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Abstract. We characterize which mappings from a compact subset of R into
the Heisenberg group can be extended to a Cm,ω horizontal curve for a given
modulus of continuity ω. We motivate our characterization by showing that
the Cm,ω extension property fails if we instead use a more direct analogue of
the conditions from the Cm case.

1. Introduction

The Whitney extension theorem [29] characterizes those collections of real-valued
continuous functions F = (F k)|k|≤m defined on a compact set K ⊂ Rn that can be

extended to a Cm function f such that the derivatives Dkf coincide with F k on the
set K. The key condition is that F = (F k)|k|≤m must form a Whitney field, which

encodes the fact that Taylor’s theorem must hold if F = (F k)|k|≤m are to extend
to a Cm mapping. There have been a variety of versions of Whitney’s theorem for
mappings with different regularity [1, 7, 8, 9, 10, 11] or between different spaces [12,
13, 14, 15, 27, 28, 31, 32]. Whitney extension results are applied to study rectifiable
sets, construct mappings with desired differentiability properties, or prove Lusin
approximation results [4, 5, 6, 16, 26, 30]. In [24] the present authors together
with Pinamonti proved a Whitney extension theorem for Cm horizontal curves in
the Heisenberg group. In this paper, we refine the techniques from [24] to prove a
Whitney extension theorem for Cm,ω horizontal curves, where ω is a modulus of
continuity, and we explain why the assumptions from [24] are not sufficient in the
Cm,ω case.

Carnot groups are Lie groups whose Lie algebra admits a stratification that gives
rise to dilations and ensures that points can be connected by horizontal curves
i.e. absolutely continuous curves with tangents in a distinguished subbundle of the
tangent bundle. The Carnot-Caratheodory distance is defined by infimizing over the
lengths of such curves and equips every Carnot group with a natural left-invariant
metric. In recent years, it has become clear that a large part of geometric analysis,
geometric measure theory, and real analysis in Euclidean spaces may be generalized
to the Carnot group setting. See, for example, [2, 3, 12, 13, 17, 19, 20, 21, 22, 23, 24].

The present paper focuses on the first Heisenberg group H1 (Definition 2.1),
which is the simplest and most often studied non-Euclidean Carnot group. It can be
viewed in coordinates as R3 with a two-dimensional horizontal distribution. (While
we expect our results to hold in the Heisenberg group Hn of any dimension, we
will focus our attention on the first Heisenberg group H1 to keep the notation more
manageable.) As mentioned above, the current authors together with Pinamonti
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[24] characterized when a trio of collections of real valued continuous functions
(F k, Gk, Hk)mk=0 can be extended to a Cm horizontal curve in H1. There were three
main conditions in the characterization. Firstly, since each of (F k)mk=0, (G

k)mk=0,
(Hk)mk=0 must extend in particular to a Cm map from R to R, they must be Whitney
fields of class Cm according to Whitney’s original theorem. Secondly, if the trio
does indeed extend to a horizontal Cm map, then differentiating the horizontality
condition (Lemma 2.3) and restricting to K gives equations which must necessarily
hold for each map Hk in terms of (F k)mk=0 and (Gk)mk=0. Finally, the horizontality
condition shows that changes in the third component (i.e. the height) correspond
to changes in the areas swept out by the first two components in the plane. This is
encoded via the Taylor polynomial in the area-velocity condition described in [24].

In the present paper we characterize when a trio of collections (F k, Gk, Hk)mk=0

of continuous functions on a compact set K ⊂ R can be extended to a Cm,ω

horizontal curve in H1, where ω is a concave modulus of continuity (Definition 2.4).
For instance, the choice ω(t) = t corresponds to those maps which are Cm and
whose highest order derivatives are Lipschitz. Our main result is the following. For
most definitions, see Section 2; the quantities A(a, b) and Vω(a, b) are defined in
(2.4) and (2.5) respectively.

Theorem 1.1. Suppose ω is a modulus of continuity. Let K ⊂ R be a compact
set and F = (F k)mk=0, G = (Gk)mk=0, H = (Hk)mk=0 be collections of continuous,
real-valued functions on K. Then there is a horizontal curve Γ ∈ Cm,ω(R,R3) such
that DkΓ|K = (F k, Gk, Hk) for 0 ≤ k ≤ m if and only if

(1) F , G, and H are Whitney fields of class Cm,ω on K,
(2) for every 1 ≤ k ≤ m the following holds on K,

Hk = 2

k−1!

i=0

"
k − 1

i

#$
F k−iGi −Gk−iF i

%
,

(3) and there is a constant C ≥ 1 such that
&&&&
A(a, b)

Vω(a, b)

&&&& ≤ C for all a, b ∈ K with a < b.

As discussed above, condition (1) follows from Whitney’s original extension the-
orem, while condition (2) follows from the horizontality of the extension exactly as
before. It is in condition (3) that we see a key difference when compared to the
Cm case. The area-velocity estimate requires a velocity defined in terms of ω which
vanishes faster than the velocity defined in [24]. As pointed out in [32], applying

directly the techniques of [24] yields an extension only to a Cm,
√
w horizontal curve.

(See Theorem 1.2 below.)
The proof of Theorem 1.1 is similar to that of the Cm case in [24]; we use

Euclidean techniques to find a Cm,ω extension of F and G then apply perturbations
and a horizontal lift to define an extension of H. However, the perturbations and
corresponding estimates must be more carefully chosen in the Cm,ω case.

That a new definition of velocity is indeed required is shown by the following,
which is our second main result. It is proved in Section 5 by direct construction.
The quantity V1(a, b) mentioned here is the velocity term introduced in [24] and
defined in (5.1) below.
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Theorem 1.2. Suppose ω is a modulus of continuity. There is a compact and
perfect set K ⊂ R, a constant Ĉ > 0, and collections F = (F k)mk=0, G = (Gk)mk=0,
and H = (Hk)mk=0 of continuous, real valued functions on K such that

(1) F , G, and H are Whitney fields of class Cm,ω on K,
(2) for every 1 ≤ k ≤ m and x ∈ K, the following holds on K:

Hk = 2

k−1!

i=0

"
k − 1

i

#$
F k−iGi −Gk−iF i

%
,

(3) and
&&&&
A(a, b)

V1(a, b)

&&&& ≤ Ĉω(b− a) for all a, b ∈ K with a < b,

but there is no horizontal curve Γ ∈ Cm,ωα

(R,R3) satisfying Γ|K = (F 0, G0, H0)
for any α ∈ ( 12 , 1].

The paper is organized as follows. In Section 2 we recall the necessary back-
ground. In Section 3 and Section 4 we prove that the conditions for Cm,ω horizon-
tal extension in Theorem 1.1 are necessary and sufficient respectively. Finally in
Section 5 we prove Theorem 1.2.

Acknowledgements: This work was supported by a grant from the Simons
Foundation (#576219, G. Speight).

2. Preliminaries

2.1. The Heisenberg Group.

Definition 2.1. For each integer n ≥ 1, the Heisenberg group Hn is the Lie group
represented in coordinates by R2n+1 with points denoted (x, y, t) with x, y ∈ Rn

and t ∈ R. The group law is given by:

(x, y, t)(x′, y′, t′) =

'
x+ x′, y + y′, t+ t′ + 2

n!

i=1

(yix
′
i − xiy

′
i)

(
.

We equip Hn with left invariant vector fields

(2.1) Xi = ∂xi
+ 2yi∂t, Yi = ∂yi

− 2xi∂t, 1 ≤ i ≤ n, T = ∂t.

Here ∂xi , ∂yi and ∂t denote the coordinate vectors in R2n+1, which may be inter-
preted as operators on differentiable functions. If [·, ·] denotes the Lie bracket of
vector fields, then [Xi, Yi] = −4T . Thus Hn is a step-2 Carnot group with horizontal
layer Span{Xi, Yi : 1 ≤ i ≤ n} and second layer Span{T}.

Definition 2.2. A vector in TpR2n+1 is horizontal at p ∈ R2n+1 if it is a linear
combination of the vectors Xi(p), Yi(p), 1 ≤ i ≤ n.

An absolutely continuous curve γ in R2n+1 is horizontal if, at almost every point
t, the derivative γ′(t) is horizontal at γ(t).

Lemma 2.3. An absolutely continuous curve γ : [a, b] → R2n+1 is a horizontal
curve in the Heisenberg group if and only if, for t ∈ [a, b]:

γ2n+1(t) = γ2n+1(a) + 2

n!

i=1

) t

a

(γ′
iγn+i − γ′

n+iγi).
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Lemma 2.3 implies that for any horizontal curve γ we have

γ′
2n+1(t) = 2

n!

i=1

(γ′
i(t)γn+i(t)− γ′

n+i(t)γi(t)) for a.e. t ∈ [a, b].

If we assume that γ is C1, this equality holds for every t ∈ [a, b]. If we further
assume that γ is Cm for some m ≥ 1, then, for 1 ≤ k ≤ m, we may write

(2.2) Dkγ2n+1(t) =

n!

i=1

Pk
$
γi(t), γn+i(t), γ

′
i(t), γ

′
n+i(t), . . . , D

kγi(t), D
kγn+i(t)

%

for all t ∈ [a, b] where Pk is a polynomial determined by the Leibniz rule. If n = 1
writing out Pk explicitly gives

γk
3 = 2

k−1!

i=0

"
k − 1

i

#$
γk−i
1 γi

2 − γk−i
2 γi

1

%
.

Throughout this paper we work in the first Heisenberg group H1.

2.2. The Euclidean Whitney Extension Theorem for Cm,ω mappings. Through-
out this paper we assume that m ≥ 1 is an integer and ω is a modulus of continuity
with the properties given in the following definition.

Definition 2.4. A modulus of continuity is a function ω : [0,∞] → [0,∞] which is
continuous, increasing, and concave with ω(0) = 0 and which is not identically 0.

Given a modulus of continuity ω and an interval I ⊂ R, a map ϕ : I → R is of
class Cm,ω if ϕ is Cm and the following seminorm is finite:

‖ϕ‖Cm,ω(I) := sup
a,b∈I
a ∕=b

|Dmϕ(b)−Dmϕ(a)|
ω(|b− a|) .

In other words, the derivative Dmϕ is uniformly continuous on I with modulus
of continuity ω. The following lemma will be useful later.

Lemma 2.5. The function t )→ ω(t)/t is decreasing on (0,∞).

Proof. Assume x, y ∈ (0,∞) with x < y. Since ω is concave,
"
1− x

y

#
ω(0) +

"
x

y

#
ω(y) ≤ ω

""
1− x

y

#
· 0 +

"
x

y

#
· y

#
.

Hence x
yω(y) ≤ ω(x) which gives ω(y)

y ≤ ω(x)
x . □

Definition 2.6. Suppose K ⊂ R and F = (F k)mk=0 is a collection of continuous,
real-valued functions defined on K. Given a ∈ K, the Taylor polynomial of order

m of F at a is defined by Tm
a F (x) =

*m
k=0

Fk(a)
k! (x− a)k for x ∈ R. If m or a are

clear from the context, we write TaF or even TF for the Taylor polynomial.
When f ∈ Cm(I) for an interval I ⊆ R, the Taylor polynomial Tm

a f is defined
as usual using the collection (Dkf)mk=0.

By Taylor’s theorem, for all f ∈ Cm,ω(I) there is a constant C > 0 so that

(2.3) |Dkf(b)− Tm−k
a (Dkf)(b)| ≤ Cω(|b− a|)|b− a|m−k for a, b ∈ I, 0 ≤ k ≤ m.

See, for example, (2) in [11].
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Definition 2.7. Let K ⊂ R be compact and F = (F k)mk=0 be a collection of
continuous, real-valued functions defined on K.

F is a Whitney field of class Cm on K if

|F k(b)− Tm−k
a F k(b)| = o(|b− a|m−k)

for every 0 ≤ k ≤ m, uniformly as |b− a| → 0 with a, b ∈ K.
F is a Whitney field of class Cm,ω on K if there is a constant C > 0 so that

|F k(b)− Tm−k
a F k(b)| ≤ Cω(|b− a|)|b− a|m−k

for every 0 ≤ k ≤ m and a, b ∈ K.

The classical Whitney extension theorem can be stated as follows [29].

Theorem 2.8 (Classical Whitney extension theorem). Let K be a closed subset of
an open set U ⊂ R. Then there is a continuous linear mapping W from the space
of Whitney fields of class Cm on K to Cm(U) such that

Dk(WF )(x) = F k(x) for 0 ≤ k ≤ m and x ∈ K,

and WF is C∞ on U \K.

The following Cm,ω version of the classical Whitney extension theorem follows
immediately from Whitney’s original proof.

Theorem 2.9. Suppose K ⊂ R is closed and F = (F k)mk=0 is a collection of
continuous, real-valued functions defined on K. Then there is some f ∈ Cm,ω(R)
satisfying Dkf |K = F k for 0 ≤ k ≤ m if and only if F is a Whitney field of class
Cm,ω on K.

2.3. Area Discrepency and Velocity in H1. Fix ω : [0,∞] → [0,∞] a modulus
of continuity. Let F = (F k)mk=0 and G = (Gk)mk=0 be collections of continuous,
real-valued functions on K and suppose H : K → R is continuous. Given a, b ∈ K
with a < b, define the area discrepancy associated with (F,G,H) as

A(a, b) := H(b)−H(a)− 2

) b

a

((Tm
a F )′(Tm

a G)− (Tm
a G)′(Tm

a F ))(2.4)

+ 2F (a)(G(b)− Tm
a G(b))− 2G(a)(F (b)− Tm

a F (b)).

We define the associated velocity as

(2.5) Vω(a, b) := (ω(b−a))2(b−a)2m+ω(b−a)(b−a)m
) b

a

(|(Tm
a F )′|+ |(Tm

a G)′|).

Here we use the identifications F (x) = F 0(x) and G(x) = G0(x). Compare these
definitions to those in [24]. Note Vω(a, b) depends on the modulus of continuity ω.
Since ω is mostly fixed, we will typically denote Vω simply as V .

Remark 2.10. Let F = (F k)mk=0 and G = (Gk)mk=0 be collections of continuous,
real-valued functions on a compact set K ⊂ R and let H : K → R be continuous.
Fix a point a ∈ K. Define the collections F̂ = (F̂ k)mk=0 and Ĝ = (Ĝk)mk=0 on K

and the function Ĥ by

• (F̂ , Ĝ, Ĥ) = (F (a), G(a), H(a))−1(F,G,H),

• F̂ k = F k for 1 ≤ k ≤ m,
• Ĝk = Gk for 1 ≤ k ≤ m.
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Then F̂ (a) = Ĝ(a) = Ĥ(a) = 0, and

Â(a, b) = A(a, b) and V̂ (a, b) = V (a, b),

where Â(a, b) and V̂ (a, b) respectively denote the area discrepancy (2.4) and the

velocity (2.5) associated with (F̂ , Ĝ, Ĥ). The proof of this is a simple direct calcu-
lation, for instance as in [24] or Lemma 3.5 in [32].

2.4. Inequalities for Polynomials. The following consequences of the Markov
inequality [18, 25] were proved in [24].

Lemma 2.11. Let P be a polynomial of degree m ≥ 1 and fix points a < b. Let
M = max[a,b] |P |. Then there exists a closed subinterval I ⊂ [a, b] of length at least

(b− a)/4m2 such that |P (x)| ≥ M/2 for all x ∈ I.

Corollary 2.12. Let P be a polynomial of degree m ≥ 1 and fix points a < b. Let
M = max[a,b] |P |. Then

M(b− a)

8m2
≤

) b

a

|P | ≤ M(b− a).

3. Necessary Conditions For a Cm,ω Horizontal Extension

We use this section to prove Proposition 3.2, beginning with the following.

Lemma 3.1. Suppose I ⊂ R is a compact interval and f ∈ Cm,ω(I). Then there
is a constant C ≥ 1 depending on I, ω, m, and f such that, for all a, x ∈ I,

(i) |Dif(x)−Dif(a)| ≤ Cω(|x− a|) for 0 ≤ i ≤ m.
(ii) |f(x)− Tm

a f(x)| ≤ Cω(|x− a|)|x− a|m.
(iii) |Dkf(x)−DkTm

a f(x)| ≤ Cω(|x− a|)|x− a|m−k for 0 ≤ k ≤ m.

Proof. We prove (i). The case i = m follows from f ∈ Cm,ω(I). For 0 ≤ i < m by
Taylor’s theorem, for all a, x ∈ I, there is ζ between a and x so that

Dif(x) = Dif(a)+Di+1f(a)(x−a)+· · ·+ Dm−1f(a)

(m− 1− i)!
(x−a)m−1−i+

Dmf(ζ)

(m− i)!
(x−a)m−i.

Since each Dsf is continuous and hence bounded on I,

(3.1) |Dif(x)−Dif(a)| ≤
m!

s=i+1

‖Dsf‖∞|x− a|s.

Since w(t)/t is decreasing by Lemma 2.5, ω(|x − a|)/|x − a| ≥ ω(ℓ(I))/ℓ(I) so
|x − a| ≤ Cω(|x − a|) for a constant C depending on I and ω. Enlarging C as
needed and using (3.1) gives statement (i).

Estimates (ii) and (iii) follow from (2.3). □
Note that in Lemma 3.1 the constant C can be chosen to depend only on some

larger compact interval containing I. This is clear from the proof.

Proposition 3.2. Let (f, g, h) : R → H1 be a Cm,ω horizontal curve and K ⊂ R
be compact. Define F = (Dkf |K)mk=0, G = (Dkg|K)mk=0, H = (Dkh|K)mk=0. Then

(1) F , G, H are Whitney fields of class Cm,ω on K,
(2) for every 1 ≤ k ≤ m, the following holds on K:

(3.2) Hk = 2

k−1!

i=0

"
k − 1

i

#$
F k−iGi −Gk−iF i

%
,
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(3) there is a constant C ≥ 1 so |A(a, b)| ≤ CVω(a, b) for all a, b ∈ K, a < b.

Proof. Suppose f, g, h, F,G,H,K are as in the statement of Proposition 3.2. With-
out loss of generality, we may assume that K = [A,B] is a closed interval. Indeed,
if (1), (2), and (3) hold on the interval [A,B], then they also hold on any compact
subset. By Theorem 2.9, F , G, H must be Whitney fields of class Cm,ω on K. The
lifting equation (2.2) gives

Dkh = 2

k−1!

i=0

"
k − 1

i

#$
Dk−ifDig −Dk−igDif

%
,

on R for 1 ≤ k ≤ m. This proves Proposition 3.2 (1) and (2).
It remains to prove (3). Fix a, b ∈ K, a < b. To simplify notation, let Tf = Tm

a f
and Tg = Tm

a g be the Taylor polynomials of f and g of order m at a. We first
prove |A(a, b)| ≤ CV (a, b) under the assumption f(a) = g(a) = h(a) = 0. In this
case A(a, b) takes the form

A(a, b) = h(b)− h(a)− 2

) b

a

((Tf)′(Tg)− (Tf)(Tg)′).

Since (f, g, h) is a horizontal curve, we have h(b) − h(a) = 2
+ b

a
(f ′g − fg′). Hence

we can estimate |A(a, b)| as follows
&&&&&h(b)− h(a)− 2

) b

a

((Tf)′Tg − Tf(Tg)′)

&&&&&(3.3)

≤ 2

) b

a

|f ′g − (Tf)′Tg|+ 2

) b

a

|fg′ − Tf(Tg)′|.

Writing ω to denote ω(b−a), we estimate the first term as follows using Lemma 3.1:
) b

a

|f ′g − (Tf)′Tg| ≤
) b

a

|f ′ − (Tf)′||g − Tg|+ |f ′ − (Tf)′||Tg|+ |g − Tg||(Tf)′|

≤ C2ω2 · (b− a)2m + Cω · (b− a)m−1

) b

a

|Tg|

+ Cω · (b− a)m
) b

a

|(Tf)′|

for some constant C ≥ 1 depending only onK, ω, f , and g. Using a similar estimate
for the second term gives the following estimate of (3.3),

&&&&&h(b)− h(a)− 2

) b

a

((Tf)′Tg − Tf(Tg)′)

&&&&&

≤ 4Cω2 · (b− a)2m + 2Cω · (b− a)m−1

) b

a

(|Tf |+ |Tg|)

+ 2Cω · (b− a)m
) b

a

(|(Tf)′|+ |(Tg)′|).

Since Tf(a) = f(a) = 0, we have |Tf(x)| ≤ M(b − a) on [a, b] where we denote
M = max[a,b] |(Tf)′|. Applying Corollary 2.12 to the polynomial (Tf)′ gives

) b

a

|Tf | ≤ M(b− a)2 ≤ 8m2(b− a)

) b

a

|(Tf)′|.
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A similar argument holds for g. Hence, enlarging C,
&&&&&h(b)− h(a)− 2

) b

a

((Tf)′Tg − Tf(Tg)′)

&&&&&

≤ Cω2 · (b− a)2m + Cω · (b− a)m
) b

a

(|(Tf)′|+ |(Tg)′|).

This shows |A(a, b)| ≤ CV (a, b).
To conclude, we now undo the assumption f(a) = g(a) = h(a) = 0.

Claim 3.3. To prove |A(a, b)| ≤ CV (a, b) for some constant C ≥ 1, it suffices to
prove it under the assumption f(a) = g(a) = h(a) = 0.

Proof. If f(a), g(a), and h(a) are arbitrary, define the Cm horizontal curve

(f̂ , ĝ, ĥ) = (f(a), g(a), h(a))−1(f, g, h)

on R and set F̂ = (Dmf̂ |K)mk=0, Ĝ = (Dmĝ|K)mk=0, and Ĥ = (Dmĥ|K)mk=0. Notice

we have f̂(a) = ĝ(a) = ĥ(a) = 0 and the estimates listed in Lemma 3.1 remain true

for the same constant with (f, g, h) replaced by (f̂ , ĝ, ĥ). Hence |Â(a, b)| ≤ CV̂ (a, b)
with C depending on the constant chosen in Lemma 3.1 for (f, g, h) and independent

of a, b. By Remark 2.10, we have A(a, b) = Â(a, b) and V (a, b) = V̂ (a, b). Hence
|A(a, b)| ≤ CV (a, b) and the claim holds. □

This concludes the proof of Proposition 3.2. □

4. Sufficiency of the Conditions for a Cm,ω Horizontal Extension

Theorem 4.1. Let F = (F k)mk=0, G = (Gk)mk=0, H = (Hk)mk=0 be collections of
continuous, real-valued functions on compact K ⊂ R. Assume

(1) F , G, H are Whitney fields of class Cm,ω on K,
(2) for every 1 ≤ k ≤ m the following holds on K:

(4.1) Hk = 2

k−1!

i=0

"
k − 1

i

#$
F k−iGi −Gk−iF i

%
,

(3) there is a constant C ≥ 1 so that |A(a, b)| ≤ CVω(a, b) for all a, b ∈ K with
a < b.

Then there is a horizontal curve Γ ∈ Cm,ω(R,R3) such that DkΓ|K = (F k, Gk, Hk).

We use this section to prove Theorem 4.1. Suppose K,F,G,H satisfy the as-
sumptions in the statement of the theorem. Fix C ≥ 1 such that

(4.2) |A(a, b)| ≤ CV (a, b) for all a, b ∈ K with a < b.

Let I = [minK,maxK]. It suffices to find a Cm,ω horizontal map (f, g, h) : I → H
which extends (F,G,H). Here, derivatives and continuity at the endpoints are
defined using one-sided limits. Write I \K = ∪∞

i=1(ai, bi) for disjoint open intervals
(ai, bi) with ai, bi ∈ K.

Using Theorem 2.9, we can choose f, g : R → R of class Cm,ω such that

Dkf(x) = F k(x) and Dkg(x) = Gk(x) for every x ∈ K and 0 ≤ k ≤ m.
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Recall that Dk(Tm
a F )(x) =

*m−k
ℓ=0

Fk+ℓ(a)
ℓ! (x − a)ℓ and a similar expression holds

for Dk(Tm
a G)(x). Using the fact F and G are Whitney fields of class Cm,ω and

making C larger if necessary, we may assume that for all a, x ∈ K and 0 ≤ k ≤ m,

(4.3) |F k(x)−Dk(Tm
a F )(x)| ≤ Cω(|x− a|)|x− a|m−k,

(4.4) |Gk(x)−Dk(Tm
a G)(x)| ≤ Cω(|x− a|)|x− a|m−k.

Since Tm
a F = Tm

a f for a ∈ K, Lemma 3.1 implies that, for a ∈ K, x ∈ I, 0 ≤ k ≤ m,
and a possibly larger constant C:

(4.5) |Dkf(x)−Dk(Tm
a F )(x)| ≤ Cω(|x− a|)|x− a|m−k,

(4.6) |Dkg(x)−Dk(Tm
a G)(x)| ≤ Cω(|x− a|)|x− a|m−k.

Again using Lemma 3.1 and making C larger if necessary, we can also assume that
for every 0 ≤ k ≤ m and x, y ∈ I:

(4.7) |Dkf(x)−Dkf(y)| ≤ Cω(|x− y|),

(4.8) |Dkg(x)−Dkg(y)| ≤ Cω(|x− y|).

Proposition 4.2. There exists a constant ,C > C for which the following holds.
For each interval [ai, bi], there exist C∞ functions φ,ψ : [ai, bi] → R such that

(1) Dkφ(ai) = Dkφ(bi) = Dkψ(ai) = Dkψ(bi) = 0 for 0 ≤ k ≤ m.

(2) max{|Dkφ|, |Dkψ|} ≤ ,Cω(bi − ai) for 0 ≤ k ≤ m on [ai, bi].

(3) max{|Dmφ(x) − Dmφ(y)|, |Dmψ(x) − Dmψ(y)|} ≤ ,Cω(|x − y|) for every
pair x, y ∈ [ai, bi].

(4) H(bi)−H(ai) = 2
+ bi
ai
(f + φ)′(g + ψ)− (g + ψ)′(f + φ).

The proof of Proposition 4.2 will require several steps. Fix an interval [a, b] of
the form [ai, bi] for some i ≥ 1.

Claim 4.3. To prove Proposition 4.2, we may assume F (a) = G(a) = H(a) = 0.

Proof. Suppose f, g, F,G,H satisfy (4.2)–(4.8) where F (a), G(a), and H(a) are

arbitrary. Define new mappings f̂ = f − f(a), ĝ = g − g(a) and define collections

F̂ = (F̂ k)mk=0, Ĝ = (Ĝk)mk=0, and Ĥ = (Ĥk)mk=0 of continuous, real-valued functions
on K so that

(F̂ , Ĝ, Ĥ) = (F (a), G(a), H(a))−1(F,G,H),

F̂ k = F k, Ĝk = Gk, and Ĥk is chosen arbitrarily for 1 ≤ k ≤ m. Here again we use
the convention F = F 0 etc. It is easy to verify that the analogues of (4.2)–(4.8)

hold for f̂ , ĝ, F̂ , Ĝ with the same constants. If we now assume that Proposition

4.2 has been proven for f̂ , ĝ, F̂ , Ĝ, Ĥ satisfying (4.2)–(4.8) and the initial condition

F̂ (a) = Ĝ(a) = Ĥ(a) = 0, then we have a constant ,C > C and C∞ functions
φ,ψ : [a, b] → R such that

(i) Dkφ(a) = Dkφ(b) = Dkψ(a) = Dkψ(b) = 0 for 0 ≤ k ≤ m.

(ii) max{|Dkφ|, |Dkψ|} ≤ ,Cω(b− a) for 0 ≤ k ≤ m on [a, b].

(iii) max{|Dmφ(x)−Dmφ(y)|, |Dmψ(x)−Dmψ(y)|} ≤ ,Cω(|x− y|) for every pair
x, y ∈ [a, b].

(iv) Ĥ(b)− Ĥ(a) = 2
+ b

a
(f̂ + φ)′(ĝ + ψ)− (ĝ + ψ)′(f̂ + φ).
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Simple calculations yield as before

Ĥ(b)− Ĥ(a) = Ĥ(b) = H(b)−H(a) + 2F (a)G(b)− 2G(a)F (b)

and

2

) b

a

((f̂ + φ)′(ĝ + ψ)− (ĝ + ψ)′(f̂ + φ)) = 2

) b

a

((f + φ)′(g + ψ)− (g + ψ)′(f + φ))

+ 2f(a)g(b)− 2g(a)f(b).

Thus (iv) is equivalent to

H(b)−H(a) = 2

) b

a

(f + φ)′(g + ψ)− (g + ψ)′(f + φ).

This is the desired statement of (4) for the general case, so the claim is proven. □

Assume F (a) = G(a) = H(a) = 0. Temporarily denote A(a, b), V (a, b),ω(b− a)
by A, V,ω respectively. We now have

A = H(b)−H(a)− 2

) b

a

((TF )′(TG)− (TG)′(TF ))

and

V = ω2 · (b− a)2m + ω · (b− a)m
) b

a

(|(TF )′|+ |(TG)′|).

Define

A := H(b)−H(a)− 2

) b

a

(f ′g − g′f).

A similar argument to the proof of Proposition 3.2, increasing C if necessary, yields
&&&&&

) b

a

(f ′g − g′f)−
) b

a

((Tf)′Tg − Tf(Tg)′)

&&&&& ≤ CV.

Combining this with (4.2) shows that for some larger constant C,

(4.9) |A| =

&&&&&H(b)−H(a)− 2

) b

a

(f ′g − g′f)

&&&&& ≤ CV.

Notice Proposition 4.2(4) can be rewritten as:

(4.10) 2

) b

a

((f ′ψ − ψ′f) + (φ′g − g′φ) + (φ′ψ − ψ′φ)) = A.

Next, observe
+ b

a
(f ′ψ−ψ′f) = 2

+ b

a
f ′ψ for any C∞ function ψ which vanishes at a

and b. A similar equation holds for the other terms in (4.10). Hence constructing
φ and ψ which satisfy Proposition 4.2(4) is equivalent to solving

(4.11) 4

) b

a

(ψf ′ − φg′ + ψφ′) = A,

where A satisfies |A| ≤ CV . We now show how to do this subject to the constraints
given in Proposition 4.2. We will divide the constructions of φ and ψ into two cases.

First we construct a useful map that will be helpful in both cases. Fix the
constant C ≥ 1 for which the estimates (4.2)–(4.9) hold.
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Lemma 4.4. Suppose J ⊆ [a, b] is a closed interval of length at least (b−a)/18m2.
There is a constant C0 > 0 depending only on m and diam(K) and a non-negative
C∞ function η : R → R such that

(a) η vanishes outside of J ,
(b) η ≥ 48m2ω(b− a)(b− a)m on the middle third of J ,
(c) η′ ≥ 81m2ω(b− a)(b− a)m−1 on a subinterval of J with length ℓ(J)/6,
(d) η ≤ C0ω(b− a)(b− a)m

(e) |Diη| ≤ C0ω(b− a) on [a, b] for 0 ≤ i ≤ m,
(f) |Dmη(x)−Dmη(y)| ≤ C0ω(|x− y|) for all x, y ∈ [a, b].

Proof. Let ϕ(x) = e−1/(1−x2) if x ∈ (−1, 1) and ϕ(x) = 0 otherwise. Fix Ĉ0 ≥ 1
depending only on m and diam(K) such that

max
i=0,1,...,m

48e9/836im2i+2(‖Diϕ‖∞ + 1)((diam(K))m−i + 1) ≤ Ĉ0.

Let x0 be the midpoint of J . Define

η(x) = 48e9/8m2ω(b− a)(b− a)mϕ

"
2(x− x0)

ℓ(J)

#
.

Clearly η vanishes outside J . Since ϕ ≥ e−9/8 on [− 1
3 ,

1
3 ], we have in the middle

third of J that

η ≥ 48m2ω(b− a)(b− a)m.

It is easy to check ϕ′ ≥ 27
32e

−9/8 on [− 2
3 ,−

1
3 ] since ϕ′′ ≤ 0 in this region. Hence, in

the second sixth of J we have

η′ ≥ 48e9/8m2ω(b− a)(b− a)m · 27
32e

−9/8 · 2

ℓ(J)

≥ 81m2ω(b− a)(b− a)m−1.

On the other hand, it is easy to verify that η ≤ Ĉ0ω(b − a)(b − a)m. Since
ℓ(J) ≥ (b− a)/18m2, we have for all x ∈ [a, b] and 0 ≤ i ≤ m,

|Diη(x)| = 48e9/8m2ω(b− a)(b− a)m(Diϕ)

"
2(x− x0)

ℓ(J)

#
·
"

2

ℓ(J)

#i

≤ 48e9/836im2i+2‖Diϕ‖∞ω(b− a)(b− a)m−i

≤ Ĉ0ω(b− a)

Also, for any x, y ∈ [a, b], using Lemma 2.5,

|Dmη(x)−Dmη(y)| ≤ Ĉ0ω(b− a)

&&&&D
mϕ

"
2(x− x0)

ℓ(J)

#
−Dmϕ

"
(2(y − x0)

ℓ(J)

#&&&&

≤ Ĉ0‖Dm+1ϕ‖∞ω(b− a)

&&&&
2(x− y)

ℓ(J)

&&&&

≤ Ĉ036m
2‖Dm+1ϕ‖∞ω(b− a)

&&&&
x− y

b− a

&&&&

≤ Ĉ036m
2‖Dm+1ϕ‖∞ω (|x− y|) .

Setting C0 = Ĉ036m
2(‖Dm+1ϕ‖∞ + 1) completes the proof. □
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Lemma 4.5. Suppose

(4.12)

) b

a

|(Tf)′| ≥ max

') b

a

|(Tg)′|, CC0ω(b− a)(b− a)m

(
.

Then there exists a C∞ map ψ on [a, b] satisfying

(1) Diψ(a) = Diψ(b) = 0 for 0 ≤ i ≤ m,
(2) |Diψ(x)| ≤ CC0ω(b− a) on [a, b] for 0 ≤ i ≤ m,
(3) |Dmψ(x)−Dmψ(y)| ≤ CC0ω(|x− y|) for x, y ∈ [a, b],

(4) 4
+ b

a
ψf ′ = A.

Proof. Since C,C0 ≥ 1, we have

(4.13) |A| ≤ CV ≤ 3Cω(b− a) · (b− a)m
) b

a

|(Tf)′|.

Applying Lemma 2.11 to (Tf)′ gives a closed subinterval J ⊂ [a, b] of length at
least (b − a)/4m2 such that |(Tf)′| ≥ M/2 in J , where M = max[a,b] |(Tf)′|. If
M = 0, then V = 0, so A = 0 and we may choose ψ identically zero. Assume
M ∕= 0. In particular, (Tf)′ is not identically zero on J . By Lemma 4.4, there
exists a C∞ map η on [a, b] with the following properties:

(a) η vanishes outside of J ,
(b) |η| ≥ 48m2ω(b− a)(b− a)m on the middle third of J ,
(c) |η| ≤ C0ω(b− a)(b− a)m on [a, b],
(d) |Diη(x)| ≤ C0ω(b− a) for x ∈ [a, b] and 0 ≤ i ≤ m,
(e) |Dmη(x)−Dmη(y)| ≤ C0ω(|x− y|) for x, y ∈ [a, b],
(f) the sign of η is chosen to be the same as the sign of (Tf)′ on J

Now define ψ on [a, b] by scaling η by a constant:

ψ =

'
A

4
+ b

a
ηf ′

(
η.

That
+ b

a
ηf ′ ∕= 0 will be justified below. Clearly properties (1) and (4) hold. It

remains to verify (2) and (3). We first bound
&&&
+ b

a
ηf ′

&&& from below. Since the middle

third of J has length at least (b− a)/12m2 and η has the same sign as (Tf)′ on J ,
&&&&&

) b

a

η(Tf)′

&&&&& =
)

J

η(Tf)′

≥ (b− a)

12m2
48m2ω(b− a)(b− a)m

M

2

= 2ω(b− a) · (b− a)m+1M

≥ 2ω(b− a)(b− a)m
) b

a

|(Tf)′|.

Using |f ′ − (Tf)′| ≤ Cω(b− a) · (b− a)m−1 from (4.5) together with (4.12) gives

) b

a

|ηf ′ − η(Tf)′| ≤ CC0(ω(b− a)(b− a)m)2 ≤ ω(b− a)(b− a)m
) b

a

|(Tf)′|.
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Combining the previous two steps gives

(4.14)

&&&&&

) b

a

ηf ′

&&&&& ≥ ω(b− a)(b− a)m
) b

a

|(Tf)′|.

From (4.13), (4.14), and Lemma 4.4 we have

|Diψ| = |A|
4
&&&
+ b

a
ηf ′

&&&
|Diη| ≤ CC0ω(b− a).

This proves (2). Then (3) is proven similarly,

|Dmψ(x)−Dmψ(y)| = |A|
4
&&&
+ b

a
ηf ′

&&&
|Dmη(x)−Dmη(y)| ≤ CC0ω(|x− y|).

□

Lemma 4.5 has a direct analogue involving φ with conclusion −4
+ b

a
φg′ = A if

(4.15)

) b

a

|(Tg)′| ≥ max

') b

a

|(Tf)′|, CC0ω(b− a)(b− a)m

(
.

We now study the case in which (4.12) and (4.15) both fail.

Lemma 4.6. Suppose

CC0ω(b− a)(b− a)m > max

') b

a

|(Tf)′|,
) b

a

|(Tg)′|
(
.

Then there exist C∞ maps φ and ψ and a constant C1 ≥ 1 depending only on C,
m and diam(K) such that

(1) Diψ(a) = Diψ(b) = Diφ(a) = Diφ(b) = 0 for 0 ≤ i ≤ m,
(2) max{|Diψ(x)|, |Diφ(x)|} ≤ 6C1ω(b− a) on [a, b] for 0 ≤ i ≤ m,
(3) max{|Dmψ(x) − Dmψ(y)|, |Dmφ(x) − Dmφ(y)|} ≤ 6C1ω(|x − y|) for all

x, y ∈ [a, b],

(4) 4
+ b

a
(ψf ′ − φg′ + ψφ′) = A.

Proof. Notice the hypotheses imply

(4.16) |A| ≤ CV ≤ C(1 + 2CC0)ω(b− a)2(b− a)2m.

Denote B :=
-
6C(1 + 2CC0). Applying Lemma 4.4 to the interval [a, b] itself and

rescaling the resulting function by B/81m2 gives a C∞ function ξ and a constant
C1 > 0 depending only on C, m and diam(K) such that

(a) Diξ(a) = Diξ(b) = 0 for 0 ≤ i ≤ m,
(b) ξ′ ≥ Bω(b− a)(b− a)m−1 on a subinterval J of [a, b] with length (b− a)/6,
(c) |Diξ| ≤ C1ω(b− a) on [a, b] for 0 ≤ i ≤ m,
(d) |Dmξ(x)−Dmξ(y)| ≤ C1ω(|x− y|) for all x, y ∈ [a, b].

Now we apply Lemma 4.4 to J and rescale the function by B/48m2 to find a C∞

function η such that

(a) η vanishes outside of J ,
(b) η ≥ Bω(b− a)(b− a)m on the middle third of J (which has length (b− a)/18)

and is non-negative elsewhere,
(c) |Diη| ≤ C1ω(b− a) on [a, b] for 0 ≤ i ≤ m,
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(d) |Dmη(x)−Dmη(y)| ≤ C1ω(|x− y|) for all x, y ∈ [a, b].

We will now explain how we define φ and ψ in multiple cases.

Case 1:
&&&
+ b

a
ηf ′

&&& ≥ |A|/24.
Assume A ∕= 0 otherwise there is nothing to prove. Set φ ≡ 0 on [a, b] and

ψ = (A/(4
+ b

a
ηf ′))η. Then (1) and (4) are clearly satisfied. We have

|Diψ| = |A|
4
&&&
+ b

a
ηf ′

&&&
|Diη| ≤ 6C1ω(b− a) on [a, b]

which gives (2). Property (3) follows similarly.

Case 2:
&&&
+ b

a
ξg′

&&& ≥ |A|/24.

This is identical to the previous case with ψ ≡ 0 on [a, b] and φ = −(A/(4
+ b

a
ξg′))ξ.

Case 3: max
.&&&
+ b

a
ηf ′

&&& ,
&&&
+ b

a
ξg′

&&&
/
< |A|/24.

We first have by (4.16)
) b

a

ηξ′ =

)

J

ηξ′ ≥ 1
18B

2ω(b− a)2(b− a)2m ≥ |A|
3

,

and hence 4
+ b

a
(ηf ′ − ξg′ + ηξ′) > |A|. Now consider F : R → R defined by

F(λ) = 4

) b

a

((λη)f ′ − ξg′ + (λη)ξ′).

Clearly F is a continuous map with F(0) = −4
+ b

a
ξg′ ≤ 4

&&&
+ b

a
ξg′

&&& < |A|/6 and

F(1) > |A|. Hence, by the intermediate value theorem, there exists λ ∈ (0, 1) such
that F(λ) = |A|. If A ≥ 0 this completes the proof by setting φ = ξ and ψ = λη.
If A < 0, we do the same with the sign of η reversed. □

Let ,C = max{CC0, 6C1}.

Proof of Proposition 4.2. Using Lemma 4.5 and Lemma 4.6 completes the proof of
Proposition 4.2. Indeed, if (4.12) holds we may choose φ ≡ 0 on [a, b] and ψ as in
Lemma 4.5. If (4.15) holds, then we use the analogue of Lemma 4.5 with f and ψ
replaced by g and φ respectively. If (4.12) and (4.15) both fail, use Lemma 4.6. □

We are now ready to build the Cm,ω horizontal extension of (F,G,H), first on
each subinterval [ai, bi] and then on the entire interval I.

Lemma 4.7. There is a constant C3 ≥ 1 such that, for all i ≥ 1, there is a
horizontal curve (Fi,Gi,Hi) : [ai, bi] → H1 of class Cm,ω that satisfies

(1) for 0 ≤ k ≤ m,

DkFi(ai) = F k(ai), DkGi(ai) = Gk(ai), DkHi(ai) = Hk(ai)
DkFi(bi) = F k(bi), DkGi(bi) = Gk(bi), DkHi(bi) = Hk(bi).

(2) |DkFi(x)−F k(ai)| ≤ 2 ,Cω(bi − ai) and |DkGi(x)−Gk(ai)| ≤ 2 ,Cω(bi − ai)
for 0 ≤ k ≤ m and x ∈ [ai, bi].

(3) |DmFi(x)−DmFi(y)| ≤ 2 ,Cω(|x−y|) and |DmGi(x)−DmGi(y)| ≤ 2 ,Cω(|x−
y|) for all x, y ∈ [ai, bi].

(4) |DmHi(x)−DmHi(y)| ≤ C3ω(|x− y|) for all x, y ∈ [ai, bi].
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Proof. Fix i ∈ N. Set Fi = f + φ and Gi = g + ψ where φ and ψ are chosen
using Proposition 4.2 for the interval [ai, bi] and f and g are the Cm,ω Whitney
extensions of F and G respectively chosen earlier. Define Hi to be the horizontal
lift of Fi and Gi with starting height H(ai):

(4.17) Hi(x) := H(ai) + 2

) x

ai

(F ′
iGi − FiG′

i) for all x ∈ [ai, bi].

Differentiating Hi gives for any 1 ≤ k ≤ m the equation

(4.18) DkHi = 2

k−1!

j=0

"
k − 1

j

#$
Dk−jFiD

jGi −Dk−jGiD
jFi

%
,

on [ai, bi] by the Leibniz rule.
The proofs of (1) and (2) follow those of [24, Lemma 6.7 (1), (2)] with β and

the estimate (6.5) therein replaced here by ω and (4.7) respectively. For (3) we use
(4.7) and Proposition 4.2 to estimate as follows,

|DmFi(x)−DmFi(y)| ≤ |Dmf(x)−Dmf(y)|+ |Dmφ(x)−Dmφ(y)|

≤ Cω(|x− y|) + ,Cω(|x− y|)

≤ 2 ,Cω(|x− y|).

A similar argument applies for |DmGi(x)−DmGi(y)|.
The horizontality of (Fi,Gi,Hi) follows from the definition of the horizontal lift.

It remains to verify that Fi,Gi, and Hi are all of class C
m,ω. Clearly, Fi and Gi are

of class Cm,ω since f, g,φ, and ψ are. To see that Hi is of class C
m,ω, observe that

it is Cm and that DmHi is a linear combination of terms of the form DlFiD
m−lGi

for 0 ≤ l ≤ m, where both the number of terms and the coefficients are bounded.
We then observe that for any c < d in [ai, bi],

|DlFi(d)D
m−lGi(d)−DlFi(c)D

m−lGi(c)|
≤ |Dm−lGi(d)||DlFi(d)−DlFi(c)|+ |DlFi(c)||Dm−lGi(d)−Dm−lGi(c)|.

Note DlFi, D
m−lGi are bounded independently of i, which follows from (2) and the

fact that F k and Gk are continuous on the compact set K. If l < m we estimate

|DlFi(d)−DlFi(c)| ≤
) d

c

|Dl+1Fi(t)| dt

which is bounded by a multiple of d− c, and hence by a multiple of ω(|d− c|) using
Lemma 2.5. If l = m then the estimate of |DlFi(d)−DlFi(c)| follows directly from
Proposition 4.2. A similar argument gives the estimate of |Dm−lGi(d)−Dm−lGi(c)|.
This shows (Fi,Gi,Hi) is a Cm,ω horizontal curve. This also proves (4), since the
relevant estimates were independent of i. □

Recall I = [minK, maxK] and I \K = ∪i≥1(ai, bi), where the intervals (ai, bi)
are disjoint and ai, bi ∈ K.

Proposition 4.8. Define the curve Γ = (F ,G,H) : I → H1 as follows:

Γ(x) := (F (x), G(x), H(x)) if x ∈ K

and

Γ(x) := (Fi(x),Gi(x),Hi(x)) if x ∈ (ai, bi) for some i ≥ 1.
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Then Γ is a Cm,ω horizontal curve in H1 with

DkF(x) = F k(x), DkG(x) = Gk(x), DkH(x) = Hk(x)

for all x ∈ K and 0 ≤ k ≤ m.

Proof. Clearly the curve Γ is Cm,ω in the subintervals (ai, bi). Define maps γk on
K for 0 ≤ k ≤ m by γk = (F k, Gk, Hk). With this notation, we have to show that
Γ is a Cm,ω horizontal curve and DkΓ|K = γk for 0 ≤ k ≤ m.

The proofs that Γ is a Cm horizontal curve and that DkΓ|K = γk for 0 ≤ k ≤ m
are identical to the proof of these facts in [24, Proposition 6.8]. It remains to verify

that there is a constant Ĉ > 0 such that

(4.19) |DmΓ(x)−DmΓ(y)| ≤ Ĉω(|x− y|) for all x, y ∈ I.

We do so by dividing into several cases.
Suppose x, y ∈ K. Then (4.19) follows from the fact that F,G,H are Whitney

fields of class Cm,ω with Ĉ = C.
Suppose x ∈ K and y /∈ K. Then y ∈ (ai, bi) for some i ≥ 1. Assume x ≤ ai, as

the argument is similar if x ≥ bi. Using Lemma 4.7 and the definition of a Whitney
field of class Cm,ω, we may choose a constant Ĉ ≥ 0 depending only on C̃ and C
such that

|DmΓ(x)−DmΓ(y)| ≤ |γm(x)− γm(ai)|+ |DmΓ(ai)−DmΓ(y)| ≤ Ĉω(|x− y|).

Suppose x, y /∈ K and x, y ∈ (ai, bi) for some i ≥ 1. Then (4.19) follows directly

from Lemma 4.7 with Ĉ = max{2
√
3C̃,

√
3C3}.

Suppose x, y /∈ K, x ∈ (ai, bi) and y ∈ (aj , bj) with i ∕= j. Assume bi < aj as the
opposite case is similar. Then we estimate as above

|DmΓ(x)−DmΓ(y)| ≤ |DmΓ(x)−DmΓ(bi)|+ |γm(bi)− γm(aj)|
+ |DmΓ(aj)−DmΓ(y)|

≤ Ĉω(|x− y|)

for some Ĉ > 0 depending only on C̃ and C. □

Proof of Theorem 4.1. Theorem 4.1 follows directly from Proposition 4.8. □

Proof of Theorem 1.1. Proposition 3.2 and Theorem 4.1 yield Theorem 1.1. □

5. Construction Justifying Conditions for a Cm,ω Whitney Theorem

In this section we motivate the conditions given in Theorem 1.1. In particular, we
show that Theorem 1.1 does not hold if one uses the definition of velocity given in
[24, 32]. Recall from these references that, for collections of continuous real-valued
functions (F,G,H) on a compact set K and a, b ∈ K with a < b, the velocity was
defined as

(5.1) V1(a, b) := (b− a)2m + (b− a)m
) b

a

(|(Tm
a F )′|+ |(Tm

a G)′|) .

The following is a rewording of Theorem 1.1 from [24]. Note in particular the
drop in regularity for the resulting extended curve. Also, if ω is a modulus of
continuity satisfying our conditions then so is ωα for any 0 < α ≤ 1.
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Theorem 5.1 ([24]). Suppose K ⊆ R is compact and F = (F k)mk=0, G = (Gk)mk=0,
and H = (Hk)mk=0 are collections of continuous, real valued functions on K. If

there is a constant Ĉ > 0 such that

(1) F , G, and H are Whitney fields of class Cm,ω on K,
(2) for every 1 ≤ k ≤ m, the following holds on K:

Hk = 2

k−1!

i=0

"
k − 1

i

#$
F k−iGi −Gk−iF i

%
,

(3) and
&&&&
A(a, b)

V1(a, b)

&&&& ≤ Ĉω(b− a) for all a, b ∈ K with a < b,

then there is a horizontal curve Γ ∈ Cm,
√
ω(R,R3) satisfying DkΓ|K = (F k, Gk, Hk)

for 0 ≤ k ≤ m

While this is not the exact statement of Theorem 1.1 in [24], it follows immedi-
ately from the same proof. For a brief explanation, see Theorem 2.6 in [32].

Compare condition (3) here with condition (3) from Theorem 1.1. According to
the following example, condition (3) in Theorem 5.1 is strictly weaker than condition
(3) in Theorem 1.1. More precisely, we will construct a compact set K ⊂ R and
collections F = (F k)mk=0, G = (Gk)mk=0, and H = (Hk)mk=0 of continuous, real
valued functions on K which satisfy conditions (1) and (2) of Theorem 1.1 and
condition (3) of Theorem 5.1 but for which no horizontal Cm,ω extension exists.

Theorem 5.2 (Restatement of Theorem 1.2). Suppose ω is a modulus of continuity.

There is a compact and perfect set K ⊂ R, a constant Ĉ > 0, and collections
F = (F k)mk=0, G = (Gk)mk=0, and H = (Hk)mk=0 of continuous, real valued functions
on K so that

(1) F , G, and H are Whitney fields of class Cm,ω on K,
(2) for every 1 ≤ k ≤ m and x ∈ K, the following holds on K:

Hk = 2

k−1!

i=0

"
k − 1

i

#$
F k−iGi −Gk−iF i

%
,

(3) and
&&&&
A(a, b)

V1(a, b)

&&&& ≤ Ĉω(b− a) for all a, b ∈ K with a < b,

but there is no horizontal curve Γ ∈ Cm,ωα

(R,R3) satisfying Γ|K = (F,G,H) for
any α ∈ ( 12 , 1].

Proof of Theorem 1.2. Define

K =

∞0

n=0

[cn, dn] ∪ {1} where [cn, dn] :=
1
1− 2−n, 1− 3

42
−n

2
.

Define the real valued function H0 on K as follows:

H0(t) =

3
4−mnω(2−(n+2)) if t ∈ [cn, dn]

0 if t = 1.
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Set F k = Gk = 0 on K for 0 ≤ k ≤ m, and set Hk = 0 on K for 1 ≤ k ≤ m. We
will first verify that the collections F = (F k)mk=0, G = (Gk)mk=0, and H = (Hk)mk=0

are Whitney fields of class Cm,ω. (The collections F = (F k)mk=0 and G = (Gk)mk=0

are clearly Whitney fields of class Cm,ω on K since they are constantly 0 there.)
Since Tm

a H = H0 for any a ∈ K, we need only check that |H0(b)−H0(a)|/|b−a|m
is uniformly bounded by Cω(|b − a|) for some constant C > 0 and all a, b ∈ K.
This is similar to the proof of Proposition 4.1 in [24]. Fix a, b ∈ K. If a and b lie
in the same interval [ck, dk], then |H0(b) − H0(a)| = 0. If a and b lie in different
intervals [ck, dk] and [cℓ, dℓ] (say ℓ > k), then, since ω is non-decreasing and since
|b− a| ≥ (cℓ − dk) ≥ (ck+1 − dk) = 2−(k+2), we get

&&H0(b)−H0(a)
&&

|b− a|m ≤ 4−mkω(2−(k+2))− 4−mℓω(2−(ℓ+2))

(cℓ − dk)m

≤ 4−mk

(2−(k+2))m
ω(2−(k+2))

= 4m
$
1
2

%mk
ω(2−(k+2)) ≤ 4mω(|b− a|).

A similar argument holds when either a or b is 1, so H is a Whitney field of order
Cm,ω on K. We will now verify the following facts.

(1) For any a, b ∈ K,

&&&&
A(a, b)

V1(a, b)

&&&& ≤ 16mω(|b− a|).

(2) There is no horizontal curve Γ ∈ Cm,ωα

(R,R3) such that Γ = (F,G,H) on
K for any α ∈

$
1
2 , 1

2
.

Proof of (1). Fix a, b ∈ K \ {1} with a < b. By definition, A(a, b) = H0(b)−H0(a)
and V1(a, b) = (b − a)2m. Now, there are some k, ℓ ∈ N so that a ∈ [ck, dk] and
b ∈ [cℓ, dℓ] and k ≤ ℓ. If k = ℓ, there is nothing to prove since H0 is constant on
the interval [ck, dk]. Suppose k < ℓ. As above, we have

&&&&
A(a, b)

V1(a, b)

&&&& =
|H0(b)−H0(a)|

(b− a)2m
≤ 4−mk

(2−(k+2))2m
ω(2−(k+2)) ≤ 16mω(b− a)

since ω is non-decreasing. A similar proof works when b = 1. □

Proof of (2). Suppose α ∈
$
1
2 , 1

2
and Γ ∈ Cm,ωα

(R,R3) is a horizontal curve sat-
isfying Γ|K = (F,G,H). We will show that there is no constant C > 0 such that
|A(a, b)| ≤ CVωα(a, b) for all a, b ∈ K with a < b, and this will contradict condition
(3) in Proposition 3.2. Here, we will use the fact that ωα is also a modulus of
continuity satisfying our hypotheses.

Write Γ = (f, g, h). Since Γ must be constant and lie on the z-axis on each
interval [cn, dn] and since Γ is Cm, it follows that Dkf = Dkg = 0 on K for
0 ≤ k ≤ m. In particular, this means that Tm

a f and Tm
a g are constantly equal to 0

for any a ∈ K. Therefore, Taylor’s theorem gives a constant C > 0 such that

(1) |f(x)| ≤ Cω(|x− a|)α(b− a)m and |g(x)| ≤ Cω(|x− a|)α(b− a)m,
(2) |f ′(x)| ≤ Cω(|x− a|)α(b− a)m−1 and |g′(x)| ≤ Cω(|x− a|)α(b− a)m−1
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for any a, b ∈ K and x between a and b. Therefore, recalling 2−(n+2) = (cn+1−dn)
so that (cn+1 − dn)

2m = 4−m(n+2) for any n ∈ N, we must have
&&&&
A(dn, cn+1)

Vωα(dn, cn+1)

&&&& =
h(dn)− h(cn+1)

ω(cn+1 − dn)2α(cn+1 − dn)2m

=
4−mnω(2−(n+2))− 4−m(n+1)ω(2−(n+3))

ω(2−(n+2))2α4−m(n+2)

≥ 4−mn − 4−m(n+1)

4−m(n+2)
· ω(2−(n+2))

ω(2−(n+2))2α

= 16m(1− 4−m)ω(2−(n+2))1−2α.

Since α > 1
2 , 1−2α < 0, and so ω(2−(n+2))1−2α → ∞ as n → ∞. In other words, Γ

fails condition (3) of Proposition 3.2, and this leads to a contradiction. Therefore,
no such Γ can exist. □

The proof of the theorem is complete. □
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