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Abstract. Variational problems for the liquid crystal energy of mappings from three-dimensional domains into

the real projective plane are studied. More generally, we study the dipole problem, the relaxed energy, and density

properties concerning the conformal p-energy of mappings from n-dimensional domains that are constrained to take

values into the p-dimensional real projective space, for any positive integer p. Furthermore, a notion of optimally

connecting measure for the singular set of such class of maps is given.

A liquid crystal is a state of a matter, called mesomorphic, intermediate between a crystalline solid and a
normal isotropic liquid, in which long rod-shaped molecules display orientational order.

According to the continuum description in the Ericksen-Leslie theory [10, 29], a configuration of a liquid
crystal which occupies a domain Ω in R3 is described mathematically as a unitary vector field u(x) in Ω.
The bulk energy associated to the configuration u is given by

E(u, Ω) :=
∫

Ω

W (u,Du) dx . (0.1)

The form of the energy was derived by Oseen [32] on the basis of a molecular theory, and by Frank [15] as
a consequence of Galilean invariance. This means that the energy density satisfies the invariance properties

W (u,Du) = w(−u,−Du)
W (Qu,QDu QT ) = W (u,Du) ∀Q ∈ O(3) ,

(0.2)

so that the functional (0.1) is well-defined on the class of vector fields in Ω, regardless of the orientation.
We address to [7, 8, 9, 11] for further information on the general theory.
For nematic vector fields, the liquid crystal appears to have low viscosity and a thread-like structure. In

this case, the energy density can be written as

W (u,Du) := α |Du|2 + (k1 − α) (div u)2 + (k2 − α) (u · curl u)2 + (k3 − α) |u× curl u|2 , (0.3)

where the constants depend on the specific material under consideration at a fixed temperature, and satisfy
α > 0 and ki ≥ α for every i.

Formula (0.3) is obtained from the general form of the Oseen-Frank energy density by means of a change
of parameter in the divergence-free term, compare e.g. [20, Vol. II, Sec. 5].

Taking ki = α = 1/2 for every i, the liquid crystal energy (0.1) agrees with the Dirichlet energy

D(u, Ω) :=
1
2

∫

Ω

|Du|2 dx . (0.4)

Therefore, in this case the theory of liquid crystals reduces to the by now classical theory of harmonic maps
from Ω into S2, the unit sphere in R3.

Physical evidence shows that in general the ends of the molecules of a nematic liquid cannot be dis-
tinguished. This means that the vector field u should actually take values into the projective plane RP2,
obtained by identification of antipodal points in S2. But the lack of orientability of RP2 causes a lot of
trouble in the analysis of a variational theory.

In their celebrated paper [5] of 1986, Brezis-Coron-Lieb consider the Dipole problem for harmonic maps
with values into RP2. One of the aim of this paper is to recover and extend some of the results from [5]. To

1



this purpose, we shall see the projective plane RP2 as an embedded submanifold RP2 of R6, and we shall
work with the corresponding class of Sobolev maps

W 1,2(Bn, RP2) := {u ∈ W 1,2(Bn,R6) | u(x) ∈ RP2 for a.e. x ∈ Bn} ,

where Bn is the unit ball in Rn, the physical dimension being n = 3.
In the setting of Sobolev maps into S2,

W 1,2(Bn,S2) := {u ∈ W 1,2(Bn,R3) : |u(x)| = 1 for a.e. x ∈ Bn} ,

both the variational theories of harmonic mappings (0.4), in any dimension n, and of the liquid crystal
energy (0.1) are quite understood. The stable equilibrium for liquid crystals has been studied in [23, 24, 25,
26, 27, 28, 30, 39].

It is well-known that in the classical Sobolev approach to the theory of harmonic maps, the weak limit pro-
cess destroys energy concentration, the so called bubbling-off phenomenon, and does not preserve geometric
properties such as the degree, showing e.g. creation of cavitations.

Using tools from Geometric measure theory [12, 14, 35], variational results (such as e.g. the representation
formula for the relaxed energy) have been tackled in a satisfactory way in any dimension n by means of the
theory of Cartesian currents of Giaquinta-Modica-Souček [17, 20], see also [22]. Roughly speaking, given a
sequence of smooth maps uk from Bn into S2 with equibounded Dirichlet energies, and denoted by Guk

the current integration of n-forms on the naturally oriented graph of uk, possibly passing to a subsequence
the currents Guk

weakly converge to a Cartesian current in Bn×S2. Now, the weak convergence as currents
preserves geometric properties such as the absence of fractures, the orientation, and the degree. Therefore,
by Federer-Fleming’s closure theorem [14], it turns out that a Cartesian current T in the so called class
cart2,1 is an integer multiplicity (say i.m.) rectifiable n-current in Bn × S2 given by

T = Gu + L× [[S2 ]] . (0.5)

In this formula, Gu is the current carried by the graph of a Sobolev map v ∈ W 1,2(Bn, S2), and L is
an i.m. rectifiable current of codimension two in Bn that ”encloses the singularity” of u. For example,
in the physical dimension n = 3, if the sequence {uk} weakly converges in W 1,2 to the Sobolev function
u(x) = x/|x|, then (possibly passing to a subsequence) the currents Guk

weakly converge to a Cartesian
current as in (0.5), where u = u and L is the current integration of 1-forms on an oriented line with initial
point at the boundary and final point at the center of the ball B3.

Using the same geometric approach, an exhaustive variational theory of liquid crystals has been developed
in [18], see also [20, Vol. II, Sec. 5.1].

In a similar way, one may consider for any integer exponent p ≥ 2 the conformal p-energy

Dp(u, Bn) :=
1

pp/2

∫

Bn

|Du|p dx

of W 1,p-mappings that take values into the unit p-sphere Sp, i.e., in the class

W 1,p(Bn, Sp) := {u ∈ W 1,p(Bn,Rp+1) : |u(x)| = 1 for a.e. x ∈ Bn} .

Paralleling the theory of harmonic maps into the sphere, variational problems for the p-energy of mappings
with values into the p-sphere have been dealt in any dimension n, see e.g. [19, 20] and Secs. 5 and 6 below.

However, when one tries to attack similar problems in the case of mappings with values into the p-
dimensional projective space RPp, a further difficulty occurs in the case p ≥ 2 even, as RPp is orientable if
and only if p is odd.

As mentioned above, in this paper we shall see the projective p-space RPp as an embedded submanifold
RPp of some Euclidean space, i.e., see Sec. 1,

RPp := gp(Sp) , gp : Sp → RN(p) , N(p) :=
(p + 1)(p + 2)

2
(0.6)

and we shall correspondingly work with the Sobolev class

W 1,p(Bn, RPp) := {u ∈ W 1,p(Bn,RN(p)) | u(x) ∈ RPp for a.e. x ∈ Bn} .
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Notice that we have gp(−y) = gp(y), whereas

|Du| = |Dv| if u = gp ◦ v for some v ∈ W 1,p(Bn,Sp) .

In the case p ≥ 3 odd, since RPp is oriented, a homological theory based on Cartesian currents can be
performed, see Sec. 5 below. However, this cannot be done for p ≥ 2 even.

In fact, when analyzing e.g. the weak limits of sequences of currents integration of forms on graphs of
smooth maps in W 1,p(Bn, RPp) with equibounded p-energies, no concentration phenomenon can be seen
by testing with forms, for p ≥ 2 even.

To avoid cancellation in the limit process, one may try to work with measures associated to graphs, and
settle the problem in the framework e.g. of rectifiable varifolds, see [35]. However, we shall not pursue this
direction.

Main results. In Sec. 1, we collect some preliminary facts about continuous maps into the projective
space RPp. According to (0.6), in Sec. 2 we shall then prove in any dimension n the following:

Theorem 0.1 Let p ≥ 2. For every u ∈ W 1,p(Bn, RPp), there exist exactly two Sobolev maps v1, v2 ∈
W 1,p(Bn, Sp) such that gp ◦ vi = u a.e. in Bn. Moreover, v2 = −v1 and Dp(vi, B

n) = Dp(u,Bn).

This allows us to speak in a consistent way of singularity, degree, D-fields, Sec. 3, flat norm and minimal
connections, Sec. 4, for W 1,p-maps with values in RPp, for any integer exponent p ≥ 2 and in any dimension.

In fact, making use of the corresponding features concerning Sobolev maps in W 1,p(Bp+1, Sp), in Sec. 4
we shall analyze the Dipole problem as in [5, VIII-B], giving detailed proofs.

Notice that in the notation from [5, VIII-B] we have p = N − 1, hence in our paper we e.g. have p odd
if N is even in [5].

Trivial examples show that Theorem 0.1 is false for p = 1. Related questions about W 1,1-maps into the
projective line RP1 are discussed in [31], where we also compare the case p = 1 with the case p ≥ 3 odd.

In Sec. 5, we shall then study the weak limit points of sequences of smooth maps in W 1,p(Bn, RPp) with
equibounded p-energies, and density properties such as in Theorem 0.2 below.

For p ≥ 3 odd, we shall also see that the Dipole problem analyzed in Sec. 4 can be reformulated in
terms of Cartesian currents in Rp+1 × RPp. Moreover, in this framework the minimum is attained, see
Proposition 5.13, and is given by the energy of a current of the type GP + L × [[ RPp ]], where GP is the
current carried by the graph of a constant map, and L is an oriented line connecting in an optimal way the
prescribed singularities.

Therefore, in such a geometric approach, point defects connected by lines of concentration occur, whereas
in the classical Sobolev approach only point defects with total degree equal to zero come into the play.

In Sec. 7, we shall discuss a notion of optimally connecting measure of the singular set of Sobolev maps
with values into the non-orientable projective space RPp, i.e., for p ≥ 2 even.

Taking e.g., p = 2, for every Sobolev map u ∈ W 1,2(Bn,RP2), where n ≥ 3, we can define a countably
(n − 2)-rectifiable set Lu in Bn, equipped with an Hn−2 Lu-summable and non-negative integer valued
multiplicity function θu : L → N+, such that the measure

µu := θuHn−2 Lu

encloses the singularity of u in an optimal sense. Roughly speaking, the total variation

|µu|(Bn) =
∫

Lu

θu dHn−2

agrees with the integral minimal connection of the (n−3)-dimensional current that describes the homological
singularity of any Sobolev map v ∈ W 1,2(Bn, S2) that is linked to u by the relation g2 ◦ v = u, according
to Theorem 0.1.

In the physical dimension n = 3, it turns out that

4π · |µu|(B3) = L(u,B3) ∀u ∈ W 1,2(B3, RP2) ,

where L(u,B3) is the flat norm

L(u,B3) := sup
{∫

Ω

D(v) ·Dφ dx | φ ∈ C∞c (Ω) , ‖dφ‖ ≤ 1 in B3

}
.
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In this formula, D(v) is the classical D-field of any Sobolev map v ∈ W 1,2(Bn, S2) satisfying g2 ◦ v = u.
Theorem 0.1, in fact, yields that the definition of L(u,B3) does not depend on the choice of v, as D(−v) =
−D(v), compare [5].

Moreover, we shall obtain a density property for the class W 1,p(Bn, RPp), for any n ≥ p + 1, that we
state here in the case p = 2.

Theorem 0.2 Let u ∈ W 1,2(Bn, RP2), where n ≥ 3. There exists a sequence of smooth maps {uk} ⊂
W 1,2(Bn, RP2) satisfying the following properties:

i) uk ⇀ u weakly in W 1,2 as k →∞;

ii) D(uk, Bn) → D(u,Bn) + 4π · |µu|(Bn) as k →∞;

iii)
1
2
|Duk|2 Ln Bn ⇀

1
2
|Du|2 Ln Bn + 4π · µu weakly as measures;

iv) for any open set A contained in Bn \ sptµu, we have strong W 1,2-convergence of uk|A to u|A.

In Sec. 6, in the same spirit as Lebesgue’s relaxed area, we shall also introduce the relaxed energy of maps
u ∈ W 1,p(Bn,RPp), defined by

Dp(u, Bn) := inf
{

lim inf
k→∞

Dp(uk, Bn) | {uk} ⊂ C∞(Bn, RPp) , uk ⇀ u weakly in W 1,p(Bn,RN(p))
}

.

In low dimension n = p, by Schoen-Uhlenbeck density theorem [34] we clearly have

Dp(u,Bp) = Dp(u,Bp) ∀u ∈ W 1,p(Bp,RPp) .

In higher dimension n ≥ p + 1, we shall prove that the relaxed energy Dp(u,Bn) is finite, and actually

Dp(u,Bn) ≤ 2Dp(u,Bn) ∀u ∈ W 1,p(Bn, RPp) .

We shall also obtain an explicit formula for the relaxed energy, that in the case p = 2 reads as

D(u,Bn) = D(u, Bn) + 4π · |µu|(Bn) . (0.7)

Therefore, in dimension n = 3 we have

D(u,B3) = D(u,B3) + L(u,B3) , (0.8)

a formula that goes back to the analogous one proved by Bethuel-Brezis-Coron [3] for the relaxed Dirichlet
energy of maps in W 1,2(B3, S2).

Notice that a formula similar to (0.7), and to (0.8) for n = 3, holds true if we replace Bn with any
bounded domain Ω ⊂ Rn, or with e.g. Ω = Sn, the n-sphere in Rn+1. This clearly yields that the relaxed
energy is a non-local functional, for n ≥ 3.

Moreover, one may similarly consider the analogous problem for Sobolev mappings satisfying a prescribed
Dirichlet-type condition at the boundary.

Theorem 0.2, as well as the formula (0.7) for the relaxed energy, shows that in the limit process the
measure corresponding to the energy density concentrates on a measure the singular part of which agrees
with µu. This will be discussed with an example at the end of the introduction.

In Sec. 8, using the same approach as above, we shall finally analyze the problem of the liquid crystal
energy (0.1) for Sobolev maps u in W 1,2(B3,RP2). By Theorem 0.1, and by the invariance properties
(0.2), it turns out that the energy E(u,B3) is well-defined by the energy E(v, B3) of any Sobolev map v
in W 1,2(B3,S2) such that g2 ◦ v = u. As we have seen, the unit vector field u(x) describes a liquid such
that the ends of the molecules cannot be distinguished.

We shall restrict to the physical model of a nematic liquid crystal, with energy density given by (0.3),
where, for the sake of simplicity, we normalize the constant α to α = 1. The case of cholesteric liquid
crystals, compare e.g. [20, Vol. II, Sec. 5.1], can be treated in a similar way.
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The relevant quantity corresponding to the energy density (0.3), where α = 1, is the physical constant

Γ(k1, k2, k3) :=
√

k k3

∫ 1

0

√
1 +

( k

k3
− 1

)
s2 ds , k := min{k1, k2} ,

compare [20, Vol. II, Sec. 5.1.2]. Notice that if ki = 1 for every i, we have E(u,B3) = 2D(u,B3) and
Γ(1, 1, 1) = 1, whereas in general Γ(k1, k2, k3) ≥ 1.

Using results taken from [18] about the liquid crystal energy of maps in W 1,2(B3, S2), we shall obtain
the following density result, that extends Theorem 0.2:

Theorem 0.3 Let u ∈ W 1,2(B3,RP2) and let µu := θuH1 Lu be an optimally connecting measure. Then
there exists a sequence of smooth maps {uk} ⊂ W 1,2(B3,RP2) satisfying the following properties:

i) uk ⇀ u weakly in W 1,2 as k →∞;

ii) E(uk, B3) → E(u,B3) + 8π Γ(k1, k2, k3) · |µu|(B3) as k →∞;

iii) W (uk, Duk)L3 B3 ⇀ W (u,Du)L3 B3 + 8π Γ(k1, k2, k3)µu weakly as measures;

iv) for any open set A contained in B3 \ spt µu, we have strong W 1,2-convergence of uk|A to u|A.

In a similar way, we shall also discuss the Dipole problem for the liquid crystal energy in W 1,2(B3, RP2).
As to the relaxed energy of maps u in W 1,2(B3,RP2), defined by

E(u,B3) := inf
{

lim inf
k→∞

E(uk, B3) | {uk} ⊂ C∞(B3, RP2) , uk ⇀ u weakly in W 1,2(B3,R6)
}

,

we shall then obtain the following representation formula, that extends (0.7) and (0.8):

Theorem 0.4 For every u ∈ W 1,2(B3, RP2) the relaxed energy E(u,B3) is finite. Moreover,

E(u,B3) = E(u,B3) + 8π Γ(k1, k2, k3) · |µu|(B3) = E(u,B3) + 2 Γ(k1, k2, k3) · L(u,B3) .

Theorem 0.4 holds true if we replace B3 with any bounded domain Ω ⊂ R3, or with e.g. Ω = S3.
Therefore, again the relaxed energy is a non-local functional. Moreover, one may similarly consider the
analogous problem for Sobolev mappings satisfying a prescribed Dirichlet-type condition at the boundary.

We finally mention here that the interpretation of defects as singularities is meaningful only when the
degree of order is the same everywhere in the body Ω. This is the case of the theory of liquid crystals of
maps into the real projective plane that we consider here. When the degree of order may vary, a manifold
richer in states than RP2 has to be considered in the attempt to describe transitions between differently
ordered phases which take different places in space, compare e.g. [6].

An example. In the physical dimension n = 3, let v ∈ W 1,2(B3, S2) a Sobolev map with e.g. two
point singularities of degree ±1 at the points a± = (±a, 0, 0), where 0 < a < 1, and let u := g2 ◦ v the
corresponding map in W 1,2(B3, RP2). In this case, we set µu = H1 L, where L is the line segment
connecting a+ and a−, so that |µu|(B3) = |a+ − a−|.

Theorems 0.3 and 0.4 yield that the energy concentrates on L, as the limit energy contains the extra
term given by the factor 8π Γ(k1, k2, k3) times the length |a+ − a−| of the Dipole L. Correspondingly, for
the Dirichlet energy we have the extra term 4π |a+ − a−|. On the other hand, the area of the projective
space RP2 is 2π.

From a phenomenological point of view, this means that in the process of concentration, at each point of
the Dipole L the crystalline character disappears, and the vector field of the nematic liquid crystal covers
twice each direction of the projective space RP2. This is coherent with well-known topological facts that
are collected in Sec. 1, and with the Dipole problem described by Brezis-Coron-Lieb in [5, Sec. VIII-B-c].

Acknowledgement. I wish to thank M. Giaquinta for suggesting this investigation.
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1 Maps into projective spaces

In this section we collect some well-known facts about maps taking values into real projective spaces, focusing
on the case of maps into the real projective plane.

Maps into RPp. Let p ≥ 2 integer and Sp denote the unit p-sphere in Rp+1

Sp := {y ∈ Rp+1 : |y| = 1} .

We recall that the real projective p-dimensional space RPp is defined by the quotient space RPp := Sp/ ∼p,
the equivalence relation being y ∼p ỹ ⇐⇒ y = ỹ or y = −ỹ, and we denote by [y]p the elements of
RPp. Every function v : A ⊂ Rn → Sp yields a function [v]p : A → RPp defined by [v]p := Pp ◦ v, where
Pp : Sp → RPp is the canonical projection map Pp(y) = [y]p, i.e., [v]p(x) := [v(x)]p for x ∈ A.

We equip RPp with the induced metric

dRPp([y]p, [ỹ]p) := min{dSp(y, ỹ), dSp(y,−ỹ)} ,

where dSp denotes the geodesic distance on Sp. The metric space (RPp, dRPp) is complete, and the projection
map Pp is continuous. Therefore, [v]p := Pp ◦ v is continuous, if v : A → Sp is continuous. By the lifting
theorem, see e.g. [36, p. 34], if A is simply connected, for any continuous map U : A → RPp there are
exactly two continuous functions vi : A → Sp such that [vi]p = U , for i = 1, 2, with v2(x) = −v1(x) for
every x ∈ A.

The manifold RPp is orientable if and only if p is odd. This yields that the degree of a continuous map
v : Σp → Sp, where Σp is a copy of Sp, satisfies degSp(−v) = degSp(v) if p is odd, whereas degSp(−v) =
− degSp(v) if p is even. For this reason, for p ≥ 3 odd the degree of a continuous map U : Σp → RPp is
well-defined, compare [5, Sec. VIII-B-a)], where p = N − 1, and Sec. 3 below.

We also recall that the free homotopy groups of RPp are

πk(RPp) '




0 if k = 0 or 1 < k < p
Z2 if k = 1
Z if k = p

whereas πk(RPp) = πk(Sp) for k > p. Moreover, the integral homology groups are

Hk(RPp;Z) '



Z if k = 0 or k = p odd
Z/2Z if 0 < k < p and k is odd
0 otherwise .

Homotopically non-trivial maps. The following result implies that if a continuous map from
Σp into RPp is homotopically non-trivial, then its ”winding number” is a positive even integer. This is
coherent with the discussion from [5, Sec. VIII-B-c)] for the case p even.

Proposition 1.1 Let p ≥ 2. Let U : Σp → RPp be a continuous map such that U−1({[y]p}) contains at
most one point, for some [y]p ∈ RPp. Then there exists a continuous map h : [0, 1]× Σp → RPp such that
h(0, x) = U(x) for every x ∈ Σp and x 7→ h(1, x) is constant.

Proof: Since Σp is simply-connected, there exists v ∈ C0(Σp,Sp) such that Pp◦v = U . By the assumption,
v is not onto Sp, otherwise H0(U−1({[y]p})) ≥ 2 for every [y]p ∈ RPp, whence v takes values in Sp \ {y}
for some point y ∈ Sp. Since Sp \ {y} is contractible, we can find a continuous map h̃ : [0, 1] × Σp → Sp

such that h̃(0, x) = v(x) and x 7→ h̃(1, x) is constant. Define h := Pp ◦ h̃. ¤

Embedding of RP2. Assume now p = 2. Following [33, Sec. 3.1], the mapping g : S2 → R6

g(y1, y2, y3) =
(√2

2
y1

2,

√
2

2
y2

2,

√
2

2
y3

2, y1y2, y2y3, y3y1

)
(1.1)

induces an embedding

g̃ : RP2 → RP2 , RP2 := g(S2) ⊂ R6 , g̃([y]2) := g(y) .

6



Notice that RP2 is a non-orientable, smooth, compact, connected submanifold of R6 without boundary,
such that |z| = √

2/2 for every z ∈ RP2. Also, g maps the equator S2 ∩{y3 = 0} into a circle C of radius
1/2, covered twice, with constant velocity equal to one. The circle C is a minimum length generator of the
first homotopy group π1(RP2) ' Z2.

Remark 1.2 Let [[S2 ]] denote the standard integer multiplicity (say i.m.) rectifiable current integration of
2-forms in S2. Since RP2 is covered twice with opposite orientation by g, we infer that the image current
is zero, g#[[S2 ]] = 0.

Proposition 1.3 We have H2(RP2) = 2π.

Proof: By the area formula, and since H0(g−1(z)) = 2 for every z ∈ RP2, we find that

2H2(RP2) =
∫

RP2
H0(g−1(z)) dH2(z) =

∫

S2
JS

2

g (y) dH2(y) ,

where JS
2

g is the Jacobian of g. Since H2(S2) = 4π, it suffices to observe that

JS
2

g (y) = 1 ∀ y ∈ S2 .

This can be checked by recalling that

JS
2

g (y) =
√

det(dgy)∗ ◦ (dgy) ,

where dgy : TyS2 → R6 is the induced linear map and (dgy)∗ : R6 → S2 is the adjoint transformation,
compare [35, Sec. 7]. In polar coordinates, if y = (cos α sin β, sin α sin β, cosβ), setting

τ1 := (sinα,− cosα, 0) , τ2 := (cos α cos β, sin α cosβ,− sinβ) ,

then {τ1, τ2} is an orthonormal basis to TyS2, with τ1 ∧ τ2 = (cos α sin β, sin α sinβ, cosβ). For each
component gj we have

dgj
y(τ) = τ · ∇gj(y) ∀ τ ∈ TyS2 ,

whence the (6× 2) matrix corresponding to dgy is

M :=




√
2 sinα cos α sin β

√
2 cos2 α sin β cosβ

−√2 sin α cosα sin β
√

2 sin2 α sin β cos β

0 −√2 sinβ cos β
sin β(sin2 α− cos2 α) 2 sin α cos α sin β cosβ
− cos α cos β sin α(cos2 β − sin2 β)
sin α cos β cosα(cos2 β − sin2 β)




.

Denoting by a, b ∈ R6 the columns of the matrix M , we have det(MT · M) = |a|2|b|2 − (a · b)2. Since
|a| = |b| = 1 and a · b = 0, we infer that

√
det(dgy)∗ ◦ (dgy) = 1 for every y ∈ S2, as required. ¤

In the sequel we let Bn(x, r) denote the ball in Rn centered at x and with radius r. We also set
Bn

r := Bn(0, r), and Bn = Bn(0, 1), the unit ball centered at the origin.
For X = C0, C∞, L2,W 1,2, and B ⊂ Rn a Borel set, we define the classes

X(B, S2) := {v ∈ X(B,R3) : |v(x)| = 1 for a.e. x ∈ B} ,
X(B, RP2) := {u ∈ X(B,R6) : u(x) ∈ RP2 for a.e. x ∈ B} ,

where RP2 is equipped with the induced metric from R6. We also denote by

D(w, B) :=
1
2

∫

B

|Dw(x)|2 dx
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the Dirichlet energy of a map w in W 1,2(B, S2) or in W 1,2(B, RP2). For B = Bn, we finally set

D(w) := D(w, Bn) .

If u : B → RP2 is given by u = g ◦ v for some map v ∈ W 1,2(B, S2), we have u ∈ W 1,2(B, RP2) and

|Diu|2 = |v|2 · |Div|2 + (v ·Div)2

for each partial derivative Di. Therefore, since |v| = 1 and 2 (v · Div) = Di|v|2 = 0 a.e. for every i, we
infer that

|Du| = |Dv| if u = g ◦ v . (1.2)

In particular, for every v ∈ W 1,2(B, S2) we have

D(g ◦ v, B) = D(v,B) .

Embedding of RPp. In a similar way, for every p ≥ 2 integer we can find a smooth map

gp : Sp → RN(p) , N(p) :=
(p + 1)(p + 2)

2
,

with g2 = g in (1.1), that induces an embedding

g̃p : RPp → RPp , RPp := gp(Sp) ⊂ RN(p) , g̃p([y]p) := gp(y) .

More precisely, the first p + 1 components of gp are the functions y 7→ (
√

2/2)y2
i , for i = 1, . . . , p + 1, and

the other ones are the functions y 7→ yiyj , for 1 ≤ i < j ≤ p + 1.
For X = C0, C∞, Lp, W 1,p, and for B ⊂ Rn a Borel set, we similarly define the classes

X(B, Sp) := {v ∈ X(B,Rp+1) : |v(x)| = 1 for a.e. x ∈ B} ,
X(B, RPp) := {u ∈ X(B,RN(p)) : u(x) ∈ RPp for a.e. x ∈ B} ,

where RPp is equipped with the induced metric from RN(p). We also denote by

Dp(w,B) :=
1

pp/2

∫

B

|Dw(x)|p dx

the conformal p-energy of a map w in W 1,p(B, Sp) or in W 1,p(B, RPp), so that D2 = D, and for B = Bn

Dp(w) := Dp(w, Bn) .

Proposition 1.4 The following properties hold true for every p ≥ 2 :

i) RPp is a smooth, compact, connected submanifold without boundary, orientable if and only if p is odd;

ii) |z| = √
2/2 for every z ∈ RPp;

iii) if p is even, the image current gp#[[Sp ]] = 0;

iv) if p is odd, we can equip RPp with an orientation in such a way that gp#[[Sp ]] = 2 [[ RPp ]];

v) Hp(RPp) = αp/2, where αp := Hp(Sp);

vi) if u : B → RPp is given by u = gp ◦ v for some v ∈ W 1,p(B, Sp), then u ∈ W 1,p(B, RPp) and

|Du| = |Dv| if u = gp ◦ v . (1.3)

In particular, for every v ∈ W 1,p(B, Sp) we have

Dp(gp ◦ v, B) = Dp(v,B) .

Proof: For p ≥ 3, it is a technical adaptation of the argument given above for the case p = 2. For this
reason, it is omitted. ¤
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2 Sobolev maps into projective spaces

In this section we analyze some crucial properties concerning W 1,p-functions that take values into real
projective p-spaces. This properties hold true for every p ≥ 2. We then collect from [20] some features
about the modified of the inverse of the stereographic projection. We finally consider a minimum problem
for continuous maps into the projective p-space.

Clearly, if u : B → RPp is continuous (or Lipschitz), the corresponding function U = g̃−1
p ◦u : B → RPp

is continuous (or Lipschitz). Moreover, we have:

Proposition 2.1 Let u ∈ W 1,p(A, RPp) a continuous map, where A ⊂ Rn is open and simply-connected.
Denote U := g̃−1

p ◦ u : A → RPp, and let v : A → Sp a continuous map such that Pp ◦ v = U . Then v
belongs to W 1,p(A, Sp) and Dp(v, A) = Dp(u,A).

Proof: Let x0 ∈ A. By continuity, there exists a positive number δ > 0 such that Bn(x0, δ) ⊂ A and
dRPp(U(x), U(x0)) < 1 for every x ∈ Bn(x0, δ). Setting

Ω := g̃p({[y]p ∈ RPp | dRPp([y]p, U(x0)) < 1}) ,

the pull-back g−1
p (Ω) is given by the union of two disjoint open connected subsets Ω1,Ω2 ∈ Sp such that

Ω2 = −Ω1. Since v is continuous, then v(Bn(x0, δ)) is connected, with

Pp(v(Bn(x0, δ))) = U(Bn(x0, δ)) ⊂ Ω .

We then may and do assume that v(Bn(x0, δ)) ⊂ Ω1. This yields that

v|Bn(x0,δ) = (gp |Ω1)
−1 ◦ u|Bn(x0,δ) ,

where gp |Ω1 : Ω1 → Ω is bi-Lipschitz, whence v|Bn(x0,δ) ∈ W 1,p(Bn(x0, δ),Sp). Moreover, we have

u|Bn(x0,δ) = gp ◦ v|Bn(x0,δ) ,

so that (1.3) yields that |Dv(x0)| = |Du(x0)|. The claims follow. ¤

Density results. Let Y = Sp or RPp. In dimension n = p, Schoen-Uhlenbeck density theorem [34]
yields that the class of smooth maps in W 1,p(Bp,Y) is strongly dense in W 1,p(Bp,Y). This is false in the
case of higher dimension n ≥ p + 1. For this reason, Bethuel [2] introduced the classes R∞p (Bn,Y) and
R0

p(Bn,Y) of maps w ∈ W 1,p(Bn,Y) that are smooth, respectively continuous, outside a smooth closed
singular subset Σ(w) of Bn of dimension (n− p− 1), e.g., a discrete set for n = p + 1. He also proved:

Theorem 2.2 (Bethuel [2]) For any n ≥ p+1, the classes R∞p (Bn,Y) and R0
p(Bn,Y) are strongly dense

in W 1,p(Bn,Y).

Now, in any dimension n ≥ p + 1, and for any p ≥ 2, it turns out that the open set A := Bn \ Σ(w) is
simply-connected and with full measure |A| = |Bn|. Notice that this is false for p = 1. Therefore, from the
above facts we obtain:

Proposition 2.3 Let n ≥ p + 1 and p ≥ 2. For every map u ∈ R0
p(Bn, RPp) there exist exactly two maps

v1, v2 ∈ R0
p(B

n, Sp) such that gp ◦ vi = u a.e. in Bn.

Proof: Letting A = Bp \ Σ(u), by Proposition 2.1 we find a continuous map v ∈ W 1,p(A, Sp) such that
gp ◦ v = u in A. Actually v belongs to the class R0

p(B
n,Sp), as Σ(v) = Σ(u) is a smooth closed subset of

Bn of dimension (n− p− 1). Since U := g̃−1
p ◦ u|A is continuous, the lifting theorem yields the claim. ¤

Remark 2.4 Of course, Proposition 2.3 holds true in dimension n = p ≥ 2, replacing R0
p with W 1,p ∩C0.

We now prove that a similar property holds true for W 1,p-maps into RPp, in any dimension n.

Theorem 2.5 Let p ≥ 2 integer. For every u ∈ W 1,p(Bn, RPp), there exist exactly two Sobolev maps
v1, v2 ∈ W 1,p(Bn,Sp) such that gp ◦vi = u a.e. in Bn. Moreover, v2 = −v1 and Dp(vi, B

n) = Dp(u,Bn).
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Proof: Assume first n ≥ p + 1, and let {uk} ⊂ R0
p(Bn, RPp) be a sequence that strongly converges to

u in W 1,p(Bn,RN(p)), Theorem 2.2. By Proposition 2.3, we find a sequence {vk} ⊂ R0
p(B

n, Sp) such that
gp ◦ vk = uk for every k. Since Dp(vk) = Dp(uk), possibly passing to a subsequence, we find a Sobolev
map v ∈ W 1,p(Bn,Sp) such that vk ⇀ v weakly in W 1,p and gp ◦ v = u, so that Dp(u) = Dp(v). By
uniform convexity, the convergence Dp(uk) → Dp(u) yields that vk → v strongly in W 1,p. This gives that
v and −v satisfy the required properties. Assume now by contradiction that there exists a third Sobolev
map w ∈ W 1,p(Bn, Sp) such that gp ◦ w = u. Setting

A := {x ∈ Bn | w(x) = v(x)} , B := {x ∈ Bn | w(x) = −v(x)} ,

since |v(x)| = 1 and gp(−y) = gp(y), we have that |A ∩B| = 0 and |A ∪B| = |Bn|, whereas |A| > 0 and
|B| > 0. By a slicing argument, this property should hold true also in dimension n = p− 1, a contradiction,
as W 1,p-maps defined on (p − 1)-dimensional domains are continuous, whereas |v(x)| = 1 for a.e. x. In
the case n = p we argue in a similar way, on account of Schoen-Uhlenbeck density theorem [34]. The case
n < p is an immediate consequence of the cited lifting theorem. ¤

Remark 2.6 Notice that in dimension n ≥ p, Theorem 2.5 continues to hold if we replace Bn with any
bounded domain Ω ⊂ Rn, or with e.g. Ω = Sn, the n-sphere in Rn+1. In fact, for n ≥ p ≥ 2, any such set
Ω is simply-connected, hence we can apply again Propositions 2.1 and 2.3.

The modified stereographic projection. We recall that for every p ≥ 2 integer, the stere-
ographic projection σ of the unit p-sphere Sp onto Rp, from the south pole PS := (0Rp ,−1), maps
(y, z) ∈ Sp ⊂ Rp × R, with |y|2 + |z|2 = 1, to y/(1 + z) ∈ Rp, whereas its inverse σ−1 : Rp → Sp

sends x ∈ Rp to

σ−1(x) =
(

2
1 + |x|2 x,

1− |x|2
1 + |x|2

)
.

Since the Jacobian Jσ−1 is equal to p−p/2 |Dσ−1|p, by the area formula we have

1
pp/2

∫

Rp

|Dσ−1|p dx =
∫

Rp

Jσ−1 dx = Hp(Sp) .

Recall also that the map (−1)p σ−1 is an orientation preserving conformal diffeomorphism from Rp into
Sp \ {(−1)pPS}, where Sp is equipped with the natural orientation induced from the outward unit normal;
in particular, (−1)p σ−1

# [[Rp ]] = [[Sp ]]. We modify σ−1 as follows. We first write

σ−1(x) =
(

x

|x| sin θ(|x|),− cos θ(|x|)
)

, x ∈ Rp ,

where θ(r), for r > 0, is the angular distance, i.e. the geodesic distance of σ−1(∂Bp
r ) from the south pole

PS . For ε > 0 we set

θε(r) :=





θ(r) if r < Rε

ε (2Rε − r)/Rε if Rε ≤ r ≤ 2Rε

0 if r > 2Rε ,

where Rε := θ−1(ε), and we define ϕε : Rp → Sp by

ϕε(x) := (−1)p

(
x

|x| sin θε(|x|),− cos θε(|x|)
)

, x ∈ Rp .

Clearly ϕε is Lipschitz-continuous, with ϕε(x) = (−1)pσ−1(x) for |x| < Rε and ϕε(x) ≡ (−1)p PS for
|x| > 2Rε. Moreover, see [20, Vol. II, Sec. 4.1.1], it can be shown that the p-energy satisfies

1
pp/2

∫

Rp

|Dϕε|p dx ≤ Hp(Sp) + c ε ,

where c > 0 is an absolute constant, and that the image current

ϕε#[[Rp ]] = ϕε#[[ Bp
2Rε

]] = [[Sp ]] .
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Finally, by considering the mapping ϕε,δ(x) := ϕε(Rεx/δ), where the positive parameter δ can be chosen
independently of ε, one can even shrink the set {x ∈ Rp | ϕε(x) 6= (−1)p PS} to {0Rp}, without affecting
the p-energy, and state the following.

Proposition 2.7 For any ε, δ > 0 there exists a smooth map ϕε,δ : Rp → Sp such that

i) ϕε,δ ≡ (−1)p PS outside Bp
δ ;

ii) Hp(Sp) ≤ 1
pp/2

∫

Rp

|Dϕε,δ|p dx ≤ Hp(Sp) + ε ;

iii) ϕε,δ#[[Rp ]] = [[Sp ]], i.e., ϕε,δ has degree one;

iv) ϕε,δ is conformal on Bp
δ/2 .

A minimum problem. According to Proposition 1.1, we now consider a minimum problem concerning
homotopically non-trivial maps. To this purpose, we introduce the class

Fp := {u ∈ W 1,p(Bp,RPp) ∩ C0 | u is constant on ∂Bp and homotopically non-trivial } ,

the homotopy to be intended with fixed boundary datum on ∂Bp.

Proposition 2.8 For every p ≥ 2, we have:

inf{Dp(u) | u ∈ Fp} = 2Hp(RPp) .

Remark 2.9 Recall that 2Hp(RPp) = αp, where αp := Hp(Sp). Proposition 2.8 is the counterpart of a
well-known fact concerning homotopically non-trivial maps in W 1,p(Bp, Sp) ∩ C0, where the corresponding
infimum is equal to Hp(Sp). This time, in fact, Proposition 1.1 yields that maps in Fp have to cover at
least twice the target space RPp, see Remark 3.5 below.

Proof of Proposition 2.8: Let u ∈ Fp and U := g̃−1
p ◦ u. By Proposition 1.1, we deduce that

H0(U−1(z)) ≥ 2 for every z ∈ RPp, whence H0(u−1(z)) ≥ 2 for every z ∈ RPp. Denote by Ju the
Jacobian of u, so that by the parallelogram inequality

Ju(x) ≤ 1
pp/2

|Du(x)|p for a.e. x ∈ Bp.

Using the area formula, as in [1] we obtain

Dp(u,Bp) ≥
∫

Bp

Ju dx =
∫

RPp

H0(u−1(z)) dHp(z) ≥ 2Hp(RPp) = αp .

On the other hand, by Proposition 2.7 we obtain for every ε > 0 a (homotopically non-trivial) map v :
Bp → Sp that is constant on ∂Bp and satisfies

Dp(v, Bp) ≤ αp + ε .

Taking u = gp ◦ v, on account of (1.3) we find a map u ∈ Fp satisfying Dp(u,Bp) ≤ αp + ε, that proves
the assertion. ¤

Remark 2.10 Notice that the infimum in Proposition 2.8 is not attained. Otherwise, the infimum in the
corresponding problem about the class W 1,p(Bp, Sp) would be attained too, a contradiction.
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3 Singularity and degree

In this section we collect the definition of singularity and degree of W 1,p-mappings with values into the
projective p-space, recovering the notation from [20] and [5], respectively.

Singularity of mappings into Sp. For p ≥ 2, let ωSp denote the volume p-form on Sp,

ωSp :=
p+1∑

j=1

(−1)j−1yj d̂yj , y = (y1, . . . , yp+1)

where d̂yj := dy1 ∧ · · · ∧ dyj−1 ∧ dyj+1 ∧ · · · ∧ dyp+1, so that dωSp = (p + 1) · dy1 ∧ · · · ∧ dyp+1 and

[[Sp ]](ωSp) :=
∫

Sp

ωSp = Hp(Sp) =: αp .

Let Ω ⊂ Rn open, where n ≥ p + 1. To every Sobolev function v ∈ W 1,p(Ω, Sp) it corresponds an
(n−p−1)-dimensional current P(v) ∈ Dn−p−1(Ω) acting on compactly supported smooth (n−p−1)-forms
φ ∈ Dn−p−1(Ω) as

〈P(v), φ〉 :=
1
αp

∫

Ω

dφ ∧ v#ωSp . (3.1)

For future use, we notice that

(−v)#ωSp = (−1)p+1v#ωSp ∀ v ∈ W 1,p(Ω,Sp) . (3.2)

Remark 3.1 The current P(v) in (3.1) describes the singularity of v ∈ W 1,p(Ω, Sp). In fact, if e.g. n = p+1
and v ∈ R0

p(B
p+1, Sp), denoting by Σ(v) := {aj | j = 1, . . . m} the discrete set of Bp+1 of singular points

of v, we have, see Remark 5.1 below,

P(v) = −
m∑

j=1

∆j δaj , (3.3)

where ∆j ∈ Z and δaj is the unit Dirac mass centered at aj . For example, if v0(x) = x/|x| we get

P(v0) = −δa , a = 0Rp+1 .

In [20], the authors also defined the (n− p)-current D(v) ∈ Dn−p(Ω) given by

〈D(v), γ〉 :=
1
αp

∫

Ω

γ ∧ v#ωSp

for every γ ∈ Dn−p(Ω), so that clearly

P(v) = ∂ D(v) on Dn−p−1(Ω) . (3.4)

In the particular case n = p + 1, the above can be stated in terms of the so called D-field of Brezis-
Coron-Lieb. For p = 2, the vector field D(v) is defined for every v ∈ W 1,2(Ω,S2), where Ω ⊂ R3, by

D(v) := (v · vx2 × vx3 , v · vx3 × vx1 , v · vx1 × vx2)

where, setting v = (v1, v2, v3),

v · vxi × vxj := det




v1 v2 v3

v1
xi

v2
xi

v3
xi

v1
xj

v2
xj

v3
xj


 , vh

xk
:=

∂vh

∂xk
.

More generally, see [5, App. B], for p ≥ 3 the D-field of a map v ∈ W 1,p(Ω,Sp), where Ω ⊂ Rp+1, is the
vector field D(v) ∈ L1(Ω,Rp+1) defined in components by D(v) = (D1(v), . . . , Dp+1(v)), where

Di(v) := det
( ∂v

∂x1
, . . . ,

∂v

∂xi−1
, v,

∂v

∂xi+1
, . . . ,

∂v

∂xp+1

)
.
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If e.g. v ∈ R∞p (Bp+1,Sp), it turns out that for a.e. x ∈ Bp+1 the vector D(v)(x) ∈ Rp+1 is tangent
to the naturally oriented level lines {z ∈ Bp+1 | v(z) = v(x)}. More precisely, when normalized, the
vector D(v)(x) orients the slices of the current [[Bp+1 ]] by the map v at v(x) ∈ Sp. Moreover, for every
v ∈ W 1,p(Bp+1, Sp) we have

〈D(v), γ〉 =
1
αp

∫

Bp+1
〈γ, D(v)〉 dx ∀ γ ∈ D1(Bp+1) ,

so that (3.4) yields to:
P(v) = 0 ⇐⇒ Div D(v) = 0 on Bp+1 ,

where Div denotes the distributional divergence.
In higher dimension n ≥ p + 2, the (n− p)-vector field D(v) can be defined as the dual to v#ωSp ,

〈η,D(v)(x)〉 dx1 ∧ · · · ∧ dxn := η ∧ v#ωSp(x) ∀ η ∈ Λn−p(Rn) ,

see [20, Vol. II, Sec. 5.2.1]. More precisely, D(v) may be identified with ∗ v#ωSp , where ∗ is the Hodge
operator. For maps v ∈ W 1,p(Bn, Sp) we thus have

〈D(v), γ〉 =
1
αp

∫

Bn

〈γ,D(v)〉 dx ∀ γ ∈ Dn−p(Bn) . (3.5)

Also, for a.e. x ∈ Bn the (n − p)-vector D(v)(x) ∈ Λn−pRn is tangent to the naturally oriented level
(n− p)-surfaces {z ∈ Bn | v(z) = v(x)}, if v belongs to R∞p (Bn, Sp).

Singularity of mappings into RPp. If p ≥ 3 is odd, due to (3.2) we may and do define the
singularity of functions in W 1,p(Ω, RPp) by means of homological arguments.

The case p odd. The projective space RPp being orientable for p ≥ 3 odd, there exists a (normalized)
volume form ωRPp on RPp, i.e., a closed p-form ωRPp ∈ Dp(RPp) such that ωRPp(z) 6= 0 for every z ∈ RPp

and [[ RPp ]](ωRPp) = 1, compare iv) in Proposition 1.4. To our purposes, we define ωRPp by taking the
pull-back

ωRPp :=
2
αp

(ĝ−1
p )#ωSp , (3.6)

where ĝp is the one-to-one map given by the restriction of gp to the upper semi-sphere Sp
+ := {y ∈ Sp |

yp+1 > 0}. In fact, since (ĝ−1
p )#[[ RPp ]] = [[Sp

+ ]], we check

[[ RPp ]](ωRPp) =
2
αp

[[ RPp ]]((ĝ−1
p )#ωSp) =

2
αp

[[Sp
+ ]](ωSp) = 1 .

Notice that ωRPp can be smoothly extended to the whole of RPp, as p is odd.
According to (3.1), to every map u ∈ W 1,p(Ω,RPp), where Ω ⊂ Rn is open and n ≥ p + 1, we associate

the current P(u) ∈ Dn−p−1(Ω) acting on forms φ ∈ Dn−p−1(Ω) as

〈P(u), φ〉 :=
∫

Ω

dφ ∧ u#ωRPp . (3.7)

Due to Theorem 2.5, the following result clarifies the situation:

Proposition 3.2 Let p ≥ 3 odd and Ω ⊂ Rn open and simply-connected, with n ≥ p + 1. Let u ∈
W 1,p(Ω, RPp) and v ∈ W 1,p(Ω, Sp) be such that gp ◦ v = u. Then we have

1
2

P(u) = P(v) .

Proof: By (3.6), we can write

u#ωRPp =
2
αp

(gp ◦ v)#((ĝ−1
p )#ωSp) =

2
αp

v#((ĝ−1
p ◦ gp)#ωSp) .
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Moreover,

ĝ−1
p ◦ gp(y) = h(y) :=

{
y if y ∈ Sp

+

−y if − y ∈ Sp
+

and h#ωSp = ωSp if p is odd, see (3.2), so that

1
2

u#ωRPp =
1
αp

v#ωSp ∀ v ∈ W 1,p(Bn, Sp) such that gp ◦ v = u . (3.8)

The assertion follows from the definitions (3.1) and (3.7). ¤

The case p even. The above does not hold for p ≥ 2 even. In this case, in fact, RPp being non-orientable,
according to (3.2) the form ωRPp defined in (3.6) cannot be extended to a smooth form in the whole of
RPp. On the other hand, if we define the i.m. rectifiable current [[ RPp ]] as [[ RPp ]] := ĝp#[[Sp

+ ]], for p even
it turns out that its boundary is non-zero, ∂[[ RPp ]] 6= 0.

Example 3.3 If e.g. p = 2, it is readily checked that ∂[[ RP2 ]] = g2#[[ ∂S2
+ ]] = 2 [[ C ]], where the 1-cycle C

is a generator of π1(RP2), see Sec. 1.

However, taking e.g. Ω = Bn, by Theorem 2.5, for p even, the singularity of a Sobolev map u ∈
W 1,p(Bn, RPp) is actually identified (up to the sign) by the current P(v) in (3.1), for any Sobolev map
v ∈ W 1,p(Bn, Sp) such that gp ◦v = u, compare Proposition 6.6 below. In fact, (3.2) yields P(−v) = −P(v).

Degree of mappings into Sp. Let Σp a copy of Sp in Rp+1. We recall that the degree of a
smooth map v ∈ W 1,p(Σp, Sp) is given by the integer

degSp(v) :=
1
αp

∫

Σp

D(v) · ν dHp ∈ Z ,

where D(v) is the D-field of a smooth extension of v to a neighbor of Σp and ν is the outward unit normal
to Σp in Rp+1, so that D(v) · ν agrees with the Jacobian JΣp

v , compare [5]. According to (3.2), we thus
have:

degSp(v) =
1
αp

∫

Σp

v#ωSp . (3.9)

In fact, if e.g. p = 2, we check:

v#ωS2 = v1dv2 ∧ dv3 + v2dv3 ∧ dv1 + v3dv1 ∧ dv2

= (v · vx2 × vx3) dx2 ∧ dx3 + (v · vx3 × vx1) dx3 ∧ dx1 + (v · vx1 × vx2) dx1 ∧ dx2

= D(v) · νH2 .

Similarly, the degree of a continuous map v ∈ W 1,p(Bp, Sp) that is constant at the boundary ∂Bp is
defined by

degSp(v) :=
1
αp

∫

Bp

v#ωSp ∈ Z . (3.10)

In dimension n = p + 1, the degree of a map v ∈ R0
p(B

p+1,Sp) at a singular point aj ∈ Σ(v) is:

degSp(v, aj) :=
1
αp

∫

∂Bp+1(aj ,r)

D(v) · νaj ,r dHp ∈ Z ,

where νaj ,r is the outward unit normal to ∂Bp+1(aj , r) and the radius r > 0 is smaller than the distance
of aj from Σ(v)\{aj}, see Remark 3.1. The definition does not depend on the choice of r small. Moreover,
if the current of the singularity P(v) satisfies (3.3), we have

degSp(v, aj) = ∆j ∀ j = 1, . . . , m . (3.11)

Recall that if v has zero degree at aj , then the singularity at aj can be removed by paying an arbitrary
small amount of energy. More precisely, Bethuel-Zheng [4] proved the following:
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Proposition 3.4 Let v ∈ R0
p(Bp+1, Sp) satisfy degSp(v, aj) = ∆j for some aj ∈ Σ(v). Then for every

ε > 0 there exists a Sobolev map vε ∈ R0
p(B

p+1, Sp) smooth in Bp+1(aj , r), with r = r(ε) > 0 small, and
equal to v outside Bp+1(aj , r), such that

Dp(vε, B
p+1) ≤ Dp(v, Bp+1) + |∆j |αp + ε , αp := Hp(Sp) .

Degree of mappings into RPp. Due to (3.2), we distinguish between p ≥ 3 odd and p ≥ 2 even.
Actually, our Proposition 2.3 and Theorem 2.5 clarify the situation.

The case p odd. As in [5, Sec. VIII-B-a)], for p ≥ 3 odd the D-field D(u) is well-defined for maps
u ∈ W 1,p(Bp+1, RPp) by

D(u) := D(v) for some v ∈ W 1,p(Bp+1, Sp) such that gp ◦ v = u . (3.12)

In fact, on account of Theorem 2.5, it suffices to recall that for p odd we have D(−v) = D(v).
Therefore, the degree of a smooth map u ∈ W 1,p(Σp,RPp) is well-defined by

degRPp(u) :=
1
αp

∫

Σp

D(u) · ν dHp .

In principle degRPp(u) ∈ Z/2, as Hp(RPp) = αp/2. However, by (3.12) we have degRPp(u) = degSp(v) for
any Sobolev map v ∈ W 1,p(Σp,Sp) such that gp ◦ v = u, whence degRPp(u) ∈ Z. Moreover, due to (3.8)
and (3.9), we infer that

degRPp(u) =
1
2

∫

Σp

u#ωRPp .

If e.g. u = gp ◦ v, where v(x) = x/|x| ∈ W 1,p(Σp, Sp), we have degRPp(u) = 1. According to [5,
Sec. VIII-B-a)], this means that the double of the degree, 2 degRPp(u) ∈ 2Z, tells the times the function
u : Σp → RPp winds around RPp, with orientation prescribed by the sign.

Similarly, according to (3.8) and (3.10), the degree of a continuous map u ∈ W 1,p(Bp, RPp) that is
constant at the boundary ∂Bp is defined by

degRPp(u) :=
1
2

∫

Bp

u#ωRPp ∈ Z .

In dimension n = p + 1, the degree of a map u in R0
p(Bp+1,RPp) at a singular point aj ∈ Σ(u) is

well-defined by

degRPp(u, aj) :=
1
αp

∫

∂Bp+1(aj ,r)

D(u) · νaj ,r dHp ∈ Z ,

for r > 0 small. We thus have
degRPp(u, aj) = degSp(v, aj) ∈ Z (3.13)

for any Sobolev map v ∈ R0
p(Bp+1, Sp) such that gp ◦ v = u. In fact, on account of Proposition 2.3, one has

degSp(v, aj) = degSp(−v, aj) if p is odd ,

compare (3.2). If e.g. ũ = gp ◦ ṽ, where ṽ(x) = x/|x| ∈ W 1,p(Bp+1, Sp), then

1
2

P(ũ) = −δa , degRPp(ũ, a) = 1 , a = 0Rp+1 .

More generally, by Proposition 3.2 and (3.11), if Σ(u) = {aj | j = 1, . . . , m}, we infer that

1
2

P(u) = −
m∑

j=1

∆j δaj ⇐⇒ degRPp(u, aj) = ∆j ∈ Z ∀ j . (3.14)

Again, the double of the degree, 2 degRPp(u, ai) ∈ 2Z, tells the times the function u|∂Bp+1(aj ,r), for r
small, winds around RPp, with orientation prescribed by the sign, compare Proposition 3.6 below.
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The case p even. Following [5, Sec. VIII-B-c)], by (3.2) this time for every v ∈ W 1,p(Σp,Sp) we have

degSp(v) = −degSp(−v) if p ≥ 2 is even .

Therefore, arguing as above, in dimension n = p, the degree of a smooth map u ∈ W 1,p(Σp, RPp) is
well-defined by

degRPp(u) := |degSp(v)| ∈ N
for any Sobolev map v ∈ W 1,p(Σp, Sp) such that gp ◦ v = u. In a similar way one defines the degree of a
continuous map u ∈ W 1,p(Bp, RPp) that is constant at the boundary ∂Bp.

Remark 3.5 If u ∈ W 1,p(Σp, RPp) ∩ C0, the degree is equal to the topological degree of the mapping
U ∈ C0(Σp,RPp) that corresponds to u by the formula

U = g̃−1
p ◦ u ,

so that both U and u are homotopically trivial if and only if degRPp(u) = 0, compare Proposition 2.8.
Notice that for p even, we cannot define the degree of e.g. smooth maps u ∈ W 1,p(Σp, RPp) by using

the form ωRPp in definition (3.6). In fact, arguing as in Proposition 3.2, we have

(ĝ−1
p ◦ gp)#ωSp(y) =

{
ωSp(y) if y ∈ Sp

+

−ωSp(y) if − y ∈ Sp
+

and hence
1
2

∫

Σp

u#ωRPp = 0.

Similarly, in dimension n = p + 1, the degree of a map u ∈ R0
p(Bp+1,Sp) at a singular point aj ∈ Σ(u)

is well-defined by
degRPp(u, aj) := | degSp(v, aj)| ∈ N ,

for any Sobolev map v ∈ R0
p(B

p+1, Sp) such that gp ◦ v = u. In fact, by (3.2) we again have

degSp(v, aj) = −degSp(−v, aj) if p is even .

For the same reason, the D-field D(u) is not well-defined for maps u ∈ W 1,p(Bp+1, RPp), as

D(−v) = (−1)p+1D(v) ∀ v ∈ W 1,p(Bp+1, Sp) . (3.15)

A minimum problem. As a consequence, setting for every k ∈ N+

Fp,k := {u ∈ W 1,p(Bp, RPp) ∩ C0 | u is constant on ∂Bp and | degRPp(u)| = k }
on account of Remark 3.5 we extend Proposition 2.8 as follows:

Proposition 3.6 For every p ≥ 2 we have

inf{Dp(u,Bp) | u ∈ Fp,k} = 2 kHp(RPp) .

Proof: Let u ∈ Fp,k and v ∈ W 1,p(Bp, Sp) ∩ C0 be such that gp ◦ v = u, see Remark 2.4. By the area
formula, as in [1] we have

Dp(v, Bp) ≥
∫

Bp

Jv dx =
∫

Sp

H0(v−1(y)) dHp(y) .

Property | degSp(v)| = | degRPp(u)| = k yields that H0(v−1(y)) ≥ k for every y ∈ Sp, whence

Dp(v,Bp) ≥ kHp(Sp) = k αp .

Since Dp(u,Bp) = Dp(v,Bp), and Hp(RPp) = αp/2, we obtain the inequality ”≥”.
Conversely, by Proposition 2.7, for every ε > 0 we can easily find a continuous map v ∈ W 1,p(Bp,Sp)

constant on ∂Bp, with degree | degSp(v)| = k, such that Dp(v, Bp) ≤ k αp +ε. Taking u = gp ◦v, we obtain
a map u ∈ Fp,k satisfying Dp(u,Bp) ≤ k αp + ε, that proves the assertion. ¤
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4 The dipole problem

In this section we recover the results about the classical dipole problem that have been stated in [5, Sec. VIII].
We only consider the problem in dimension p+1, where the singularities of W 1,p-maps into RPp are assumed
to be zero-dimensional, with a prescribed constant condition at infinity. More general dipole problems as in
[5] can be treated in a similar way. To this purpose, we first recall the definition of real and integral mass.

Real and integral mass. Let Ω ⊂ Rn open, where n ≥ p + 1. For every current Γ ∈ Dn−p−1(Ω)
we denote by

mr,Ω(Γ) := inf{M(D) | D ∈ Dn−p(Ω) , (∂D) Ω = Γ}
mi,Ω(Γ) := inf{M(L) | L ∈ Rn−p(Ω) , (∂L) Ω = Γ} (4.1)

the real and integral mass of Γ relative to Ω, respectively.

Integral flat chains and minimal connections. The current Γ ∈ Dn−p−1(Ω) is said to
be an integral flat chain if there exists an i.m. rectifiable current L ∈ Rn−p(Ω) such that (∂L) Ω = Γ or,
equivalently, if mi,Ω(Γ) < ∞. In this case, moreover, Federer-Fleming’s closure-compactness theorem [14]
yields that the minimum is always attained. Therefore, an i.m. rectifiable current L ∈ Rn−p(Ω) is an integral
minimal connection of Γ allowing connections to the boundary of Ω if (∂L) Ω = Γ and M(L) = mi,Ω(Γ),
see [20, Vol. II, Sec. 4.2.6].

For example, the current P(v) ∈ Dn−p−1(Ω) of the singularity of a Sobolev map v ∈ W 1,p(Ω, Sp), see
(3.1), is an integral flat chain:

Proposition 4.1 Let Ω ⊂ Rn open, where n ≥ p + 1. Then for every v ∈ W 1,p(Ω, Sp), the integral mass
mi,Ω(P(v)) of P(v) relative to Ω is finite, and actually

αp ·mi,Ω(P(v)) ≤ Dp(v, Ω) .

Proof: By the parallelogram inequality and the coarea formula [1], we have

Dp(v, Ω) ≥
∫

Ω

Jv dx =
∫

Sp

Hn−p(v−1(y)) dHp(y) .

We then find y ∈ Sp such that the i.m. rectifiable current L ∈ Rn−p(Ω)

L := τ(v−1(y), 1,
−→
L ) ,

−→
L (x) :=

D(v(x))
|D(v(x))| , x ∈ v−1(y) ,

acting on forms γ ∈ Dn−p(Ω) as

〈L, γ〉 =
∫

v−1(y)

〈γ(x),
−→
L (x)〉 dHn−p(x) ,

has finite mass
M(L) = Hn−p(v−1(y)) ≤ 1

αp
Dp(v, Ω) < ∞

whereas by (3.4) and (3.5) it also bounds the singularity of v, i.e., (∂L) Ω = P(v). ¤

Remark 4.2 Therefore, for every v ∈ W 1,p(Ω, Sp) there exists an integral minimal connection of P(v), i.e.,
an i.m. rectifiable current L ∈ Rn−p(Ω) such that (∂L) Ω = P(v) and

M(L) = mi,Ω(P(u)) .

As a consequence, by Theorem 2.5, Remark 2.6, and Propositions 3.2 and 4.1, we immediately deduce:

Corollary 4.3 Let p ≥ 3 odd and Ω ⊂ Rn open and simply connected, where n ≥ p + 1. Then, for every
u ∈ W 1,p(Ω,RPp) the current 1

2 P(u) is an integral flat chain, and actually

αp ·mi,Ω

(1
2

P(u)
)

=
αp

2
·mi,Ω(P(u)) ≤ Dp(u,Ω) .
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Flat norm. Let now Ω ⊂ Rp+1 open. The flat norm of a function v ∈ W 1,p(Ω, Sp) is defined by

L(v,Ω) :=
1
αp

sup
{∫

Ω

D(v) ·Dφ dx | φ ∈ C∞c (Ω) , ‖dφ‖ ≤ 1 in Ω
}

, (4.2)

compare [5]. Since the integral mass mi,Ω(P(v)) is finite, by Federer’s theorem [13] it agrees with the real
mass mr,Ω(P(v)). On the other hand, by a duality argument, see [20, Vol. II, Sec. 4.2.6], the real mass
mr,Ω(P(v)) agrees with the flat norm L(v, Ω). We then obtain:

Proposition 4.4 If n = p + 1, for every v ∈ W 1,p(Ω,Sp) we have mi,Ω(P(v)) = L(v, Ω).

By Theorem 2.5 and (3.15), we may and do give the following

Definition 4.5 Let Ω ⊂ Rp+1 open and simply-connected. The (non-normalized) flat norm of a function
u ∈ W 1,p(Ω,RPp) is well-defined by

L(u, Ω) := αp · L(v, Ω) ,

where L(v, Ω) is the flat norm (4.2) of any Sobolev map v ∈ W 1,p(Ω, Sp) such that gp ◦ v = u.

Notice that for p ≥ 3 odd, by (3.12) we deduce that

L(u, Ω) = sup
{∫

Ω

D(u) ·Dφ dx | φ ∈ C∞c (Ω) , ‖dφ‖ ≤ 1 in Ω
}

. (4.3)

The dipole problem. Let now p ≥ 2 integer and n = p + 1. We choose a finite number m of points
ai ⊂ Rp+1, for i = 1, . . . ,m, and to each point ai we assign a non-zero integer number ∆i, that corresponds
to the degree at ai. Similarly to [5, Sec. VIII-B-a)], the classical dipole problem is formulated as

inf{Dp(u,Rp+1) | u ∈ F̃p} ,

where F̃p denotes the class

F̃p := {u ∈ W 1,p(Rp+1, RPp) | u ∈ C∞(Rp+1 \ {ai | i = 1, . . . , m}) ,
u is constant at infinity, degRPp(u, ai) = ∆i ∀ i} .

(4.4)

The case p odd. By the definition of degree degRPp from Sec. 3, we assume ∆i ∈ Z \ {0} for every i.

Proposition 4.6 Let p ≥ 3 odd. The class F̃p is non-empty if and only if the compatibility condition

m∑

i=1

∆i = 0 (4.5)

on the non-zero integers ∆i is satisfied. If (4.5) holds, moreover, we have

inf{Dp(u,Rp+1) | u ∈ F̃p} = 2Hp(RPp) ·mi,Rp+1(Γ0) , where Γ0 := −
m∑

i=1

∆i δai .

Proof: Assume that F̃p is non-empty, and let v ∈ R0
p(Rp+1,RPp) be such that gp ◦ v = u ∈ F̃p, see

Proposition 2.3. Then degSp(v, ai) = degRPp(u, ai) for every i. Therefore, since v is constant at infinity,
condition (4.5) holds. The converse holds true, too. Moreover, if (4.5) holds, by a density argument, and on
account of Theorem 2.5 and (3.13), we deduce that

inf{Dp(u,Rp+1) | u ∈ F̃p} = inf{Dp(v,Rp+1) | v ∈ G̃p} ,

where
G̃p := {v ∈ W 1,p(Rp+1, Sp) | v ∈ C∞(Rp+1 \ {ai | i = 1, . . . , m}) ,

v is constant at infinity, degSp(v, ai) = ∆i ∀ i} .
(4.6)
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Finally, condition degSp(v, ai) = ∆i yields that P(v) = Γ0 for every v ∈ G̃p, see (3.3) and (3.11), so that

inf{Dp(v,Rp+1) | v ∈ G̃p} = αp ·mi,Rp+1(Γ0) ,

compare e.g. [20, Vol. II, Sec. 4.2.10], whereas Hp(RPp) = αp/2. ¤

As a consequence, we readily obtain:

Corollary 4.7 Let p ≥ 3 odd and assume that (4.5) holds. Then we have

inf{Dp(u,Rp+1) | u ∈ F̃p} = sup
{∫

Rp+1
D(u0) ·Dφ dx | φ ∈ C∞c (Rp+1) , ‖dφ‖ ≤ 1 in Rp+1

}

for any u0 ∈ F̃p, where the D-field D(u0) is defined by (3.12).

Proof: If v0 ∈ G̃p is such that gp ◦ v0 = u0, we have P(v0) = Γ0, hence mi,Rp+1(Γ0) = mi,Rp+1(P(v0)).
The assertion follows from Propositions 4.4 and 4.6, on account of Definition 4.5 and (4.3). ¤

The case p even. We now recover the statement from [5, Sec. VIII-B-c)]. To this purpose, by the
definition of degree from Sec. 3, we first observe that in the notation of F̃p from (4.4) this time we assume
that ∆i ∈ N \ {0} for every i.

Proposition 4.8 Let p ≥ 2 even. The class F̃p is non-empty if and only if we can find some signs εi = ±1,
for i = 1, . . . ,m, such that the compatibility condition on the natural numbers ∆i ∈ N \ {0}

m∑

i=1

εi ∆i = 0 , εi ∈ {+1,−1} , (4.7)

is satisfied. If (4.7) holds, moreover, we have

inf{Dp(u,Rp+1) | u ∈ F̃p} = 2Hp(RPp) · inf
εi

{
mi,Rp+1

( m∑

i=1

εi∆i δai

)
| (4.7) holds

}
.

Proof: Assume again that F̃p is non-empty, and let v ∈ R0
p(Rp+1, RPp) be such that gp ◦ v = u ∈ F̃p.

Then for every i there exists εi ∈ {+1,−1} such that degSp(v, ai) = εi degRPp(u, ai). Therefore, since v
is constant at infinity, condition (4.7) holds. The converse holds true, too. Moreover, if (4.7) holds, we now
deduce that

inf{Dp(u,Rp+1) | u ∈ F̃p} = inf{Dp(v,Rp+1) | v ∈ Ĝp} ,

where

Ĝp := {v ∈ W 1,p(Rp+1, Sp) | v ∈ C0(Rp+1 \ {ai | i = 1, . . . , m}) ,
v is constant at infinity, degSp(v, ai) = εi∆i ∀ i , and (4.7) holds} .

(4.8)

Finally, this time we have

inf{Dp(v,Rp+1) | v ∈ Ĝp} = αp · inf
εi

{
mi,Rp+1

( m∑

i=1

εi∆i δai

)
| (4.7) holds

}
,

as required. ¤

Example 4.9 For p ≥ 3 odd, taking e.g. m = 2, ∆1 = 1, and ∆2 = −1, we have Γ0 = δa2 − δa1 and
mi,Rp+1(Γ0) = |a1 − a2|, whence

inf{Dp(u,Rp+1) | u ∈ F̃p} = 2Hp(RPp) · |a1 − a2| . (4.9)

For p ≥ 2 even, taking this time m = 2, ∆1 = 1, and ∆2 = 1, we obtain again the formula (4.9).
This means that in both cases, the energy of minimizing sequences {uk}k ⊂ F̃p for the Dipole problem

concentrates along the minimal connection of the singularities, but the double of the degrees ∆i tells how
many times the uk’s have to ”cover” the target manifold RPp near the lines of concentration of energy.
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5 Weak limits, currents, and dipoles

In this section we analyze the weak limit points of sequences of smooth maps with equibounded p-energies
that are constrained to take values into the projective space RPp.

Our approach relies on the results from the previous sections and on well-known facts for the analogous
problem concerning maps that take values into the sphere Sp. For this reason, we briefly recall some facts
from the theory of Cartesian currents, for further details of which we refer to [20] and [22].

Cartesian currents. Let n ≥ p ≥ 2. If v : Bn → Sp is a smooth map, the n-current Gv is
defined by the integration of compactly supported smooth n-forms ω in Bn×Sp over the naturally oriented
n-manifold given by the graph Gv of v, i.e.,

Gv(ω) :=
∫

Gv

ω , ω ∈ Dn(Bn × Sp) .

We thus have
Gv(ω) =

∫

Bn

(Id ./ v)#ω ∀ω ∈ Dn(Bn × Sp) , (5.1)

where (Id ./ v)(x) := (x, v(x)). More generally, to every Sobolev map v in W 1,p(Bn,Sp) we associate
an i.m. rectifiable current Gv ∈ Rn(Bn × Sp) by means of definition (5.1), where this time the pull-back
involves the distributional gradient of v. More precisely, Gv acts on forms in Dn(Bn × Sp) by integration
on the rectifiable graph Gv of v, and the mass agrees with the area of Gv, i.e.,

M(Gv) = Hn(Gv) ≤ cDp(v, Bn) < ∞ .

Remark 5.1 For n ≥ p + 1, if P(v) ∈ Dn−p−1(Bn) is the current of the singularity of a Sobolev map
v ∈ W 1,p(Bn, Sp), by (3.1) and (5.1) we find that

αp · 〈P(v), φ〉 = Gv(dφ ∧ ωSp) = ∂Gv(φ ∧ ωSp) (5.2)

for every φ ∈ Dn−p−1(Bn), as Gv(φ ∧ dωSp) = 0. More precisely, from the proof of Proposition 5.5 below
we deduce that for every v ∈ W 1,p(Bn, Sp)

∂Gv = P(v)× [[Sp ]] on Dn−1(Bn × Sp) .

For example, if n = p + 1 and v0 = x/|x|, we have

∂Gv0 = −δ0 × [[Sp ]] on Dp(Bp+1 × Sp) ,

compare [20, Vol. I, Sec. 3.2.2], whence P(v0) = −δ0, see Remark 3.1. More generally, if v ∈ R0
p(B

p+1,Sp)
and Σ(v) := {aj | j = 1, . . . m} is the discrete set of singular points of v, we recall that the current
P(v) ∈ D0(Bp+1) and the degree of v at the aj ’s are related by (3.3) and (3.11).

If v ∈ W 1,p(Bn, Sp) is smooth, by Stokes’ theorem the current Gv has null boundary inside Bn × Sp,
as for every compactly supported smooth (n− 1)-form η in Bn × Sp

∂Gv(η) := Gv(dη) =
∫

Gv

dη =
∫

∂Gv

η = 0 . (5.3)

We also recall that a sequence of currents {Tk} ⊂ Dn(Bn × Sp) is said to converge weakly in Dn to
some T ∈ Dn(Bn × Sp), say Tk ⇀ T , if Tk(ω) → T (ω) for every test form ω ∈ Dn(Bn × Sp). Moreover,
the mass is lower semicontinuous along sequences of weakly converging currents.

For this reasons, taking into account Federer-Fleming’s closure theorem [14], one has:

Theorem 5.2 (Giaquinta-Modica-Souček) Let {vk} be a sequence of smooth maps in W 1,p(Bn,Sp)
such that supk Dp(vk, Bn) < ∞. Then, possibly passing to a subsequence, the currents Gvk

weakly converge
in Dn to some current T ∈ Dn(Bn × Sp) satisfying the following properties:
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i) T is i.m. rectifiable in Rn(Bn × Sp);

ii) there exist a function vT ∈ W 1,p(Bn, Sp) and an i.m. rectifiable current LT ∈ Rn−p(Bn) such that

T = GvT
+ LT × [[Sp ]] ; (5.4)

iii) T has finite mass, M(T ) = M(GvT
) + αp ·M(LT ) < ∞;

iv) T has no interior boundary, i.e.,

∂T (η) := T (dη) = 0 ∀ η ∈ Dn−1(Bn × Sp) . (5.5)

Proof: Compare [20, Vol. II], Sec. 5.2.3 for p = 2, and Note 6 in Ch. 5 for p ≥ 3. ¤

Notice that the sequence {vk} weakly converges in W 1,p(Bn,Rp+1) to the Sobolev function vT in (5.4).
Theorem 5.2 motivates the following definition, that agrees with the one in [20, Vol. II], as cited above.

Definition 5.3 We denote by cartp,1(Bn×Sp) the class of n-currents in Bn×Sp satisfying the properties
i)–iv) in Theorem 5.2.

Therefore, Gv belongs to cartp,1(Bn × Sp) for every smooth map v ∈ W 1,p(Bn, Sp) or, more generally,
for every Sobolev map v ∈ W 1,p(Bn, Sp) satisfying the null-boundary condition

∂Gv(η) := Gv(dη) = 0 ∀ η ∈ Dn−1(Bn × Sp) . (5.6)

Remark 5.4 In dimension n = p, property (5.6) is always satisfied. In fact, by Schoen-Uhlenbeck density
theorem, for every v ∈ W 1,p(Bp,Sp) we find a smooth sequence {vk} ⊂ C∞(Bp, Sp) that strongly converges
to v in W 1,p. By Lebesgue’s theorem, this yields the weak convergence Gvk

(ω) → Gv(ω) for every form
ω ∈ Dp(Bp × Sp). Since Gvk

(dη) = 0 for every η ∈ Dp−1(Bp × Sp), see (5.3), letting k →∞ we get (5.6).

More generally, we obtain:

Proposition 5.5 Let n ≥ p + 1 and T ∈ Rn(Bn × Sp) satisfy (5.4), where vT ∈ W 1,p(Bn, Sp) and
LT ∈ Rn−p(Bn). Then the null-boundary condition (5.5) is equivalent to

(∂LT ) Bn = −P(vT ) , (5.7)

where P(vT ) is given by (3.1).

Proof: In order to prove that (5.7) implies (5.5), we decompose any form ω ∈ Dk(Bn × Sp) as ω =∑k
j=0 ω(j), where ω(j) is the (possibly zero) component with exactly j differentials in the ”vertical” y-

directions. Moreover, we split the differential d = dx + dy.
Since vT ∈ W 1,p(Bn,Sp), arguing as e.g. in [22, Prop. 4.2.10] we get:

(a) ∂GvT (η(j)) = 0 for every j = 0, . . . , p− 1 and η ∈ Dn−1(Bn × Sp);

(b) ∂GvT
(dyγ(j)) = 0 for every j = 0, . . . , p− 1 and γ ∈ Dn−2(Bn × Sp).

Since ∂(LT × [[Sp ]])(η(j)) = 0 for every j = 0, . . . , p−1 and η ∈ Dn−1(Bn×Sp), by (5.4) and (a) we deduce
that the null-boundary condition (5.5) is equivalent to the property

∂(LT × [[Sp ]])(η(p)) = −∂GvT
(η(p)) ∀ η ∈ Dn−1(Bn × Sp) . (5.8)

By a density argument we reduce to show that (5.8) holds for every η such that η(p) = φ ∧ α for some
φ ∈ Dn−p−1(Bn) and α ∈ Dp(Sp). By Hodge decomposition theorem, we can write α = λωSp + dβ for
some λ ∈ R and β ∈ Dp−1(Sp), so that

η(p) = φ ∧ α = λ φ ∧ ωSp + φ ∧ dβ .
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Using (5.2) and (b), we have

∂GvT
(φ ∧ α) = ∂GvT

(λφ ∧ ωSp) + ∂GvT
(φ ∧ dβ) = λαp · 〈P(vT ), φ〉+ 0 .

Moreover, by definition of Cartesian product of currents we obtain

∂(LT × [[Sp ]])(φ ∧ α) = ∂(LT × [[Sp ]])(λφ ∧ ωSp) + ∂(LT × [[Sp ]])(φ ∧ dβ)
= λ (LT × [[Sp ]])(dφ ∧ ωSp) + (LT × [[Sp ]])(dφ ∧ dβ)
= λLT (dφ) · [[Sp ]](ωSp) + LT (dφ) · [[Sp ]](dβ)
= λαp · ∂LT (φ) + 0 ,

as [[Sp ]](dβ) = ∂[[Sp ]](β) = 0, so that (5.7) implies (5.8), hence (5.5). The converse implication follows from
the previous computation, where we take η = η(p) = φ ∧ ωSp , i.e., λ = 1 and β = 0. ¤

In [17] and [19], by means of the parametric lower semicontinuous extension of the conformal p-energy
integrand, Giaquinta-Modica-Souček defined a non-negative functional T 7→ Dp(T ) on the class cartp,1(Bn×
Sp), called the p-energy, satisfying the following properties:

Proposition 5.6 We have:

(a) T 7→ Dp(T ) is lower semicontinuous with respect to the weak convergence in Dn;

(b) if T satisfies (5.4), then Dp(T ) = Dp(vT , Bn) + αp ·M(LT );

(c) the class cartp,1(Bn×Sp) is closed under the weak Dn-convergence of sequences {Tk} of currents with
equibounded p-energies, supk Dp(Tk) < ∞;

(d) if {Tk} ⊂ cartp,1(Bn × Sp) satisfies supk Dp(Tk) < ∞, possibly passing to a subsequence Tk weakly
converges to some current T in cartp,1(Bn × Sp);

(e) for every T ∈ cartp,1(Bn × Sp), there exists a sequence of smooth maps {vk} ⊂ W 1,p(Bn,Sp) such
that Gvk

⇀ T in Dn and Dp(vk, Bn) → Dp(T ) as k →∞.

Proof: As to the properties (a) and (b), see [20, Vol. II, Sec. 1.2.4] and also [22, Sec. 4.9]. Properties (c)
and (d) follow by arguing as in [16], where they were proved for the case p = 2 in any dimension n. The
density property (e) is obtained by using the same argument as for the case p = 2 in [21], see also [22,
Ch. 5], on account of Proposition 2.7. For this reason, we omit any further detail. ¤

We finally notice that the weak convergence Tk ⇀ T of currents in cartp,1(Bn × Sp) with equibounded
p-energies yields the weak W 1,p-convergence vTk

⇀ vT of the corresponding functions in W 1,p(Bn, Sp).

Cartesian currents in Bn × RPp. In the case p ≥ 3 odd, we are able to characterize the weak
limits of sequences of smooth maps in W 1,p(Bn, RPp) with equibounded p-energies by means of homological
arguments as above.

We first recall that RPp ⊂ RN(p) and that by Federer’s flatness theorem [13], every i.m. rectifiable n-
current in Bn×RN(p) with support in B

n×RPp gives rise to an i.m. rectifiable current in Rn(Bn×RPp).
This holds true if e.g. T = Gu for some Sobolev map u ∈ W 1,p(Bn,RPp), where the current Gu ∈
Rn(Bn × RPp) is defined in a way similar to (5.1), but with Sp replaced by RPp.

The case p ≥ 3 odd. In this case the i.m. rectifiable current [[ RPp ]] has been defined in Sec. 1 so that

gp#[[Sp ]] = 2 [[ RPp ]] , M([[ RPp ]]) = Hp(RPp) =
αp

2
. (5.9)

Moreover, in dimension n ≥ p + 1, for every u ∈ W 1,p(Bn, RPp), by definition (3.7) we have

〈P(u), φ〉 = Gu(dφ ∧ ωRPp) . (5.10)

Therefore, we introduce the following.
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Definition 5.7 For p ≥ 3 odd, and n ≥ p, we denote by cartp,1(Bn × RPp) the subclass of currents
T ∈ Dn(Bn × RPp) satisfying the following properties:

i) T is i.m. rectifiable in Rn(Bn × RPp);

ii) we have
T = GuT

+ 2 LT × [[ RPp ]] (5.11)

for some uT ∈ W 1,p(Bn, RPp) and some i.m. rectifiable current LT ∈ Rn−p(Bn);

iii) T has finite mass, M(T ) = M(GuT
) + αp ·M(LT ) < ∞;

iv) T has no interior boundary, i.e.,

∂T (η) := T (dη) = 0 ∀ η ∈ Dn−1(Bn × RPp) . (5.12)

Notice that the weak convergence Tk ⇀ T of currents in cartp,1(Bn×RPp) with equibounded p-energies
yields again the weak W 1,p-convergence uTk

⇀ uT of the corresponding functions in W 1,p(Bn, RPp).
Moreover, as in Remark 5.4, we infer that in dimension n = p, the current Gu belongs to cartp,1(Bp×RPp)
for every u ∈ W 1,p(Bp, RPp). In higher dimension, we have:

Proposition 5.8 Let n ≥ p+1 and T ∈ Rn(Bn×RPp) satisfy (5.11) for some uT ∈ W 1,p(Bn, RPp) and
LT ∈ Rn−p(Bn). Then the null-boundary condition (5.12) is equivalent to

(∂LT ) Bn = −1
2

P(uT ) , (5.13)

where P(uT ) is given by (3.7). Moreover, for every u ∈ W 1,p(Bn, RPp) we have:

∂Gu = P(u)× [[ RPp ]] on Dn−1(Bn × RPp) .

Proof: Since the pth de Rham group Hp
dR(RPp) ' Z, by Hodge theorem, for every form α ∈ Dp(RPp) we

have α = λωRPp + dβ for some λ ∈ R and β ∈ Dp−1(RPp). Therefore, the proof is similar to the one of
Proposition 5.7, using this time (5.10). ¤

As a consequence, we obtain the following relation:

Proposition 5.9 If p ≥ 3 is odd, and n ≥ p, we have

{hp#T | T ∈ cartp,1(Bn × Sp)} = cartp,1(Bn × RPp) ,

where hp(x, y) := (x, gp(y)) ∈ Bn × RPp, for any (x, y) ∈ Bn × Sp.

Proof: If uT = gp ◦ vT for some vT ∈ W 1,p(Bn,Sp), since hp ◦ (Id ./ vT ) = Id ./ (gp ◦ vT ), for every form
ω ∈ Dn(Bn × RPp), by (5.1) we get

〈hp#GvT , ω〉 := 〈GvT , h#
p ω〉 =

∫

Bn

(Id ./ vT )#
(
h#

p ω
)

=
∫

Bn

(
Id ./ (gp ◦ vT )

)#
ω =

∫

Bn

(Id ./ uT )#ω =: 〈GuT , ω〉 .

Moreover, by (5.9) we have

hp#(LT × [[Sp ]]) = LT × gp#[[Sp ]] = 2 LT × [[ RPp ]] .

Therefore, if T ∈ cartp,1(Bn × Sp) satisfies (5.4), the image current hp#T satisfies the structure property
(5.11). Propositions 3.2, 5.5, and 5.8 yield the inclusion ”⊂”. The equality follows from Theorem 2.5. ¤

Finally, setting for every T ∈ cartp,1(Bn × RPp) as in (5.11)

Dp(T ) := Dp(uT , Bn) +
αp

2
·M(2 LT ) , (5.14)

by Theorem 2.5 and Propositions 5.6 and 5.9 we readily obtain:
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Proposition 5.10 For p ≥ 3 odd, and n ≥ p, the p-energy functional T 7→ Dp(T ) on cartp,1(Bn × RPp)
satisfies the following properties:

(a) T 7→ Dp(T ) is lower semicontinuous with respect to the weak convergence in Dn(Bn × RPp);

(b) the class cartp,1(Bn × RPp) is closed under the weak Dn-convergence of sequences {Tk} of currents
with equibounded p-energies, supk Dp(Tk) < ∞;

(c) if {Tk} ⊂ cartp,1(Bn ×RPp) satisfies supk Dp(Tk) < ∞, possibly passing to a subsequence Tk weakly
converges to some current T in cartp,1(Bn × RPp);

(d) for every T ∈ cartp,1(Bn×RPp), there exists a sequence of smooth maps {uk} ⊂ W 1,p(Bn, RPp) such
that Guk

⇀ T in Dn and Dp(uk, Bn) → Dp(T ) as k →∞.

The case p ≥ 2 even. Since RPp is not orientable for p ≥ 2 even, the above arguments fail the attempt
to define the class cartp,1(Bn × RPp). In fact, this time we have gp#[[Sp ]] = 0, hence the concentration
phenomenon cannot be seen by means of a homological theory.

More precisely, if Guk
is a sequence of currents in Bn × RPp carried by the graph of smooth maps

uk ∈ W 1,p(Bn, RPp) satisfying supk Dp(uk, Bn) < ∞, possibly passing to a subsequence, the Guk
’s weakly

converge to the current GuT
carried by the graph of the Sobolev map uT ∈ W 1,p(Bn, RPp) given by the

weak limit uk ⇀ uT in W 1,p.
We also recall from Sec. 3 that if p ≥ 2 is even, the i.m. rectifiable current [[ RPp ]] := ĝp#[[Sp

+ ]] has a
non-zero boundary, ∂[[ RPp ]] 6= 0, see Example 3.3.

Weak limits of maps with values in RPp. For the above reasons, if p ≥ 2 is even, one may
attack the problem of identifying the weak limit points by means of a measure-theoretic approach, based e.g.
on the theory of rectifiable varifolds, see [35]. We shall not pursue this direction. In fact, by Theorem 2.5
and Propositions 5.5 and 5.6, we readily obtain the following result, that holds true for all n ≥ p ≥ 2.

Theorem 5.11 Let {uk} ⊂ W 1,p(Bn, RPp) be a sequence of smooth maps satisfying supk Dp(uk, Bn) < ∞.
Let {vk} ⊂ W 1,p(Bn,Sp) be such that gp ◦ vk = uk. Then, possibly passing to a subsequence, Gvk

⇀ T
weakly in Dn(Bn × Sp) to some current T = Gv + L× [[Sp ]] in cartp,1(Bn × Sp), i.e., v ∈ W 1,p(Bn, Sp),
L ∈ Rn−p(Bn). For n ≥ p + 1, we also have (∂L) Bn = −P(v). Moreover, the sequence {uk} weakly
converges in W 1,p to the Sobolev function u := gp ◦ v ∈ W 1,p(Bn,RPp), and

Dp(u,Bn) + αp ·M(L) ≤ lim inf
k→∞

Dp(uk, Bn) .

On account of Proposition 5.8, for p ≥ 3 odd we also obtain:

Corollary 5.12 Under the hypotheses of Theorem 5.11, if p ≥ 3 is odd we also have that Guk
⇀ T weakly

in Dn(Bn×RPp) to the current T = Gu +2L× [[ RPp ]] in cartp,1(Bn×RPp), where (∂L) Bn = − 1
2 P(u)

if n ≥ p + 1.

We shall see in the next section that Theorem 2.5 allows us to describe the relaxed energy in the case
p ≥ 2 even, too.

The Dipole problem. We finally observe that in the case p ≥ 3 odd, the Dipole problem from
Proposition 4.6 can be reformulated in terms of Cartesian currents. In this framework, moreover, the
minimum is attained. More precisely, according to the notation in (4.4), for n = p + 1 we denote

F̂p := {T = Gu + 2L× [[ RPp ]] | u ∈ W 1,p(Rp+1,RPp) , L ∈ R1(Rp+1) ,
u is constant at infinity, ∂T = 2Γ0 × [[ RPp ]]} (5.15)

where, we recall,

Γ0 := −
m∑

i=1

∆i δai , ∆i ∈ Z \ {0} .
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If the compatibility condition (4.5) holds, we have mi,Rp+1(Γ0) < ∞, see (4.1), and we can find an
integral minimal connection for Γ0, i.e., an i.m. rectifiable current L0 ∈ R1(Rp+1) such that

∂L0 = Γ0 and M(L0) = mi,Rp+1(Γ0) .

Therefore, the locally i.m. rectifiable (p + 1)-current in Rp+1 × RPp

T0 = GP + 2 L0 × [[ RPp ]] , (5.16)

where GP is the current carried by the graph of a constant map P ∈ RPp, satisfies

T0 ∈ F̂p and Dp(T0) = 2Hp(RPp) ·mi,Rp+1(Γ0) . (5.17)

Moreover, (3.14) and Proposition 5.8 imply that the currents carried by graphs of maps in F̃p, see (4.4),
belong to the class F̂p in (5.15), i.e.,

{Gu | u ∈ F̃p} ⊂ F̂p . (5.18)

Proposition 5.13 Let p ≥ 3 odd, and assume that (4.5) holds. Then we have

inf{Dp(u,Rp+1) | u ∈ F̃p} = inf{Dp(T ) | T ∈ F̂p}
= min{Dp(T ) | T ∈ F̂p} = 2Hp(RPp) ·mi,Rp+1(Γ0) .

Proof: The inclusion (5.18) yields the inequality ”≥” in the first line of the assertion. To prove the converse
inequality, it suffices to show that for every T ∈ F̂p and ε > 0, we can find a map uε ∈ F̃p such that
Dp(uε,Rp+1) ≤ Dp(T ) + ε. On account of (1.3), the map uε can be defined by uε := gp ◦ vε for a suitable
map vε ∈ W 1,p(Rp+1, Sp) that actually belongs to the class G̃p in (4.6). The map vε can be obtained as
in the proof of the density property (e) in Proposition 5.6 for the case n = p + 1, compare e.g. [17], using a
dipole-type construction based on Proposition 2.7. The claims follow from Proposition 4.6 and (5.17). ¤

As for the case of maps into Sp, Proposition 5.13 says that by formulating the Dipole problem for maps
into RPp in the framework of Cartesian currents, point defects connected by lines of concentration occur.
Moreover, according to Example 4.9, taking m = 2, ∆1 = 1, and ∆2 = −1, since Γ0 = δa2 − δa1 , we
have that the infimum of the Dipole problem agrees with the energy Dp(T0), where T0 is given by (5.16)
with L0 equal to the current integration on the oriented line segments with initial point a1 and final point
a2. Therefore, differently to what happens in the case of maps into Sp, the multiplicity of the minimal
connection 2L0 is dictated by the double of the degrees ∆i.

6 Relaxed energy

In this section we study the relaxation problem concerning W 1,p-maps with values in RPp. We shall assume
p ≥ 2, and we first recall how the analogous problem about W 1,p-maps into Sp is solved.

The case of maps into Sp. The relaxed energy of maps v ∈ W 1,p(Bn, Sp) is defined for every
integers n ≥ p ≥ 2 by

D̃p(v, Bn) := inf
{

lim inf
k→∞

Dp(vk, Bn) | {vk} ⊂ C∞(Bn, Sp) , vk ⇀ v weakly in W 1,p(Bn,Rp+1)
}

.

For any v ∈ W 1,p(Bn, Sp), we denote by T p,1
v the class of Cartesian currents with corresponding function

vT equal to v, i.e.,
T p,1

v := {T ∈ cartp,1(Bn × Sp) | vT = v in (5.4)} .

In dimension n = p, by Schoen-Uhlenbeck density theorem [34] we have

D̃p(v, Bp) = Dp(v, Bp) ∀ v ∈ W 1,p(Bp, Sp) .

On the other hand, Gv belongs to T 1,p
v for every v ∈ W 1,p(Bp, Sp), see Remark 5.4.

In higher dimension n, by Propositions 4.1 and 5.5 we readily obtain:
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Proposition 6.1 Let n ≥ p + 1. For every v ∈ W 1,p(Bn,Sp) the class T p,1
v is non-empty, and we have

T p,1
v = {Gv + L× [[Sp ]] | L ∈ Rn−p(Bn) , (∂L) Bn = −P(v)} , (6.1)

where P(v) ∈ Dn−p−1(Bn) is given by (3.1).

As a consequence, we deduce the following representation formula, first proved for p = 2 in [17] and [3],
in dimension n = 3, and in [38], in higher dimension n.

Theorem 6.2 Let n ≥ p + 1, where p ≥ 2. For every v ∈ W 1,p(Bn, Sp) the relaxed energy D̃p(v, Bn) is
finite. Moreover,

D̃p(v,Bn) = inf{Dp(T ) | T ∈ T p,1
v }

= Dp(v, Bn) + αp ·mi,Bn(P(v)) < ∞ .
(6.2)

Proof: The below cited properties always refer to Proposition 5.6. Let T ∈ T p,1
v , see Proposition 6.1,

and apply the density property (e). Since the convergence Gvk
⇀ T with Dp(vk, Bn) → Dp(T ) yields the

weak convergence vk ⇀ vT in W 1,p, and vT = v, we deduce that the inequality ”≤” holds in the first line
of (6.2). Therefore, the relaxed energy D̃p(v, Bn) is finite. On the other hand, for any smooth sequence
{vk} ⊂ C∞(Bn, Sp) such that vk ⇀ v weakly in W 1,p, since supk Dp(Gvk

) = supk Dp(vk, Bn) < ∞,
by the closure-compactness property (d), and possibly passing to a subsequence, we have Gvk

⇀ T to
some T ∈ cartp,1(Bn × Sp) with vT = v, i.e., T ∈ T p,1

v . The lower semicontinuity property (a) yields
Dp(T ) ≤ lim infk D̃p(vk, Bn), hence the inequality ”≥” holds in the first line of (6.2). The second equality
then follows from (4.1), (6.1), and from the representation property (b). ¤

In dimension n = p + 1, by Proposition 4.4 we then infer:

Corollary 6.3 For every p ≥ 2 and v ∈ W 1,p(Bp+1, Sp) we have

D̃p(v,Bp+1) = Dp(v, Bp+1) + αp · L(v,Bp+1) ,

where the flat norm L(v, Bp+1) is given by (4.2).

Finally, by Proposition 4.1 we obtain in any dimension n ≥ p + 1 :

Corollary 6.4 For every v ∈ W 1,p(Bn, Sp) we have

D̃p(v, Bn) ≤ 2Dp(v, Bn) .

The case of maps into RPp. We now similarly introduce the relaxed energy of maps u ∈
W 1,p(Bn, RPp), defined by

Dp(u, Bn) := inf
{

lim inf
k→∞

Dp(uk, Bn) | {uk} ⊂ C∞(Bn, RPp) , uk ⇀ u weakly in W 1,p(Bn,RN(p))
}

.

(6.3)
On account of Theorem 2.5, we deduce:

Theorem 6.5 Let n ≥ p ≥ 2. The relaxed energy Dp(u,Bn) of a Sobolev map u ∈ W 1,p(Bn, RPp) agrees
with the relaxed energy D̃p(v,Bn) of any Sobolev map v ∈ W 1,p(Bn, RPp) such that gp ◦ v = u.

Proof: Let u and v be as in the claim, see Theorem 2.5. Since uk := gp ◦ vk is smooth in W 1,p(Bn, RPp)
if vk ∈ W 1,p(Bn, Sp) is smooth, and Dp(uk, Bn) = Dp(vk, Bn), the weak convergence vk ⇀ v in W 1,p

yields the weak convergence uk ⇀ u. Therefore, the inequality

Dp(u, Bn) ≤ D̃p(v, Bn)

holds. On the other hand, if uk is smooth, by Theorem 2.5 we find vk ∈ W 1,p(Bn, Sp) continuous such
that uk = gp ◦ vk. A standard convolution arguments yields a smooth sequence {v(k)

h } ⊂ W 1,p(Bn,Sp) that
strongly converges to vk in W 1,p as h →∞. A diagonal argument yields the assertion. ¤
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As a consequence, and by (1.3), in low dimension n = p we again have

Dp(u,Bp) = Dp(u,Bp) ∀u ∈ W 1,p(Bp,RPp) .

In higher dimension n ≥ p + 1, we obtain:

Proposition 6.6 Let n ≥ p+1, where p ≥ 2. For every u ∈ W 1,p(Bn, RPp) the relaxed energy Dp(u,Bn)
is finite. Moreover,

Dp(u,Bn) = Dp(u,Bn) + αp ·mi,Bn(P(v)) < ∞ , (6.4)

where v is any function in W 1,p(Bn, Sp) such that u = gp ◦ v. Finally,

Dp(u,Bn) ≤ 2Dp(u,Bn) .

Proof: The assertion follows from (1.3), Theorem 6.2, Corollary 6.4, and Theorem 6.5. ¤

In dimension n = p + 1, by Corollary 6.3, Theorem 6.5, and Definition 4.5, we then infer:

Corollary 6.7 For every p ≥ 2 and u ∈ W 1,p(Bp+1,RPp) we have

Dp(u, Bp+1) = Dp(u,Bp+1) + L(u, Bp+1) .

Remark 6.8 Theorems 6.2 and 6.5, Proposition 6.6, and therefore Corollaries 6.3 and 6.7, hold true if we
replace Bn with any bounded domain Ω ⊂ Rn, or with e.g. Ω = Sn, the n-sphere in Rn+1. In fact,
Theorem 2.5 continues to hold, see Remark 2.6. This clearly yields that the relaxed energy is a non-local
functional, for n ≥ p + 1.

The case p odd. If p ≥ 3 is odd, according to Definition 5.7, we denote for any u ∈ W 1,p(Bn,RPp)

T̃ p,1
u := {T ∈ cartp,1(Bn × RPp) | uT = u in (5.11)} ,

compare (6.1), so that by Proposition 5.8, for n ≥ p + 1 we have

T̃ p,1
u =

{
Gu + 2 L× [[ RPp ]] | L ∈ Rn−p(Bn) , (∂L) Bn = −1

2
P(u)

}
,

where P(u) ∈ Dn−p−1(Bn) is given by (3.7). We finally obtain:

Proposition 6.9 Let n ≥ p + 1, where p ≥ 3 is odd. For every u ∈ W 1,p(Bn, RPp) we have

Dp(u, Bn) = inf{Dp(T ) | T ∈ T̃ p,1
u } = Dp(u,Bn) +

αp

2
·mi,Bn(P(u)) < ∞ .

Proof: The first equality is obtained by arguing as in the proof of Theorem 6.2, but this time making use
of the properties from Proposition 5.10. The second equality follows from (5.13) and (5.14). ¤

7 Optimally connecting measure

In this section we discuss a notion of optimally connecting measure of the singular set of Sobolev maps with
values into the projective space RPp, for any p ≥ 2 and n ≥ p + 1.

If p ≥ 3 is odd, by Corollary 4.3 we infer that for every u ∈ W 1,p(Bn, RPp) there exists an integral
minimal connection of 1

2 P(u), see (3.7), i.e., an i.m. rectifiable current Lu ∈ Rn−p(Bn) such that

(∂Lu) Bn =
1
2

P(u) and M(Lu) = mi,Bn

(1
2

P(u)
)

.

Therefore, there exist a countably (n−p)-rectifiable set Lu in Bn, an Hn−p Lu-summable and non-negative
integer valued multiplicity function θu : Lu → N+, and an Hn−p Lu-measurable unit (n − p)-vector field−→L u : Lu → Λn−pRn, orienting the approximate tangent space to Lu at Hn−p-a.e. point, such that

〈Lu, γ〉 =
∫

Lu

θu 〈γ,
−→L u〉 dHn−p ∀ γ ∈ Dn−p(Bn) .
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In this case, one writes Lu = τ(Lu, θu,
−→L u), and we can say that the measure

µu := θuHn−p Lu (7.1)

encloses the singularity of u in an optimal sense.
In order to extend the definition (7.1) to the case p ≥ 2 even, we let v ∈ W 1,p(Bn, Sp) satisfy gp ◦v = u,

see Theorem 2.5. By Remark 4.2, there exists an i.m. rectifiable current Lv ∈ Rn−p(Bn) such that
(∂Lv) Bn = P(v) and M(Lv) = mi,Bn(P(v)). Write again Lv = τ(Lv, θv,

−→L v).
Due to (3.2), we deduce that the i.m. rectifiable current (−1)p+1Lv := τ(Lv, θv, (−1)p+1−→L v) is a

minimal integral connection for P(−v). Therefore, by Theorem 2.5 we can write Lu = Lv and θu = θv in
the definition (7.1). Notice that for p ≥ 3 odd, by Proposition 3.2 we have 1

2 P(u) = P(v), as required.
Formula (7.1) defines an optimally connecting measure µu, the total variation of which satisfies

|µu|(Bn) =
∫

Lu

θu dHn−p = mi,Bn(P(v)) ∀ v ∈ W 1,p(Bn, Sp) such that gp ◦ v = u .

Therefore, by Proposition 6.6 we have

Dp(u,Bn) = Dp(u,Bn) + αp · |µu|(Bn) ∀u ∈ W 1,p(Bn, RPp) .

In dimension n = p + 1, by Corollary 6.7 we also deduce that

αp · |µu|(Bp+1) = L(u,Bp+1) ∀u ∈ W 1,p(Bp+1, RPp) ,

where the flat norm L(u,Bp+1) is given by Definition 4.5.

Example 7.1 If e.g. ũ = gp ◦ ṽ, where ṽ(x) = x/|x| ∈ W 1,p(Bp+1,Sp), we have µeu = H1 L̃, where L̃ is
any line segment connecting the origin 0Rp+1 to the boundary of Bp+1. Therefore, for every p ≥ 2 we have

|µeu|(Bp+1) = 1 and Dp(ũ, Bp+1) = Dp(ũ, Bp+1) + αp , αp = 2Hp(RPp) .

Finally, we deduce:

Theorem 7.2 Let u ∈ W 1,p(Bn, RPp) and µu := θuHn−p Lu an optimally connecting measure for the
singular set of u. Then there exists a sequence of smooth maps {uk} ⊂ W 1,p(Bn,RPp) satisfying the
following properties:

i) uk ⇀ u weakly in W 1,p as k →∞;

ii) Dp(uk, Bn) → Dp(u,Bn) + αp · |µu|(Bn) as k →∞;

iii)
1

pp/2
|Duk|p Ln Bn ⇀

1
pp/2

|Du|p Ln Bn + αp µu weakly as measures;

iv) for any open set A contained in Bn \ sptµu, we have strong W 1,p-convergence of uk|A to u|A.

Proof: The first three assertions follow from the density property (e) in Proposition 5.6 and from the
results previously obtained. The last assertion is given by the strict convexity of the energy density. ¤

8 The liquid crystal energy

In this section we analyze the liquid crystal energy

E(v,B3) =
∫

B3
W (v, Dv) dx . (8.1)

The Oseen-Frank energy density of nematic vector fields v is defined on mappings v in W 1,2(B3, S2) by

W (v, Dv) := |Dv|2 + (k1 − 1) (div v)2 + (k2 − 1) (v · curl v)2 + (k3 − 1) |v × curl v|2 , (8.2)
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where ki ≥ 1 for every i, see the discussion in the introduction.
The parametric extension of the liquid crystal energy over the class of Cartesian currents T ∈ cart2,1(B3×

S2) has been computed in [18], see also [20, Vol. II, Sec. 1.2.4]. We recall that

T = GvT
+ LT × [[S2 ]]

for some vT ∈ W 1,2(B3, S2) and LT ∈ R1(B3) satisfying (∂LT ) B3 = −P(vT ), see Sec. 5. The liquid
crystal energy functional T 7→ E(T ) satisfies

E(T ) = E(vT , B3) + 8π Γ(k1, k2, k3)M(LT )

where, compare [20, Vol. II, Sec. 5.1.2],

Γ(k1, k2, k3) :=
√

k k3

∫ 1

0

√
1 +

( k

k3
− 1

)
s2 ds , k := min{k1, k2} .

If ki = 1 for every i, we have W (v, Dv) = |Dv|2 and Γ(1, 1, 1) = 1, so that E(T ) = 2D(T ). In general,
the functional E(T ) it is controlled by the Dirichlet energy, as

2D(T ) ≤ E(T ) ≤ cD(T ) ∀T ∈ cart2,1(B3 × S2) ,

where the positive constant c only depends on the choice of the ki’s. Notice that Γ(k1, k2, k3) ≥ 1.
Moreover, by the construction, it turns out that E(T ) is lower semicontinuous with respect to the weak

convergence of sequences of currents in cart2,1(B3 × S2).
Also, the following density property was proved in [18]:

Theorem 8.1 (Giaquinta-Modica-Souček) For every T ∈ cart2,1(B3 × S2), there exists a sequence of
smooth maps {vk} ⊂ W 1,2(B3,S2) such that Gvk

⇀ T in D3(B3×S2) and E(vk, B3) → E(T ) as k →∞.

The proof of Theorem 8.1 is similar to the one from [17] for the Dirichlet energy in dimension n = 3, where
this time the so called irrotational and solenoidal dipoles are used, when k = k1 and k = k2, respectively,
compare [20, Vol. II, Sec. 5.1.3].

Finally, consider the relaxed energy of the liquid crystal functional (8.1), with energy density (8.2),
defined by

Ẽ(v,B3) := inf
{

lim inf
k→∞

E(vk, B3) | {vk} ⊂ C∞(B3, S2) , vk ⇀ v weakly in W 1,2(B3,R3)
}

.

In [20, Vol. II, Sec. 5.1.2], it is shown that for every Sobolev map v ∈ W 1,2(B3,S2) one has:

Ẽ(v,B3) = E(v, B3) + 8π Γ(k1, k2, k3) ·mi,B3(P(v)) < ∞ . (8.3)

This representation formula can be recovered by arguing as in the proof of Theorem 6.2, taking advantage
of Theorem 8.1.

The liquid crystal energy of maps into RP2. We first recall that if ki = 1 for every i, then
W (u,Du) = |Du|, hence by (1.2) we deduce that the energy density of a map v ∈ W 1,2(B3, S2) has the
same structure as the energy density of the map u ∈ W 1,2(B3, RP2) given by u = g ◦ v, where g : S2 → R6

is the embedding (1.1).
Of course, this is not true in general, i.e., when ki > 1 for some i in the energy density (8.2). In the

appendix below, we shall see how the non-linear terms in (8.2) can be written in terms of the components
of u = g ◦ v. However, by the invariance properties (0.2), on account of Theorem 2.5 we may and do give
the following

Definition 8.2 The liquid crystal energy E(u,B3) of a Sobolev map u ∈ W 1,2(B3, RP2) is defined by the
energy E(v,B3) of any function v ∈ W 1,2(B3,S2) such that u = g ◦ v.

The Dipole problem. Similarly to the analogous problem for the Dirichlet energy in the case p ≥ 2
even, see Sec. 4, according to the previous definition we obtain:
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Theorem 8.3 Let F̃2 be the class of functions in (4.4), where p = 2. Assume that the compatibility
condition (4.7) on the natural numbers ∆i ∈ N \ {0} is satisfied. Then we have

inf{E(u,R3) | u ∈ F̃2} = 8π Γ(k1, k2, k3) · inf
εi

{
mi,R3

( m∑

i=1

εi∆i δai

)
| (4.7) holds

}
. (8.4)

Proof: As in Proposition 4.8, we infer that

inf{E(u,R3) | u ∈ F̃2} = inf{E(v,R3) | v ∈ Ĝ2} ,

where Ĝ2 is defined by (4.8), with p = 2. Arguing as in [20, Vol. II, Sec. 5.1.2], we deduce that the infimum
inf{E(v,R3) | v ∈ Ĝ2} agrees with the right-hand side of eq. (8.4), as required. ¤

A density theorem. In Sec. 7, we have defined an optimally connecting measure µu of the singular
set of Sobolev maps u ∈ W 1,2(B3, RP2). We recall that µu := θuH1 Lu for some countably 1-rectifiable
set Lu in B3 and some H1 Lu-summable multiplicity function θu : L → N+ such that the following
properties hold:

(a) |µu|(B3) =
∫

Lu

θu dH1;

(b) |µu|(B3) = mi,B3(P(v)) for every v ∈ W 1,2(B3, S2) such that g ◦ v = u;

(c) D(u,B3) = D(u,B3) + 4π · |µu|(B3);

(d) 4π · |µu|(B3) = L(u,B3), where the flat norm L(u,B3) is given by Definition 4.5, with p = 2.

Similarly to Theorem 7.2, the following density property holds true:

Theorem 8.4 Let u ∈ W 1,2(B3,RP2) and µu := θuH1 Lu an optimally connecting measure. Then there
exists a sequence of smooth maps {uk} ⊂ W 1,2(B3, RP2) satisfying the following properties:

i) uk ⇀ u weakly in W 1,2 as k →∞;

ii) E(uk, B3) → E(u,B3) + 8π Γ(k1, k2, k3) · |µu|(B3) as k →∞;

iii) W (uk, Duk)L3 B3 ⇀ W (u,Du)L3 B3 + 8π Γ(k1, k2, k3)µu weakly as measures;

iv) for any open set A contained in B3 \ spt µu, we have strong W 1,2-convergence of uk|A to u|A.

Proof: The first three assertions follow from Theorem 8.1 and the results from the previous sections. As
to the last assertion, since |Du|2 ≤ W (u,Du), and the energy density W (u,Du) is strictly convex in Du,
using a continuity theorem by Reshetnyak [37, p. 329], compare Thm. 2 in [20, Vol. II, Sec. 1.3.4], we infer
that D(uk, A) → D(u,A), that gives iv), again by strict convexity. ¤

Remark 8.5 By the above property (d), in the previous formula ii) we have

8π Γ(k1, k2, k3) · |µu|(B3) = 2 Γ(k1, k2, k3) sup
{∫

B3
D(v) ·Dφ dx | φ ∈ C∞c (B3) , ‖dφ‖ ≤ 1 in B3

}

for any v ∈ W 1,2(B3,S2) such that g ◦ v = u.

Relaxed energy. We finally introduce the relaxed energy of maps u ∈ W 1,2(B3, RP2), defined by

E(u,B3) := inf
{

lim inf
k→∞

E(uk, B3) | {uk} ⊂ C∞(B3, RP2) , uk ⇀ u weakly in W 1,2(B3,R6)
}

.

The following representation formula holds:
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Theorem 8.6 For every u ∈ W 1,2(B3, RP2) the relaxed energy E(u,B3) is finite. Moreover,

E(u,B3) = E(u,B3) + 8π Γ(k1, k2, k3) · |µu|(B3) = E(u,B3) + 2 Γ(k1, k2, k3) · L(u,B3) , (8.5)

where µu is an optimally connecting measure of the singular set and L(u, B3) is the flat norm of u, see
Definition 4.5. Finally,

E(u,B3) ≤ E(u, B3) + 2 Γ(k1, k2, k3) ·D(u,B3) .

Proof: As in the proof of Theorem 6.5, using Theorem 8.1 we deduce that

E(u,B3) = Ẽ(v, B3) ∀ v ∈ W 1,2(B3, S2) such that g ◦ v = u .

By the representation formula (8.3), on account of the above properties (b) and (d), we obtain (8.5). More-
over, property (b), Proposition 4.1, where α2 = 4π, and (1.2) yield

4π · |µu|(B3) = 4π ·mi,B3(P(v)) ≤ D(v, B3) = D(u,B3) .

The last assertion then follows from (8.5). ¤

Finally, the representation formulas (8.3) and (8.5) hold true if we replace B3 with any bounded domain
Ω ⊂ R3, or with e.g. Ω = S3, see Remark 6.8. This yields again that the relaxed energy is a non-local
functional.

A Appendix

We compute the nonlinear terms of the energy density (8.2) of a map v ∈ W 1,2(B3,S2) with respect to the
components of the Sobolev map u := g ◦ v ∈ W 1,2(B3,RP2).

To this purpose, we consider the vector field U = (U1, U2, U3) : B3 → R3, where U1 = v2v3, U2 = v3v1,
U3 = v1v2 are the last three components of u := g ◦ v, see (1.1). We make use of a cyclic notation on the
indexes i, j, k ∈ {1, 2, 3}, so that j = i + 1, k = j + 1, and i = k + 1. Assume e.g. that Uh > 0 and vh > 0
for every h. We thus have

vi =
√

UjUk

Ui
if u = g ◦ v , v = (v1, v2, v3) ,

so that
Dαvi =

1
2
√

UiUjUk

(
Dα(UjUk)− UjUk

Ui
DαUi

)
.

We then compute

div v =
1

2
√

U1U2U3

3∑

i=1

(
Di(UjUk)− UjUk

Ui
DiUi

)
.

We also recall that curl v :=
∑3

i=1(Djv
k −Dkvj) ei, where (e1, e2, e3) denotes the canonical basis on R3.

We thus have

curl v =
1

2
√

U1U2U3

3∑

i=1

(
Dj(UiUj)− UiUj

Uk
DjUk −Dk(UkUi) +

UkUi

Uj
DkUj

)
ei .

Since v · curl v =
∑3

i=1 vi (Djv
k −Dkvj), this gives

v · curl v =
1

2
√

U1U2U3

3∑

i=1

(√
UjUk

Ui

(
Ui(DjUj −DkUk) + UjDjUi − UkDkUi

)

−
√

UiUj

Uk
UjDjUk +

√
UkUi

Uj
UkDkUj

)
.
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Therefore, by simplifying the terms DhUh we get

v · curl v =
1
2

3∑

i=1

(
1
Ui

(
UjDjUi − UkDkUi

)− Uj

Uk
DjUk +

Uk

Uj
DkUj

)

=
3∑

i=1

(
Uj

Uk
DjUk − Uk

Uj
DkUj

)
.

Finally, we have v × curl v =
∑3

i=1 Φi ei, where Φi := vj(Div
j −Djv

i)− vk(Dkvi −Div
k), so that

2Φi =
1

UjUk

(
U2

j (DiUi −DkUk) + U2
k (DiUi −DjUj)

)

+
Ui

U2
j Uk

(U2
j − U2

k )DiUj +
Ui

UjU2
k

(U2
k − U2

j )DiUk

+
Uk

Ui
DjUi +

Uj

Ui
DkUi −DjUk −DkUj .
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