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ABSTRACT. We analyze the problem of controlling a multi-agent system with additive
white noise through parsimonious interventions on a selected subset of the agents (lead-
ers). For such a controlled system with a SDE constraint, we introduce a rigorous limit
process towards an infinite dimensional optimal control problem constrained by the cou-
pling of a system of ODE for the leaders with a McKean-Vlasov-type SDE, governing the
dynamics of the prototypical follower. The latter is, under some assumptions on the dis-
tribution of the initial data, equivalent with a (nonlinear parabolic) PDE-ODE system.
The derivation of the limit mean-field optimal control problem is achieved by linking the
mean-field limit of the governing equations together with the Γ-limit of the cost func-
tionals for the finite dimensional problems.
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1. INTRODUCTION

In recent years, multi-agent systems have been widely used to describe several phe-
nomena, such as, for instance, flocking and cell aggregation in biology [7, 11, 18, 21],
chemical networks [25, 28, 29], human interaction in social sciences [13, 36], neuronal
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spike dynamics [12, 14], cooperative robots [4, 9, 22, 31] and so on. Such systems are an-
alytically and computationally manageable as soon as the number of involved agents is
not too large. However, such a number is usually very large in real life applications.
In order to overcome this issue, an effective approach consists in the approximation
procedure obtained by sending the number of agents N to ∞, in place of considering
just a large number of them. This procedure is known in the literature as mean-field
limit [8, 20, 26]. Clearly, the mean-field limit of a system of particles described by inter-
acting Ordinary Differential Equations (ODEs) leads to a Partial Differential Equation
(PDE), usually hyperbolic and nonlinear, for the density of particles in a certain region
of the space. From this point of view, we are simplifying the problem by reducing a very
large system of coupled ODEs to a single PDE. On the other hand, the clear improve-
ment in manageability is balanced by the inevitable loss in accuracy, since the obtained
model is just an approximation. Furthermore, the position and/or the velocity of the
particles in their full complexity could easily render impossible their exact study. In this
regard, it is useful to include a white noise in the system, reducing its complexity.

Mean-field limits for systems of Stochastic Differential Equations (SDEs) have been
widely studied in literature (see, for instance, [19, 27, 35] and references therein) and
present some different characteristics with respect to the ones that appear in the ODE
case. Precisely, the limit PDE is no more hyperbolic, but it gains a diffusive term,
thus becoming parabolic. Moreover, its solution represents the probability of finding a
generic particle in a region of the space. Analogously to what happens in the ODE case,
the dynamics of the limit particle is described by a (stochastic) McKean-Vlasov equation
and the limit PDE is the associated (nonlinear) Fokker-Planck equation.

In the applications, we are not satisfied by the knowledge of the dynamics, but we
are also interested in controlling it. Clearly this can be achieved by introducing some
control functions in the ODE system. Such an extension is practically unmanageable, also
from a purely numerical point of view, if the number of the agents is too large. Again,
the mean-field limit approach turns out to be a successful tool to study suitable approx-
imations of such a control. In the setting of the optimal control theory, this is done by
combining the mean-field limit with the Γ-limit tool, as done in [16].

The previous result relies on the fact that one is applying the control directly on each
agent of the system. This is, however, not possible in different applications, as for in-
stance crowd control in emergency situations. In such a case, some special agents, called
herders, are required to drive passive agents, the herd, towards a designated confinement.

The herding problem has been recently developed, see for instance [1–4, 6, 23, 24, 32,
34]. The main features of the model are the following: on the one hand, the control
can be applied only on the herders’ dynamics; on the other hand, the number of agents
in the herd is usually much larger than the number of herders. Once again, we can
describe both the herd and the herders via a system of coupled ODEs and imagine that
the number N of agents in the herd is sent to ∞, while the number m of herders is
fixed. At the limit, we obtain a system composed by a single hyperbolic nonlinear PDE
coupled with m controlled ODEs. This is done by exploiting both the mean-field limit
and the Γ-limit of the control cost functionals, as done in [15].
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Clearly, such an approach cannot be used directly if we introduce uncertainty in the
dynamics of the herd. This problem has been, for instance, considered in [4], where it
is solved numerically for a small herd. Since the dynamics of the herd, as described
in [4, Eq.(3)], is subject to an additive noise term, one cannot use the results contained
in [15] to approximate the system by mean-field approach.

Inspired by this, in the present paper we investigate the mean-field approach in the
previously described herding problem, where the herd exhibits an additive white noise.
Without going into details, we consider the discrete model
dXn(t) =

1

N

N∑
l=1

H1(X
l(t)−Xn(t)) +

1

m

m∑
j=1

K1(Y
j(t)−Xn(t)) dt+

√
2σ dW n(t)

d

dt
Y i(t) =

1

N

N∑
l=1

K2(Y
i(t)−X l(t)) +

1

m

m∑
j=1

H2(Y
j(t)− Y i(t)) + ui

N(X
1(t), .., Xn(t)).

where the position of the agents in the herd is described by Xn, n = 1, . . . , N , while the
herders’ position is described by Y i, i = 1, . . . ,m and ui

N is a suitable control function,
minimizing a certain cost functional FN . It is clear that if σ = 0 we go recover the
system in [15]. Then we study the problem as N → ∞. Precisely, we show that the
empirical measure

∑N
n=1 δXn(t) converges in Wasserstein distance to a measure µ and

Y i, i = 1, . . . ,m converge in expectation to some deterministic functions Y
i
, which turn

out to solve the PDE/ODE system
(∂t − σ∆) µt = −div

(
(H1 ∗ µt(·) + 1

m

∑m
j=1K1(Y

j
(t)− ·))µt

)
d

dt
Y

i
(t) = K2 ∗ µt(Y

i
(t)) +

1

m

m∑
j=1

H2(Y
j
(t)− Y

i
(t)) + ui(t, µt). i = 1, ..,m,

(1.1)

where ui minimizes a cost functional F that is the Γ-limit of FN . To prove the mean-field
limit, as it is usual in the stochastic setting, one has to prove a propagation of chaos result,
i.e. the fact that the (initially coupled) positions of the agents in the herd become inde-
pendent as N → ∞. Precisely, Xn, n = 1, . . . , j, converge in expectation to j independent
copies of the solution X of the system

dX(t) = H1 ∗ µt(X(t)) +
1

m

m∑
j=1

K1(Y
j
(t)−X(t)) dt+

√
2σ dW (t)

d

dt
Y

i
(t) = K2 ∗ µt(Y

i
(t)) +

1

m

m∑
j=1

H2(Y
j
(t)− Y

i
(t)) + ui(t, µt). i = 1, ..,m

µ = Law(X), µt = (evt)♯µ.

(1.2)

The paper is organized as follows. Section 2 is devoted to discuss some preliminaries
and to set up the notations. In Section 3 we first prove the well-posedness of the system
(1.2) and the fact that (1.1) is its Fokker-Planck equation. In particular, we prove the
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equivalence of the well-posedness of (1.1) and the one of (1.2) under suitable assump-
tions on the initial data. Then, we prove the propagation of chaos result, that leads
directly to the mean-field limit. At this point, in Section 4 we are able to develop the
limit optimal control theory. Precisely, we first prove separately the well-posedness of
the discrete optimal control system and of the limit one. Then, we prove the Γ-limit
result on the cost functionals, thus showing that the optimal control in the limit setting
is a good approximation of the control in the discrete one for a large herd.
Clearly, this is a first step in such a direction and then some restrictive hypotheses on
the interaction and the controls have been imposed. In future works we plan to relax
such restrictions as well as considering problems with multiplicative white noise, sec-
ond order problems with white noise and controls in the velocity terms and problems
with a different kind of additive noise.
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project Stochastic Models for Complex Systems, No. 2017JFFHSH. D. Castorina has
received funding from the research grant “BIOMASS” from the University of Naples
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erico II and Compagnia di San Paolo. Finally, all the authors are partially supported
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2. PRELIMINARIES AND NOTATIONS

In this section we will set up the main assumptions on our model, discuss some pre-
liminaries and lay out our notations and terminology.

2.1. General notation. For any horizon T > 0 and any complete metric space B, we let
C0([0, T ];B) be the space of B-valued continuous functions over [0, T ]. Moreover, for
any t ∈ [0, T ] we denote by evt the evaluation map, i.e. the map evt(f) = f(t) for any
f ∈ C0([0, T ];Rd). For any p ≥ 1, we let Wp(B) be the p-Wasserstein space, i.e. the space
of Borel probability measures µ on B, such that

Mp
p (µ, x0) =

∫
B

(d(x, x0))
p dµ < ∞,

where d is the metric on B and x0 ∈ B is fixed (see [37, Definition 6.4]). Let µ, ν ∈ Wp(B);
we say that a Borel probability measure γ on B×B is a coupling of µ and ν if for for any
Borel set A ⊂ B it holds γ(A×B) = µ(A) and γ(B×A) = ν(A) (see [37, Definition 1.1]).
We denote by Π(µ, ν) the set of all possible couplings. Finally, it is possible to equip
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Wp(B) with the Wasserstein metric

Wp
p (µ, ν) = inf

γ∈Π(µ,ν)

∫
B×B

(d(x, y))p dγ,

(see [37, Definition 6.4]). Let us recall that, by [37, Theorem 4.1], the above infimum is
actually achieved and the minimum point is called optimal coupling. We also denote by
♯ the pushforward operator. In the following, B will be a Banach space, hence we can
set x0 = 0 and d(x, y) = ∥x− y∥. We will omit x0 from the above notation.

Fix d ≥ 1 and let Hi : Rd → Rd, Ki : Rd → Rd, 1 = 1, 2 be globally Lipschitz continuous
funtions. In what follows, without loss of generality we shall suppose that all the in-
volved random variables are supported on a fixed filtered probability space (Ω,F ,Ft,P)
and we denote by E the expectation operator. Furthermore, for any metric space B we
denote by M(Ω;B) the space of B-valued random variables and, for any X ∈ M(Ω;B)
we define Law(X) = (X)♯P. When possible, we will omit the dependence on the proba-
bility space.

Remark 2.1. Let us recall some basic properties.
i Let ν ∈ Wp(C

0([0, T ];Rd)) and set νt = (evt)♯ν. We point out the following ele-
mentary inequality

Mp(νt) ≤ Mp(ν)

for any t ∈ [0, T ].
ii Since Hj, Kj, j = 1, 2 are globally Lipschitz continuous, also their convolution

products with νt are globally Lipschitz continuous with the same Lipschitz con-
stants.

We also recall the following Doob’s maximal inequality in its Lp form for the Brownian
motion.

Theorem 2.2 ( [33]). Let W (t) be a d-dimensional Brownian motion. For any p > 1 it holds:

E
(
max
0≤t≤T

|W (t)|p
)

≤
(

p

p− 1

)p

E(|W (T )|p)

We will make use of the following general result on the convergence rate of the em-
pirical measures generated by i.i.d. random variables to their law.

Theorem 2.3 ( [17]). Let p > 1 and µ ∈ Wp(Rd). Let also Xn be a sequence of i.i.d. random
variables with distribution µ and µN = 1

N

∑N
n=1 δXn be the corresponding empirical measures.

Then there exists a constant C = C(p, d) such that

E (W1(µN , µ)) ≤ CMp(µ)


N−1/2 +N−(p−1)/p for d = 1, p ̸= 2

N−1/2 log(1 +N) +N−(p−1)/p for d = 2, p ̸= 2

N−1/d +N−(p−1)/p for d ≥ 3, p ̸= d/(d− 1)
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2.2. The model system. Throughout the paper, we will consider the following SDE-
ODE system:



dX(t) = H1 ∗ µt(X(t)) +
1

m

m∑
j=1

K1(Y
j
(t)−X(t)) dt+

√
2σ dW (t)

d

dt
Y

i
(t) = K2 ∗ µt(Y

i
(t)) +

1

m

m∑
j=1

H2(Y
j
(t)− Y

i
(t)) + ui(t, µt). i = 1, ..,m

X(0) = X0, Y
i
(0) = Y

i

0 i = 1, ..,m

µ = Law(X), µt = (evt)♯µ

(2.1)

where m ∈ N and σ > 0 are fixed constants, W is a d-dimensional Brownian motion,
X0 ∈ L2(P) is F0 measurable, Y

i

0 ∈ Rd, i = 1, ..,m, and the controls ui : [0, T ]×W1(Rd) →
Rd, i = 1, ..,m, are Carathéodory functions which are Lipschitz continuous in the second
variable for any fixed t and the Lipschitz contant is integrable. Whenever it is possible
to choose a uniform Lipschitz constant, then we will denote it by L and we will assume,
without loss of generality, that such L is also common to H i, Ki, i = 1, 2.

Definition 2.4. We say that (X,Y
1
, .., Y

m
) ∈ M(Ω;C0([0, T ];Rd)) × (C0([0, T ];Rd))m is

a pathwise (or strong) solution of the equation (2.1) with initial data (X0, Y
1

0, .., Y
m

0 ) ∈
Lp(Ω;Rd)× (Rd)m and Brownian motion W if, setting µ = Law(X) and µt = (evt)♯µ, the
following holds:

(1) almost surely

X(t) = X0 +

∫ t

0

(
H1 ∗ µs(X(s)) +

1

m

m∑
j=1

K1(Y
j
(s)−X(s))

)
ds+

√
2σW (t),

for all t ∈ [0, T ];
(2) Y

i
, i = 1, ..,m, is a Carathéodory solution of

d

dt
Y

i
(t) = K2 ∗ µt(Y

i
(t)) +

1

m

m∑
j=1

H2(Y
j
(t)− Y

i
(t)) + ui(t, µt), i = 1, ..,m

with Y
i
(0) = Y

i

0, i = 1, ..,m.

We say that (2.1) admits a strong solution if for any Brownian motion W and any initial
data (X0, Y

1

0, .., Y
m

0 ) there exists a pathwise solution (X,Y
1
, .., Y

m
).

We say that the solution is pathwise unique if, whenever we consider any two solutions
(Xj, Y

1

j , .., Y
m

j ), j = 1, 2, given the same initial data and Brownian motion, it holds
X1 = X2 almost surely as well as (Y

1

1, .., Y
m

1 ) = (Y
1

2, .., Y
m

2 ).
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If pathwise uniqueness holds we define the solution map S acting on a Brownian mo-
tion W and initial data (X0, Y

1

0, .., Y
m

0 ) by asking that S(W,X0, Y
1

0, .., Y
m

0 ) is the unique
pathwise solution of (2.1) given the Brownian motion and initial data.

3. EXISTENCE AND CONVERGENCE RESULTS FOR THE CONTROLLED SYSTEM

3.1. Well posedness for the SDE/ODE system. We start by proving the existence of a
unique pathwise solution of (2.1).

Theorem 3.1. Equation (2.1) admits strong solutions that are pathwise unique. Moreover, if
X0 ∈ Lp(Ω;Rd), then there exists a constant C = C(p, Y

1

0, . . . , Y
m

0 ,Law(X0), L) > 0 such
that Mp(µ) ≤ C.

Proof. The proof is based on fixed point argument and will be divided in several steps,
as in [10]. To simplify the notation we set Z0 = (X0, Y

1

0, .., Y
m

0 ).

Step 1: For any T > 0 fix ν ∈ Wp(C
0([0, T ];Rd)) and consider the system

d X̃(t) = H1 ∗ νt(X̃(t)) +
1

m

m∑
j=1

K1(Ỹ
j(t)− X̃(t)) dt+

√
2σ dW (t)

d

dt
Ỹ i(t) = K2 ∗ νt(Ỹ i(t)) +

1

m

m∑
j=1

H2(Ỹ
j(t)− Ỹ i(t)) + ui(t, νt). i = 1, ..,m

X̃(0) = X0, Ỹ
i(0) = Y

i

0 i = 1, ..,m

νt = (evt)♯ν

(3.1)

We prove that (3.1) admits strong solutions that are pathwise unique and such that
Mp(Law(X̃)) < ∞.

Proof of Step 1: First of all observe that the second equation in (3.1) is uncoupled
with the first one, and then admits global solutions by means of classical ODE theory,
recalling that the involved nonlinearities are globally Lipschitz continuous.

Thus we now focus on the first equation in (3.1). Let us fix T and ν ∈ Wp(C
0([0, T ];Rd)).

Fix ω ∈ Ω and define the map Φω : C0([0, T ];Rd) → C0([0, T ];Rd) as, for any η ∈
C0([0, T ];Rd),

Φω(η)(t) := X0(ω) +

∫ t

0

[
H1 ∗ νs(η(s)) +

1

m

m∑
j=1

K1(Ỹ
j(s)− η(s))

]
ds+

√
2σW (ω, t)

Consider γ ≥ 0 to be chosen later and define the following norm on C0([0, T ];Rd)

∥η∥γ = max
t∈[0,T ]

e−γt |η(t)|, for any η ∈ C0([0, T ];Rd), (3.2)
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which turns out to be equivalent to the uniform norm and defines a Banach space struc-
ture on C0([0, T ];Rd). We now prove that Φω is a contraction. Observe that for any
t ∈ [0, T ] we have

|Φω(η1)(t)− Φω(η2)(t)| ≤∫ t

0

[
|H1 ∗ νs(η1(s))−H1 ∗ νs(η2(s))|

+
1

m

m∑
j=1

∣∣∣K1(Ỹ
j(s)− η1(s))−K1(Ỹ

j(s)− η2(s))
∣∣∣] ds ≤

2L

∫ t

0

|η1(s)− η2(s)| ds ≤
2L

γ
∥η1 − η2∥γeγt.

Notice that in the estimates above L can be taken independent of s thanks to item (ii) in
Remark 2.1. Multiplying both sides by e−γt and taking the maximum we get

∥Φω(η1)− Φω(η2)∥γ ≤ 2L

γ
∥η1 − η2∥γ

Taking γ > 2L we see that Φω is a contraction. Hence it admits a unique fixed point,
say X̃(ω) that is achieved as usual by reiteration of the map Φω. Let us point out that
for any X ∈ M(Ω;C0([0, T ];Rd)) that is Ft-adapted, ω 7→ Φω(X(ω)) clearly belongs
to M(Ω;C0([0, T ];Rd)) and is Ft-adapted. Thus X̃ ∈ M(Ω;C0([0, T ];Rd)) and is Ft-
adapted, being the limit of Ft-adapted C0([0, T ];Rd)-valued random variables.
We now prove the estimate on the p-th moment of X̃ . Observe that X̃ satisfies the
integral equation

X̃(t) = X0 +

∫ t

0

[
H1 ∗ νs(X̃(s)) +

1

m

m∑
j=1

K1(Ỹ
j(s)− X̃(s))

]
ds+

√
2σW (t).

It then follows that

|X̃(t)|p ≤ Cp

[
|X0|p + t1−

1
p

∫ t

0

[
|H1 ∗ νs(X̃(s))|p + 1

m

m∑
j=1

|K1(Ỹ
j(s)− X̃(s))|p

]
ds+ |W (t)|p

]

≤ Cp

[
|X0|p + t1−

1
p

∫ t

0

[
Lp|X̃(s)|p + |H1 ∗ νs(0)|p

+
1

m

m∑
j=1

(1 + |MT |p + |X̃(s)|p)

]
ds+ |W (t)|p

]
where MT = maxi=1,...,m maxt∈[0,T ] |Ỹ i(t)|. Notice that

|H1 ∗ νs(0)| ≤
∫
Rd

|H1(x)|dνs ≤ LM1(ν) + |H1(0)|.
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We end up by obtaining

|X̃(s)|p ≤ C

[
1 + |X0|p +

∫ s

0

|X̃(z)|p dz + |W (t)|p
]

≤ C

[
1 + |X0|p +

∫ t

0

max
0≤w≤z

|X̃(w)|p dz + max
0≤s≤t

|W (s)|p
]
,

for any s ≤ t, where C depends on p, T, L, M1(ν), H1(0), MT . Taking first the maxi-
mum on the left-hand side and then the expected values we conclude Step 1 by Theorem
2.2 and Grönwall’s inequality.

Step 2: Define S that maps (ν,W,Z0) into the pathwise solution of (3.1), with compo-
nents S i(ν,W,Z0), i = 1, ..,m+ 1, and

T (·,W, Z0) = Law(S1(·,W, Z0)). (3.3)

We will show that the map T has a unique fixed point in Wp(C
0([0, T ];Rd)).

Proof of Step 2: Again we endow C0([0, T ];Rd) with the norm (3.2) and we observe
that Wp(C

0([0, T ];Rd), ∥ · ∥γ) remains unchanged with an equivalent metric denoted by
Wp,γ .

For fixed W and Z0 and two given elements µ1, µ2 ∈ Wp, omitting the dependence on
W and Z0 we have

Wp
p,γ(T (µ1), T (µ2)) ≤ E

(∥∥∥X̃1 − X̃2

∥∥∥p
γ

)
(3.4)

where X̃i = S1(µi,W.Z0), i = 1, 2. Denoting Ỹ j
i = Sj+1(µi,W, Z0), i = 1, 2, j = 1, ..,m

we have

|X̃1(t)− X̃2(t)| ≤ (3.5)∫ t

0

[ ∣∣∣H1 ∗ (µ1)s(X̃1(s))−H1 ∗ (µ2)s(X̃2(s))
∣∣∣

+
1

m

m∑
j=1

∣∣∣K1(Ỹ
j
1 (s)− X̃1)−K1(Ỹ

j
2 (s)− X̃2)

∣∣∣] ds.

≤ 2L

∫ t

0

[
|X̃1(s)− X̃2(s)|+ max

j=1,..,m
|Ỹ j

1 (s)− Ỹ j
2 (s)|

]
ds

+

∫ t

0

∣∣∣H1 ∗ (µ1 − µ2)s(X̃1(s))
∣∣∣ ds .

We now prove the estimate for Y j :
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max
j=1,..,m

|Ỹ j
1 (t)− Ỹ j

2 (t)| ≤ (3.6)∫ t

0

max
j=1,..,m

[ ∣∣∣K2 ∗ (µ1)s(Ỹ
j
1 (s))−K2 ∗ (µ2)s(Ỹ

j
2 (s))

∣∣∣
+

1

m

m∑
l=1

∣∣∣H2(Ỹ
l
1 (s)− Ỹ j

1 (s))−H2(Ỹ
l
2 (s)− Ỹ j

2 (s))
∣∣∣+ |uj(s, (µ1)s)− uj(s, (µ2)s)|

]
ds

≤ 3L

∫ t

0

max
j=1,..,m

|Ỹ j
1 (s)− Ỹ j

2 (s)| ds

+ max
j=1,..,m

∫ t

0

∣∣∣K2 ∗ (µ1 − µ2)s(Ỹ
j
1 (s))

∣∣∣ ds + L

∫ t

0

W1((µ1)s, (µ2)s) ds .

We now point out the following estimate(∫ t

0

W1((µ1)s, (µ2)s) ds

)p

≤ T 1− 1
p

pγ
Wp

p,γ(µ1, µ2) e
pγt. (3.7)

Indeed, consider the optimal coupling π of µ1, µ2 for the Wp,γ distance and define πt =
(evt)♯π. Then πt is a coupling of (µ1)t and (µ2)t and, by definition of W1, we get

(∫ t

0

W1((µ1)s, (µ2)s) ds

)p

≤ T 1− 1
p

∫ t

0

(∫
(Rd)2

|x− y| dπs(x, y)

)p

ds

≤ T 1− 1
p

∫ t

0

∫
(Rd)2

|x− y|p dπs(x, y) ds

≤ T 1− 1
p

∫ t

0

∫
(C0([0,T ];Rd))2

evs(|φ1 − φ2|p) dπ(φ1, φ2) ds

≤ T 1− 1
p

∫ t

0

epγs
∫
(C0([0,T ];Rd))2

∥φ1 − φ2∥pγ dπ(φ1, φ2) ds

≤ T 1− 1
p

pγ
Wp

p,γ(µ1, µ2) e
pγt.

In particular, (3.7) implies that

max

{(∫ t

0

∣∣∣H1 ∗ (µ1 − µ2)s(X̃1(s))
∣∣∣ ds)p

,

(∫ t

0

∣∣∣K2 ∗ (µ1 − µ2)s(Ỹ
j
1 (s))

∣∣∣ ds)p}
≤ Lp

pγ
T 1− 1

p Wp
p,γ(µ1, µ2) e

pγt (3.8)
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Using (3.6), (3.7) and (3.8), setting

G1(t) = max
j=1,..,m

|Ỹ j
1 (t)− Ỹ j

2 (t)|p

we get that

G1(t) ≤ 3p−1LpT 1− 1
p

[
3p
∫ t

0

G1(s) ds+
2

pγ
Wp

p,γ(µ1, µ2) e
pγt

]
.

We can now apply Grönwall inequality in order to obtain

G1(t) ≤
C(p, L, T )

γ
Wp

p,γ(µ1, µ2) e
pγt. (3.9)

By (3.5), (3.9) and the first inequality in (3.8) we have, for any s ≤ t

|X̃1(s)− X̃2(s)|p ≤

≤ 3p−1T 1− 1
p

(
(2L)p

∫ s

0

epγze−pγz|X̃1(z)− X̃2(z)|p dz

+Wp
p,γ(µ1, µ2)

epγs

pγ

(
C(p, L, T )

γ
+ Lp

))
≤ 3p−1T 1− 1

p epγs
(
(2L)p

∫ t

0

max
0≤w≤z

e−pγw|X̃1(w)− X̃2(w)|p dz

+
Wp

p,γ(µ1, µ2)

pγ

(
C(p, L, T )

γ
+ Lp

))
Multiplying by e−pγs, taking the maximum in [0, t] on the LHS of the above inequality

and applying the expectation to both sides, setting

G2(t) = E
(
max
0≤s≤t

e−pγs |X̃1(s)− X̃2(s)|p
)

we get

G2(t) ≤ 3p−1T 1− 1
p

(
(2L)p

∫ t

0

G2(s) ds+
Wp

p,γ(µ1, µ2)

pγ

(
C(p, L, T )

γ
+ Lp

))
.

We apply Grönwall inequality once again and, assuming γ ≥ 1, we obtain

G2(t) ≤
C(p, L, T )

γ
Wp

p,γ(µ1, µ2).

Now we plug the previous inequality in (3.4) in order to have

Wp
p,γ(T (µ1), T (µ2)) ≤

C(p, L, T )

γ
Wp

p,γ(µ1, µ2).
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Hence choosing γ sufficiently large we get that the map T is a contraction.

Step 3: Given µ the fixed point of Step 2 we construct the solution of equation (2.1) as
S(µ,W,Z0). The estimate Mp(µ) < ∞ follows directly from Step 1. This concludes the
proof. □

Remark 3.2. We point out that it is possible to prove the previous result, as well as the fol-
lowing one, under the milder assumption that the Lipschitz constant of ui(t, ·) depends
on t, i.e. L = L(t), with L ∈ L1(0, T ).

In the sequel we will need stability of the solutions to (2.1) with respect to the controls.
We will make an additional structural assumption on the ui’s, namely

ui(t, µ) = hi(t)gi(µ) (3.10)

where hi ∈ L∞([0, T ];Rd×ℓ) for some ℓ ≥ 1 and gi : W1(Rd) → Rℓ is Lipschitz. The
product in (3.10) is the matrix-vector product.

Theorem 3.3. Assume that hi
j ⇀ hi in L1([0, T ];Rd×ℓ) and gij → gi in C(W1(Rd);Rℓ). Sup-

pose further that gij are L-Lipschitz and M -bounded while the hi
j are M -bounded. Define ui

and ui
j as in (3.10) and, accordingly, take µj , µ, Y i

j and Y
i as in (2.1) for a fixed initial datum

Z0 = (X0, Y
1

0, . . . , Y
m

0 ). Then it holds

lim
j→∞

max
0≤t≤T

(W1((µj)t, µt) + max
i=1,...,m

|Y i

j(t)− Y
i
(t)|) = 0.

Proof. Fix a Brownian motion W and let (Xj, Y
1

j , . . . , Y
m

j ) = S(µj,W, Z0) and
(X,Y

1
, . . . , Y

m
) = S(µ,W,Z0). Then we have

max
0≤t≤T

W1((µj)t, µt) ≤ max
0≤t≤T

E[|Xj(t)−X(t)|] ≤ E
[
max
0≤t≤T

|Xj(t)−X(t)|
]
. (3.11)

Arguing as in (3.6) and using (3.10) we get, for all j ∈ N and for all t ∈ [0, T ]

max
i=1,...,m

|Y i

j(t)− Y
i
(t)| ≤ 3L

∫ t

0

max
i=1,...,m

|Y i

j(s)− Y
i
(s)|ds (3.12)

+ L(1 + 2M)

∫ t

0

W1((µj)s, µs)ds+ max
t∈[0,T ]

Rj(t),

where the remainder term is given by

Rj(t) = max
i=1,...,m

∣∣∣∣∫ T

0

(hi
j(s)− hi(s))gi(µs)χ[0,t](s)ds

∣∣∣∣+MT max
i=1,...,m

∥gij − gi∥∞.

Observe that, by weak convergence of hi
j and uniform convergence of the gij , Rj(t)

converges pointwise to zero. By M -boundedness of hi
j we also have that Rj are equi-

Lipschitz hence
lim
j→∞

max
t∈[0,T ]

Rj(t) = 0. (3.13)
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Furthermore, by Grönwall inequality on (3.12) we get

max
i=1,...,m

|Y i

j(t)− Y
i
(t)| ≤

(
L(1 + 2M)

∫ t

0

W1((µj)s, µs)ds+ max
t∈[0,T ]

Rj(t)

)
e3LT (3.14)

Arguing as in (3.5) we have, for all 0 ≤ s ≤ t ≤ T

|Xj(s)−X(s)| ≤ 2L

∫ t

0

(
|Xj(z)−X(z)|+ max

i=1,...,m
|Y i

j(z)− Y
i
(z)|
)
dz

+ L

∫ t

0

W1((µj)z, µz)dz

Inserting (3.12) in the previous inequality we obtain

|Xj(s)−X(s)| ≤ 2L

∫ t

0

|Xj(z)−X(z)|dz + L

∫ t

0

W1((µj)z, µz)dz

+ L(1 + 2M)e3LT
∫ t

0

∫ z

0

W1((µj)w, µw) dw dz

+ Te3LT max
t∈[0,T ]

Rj(t)

Seting Gj(t) = E[max0≤s≤t |Xj(s)−X(s)|] and observing that for any 0 ≤ w ≤ z it holds

W1((µj)w, µw) ≤ E[|Xj(w)−X(w)|] ≤ Gj(z),

we achieve

Gj(t) ≤ L(3 + (1 + 2M)Te3LT )

∫ t

0

Gj(z)dz + Te3LT max
t∈[0,T ]

Rj(t).

Taking into account (3.13) and (3.11), an application of the Grönwall inequality then
gives

lim
j→∞

max
0≤t≤T

W1((µj)t, µt) = 0.

Inserting this into (3.14) we conclude the proof. □

Remark 3.4. Notice that we actually proved

lim
j→∞

E
[
max
0≤t≤T

|Xj(t)−X(t)|
]
= 0,

that implies

lim
j→∞

W1(µj, µ) = 0.
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3.2. Equivalence with a PDE/ODE system. We now derive the PDE-ODE system sat-
isfied by the (m+ 1)-ple (µt, Y

1
(t), .., Y

m
(t)) as obtained above by solving (2.1).

Proposition 3.5. Let (X(t), Y
1
(t), .., Y

m
(t)) be the unique solution of (2.1) with given initial

data (X0, Y
1

0, .., Y
m

0 ). For µt as in (2.1), the (m+1)-ple (µ(t), Y 1
(t), .., Y

m
(t)) solves the PDE-

ODE system
(∂t − σ∆) µt = −div

(
(H1 ∗ µt(·) + 1

m

∑m
j=1K1(Y

j
(t)− ·))µt

)
d

dt
Y

i
(t) = K2 ∗ µt(Y

i
(t)) +

1

m

m∑
j=1

H2(Y
j
(t)− Y

i
(t)) + ui(t, µt). i = 1, ..,m

µ0 = Law(X0), Y
i
(0) = Y

i

0 i = 1, ..,m

(3.15)

Proof. It is clear that the initial data are attained and that the second equation is solved.
We only have to derive the first equation in (3.15). Take any φ ∈ C∞

c (Rd) and letting ∆
indicate the Laplacian in spatial coordinates, applying Itô’s formula [30, Theorem 4.2.1]
we see that

dφ(X(t)) = ⟨∇φ(X(t)), dX(t)⟩+ σ∆φ(X(t)) dt.

Inserting the first equation in (2.1) we then get

dφ(X(t)) =

〈
∇φ(X(t)), H1 ∗ µt(X(t)) +

1

m

m∑
j=1

K1(Y
j
(t)−X(t)) dt+

√
2σ dW (t)

〉
+ σ∆φ(X(t)) dt.

Integrating the above expression in Itô’s sense we have

φ(X(t)) = φ(X0) +

∫ t

0

〈
∇φ(X(s)), H1 ∗ µs(X(s)) +

1

m

m∑
j=1

K1(Y
j
(s)−X(s)))

〉
ds

+

∫ t

0

σ∆φ(X(s)) ds+
√
2σ

∫ t

0

∇φ(X(s)) · dW (s).

When taking the expected values on both sides recall that by [30, Theorem 3.2.1]

E
(∫ t

0

∇φ(X(s)) · dW (s)

)
= 0.

Hence, since µt = LawX(t), we get
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∫
Rd

φ(x) dµt(x) =

∫
Rd

φ(x) dµ0(x)

+

∫ t

0

∫
Rd

[〈
∇φ(x), H1 ∗ µs(x) +

1

m

m∑
j=1

K1(Y
j
(s)− x)

〉
+ σ∆φ(x)

]
dµs(x) ds

as required. □

Before going further in the discussion we wish to point out that under some condi-
tions on the initial datum the (m+1)-ple (µtb, Y

1
(t), .., Y

m
(t)) provided by (2.1) is indeed

the unique solution to (3.15). To this aim we will make use of the following result proved
in [5] that we state for the reader’s convenience in a form suited for our setting.

Lemma 3.6. Consider the equation

(∂t − σ∆) ηt = −div (V (t, ·) ηt) , (3.16)

with initial datum η0 = ρ0 dx. Assume that η0 ∈ W2(Rd) and satisfies the finite entropy
condition ∫

Rd

ρ0(x) log ρ0(x) dx < ∞.

Assume also that there exists C > 0 such that

|V (t, x)| ≤ C(1 + |x|) (3.17)

for all t ∈ [0, T ] and x ∈ Rd. Then there exists a unique solution η ∈ C0([0, T ];P(Rd)) of
(3.16).

Proof. This is a particular case of Theorem 3.3 in [5]. Observe that if V (t, ·) is sublinear,
it satisfies all of the other assumptions in the statement of that theorem. □

We are now ready to state the announced uniqueness result.

Theorem 3.7. Let (X(t), Y
1
(t), .., Y

m
(t)) be the unique solution of (2.1) with given initial

data (X0, Y
1

0, .., Y
m

0 ). Assume additionally that µ0 = Law(X0) belongs to W2(Rd) and is of
the form µ0 = ρ0 dx where ρ0 has finite entropy. Then, for µ(t) as in (2.1), the (m + 1)-ple
(µ(t), Y

1
(t), .., Y

m
(t)) is the unique solution of (3.15) in C0([0, T ];W1(Rd)× (Rd)m).

Proof. By Theorem 3.5 we already know that (µt, Y
1
(t), .., Y

m
(t)) solves (3.15), so we

only need to prove its uniqueness.
Thus, we let (µ̂t, Ŷ

i(t)) be another solution of (3.15) with µ̂ ∈ C0([0, T ];W1(Rd)) and
we define

v̂(t, x) = H1 ∗ µ̂t(x) +
1

m

m∑
i=1

K1(Ŷ
i(t)− x). (3.18)

Notice that µ̂t solves
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(∂t − σ∆) µ̂t = −div (v̂(t, ·) µ̂t) . (3.19)
We point out the estimate

|v̂(t, x)| ≤ L

(
max
t∈[0,T ]

M1(µ̂t) + max
i=1,..,m

max
t∈[0,T ]

|Ŷ i(t)|
)
+ |H1(x)|+ |K1(x)|

By the sublinearity of H1 and K1 this implies that v̂ satisfies condition (3.17). Since
the initial datum µ0 belongs to W2(Rd) and has finite entropy, it follows from Theorem
3.7 that µ̂t is the unique solution of (3.19).

Consider now the SDE{
d X̂(t) = v̂(t, X̂(t)) dt+

√
2σ dW (t)

X̂(0) = X0

(3.20)

Thanks to the Lipschitz continuity of H1 and K1 one can see that v̂(t, ·) is globally
Lipschitz uniformly with respect to t ∈ [0, T ]. Combining this with the sublinearity of
v̂, we get that (3.20) admits a unique strong solution by [30, Theorem 5.2.1]. Applying
Itô’s formula as in the proof of proposition 3.5 we have that Law(X̂(t)) solves (3.19). By
uniqueness we then get

Law(X̂(t)) = µ̂t. (3.21)
Combining (3.21) with (3.20), by the explicit expression of v̂ in (3.18) we get that µ̂ is

a fixed point of the contractive map T defined in (3.3), for Z0 = (X0, Y
1

0, .., Y
m

0 ). Such is
also µ as seen in Theorem 3.1. By uniqueness of the fixed point it holds µt = µ̂t for all
t ∈ [0, T ]. Inserting this equality into the remaining ODEs of the system (3.15), we also
get Y

i
(t) = Ŷ i(t) for all i = 1, ..,m and all t ∈ [0, T ], by standard uniqueness theory for

Cauchy problems. This concludes the proof. □

3.3. Mean field limit of the discrete system. Throughout the paper we will be con-
cerned with the asymptotic behaviour of the following system of SDEs

dXn(t) =
1

N

N∑
l=1

H1(X
l(t)−Xn(t)) +

1

m

m∑
j=1

K1(Y
j(t)−Xn(t)) dt+

√
2σ dW n(t)

d

dt
Y i(t) =

1

N

N∑
l=1

K2(Y
i(t)−X l(t)) +

1

m

m∑
j=1

H2(Y
j(t)− Y i(t)) + uN(X

1(t), .., Xn(t)).

Xn(0) = Xn
0 , Y

i(0) = Y i
0 ; i = 1, ..,m, n = 1, .., N

(3.22)
We will assume that

• Xn
0 are i.i.d. random variables in Lp(Ω) for some p > 1.

• W n are independent Brownian motions.
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• For all N ∈ N and x1, .., xN ∈ Rd, uN(x1, .., xN) = u
(

1
N

∑N
n=1 δxn

)
where u :

W1(Rd) → Rd is a Lipschitz function.

The existence of strong solutions for such systems is guaranteed by [30, Theorem
5.2.1].

For the proof of the convergence of the solutions of (3.22) to the solutions of (2.1) we
need the following technical lemma.

Lemma 3.8. Fix N ∈ N and let Xn

0 be i.i.d. random variables, W n be independent Brownian
motions, n = 1, .., N , and (Y

1

0, . . . , Y
m

0 ) ∈ (Rd)m. Moreover, let Xn, Y i,n be the solution of
(2.1) with initial data Zn

0 = (X
n

0 , Y
1

0, . . . , Y
m

0 ) and Brownian motion W n. Then

(1) X
n are i.i.d.

(2) Y
i,n

= Y
i,1

:= Y
i for any i = 1, ..,m and n = 1, .., N .

Proof. First of all let us observe that if we prove (1) then property (2) follows by ob-
serving that the second line in (2.1) only depends on the law of X

n
, which in turn is

independent of n.
We now prove property (1). We begin by noticing that the map T actually depends

only on the law of the initial datum. Indeed, consider W j and X
j

0 for j = 1, 2 and define,
for k ≥ 1,

X̂j
0 ≡ X

j

0,

X̂j
k(t) = X

j

0 +

∫ t

0

H1 ∗ νs(X̂j
k−1(s)) ds

+
1

m

m∑
i=1

∫ t

0

K1(Ỹ
i(s)− X̂j

k−1(s)) ds+
√
2σW j(t)

where Ỹ i solves the second equation in (3.1). Since we are assuming that X
1

0 and X
2

0 are
identically distributed, one has inductively that Law(X̂1

k) = Law(X̂2
k). Since, from the

proof of Theorem 3.1 we know that X̂j
k → X̃j = S1(ν,Wj, Z

j
0) for j = 1, 2, we deduce

that T = Law(S1) only depends on ν and Law(X
n

0 ) as claimed.
With this, and using again the proof of Theorem 3.1, for all n we have that Law(X

n
) is the

unique fixed point of T (·,Law(Xn

0 )). By uniqueness we deduce that X
n

are identically
distributed.

Finally, let µ = Law(X
n
). Then we can write X

n
= S1(µ,W

n, Zn
0 ) which clearly im-

plies the required independence. □

The previous lemma allows us for a standard derivation of the following propagation
of chaos result.
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Theorem 3.9. Let Xn,Y i be the solutions of (3.22). Let Xn, Y i be the solution of (2.1) with
initial data Xn

0 and Brownian motion W n. Then there exists a constant Cd,p(N) > 0 with
limN→∞Cd,p(N) = 0 such that

E
(

max
1≤n≤N

max
0≤t≤T

|Xn(t)−X
n
(t)|+ max

1≤i≤m
max
0≤t≤T

|Y i(t)− Y
i
(t)|
)

≤ Cd,p(N). (3.23)

Proof. Set µN and µN to be the empirical measures of Xn and X
n
, respectively. For all

0 ≤ s ≤ t ≤ T we have by definition of strong solution

Xn(s)−X
n
(s) =

∫ s

0

[
(H1 ∗ (µN)z)(X

n(z))− (H1 ∗ µz)(X
n
(z))

]
dz

+
1

m

m∑
j=1

∫ s

0

[
K1(Y

j(z)−Xn(z))−K1(Y
j
(z)−X

n
(z))

]
dz

Arguing as in (3.5), thanks to triangle inequality, we get

max
1≤n≤N

|Xn(s)−X
n
(s)| ≤ 2L

∫ s

0

[
max

1≤n≤N
|Xn(z)−X

n
(z)|+ max

1≤i≤m
|Y i(z)− Y

i
(z)|
]
dz

+ L

∫ s

0

[W1((µN)z, (µN)z) +W1((µN)z, µz)] dz (3.24)

The term max1≤i≤m |Y i(z) − Y
i
(z)| can be estimated in a similar way as in (3.6), ob-

taining

max
1≤i≤m

|Y i(s)− Y
i
(s)| ≤ 3L

∫ s

0

[
max
1≤i≤m

|Y i(z)− Y
i
(z)|
]
dz (3.25)

+ 2L

∫ s

0

[W1((µN)z, (µN)z) +W1((µN)z, µz)] dz,

where we also used the triangle inequality for W1.
By definition one has almost surely

W1((µN)z, (µN)z) ≤
1

N

N∑
n=1

|Xn(z)−X
n
(z)| ≤ max

1≤n≤N
|Xn(z)−X

n
(z)| (3.26)

On the other hand, by Theorem 2.3 and property (i) of Remark 2.1, we have

E(W1((µN)z, µz)) ≤ C ′
d,p(N)Mp(µz) ≤ C ′

d,p(N)Mp(µ), (3.27)
where Mp(µ) < ∞ by Theorem 3.1 and C ′

d,p(N) → 0 as N → ∞ by Theorem 2.3.
Set

G(t) := E
(

max
1≤n≤N

max
0≤s≤t

|Xn(t)−X
n
(t)|+ max

1≤i≤m
max
0≤s≤t

|Y i(t)− Y
i
(t)|
)
.
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Thanks to (3.24), (3.25), (3.26), (3.27) and Grönwall inequality we have

G(t) ≤ 3LC ′
d,p(N)TMp(µ)e

5LT .

Setting Cd,p(N) = 3LC ′
d,p(N)TMp(µ)e

5LT we conclude the proof. □

Remark 3.10. We also Remark that, combining inequalities (3.26) and (3.27) with (3.23)
we also conclude that

E
(
max
0≤t≤T

W1((µN)t, µt)

)
≤ Cd,p(N).

4. MEAN FIELD SPARSE OPTIMAL CONTROL

4.1. The finite dimensional optimal control problem. In what follows we shall fix a
measure µ0 ∈ Wp(Rd) for some p > 1 and a vector Y0 ∈ (Rd)m.

Let us consider a continuous Lagrangian function L : [0, T ]×(Rd)m×W1(Rd) → R and
a continuous control cost Ψ : (Rd×ℓ)m × (Rℓ)m → R that is convex in the first variable.
We fix a compact set U of controls in Rd×ℓ and, for given M,L > 0, we denote with G the
compact subset of C0(W1(Rd);Rℓ) made up of M -bounded and L-Lipschitz functions.
Accordingly we set E = L1([0, T ];U) × G and, for (h,g) ∈ Em, we define the sequence
of functionals

FN(h,g) = E

[∫ T

0

L

(
t,Y(t),

1

N

N∑
n=1

δXn(t)

)
dt+

∫ T

0

Ψ

(
h(t),g

(
1

N

N∑
n=1

δXn(t)

))
dt

]
,

(4.1)
where Y = (Y 1, . . . , Y m) and X1, . . . , XN solve (3.22) with initial data Y0 and Xn

0 , for
n = 1, . . . , N , i.i.d. with Law(X1

0 ) = µ0 under the controls
uj
N(X

1, . . . , XN) = hj(t)gj
(

1
N

∑N
n=1 δXn(t)

)
for any j = 1, . . . ,m.

In order to prove the well posedness of the minimizing problem, we need the follow-
ing stability result.

Proposition 4.1. Assume that hi
j ⇀ hi in L1([0, T ];Rd×ℓ) and gij, g

i ∈ C0(W1(Rd);Rℓ) with
gij → gi pointwise on Wp(Rd) for some p > 1. Suppose further that gij are L-Lipschitz and
M -bounded while the hi

j are M -bounded. Define ui and ui
j as in (3.10) and, accordingly, take

(X1
j , .., X

N
j , Y 1

j , .., Y
m
j ), (X1, .., XN , Y 1, .., Y m) as in (3.22). Then it holds

lim
j→∞

E

[
max
0≤t≤T

(
W1

(
1

N

N∑
n=1

δXn
j (t)

,
1

N

N∑
n=1

δXn(t)

)
+ max

i=1,...,m
max
0≤t≤T

|Y i
j (t)− Y i(t)|

)]
= 0.

Proof. Arguing as in Theorem 3.3 for any 0 ≤ s ≤ t we get
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max
i=1,...,m

|Y i
j (s)− Y i(s)| ≤ 3L

∫ t

0

max
i=1,...,m

max
w≤z

|Y i
j (z)− Y i(z)|dz (4.2)

+ L(1 + 2M)

∫ t

0

max
w≤z

W1

(
1

N

N∑
n=1

δXn
j (w),

1

N

N∑
n=1

δXn(w)

)
dz +

m∑
i=1

max
s≤T

R̂i
j(s),

where

R̂i
j(s) =

∣∣∣∣∣
∫ s

0

(
hi
j(z)− hi(z)

)
gi

(
1

N

N∑
n=1

δXn(z)

)
dz

∣∣∣∣∣ (4.3)

+M

∫ T

0

∣∣∣∣∣gij
(

1

N

N∑
n=1

δXn(z)

)
− gi

(
1

N

N∑
n=1

δXn(z)

)∣∣∣∣∣ dz.
Taking the supremum and the expectation in (4.2) we obtain

E
(
max
s≤t

max
i=1,...,m

|Y i
j (s)− Y i(s)|

)
≤ 3L

∫ t

0

E
(

max
i=1,...,m

max
w≤z

|Y i
j (z)− Y i(z)|

)
dz

+ L(1 + 2M)

∫ t

0

E

(
max
w≤z

W1

(
1

N

N∑
n=1

δXn
j (w),

1

N

N∑
n=1

δXn(w)

))
dz +Rj,

where Rj = E
(∑m

i=1maxs≤T R̂i
j(s)

)
.

Once we prove that Rj → 0 we conclude the proof as in Theorem 3.3. To do this
observe that the first integral in (4.3) goes to zero almost surely due to the weak conver-
gence of hi

j . Concerning the second integral, observe that due to the pointwise conver-
gence of the gij we know that∣∣∣∣∣gij

(
1

N

N∑
n=1

δXn(z)

)
− gi

(
1

N

N∑
n=1

δXn(z)

)∣∣∣∣∣→ 0

for any z ∈ [0, T ] almost surely. Combining this with the fact that gij are M -bounded
we conclude by dominated convergence that the second integral also goes to zero almost
surely. Let us also stress that, since gij and hi

j are M -bounded, R̂i
j(s) are equi-Lipschitz

and equi-bounded, thus maxs≤T R̂i
j(s) → 0 almost surely and Rj → 0 by dominated

convergence. □

Now we can prove that the functional FN admits a minimizer in Em.

Theorem 4.2. Let L be uniformly continuous. There exists (h∗,g∗) ∈ Em such that

FN(h∗,g∗) = min
(h,g)∈Em

FN(h,g).
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Proof. Let (hj,gj) ∈ Em be a minimizing sequence. Being U a compact subset of Rd×ℓ,
there exists h∗ such that hj ⇀ h∗. Let us also observe that, being Xn

j almost surely
continuous for any n = 1, .., N and j ∈ N, it holds 1

N

∑N
n=1 δXn

j (t)
∈ Wp(Rd) almost

surely for any p ≥ 1. Hence we can suppose that gij are defined on Wp(Rd) for some
p > 1. Recalling that Wp(Rd) is a σ-compact dense subset of W1(Rd), by the Ascoli-
Arzelá Theorem we can suppose there exists a function g∗ ∈ (C(W1(Rd);Rℓ))m that is
L-Lipschitz, M -bounded and such that gij → gi∗ pointwise in Wp(Rd) and uniformly on
any compact subset of Wp(Rd). Hence, we are left to prove that

inf
(h,g)∈Em

FN(h,g) = lim inf
j→∞

FN(hj,gj) ≥ FN(h∗,g∗). (4.4)

Let (X1
j , .., X

N
j , Y 1

j , .., Y
m
j ) and (X1

∗ , .., X
N
∗ , Y 1

∗ , .., Y
m
∗ ) be the solutions to (3.22) with

controls uj = hjgj and u∗ = h∗g∗ respectively. Since L is uniformly continuous there
exists a concave modulus of continuity ω1 such that, almost surely

∫ T

0

∣∣∣∣∣L
(
t,Yj(t),

1

N

N∑
n=1

δXn
j (t)

)
− L

(
t,Y∗(t),

1

N

N∑
n=1

δXn
∗ (t)

)∣∣∣∣∣ dt
≤ Tω1

(
max
0≤t≤T

max
i=0,..,m

∣∣Y i
j (t)− Y i

∗ (t)
∣∣+ max

0≤t≤T
W1

(
1

N

N∑
n=1

δXn
j (t)

,
1

N

N∑
n=1

δXn
∗ (t)

))
Taking the expectation and using Jensen’s inequality we obtain:

E

(∫ T

0

∣∣∣∣∣L
(
t,Yj(t),

1

N

N∑
n=1

δXn
j (t)

)
− L

(
t,Y∗(t),

1

N

N∑
n=1

δXn
∗ (t)

)∣∣∣∣∣ dt
)

(4.5)

≤ Tω1

(
E

(
max
0≤t≤T

max
i=0,..,m

∣∣Y i
j (t)− Y i

∗ (t)
∣∣+ max

0≤t≤T
W1

(
1

N

N∑
n=1

δXn
j (t)

,
1

N

N∑
n=1

δXn
∗ (t)

)))
,

where the RHS tends to zero thanks to Proposition 4.1.

Concerning the control cost, let us observe that, being hj M -bounded and gj both M -
bounded and L-Lipschitz, we can consider a concave modulus of continuity ω2 for Ψ in
(BM(0))2m so that

∫ T

0

∣∣∣∣∣Ψ
(
hj(t),gj

(
1

N

N∑
n=1

δXn
j (t)

))
−Ψ

(
hj(t),gj

(
1

N

N∑
n=1

δXn
∗ (t)

))∣∣∣∣∣ dt
≤ Tω2

(
L max

0≤t≤T
W1

(
1

N

N∑
n=1

δXn
j (t)

,
1

N

N∑
n=1

δXn
∗ (t)

))
Taking again the expectation and using Jensen’s inequality we obtain:
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E

(∫ T

0

∣∣∣∣∣Ψ
(
hj(t),gj

(
1

N

N∑
n=1

δXn
j (t)

))
−Ψ

(
hj(t),gj

(
1

N

N∑
n=1

δXn
∗ (t)

))∣∣∣∣∣ dt
)

(4.6)

≤ Tω2

(
LE

(
max
0≤t≤T

W1

(
1

N

N∑
n=1

δXn
j (t)

,
1

N

N∑
n=1

δXn
∗ (t)

)))
,

where the RHS tends to zero thanks to Proposition 4.1.

Next, observe that since (X1
∗ , .., X

N
∗ ) admits continuous trajectories almost surely, we

know that 1
N

∑N
n=1 δXn

∗ (t) belongs to Wp(Rd) almost surely for any p > 1. Since the gj

converge pointwise to g∗ on Wp(Rd), we get

∣∣∣∣∣Ψ
(
hj(t),gj

(
1

N

N∑
n=1

δXn
∗ (t)

))
−Ψ

(
hj(t),g∗

(
1

N

N∑
n=1

δXn
∗ (t)

))∣∣∣∣∣
≤ ω2

(∣∣∣∣∣gj

(
1

N

N∑
n=1

δXn
∗ (t)

)
− g∗

(
1

N

N∑
n=1

δXn
∗ (t)

)∣∣∣∣∣
)

→ 0,

for any 0 ≤ t ≤ T and almost surely. Moreover,

∣∣∣∣∣Ψ
(
hj(t),gj

(
1

N

N∑
n=1

δXn
∗ (t)

))
−Ψ

(
hj(t),g∗

(
1

N

N∑
n=1

δXn
∗ (t)

))∣∣∣∣∣ ≤ 2∥Ψ∥L∞((BM (0))2m).

Hence, by dominated covergence,

E

(∫ T

0

∣∣∣∣∣Ψ
(
hj(t),gj

(
1

N

N∑
n=1

δXn
∗ (t)

))
−Ψ

(
hj(t),g∗

(
1

N

N∑
n=1

δXn
∗ (t)

))∣∣∣∣∣ dt
)

→ 0. (4.7)

Finally, by lower semicontinuity of convex integrands with respect to the weak-L1

topology we have

lim inf
j→∞

∫ T

0

Ψ

(
hj(t),g∗

(
1

N

N∑
n=1

δXn
∗ (t)

))
dt ≥

∫ T

0

Ψ

(
h∗(t),g∗

(
1

N

N∑
n=1

δXn
∗ (t)

))
dt

almost surely. Observing furthermore that∣∣∣∣∣
∫ T

0

Ψ

(
hj(t),g∗

(
1

N

N∑
n=1

δXn
∗ (t)

))
dt

∣∣∣∣∣ ≤ T∥Ψ∥L∞((BM (0))2m),

we can use Fatou’s Lemma to conclude that
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lim inf
j→∞

E

(∫ T

0

Ψ

(
hj(t),g∗

(
1

N

N∑
n=1

δXn
∗ (t)

))
dt

)
(4.8)

≥ E

(∫ T

0

Ψ

(
h∗(t),g∗

(
1

N

N∑
n=1

δXn
∗ (t)

))
dt

)
.

Combining (4.5), (4.6), (4.7), (4.8) with (4.1) we get (4.4). □

4.2. The Γ-limit optimal control problem. We now introduce a model optimal control
problem for the PDE-ODE system (3.15).

For (h,g) ∈ Em, where E is the space introduced in the previous section, for L and Ψ
as in the previous subsection, we consider the following functional:

F(h,g) =

∫ T

0

L(t,Y(t), µt) dt+

∫ T

0

Ψ(h(t),g(µt)) dt, (4.9)

where Y = (Y
1
, . . . , Y

m
) ∈ (Rd)m and X t are the solutions of (2.1) corresponding to

ui(t, µt) = hi(t)gi(µt) and µt = Law(X t). We also recall that if Law(X0) ∈ W2(Rd) with
density ρ0 with finite entropy, one can equivalently take (µ·,Y) as the unique solutions
of (3.15), which is better suited for the applications.

Our first goal is to prove that F has a minimum on Em.

Theorem 4.3. There exist (h∗,g∗) ∈ Em such that

F(h∗,g∗) = min
(h,g)∈Em

F(h,g).

Remark 4.4. We remark that the control problem we consider is more general than the
one in [15]. This latter is the particular case of our analysis which one obtains by as-
suming L = 0 and Ψ(h,g) = Ψ̃(u) for a convex function Ψ̃. Indeed, in this case, all
the possible g’s are constant vectors (hence independent of µ) and we can recast the
minimum problem as an offline control problem of the form

min
u∈L1([0,T ]; Ũm)

F(u) = min
u∈L1([0,T ]; Ũm)

[∫ T

0

L(t,Y(t), µt) dt+

∫ T

0

Ψ̃(u(t)) dt

]
,

where Ũ ⊆ Rd is the image of the ball of radius M in Rℓ through U .
Conversely, notice that if U = {A} for some A ∈ Rd×ℓ, then the problem reduces to

min
u∈(C(W1(Rd);Rℓ))m

F(u) = min
u∈(C(W1(Rd);Rℓ))m

[∫ T

0

L(t,Y(t), µt) dt+

∫ T

0

Ψ̃(u(µt)) dt

]
,

where Ψ̃(·) = Ψ(A, . . . , A, ·), that is a purely feedback control problem.

Proof. Consider a minimizing sequence (hj,gj) in the set Em. We endow Em with
the weak topology of (L1([0, T ];U))m times the strong topology of (C0(W1(Rd);Rℓ))m.
Since U is compact, hj is weakly compact in L1. We also notice that gj is compact in
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(C0(K;Rℓ))m, for all compact subsets of W1(Rd) by the Ascoli-Arzelá theorem. Notice
that, by Theorem 3.1 for any solution of (2.1) it holds

sup
t∈[0,T ]

Mp(µt) ≤ C(p, Y
1

0, . . . , Y
1

0, µ0, L),

for some p > 1. This one is a compact subset of W1(Rd), hence, without loss of generality,
we can assume that (hj,gj) is compact in the given topology. We denote by (h∗,g∗) a
limit point. To prove the theorem we are left to show that

lim inf
j→∞

F(hj,gj) ≥ F(h∗,g∗). (4.10)

Let (Y
∗
(t), µ∗

t ) be the solution of (2.1) corresponding to the given initial data and the
control pair (h∗,g∗). By continuity of L and Theorem 3.3, we get

lim
j→∞

∫ T

0

L(t,Yj
(t), µj

t) dt =

∫ T

0

L(t,Y∗
(t), µ∗

t ) dt. (4.11)

By continuity of Ψ in the product space, the uniform convergence of gj → g∗ and using
again Theorem 3.3 we have

lim
j→∞

∫ T

0

|Ψ(hj(t),gj(µj
t))−Ψ(hj(t),g∗(µ∗

t ))| dt = 0. (4.12)

By lower semicontinuity of convex integrands with respect to the weak-L1 topology we
have

lim inf
j→∞

∫ T

0

Ψ(hj(t),g∗(µ∗
t )) dt ≥

∫ T

0

Ψ(h∗(t),g∗(µ∗
t )) dt.

Combining this with (4.11) and (4.12) we obtain (4.10), by the explicit expression of F
given in (4.9). □

Remark 4.5. Let us remark that (4.10) still holds under the weaker hypothesis that gj →
g∗ in (C0(K;Rℓ))m, for any bounded subset K of Wp(Rd). Observe that any bounded
subset K ⊂ Wp(Rd) is precompact in the topology of W1(Rd).

We have the following theorem which generalizes to our setting the results in [15,
Theorem 5.3].

Theorem 4.6. Equip E with the product of the weak topology of L1 and the strong topology of
C0(W1(Rd),Rℓ). For fixed initial data Y0 and µ0, define the functionals FN and F as in (4.1)
and (4.9), respectively. Assume additionally that L is uniformly continuous on [0, T ]× (Rd)m×
W1(Rd). Then FN

Γ→ F .

Proof. We begin with the liminf inequality. Consider a sequence (hN ,gN) converging to
(h,g) in Em and let YN and X1

N , . . . , X
N
N be the corresponding solutions of (3.22). Let
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also YN and (µN)t be the solutions of (2.1) under the controls uj
N = hj

Ng
j
N for j = 1, . . . ,m

and with the same initial data. By Remark 3.10 it holds

E

[
max
t∈[0,T ]

W1

(
1

N

N∑
n=1

δXn
N (t), (µN)t

)
+ max

t∈[0,T ]
|YN(t)−YN(t)|

]
≤ Cd,p(N). (4.13)

Let ω1 be an increasing concave modulus of continuity for L. By Jensen’s inequality and
(4.13) we get

E

[
max
t∈[0,T ]

ω1

(
W1

(
1

N

N∑
n=1

δXn
N (t), (µN)t

)
+ |YN(t)−YN(t)|

)]

≤ E

[
ω1

(
max
t∈[0,T ]

W1

(
1

N

N∑
n=1

δXn
N (t), (µN)t

)
+ max

t∈[0,T ]
|YN(t)−YN(t)|

)]

≤ ω1

(
E

[
max
t∈[0,T ]

W1

(
1

N

N∑
n=1

δXn
N (t), (µN)t

)
+ max

t∈[0,T ]
|YN(t)−YN(t)|

])
≤ ω1(Cd,p(N)).

Thus, we achieve∣∣∣∣∣E
[∫ T

0

L

(
t,YN(t),

1

N

N∑
n=1

δXn
N (t)

)
dt

]
−
∫ T

0

L
(
t,YN(t), (µN)t

)
dt

∣∣∣∣∣
≤ E

[∫ T

0

∣∣∣∣∣L
(
t,YN(t),

1

N

N∑
n=1

δXn
N (t)

)
− L

(
t,YN(t), (µN)t

)∣∣∣∣∣ dt
]

≤ TE

[
max
t∈[0,T ]

ω1

(
W1

(
1

N

N∑
n=1

δXn
N (t), (µN)t

)
+ |YN(t)−YN(t)|

)]
≤ Tω1(Cd,p(N)).

With a similar argument we get∣∣∣∣∣E
[∫ T

0

Ψ

(
hN(t),gN

(
1

N

N∑
n=1

δXn
N (t)

))
dt

]
−
∫ T

0

Ψ(hN(t),gN(µN)t))dt

∣∣∣∣∣
≤ Tω2(LCd,p(N)),

where ω2 is an increasing concave modulus of continuity for Ψ in U × BM(0) and the
constants L and M are those fixed in the definition of G. Combining the two previous
inequality, we get

lim
N→∞

|FN(hN ,gN)−F(hN ,gN)| = 0. (4.14)

With (4.10) we then get the liminf inequality

lim inf
N→∞

FN(hN ,gN) ≥ F(h,g).
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Finally, observe that (4.14) applied to the constant sequence (h,g) implies the pointwise
convergence

lim
N→∞

FN(h,g) = F(h,g),

thus, in particular, the existence of a recovery sequence. □

Observe that the previous Γ-convergence result is in principle not sufficient to de-
duce the convergence of the minima of the functionals FN . This is due to the lack of
compactness of W1(Rd) which does not allow us to apply the Arzelá-Ascoli theorem.
However, we are able to overcome this thanks to the fact that the measures µN asso-
ciated to (hN ,gN) are equibounded in Wp(Rd). Furthermore Remark 4.5 ensures that a
Γ-liminf inequality still holds under the local uniform convergence: this will be clarified
in the following proposition.

Proposition 4.7. For fixed initial data Y0 and µ0, define the functionals FN and F as in (4.1)
and (4.9) , respectively. Assume additionally that L is uniformly continuous on [0, T ]×(Rd)m×
W1(Rd). Then

lim
N→∞

min
(h,g)∈Em

FN(h,g) = min
(h,g)∈Em

F(h,g).

Proof. Let (hN ,gN) be a minimizing sequence for the functional FN . Being U a compact
subset of Rd×ℓ we can suppose, without loss of generality, that hN ⇀ h∗. Moreover,
arguing as in Theorem 4.2, we know there exists g∗ ∈ C0(W1(Rd);Rℓ) such that gN → g∗
in C0(K,Rℓ), for any bounded K ⊂ Wp(Rd). Also consider any (h,g) ∈ Em and recall
that we have shown in Theorem 4.6 that limN→∞FN(h,g) = F(h,g). With this, using
Remark 4.5, we have

F(h∗,g∗) ≤ lim inf
N→∞

FN(hN ,gN) ≤ lim sup
N→∞

FN(hN ,gN) ≤ lim
N→∞

FN(h,g) = F(h,g).

We conclude the prooof observing that (h,g) ∈ Em is arbitrary.
□
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