, u+, νu) dHd−1

is lower semicontinuous in GSBDp(Ω;Rd).

Proof. The argument is nowadays standard, but for the reader’s convenience we prefer to give a proof (see, e.g.,
Step 2 of [31, Proof of Corollary 2.6] for a similar result). Let (un)n∈N ⊂ GSBDp(Ω;Rd) and u ∈ GSBDp(Ω;Rd)
be such that un → u in measure on Ω as n → +∞. Let V ⊂ Ω be any open set, and define the non-negative
superadditive function

Λ(V ) := lim inf
n∈N

Fh(un, V ) .

Since each Fhj is lower semicontinuous, we have Λ(V ) ≥ Fhj (u, V ) for every j ∈ N and every open set V ⊂ Ω.
Then, by a classical lemma on the supremum of measures (see, e.g., [31, Lemma 2.8]), we get

Λ(V ) ≥
∫
V ∩Ju

sup
j∈N

hj(x, u
−, u+, νu) dHd−1 = Fh(u, V ),

whence the desired assertion follows choosing V = Ω.

The second one is an approximation result for GSBDp functions, stated in [12, Theorem 1.1], which we recall
here in a slightly simplified version.

Theorem 2.2. Let u ∈ GSBDp(Ω;Rd), p > 1. Then, there exists a sequence of functions (uk)k ⊂ SBV p(Ω;Rd)∩
L∞(Ω;Rd) such that each Juk

is closed in Ω and included in a finite union of closed connected pieces of C1

hypersurfaces, uk ∈W 1,∞(Ω\Juk
;Rd), and

(i) uk → u a.e. on Ω;
(ii) ∥e(uk)− e(u)∥Lp(Ω) → 0;

(iii) Hd−1(Juk
△Ju) → 0;

(iv)
∫
Juk

∪Ju τ(|u
±
k − u±|) dHd−1 → 0,

for some τ ∈ C1(R) with − 1
2 ≤ τ ≤ 1

2 , 0 ≤ τ ′ ≤ 1, and {τ = 0} = {0}.

We recall now a compactness result in GSBDp (see [19, Theorem 11.3]).

Theorem 2.3. Let (uk)k be a sequence in GSBDp(Ω;Rd). Assume that there exist a constant M > 0 and an
increasing continuous function Ψ : R+ → R+ with lim

s→+∞
Ψ(s) = +∞ such that

∫
Ω

Ψ(|uk|) dx+

∫
Ω

|e(uk)|p dx+Hd−1(Juk
) ≤M (2.1)

for every k. Then there exist a subsequence (not relabeled) and a function u ∈ GSBDp(Ω;Rd) such that

uk → u pointwise Ld-a.e. on Ω,

e(uk)⇀ e(u) weakly in Lp(Ω;Rd×dsym),

Hd−1(Ju) ≤ lim inf
k→+∞

Hd−1(Juk
) .

We conclude this section with a classical approximation result for convex functions by means of affine functions
due to De Giorgi [26] (see also [29, Theorem 4.79]). Let f : Ω × Rd → [0,+∞) be convex and positively 1-
homogeneous in the last variable, and let α ∈ C1

c (Rd) be a non negative function such that
∫
Rd α(ξ) dξ = 1. For
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every j ∈ N and q ∈ Qd, we define

a0j,q(x) =

∫
Rd

f(x, ξ)
(
(d+ 1)αj,q(ξ) + ⟨∇αj,q(ξ), ξ⟩

)
dξ (2.2)

aj,q(x) = −
∫
Rd

f(x, ξ)∇αj,q(ξ) dξ , (2.3)

where αj,q(ξ) := jdα(j(q − ξ)). We then have the following approximation of f from below with a sequence of
affine functions.

Lemma 2.4. Let f : Ω×Rd → [0,+∞) be convex in the last variable, and define for every x ∈ Ω the sequence
(aj,q(x))j,q, j ∈ N, q ∈ Qd as in (2.2) and (2.3). Then for all (x, ξ) ∈ Ω× Rd we have

f(x, ξ) = sup
j∈N , q∈Qd

[a0j,q(x) + ⟨aj,q(x), ξ⟩]+ .

If f(x, ·) is also positively 1-homogeneous,

f(x, ξ) = sup
j∈N , q∈Qd

⟨aj,q(x), ξ⟩+ . (2.4)

The approximation (2.4) is very useful in semicontinuity problems since the coefficients aj,q(x) above depend
explicitly on f and on the lower order variable x. Thus, the regularity properties of f(·, ξ) are inherithed by
aj,q(·) through formulas (2.3) and (2.4). Note also that the explicit dependence of aj,q on q could be neglected
by considering in (2.3) a vector qj ∈ Qd for each j ∈ N. In this case, we may set aj := aj,qj and compute the
supremum in (2.4) over j ∈ N.

Remark 2.5. Notice that if f(x, ·) is even, convex, positively 1-homogeneous and bounded away from zero on
Sd−1, then for every fixed x it is the support function of the symmetric compact convex set with nonempty
interior K(x) given by

K(x) :=
{
z ∈ Rd : ⟨z, ξ⟩ ≤ f(x, ξ) for every ξ ∈ Rd

}
.

Then, by (2.4), for every fixed x ∈ Ω, we have aj(x) ∈ K(x) for every j ∈ N. Equivalently, the function
aj : Ω → Rd is a selection of the multifunction K : Ω → P(Rd) for every j ∈ N (see [10, Chapter III]), where
P(Rd) denotes the power set of Rd. Moreover, if aj(x) is an interior point of K(x), for every v ∈ Sd−1 we can
find σ > 0 small enough such that aj(x)+σv ∈ K(x). For our purposes, it is useful to introduce the (nonempty)
countable sets

A(x) :=
{
aj(x) + σv : σ ∈ Q+, v ∈ Qd ∩ Sd−1 , j ∈ N

}
∩K(x) , x ∈ Ω . (2.5)

We will denote by bl : Ω → Rd, l ∈ N the measurable selections of the multifunction A : Ω → P(Rd).

2.5. Capacity

Following [23, Section 2.3], we briefly recall the notion of 1-capacity of a set and its connections with BV
and Sobolev functions. Given an open set A ⊂ Rd, the 1-capacity of A is defined by setting

C1(A) := inf

{∫
Rd

|Dφ| dx : φ ∈W 1,1(Rd), φ ≥ 1 Ld−a.e. on A

}
.

Then, the 1-capacity of an arbitrary set B ⊂ Rd is given by

C1(B) := inf{C1(A) : A ⊇ B, A open} .
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It is well known that for every Borel set B ⊂ Rd

C1(B) = 0 ⇐⇒ Hd−1(B) = 0 .

We recall that a function g : Rd → R is said C1-quasi continuous if for every ε > 0 there exists an open
set A, with C1(A) < ε, such that g|Ac is continuous on Ac; C1-quasi lower semicontinuous and C1-quasi upper
semicontinuous functions are defined similarly.

It is well known that if g is a W 1,1 function, then its precise representative g̃ is C1-quasi continuous (see [28,
Sections 9 and 10]). Moreover, to every BV function g, it is possible to associate a C1-quasi lower semicontinuous
and a C1-quasi upper semicontinuous representative, as stated by the following theorem (see [9], Theorem 2.5).

Theorem 2.6. For every function g ∈ BV (Ω), the approximate upper limit g+ and the approximate lower limit
g− are C1-quasi upper semicontinuous and C1-quasi lower semicontinuous, respectively.

Moreover we recall the following lemma which is an approximation result due to Dal Maso (see [18], Lemma
1.5 and §6).

Lemma 2.7. Let g : Rd → [0,+∞) be a C1-quasi lower semicontinuous function. Then there exists an
increasing sequence of nonnegative functions {gh} ⊆ W 1,1(Rd) such that, for every h ∈ N, gh is approximately
continuous Hd−1-almost everywhere in Rd and gh(x) → g(x) as h→ +∞ for Hd−1-almost every x ∈ Rd.

3. Nonautonomous chain rule formula for the divergence

The aim of this section is the proof of a nonautonomous chain rule formula for the divergence of the compo-
sition

v(x) := g(x, u(x)) ,

where u ∈ GSBDp and g : Rd × Rd → Rd complies with

(G1) x 7→ g(x, r) belongs to W 1,1
loc (Rd;Rd) for all r ∈ Rd, and there exists a positive function h1 ∈ L1

loc(Rd)
such that |g(x, r)| ≤ h1(x) for all r ∈ Rd and for Ld-a.e. x ∈ Rd ;

(G2) there exist a positive function h2 ∈ L1
loc(Rd) and a modulus of continuity ω : [0,∞) → [0, 1] such that

|∇xg(x, r)−∇xg(x, s)| ≤ ω(|r − s|)h2(x)

for all r, s ∈ Rd and for Ld-a.e. x ∈ Rd ;
(G3) there exists a Lebesgue negligible set N ⊂ Rd such that r 7→ g(x, r) is continuously differentiable in Rd

for all x ∈ Rd \N ;
(G4) there exists a constant M > 0 such that |∇rg(x, r)| ≤M for all x ∈ Rd \N and r ∈ Rd ;
(G5) there exists a modulus of continuity ω̃ independent of x such that

|∇rg(x, r)−∇rg(x, s)| ≤ ω̃(|r − s|)

for all r, s ∈ Rd and x ∈ Rd \N .

First, we notice that assumptions (G1)-(G5) are enough to obtain a vectorial chain rule formula in SBV for
nonautonomous functionals, which will be a technical tool for the proof of an analogous result in GSBD. We
recall it for reader’s convenience with the statement below, Theorem 3.1, and it can be seen as a simple case of
a chain rule in BV proven in [5, Theorem 2.2] under more general assumptions on the dependence in x .

Theorem 3.1. Assume that g complies with (G1)-(G5) above. Then there exists a set N ⊂ Rd with Hd−1(N ) =
0 , such that, for every r ∈ Rd the function g(·, r) is approximately continuous in Rd \ N , and for any function
u ∈ SBVloc(Rd;Rd) ∩ L∞

loc(Rd;Rd), the function v(x) := g(x, u(x)) belongs to SBVloc(Rd;Rd) and the following
chain rule holds:
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(i) (Lebesgue part) for Ld-a.e. x the map y 7→ g(y, u(x)) is approximately differentiable at x and

∇v(x) = (∇xg)(x, u) + (∇rg)(x, u) · ∇u(x) Ld-a.e. in Rd ;

(ii) (jump part) Jv ⊂ Ju and it holds

Djv =
(
g̃(x, u+)− g̃(x, u−

)
)⊗ νuHd−1 Ju

in the sense of measures, where u±(x) are the upper and lower approximate limits of u at x, and g̃(x, r)
denotes the precise representative of g(·, r) on Rd \ N .

Moreover

div v(x)=
[
(divxg)(x, u) + tr

(
(∇rg)(x, u)∇u

)]
Ld + ⟨g̃(x, u+)− g̃(x, u−), νu⟩Hd−1 Ju (3.1)

in the sense of measures.

In order to obtain the analog in GSBD of Theorem 3.1, we need a further assumption on g:

(G6) for all x ∈ Rd\N the vector field r 7→ g(x, r) is conservative; i.e., there exists a potentialG(x, ·) ∈ C1(Rd)
such that ∇rG(x, r) = g(x, r) for every r ∈ Rd.

Theorem 3.2. Let g be satisfying (G1)-(G6) above. Let Ω ⊂ Rd be bounded. Then there exists a set N ⊂ Ω
with Hd−1(N ) = 0 , such that, for every r ∈ Rd the function g(·, r) is approximately continuous in Ω \ N
and g̃(x, r) denotes the precise representative of g(·, r) on Ω \ N , and for any function u ∈ GSBDp(Ω;Rd),
the function v(x) := g(x, u(x)) is a vector field whose distributional divergence is a Radon measure, and the
following nonautonomous chain rule formula for its measure divergence holds

div v(x)=[(divxg)(x, u) + (∇rg)(x, u) : e(u)]Ld + ⟨g̃(x, u+)− g̃(x, u−), νu⟩Hd−1 Ju (3.2)

in the sense of measures, i.e. for all open set A ⊆ Ω and for every φ ∈ C1
c (A)

−
∫
A

⟨g(x, u),∇φ⟩dx=
∫
A

φ(divxg)(x, u) dx+

∫
A

φ
(
(∇rg)(x, u) : e(u)

)
dx

+

∫
A∩Ju

φ⟨g̃(x, u+)− g̃(x, u−), νu⟩dHd−1.

(3.3)

Proof. We may adapt the argument of [31, Lemma 5.3] to the nonautonomous setting as follows: we combine
the nonautonomous formula proven in Theorem 3.1 for functions in SBV with the approximation result in
GSBDp recalled with Theorem 2.2.

Let u ∈ GSBDp(Ω;Rd) and (uk) ⊂ SBV p(Ω;Rd) ∩ L∞(Ω;Rd) be the sequence provided by Theorem 2.2.
Then, with (3.1), for every k ∈ N, for all open sets A ⊆ Ω and for every φ ∈ C1

c (A) we get

−
∫
A

⟨g(x, uk),∇φ⟩dx=
∫
A

φ(divxg)(x, uk) dx+

∫
A

φtr
(
(∇rg)(x, uk)∇uk

)
dx

+

∫
A∩Juk

φ⟨g̃(x, u+k )− g̃(x, u−k ), νuk
⟩dHd−1.

(3.4)

Since g(x, ·) is conservative, the matrix ∇rg(x, ·) is symmetric. Then

tr
(
(∇rg)(x, uk)∇uk

)
= (∇rg)(x, uk) : e(uk) ,
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and (3.4) can be rewritten as

−
∫
A

⟨g(x, uk),∇φ⟩dx=
∫
A

φ(divxg)(x, uk) dx+

∫
A

φ
(
(∇rg)(x, uk) : e(uk)

)
dx

+

∫
A∩Juk

φ⟨g̃(x, u+k )− g̃(x, u−k ), νuk
⟩dHd−1 .

(3.5)

Now, we aim to pass to the limit as k → +∞ in each of the four terms separately.
As for the first term, by assumption (G4) we get

|g(x, uk)− g(x, u)| ≤M |uk − u| ,

whence g(x, uk) → g(x, u) Ld-a.e. in A. Then, with (G1) and the boundedness of ∥∇φ∥∞ we infer

lim
k→+∞

∫
A

⟨g(x, uk),∇φ⟩dx =

∫
A

⟨g(x, u),∇φ⟩dx (3.6)

by the dominated convergence theorem. To prove that

lim
k→+∞

∫
A

φ(divxg)(x, uk) dx =

∫
A

φ(divxg)(x, u) dx (3.7)

we notice that by assumption (G2), (divxg)(x, uk) → (divxg)(x, u) Ld-a.e. and the sequence ((divxg)(x, uk) −
(divxg)(x, u))k is dominated by an L1-function. Then (3.7) follows again from the dominated convergence
theorem since φ is bounded.

By assumptions (G4) and (G5), Theorem 2.2(i) and the dominated convergence theorem we infer that
(∇rg)(·, uk) → (∇rg)(·, u) in Lq for any q ∈ [1,+∞). Then, with Theorem 2.2(ii), φ ∈ C1

c (A) and Hölder’s
inequality we finally get

lim
k→+∞

∫
A

φ
(
(∇rg)(x, uk) : e(uk)

)
dx =

∫
A

φ
(
(∇rg)(x, u) : e(u)

)
dx . (3.8)

Finally, since r → g̃(x, r) is Lipschitz continuous (see [5, Proposition 3.2(i)]), the proof of

lim
k→+∞

∫
A∩Juk

φ⟨g̃(x, u+k )− g̃(x, u−k ), νuk
⟩dHd−1 =

∫
A∩Ju

φ⟨g̃(x, u+)− g̃(x, u−), νu⟩dHd−1 (3.9)

is exactly as in [31], by exploiting Theorem 2.2 (iv), so we omit the details.

4. Nonautonomous symmetric jointly convex functions

We give a definition of nonautonomous (NA) symmetric jointly convex function with W 1,1 dependence of
the approximating vector fields with respect to the spatial variable x . This can be considered as an extension
to the nonautonomous setting of the definition of symmetric jointly convex function (see Definition 4.1 below),
recently introduced in [31].

Definition 4.1 (Symmetric joint convexity). Let ϕ : Rd×Rd×Rd → [0,+∞). We say that ϕ is symmetric jointly
convex if there exists a sequence of uniformly continuous, bounded, conservative vector fields gj : Rd → Rd such
that

ϕ(r, t, ξ) = sup
j∈N

⟨gj(r)− gj(t), ξ⟩ for all (r, t, ξ) ∈ Rd × Rd × Rd .
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The definition of nonautonomous (NA) symmetric jointly convex function is the following.

Definition 4.2 (NA symmetric joint convexity). Let ϕ : Ω × Rd × Rd × Rd → [0,+∞). We say that ϕ is NA
symmetric jointly convex if there exists a sequence of bounded functions gj : Ω× Rd → Rd such that

ϕ(x, r, t, ξ) = sup
j∈N

⟨gj(x, r)− gj(x, t), ξ⟩ for all (x, r, t, ξ) ∈ Ω× Rd × Rd × Rd (4.1)

and for every j ∈ N the function gj satisfies conditions (G1), (G2), (G6) and the following condition

(G3′) there exists a Lipschitz constant Lj independent of x such that

|gj(x, r)− gj(x, t)| ≤ Lj |r − t|

for all r, t ∈ Rd and Hd−1-a.e. x ∈ Rd .

Remark 4.3. An inspection of the proof of [25, Lemma 2.4] shows that, under assumptions (G1), (G2) and
(G3′), for every j ∈ N there exists a subset Nj ⊂ Ω (indipendent of r) with Hd−1(Nj) = 0, such that for
any x ∈ Ω\Nj and any r ∈ Rd, gj(·, r) is approximately continuous at x. This implies, in particular, that
g̃j(x, r) = gj(x, r) for every x ∈ Ω \Nj and r ∈ Rd . Let N = ∪j∈NNj , then Hd−1(N) = 0. In the following we
will tacitly assume that the integrand ϕ(·, r, t, ξ) coincides in Ω \N (and so Hd−1-a.e. in Ω) with the following
representative

ϕ(·, r, t, ξ) := sup
j∈N

⟨g̃j(·, r)− g̃j(·, t), ξ⟩ for all (r, t, ξ) ∈ Rd × Rd × Rd.

4.1. Some examples

We give some example of NA symmetric jointly convex functions (see also [23, Remark 3.2]). A first example
is the model case, i.e.,

ϕ(x, r, t, ξ) := ⟨g(x, r)− g(x, t), ξ⟩+ , (A0)

where s+ := max{s, 0} for s ∈ R, and g satisfies conditions (G1), (G2), (G3′) and (G6). A further example is

ϕ(x, r, t, ξ) := a(x)κ(r, t, ξ) , (A1)

where a is a nonnegative bounded W 1,1 function,

κ(r, t, ξ) = sup
j∈N

⟨hj(r)− hj(t), ξ⟩+

and hj is a sequence of continuous functions and for every j ∈ N the function hj is a conservative vector field
according to (G6).

With the examples of (autonomous) symmetric jointly convex integrands ϕ(r, t, ξ) present in literature at
hand, we can immediately construct examples of nonautonomous symmetric jointly convex integrands:

(i) ϕ(x, r, t, ξ) := a(x)κ(|⟨r − t, ξ⟩|), where κ is a non-negative convex, subadditive and increasing function
(see [34] for the case a(x) ≡ 1);

(ii) ϕ(x, r, t, ξ) := a(x) sup
(ζ1,...,ζk)

(∑
k=1

ϑk(⟨r − t, ζk⟩)2|⟨ξ, ζk⟩|2
)1/2

, where ϑk, k = 1, . . . , d, are even, con-

tinuous, subadditive functions such that ϑk(0) = 0, and the supremum is taken over all orthonormal
bases (ζk)

d
k=1 of Rd. The symmetric joint convexity of the corresponding κ(r, t, ξ) has been proved

in [31, Proposition 4.5] (see also [21]);
(iii) ϕ(x, r, t, ξ) := a(x)γ(|r − t|)|ξ|, which can be seen of type A1 with κ(r, t, ξ) := γ(|r − t|)|ξ| (see [31,

Theorem 4.1]);
(iv) ϕ(x, r, t, ξ) := a(x)κ(ξ), where κ is even, 1-homogeneous and convex (see [31, Proposition 4.13]).
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The following result deals with more general nonautonomous integrands independent of the traces r, t; i.e.,

ϕ(x, r, t, ξ) = κ(x, ξ) for all (x, r, t, ξ) ∈ Ω× Rd × Rd × Rd , with r ̸= t. (4.2)

It can be seen as a further generalization of [31, Proposition 4.13].

Proposition 4.4. Let ϕ : Ω × Rd × Rd × Rd → [c,+∞), c > 0, be of type (4.2), where κ : Ω × Rd → [0,+∞)
complies with

(K1) x 7→ κ(x, ξ) belongs to W 1,1(Ω;Rd) for all ξ ∈ Rd ;
(K2) there exist a positive function h ∈ L1

loc(Rd) and a modulus of continuity ω such that

|∇xκ(x, ξ)−∇xκ(x, ξ
′)| ≤ ω(|ξ − ξ′|)h(x)

for all ξ, ξ′ ∈ Rd and for Ld-a.e. x ∈ Ω ;
(K3) κ(x, ·) is even, positively 1-homogeneous and convex for every x ∈ Ω.

Then ϕ is NA symmetric jointly convex.

Proof. First of all, we observe that since κ is locally bounded in Ω × Rd and positively 1-homogeneous with
respect to ξ, for any open set U ⊂⊂ Ω, there exists a constant ΛU such that

0 ≤ κ(x, ξ) ≤ ΛU |ξ| for all (x, ξ) ∈ U × Rd . (4.3)

Then, the convexity of κ with respect to ξ combined with (4.3) yields that

|κ(x, ξ1)− κ(x, ξ2)| ≤ c̃ΛU |ξ1 − ξ2| for all (x, ξ1), (x, ξ2) ∈ U × Rd , (4.4)

for some dimensional constant c̃ > 0. Now, let us fix a dense sequence {ξn} ⊂ Rd. Thanks to (K1) for all
n ∈ N there exists a Borel set Vn ⊂ U , with Hd−1(Vn) = 0, such that κ(·, ξn) is approximately continuous in
Ω \ Vn. Setting V = ∪nVn we obtain that Hd−1(V ) = 0. Making use of (4.4), one easily gets that κ(·, ξ) is
approximately continuous in U \ V for all ξ ∈ Rd. Then κ(·, ξ) = κ̃(·, ξ) for Hd−1-a.e. x ∈ Ω and for all ξ ∈ Rd.
Similarly, by using (K2) there exists a Borel set M ⊂ U , with Ld(M) = 0, such that κ(·, ξ) is approximately
differentiable in U \M for all ξ ∈ Rd.

Now we may adapt the argument of [31, Proposition 4.13] to the nonautonomous setting by using the De
Giorgi’s approximation result, Lemma 2.4. Indeed, by virtue of this result, for Hd−1-a.e. x ∈ Ω and for every
ξ ∈ Rd we can write

κ(x, ξ) = sup
j∈N

⟨aj(x), ξ⟩ , (4.5)

where the functions aj are defined as in (2.3) with f = κ. Notice that the functions aj are bounded and
aj ∈W 1,1(Ω;Rd). Moreover, as proven in [25, Lemma 2.4], we have

aj(x) = ãj(x) = −
∫
Rd

κ̃(x, z)∇αj(z) dz

and
κ(x, ξ) = sup

j∈N
⟨ãj(x), ξ⟩ , (4.6)

for Hd−1-a.e. x ∈ Ω and for all ξ ∈ Rd. Moreover, for every i = 1, . . . , d

∂xiaj(x) = −
∫
Rd

∂xiκ(x, z)∇αj(z) dz

for Ld-a.e. x ∈ Ω.
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Let N ⊂ Ω be the set such that Hd−1(N) = 0 and (4.6) holds for x ∈ Ω\N . Correspondingly, for every such
x we define the countable set A(x) as in (2.5).

For every h, l ∈ N, bl : Ω\N → Rd any selection of A and p ∈ Rd, we set

gh,l,p(x,w) := ϑh(⟨w − p, bl(x)⟩)bl(x) , w ∈ Rd , x ∈ Ω\N , (4.7)

where ϑh : R → [0,+∞) is defined as ϑh(y) := 2
π arctan(h|y|). Note that ϑh is a C1(R\{0}), subadditive

function such that ϑh(0) = 0, ϑh ≤ 1 and ϑh(y) → 1 as h → +∞ for each fixed y ̸= 0. Clearly, each gh,l,p
is bounded and Lipschitz continuous in w uniformly with respect to x, so that, taking into account also the
remarks about aj above, conditions (G1), (G2) and (G3′) are satisfied. Moreover, gh,l,p is conservative with
potential

Gh,l,p(x,w) := Θh
(
⟨w − p, bl(x)⟩

)
, w ∈ Rd , x ∈ Ω\N ,

where Θh is a primitive of ϑh. Thus, also (G6) is satisfied.
We claim that for every x ∈ Ω\N and for all (r, t, ξ) ∈ Rd × Rd × Rd with r ̸= t we have

ϕ(x, r, t, ξ) = κ(x, ξ) = sup
h,l,p

⟨gh,l,p(x, r)− gh,l,p(x, t), ξ⟩ . (4.8)

We first prove the inequality “≥” in (4.8). Let x ∈ Ω\N be fixed. For each (r, t, ξ) ∈ Rd × Rd × Rd with r ̸= t,
we get from the definition of bl, the subadditivity of ϑh and ϑh ≤ 1 that

⟨gh,l,p(x, r)− gh,l,p(x, t), ξ⟩ ≤ ⟨bl(x), ξ⟩ ≤ κ(x, ξ) = ϕ(x, r, t, ξ) ,

whence the desired inequality follows by passing to the supremum on the left hand side.
Now, we turn to the proof of the reverse inequality in (4.8). Let (pm)m∈N ⊂ Qd be a sequence such that

pm → t as m→ +∞. Then, with fixed h, l, with the continuity of ϑh and recalling that ϑh(0) = 0, we have

lim
m→+∞

⟨gh,l,pm(x, r)− gh,l,pm(x, t), ξ⟩ = ⟨(ϑh(⟨r − t, bl(x)⟩)− ϑh(0)) bl(x), ξ⟩

= ϑh(⟨r − t, bl(x)⟩)⟨bl(x), ξ⟩ .
(4.9)

Let ε > 0 be fixed. We claim that there exists l0 ∈ N such that

⟨bl0(x), ξ⟩ > κ(x, ξ)− ε and |⟨bl0(x), r − t⟩| ≠ 0 . (4.10)

First, by (4.5) there exists j0 such that ⟨aj0(x), ξ⟩ > κ(x, ξ)− ε. We may assume also that |⟨aj0(x), r − t⟩| ̸= 0
and set bl0(x) := aj0(x). If not, we may replace aj0(x) by bl0(x) ∈ A(x) defined as

bl0(x) := aj0(x) + σj0sign(⟨vj0 , ξ⟩)vj0

for some vj0 ∈ Qd ∩ Sd−1 such that ⟨vj0 , r − t⟩ ≠ 0, ⟨vj0 , ξ⟩ ≠ 0 and some σj0 ∈ Q+. We then have

⟨bl0(x), r − t⟩ = ⟨aj0(x), r − t⟩+ σj0sign(⟨vj0 , ξ⟩)⟨vj0 , r − t⟩ = ±σj0⟨vj0 , r − t⟩ ≠ 0 ,

and

⟨bl0(x), ξ⟩ = ⟨aj0(x), ξ⟩+ σj0sign(⟨vj0 , ξ⟩)⟨vj0 , ξ⟩ > ⟨aj0(x), ξ⟩ > κ(x, ξ)− ε .

This proves (4.10). Now, since ϑh(y) → 1 as h→ +∞ for each fixed y ̸= 0,

lim
h→+∞

ϑh(⟨r − t, bl0(x)⟩)⟨bl0(x), ξ⟩ = ⟨bl0(x), ξ⟩ . (4.11)
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Combining the previous estimates (4.9), (4.10) and (4.11), we then get

sup
h,l,p

⟨gh,l,p(x, r)− gh,l,p(x, t), ξ⟩ ≥ lim
h→+∞

ϑh(⟨r − t, bl0(x)⟩)⟨bl0(x), ξ⟩

> κ(x, ξ)− ε .

The arbitrariness of ε yields “≤” in (4.8), and this concludes the proof.

4.2. Lower semicontinuity result

We are in position to prove the first main result of our paper, Theorem 4.5 below: the NA symmetric joint
convexity of the integrand, introduced with Definition 4.2, is a sufficient condition for the lower semicontinuity
in GSBDp of the corresponding functional. We will first show the assertion for NA symmetric jointly convex
ϕ admitting a representation (4.1) with vector fields gj satisfying the assumptions of the nonautonomous chain
rule for its divergence, Theorem 3.2. This will allow us to follow some arguments contained in the proofs
of [23, Theorem 3.4] and [31, Theorem 5.1].

The general case of gj complying with assumptions (G1), (G2), (G3′) and (G6), which are the only needed
in Definition 4.2, then will follow through a standard mollification technique (see, e.g., [6, Theorem 5.22]).

Theorem 4.5. Let ϕ : Ω × Rd × Rd × Rd → [0,+∞) be a NA symmetric jointly convex function. Then, for
every (un)n ⊂ GSBDp(Ω;Rd), p > 1, converging in measure to u ∈ GSBDp(Ω;Rd) and such that

C := sup
n∈N

[∫
Ω

|e(un)|p dx+Hd−1(Jun)

]
< +∞ , (4.12)

we have ∫
Ju∩Ω

ϕ(x, u+, u−, νu) dHd−1 ≤ lim inf
n→+∞

∫
Jun∩Ω

ϕ(x, u+n , u
−
n , νun

) dHd−1 . (4.13)

Proof. Assume that (4.1) holds for some sequence of vector fields (gj)j∈N. We subdivide the proof into two
steps.

Step 1: each gj satisfies conditions (G1) - (G6). Let (un)n and u be as above. Since ϕ is non-negative, by
virtue of Lemma 2.1 it will suffice to show that

lim inf
n→+∞

Fg(un) ≥ Fg(u) , (4.14)

where

Fg(w) :=

∫
Jw∩A

⟨g(x,w+)− g(x,w−), νw⟩+ dHd−1 ,

for every vector field g complying with (G1)-(G6) and every open set A ⊂ Ω. Since

Fg(u) = sup

{∫
Ju∩A

⟨g(x, u+)− g(x, u−), νu⟩ψ dHd−1 : ψ ∈ C1
c (A), 0 ≤ ψ ≤ 1

}
,

again by virtue of Lemma 2.1 the lower semicontinuity of the functional Fg will follow if we prove the continuity
of

Fψg (u) :=

∫
Ju

⟨g(x, u+)− g(x, u−), νu⟩ψ dHd−1 (4.15)
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for some fixed ψ ∈ C1
0 (A), 0 ≤ ψ ≤ 1. Indeed, by using the chain rule formula (3.3) we have∫

A∩Ju
⟨g(x, u+)− g(x, u−), νu⟩ψ dHd−1 =−

∫
A

ψ(divxg)(x, u) dx−
∫
A

ψ
(
(∇rg)(x, u) : e(u)

)
dx

−
∫
A

⟨g(x, u),∇ψ⟩dx .

We claim that ∫
A

⟨g(x, u),∇ψ⟩dx = lim
n→+∞

∫
A

⟨g(x, un),∇ψ⟩dx , (4.16)∫
A

ψ(divxg)(x, u) dx = lim
n→+∞

∫
A

ψ(divxg)(x, un) dx , (4.17)∫
A

ψ
(
(∇rg)(x, u) : e(u)

)
dx = lim

n→+∞

∫
A

ψ
(
(∇rg)(x, un) : e(un)

)
dx . (4.18)

As for (4.16), from assumptions (G1) and (G4) we get g(x, un) → g(x, u) for Ld-a.e. x in A, and

|∇ψ||g(x, un)| ≤ ∥∇ψ∥∞h1(x) for Ld-a.e. x in A, for every n ∈ N,

whence the assertion follows from the dominated convergence theorem. The proof of (4.17) is similar to that
of (3.7). In order to prove (4.18), we first observe that under assumption (4.12), we can find a subsequence
(not relabeled) (un) such that e(un)⇀ e(u) weakly in L1(A;Md×d

sym). Then, by using (G4)-(G5) and dominated

convergence, we have ∇rg(x, un) → ∇rg(x, u) strongly in L1(A;Md×d). Now, writing

(∇rg)(x, un) : e(un) = [(∇rg)(x, un)− (∇rg)(x, u)] : e(un) + (∇rg)(x, u) : e(un) ,

the first term in the right hand side tends to 0 in L1(A;Md×d) by virtue of dominated convergence theorem
and (G4). This implies that

(∇rg)(x, un) : e(un)⇀ (∇rg)(x, u) : e(u) in L1(A;Md×d),

and since ψ ∈ L∞(A), (4.18) follows. Collecting (4.16), (4.17) and (4.18), we conclude that the functionals Fψg ,

ψ ∈ C1
c (A) are continuous along the sequence (un), and so the lower semicontinuity of Fg follows .

Step 2: each gj satisfies (G1), (G2), (G3′), and (G6). By Lemma 2.1 again, it is sufficient to prove (4.14)
for every vector field g complying with (G1), (G2), (G3′) and (G6), and every open set A ⊂ Ω.

For this, given a non-negative, even function ρ ∈ C∞
c (Rd) such that supp ρ ⊂ B1 and

∫
Rd ρdt = 1, we define

a sequence of mollifiers (ρε)ε by setting ρε(t) :=
1
εd
ρ( tε ). Correspondingly, we consider the mollified functions

gε(x, r) := (g ∗ ρε)(x, r) =
∫
Rd

g(x, r − t)ρε(t)dt .

Then each gε satisfies (G1)–(G6). Indeed, for all r ∈ Rd the function x 7→ gε(x, r) belongs to W
1,1
loc (Rd;Rd), we

have ∇xgε(x, r) = (∇xg ∗ ρε)(x, r) for all r ∈ Rd and Ld-a.e. x ∈ Rd, and

|∇xgε(x, r)−∇xgε(x, s)| ≤
∫
Rd

|∇xg(x, r − t)−∇xg(x, s− t)|ρε(t) dt ≤ h(x)ω(|r − s|)

for all r, s ∈ Rd and Ld-a.e. x ∈ Rd. Moreover, the function r 7→ gε(x, r) is continuously differentiable in Rd for
Hd−1-a.e. x ∈ Rd,

|∇rgε(x, r)| = |(g ∗ ∇ρε)(x, r)| ≤M ,
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and by (G3′)

|∇rgε(x, r)−∇rgε(x, s)| ≤ Cω̃(|r − s|)
for all r, s ∈ Rd and Hd−1-a.e. x ∈ Rd . In order to prove that gε(x, r) is a conservative field it suffices to define
its potential in the following way

Gε(x, r) := (G ∗ ρε)(x, r) =
∫
Rd

G(x, t)ρε(r − t) dt

where for Hd−1-a.e. x ∈ Rd, G(x, ·) ∈ C1(Rd) is a potential of g(x, r) for every r ∈ Rd. Indeed,

∇rGε(x, r) =

∫
Rd

∇rG(x, r − t)ρε(t)dt =

∫
Rd

g(x, r − t)ρε(t)dt = gε(x, r).

Therefore, from Step 1 we can deduce the lower-semicontinuity result (4.14) for each gε, namely

lim inf
n→+∞

Fgε(un) ≥ Fgε(u) (4.19)

for all ε > 0. Moreover, by (G3′), we have |g(x, r)− gε(x, r)| ≤ ω̂(ε) and so by (4.19) and (4.12) we get

lim inf
n→+∞

Fg(un) ≥ lim inf
n→+∞

[Fgε(un)− 2ω̂(ε)Hd−1(Jun
)] ≥ Fgε(u)− 2ω̂(ε)C.

The desired assertion then follows letting ε→ 0, and this concludes the proof.

5. Nonautonomous BV symmetric jointly convex functions

In this section we give a new definition of nonautonomous symmetric joint convexity for functions with
BV dependence with respect to the spatial variable x . This definition is new even for functions with W 1,1

dependence. Indeed, as it will be apparent from Definition 5.1 below, the W 1,1 regularity in x of the integrand
ϕ is assumed, while in Section 4 the analogous assumption is required for the approximating vector fields. The
new definition coincides with the NA symmetric joint convexity for splitting-type integrands of the form (A0)
or (A1). Moreover, the lower semicontinuity theorem for NA symmetric jointly convex functions (Theorem 4.5)
will be a key tool for the proof of the Proposition 5.3 which is a first step in order to obtain the analogous result
for nonautonomous BV symmetric jointly convex functions, see Theorem 5.7.

Definition 5.1. A function ϕ : Ω× Rd × Rd × Rd → [0,+∞) is said to be BV symmetric jointly convex if the
following conditions hold:

(B1) for every (r, t, ξ) ∈ Rd × Rd × Rd the function ϕ(·, r, t, ξ) belongs to BV and there exists a Borel set
N ⊂ Ω with Hd−1(N) = 0 such that ϕ(·, r, t, ξ) coincides with its lower approximate limit ϕ−(·, r, t, ξ)
in Ω \N for all (r, t, ξ) ∈ Rd × Rd × Rd;

(B2) for every x ∈ Ω \N the function ϕ(x, ·, ·, ·) is symmetric jointly convex ;
(B3) there exists L > 0 such that

|ϕ(x, r, t, ξ)− ϕ(x, s, t, ξ)| ≤ L|r − s|

for all x ∈ Ω \N , for all r, s, t, ξ ∈ Rd.

As we will prove with Theorem 5.7 at the end of this section, a lower semicontinuity result in GSBDp for
BV symmetric jointly convex integrands can be obtained by requiring the further condition that ϕ be strictly
positive for Hd−1-a.e. x ∈ Ω.
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5.1. Some examples

The examples of Section 4.1 can be easily adapted in order to construct BV symmetric jointly convex
functions.

A first example is the model case (A0), with g satisfying (G3′) and (G6) and the following condition:

(G1′) for every r ∈ Rd the function g(·, r) is a locally bounded BV and there exists a Borel set N ⊂ Ω with
Hd−1(N) = 0 such that g(·, r) = g−(·, r) in Ω \N for all r ∈ Rd .

Another example is (A1) where a is a nonnegative, bounded BV function coinciding with its lower approx-
imate limit a−, and κ is a symmetric jointly convex function (see Definition 4.1) for which there exists L > 0
such that

|κ(r, t, ξ)− κ(s, t, ξ)| ≤ L|r − s|
for all r, s, t ∈ Rd and ξ ∈ Rd.

The following is the BV counterpart of Proposition 4.4.

Proposition 5.2. Let ϕ : Ω × Rd × Rd × Rd → [c,+∞), c > 0, be of type (4.2), where κ : Ω × Rd → [0,+∞)
complies with (K3) and

(K1′) x 7→ κ(x, ξ) belongs to BV (Ω;Rd) for all ξ ∈ Rd and there exists a Borel set N ⊂ Ω with Hd−1(N) = 0
such that κ(·, ξ) coincides with its lower approximate limit κ−(·, ξ) in Ω \N for all ξ ∈ Rd .

Then ϕ is BV symmetric jointly convex.

Proof. We may follow the argument of Proposition 4.4 with minor modifications. First, from (K3), for Hd−1-a.e.
x ∈ Ω and for every ξ ∈ Rd a representation as in (4.5) holds for κ, where now the functions aj are bounded and,
by virtue of (K1′), belong to BV (Ω;Rd) (see [24, Remark 2.5]) and aj = a−j . Then, we may define the vector

fields gh,j,p as in 4.7, with bj(x) := aj(x)+qjvj ∈ Ax for every j ∈ N and Ax as in (2.5), since bj ∈ BVloc(Ω;Rd).
The rest of the argument is exactly the same as for the proof of (4.8), we then omit further details.

5.2. Lower semicontinuity results

In order to study the lower semicontinuity, firstly we consider the splitting-type model case

ϕ(x, r, t, ξ) := a(x)κ(r, t, ξ) , (5.1)

where κ is a symmetric jointly convex function, according to Definition 4.1, and a is a locally bounded BV
function. In this case, the proof is obtained by approximating the BV function from below by W 1,1 functions
and using the lower semicontinuity Theorem 4.5 proven for NA symmetric jointly convex integrands.

Proposition 5.3. Let a : Ω → [0,+∞) be a locally bounded BV function coinciding with its lower approximate
limit a− and let κ : Rd × Rd × Rd → [0,+∞) be a symmetric jointly convex function. Then, for every (un)n ⊂
GSBDp(Ω;Rd) converging in measure to u ∈ GSBDp(Ω;Rd) such that

sup
n∈N

[∫
Ω

|e(un)|p dx+Hd−1(Jun
)

]
< +∞ ,

we have ∫
Ju∩Ω

a(x)κ(u+, u−, νu)dHd−1 ≤ lim inf
n→+∞

∫
Jun∩Ω

a(x)κ(u+n , u
−
n , νun)dHd−1 . (5.2)

Proof. It suffices to note that by Theorem 2.6 the function a is lower semicontinuous with respect to the
1-capacity. Then by using the approximation result of Lemma 2.7, we can find an increasing sequence of
nonnegative functions {ah} ⊆W 1,1(Ω) such that each ah is approximately continuous Hd−1-almost everywhere
in Ω, and a(x) = suph∈N ah(x). Now, we may apply Theorem 4.5 to the sequence ϕh(x, r, t, ξ) := ah(x)κ(r, t, ξ),
whence (5.2) follows from Lemma 2.1 .
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A further step toward the general case is the study of integrands which are lower semicontinuous in x
uniformly with respect to the other variables. For these integrands the following approximation from below
holds with functions of the type (5.1).

Proposition 5.4. Let ϕ : Ω× Rd × Rd × Rd → [0,+∞) be a Borel function such that

(LSC) given x0 ∈ Ω, for all ε > 0 there exists δ > 0 such that

ϕ(x0, r, t, ξ) ≤ (1 + ε)ϕ(x, r, t, ξ)

for all (x, r, t, ξ) ∈ Ω× Rd × Rd × Rd such that |x− x0| < δ ;

(B2′) for every x ∈ Ω the function ϕ(x, ·, ·, ·) is symmetric jointly convex .

Then for every j ∈ N there exist aj ∈ C∞
0 (Ω; [0, 1]), aj(xj) = 1 for some xj ∈ Ω, and gj ∈ C(Rd;Rd) such that

ϕ(x, r, t, ξ) = sup
j∈N

aj(x)⟨gj(r)− gj(t), ξ⟩+ (5.3)

for all (x, r, t, ξ) ∈ Ω× Rd × Rd × Rd and gj satisfies (G1′), (G3′) and (G6).

Proof. We may follow the argument of the proof of [23, Proposition 4.5], up to replace the assumption of joint
convexity by (B2′). The core is the proof of the representation formula

ϕ(x, r, t, ξ) = sup
G∈G

G(x, r, t, ξ) for all (x, r, t, ξ) ∈ Ω× Rd × Rd × Rd ,

where G is the class of the continuous functions of the form φ(x)⟨h(r) − h(t), ξ⟩+, with h ∈ W 1,∞(Rd;Rd),
conservative and φ ∈ C∞

0 (Ω; [0, 1]), φ(x) = 1 for some x ∈ Ω. Then assertion (5.3) follows in a standard way
from [29, Proposition 4.78]. We omit the details.

The lower semicontinuity result for integrands ϕ as above is expressed by the following proposition.

Proposition 5.5. Let ϕ : Ω × Rd × Rd × Rd → [0,+∞) be a Borel function such that conditions (LSC) and
(B2′) hold. Then, for every (un)n ⊂ GSBDp(Ω;Rd) converging in measure to u ∈ GSBDp(Ω;Rd) such that

sup
n∈N

[∫
Ω

|e(un)|p dx+Hd−1(Jun
)

]
< +∞ ,

we have ∫
Ju∩Ω

ϕ(x, u+, u−, νu) dHd−1 ≤ lim inf
n→+∞

∫
Jun∩Ω

ϕ(x, u+n , u
−
n , νun

) dHd−1 . (5.4)

Proof. By virtue of Proposition 5.4, ϕ can be represented according to (5.3) as

ϕ(x, r, t, ξ) = sup
j∈N

aj(x)⟨gj(r)− gj(t), ξ⟩+ ,

for all (x, r, t, ξ) ∈ Ω× Rd × Rd × Rd, for some sequences of functions (aj)j∈N and (gj)j∈N. Now, since each aj
and κj(r, t, ξ) := ⟨gj(r)− gj(t), ξ⟩+ satisfy the assumptions of Proposition 5.3, for every j ∈ N we have∫

Ju∩Ω

aj(x)κj(u
+, u−, νu) dHd−1 ≤ lim inf

n→+∞

∫
Jun∩Ω

aj(x)κj(u
+
n , u

−
n , νun) dHd−1 .

Then, the lower semicontinuity (5.4) is again a consequence of Lemma 2.1.
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In fact, as already remarked in [23] for the GSBV setting, assumption (LSC) is implied by some conditions
which are easier to verify. Thus, the lower semicontinuity result of Proposition 5.5 still holds if (LSC) is replaced
by (B3) and the following (C1), (C2).

Proposition 5.6. Let ϕ : Ω × Rd × Rd × Rd → [0,+∞) be a Borel function complying with (B2′), (B3) and
such that

(C1) ϕ(·, ·, ·, ξ) is lower semicontinuous on Ω× Rd × Rd for every ξ ∈ Rd ;
(C2) there exists N ⊂ Ω, with Hd−1(N) = 0, such that ϕ(x, r, t, ξ) > 0 for all (x, r, t, ξ) ∈ (Ω \ N) × Rd ×

Rd × (Rd \ {0}) .
Then condition (LSC) holds.

Proof. The argument is essentially that of [23, Proposition 4.7], we then omit the details.

The following result still relies on Proposition 5.4 (see the argument of [23, Theorem 4.8]).

Theorem 5.7. Let ϕ be a BV symmetric jointly convex function satisfying (C2). Then the lower semicontinuity
(5.4) holds.

6. Existence results

The lower semicontinuity results provided by Theorem 4.5 and Theorem 5.7, combined with the compactness
theorem in GSBD (recalled with Theorem 2.3) allow us to prove the existence of minimizers for functionals of
the form

E(u) :=
∫
Ω

W (x, e(u)) dx+

∫
Ju

ϕ(x, u+, u−, νu) dHd−1 +

∫
Ω

Ψ(|u|) dx , u ∈ GSBDp(Ω;Rd) ,

under suitable natural assumptions on the potential W (see (w1)–(w3) below).

Theorem 6.1. Let Ω ⊂ Rd be open and bounded and let c > 0. Let W : Ω×Md×d
sym → [0,+∞) be such that

(w1) W (x, ·) is convex and lower semicontinuous on Md×d
sym for a.e. x ∈ Ω;

(w2) W (·, F ) is measurable on Ω for every F ∈ Md×d
sym ;

(w3) W (x, F ) ≥ c|F |p for all F ∈ Md×d
sym for some p > 1 and for a.e. x ∈ Ω.

Let ϕ : Ω×Rd ×Rd × Sd−1 → [c,+∞) be NA (or BV) symmetric jointly convex and let Ψ : [0,+∞) → [0,+∞)
be continuous such that lim

s→+∞
Ψ(s) = +∞. Then the functional E admits a minimizer in GSBDp(Ω;Rd).

Proof. Let (uk)k ⊂ GSBDp(Ω;Rd) be a minimizing sequence. The growth assumption on W and the fact that
ϕ ≥ c > 0 imply that uk complies with (2.1). Then, by virtue of Theorem 2.3 we can find u ∈ GSBDp(Ω;Rd)
such that uk → u a.e. in Ω and e(uk) ⇀ e(u) weakly in Lp(Ω;Md×d

sym). From the convexity of W and Fatou’s
lemma we get ∫

Ω

W (x, e(u)) dx ≤ lim inf
k→+∞

∫
Ω

W (x, e(uk)) dx∫
Ω

Ψ(|u|) dx ≤ lim inf
k→+∞

∫
Ω

Ψ(|uk|) dx .

Finally, the equiboundedness assumption (2.1) allows us to apply Theorem 4.5 or Theorem 5.7 to the surface
term, thus obtaining∫

Ju∩Ω

ϕ(x, u+, u−, νu) dHd−1 ≤ lim inf
k→+∞

∫
Juk

∩Ω

ϕ(x, u+k , u
−
k , νuk

) dHd−1 .

Therefore, u is a minimizer of E and the proof is concluded.



20 LOWER SEMICONTINUITY IN GSBD FOR NONAUTONOMOUS SURFACE INTEGRALS

Remark 6.2. We emphasize the crucial role of the assumption ϕ ≥ c > 0 in Theorem 6.1 (combined with (w3)),
in order to get the compactness in GSBDp for minimizing sequences (uk), and then the existence of minimizers
in GSBDp. Indeed, such condition allows for a control from below of E(uk) with isotropic Griffith-type energies:

c

(∫
Ω

|e(uk)|p dx+Hd−1(Juk
)

)
+

∫
Ω

Ψ(|uk|) dx ≤ E(uk) < +∞ ,

and the hypotheses of Theorem 2.3 are satisfied. The weaker assumption ϕ ≥ 0, in general, would not lead to
any control on the surface term Hd−1(Juk

), and the compactness in GSBDp would be not clear. Nevertheless,
in the special case ϕ = ϕ(x, r − t, ν) ≥ c|r − t|, we get compactness in the proper subspace SBDp (see [31,
Lemma 4.11]) and our lower semicontinuity results (Theorem 4.5 and Theorem 5.7) can be still applied in some
cases (see [31, Theorem 5.5]).

Remark 6.3. Several concrete problems in Fracture Mechanics deal with non-convex bulk potentialsW (x, ·). A
reasonable assumption weaker than (w1) would be the symmetric quasi-convexity of the bulk energies (see [27]).
As far as we know, the only lower semicontinuity result in GSBD under this assumption on the bulk potential
is obtained in [14, Theorem 1.2] when restricting to Caccioppoli partitions. The delicate argument therein,
based on a blow-up technique, requires a continuous dependence of the surface integrand ϕ(x, r − t, ν) on the
spatial variable. Nevertheless, if we agree to set the minimization problem in the proper subspace SBDp, we
can invoke the lower semicontinuity result [27, Theorem 1.2] still for symmetric quasi-convex bulk energies,
complying with a stronger growth assumption than (w3). This result could be combined with Theorem 4.5 or
Theorem 5.7 above, up to adding an L∞-bound on the minimizing sequences (uk) (see, e.g., [35, Theorem 3.6]
for a similar analysis still in SBDp).
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