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Regularization Graphs — A unified framework for variational

regularization of inverse problems

Kristian Bredies∗ Marcello Carioni† Martin Holler ‡

Abstract

We introduce and study a mathematical framework for a broad class of regulariza-
tion functionals for ill-posed inverse problems: Regularization Graphs. Regularization
graphs allow to construct functionals using as building blocks linear operators and con-
vex functionals, assembled by means of operators that can be seen as generalizations of
classical infimal convolution operators. This class of functionals exhaustively covers ex-
isting regularization approaches and it is flexible enough to craft new ones in a simple
and constructive way. We provide well-posedness and convergence results with the pro-
posed class of functionals in a general setting. Further, we consider a bilevel optimization
approach to learn optimal weights for such regularization graphs from training data. We
demonstrate that this approach is capable of optimizing the structure and the complexity
of a regularization graph, allowing, for example, to automatically select a combination of
regularizers that is optimal for given training data.

Key words: Inverse problem, regularization functional, graph data structure, bilevel op-
timization.
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1 Introduction

In the last decades, a significant part of inverse problems theory has revolved around con-
structing suitable regularization approaches that allow for a reliable solution of ill-posed
inverse problems. Among those, energy-based methods such as Tikhonov regularization [50]
have been successful both with respect to mathematical guarantees, e.g., on well-posedness
and stability, and with respect to practical performance in applications. An important cor-
nerstone of energy-based methods are regularization functionals, which are responsible for
stabilizing the ill-posed inversion of the forward model and for incorporating prior knowl-
edge, such as smoothness, on the sought solution. The later is relevant in particular when
dealing with highly structured data such as image data, where a suitable inclusion of prior
knowledge makes a significant difference regarding the overall performance of the resulting
method.
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Figure 1: Example of a regularization graph with nodes V = {1, 2, 3, 4}, edges E =
{(1, 2), (2, 3), (2, 4)} = {e1, e2, e3} and weights (α(1,2), α(2,3), α(2,4)) = (1, 1, α). See Remark
2.5 for a detailed interpretation.

In this context, non-smooth sparsity-based methods building on measures, measure-valued
differential operators, basis transforms or frames have become very popular. Besides the
celebrated total variation (TV) functional [46], those include methods building on higher-
order derivatives such as second-order TV [31], infimal-convolution-based approaches [18] or
the total generalized variation (TGV) functional [8], see [7] for a recent review. Transform-
based methods include wavelet-, curvelet- or shearlet transforms [36, 39, 49] as well as learned
dictionaries [23].
Also more specific approaches tailored, for instance, to model certain oscillations [25, 27, 33,
38, 40, 43, 44] or texture [17], as well as different combinations of existing methods exist, such
as TV and second-order TV [42], higher-order regularizers [12, 19, 42], TV-type functionals
with curvelets or shearlets [26, 30, 28], a combination of different transform-based approaches
[35] or the infimal convolution of TV with Lp-norms [14, 15]. We refer to [7, 3, 9, 37, 47] for
a review of a subset of the plethora of existing methods.
While all these approaches share the goal of providing a model-based regularization for inverse
problems, the way and extent to which they are developed and analyzed is rather different
and often application-specific. Moreover, the choice of any of such methods is mostly done
manually. A systematic approach for the analysis and the automatic, data-based design of
regularization functionals that covers a broad class of existing methods does not exist to date.
With introducing the framework of regularization graphs, we aim to provide a step in this
direction. A regularization graph can be described as a weighted, directed graph together with
a collection of functionals and operators associated with the nodes and the edges of the graph,
respectively. Such structure allows to define regularization functionals via a rather arbitrary
combination of linear operators and functionals, e.g., via variable splittings or summations. In
particular, both the sum and a (generalized) infimal convolution of the functionals associated
with two regularization graphs can be formulated as a regularization graph functional, where
the underlying graph is obtained by properly combining the two original ones.
This yields a flexible framework for designing new regularization functionals or combining
existing ones, e.g., via infimal convolution. Moreover, by associating weights to the edges of
such graphs, a learning of both the parameters associated with such functionals as well as
the structure of the underlying graph is possible. The latter in particular allows to automat-
ically select optimal regularization functionals from a set of possible choices within a bilevel
approach.
A prototypical example of a regularization graph with nodes V = {1, 2, 3, 4}, directed edges
E = {(1, 2), (2, 3), (2, 4)} and weights (αe)e∈E is provided in Figure 1. Here, the operators and
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the functionals associated to the nodes and the edges of the graph are defined as follows. For
n ∈ V and e ∈ E, Xn and Xe are suitable Banach spaces, Φe are bounded linear operators, Θe

are (possibly unbounded) closed range operators and Ψn are convex functionals. The spaces
Xn and Xe are called node spaces and edge spaces, respectively, while the Ψn are called node
functionals. Further, we call Θe forward operators as they map from the edge space Xe to the
direct successor node space Xn. Similarly, we call Φe backward operators as they map from
the edge space to the direct predecessor node space. Variables {we1 , we2 , we3} associated with
the edges of the graph, on which both the forward and backward operators are evaluated, are
called edge variables.
Notice that in our example the root node 1 and the splitting node 2 correspond to the
functional I{0}, i.e., Ψ1 = Ψ2 = I{0} and Φe2 = I denotes a continuous embedding of Xe2 into
X2; see Remark 2.5 below for details. Also note that the weights (αe)e∈E associated to the
graph are depicted in Figure 1 as scalar factors in front of the backward operators (Φe)e∈E ,
where we use the convention that fixed, trivial weights αe = 1 are not depicted explicitly.
We also remark that, besides the notation αe for e ∈ E, for specific regularization graphs
the non-trivial weights will be often numbered independently of the edge they are associated
with; see Figure 2.
The regularization functional Rα : X1 → [0,+∞] corresponding to such a regularization graph
is given via minimizing over the involved edge variables {we1 , we2 , we3} as

Rα(u) = inf
(wei

)i
I{0}(u− Φe1we1) + I{0}(Θe1we1 − we2 − αΦe3we3) + Ψ3(Θe2we2) + Ψ4(Θe3we3)

= inf
we1 ,we3

Ψ3(Θe2(Θe1we1 − αΦe3we3)) + Ψ4(Θe3we3) s.t. u = Φe1we1 .

The structure defined in this example is a regularization graph under mild additional con-
ditions, most importantly weak* lower semicontinuity and coercivity of Ψ3 and Ψ4, and
closedness of the range of each Θe, which, for instance, still allows the Θe to be densely
defined differential operators and the Φe to be synthesis operators for a given dictionary
or frame. The non-trivial weight α allows to adapt the structure of the graph by remov-
ing edges, as with α = 0 and supposing for example that Ψ4 vanishes in zero, we obtain
R0(u) = inf{Φe1we1=u}Ψ3(Θe2Θe1we1).
The general structure of a regularization graph is defined in Section 2 and examples of existing
regularization approaches that are included in this setting are provided in Section 2.1 and
listed in the Appendix. Here, the main conditions on the involved functionals and operators
are that the forward operators Θe have closed range (i.e., satisfy a Poincaré-type estimate),
that the backward operators Φe are continuous and that the involved node functionals Ψn

are coercive.
Under these conditions, we prove well-posedness, stability and convergence results for the
application of regularization graphs in a general inverse problem setting. Moreover, we develop
a bilevel approach that allows to learn the structure of an optimal graph for a given set of
training data and show well-posedness of the resulting non-convex optimization problem.

Contribution of the paper in relation to the state of the art. In a rather abstract set-
ting, general conditions on regularization functionals that allow to guarantee well-posedness,
stability and convergence are of course well-known, see for instance [29, 32]. Those, however,
are conditions on the overall functionals rather than their building blocks and their verifica-
tion is often at the same level of difficulty than the results themselves. Furthermore, they do
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not allow to easily combine different approaches without re-checking the underlying condi-
tions. More specific results also exist, but deal with particular settings such as higher-order
regularization [6, 12].
More related to the aim of this paper are some works on bilevel optimization, see for instance
[16] for a review. In the probably most closely related work [21], the authors consider a
general bilevel framework that includes TV, the infimal convolution of first and second order
TV functionals as well as the TGV functional as particular cases. In contrast to [21], however,
where essentially well-posed linear inverse problems are considered, i.e., those with closed
range forward operator, our work is generally applicable to any bounded forward operator.
In particular, we do not require closed range and allow for genuinely ill-posed inverse problems,
a generalization that is the main source of difficulty for the analysis in this context.
A second, closely related work is the preprint [20]. There, the authors consider a bilevel scheme
for learning parameters and operators in a TGV-like functional. They provide conditions
on the involved operators under which they show well-posedness for a bilevel approach in
image denoising. As application they consider an interpolation between a symmetrized and
a non-symmetrized differential operator in the second order TGV functional. Besides being
applicable to inverse problems beyond denoising, our work is different to [20] in allowing
a more flexible combination of linear operators and functionals, far beyond the cascadic
structure of TGV. Further, our framework allows for an automatic selection from different
choices of existing regularization functionals but also, for instance, to select an optimal order
in TGV regularization.

Organization of the paper. The paper is organized as follows. In Section 2 we give the pre-
cise definition of regularization graphs clarifying the main assumptions on the linear operators,
the functionals and the involved Banach spaces that yield the results of our work. Also, we
provide several examples of existing regularization approaches that can be constructed using
a suitable regularization graph. In Section 3 we provide basic algebraic properties of regular-
ization graphs, in particular a recursive representation that will be quite useful later on. In
Section 4 we provide the main analytic properties of functionals associated with regularization
graphs that will be the basis for subsequent results on the regularization of inverse problems
and bilevel optimization. In particular, we show that any such functional is weak* lower
semi-continuous and coercive up to a finite dimensional space. In Section 5 we provide an
equivalent predual formulation of regularization graphs. Also, the connection to well-known
predual representations of existing regularization approaches is made. While the results of
this section will not be needed in the subsequent theory, they are nevertheless of interest on
their own, in particular in view of optimality conditions and duality-based algorithms.
Section 6 then provides well-posedess and convergence results for the application of regular-
ization graphs to the regularization of linear inverse problems. We focus on linear inverse
problems since this allows for a compact presentation of the results without any additional
assumptions on the forward model except for continuity. Nevertheless, the analytic results of
Section 4 also allow to show well-posedness for non-linear inverse problems under standard
assumptions on the forward model such as in [32]. In Section 7, we develop and analyze a
bilevel framework for learning the weights of regularization graphs. In particular, we show
well-posedness and an example for a bilevel approach that allows to select optimal regularizers
from a set of possible choices by learning zero-weights in the graph. An appendix further pro-
vides a list that shows how a selection of existing regularization functionals can be represented
by regularization graphs.
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2 Notation and assumptions

In this section we define the underlying setting and assumptions used in the paper. The
structure of a general regularization functional will be represented by a directed graph G =
(V,E), where V is a non-empty finite set of nodes not containing 0 and E ⊂ (V ×V )\{(n, n) :
n ∈ V } are the edges. We assume that G has a tree structure and that a root node n̂ ∈ V
exists, i.e., we assume that G contains no cycles and that for each n ∈ V there exist edges
((ni−1, ni))

M
i=1 in E such that nM = n and n0 = n̂.

We call a set F ⊂ E a chain (of length M > 0 with root n0) if F = {(ni−1, ni) | i =
1, . . . ,M, ni 6= nj for i 6= j}. Further, for n ∈ V , we denote by n− the node such that
(n−, n) ∈ E if n is not the root node of the graph and n− = 0 otherwise, noting that n− is
well defined due to the tree structure of G.
To any graph G = (V,E) we associate a family of Banach spaces spaces (Xn)n∈V with the
nodes and a family of Banach spaces (Xe)e∈E with the edges. Further, we associate the
following functionals and operators with G.

• A convex functional Ψn : Xn → [0,∞] for every n ∈ V .

• A linear forward operator Θ(n,m) : dom(Θ(n,m)) ⊂ X(n,m) → Xm for every (n,m) ∈ E.

• A linear backward operator Φ(n,m) : X(n,m) → Xn for every (n,m) ∈ E.

We suppose that each Xn, n ∈ V and each Xe, e ∈ E admits a predual space denoted by X#
n

and X#
e , respectively, and make the following assumptions on (Ψn)n, (Θe)e and (Φe)e:

(H1) Ψn is weak* lower-semicontinuous for every n ∈ V .

(H2) For every n ∈ V , Ψn is coercive, i.e., for any sequence (vk)k in Xn it holds

‖vk‖Xn → +∞ ⇒ Ψn(v
k) → +∞ as k → +∞.

(H3) Ψn(0) = 0 for every n ∈ V .

(H4) Θe is weak* closed for every e ∈ E.

(H5) ker(Θe) is finite dimensional for every e ∈ E.
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(H6) For every e = (n,m) ∈ E there exists C > 0 and a continuous, linear projection
Pker(Θe) : Xe → ker(Θe) such that

‖w − Pker(Θe)w‖Xe ≤ C‖Θew‖Xm (2.1)

for every w ∈ dom(Θe).

(H7) Φe is weak* to weak* continuous for every e ∈ E.

(H8) Bounded sequences inXe andXn admit weak* convergent subsequences for every e ∈ E,
n ∈ V .

Remark 2.1. We can observe the following details in the above assumptions:

• Hypothesis (H5) implies the existence of a linear and continuous projection on ker(Θe).

• Under Hypothesis (H4), (H5) and (H8), Hypothesis (H6) is equivalent to Θe having
closed range, see Lemma A.1 in the Appendix for a proof.

• Hypothesis (H7) implies the existence of a continuous predual operator for Φe for each
e ∈ E. Consequently, each Φe is continuous as well (see for instance [10, Remark 3.2]).

• Hypothesis (H8) holds whenever Xe and Xn are reflexive or dual spaces of separable
spaces. In case of reflexivity, the notion of weak* convergence can be replaced by weak
convergence in all assumptions.

• Note that, since the Ψn are convex, assumption (H3) implies that Ψn(λv) ≤ λΨn(v) for
any v ∈ Xn, λ ∈ (0, 1] and n ∈ V . This consequence of assumption (H3) will be needed
in the context of varying the weights of a regularization graph. For well-posedness
results such as existence and stability as presented in this paper, however, assumption
(H3) is not necessary and could be dropped.

We also note that Hypothesis (H2) implies a coercivity estimate as follows.

Remark 2.2. Hypothesis (H2) holds if and only if there exists C > 0 and D ∈ R such that
‖v‖Xn ≤ CΨn(v) +D for every v ∈ Xn. A proof for this can be found for example in [4, Fact
4.4.8].

We are now in a position to define the main objects of interest in this paper: Regularization
graphs and associated regularization functionals. To this aim, we allow for weights of the
form (αe)e∈E with αe ∈ [0,∞) for all e ∈ E.

Definition 2.3 (Regularization graph and associated regularization functional). Given G =
(V,E) a directed graph with tree structure and root node n̂, and the associated spaces, function-
als and operators as in Section 2 such that the hypotheses (H1) to (H8) hold, the structure of
a regularization graph is defined as the tuple G = (G, (Ψn)n∈V , (Θe)e∈E, (Φe)e∈E). Together
with a family of weights α = (αe)e∈E, a regularization graph is then defined as the tuple
Gα = (G, α).
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For any such regularization graph Gα, the associated regularization functional Rα = R(Gα) :
Xn̂ → [0,∞] (called regularization graph functional) is defined as

Rα(u) = inf
(we)e∈E

we∈dom(Θe)

∑

n∈V

Ψn

(

Θ(n−,n)w(n−,n) −
∑

(n,m)∈E

α(n,m)Φ(n,m)w(n,m)

)

= inf

{

∑

n∈V

Ψn(vn)
∣

∣

∣ for all n ∈ V, e ∈ E there exist we ∈ dom(Θe) :

vn = Θ(n−,n)w(n−,n) −
∑

(n,m)∈E

α(n,m)Φ(n,m)w(n,m)

}

where we set Θ(n̂−,n̂) = Id and w(n̂−,n̂) = u. Note that, in case of a trivial regularization
graph, i.e., V = {n̂}, E = ∅, we set Rα(u) = Ψn̂(u).

Remark 2.4 (Weights). Generically, to each edge e within the graph structure of a regular-
ization graph is associated a weight αe. In many cases, e.g., when node functionals only
take values in {0,∞}, this leads to an overparametrization of the associated regularization
functional. To avoid this, we often fix a subset of weights to be equal to 1 already when
defining a regularization graph. Such weights are called trivial weights, and the other, non-
trivial weights that might still vary are often numbered independently of the edge they are
associated with.

Remark 2.5 (Graphical representation of regularization graphs). Let us revisit the prototypi-
cal graphical representation of a regularization graph in Figure 1. There, the circles represent
nodes, with the node space shown above the circle and the functional Ψn inside. A splitting
node is represented by a ⊕ and is associated with the functional I{0}. The rectangles denote
the edges, with the edge space shown in the center, the forward operator Θe shown at the
top and the backward operator Φe at the bottom. The weights (αe)e∈E are depicted as scalar
factors in front of the backward operators (Φe)e∈E (with arbitrary numbering independent
of their position in the graph), and we use the convention that omitted weights at an edge e
correspond to trivial weights αe = 1.
The arrows connect the nodes. At each node n, the node functional Ψn is evaluated at Θe of
the variable from the incoming edge e minus the sum of all Φe applied to the variables we from
the outgoing edges {e = (n,m) ∈ E : m ∈ V }. The regularization graph functional is given
by minimizing this construction over all edge variables in the domain of the corresponding
operators (Θe)e∈E .

We can also obtain a more compact representation of Rα as follows. Define the spaces

XV =×
n∈V

Xn and XE =×
e∈E

Xe

equipped with the product norm, and the operator Λα : dom(Λα) ⊂ XE → XV as

(Λαw)n :=















Θ(n−,n)w(n−,n) −
∑

(n,m)∈E

α(n,m)Φ(n,m)w(n,m) for n ∈ V \ {n̂},

−
∑

(n̂,m)∈E

α(n̂,m)Φ(n̂,m)w(n̂,m) for n = n̂
(2.2)
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for every n ∈ V and w = (we)e∈E ∈ dom(Λα) where dom(Λα) =×e∈E dom(Θe). Then we
can write the functional Rα associated with the regularization graph Gα as

Rα(u) = inf
{

Ψn̂(u+ (Λαw)n̂) +
∑

n∈V \{n̂}

Ψn((Λαw)n)
∣

∣w ∈ dom(Λα)
}

.

For notational convenience we also define the functional Ψu : XV → [0,+∞] for u ∈ Xn̂ as

Ψu(v) := Ψn̂(u+ vn̂) +
∑

n∈V \{n̂}

Ψn(vn) (2.3)

such that
Rα(u) = inf {Ψu(v) | v ∈ rg(Λα)} . (2.4)

Proposition 2.6. Every regularization graph functional Rα : Xn̂ → [0,+∞] is convex,
Rα(0) = 0 and Rα(λu) ≤ λRα(u) for all u ∈ Xn̂, λ ∈ (0, 1]. Further, in case each Ψn

for n ∈ V is positively one homogeneoous, also Rα is positively one homogeneoous.

The statement follows easily from the representation in (2.4) together with Assumption (H3).

2.1 Examples

In this section, we provide some concrete examples of regularization graphs to which our
general assumptions apply. Here, for d ∈ N, d ≥ 1, we always denote by Ω ⊂ R

d a bounded
Lipschitz domain. Moreover, we denote by I the embedding of a Banach space into another
one. We remark that domain and codomain of the embeddings change for different examples.
However, they can easily be deduced from the context.

Total variation. Figure 2a shows the regularization graph corresponding to the total vari-
ation functional. The exponents for the Lebesgue spaces are chosen as d′ = d/(d− 1) in case
d > 1, d′ = ∞ else, and 1 < p ≤ d′. Thanks to the embedding BV(Ω) →֒ Ld′(Ω), we set
BV(Ω) as the domain of the linear operator ∇ : Ld′(Ω) → M(Ω,Rd). With these choices,
we now verify assumptions (H1)–(H8). Hypotheses (H1)–(H2) follow immediately from the
weak* lower semicontinuity and coercivity of the total variation in M(Ω,Rd) [1]. It can easily
be verified that the linear operator ∇ : BV(Ω) ⊂ Ld′(Ω) → M(Ω,Rd) is weak* closed and
its kernel is the set of constant functions implying (H4) and (H5). Assumption (H6) follows
from the Poincaré inequality for TV [1] and (H8) is a consequence of the Banach-Alaoglu
theorem. Finally, the embedding I : Ld′(Ω) → Lp(Ω) is weak*-to-weak* continuous thanks
to the exponents choice 1 < p ≤ d′, verifying assumption (H7).
The functional Rα : Lp(Ω) → [0,+∞] associated to the regularization graph depicted in
Figure 2a is given as

Rα(u) = inf
w∈BV(Ω)

I{0}(u− w) + ‖∇w‖M = ‖∇u‖M

for every u ∈ BV(Ω) and +∞ otherwise.

Infimal convolution of TVk1 −TVk2. Figure 2b shows the regularization graph corre-
sponding to the infimal convolution of TVk1 and TVk2 with k1, k2 ∈ N. Here the exponents
for the Lebesgue spaces are chosen as d′i = d/(d − ki) in case di > ki, d

′
i = ∞ else, and

1 < p ≤ min{d′1, d′2}. Thanks to the embeddings BVki(Ω) →֒ Ld′i(Ω) we set BVki(Ω) as the

8



Lp(Ω)

I{0}

M(Ω, Rd)

‖ · ‖

I

Ld′ (Ω)

∇

(a) Total variation (TV).

Lp(Ω)

I{0}

M(Ω, Symk1 (Rd))

‖ · ‖

M(Ω, Symk2 (Rd))

‖ · ‖

I

L
d′1 (Ω)

∇k1

αI

L
d′2 (Ω)

∇k2

(b) TVk1 −TVk2 infimal convolution.

Lp(Ω)

I{0}

M(Ω, Rd) M(Ω, Rd)

‖ · ‖

M(Ω, Sym2(Rd))

‖ · ‖

I

Ld′ (Ω)

∇

Id

M(Ω, Rd)

Id

αI

Ld′ (Ω,Rd)

E

(c) Second order total generalized variation.

Lp(Ω)

I{0}

M(Ω, R2) M(Ω, R2)

‖ · ‖

M(Ω, Sym2(R2))

‖ · ‖

I

L2(Ω)

∇

Id

M(Ω, R2)

Id

α1I

L2(Ω, R2)

E

ℓ2(Z4)

‖ · ‖1

α0(I ◦ rΩ)

L2(R2)

SH

(d) TGV2-shearlet infimal convolution.

L2(Ω)

I{0}

M ⊗π L2

Ψ

K̂

M ⊗π L2

Id

(e) Convex convolutional sparse coding.

Lp(Ω)

I{0}

M(Ω, Rd) M(Ω, Rd)

‖ · ‖

M(Ω, Sym2(Rd)) M(Ω, Sym2(Rd))

‖ · ‖

M(Ω, Symk(Rd))

‖ · ‖

I

Ld′ (Ω)

∇

Id

M(Ω, Rd)

Id

Id

M(Ω, Sym2(Rd))

Id

α1I

Ld′ (Ω, Rd)

E

αk−1I

M(Ω, Symk−1(Rd))

E

(f) Total generalized variation of order k.

Figure 2: Examples of regularization graphs reproducing existing regularization functionals.
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domains of the linear operators ∇ki : Ld′i(Ω) → M(Ω,Symki(Rd)), where Symk(Rd) denotes
the space of symmetric tensors of order k, e.g., Rd for k = 1 and the space of symmetric d×d
matrices for k = 2. We refer to [7] for details and basic properties of BVk(Ω) and TVk.
By similar arguments to those used in the previous example and the generalized Poincaré
inequality for TVki [7, Corollary 3.23], it follows that our general assumptions (H1)–(H8)
are satisfied. The functional Rα : Lp(Ω) → [0,+∞] associated to the regularization graph
depicted in Figure 2b is given as

Rα(u) = inf
wi∈BVki(Ω)

I{0}(u−w1 − αw2) + ‖∇k1w1‖M + ‖∇k2w2‖M

= inf
u=w1+αw2

TVk1(w1) + TVk2(w2).

Total generalized variation. Figure 2c shows the regularization graph corresponding to
TGV2

α, the second order TGV functional as in [8]. The exponents for the Lebesgue spaces are
chosen as d′ = d/(d− 1) in case d > 1, d′ = ∞ else, and 1 < p ≤ d′. The domain of the linear
operator ∇ : Ld′(Ω) → M(Ω,Rd) is BV(Ω) and the domain of the symmetrized gradient
E : Ld′(Ω,Rd) → M(Ω,Sym2(Rd)) is BD(Ω), the space of functions of bounded deformation,
where again we take advantage of the embeddings BV(Ω) →֒ Ld′(Ω) and BD(Ω) →֒ Ld′(Ω,Rd).
By similar arguments to those used the previous examples and the generalized Poincaré
inequality for w 7→ ‖Ew‖M [5, Corollary 4.20] it follows that in this setting our general
assumptions (H1)–(H8) are satisfied. The functional Rα : Lp(Ω) → [0,+∞] associated to the
regularization graph functional depicted in Figure 2c is given as

Rα(u) = inf
w∈BV(Ω),

w1∈M(Ω,Rd),w2∈BD(Ω,Rd)

I{0}(u− w) + I{0}(∇w − w1 − αw2) + ‖w1‖M + ‖Ew2‖M

= inf
w∈BD(Ω)

‖∇u− αw‖M + ‖Ew‖M

for u ∈ BV(Ω) and +∞ otherwise. Building on results in [6], also the TGV functional of
arbitrary order k ∈ N can be realized via a regularization graph as in Figure 2f.

TGV2-shearlet infimal convolution. Figure 2d shows the regularization graph that re-
covers a TGV2-shearlet infimal convolution model introduced in [28] (see also [30]). Here
Ω ⊂ R

2 is a bounded Lipschitz domain. The exponent for the Lebesgue space Lp(Ω) is chosen
as 1 < p ≤ 2. The domain of the linear operator ∇ : L2(Ω) → M(Ω,R2) is BV(Ω) and
the domain of the symmetrized gradient E : L2(Ω,R2) → M(Ω,Sym2(R2)) is BD(Ω), where
again we take advantage of the embeddings BV(Ω) →֒ L2(Ω) and BD(Ω) →֒ L2(Ω,R2). By
similar arguments to those used the previous examples and the generalized Poincaré inequal-
ity for w 7→ ‖Ew‖M [5, Corollary 4.20] it follows that in this setting our general assumptions
(H1)–(H8) are satisfied for edges and nodes realizing the total generalized variation.
In order to introduce the shearlet transform in L2(R2) we start with several notations. First,
for a > 0 and s ∈ R let Aa and Ss be the dilatation matrix and the shearing matrix defined
respectively as

Aa =

(

a 0
0

√
a

)

, Ss =

(

1 s
0 1

)

.

The discrete shearlet system of Ψ ∈ L2(R2) is defined as

Ψj,k,m(x) = 2
3
4
jΨ(SkA2j (x−m))
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for k, j ∈ Z andm ∈ Z
2 [36, Definition 8]. This allows to define the discrete shearlet transform

operator SH as

SHf(j, k,m) = 〈f,Ψj,k,m〉L2 (2.5)

for f ∈ L2(R2). By standard results in shearlet theory it holds that if Ψ is a classical
shearlet, then SH : L2(R2) → ℓ2(Z4) is a Parseval frame for L2(R2), that is equivalent to
‖SHf‖ℓ2(Z4) = ‖f‖L2(R2) for every f ∈ L2(R2) [36, Proposition 2]. In particular, this verifies
(H6) for SH. Moreover, a simple computation using that ‖Ψj,k,m‖L2(R2) = ‖Ψ‖L2(R2) for
every j, k,m together with Hölder’s inequality shows that SH is weak*-to-weak* continuous,
implying (H4). The backward operator I◦rΩ is the composition of the embedding I : L2(Ω) →
Lp(Ω) with the restriction rΩ : L2(R2) → L2(Ω). It is immediate to check that I ◦ rΩ is
weak*-to-weak* continuous showing (H7). Finally, we remark that the functional ‖ · ‖1 :
ℓ2(Z4) → [0,+∞] is intended as the extension to +∞ of the ℓ1-norm on ℓ2. Such extension
is convex, coercive and weak* lower semicontinuous showing (H1)–(H3). The functional
Rα : Lp(Ω) → [0,+∞] associated to the regularization graph functional depicted in Figure
2d is then given as

Rα(u) = inf
w1∈BV(Ω),w2∈L2(R2),
w3∈M(Ω,R2),w4∈BD(Ω)

I{0}(u− w1 − α0rΩw2) + I{0}(∇w1 − w3 − α1w4)

+ ‖w3‖M + ‖Ew4‖M + ‖SHw2‖1
= inf

w2∈L2(R2),
w4∈BD(Ω)

‖∇(u− α0rΩw2)− α1w4‖M + ‖Ew4‖M + ‖SHw2‖1.

Convex convolutional sparse coding. Figure 2e shows the regularization graph corre-
sponding to a data-adaptive convolutional-sparse-coding-based method recently introduced
in [17]. As such methods are in general non-convex, in [17], the authors proposed a convex
relaxation of the convolution LASSO problem in the tensor product of convolutional filter
kernels and coefficient images. We refer to [17] for a more detailed description of the model.
We denote by M ⊗π L

2 the projective tensor product between M(ΩΣ) and L2(Σ) [17, Ap-
pendix A], where Σ is a bounded Lipschitz domain and ΩΣ := Ω + Σ ⊂ R

d is the Minkowski
sum of Ω and Σ. The operator K̂ : M ⊗π L

2 → L2(Ω) is the unique tensor lifting of the
bilinear operator K : M(ΩΣ)× L2(Σ) → L2(Ω) defined essentially as

K(µ, θ)(x) =

∫

ΩΣ

θ(x− y) dµ(y). (2.6)

Thanks to [17, Lemma 2], the operator K̂ is weak* to weak* continuous. We also define the
convex functional Ψ : M⊗πL

2 → [0,+∞] as Ψ(C) = ‖C‖π+ν‖C‖nuc for every C ∈ M⊗πL
2,

where ν > 0 is a parameter,

‖C‖π = inf

{

∞
∑

i=1

‖µi‖M‖θi‖L2 |C =
∞
∑

i=1

µi ⊗π θi

}

(2.7)

is the projective norm of M⊗π L
2 and

‖C‖nuc =
{ ∑∞

i=1 σi(TC) if C ∈ L2(ΩΣ)⊗π L
2(Σ),

+∞ otherwise,
(2.8)
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is an extension of the nuclear norm, where σi(TC) are the singular values of C interpreted
as a bounded linear map from L2(ΩΣ) to L2(Σ). By Lemma 1 and Lemma 7 in [17] it
follows that Ψ is weak* lower semicontinuous. Hence the general assumptions (H1)–(H8) for
a regularization graph are satisfied and the functional Rα : L2(Ω) → [0,+∞] associated to
the regularization graph depicted in Figure 2e is given as

Rα(u) = inf
C∈M⊗πL2

I{0}(u− K̂C) + ‖C‖π + ‖C‖nuc .

Remark 2.7. The regularization graph functional for TV, infimal convolution of TVk1 −TVk2

and total generalized variation can be extended to L1(Ω) even if L1(Ω) does not admit a
predual. Such extension is described for general regularization graphs in Proposition 4.8.

3 Algebraic properties of regularization graphs

This section provides a recursive representation of regularization graphs and deals with es-
timates between different regularization graph functionals as well as their combination via
addition or infimal convolution. First we need the definition of the height of a graph.

Definition 3.1 (Height of a regularization graph). Given a regularization graph Gα with
G = (V,E) the associated directed graph, we denote by H(Gα) its height defined as the number
of edges in the longest path of G connecting the root to one of the leaves. That is, with n0 = n̂
the root node, we define

H(Gα) = max{M | ∃n1, . . . , nM with (ni−1, ni) ∈ E, for i = 1, . . . ,M}

if this set is non-empty and define H(Gα) = 0 otherwise, i.e., in case of a trivial graph.

Note that the height of a regularization graph does not depend on the particular choice of
weights α. Next, we provide a recursion result that allows us to rewrite a regularization graph
of height h in terms of regularization graphs of height h− 1.

Lemma 3.2 (Recursive representation of regularization graphs). For Gα a regularization
graph of height h ≥ 1, G = (V,E) the associated directed graph and n̂ the root node, let
Ê ⊂ E be the set all edges connected to the root node n̂, n̂ê for ê ∈ Ê be their endpoints and
let Gê = (V ê, E ê) be the subtree of G = (V,E) with n̂ê as root node.
Then, there exist regularization graphs G ê

αê with associated directed graphs Gê = (V ê, E ê) of

height at most h− 1 and weights (αê
e)e∈Eê such that, with Rα = R(Gα) and R

ê
αê = R(G ê

αê) the
associated functionals, the following recursive representation holds

Rα(u) = inf
{

Ψn̂

(

u−
∑

ê∈Ê

αêΦêwê

)

+
∑

ê∈Ê

Rê
αê(Θêwê)

∣

∣

∣wê ∈ dom(Θê) for all ê ∈ Ê
}

. (3.1)

Proof. We explicitly construct the claimed recursive representation as visualized in Figure 3.
First note that we can re-write Rα as

Rα(u) = inf

{

Ψn̂

(

u−
∑

ê∈Ê

αêΦêwê

)

+
∑

ê∈Ê

∑

n∈V ê

Ψn(vn)
∣

∣

∣we ∈ dom(Θe) for all e ∈ E,

∀ê ∈ Ê, n ∈ V ê : vn = Θ(n−,n)w(n−,n) −
∑

(n,m)∈Eê

α(n,m)Φ(n,m)w(n,m)

}

.
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Figure 3: The recursive representation of a regularization graph according to Lemma 3.2.

Now define G ê
αê to be a regularization graph with graph structure Gê = (V ê, E ê) and the

associated operators, functionals and weights, such that Rê
αê = R(G ê

αê) is given as

Rê
αê(z) = inf

{

∑

n∈V ê

Ψn(vn)
∣

∣

∣we ∈ dom(Θe) for all e ∈ E ê,

∀n ∈ V ê : vn = Θ(n−,n)w(n−,n) −
∑

(n,m)∈Eê

α(n,m)Φ(n,m)w(n,m)

}

,

where we note that here n̂ê is regarded as a node of G ê
αê , and thus Θ((n̂ê)−,n̂ê) = Id and

w((n̂ê)−,n̂ê) = z. The recursive representation of Rα is then given as

Rα(u) = inf

{

Ψn̂

(

u−
∑

ê∈Ê

αêΦêwê

)

+
∑

ê∈Ê

∑

n∈V ê

Ψn(vn)
∣

∣

∣we ∈ dom(Θe) for all e ∈ E,

∀ê ∈ Ê,∀n ∈ V ê \ {n̂ê} : vn = Θ(n−,n)w(n−,n) −
∑

(n,m)∈Eê

α(n,m)Φ(n,m)w(n,m),

vn̂ê = Θêwê −
∑

(n̂ê,m)∈Eê

α(n̂ê,m)Φ(n̂ê,m)w(n̂ê,m)

}

= inf
{

Ψn̂

(

u−
∑

ê∈Ê

αêΦêwê

)

+
∑

ê∈Ê

Rê
αê(Θêwê)

∣

∣

∣
wê ∈ dom(Θê) for all ê ∈ Ê

}

,

which proves the assertion.

As first consequence of this recursive representation, we obtain an estimate between two
regularization graph functionals corresponding to regularization graphs with different weights.
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Lemma 3.3. Let Gα1 and Gα2 be two regularization graphs with the same underlying graph
structure G and directed graph G = (V,E) with root node n̂, and let α1, α2 be weights such
that α1

e ≥ α2
e for all e ∈ E. Then, with

Cα1,α2 := max
{

∏

e∈F

α2
e

α1
e

|F ⊂ E is either empty or a chain with n̂ as root
}

, (3.2)

where we use the conventions
∏

e∈∅
α2
e

α1
e
= 1 and 0

0 = 0, for the associated regularization graph

functionals Rα1 = R(Gα1) and Rα2 = R(Gα2) it holds that

Rα1(u) ≤ Cα1,α2Rα2(u) for all u ∈ Xn̂.

Proof. We prove the result by induction over the height h of the graphs. Assume the result
holds true for any two regularization graphs with height less than h.
Now note that, by assumption, (α1

e = 0) implies (α2
e = 0), so we can adapt the graph

G = (V,E) by removing all edges e ∈ E with α1
e = 0 and all subsequently disconnected nodes,

without increasing its height, changing Cα1,α2 or the values of the Rαi . Hence, without loss
of generality, assume that α1

e > 0 for all e ∈ E. Now for h = 0 the result holds trivially and
for h ≥ 1 we can use the recursive representation of Lemma 3.2 to obtain

Rα1(u) = inf







Ψn̂



u−
∑

ê∈Ê

Φêwê



+
∑

ê∈Ê

Rê
(α1)ê

(

Θêwê

α1
ê

)

∣

∣

∣

∣

∣

wê ∈ dom(Θê) for all ê ∈ Ê







≤ inf







Ψn̂



u−
∑

ê∈Ê

α2
êΦêwê



+
∑

ê∈Ê

α2
ê

α1
ê

Rê
(α1)ê(Θêwê)

∣

∣

∣

∣

∣

wê ∈ dom(Θê) for all ê ∈ Ê







≤ Cα1,α2Rα2(u),

where in the first line we substituted wê to α1
êwê and in the second line we substituted α2

êwê

to wê; additionally, in the first inequality we used that Rê
(α1)ê

(λu) ≤ λRê
(α1)ê

(u) for λ ∈ [0, 1],

see Proposition 2.6, and we obtained the last estimate from the induction hypothesis and the
definition of Cα1,α2 .

Remark 3.4. It is easy to see from the proof above that, whenever Ψn for some n ∈ V
is positive one-homogeneous, the assumption α1

e ≥ α2
e for e = (n−, n) can be replaced by

(α1
e = 0) implying (α2

e = 0). In particular, if (α1
e = 0) if and only if (α2

e = 0) for all
e = (n−, n) such that Ψn is positive one-homogeneous and all other α1

e and α2
e coincide, then

Rα1 and Rα2 are equivalent, i.e., Rα1 can be estimated from above and below by a constant
times Rα2 , dom(Rα1) = dom(Rα2) and also their zero-sets coincide.

3.1 Combining regularization graphs

Obviously, for Rα = R(Gα) being a regularization graph funtional and λ > 0, also λRα is a
regularization graph functional (corresponding to an adaption of the regularization graph Gα

where all node functionals Ψn are replaced by λΨn). In this subsection we show that also the
sum and infimal-convolution of two regularization graph functionals are again regularization
graph functionals.
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Figure 4: Combining regularization graphs via infimal convolution (top) and summation
(bottom).

Proposition 3.5 (Infimal-convolution and sum of regularization graphs). Let G1
α1 = (G1, α1)

and G2
α2 = (G2, α2) be two regularization graphs with associated directed graphs G1 = (V 1, E1)

and G2 = (V 2, E2) and root nodes n̂1 and n̂2, respectively. Let X be a Banach space admit-
ting a predual such that bounded sequences in X admit weak* convergent subsequences and
such that the embeddings I1X : Xn̂1 → X and I2X : Xn̂2 → X are continuous w.r.t. weak*
convergence.
For additional nodes n̂, n̂0 /∈ V 1 ∪ V 2 define the combined graph G = (V,E) with

V = {n̂, n̂0} ∪ V 1 ∪ V 2, E = {(n̂, n̂0), (n̂0, n̂1), (n̂0, n̂2)} ∪ E1 ∪ E2.

Then, combined regularization graphs can be constructed as follows.

• Infimal-convolution: For the additional nodes and edges in G, define the spaces

Xn̂ = Xn̂0 = X, X(n̂,n̂0) = X, X(n̂0,n̂l) = Xn̂l , l = 1, 2,

the operators

Θ(n̂,n̂0) = Θ(n̂0,n̂1) = Θ(n̂0,n̂2) = Id, Φ(n̂,n̂0) = Id, Φ(n̂0,n̂1) = I1X , Φ(n̂0,n̂2) = I2X ,

and the functionals and weights

Ψn̂ = Ψn̂0 = I{0}, α(n̂,n̂0) = α(n̂0,n̂1) = 1, α(n̂0,n̂2) = α∗ ∈ [0,∞),

15



and adopt the elements of G1
α1 and G2

α2 for all other nodes and edges. Then, the as-
sociated structure Gα = (G, α) defines a regularization graph and, for Rα = R(Gα),
R1

α1 = R(G1
α1) and R

2
α2 = R(G2

α2), it holds that

Rα(u) = inf
v∈Xn̂

R1
α1(u− α∗v) +R2

α2(v).

• Summation: For the additional nodes and edges in G, define the spaces

Xn̂ = X, Xn̂0 = X ×X, X(n̂,n̂0) = X, X(n̂0,n̂l) = Xn̂l , l = 1, 2,

the operators

Θ(n̂,n̂0) = [u 7→ (u, u)], Θ(n̂0,n̂1) = Θ(n̂0,n̂2) = Id,

Φ(n̂,n̂0) = Id, Φ(n̂0,n̂1) = [u 7→ (I1Xu, 0)], Φ(n̂0,n̂2) = [u 7→ (0, I2Xu)],

and the functionals and weights

Ψn̂ = Ψn̂0 = I{0}, α(n̂,n̂0) = α(n̂0,n̂1) = 1, α(n̂0,n̂2) = α∗ ∈ (0,∞),

and adopt the elements of G1
α1 and G2

α2 for all other nodes and edges. Then, the as-
sociated structure Gα = (G, α) defines a regularization graph and, for Rα = R(Gα),
R1

α1 = R(G1
α1) and R

2
α2 = R(G2

α2), it holds that

Rα(u) = R1
α1(u) +R2

α2(α
−1
∗ u).

Proof. It is easy to see that all spaces, functionals, operators and weights involved in the
definition of Gα fulfill Assumptions (H1) to (H8), such that Gα defines a regularization graph.
Denote the edges el = (n̂, n̂l) for l ∈ {0, 1, 2}. For the claimed representation of Rα in case of
the infimal-convolution, we observe that

Rα(u) = inf

{

I{0}(u−we0) + I{0}(we0 − we1 − α∗we2) +

2
∑

l=1

∑

nl∈V l

Ψnl(vnl)
∣

∣

∣

∀l ∈ {1, 2}, nl ∈ V l \ {n̂l} : vnl = Θ((nl)−,nl)w((nl)−,nl) −
∑

(nl,m)∈El

α(nl,m)Φ(nl,m)w(nl,m),

vn̂l = wel −
∑

(n̂l,m)∈El

α(n̂l,m)Φ(n̂l,m)w(n̂l,m),∀e ∈ E : we ∈ dom(Θe)

}

= inf

{ 2
∑

l=1

∑

nl∈V l

Ψnl(vnl)
∣

∣

∣
we1 + α∗we2 = u,∀l ∈ {1, 2}, nl ∈ V l \ {n̂l} :

vnl = Θ((nl)−,nl)w((nl)−,nl) −
∑

(nl,m)∈El

α(nl,m)Φ(nl,m)w(nl,m),

vn̂l = wel −
∑

(n̂l,m)∈El

α(n̂l,m)Φ(n̂l,m)w(n̂l,m),∀e ∈ E : we ∈ dom(Θe)

}

= inf
v∈Xn̂

R1
α1(u− α∗v) +R2

α2(v).
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Likewise, for the claimed representation of Rα in case of summation, we observe that

Rα(u) = inf

{

I{0}(u−we0) + I{(0,0)}((we0 − we1 , we0 − α∗we2)) +
2

∑

l=1

∑

nl∈V l

Ψnl(vnl)
∣

∣

∣

∀l ∈ {1, 2}, nl ∈ V l \ {n̂l} : vnl = Θ((nl)−,nl)w((nl)−,nl) −
∑

(nl,m)∈El

α(nl,m)Φ(nl,m)w(nl,m),

vn̂l = wel −
∑

(n̂l,m)∈El

α(n̂l,m)Φ(n̂l,m)w(n̂l,m),∀e ∈ E : we ∈ dom(Θe)

}

= inf

{ 2
∑

l=1

∑

nl∈V l

Ψnl(vnl)
∣

∣

∣
we1 = u,we2 = α−1

∗ u,∀l ∈ {1, 2}, nl ∈ V l \ {n̂l} :

vnl = Θ((nl)−,nl)w((nl)−,nl) −
∑

(nl,m)∈El

α(nl,m)Φ(nl,m)w(nl,m),

vn̂l = wel −
∑

(n̂l,m)∈El

α(n̂l,m)Φ(n̂l,m)w(n̂l,m),∀e ∈ E : we ∈ dom(Θe)

}

= R1
α1(u) +R2

α2(α
−1
∗ u).

More generally, note that any regularization graph can be extended by appending another
regularization graph to one of its leaves, and in particular by appending a regularization
graph corresponding to the infimal convolution or the sum of two other regularization graph
functionals. The latter can be achieved by appending a splitting or summation unit as in
Figure 4 to a leaf-node, where the I{0} and X in the left, green nodes in Figure 4 are replaced
by the corresponding node functional and node space of the leaf node.

Remark 3.6 (Assumptions on the sum of two regularization graphs). The notion of regulariza-
tion graphs was designed mainly for an infimal-convolution-type combination of functionals
and operators, since we believe this situation is more interesting in practice. For infimal-
convolution-type combinations, we believe that our assumptions on the underlying function-
als and operators are rather minimal. Our framework also allows for the summation of two
functionals, but in this situation our assumptions are suboptimal. Indeed, one would expect
that in a summation, only one of the two functionals needs to fulfill the assumptions of a reg-
ularization graph in order to provide a suitable regularization strategy. Indeed, when using
the sum of two (suitable) functionals for regularization, generically, only one of them needs to
fulfill coercivity properties (such as (H2) together with (H6)) in order to obtain well-posedness
results for linear inverse problems. Nevertheless, we do not further generalize our framework
towards weakening the assumptions for the sum of two functionals since i) we believe this
situation is less relevant and ii) this would significantly complicate our basic assumptions
and results for instance on convergence for vanishing noise and bilevel optimization, thereby
hindering our main goal of providing an easily applicable framework.
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4 Analytic properties of regularization graphs

The goal of this section is to obtain analytic properties of regularization graph functionals
that provide the basis for well-posedness results for the regularization of inverse problems.
To this aim, we first consider lower semi-continuity and coercivity properties, for which we
need a general lemma that deals with projections.
For the lemma, remember that for a Banach space X and a finite dimensional subspace L of
X, there always exists a bounded linear projection P : X → L.

Lemma 4.1. Let X be a Banach space, R : X → [0,∞] be a functional, L ⊂ X be a finite
dimensional subspace and assume there is a function G : X → L and C > 0,D ≥ 0 such that

‖u−G(u)‖X ≤ CR(u) +D

for all u ∈ X. Then, for a closed subspace K ⊂ X and a bounded, linear projection PK∩L :
X → K ∩ L there exist constants C̃ > 0, D̃ ≥ 0, with D̃ = 0 in case D = 0, such that for all
u ∈ K,

‖u− PK∩Lu‖X ≤ C̃R(u) + D̃. (4.1)

In particular, if K = X, this holds for any bounded linear projection onto L.

Proof. Assume this does not hold true, then we can pick a sequence (uk)k in K such that

‖uk − PK∩Lu
k‖X > kR(uk) + kD/C

for each k, with C,D being the constants of the original estimate. This implies in particular
that ‖uk − PK∩Lu

k‖X > 0 for each k. Defining ũk = (uk − PK∩Lu
k)/‖uk − PK∩Lu

k‖X such
that ‖ũk‖X = 1, we can estimate

C/k ≥ C
R(uk) +D/C

‖uk − PK∩Luk‖X
≥ ‖uk −G(uk)‖X

‖uk − PK∩Luk‖X
= ‖ũk − G(uk)− PK∩Lu

k

‖uk − PK∩Luk‖X
‖X .

In particular, this implies that ((G(uk) − PK∩Lu
k)/‖uk − PK∩Lu

k‖X)k is bounded and, by
finite dimensionality, admits a (non-relabeled) subsequence strongly converging to some z ∈ L.
Consequently, also (ũk)k converges strongly to z and from closedness of K we get that z ∈ K.
Hence

0 = (Id−PK∩L)z = lim
k
(Id−PK∩L)ũ

k = lim
k
ũk

strongly, which is a contradiction to ‖ũk‖X = 1 for each k and concludes the proof of the
coercivity estimate in the general form. Also, it can be seen from this argument that we can
choose D̃ = 0 in case D = 0, which completes the proof.

The following lemma provides a standard lower semi-continuity and compactness result. Since
it will be used frequently in the paper, we provide its proof for the sake of completeness.

Lemma 4.2. Let X,W and Y be Banach spaces such that bounded sequences in X and W
admit weak*-convergent subsequences. For Θ : dom(Θ) ⊂ X → W a weak* to weak* closed
operator and F :W → [0,∞) convex and weak* lower semi-continuous, suppose that:

i) There exists a finite dimensional subspace L ⊂ W such that F (u + v) = F (u) for all
u ∈W , v ∈ L, a continuous, linear projection PL : W → L and C > 0, D ≥ 0 such that

‖z − PLz‖X ≤ CF (z) +D ∀z ∈W. (4.2)
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ii) The space ker(Θ) is finite dimensional and there exists a continuous projection Pker(Θ) :
X → ker(Θ) and B > 0 such that

‖u− Pker(Θ)u‖X ≤ B‖Θu‖W ∀u ∈ dom(Θ) ⊂ X. (4.3)

Then, defining F ◦Θ : X → [0,∞] as

(F ◦Θ)(u) =

{

F (Θu) if u ∈ dom(Θ),

∞ else,

implies that F ◦Θ is weak* lower semi-continuous.
Further, for K : X → Y a linear, bounded operator, for any sequence (wk)k in X such
that both (Kwk)k and ((F ◦ Θ)(wk))k are bounded, there exists a sequence (w̃k)k such that
wk − w̃k ∈ ker(K) ∩Θ−1(L) and both (w̃k)k and (Θw̃k)k are bounded.

Proof. At first note that, by Lemma 4.1 and using that rg(Θ) is closed (Lemma A.1) there
exist C̃ > 0, D̃ ≥ 0 such that

‖z − Prg(Θ)∩Lz‖W ≤ C̃F (z) + D̃ for all z ∈ rg(Θ),

where Prg(Θ)∩L is a bounded linear projection onto the finite dimensional space rg(Θ) ∩ L.
Defining ker(Θ)⊥ := rg(Id−Pker(Θ))∩dom(Θ), it is easy to see that ker(Θ)⊥ is a complement

of ker(Θ) in dom(Θ) and that Θ is injective on ker(Θ)⊥. Hence, with M := Θ−1(L), we can
define P : dom(Θ) →M as

Pw := Θ−1Prg(Θ)∩LΘw + Pker(Θ)w,

where Θ−1 is the inverse of Θ : ker(Θ)⊥ → rg(Θ). Then, we observe that F ◦ Θ is invariant
on M and that M is a finite dimensional vector space. Further, for any w ∈ dom(Θ),

‖w − Pw‖X = ‖w −Θ−1Prg(Θ)∩LΘw − Pker(Θ)(w −Θ−1Prg(Θ)∩LΘw)‖X
≤ B‖Θ(w −Θ−1Prg(Θ)∩LΘw)‖W
= B‖Θ(w − Pw)‖W
= B‖Θw − Prg(Θ)∩LΘw‖W ≤ BC̃F (Θw) +BD̃.

(4.4)

We now prove that F ◦ Θ is weak* lower semi-continuous. Take (wk)k weak* converging to
some w ∈ X. Without loss of generality, we can assume that lim infk(F ◦Θ)(wk) <∞ and, up
to extracting a subsequence, we can choose wk such that it realizes the lim inf. Then, by the
estimate (4.4) above, both (‖wk −Pwk‖X)n and (‖Θ(wk−Pwk)‖W )k are bounded such that,
by taking a non-relabeled subsequence, we can assume that Θ(wk − Pwk) weak* converges
to some z ∈W and wk − Pwk weak* converges to some v ∈ X. Weak* closedness of Θ then
implies that v ∈ dom(Θ) and Θv = z. Also, thanks to the finite dimensionality of M we have
that w− v = w*- limk w

k − (wk −Pwk) ∈M such that, by weak* lower semi-continuity of F ,
we conclude

F (Θw) = F (Θv) ≤ lim inf
k

F (Θ(wk − Pwk)) = lim inf
k

F (Θwk)

as claimed.
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Now take (wk)k in X such that both (Kwk)k and (F ◦ Θ(wk))k are bounded. Let Z be a
complement of ker(K)∩M in M and PZ :M → Z a continuous linear projection onto Z, i.e.,
Id−PZ :M →M is a projection onto ker(K)∩M . Then, define w̃k = wk − (Pwk −PZPw

k).
It follows that wk − w̃k = (Id−PZ)Pw

k ∈ ker(K) ∩M and that (wk − Pwk)k is bounded in
X by the estimate (4.4) and the boundedness of (F ◦ Θ(wk))k. Now since K is injective on
the finite dimensional space Z and KPZ = K, we further get for A > 0 a generic constant
that

‖PZPw
k‖X ≤ A‖KPZPw

k‖Y ≤ A(‖Kwk‖Y + ‖K(wk − Pwk)‖Y ) < A <∞

such that (w̃k)k is bounded. Boundedness of Θ on the finite dimensional space Z ⊂ dom(Θ)
together with the estimate (4.4) further implies that (Θw̃k)k is bounded.

Using the previous lemma, we now deal with the kernel and coercivity of regularization graph
functionals.

Theorem 4.3. Let Gα be a regularization graph with weights (αe)e, underlying graph structure
G = (V,E) and root node n̂ ∈ V , and let Rα = R(Gα) : Xn̂ → [0,+∞] be the associated
regularization graph functional. Then:

i) The infimum in the recursive representation of Rα (3.1) provided in Lemma 3.2 is
attained for any u ∈ Xn̂.

ii) Rα is weak* lower-semicontinous.

iii) There exists a finite dimensional subspace L ⊂ Xn̂ such that Rα is invariant on L and
for PL : X → L a bounded, linear projection there exist C > 0, D ≥ 0 such that, for
u ∈ Xn̂,

‖u− PLu‖Xn̂
≤ CRα(u) +D. (4.5)

Proof. We prove the result via induction over the height of the graph. Assume that the
claimed assertions hold true for any regularization graph of height less than h and let Gα be a
regularization graph of height h with associated functional Rα = R(Gα). If h = 0, the results
hold trivially with L = {0} thanks to Assumptions (H1), (H2) and the definition of trivial
regularization graphs. Otherwise, using Lemma 3.2 we write Rα as

Rα(u) = inf
{

Ψn̂

(

u−
∑

ê∈Ê

αêΦêwê

)

+
∑

ê∈Ê

Rê
αê(Θêwê)

∣

∣

∣wê ∈ dom(Θê) for all ê ∈ Ê
}

, (4.6)

where Ê are the edges connected to n̂ and for each ê ∈ Ê, Rê
αê : Xnê → [0,∞] is a functional

associated to a regularization graph G ê
αê with root node n̂ê. Also, remember that by (H5) and

(H6) (see also Remark 2.1) each Θê : Xê → Xn̂ê has closed range, finite dimensional kernel
and satisfies

‖w − Pker(Θê)w‖Xê
≤ B ê‖Θêw‖X

n̂ê
(4.7)

for B ê > 0 and all w ∈ dom(Θê).
Applying the induction hypothesis, each Rê

αê is weak* lower-semicontinuous and there exists

a finite dimensional subspace Lê where Rê
αê is invariant such that for PLê a bounded linear

projection there exist constants C ê > 0 and Dê ≥ 0 with

‖v − PLêv‖X
n̂ê

≤ C êRê
αê(v) +Dê ∀v ∈ Xn̂ê . (4.8)
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Moreover, applying Lemma 4.1 with L = Lê, G = PLê , R = Rê
αê and K = rg(Θê) (that is

closed thanks to (H5), (H6) and Remark 2.1) yields that for Prg(Θê)∩Lê a linear, continuous

projection there exists C̃ ê > 0 and D̃ê ≥ 0 with

‖v − Prg(Θê)∩Lêv‖X
n̂ê

≤ C̃ êRê
αê(v) + D̃ê ∀v ∈ Xn̂ê . (4.9)

Now proceeding as in the proof of Lemma 4.2, we define ker(Θê)
⊥ := rg(Id−Pker(Θê)) ∩

dom(Θê). It is easy to see that ker(Θê)
⊥ is a complement of ker(Θê) in dom(Θê) and that Θê

is injective on ker(Θê)
⊥. Hence, with

M ê := Θ−1
ê (Lê), (4.10)

we can define P ê : dom(Θê) →M ê as

P êw := Θ−1
ê Prg(Θê)∩LêΘêw + P ê

ker(Θê)
w, (4.11)

where Θ−1
ê is the inverse of Θê : ker(Θê)

⊥ → rg(Θê). Then, we observe that Rê
αê ◦ Θê is

invariant on M ê and that M ê is a finite dimensional vector space. Then, estimating as in
(4.4), we obtain that for each w ∈ Xê that

‖w − P êw‖Xê
≤ B êC̃ êRê

αê(Θêw) +B êD̃ê. (4.12)

Now we write the recursive representation (4.6) in a vectorized form as follows: With w =
(wê)ê∈Ê ∈ X :=×ê∈ÊXê, define K : X → Xn̂ and Θ :×ê∈Ê dom(Θê) ⊂ X →×ê∈ÊXn̂ê as

Kw :=
∑

ê∈Ê

αêΦêwê and Θw := (Θêwê)ê∈Ê . (4.13)

Further, with v = (vn̂ê)ê∈Ê ∈×ê∈Ê Xn̂ê define F :×ê∈Ê Xn̂ê → [0,+∞] as

F (v) =
∑

ê∈Ê

Rê
αê(vn̂ê). (4.14)

Finally, define F ◦ Θ : X → [0,+∞] and PM : X → M , where M :=×ê∈Ê M
ê is a finite

dimensional subspace of X, as

(F ◦Θ)(w) =

{

∑

ê∈Ê R
ê
αê(Θêwê) if w ∈×ê∈Ê dom(Θê),

∞ else,
and PMw = (P êwê)ê∈Ê .

(4.15)
We observe that F ◦Θ is invariant onM = Θ−1(L) where L =×ê∈Ê L

ê. With these definitions
we can write the recursive representation (4.6) in the vectorized form

Rα(u) = inf
{

Ψn̂

(

u−Kw
)

+ (F ◦Θ)(w)
∣

∣

∣
w ∈ ×̂

e∈Ê

dom(Θê)
}

.

Now we first show weak* lower semi-continuity of Rα on Xn̂. To this aim, take (uk)k to be
a sequence in Xn̂ converging weakly* to some u ∈ Xn̂. Without loss of generality, we can
assume that lim infk Rα(u

k) < ∞ and, up to extracting a subsequence, we can assume that
(uk)k realizes the lim inf. Next, take (wk)k to be a sequence in X such that

Ψn̂(u
k −Kwk) + (F ◦Θ)(wk) ≤ Rα(u

k) + 1/k.
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Together with assumption (H2), this implies boundedness of (Kwk)k and (F ◦Θ)(wk). We now
want to apply Lemma 4.2 choosing×ê∈Ê L

ê for L and v 7→ (PLêvn̂ê)ê∈Ê with v = (vn̂ê)ê∈Ê ∈
×ê∈Ê Xn̂ê for PL. Note that F is weak* lower semicontinuous, it is invariant on×ê∈Ê L

ê

and the estimate (4.2) holds thanks to the inductive assumption (4.8) applied to each Rê
αê .

Moreover, it can be readily verified that the operator Θ is weak* to weak* closed, has finite
dimensional kernel and the estimate (4.3) holds as a direct consequence of (4.7) applied to
each Θê. So, applying Lemma 4.2 and using the weak* to weak* closedness of Θ we can select,
up to a non-relabeled subsequence, (w̃k)k such that w̃k − wk ∈ ker(K) ∩M , w̃k converges
weak* to some w ∈ Xn̂ and Θw̃k converges weak* to Θw. Weak* lower semi-continuity of Ψn̂

and F ◦Θ together with weak* continuity of K and the invariance of F ◦Θ on M then imply

Rα(u) ≤ Ψn̂(u−Kw) + F (Θw) ≤ lim inf
k

Ψn̂(u
k −Kwk) + F (Θwk) ≤ lim inf

k
Rα(u

k),

thus weak* lower semi-continuity of Rα on Xn̂ follows. In addition, given any u ∈ Xn̂,
choosing uk = u for every k implies existence of minimizers in (4.6) as claimed.
Now we note that Rα is invariant on the finite dimensional space

L :=+̂
e∈Ê

αêΦê(M
ê).

Indeed, if u =
∑

ê∈Ê αêΦêuê with uê ∈ M ê it follows from (F ◦ Θ)((αêuê)ê∈Ê) = 0 that
Rα(ũ+ u) = Rα(ũ) for all ũ ∈ Xn̂.
Next we show the coercivity estimate. To this aim, for any given u ∈ Xn̂, we select (wê)ê∈Ê to

be minimizers in (4.6) and define v = v(u) :=
∑

ê∈Ê αêΦêP
êwê. Using (4.12), the coercivity

of Ψn̂ (see Remark 2.2) and the continuity of Φê we estimate

‖u− v(u)‖Xn̂
=

∥

∥

∥

∥

∥

∥

u−
∑

ê∈Ê

αêΦêP
êwê

∥

∥

∥

∥

∥

∥

Xn̂

=

∥

∥

∥

∥

∥

∥

u−
∑

ê∈Ê

αêΦêwê +
∑

ê∈Ê

αêΦêwê −
∑

ê∈Ê

αêΦêP
êwê

∥

∥

∥

∥

∥

∥

Xn̂

≤ C1Ψn̂



u−
∑

ê∈Ê

αêΦêwê



+D1 + C2

∑

ê∈Ê

αê‖wê − P êwê‖Xê

≤ C1Ψn̂



u−
∑

ê∈Ê

αêΦêwê



+D1 + C2

∑

ê∈Ê

(αêB
êC̃ êRê

αê(Θêwê) + αêB
êD̃ê)

≤ CRα(u) +D,

with suitable C > 0 and D ≥ 0. Using Lemma 4.1 with G(u) = v(u) and K = Xn̂, this
implies the claimed coercivity.

Remark 4.4 (Domain and invariant subspace). With Rα : Xn̂ → [0,∞] a regularization graph
functional with recursive representation as in Lemma 3.2, we have that

dom(Rα) = dom(Ψn̂) ++̂
e∈Ê

αêΦê

(

Θ−1
ê (dom(Rê

αê))
)

,
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where equality follows since the infimum in the recursive represenation of Lemma 3.2 is
attained. Further, a simple contradiction argument shows that the finite dimensional subspace
L where Rα is invariant and coercive in the sense of (4.5) is unique (and will henceforth be
called the invariant subspace of Rα). We also have the recursive representation

L =+̂
e∈Ê

αêΦê

(

Θ−1
ê (Lê))

)

,

with Lê the invariant subspace of Rê
αê
. Via induction, this implies in particular that L only

depends on the support of (αe)e, i.e., the set of edges where αe 6= 0, but not on their values.

Existence for the infimum over edge variables associated with edges connected to the root
node in the recursive representation of Rα, as stated in Theorem 4.3, immediately implies, via
induction, existence of infimizing edge variables in the definition of the regularization graph
for all edges. This is stated in the following corollary.

Corollary 4.5 (Existence of infimizing edge variables). Let Gα be a regularization graph with
root node n̂ and Rα = R(Gα) be the associated functional. Then, for each u ∈ Xn̂, there exists
(we)e∈E such that

Rα(u) =
∑

n∈V

Ψn

(

Θ(n−,n)w(n−,n) −
∑

(n,m)∈E

α(n,m)Φ(n,m)w(n,m)

)

,

i.e., the infimum in the definition of the regularization graph functional is attained.

Remark 4.6 (Regularity). Let us observe how an infimal-based combination and an extension
of regularization graphs affect the coercivity of regularization graph functionals as in Theorem
4.3.

• When combining two different regularization graph functionals defined on two different
normed spaces via infimal convolution, the norm for underlying joint space and hence
the norm for the coercivity estimate needs to be the weaker of the two norms. In the
construction of Proposition 3.5, this is reflected in the assumption that the embeddings
I1X : Xn̂1 → X and I2X : Xn̂2 → X need to be weak* continuous. An example here is the
infimal convolution of TV and TV2, where TV and TV2 are coercive up to their kernels
on Ld/(d−1) and Ld/(d−2), respectively (here the exponents are set to ∞ for d = 1 and
d ≤ 2, respectively). The infimal-convolution-based combination of the regularization
graphs corresponding to TV and TV2, according to Proposition 3.5, is then coercive on
the weaker space Ld/(d−1), see [7, Section 4.2] for details.

• When extending a given regularization graph with a further edge, stronger norms can
be chosen. A particular example is the composition of two gradient operators ∇1, ∇2

to obtain TV2 = ‖(∇2 ◦∇1) · ‖M . Given that ∇2 is coercive up to its kernel on Ld/(d−1),
we can define ∇1 as operator from Ld/(d−2) to Ld/(d−1) and again obtain coercivity up
to constant functions between those spaces by standard Sobolev embeddings. In this
case, the overall regularization graph functional corresponding to TV2 is coercive up to
affine functions with respect to the norm in Ld/(d−2), which is the improved regularity
of TV2, see [7, Section 3].

The following proposition deals with the dependence of the coercivity estimate for a regular-
ization graph functional Rα on the weights α.
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Proposition 4.7 (Dependence on the weights). Let Gα be a regularization graph with weights
α and root node n̂, let L be the invariant subspace of Rα = R(Gα) that only depends on
the structure of the regularization graph G and the support of (αe)e∈E, let K ⊂ Xn̂ be a
closed subspace and let PK∩L : Xn̂ → L be a bounded, linear projection. Then, for any
A ≥ max{αe | e ∈ E} there exist C > 0, D ≥ 0 that only depend on A such that for any
u ∈ Xn̂ we have

‖u− PLu‖Xn̂
≤ CαCRα(u) +D,

where

Cα := max
{

∏

e∈F

αe |F ⊂ E is either empty or a chain with n̂ ∈ V as root
}

,

using the same conventions as in Lemma 3.3.

Proof. This follows from first applying Theorem 4.3 and, subsequently, Lemma 4.1 to Rα̃ =
R(Gα̃), where α̃e = A if αe > 0 and α̃e = 0 else, and then using the estimate of Lemma
3.3.

The next proposition deals with extending a regularization graph functional Rα : Xn̂ → [0,∞]
by infinity to a Banach space X not satisfying hypothesis (H8), but with Xn̂ →֒ X. The
prototypical application of this result would be, e.g., to extend Rα from Lp(Ω) with p > 1
to L1(Ω), where Ω ⊂ R

d is a bounded domain. Note that directly choosing Xn̂ = L1(Ω) is
not feasible since, in general, bounded sequences in L1(Ω) do not admit weak* convergent
subsequences (or weakly convergent subsequences since L1(Ω) is generally not a dual space).

Proposition 4.8 (Extended domain). Let Gα be a regularization graph with weights α and
root node n̂. Let L be its invariant space. Suppose that X is a Banach space such that
Xn̂ →֒ X and Xn̂ is reflexive. Then, with Rα = R(Gα) extended to X via Rα(x) = ∞ for
x ∈ X \Xn̂, Rα is convex and lower semi-continuous w.r.t. weak convergence in X, and for
any continuous, linear projection P̃L : X → L, there exists C > 0, D ≥ 0 such that

‖u− P̃Lu‖X ≤ CRα(u) +D for all u ∈ X. (4.16)

Proof. Convexity is immediate and the coercivity estimate follows directly from the contin-
uous embedding Xn̂ →֒ X and Theorem 4.3 by defining PL as the restriction of P̃L to Xn̂.
Regarding weak lower semi-continuity, take (uk)k to be a sequence in X converging weakly
to some u ∈ X. Without loss of generality, we can assume that lim infkRα(u

k) <∞ and, up
to extracting a subsequence, we can choose uk such that it realizes the lim inf and uk ∈ Xn̂

for every k. With PL : Xn̂ → L a continuous, linear projection, from the coercivity estimate
of Theorem 4.3 applied to Rα : Xn̂ → [0,∞] we obtain that vk := uk − PLu

k is bounded
in Xn̂ such that we may assume weak convergence of the latter to v ∈ Xn̂. Also, by the
embedding Xn̂ →֒ X, PLu

k = uk − vk is bounded in X and hence, by finite dimensionality of
L, admits a subsequence converging to some z ∈ Xn̂ ∩ L with respect to ‖ · ‖Xn̂

. Again by
the embedding Xn̂ →֒ X, weak convergence in Xn̂ implies weak convergence in X such that,
by uniqueness of the weak limit, u = v + z ∈ Xn̂. Lower semi-continuity of Rα with respect
to weak convergence in Xn̂ finally implies

Rα(u) = Rα(v + z) ≤ lim inf
k

Rα(v
k + PLu

k) = lim inf
k

Rα(u
k)

implying the lower semi-continuity of Rα with respect to weak convergence in X.
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Remark 4.9. It can be observed that, in the above result, reflexivity of Xn̂ (instead of just
requiring that bounded sequences admit weak* convergent subsequences) is only needed to
conclude from (weak) convergence of (vk + PLu

k)k to v + z in Xn̂ and the weak convergence
of (vk + PLu

k)k to u in X that, by uniqueness of limits, v + z = u follows. The same could
be achieved for weak* convergence of (vk + PLu

k)k in Xn̂, thus not requiring reflexivity, if,
for instance, Xn̂ = L∞(Ω) and X = L1(Ω).

5 Predual formulation of regularization graphs

The goal of this section is to provide an equivalent, predual reformulation of regularization
graphs. Remember that a regularization graph functional Rα : Xn̂ → [0,∞] can be written
in a vectorized form as

Rα(u) = inf {Ψu(v) | v ∈ rg(Λα)}
with Λα and Ψu given in (2.2) and (2.3), respectively. With Λ#

α and Ψ#
u predual versions of

Λα and Ψu, respectively, our goal is to show that every regularization graph functional Rα

can be written equivalently as

Rα(u) = − inf
{

Ψ#
u (v) | v ∈ ker(Λ#

α )
}

.

To this aim, we need in particular that the functionals Ψn and the operators Θe and Φe admit
predual versions. By an application of the Fenchel–Moreau theorem [22, Proposition 4.1] it

is easy to see that there exist convex, proper, lower semicontinuous functionals Ψ#
n : X#

n →
[0,∞] such that their convex conjugates are Ψn.

Lemma 5.1. For each n ∈ V , Ψn : Xn → [0,∞] is the convex conjugate of a convex, proper,

lower semicontinuous functional Ψ#
n : X#

n → [0,∞].

Proof. Consider the dual pair (V, V ∗) for V = (Xn,w*) and V
∗ = (X#

n ,w). Note that Ψn is
convex, proper and lower semicontinuous on V . Therefore by the Fenchel–Moreau theorem
[22, Proposition 4.1] there holds that Ψ∗∗

n = Ψn. In particular, defining Ψ#
n = Ψ∗

n, we have

that Ψ#
n : X#

n → [−∞,+∞] is proper, convex and strongly lower semicontinuous and its

convex conjugate is Ψn. The positivity of Ψ#
n follows from Assumption (H3).

Moreover, Remark 2.1 ensures the existence of a bounded predual of Φ(n,m) that we are going

to denote by Φ#
(n,m) : X

#
n → X#

(n,m). Finally, we suppose that the operators Θe admit closed,
densely defined preadjoints as stated in the following additional assumption.

(H9) For each e = (n,m) ∈ E, Θ(n,m) is the adjoint of a closed, densely defined operator

Θ#
(n,m) : dom(Θ#

(n,m)) ⊂ X#
m → X#

(n,m).

Define the following predual spaces of XV and XE :

X#
V =×

n∈V

X#
n and X#

E =×
e∈E

X#
e . (5.1)

Now we characterize the predual of the linear operator Λα : XE → XV from (2.2).
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Lemma 5.2. Let Gα be a regularization graph with root node n̂ and corresponding operator Λα

as in (2.2) such that (H9) holds. Then Λα is the dual of the linear operator Λ#
α : dom(Λ#

α ) ⊂
X#

V → X#
E with

dom(Λ#
α ) = {v ∈ X#

V | ∀(n,m) ∈ E, vm ∈ dom(Θ#
(n,m))}

given as
(Λ#

α v)(n,m) = Θ#
(n,m)vm − α(n,m)Φ

#
(n,m)vn for all v ∈ dom(Λ#

α ). (5.2)

Proof. First, let us verify that dom((Λ#
α )∗) = dom(Λα), where dom(Λα) =×e∈E dom(Θe).

Note that for every v ∈ dom(Λ#
α ) and w ∈ XE it holds

〈w,Λ#
α v〉 =

∑

(n,m)∈E

〈w(n,m),Θ
#
(n,m)

vm − α(n,m)Φ
#
(n,m)

vn〉

=
∑

m∈V

∑

(n,m)∈E

〈w(n,m),Θ
#
(n,m)vm〉 −

∑

n∈V

∑

(n,m)∈E

〈w(n,m), α(n,m)Φ
#
(n,m)vn〉. (5.3)

By the definition of the domain of the adjoint we have

dom((Λ#
α )

∗) = {w ∈ XE | ∃C > 0 such that 〈w,Λ#
α v〉 ≤ C‖v‖

X#
V

∀v ∈ dom(Λ#
α )}. (5.4)

Therefore, using (5.3), the boundedness of Φ(n,m) and the fact that Θ(n,m) is the adjoint

of Θ#
(n,m) (see Assumption (H9)), we immediately deduce that dom(Λα) ⊂ dom((Λ#

α )∗). To

prove the opposite inclusion, consider w = (we)e∈E /∈ dom(Λα). Then, there exists (n,m) ∈ E
such that w(n,m) /∈ dom(Θ(n,m)). Using that

dom(Θ(n,m)) = dom((Θ#
(n,m))

∗)

= {w ∈ X(n,m) | ∃C > 0 such that 〈w,Θ#
(n,m)v〉 ≤ C‖v‖

X#
m
∀v ∈ dom(Θ#

(n,m))}

(see Assumption (H9)), we can find a sequence (vkm)k with vkm ∈ dom(Θ#
(n,m)) \ {0} for each

k such that

lim
k→∞

1

‖vkm‖
X#

m

〈w(n,m),Θ
#
(n,m)v

k
m〉 = +∞ . (5.5)

Then, with vk ∈ X#
V defined as (vk)m̃ = vkm if m̃ = m and (vk)m̃ = 0 else, one notices that,

using the boundedness of Φ#
e for every e ∈ E, there exists a positive constant C independent

on k such that

1

‖vk‖
X#

V

〈w,Λ#
α v

k〉 = 1

‖vkm‖
X#

m

〈w(n,m),Θ
#
(n,m)v

k
m〉 −

∑

ñ : (m,ñ)∈E

α(m,ñ)

‖vkm‖
X#

m

〈w(m,ñ),Φ
#
(m,ñ)v

k
m〉

≥ 1

‖vkm‖
X#

m

〈w(n,m),Θ
#
(n,m)v

k
m〉 − C. (5.6)

Therefore, combining (5.6) and (5.5) with (5.4), we deduce that w /∈ dom((Λ#
α )∗) showing

that dom((Λ#
α )∗) ⊂ dom(Λα).
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It remains to prove (5.2). For every v ∈ dom(Λ#
α ) and w ∈ dom(Λα), using (5.3) we have

〈(Λ#
α )

∗w, v〉 = 〈w,Λ#
α v〉

=
∑

m∈V \{n̂}

〈Θ(m−,m)w(m− ,m), vm〉 −
∑

m∈V

∑

(m,n)∈E

〈α(m,n)Φ(m,n)w(m,n), vm〉

=
∑

m∈V \{n̂}

〈

Θ(m−,m)w(m−,m) −
∑

(m,n)∈E

α(m,n)Φ(m,n)w(m,n), vm

〉

+

〈

−
∑

(n̂,n)∈E

α(n̂,n)Φ(n̂,n)w(n̂,n), vn̂

〉

= 〈Λαw, v〉

ending the proof.

With this, we define a predual regularization graph functional as follows.

Definition 5.3 (Predual regularization graph functional). Given a regularization graph Gα

with root node n̂ and associated functional Rα = R(Gα) such that (H9) holds, we define the

predual regularization graph functional R#
α = R#(Gα) : Xn̂ → [0,+∞] as

R#
α (u) = − inf







Ψ#
n̂ (vn̂)− 〈u, vn̂〉+

∑

n∈V \{n̂}

Ψ#
n (vn)

∣

∣

∣

∣

∣

(vn)n∈V ∈ dom(Λ#
α ),

Θ#
(n,m)vm = α(n,m)Φ

#
(n,m)vn for all (n,m) ∈ E

}

= − inf
{

Ψ#
u (v)

∣

∣ v ∈ ker(Λ#
α )

}

with Ψ#
u (v) := Ψ#

n̂ (vn̂) − 〈u, vn̂〉 +
∑

n∈V \{n̂} Ψ
#
n (vn), and Θ#

e , Φ
#
e and Ψ#

n being the pred-
ual operators and functionals of Θe, Φe and Ψn, respectively, according to hypothesis (H9),
Remark 2.1 and Lemma 5.1.

Our goal is now to show that R#
α = Rα. As first step, we obtain the following proposition.

Proposition 5.4. Assuming again that hypothesis (H9) holds, any predual regularization

graph functional R#
α = R#(Gα) according to Definition 5.3, where Gα is a regularization

graph with root node n̂, can be written as

R#
α (u) = min

{

Ψu(v)
∣

∣ v ∈ rg(Λα)
w∗}

, (5.7)

where Ψu is defined as in (2.3).

Proof. Since Ψ#
n is proper, convex and lower semicontinuous according to Lemma 5.1, the

Fenchel–Moreau theorem [22, Proposition 4.1] yields Ψ#
n = (Ψ#

n )∗∗. Hence, since Ψn is

coercive thanks to hypothesis (H2), using [45, Theorem 10], we deduce that Ψ#
n is continuous

in zero. Consequently, also v 7→ Ψ#
n̂ (v) − 〈u, v〉 is continuous in zero, such that dom(Ψu)

contains a neighborhood of zero and hence is absorbing.

27



In order to apply the Attouch–Brézis theorem [2, Corollary 2.2], we note that

⋃

λ≥0

λ(dom(Ψ#
u ) + ker(Λ#

α )) =
⋃

λ≥0

λdom(Ψ#
u ) + ker(Λ#

α ) = XV .

Therefore, noting that (Ψ#
u )∗ = Ψu we deduce that

− inf
{

Ψ#
u (v)

∣

∣ v ∈ ker(Λ#
α )

}

= min
{

Ψu(v)
∣

∣ v ∈ (ker(Λ#
α ))

⊥
}

,

where the minimum is attained and (ker(Λ#
α ))⊥ denotes the annihilator of ker(Λ#

α ). As Λ
#
α is

closed and densely defined we apply Remark 17 in [11] to deduce that (ker(Λ#
α ))⊥ = rg(Λα)

w∗

and conclude.

In the next proposition we use Theorem 4.3 to prove that rg(Λ#
α ) is weak*-closed, and hence

obtain the desired duality formulation.

Proposition 5.5. Let Λα : XE → XV be as in (2.2) corresponding to a regularization
graph Gα. Then, rg(Λα) is weak*-closed in XV . If in addition (H9) holds and Rα = R(Gα)

and R#
α = R#(Gα) are the primal and predual regularization graph functionals according to

Definitions 2.3 and 5.3, respectively, then

R#
α = Rα.

Proof. We are only going to show weak* closedness of rg(Λα) since, under assumption (H9),

the assertion R#
α = Rα then follows as immediate consequence of Proposition 5.4 and the

definition of Rα. Assume that the result holds true for all operators corresponding to a
regularization graph of height less than h and let Gα be a regularization graph of height h
with corresponding operator Λα and associated directed graph G = (V,E). The case h = 0
is immediate since rg(Λα) = {0}.
Denote by n̂ the root node of Gα and let Ê be the edges connected to the root node and V̂ their
corresponding endpoints. Further, for ê = (n̂, n̂ê) ∈ Ê, denote by Gê = (V ê, E ê) the subtree of
G with root node n̂ê and by Λê

αê the operator corresponding to the subtreeG
ê. Then, we define

G ê
αê to be the regularization graph with structure G ê = (Gê, (‖ · ‖Xn)n∈V ê , (Θe)e∈Eê , (Φe)e∈Eê)

and weights αê = (αe)e∈Eê . It follows that G ê
αê is indeed a regularization graph and that the

associated functional Rê
αê = R(G ê

αê) : Xnê → [0,∞) is given as

Rê
αê(u) = inf{Υê

u(v) | v ∈ rg(Λê
αê)} (5.8)

with Υê
u(v) := ‖u+ vn̂ê‖X

n̂ê
+

∑

n∈V ê\{n̂ê} ‖vn‖Xn .

Now take (Λαw
k)k with (wk)k in dom(Λα) to be a sequence in rg(Λα) weak*-converging to

some y ∈ XV =×n∈V Xn. Then, we note that by the definition of Rê
αê and Λê

αê we have that

Rê
αê(Θêw

k
ê ) ≤

∑

n∈V ê

‖(Λαw
k)n‖Xn <∞.

Further, defining wk
Ê
= (wk

ê )ê∈Ê and, for wÊ = (wê)ê∈Ê, ΘÊwÊ = (Θêwê)ê∈Ê ,

KwÊ :=
∑

ê∈Ê

αêΦêwê, and F ((vn̂ê)ê∈Ê) :=
∑

ê∈Ê

Rê
αê(vn̂ê),
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we observe that both (Kwk
Ê
)k and ((F ◦ΘÊ)(w

k
Ê
))k are bounded. Hence, using Lemma 4.2,

we can choose (w̃k
Ê
)k such that wk

Ê
− w̃k

Ê
∈ ker(K)∩Θ−1

Ê
(LÊ) and both (w̃k

Ê
)k and (ΘÊw̃

k
Ê
)k

are bounded, where LÊ is the invariant subspace of F is given as LÊ =×ê∈Ê Lê with Lê

the invariant subspace of Rê
αê and the respective projection onto LÊ is given as PL

Ê
wÊ =

(PLê
wê)ê∈Ê , with PLê

the projection onto Lê. Hence, up to taking a further non-relabeled

subsequence, we can assume that both (w̃k
Ê
)k and (ΘÊw̃

k
Ê
)k are weak* converging, such that,

by weak* closedness of ΘÊ , for wÊ := w*- limk w̃
k
Ê
we have that ΘÊwÊ = w*- limk ΘÊw̃

k
Ê
.

Now since the infimum in the definition of Rê
αê as in (5.8) is attained thanks to Corollary

4.5, and since Rê
αê(Θê(w

k
ê − w̃k

ê )) = 0, there exist minimizers zk
Eê ∈ dom(Λê

αê) such that

0 = Θê(w̃
k
ê − wk

ê ) − (Λê
αêz

k
Eê)n̂ê and 0 = (Λê

αêz
k
Eê)n for all n ∈ V ê \ {n̂ê}. Defining, with

wk
Eê = (wk

e )e∈Eê ,

w̃k := (w̃k
Ê
, (wk

Eê − zkEê)ê∈Ê)

we observe that (Λαw̃
k)n̂ = (Λαw

k)n̂ since wk
Ê
− w̃k

Ê
∈ ker(K), and

(Λαw̃
k)n̂ê = Θêw̃

k
ê − (Λê

αê(w
k
Eê − zkEê))n̂ê = Θêw

k
ê − (Λê

αêw
k
Eê)n̂ê = (Λαw

k)n̂ê ,

where in the first equality we used the definition of w̃k and in the second equality the fact
that 0 = Θê(w̃

k
ê −wk

ê )− (Λê
αêz

k
Eê)n̂ê . Also, since 0 = (Λê

αêz
k
Eê)n for all n ∈ V ê \ {n̂ê} we have

(Λαw̃
k)n = (Λê

αê(w
k
Eê − zkEê))n = (Λê

αêw
k
Eê)n = (Λαw

k)n

for n ∈ V ê \ {n̂ê}, ê ∈ Ê.

This implies that also Λαw̃
k ∗
⇀ y in XV and, since (ΘÊw̃

k
Ê
)k is weakly* convergent, that

also (Λê
αêw̃

k
Eê)k, with w̃

k
Eê := wk

Eê − zk
Eê , is weakly* convergent for each ê ∈ Ê. By induction

hypothesis, there hence exist wEê ∈ dom(Λê
αê) such that w*- limk Λ

ê
αêw̃

k
Eê = Λê

αêwEê . Defining

w =
(

wÊ , (wEê)ê∈Ê
)

we finally see that Λαw = y, since, from Λαw̃
k ∗
⇀ y it follows that

(Λαw)n̂ = KwÊ = w*- lim
k
Kw̃k

Ê
= yn̂,

(Λαw)nê = Θêwê − (Λê
αêw

k
Eê)n̂ê = w*- lim

k

(

Θêw̃
k
ê − (Λê

αêw̃
k
Eê)nê

)

= ynê

for each ê ∈ Ê, and

(Λαw)n = (Λê
αêwEê)n = w*- lim

k
(Λê

αêw̃
k
Eê)n = yn

for each n ∈ V ê \ {nê}, ê ∈ Ê. This completes the proof.

5.1 Examples of predual regularization graph functionals

Here we provide predual regularization graph functionals for several examples introduced in
Section 2.1 by verifying the additional assumption (H9). We represent such predual regu-
larization graphs as in Figure 5. In this context, we denote by IBp the indicator function
of the Lp unit ball for p ∈ [1,∞]. Note that, for sake of clarity, in the root node of each

predual regularization graph we write the corresponding functional vn̂ 7→ Ψ#
n̂ (vn̂) − 〈u, vn̂〉
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and not just Ψ#
n̂ . Moreover, nodes represented by an empty circle are associated with the

zero functional.

Total variation. Figure 5a shows a predual regularization graph for TV. We refer to
Section 2.1 for the construction of the regularization graph realizing TV. We remind also
that X1 = Lp(Ω) and X2 = M(Ω,Rd) where 1 < p ≤ d′ with d′ = d/(d− 1) in case d > 1 and

d′ = ∞ else. Therefore the predual Banach spaces associated with the nodes are X#
1 = Lp′(Ω)

and X#
1 = C0(Ω,R

d) where p′ satisfies 1/p + 1/p′ = 1. Moreover, it is easy to see that the
convex conjugate of IB∞ on C0(Ω,R

d) is ‖·‖M, and the convex conjugate of the zero function
is I{0}. To show (H9), we further claim that ∇ : BV(Ω) ⊂ Ld′(Ω) → M(Ω,Rd) is the adjoint

of the negative divergence operator −div : dom(−div) ⊂ C0(Ω,R
d) → Ld(Ω) defined in the

weak sense as

〈−divϕ,ψ〉 =
∫

Ω
ϕ · ∇ψ dx ∀ψ ∈ C1(Ω) (5.9)

with domain
dom(−div) = {ϕ ∈ C0(Ω,R

d) |divϕ ∈ Ld(Ω)}. (5.10)

Note that from (5.9), using a simple density argument we obtain that dom(−div) is densely
defined and closed in C0(Ω,R

d). To show that ∇ is the adjoint of −div according to the
definitions above, it is enough to observe that

dom(−div∗) =

{

u ∈ Ld′(Ω)
∣

∣

∣ ∃c > 0 such that

∫

Ω
udivϕdx ≤ c‖ϕ‖∞ ∀ϕ ∈ dom(−div)

}

implying that dom(−div∗) = BV(Ω) and (−div)∗ = ∇. The predual regularization graph

functional R#
α : Lp(Ω) → [0,+∞] is given as

R#
α (u) = − inf

{

−〈u, v1〉+ IB∞(v2)
∣

∣ v1 ∈ Lp′(Ω), v2 ∈ dom(−div), v1 = −div v2

}

= sup

{∫

Ω
udiv v dx

∣

∣

∣
v ∈ C0(Ω,R

d), div v ∈ Lp′(Ω), ‖v‖∞ ≤ 1

}

.

Infimal convolution of TVk1 −TVk2. Figure 5b shows a predual regularization graph
corresponding to the infimal convolution of TVk1 and TVk2 with k1, k2 ∈ N. We refer to
Section 2.1 for the construction of the regularization graph realizing the infimal convolution
of TVk1 −TVk2 . We remind also that p is chosen such that 1 < p ≤ min{d′1, d′2}, where
d′i = d/(d − ki) in case di > ki and d

′
i = ∞ else. Similarly to the TV predual regularization

graph, the pre-adjoint of each linear operator ∇ki : Ld′i(Ω) → M(Ω,Symki(Rd)) can be
seen to be the (possibly negative) higher-order divergence (−1)kidiv ki : dom((−1)kidivki) ⊂
C0(Ω,Sym

ki(Rd)) → Ldi(Ω) defined in the weak sense as

〈(−1)kidiv kiϕ,ψ〉 = (−1)ki+1

∫

Ω
ϕ · ∇kiψ dx ∀ψ ∈ Cki(Ω) (5.11)

with domain

dom((−1)kidivki) = {ϕ ∈ C0(Ω,Sym
ki(Rd)) |div kiϕ ∈ Ldi(Ω)} (5.12)
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which is again closed and densely defined, showing (H9). The predual regularization graph

functional R#
α : Lp(Ω) → [0,+∞] is given as

R#
α (u) = − inf

{

−〈u, v1〉+ IB∞(v2) + IB∞(v3)
∣

∣ v1 ∈ Lp′(Ω), v2 ∈ dom((−1)k1divk1),

v3 ∈ dom((−1)k2divk2), v1 = (−1)k1div k1v2, αv1 = (−1)k2div k2v3

}

= sup

{
∫

Ω
udiv k1u1 dx

∣

∣

∣
ui ∈ C0(Ω,Sym

ki(Rd)), div kiui ∈ Lp′(Ω)

div k2u2 = αdiv k1u1, ‖ui‖∞ ≤ 1, i = 1, 2

}

.

Total generalized variation of order 2. Figure 5c shows a predual regularization graph for
TGV2

α. We refer to Section 2.1 for the construction of the regularization graph realizing the
total generalized variation of order 2. We remind also that p is chosen such that 1 < p ≤ d′

where d′ = d/(d − 1) in case d > 1 and d′ = ∞ else. The pre-adjoint of ∇ : BV(Ω) ⊂
Ld′(Ω) → M(Ω,Rd) is given as in the TV example. Moreover, a pre-adjoint of E : BD(Ω) ⊂
Ld′(Ω,Rd) → M(Ω,Sym2(Rd)) is the negative divergence operator −div : dom(−div) ⊂
C0(Ω,Sym

2(Rd)) → Ld(Ω,Rd) defined in the weak sense as in (5.9) with domain

dom(−div) = {ϕ ∈ C0(Ω,Sym
2(Rd)) |div ϕ ∈ Ld(Ω,Rd)}, (5.13)

which is again densely defined and closed, showing (H9). The predual regularization graph

functional R#
α : Lp(Ω) → [0,+∞] is for α > 0 given as

R#
α (u) = − inf

{

−〈u, v1〉+ I{‖v‖∞≤1}(v3) + I{‖v‖∞≤1}(v4)
∣

∣ v1 ∈ Lp′(Ω), v2 ∈ dom(−div),

v3 ∈ C0(Ω,R
d), v4 ∈ dom(−div), v1 = −div v2, v2 = v3, αv2 = −div v4

}

= sup

{∫

Ω
udiv2v dx

∣

∣

∣
v ∈ C0(Ω,Sym

2(Rd)), div v ∈ C0(Ω,R
d), div2v ∈ Lp′(Ω,Rd)

‖div v‖∞ ≤ 1, ‖αv‖∞ ≤ 1

}

.

TGV2-shearlet infimal convolution. Figure 5d shows a predual regularization graph for
the TGV2-shearlet infimal convolution model. We refer to Section 2.1 for the construction of
the regularization graph realizing for the TGV2-shearlet infimal convolution. We also remind
that the exponent p is chosen as 1 < p ≤ 2. Note that a predual of the extension to infinity of
the ℓ1 norm is the indicator function of the unit ball of c0, denoted by Ic0 : ℓ2(Z4) → [0,+∞].
Thanks to the closedness of c0 ∩ ℓ2 in ℓ2, such indicator function is lower semicontinuous.
Moreover, as SH : L2(R2) → ℓ2(Z4) defined according to (2.5) is a bounded operator between
Hilbert spaces, its pre-adjoint exists and is bounded, showing (H9). Further, it can be easily
characterized for v ∈ ℓ2(Z4) as

SH#v =
∑

j,k∈Z,m∈Z2

vj,k,mΨj,k,m.

Finally, noticing the the pre-adjoint of the restriction operator rΩ is the extension to zero
outside Ω (denoted by r0Ω), the predual regularization graph functional R#

α : Lp(Ω) → [0,+∞]
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is for α0, α1 > 0 given as

R#
α (u) = − inf

{

−〈u, v1〉+ I{‖v‖∞≤1}(v3) + I{‖v‖∞≤1}(v4) + Ic0(v5)
∣

∣ v1 ∈ Lp′(Ω),

v2 ∈ dom(−div), v3 ∈ C0(Ω,R
2), v4 ∈ dom(−div), v5 ∈ ℓ2(Z4), v1 = −div v2,

α0r
0
Ωv1 = SH#v5, v2 = v3, α1v2 = −div v4

}

= sup

{
∫

Ω
udiv2v dx

∣

∣

∣
v ∈ C0(Ω,Sym(R2)), div v ∈ C0(Ω,R

2), div2v ∈ Lp′(Ω,R2),

z ∈ c0(Z4), ‖div v‖∞ ≤ 1, ‖α1v‖∞ ≤ 1, α0r
0
Ωdiv

2v = SH#z, ‖z‖∞ ≤ 1

}

.

6 Regularization of linear inverse problems

6.1 Setting and well-posedness

We now consider the application of regularization graphs to the regularization of linear inverse
problems. That is, with K : Xn̂ → Y a bounded linear operator (the forward model),
Sf : Y → [0,∞) a discrepancy functional associated with the data f and β > 0 a regularization
parameter, we consider the minimization problem

min
u∈Xn̂

Sf (Ku) + βRα(u), (6.1)

where Rα = R(Gα) : Xn̂ → [0,∞] with Gα a regularization graph with root node n̂.

Remark 6.1 (Forward operator with general domain X). Note that considering only forward
operators being defined on Xn̂, where bounded sequences need to admit weak* convergent
subsequences according to (H8), is not a restriction compared to considering general operators
K̃ : X → Y with X a Banach space such that Xn̂ →֒ X and Rα being extended by ∞ to X
as in Proposition 4.8, since one can always recover this setting by choosing K = K̃ ◦ IXn̂,X ,
with IXn̂,X the continuous embedding of Xn̂ to X.

In order to study convergence in the data space for general discrepancies Sf , we introduce
the following notion of convergence: We say the functionals (Sfk)k converge to Sf if







Sf (v) ≤ lim inf
k

Sfk(vk) whenever vk ⇀ v in Y,

Sf (v) ≥ lim sup
k

Sfk(v) for each v ∈ Y.
(6.2)

Further, we say that (Sfk)k is equi-coercive if there exists a coercive function S0 : Y → [0,∞)

such that Sfk ≥ S0 in Y for all k. Note that this always holds true if Sfk(v) := 1
q‖v − fk‖qY

and fk → f in Y , but the more general assumptions allow us to capture, for instance, also
the situation when Sf is the Kullback–Leibler divergence [7, Example 2.16].
Now, under weak assumptions, the previously established properties of Rα allow to obtain a
standard well-posedness result for (6.1).

Theorem 6.2. Let Rα = R(Gα) with Gα being a regularization graph with weights α and root
node n̂ such that Xn̂ is reflexive, β > 0, and let Y be a Banach space, K : Xn̂ → Y be linear
and continuous and Sf : Y → [0,∞] be a proper, convex, weakly lower semi-continuous and
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Lp′ (Ω)

−〈u, ·〉

C0(Ω, Rd)

IB∞

I

Ld(Ω)

−div

(a) Total variation (TV).

Lp′ (Ω)

−〈u, ·〉

C0(Ω, Symk1 (Rd))

IB∞

C0(Ω, Symk2 (Rd))

IB∞

αI

Ld1 (Ω)

(−1)k1div k1

I

Ld2 (Ω)

(−1)k2div k2

(b) TVk1 −TVk2 infimal convolution.

Lp′ (Ω)

−〈u, ·〉

C0(Ω, Rd) C0(Ω, Rd)

IB∞

C0(Ω, Sym2(Rd))

IB∞

I

Ld(Ω)

−div

Id

C0(Ω, Rd)

Id

αI

Ld(Ω, Rd)

−div

(c) Second order total generalized variation.

Lp′ (Ω)

−〈u, ·〉

C0(Ω, R2) C0(Ω, R2)

IB∞

C0(Ω, Sym2(R2))

IB∞

I

L2(Ω)

−div

Id

C0(Ω, R2)

Id

α1I

L2(Ω, R2)

−div

ℓ2(Z4)

Ic0

α0(I ◦ r0Ω)

L2(R2)

SH#

(d) TGV2-shearlet infimal convolution.

Figure 5: Examples of predual regularization graphs.
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coercive discrepancy functional. Then, the Tikhonov minimization problem (6.1) is well-posed,
i.e., there exists a solution and the solution mapping is stable in sense that, if Sfk converges

to Sf and (Sfk)k is equi-coercive, then for each sequence of minimizers (uk)k of (6.1) with
discrepancy Sfk ,

i) either Sfk(Kuk) + βRα(u
k) → ∞ as k → ∞ and (6.1) with discrepancy Sf does not

admit a finite solution,

ii) or Sfk(Kuk) + βRα(u
k) → minu∈Xn̂

Sf (Ku) + βRα(u) as k → ∞ and there exists,
possibly up to shifts by functions in ker(K) ∩L, with L the invariant subspace of Rα, a
weak accumulation point u ∈ Xn̂ of (uk)k that minimizes (6.1) with discrepancy Sf .

Further, in case (6.1) with discrepancy Sf admits a finite solution, for each subsequence (uki)i
weakly converging to some u ∈ Xn̂, it holds that Rα(u

ki) → Rα(u) as i → ∞. Also, if Sf is
strictly convex and K is injective, finite solutions u of (6.1) are unique and uk ⇀ u in Xn̂.

Proof. Existence follows by the application of the direct method of calculus of variations in
Xn̂. More precisely, given a minimizing sequence (uk)k for (6.1) we can apply Lemma 4.2
with W = X = Xn̂, F = Rα, Θ = Id and L being the finite dimensional invariant space of Rα

provided by Theorem 4.3, to obtain the existence of another minimizing sequence (ũk)k for
(6.1) that is bounded in Xn̂. Note that the assumptions of Lemma 4.2 are fulfilled since the
weak lower semi-continuity of Rα (which is equivalent to weak* lower semi-continuity of Rα

by reflexivity of Xn̂) and Assumption i) of Lemma 4.2 hold as a consequence of Theorem 4.3,
and the boundedness of (Kuk)k follows from the coercivity of Sf . Therefore, thanks to the
weak lower semi-continuity of Rα and the boundedness of K we can apply the direct method
to the sequence (ũk)k and conclude existence of minimizers for (6.1).
The claimed stability follows with standard arguments. For instance, it can be proven adapt-
ing straightforwardly [7, Theorem 2.14].

Remark 6.3. Note that the results of Theorem 6.2 can also be modified to hold without
assuming reflexivity of Xn̂ but assuming, for instance, that K is weak*-to-weak continuous.
Indeed, in this setting, Lemma 4.2 applies the same way and existence follows from the
coercivity statement of Lemma 4.2 using weak*-to-weak continuity of K and weak lower
semi-continuity of Sf . Likewise, also the claimed stability can be shown by straightfoward
adaptions.

6.2 Convergence and stability for varying parameters

In this section we study the stability of solutions of (6.1) for varying parameters α and for
vanishing noise. To this aim, we first define a variant of regularization graphs for vanishing
weights.

Definition 6.4. For Gα a regularization graph with underlying graph G = (V,E) and α ∈
[0,∞)E weights, define α̃ = (α̃e)e∈E as α̃e = αe for αe > 0 and α̃e = 1 else. Further, for
n ∈ V , set Ψ̃n = I{0} in case that n 6= n̂ and α(n−,n) = 0, and Ψ̃n = Ψn else. Then, we

define Ĝα = G̃α̃ with G̃ = (G, (Ψ̃n)n∈V , (Θe)e∈E , (Φe)e∈E), that is, Ĝα is the regularization
graph Gα with zero weights being replaced by 1 and node functionals associated with tails of
zero-weight edges being replaced by I{0}. Finally, we set R̂α = R(Ĝα), being the regularization

graph functional associated to Ĝα.
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This definition is required to deal with lower semi-continuity with respect to weights (αe)e
converging to zero. An example of R̂α in case Rα(u) = R(Gα)(u) = minw∈BD(Ω,Rd) ‖∇u −
α0w‖M + ‖Ew‖M and α0 = 0 is given as

R̂α(u) = min
w∈BD(Ω,Rd)

‖∇u− w‖M s.t. Ew = 0.

It is easy to see that for any regularization graph Gα and any choice of weights α, Ĝα is again
a regularization graph such that all previous results apply. Moreover, the following lemma
holds.

Lemma 6.5. Let Gα be a regularization graph with root node n̂ and weights α ∈ [0,∞)E ,
Rα = R(Gα) and R̂α = R(Ĝα). Then for every u ∈ Xn̂ we have that R̂α(u) ≤ Rα(u).

Proof. Arguing by induction we suppose that the claimed assertion holds for any regulariza-
tion graph of height less than h and we assume that the height of Gα is h. For h = 0, the
result holds since R̂α = Rα, so we assume h ≥ 1. Using the recursive representation of Rα

and the notation from Lemma 3.2 it holds that

Rα(u) = inf

{

Ψn̂



u−
∑

ê∈Ê:αê>0

αêΦêwê



+
∑

ê∈Ê

Rê
αê(Θêwê)

∣

∣

∣

∣

∣

wê ∈ dom(Θê) for all ê ∈ Ê
}

(6.3)
where, for ê ∈ Ê, Rê

αê = R(G ê
αê) and G ê

αê = (G ê, αê), with G ê = (Gê, (Ψn)n∈V ê , (Θe)e∈Eê ,

(Φe)e∈Eê) and αê = (αe)e∈Eê , is a regularization graph of height at most h−1 with associated
graph Gê = (V ê, E ê) that is a subtree of G = (V,E) with n̂ê as root node. Similarly, using
Lemma 3.2, we write R̂α(u) as

R̂α(u) = inf

{

Ψn̂

(

u−
∑

ê∈Ê:αê>0

αêΦêwê −
∑

ê∈Ê:αê=0

Φêwê

)

+
∑

ê∈Ê:αê=0

R̄ê
α̃ê(Θêwê)

+
∑

ê∈Ê:αê>0

R̄ê
α̃ê(Θêwê)

∣

∣

∣

∣

∣

wê ∈ dom(Θê) for all ê ∈ Ê

}

, (6.4)

where, for ê ∈ Ê, R̄ê
α̃ê = R(Ḡ ê

α̃ê) and Ḡ ê
α̃ê = (Ḡ ê, α̃ê), with Ḡ ê = (Gê, (Ψ̃n)n∈V ê , (Θe)e∈Eê ,

(Φe)e∈Eê) and (α̃e)e∈Eê according to Definition 6.4, is a regularization graph of height at
most h − 1 with associated graphs Gê = (V ê, E ê). Note that Ψ̃n̂ê = Ψn̂ê for every ê ∈ Ê
such that αê > 0. Therefore, by the way the modified regularization graph Ĝ ê

αê is obtained

from G ê
αê according to Definition 6.4, it follows that, for ê ∈ Ê with αê > 0, R̄ê

α̃ê = R̂ê
αê with

R̂ê
αê = R(Ĝ ê

αê).

Thus, choosing wê = 0 for every ê ∈ Ê such that αê = 0 in (6.4) and using the induction
hypothesis as well as (6.3), we estimate for every u ∈ Xn̂ as follows

R̂α(u) ≤ inf

{

Ψn̂

(

u−
∑

ê∈Ê:αê>0

αêΦêwê

)

+
∑

ê∈Ê:αê>0

R̂ê
αê(Θêwê)

∣

∣

∣

∣

∣

wê ∈ dom(Θê),

∀ê ∈ Ê such that αê > 0

}

≤ Rα(u).
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We now prove a weak* lower semi-continuity result for regularization graph functionals with
respect to the parameters.

Theorem 6.6. Let Gα be a regularization graph with root node n̂ and weights α ∈ [0,∞)E ,
Rα = R(Gα), and (αk)k be a sequence of weights in (0,∞)E such that (αk)k → α.

Then, for every sequence (uk)k in Xn̂ such that uk
∗
⇀ u ∈ Xn̂ it holds that

R̂α(u) ≤ lim inf
k→∞

Rαk(uk). (6.5)

Moreover, for u ∈ Xn̂ and

γk := min
{

∏

e∈F

αk
e/αe

∣

∣

∣F ⊂ E is either empty or (6.6)

a chain with root n̂ ∈ V and αe > 0 ∀e ∈ F
}

, (6.7)

using again the conventions that for F = ∅, ∏e∈∅
α2
e

α1
e
= 1, we have that γk ≤ 1, γk → 1,

Rαk(γku) ≤ R̂α(u) for all k ∈ N and lim
k→∞

Rαk(γku) = R̂α(u). (6.8)

Remark 6.7. Note that, in case each node functional Ψn is positively one homogeneous (such
that Rαk is positively one homogeneous according to Proposition 2.6), the convergence of
(6.8) implies that limk→∞Rαk(u) = R̂α(u). Also, in case αe > 0 for each e ∈ E, R̂α can be
replaced by Rα.

Proof of Theorem 6.6. We argue again by induction and, supposing that the claimed asser-
tions hold for any regularization graph of height less than h, assume that the height of Gα is
h. Again, for h = 0, the result holds trivially, so we assume h ≥ 1.
We first deal with lower semi-continuity of Rα = R(Gα), for which, up to taking a non-
relabeled subsequence, we assume that lim infk→∞Rαk(uk) = limk→∞Rαk(uk) < +∞. Using
the recursive representation of Rαk and the notation from Lemma 3.2, and the result of
Theorem 4.3 we can select a sequence (wk)k in×ê∈Ê dom(Θê) such that

Rαk(uk) = Ψn̂



uk −
∑

ê∈Ê

αk
êΦêw

k
ê



+
∑

ê∈Ê

Rê
(αk)ê(Θêw

k
ê ), (6.9)

with Rê
(αk)ê

= R(G ê
(αk)ê

) and G ê
(αk)ê

being regularization graphs of height at most h − 1 with

graph structure Gê = (V ê, E ê) and root node n̂ê. Thanks to Proposition 4.7 and the weights
αk
e being positive, the invariant subspace Lê of Rê

(αk)ê
does not depend on k and for

Cê,αk := max
{

∏

e∈F

αk
e |F ⊂ E ê is either empty or a chain with root n̂ê

}

, (6.10)

it follows that (Cê,αk)k is bounded and that

‖u− Prg(Θê)∩Lêu‖X
n̂ê

≤ Cê,αkCêR
ê
(αk)ê(u) +Dê ∀u ∈ Xn̂ê (6.11)
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with Cê,Dê independent of k. Further, remember that each Θê satisfies

‖w − Pker(Θê)w‖Xê
≤ Bê‖Θêw‖X

n̂ê
∀w ∈ dom(Θê),

with Bê > 0, thanks to Assumption (H6). Now definingM ê ⊂ dom(Θê) and P
ê : dom(Θê) →

M ê as in (4.10) and (4.11), respectively, one sees that they also do not depend on k and,
estimating as in (4.12), we obtain

‖w − P êw‖Xê
≤ BêCêCê,αkRê

(αk)ê(Θêw) +BêDê. (6.12)

Further, define K :W → Xn̂ with W :=×ê∈Ê Xê as

Kw =
∑

ê∈Ê

Φêwê (6.13)

and PMw := (P êwê)ê for w ∈ W . Note that for M = ×ê∈ÊM
ê, PM : W → M is a

projection. Choose Pker(K)∩M : M → ker(K) ∩M to be a projection onto ker(K) ∩M and
let PZ :M → Z be defined as PZ = Id−Pker(K)∩M , where Z = rg(Id−Pker(K)∩M ). Note that

PZ is a projection onto Z. Then, defining αÊw := (αêwê)ê∈Ê for w ∈ W and αÊ ∈ [0,∞)Ê ,

we can observe that, with αk
Ê
= (αk

ê)ê∈Ê ,

w̃k := wk − (PMw
k − (1/αk

Ê
)PZα

k
Ê
PMw

k) (6.14)

also realizes the minimum in (6.9), since

wk − w̃k = PMw
k − (1/αk

Ê
)PZα

k
Ê
PMw

k = (1/αk
Ê
)(Id−PZ)α

k
Ê
PMw

k

with (Id−PZ)α
k
Ê
PMw

k ∈ ker(K)∩M , such that
∑

ê∈Ê α
k
êΦê(w

k−w̃k) = K(Id−PZ)α
k
Ê
PMw

k =

0 and Θê(w
k − w̃k)ê = (1/αk

ê )Θê[(Id−PZ)α
k
Ê
PMw

k]ê = 0. By the estimate (6.12) we obtain

for some constants C,D, D̃ > 0 that

‖wk − PMw
k‖W ≤ C

(

max
ê∈Ê

Cê,αk

)

∑

ê∈Ê

Rê
(αk)ê(Θêw

k
ê ) +D ≤ D̃ <∞ (6.15)

where the constant D̃ does not depend on k thanks to the boundedness of Rαk(uk), the
recursive formula (6.9), and the boundedness of (Cê,αk)k.
Since K is injective and bounded (see Remark 2.1) on the finite dimensional space Z, there
exists C > 0 independent from k such that ‖z‖W ≤ C‖Kz‖Xn̂

for all z ∈ Z. Thus we can
estimate by coercivity of Ψn̂ and using PZα

k
Ê
PMw

k = αk
Ê
(w̃k−(wk−PMw

k)) that for generic

constants C̃,D (and D̃ as in (6.15)) we have

‖PZα
k
Ê
PMw

k‖W ≤ C‖KPZα
k
Ê
PMw

k‖Xn̂

≤ C‖Kαk
Ê
w̃k‖Xn̂

+ C̃‖αk
Ê
wk − αk

Ê
PMw

k‖W
≤ C‖Kαk

Ê
w̃k − uk‖Xn̂

+ C‖uk‖Xn̂
+ C̃(max

ê∈Ê
αk
ê )‖wk − PMw

k‖W

≤ C̃Ψn̂(u
k −Kαk

Ê
w̃k) + C‖uk‖Xn̂

+ C̃(max
ê∈Ê

αk
ê)D̃

≤ C̃Rαk(uk) +D <∞, (6.16)
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where also used (6.15), the fact that (uk)k is uniformly bounded as it is weak* converging
and that w̃k realizes the minimum in (6.9).
Now for ê ∈ Ê with αê > 0 this together with (6.14) and (6.15) implies that (w̃k

ê )k is
bounded, hence admits a (non-relabeled) subsequence weak* converging to some w̃ê ∈ Xê

by (H8). Moreover, using (6.9), (6.11), (6.16), the boundedness of Rαk(uk) and the finite
dimensionality of Z we have for ê ∈ Ê that

‖Θêw̃
k
ê‖Xn̂ê

≤ ‖Θêw
k
ê −ΘêP

êwk
ê‖Xn̂ê

+ ‖Θê(1/α
k
ê )(PZα

k
Ê
PMw

k)ê‖X
n̂ê

= ‖Θêw
k
ê − Prg(Θê)∩LêΘêw

k
ê‖Xn̂ê

+ ‖Θê(1/α
k
ê )(PZα

kPMw
k)ê‖X

n̂ê

≤ Cê,αkCêR
ê
(αk)ê(Θêw

k
ê ) +Dê + C‖(PZα

kPMw
k)ê‖X

n̂ê

≤ C̃ < +∞,

where the constant C̃ is independent of k and we use the definition of P ê in (4.11). Hence, by
weak* sequential compactness of the Xn̂ê and weak*-closedness of Θê we obtain w̃ê ∈ dom(Θê)
and, up to taking a further non-relabeled subsequence, w*- limk→+∞Θw̃k

ê = Θw̃ê.

Further, for ê ∈ Ê with αê = 0, we see from (6.14), (6.15) and (6.16) that (αk
ê w̃

k
ê )k is bounded.

Hence, up to taking a further subsequence, we can assume that

w*- lim
k→∞

αk
ê w̃

k
ê = w*- lim

k→∞
(PZα

k
Ê
PMw

k)ê = zê ∈M ê (6.17)

by (6.15) since αk
ê → 0 as k → +∞. Using Lemma 3.2 we can write R̂α(u) as

R̂α(u) = inf

{

Ψn̂

(

u−
∑

ê∈Ê:αê>0

αêΦêwê −
∑

ê∈Ê:αê=0

Φêwê

)

+
∑

ê∈Ê:αê=0

R̄ê
α̃ê(Θêwê)

+
∑

ê∈Ê:αê>0

R̄ê
α̃ê(Θêwê)

∣

∣

∣

∣

∣

wê ∈ dom(Θê) for all ê ∈ Ê

}

,

where, for ê ∈ Ê, R̄ê
α̃ê = R(Ḡ ê

α̃ê) and Ḡ ê
α̃ê = (Ḡ ê, α̃ê), with Ḡ ê = (Gê, (Ψ̃n)n∈V ê , (Θe)e∈Eê ,

(Φe)e∈Eê) and α̃ê = (α̃e)e∈Eê according to Definition 6.4, is a regularization graph of height
at most h−1 with graph structure Gê = (V ê, E ê) and root node n̂ê. Note that for ê ∈ Ê such
that αê > 0 we have R̄ê

α̃ê = R̂ê
αê with R̂ê

αê = R(Ĝ ê
αê) and Ĝ ê

αê being the modification of the

regularization graph G ê
αê according to Definition 6.4. Therefore, weak* lower semi-continuity

of Ψn̂, the induction hypothesis and (6.17), leading to R̂ê
αê(Θêzê) = 0 for αê = 0, then yields

R̂α(u) ≤ Ψn̂

(

u−
∑

ê∈Ê:αê>0

αêΦêw̃ê −
∑

ê∈Ê:αê=0

Φêzê

)

+
∑

ê∈Ê:αê>0

R̂ê
αê(Θêw̃ê)

≤ lim inf
k

Ψn̂

(

uk −
∑

ê∈Ê

αk
êΦêw̃

k
ê

)

+
∑

ê∈Ê

Rê
(αk)ê(Θêw̃

k
ê ) = lim inf

k
Rαk(uk).

Now take u ∈ Xn̂ and observe that, since the convergence γk → 1 as k → +∞ is immedi-
ate, the second assertion of (6.8) follows directly from what we just showed, provided that
Rαk(γku) ≤ R̂α(u) for every k ∈ N holds. In order to show the latter, we first select w ∈W to
attain the minimum in the recursive representation of R̂α(u) according to Lemma 3.2 (which
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is possible by Theorem 4.3), noting that we can choose wê = 0 for ê ∈ Ê with αê = 0, and
that αk

êwê → αêwê for all ê ∈ Ê. In particular, Rê
(αk)ê

(Θêwê) = R̂ê
αê(Θêwê) = 0 for ê ∈ Ê

with αê = 0. Also, define

γ êk := min
{

∏

e∈F

αk
e/αe |F ⊂ E ê is either empty or a chain with root n̂ê and αe > 0 ∀e ∈ F

}

,

using again the convention
∏

e∈∅
αk
e

αe
= 1. Therefore, using the induction hypothesis together

with Remark 2.1 and Proposition 2.6 we obtain

Rαk(γku) ≤ Ψn̂



γku− γk
∑

ê∈Ê:αê>0

αk
êΦê

(

αê

αk
ê

wê

)

− γk
∑

ê∈Ê:αê=0

Φêwê





+
∑

ê∈Ê:αê>0

Rê
(αk)ê

(

Θê

(

γk
αê

αk
ê

wê

))

≤ γkΨn̂



u−
∑

ê∈Ê:αê>0

αêΦê(wê)−
∑

ê∈Ê:αê=0

Φêwê





+
∑

ê∈Ê:αê>0

γk

γ êk

αê

αk
ê

Rê
(αk)ê(γ

ê
kΘêwê)

≤ Ψn̂



u−
∑

ê∈Ê:αê>0

αêΦêwê −
∑

ê∈Ê:αê=0

Φêwê



+
∑

ê∈Ê:αê>0

R̂ê
αê(Θêwê) = R̂α(u),

where we used that γk ≤ 1 as well as γk
γê
k

αê

αk
ê

≤ 1 since γk ≤ γ êk
αk
ê

αê
.

We are now ready to prove a result that will in particular imply stability for varying parameter
α and convergence for vanishing noise for (6.1).

Theorem 6.8. Let Rα = R(Gα) with Gα be a regularization graph with weight α and root
node n̂ such that Xn̂ is reflexive, and let Y be a Banach space, K : Xn̂ → Y be linear and
continuous and Sf , Sfk : Y → [0,∞] for k ∈ N be proper, convex, lower semi-continuous and
coercive discrepancy functionals with Sf (v) = 0 if and only if v = f . Further, assume that
Sfk converges to Sf and that (Sfk)k is equi-coercive. Choosing δk := Sfk(f) (such that δk → 0

by convergence of Sfk), let (αk)k in (0,∞)E and (βk)k in (0,∞) be such that

i) βk → β, δk
βk

→ 0, and αk
e → αe, α

k
e ≥ αe for all e ∈ E.

In case β = 0, assume additionally that

ii) there exists u0 ∈ Xn̂ with R̂α(u0) < +∞ such that Ku0 = f .

Then, for (uk)k a sequence of minimizers of (6.1) with parameters (βk)k and (αk)k, up to
shifts in ker(K) ∩ L, with L being the invariant subspace of Rαk (which does not depend on
k), (uk)k has a subsequence weakly converging in Xn̂. Further, any limit û of a subsequence
(uki)i converging weakly in Xn̂ solves

min
u∈Xn̂

Sf (Ku) + βR̂α(u) (6.18)
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in case β > 0 and
min
u∈Xn̂

R̂α(u) s.t. Ku = f (6.19)

in case β = 0. Also, in both cases, limiRαki (u
ki) = R̂α(û).

Proof. Given the properties we have obtained for Rα and the assumptions on Sfk , Sf , the
proof is now rather direct and we only provide a sketch for the sake of completeness.
At first note that, in case β = 0, existence of a solution û to (6.19) follows using Theorem
6.2 with Sf = I{f}, and assumption ii) ensures a finite minimum. Further, since αk

e ≥ αe

for all e ∈ E, which yields γk = 1 for γk according to (6.6), Theorem 6.6 implies that
Rαk(û) → R̂α(û) and we get

Sfk(Kuk) + βkRαk(uk) ≤ δk + βkRαk(û) → 0 as k → ∞ (6.20)

using assumption ii). Consequently, using hypothesis i), it also holds that

Rαk(uk) ≤ δk/βk +Rαk(û) → R̂α(û) as n→ ∞. (6.21)

This implies in particular boundedness of Sfk(Kuk) and Rαk(uk).
In case β > 0, we can select û to be a solution to (6.18) and by Theorem 6.6 and convergence
of Sfk to Sf estimate according to

Sfk(Kuk) + βkRαk(uk) ≤ Sfk(Kû) + βkRαk(û) → Sf (Kû) + βR̂α(û) as k → ∞. (6.22)

In particular, also in this case, both Sfk(Kuk) and Rαk(uk) are bounded. Choosing Z as a
complement of ker(K) ∩ L in L, such that the projection PZ : L → Z satisfies rg(Id−PZ) =
ker(K)∩L, and ũk := uk −PLu

k +PZPLu
k, we observe that ũk −uk ∈ ker(K)∩L and, using

equi-coercivity of (Sfk)k and Proposition 4.7, we can obtain, as in the proof of Lemma 4.2,

that (ũk)k is bounded and hence admits a subsequence weakly converging in Xn̂.
Now take u ∈ Xn̂ to be the limit of a subsequence (uki)i of (uk)k weakly converging in
Xn̂. In case β = 0, using weak lower semi-continuity, convergence of Sfk to Sf , and that

Sf (v) = 0 only if v = f , it follows from (6.20) and (6.21) that Ku = f and R̂α(u) ≤ R̂α(û) as

claimed in (6.19), and consequently, also that limiRαki (u
ki) = R̂α(u). In case β > 0, again

using weak lower semi-continuity and convergence of Sfk to Sf , it follows from (6.22) and

R̂α(u) ≤ lim inf iRαki (u
ki) that u solves (6.18), and that Eki := Sfki (Ku

ki)+ βkiRαki (u
ki) →

E0 := Sf (Ku) + βR̂α(u). If lim supiRαki (u
ki) > R̂α(u), then the estimate

Sf (Ku) ≤ lim inf
i

(

Eki − βkiRαki (u
ki)

)

= E0 − lim sup
i

Rαki (u
ki) < Sf (Ku)

yields a contradiction, hence also limiRαki (u
ki) = R̂α(u) and the proof is complete.

Remark 6.9. Theorem 6.8 is valid for several particular cases which are worth mentioning:

• If α > 0 component-wise, then the above results hold for R̂α = Rα.

• If we fix αk = α and have β = 0, this is a classical convergence-for-vanishing-noise result
for a fixed regularization functional.
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• Regarding both β and α as regularization parameters, this is a rather general conver-
gence result for multi-parameter regularization and we refer to [6, 41, 34] for related
work.

• If we fix fk = f , this is a stability result for varying the parameters α, β, which is in
particular relevant in the context of bilevel optimization, see Section 7 below.

• Note that αk
e ≥ αe was only used in combination with Theorem 6.6 to ensure that

limk→∞Rαk(u) = R̂α(u). In case Rα is positively one-homogeneous, following Remark
6.7, this assumption can be dropped. Also, in case fk = f and β > 0, the assumption
can be dropped in case Sf is continuous in the sense that limλ→1 Sf (λv) = Sf (v) for all
v ∈ dom(Sf ).

• Again, as described in Remark 6.3, the result can be modified to hold without assuming
reflexivity of Xn̂.

7 Bilevel optimization

The goal of this section is to show well-posedness of a bilevel optimization problem for learning
the weights α in a regularization graph. In order to allow for an arbitrary removal of different
subtrees of the graph via setting αe = 0, we will need to include an additional penalty on the
edge variables (we)e∈E . To formulate this, we use the notation

Rα(u, (we)e∈E) :=
∑

n∈V

Ψn

(

Θ(n−,n)w(n−,n) −
∑

(n,m)∈E

α(n,m)Φ(n,m)w(n,m)

)

where again w(n̂−,n̂) = u and Θ(n̂−,n̂) = Id. Also, we need an assumption based on the
invariant subspaces of regularization graph functionals. To formulate this, first recall the
recursive representation of a regularization graph functional Rα = R(Gα) from Lemma 3.2 as

Rα(u) = inf
{

Ψn̂

(

u−
∑

ê∈Ê

αêΦêwê

)

+
∑

ê∈Ê

Rê
αê(Θêwê)

∣

∣

∣
wê ∈ dom(Θê) for all ê ∈ Ê

}

. (7.1)

Based on this, for e ∈ E, we henceforth denote M e := Θ−1
e (Le), where Θ−1

e is the inverse
of Θe : ker(Θe)

⊥ → rg(Θe) (recall that ker(Θe)
⊥ := rg(Id−Pker(Θe)) ∩ dom(Θe) with Pker(Θe)

according to Assumption (H6)) and Le is the invariant subspace of the regularization graph
functional Re

αe = R(Ge
αe) with Ge

αe the regularization graph corresponding to the subtree of
G starting at edge e ∈ E with functionals, spaces, operators and weights inherited from Gα.
Note that M e is finite dimensional by finite dimensionality of Le and of ker(Θe) for every
e ∈ E. Finally, we denote the projection P e : dom(Θe) →M e as

P ew := Θ−1
e Prg(Θe)∩LeΘew + P e

ker(Θe)
w, (7.2)

where P e
ker(Θe)

is a projection onto ker(Θe), noting that P e is indeed a projection.
Using these notations, we now provide a lower semi-continuity result that includes vanishing
weights as follows.

Lemma 7.1. Let Gα be a regularization graph with root node n̂ and weights α ∈ [0,∞)E ,
Rα = R(Gα) and (αk)k be a sequence of weights in (0,∞)E such that (αk)k → α.
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Then, with (uk)k weak* converging to some u ∈ Xn̂ and ((wk
e )e∈E)k a sequence realizing the

minimum in (2.2) with uk for u and αk for α such that (P ewk
e )k and (Rαk(uk, ((wk

e )e)k))k are
bounded, ((wk

e )e∈E)k is bounded and admits a subsequence converging weak* to some (we)e∈E
such that

Rα(u, (we)e) ≤ lim inf
k→∞

Rαk(uk, ((wk
e )e)k). (7.3)

Note that, in addition to explicitly including the variables (we)e, this lower semi-continuity
result differs from the one of Theorem 6.6 in the fact that in the limit, only the weights change
(possibly to zero), but not the original regularization graph. This can be achieved thanks
to the boundedness assumption on the sequences (P ewk

e )k that does not always hold true as
clarified in the following remark.

Remark 7.2. Consider the regularization graph functional for TGV2 (see Section 2.1) accord-
ing to

Rαk(uk) = inf
w1∈BV(Ω),

w2∈M(Ω,Rd),
w3∈BD(Ω,Rd)

I{0}(uk − w1) + I{0}(∇w1 − w2 − αkw3) + ‖w2‖M + ‖Ew3‖M (7.4)

where αk → 0 and uk = u for every k with ∇u ∈ ker(E) \ {0}. Then, the sequence
(wk

1 , w
k
2 , w

k
3 )k = (u, 0,∇u/αk)k realizes the minimum in (7.4) with Rαk(uk) = 0 for every

k. However, for edge 3, we have M3 = ker(E) and it holds that ‖PM3(∇u/αk)‖Ld′ (Ω,Rd) =

(αk)−1‖∇u‖Ld′ (Ω,Rd) → +∞, showing that in this case, the assumptions of Lemma 7.1 do not
hold.

Proof of Lemma 7.1. Again we proceed by induction, assuming the result holds true for all
regularization graphs of height less than h and assume that the height of Gα is h. The case
h = 0 is again immediate and we assume h ≥ 1. Writing

Rαk(uk, (wk
e )e) = Ψn̂

(

uk −
∑

ê∈Ê

αk
êΦêw

k
ê

)

+
∑

ê∈Ê

Rê
(αk)ê(Θêw

k
ê , (w

k
e )e∈Eê)

with Ê ⊂ E the set all edges connected to the root node n̂, R(αk)ê = R(G ê
(αk)ê

), and (G ê
(αk)ê

)

regularization graphs of height less than h (see Lemma 3.2) and with root node n̂ê we observe,
estimating as in (6.12) and using boundedness of the (αk

ê )k, for generic constants C,D, C̃ > 0
independent of k, that

‖wk
ê − P êwk

ê‖Xê
≤ CRê

(αk)ê(Θêw
k
ê ) +D < C̃ <∞,

hence boundedness of (P ewk
e )k for every e ∈ E implies that (wk

ê )k is bounded for ê ∈ Ê.
Further, again using the coercivity estimates for Rê

(αk)ê
, the definition of P ê, the estimate in

(6.11) and the continuity of ΘêP
ê we obtain

‖Θêw
k
ê‖Xn̂ê

≤ ‖Θêw
k
ê −ΘêP

êwk
ê‖Xn̂ê

+ ‖ΘêP
êwk

ê‖Xn̂ê

≤ CRê
(αk)ê(Θêw

k
ê ) +D + ‖ΘêP

êwk
ê‖Xn̂ê

≤ C̃ < +∞,

where again C,D, C̃ > 0 denote generic constants independent of k. Hence, by weak* com-
pactness and weak* closedness of the Θê we obtain that that wk

ê
∗
⇀ wê ∈ dom(Θê) as well

as Θêw
k
ê

∗
⇀ Θêwê. The induction hypothesis together with the weak* lower semicontinuity of

Ψn̂ and the weak*-to-weak* continuity of Φê implies then the result.
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Consider now a regularization graph Gα with root node n̂ and let Rα = R(Gα) : Xn̂ → [0,∞]
be the associated regularization functional. Let Z be a Banach space such that Z →֒ Xn̂ and
let H1, H2 be two functionals that penalize the weights α and auxiliary variables (we)e∈E ,
respectively. We consider the bilevel optimization problem

inf
α∈[0,∞)E , β∈(0,∞)

uα,β∈Xn̂, (w
α,β
e )e∈E

‖uα,β − û‖Z +H1(α) +H2((w
α,β
e )e∈E)

s.t. (uα,β , (w
α,β
e )e∈E) ∈ argmin

u∈Xn̂, (we)e∈E

Sf (Ku) + βRα(u, (we)e∈E),

(7.5)

where û is some ground truth datum and f ≈ Kû a corrupted measurement.

Remark 7.3. Note that this single-datum bilevel setting is a generic model problem for learning
parameters from a larger training set (ûm, fm)m. Indeed, the single-datum bilevel setting can
be extended to a larger training set by simply vectorizing all involved quantities, for instance.

We now provide an existence result for the bilevel problem, where we use the convention that
for β = ∞, we have βRα(u, (we)e) = 0 if Rα(u, (we)e) = 0 and βRα(u, (we)e) = ∞ else, and
for which a concrete example and its assumptions are discussed after its proof below.
In this existence result, regarding the existence of an optimal parameter β, it is important
to note that in (7.5), the parameter β is taken in the open interval (0,∞). This is necessary
as otherwise, existence of a solution to the lower level problem cannot be guaranteed. The
following theorem takes this into account by allowing the optimal parameter also to attain
the value 0, in which case it states that existence to the lower level problem with β = 0 also
holds, see Remark 7.5 for details.

Theorem 7.4. Let Z be a Banach space, Gα be a regularization graph with root node n̂ and
assume that Xn̂ is reflexive with Z →֒ Xn̂. Further, let K : Xn̂ → Y with Y a Banach space
be linear and continuous, Sf : Y → [0,∞] be a proper, convex, lower semi-continuous and
coercive and H1 : [0,∞)E → [0,∞], H2 :×e∈E Xe → [0,∞] be proper and strongly and weak*
lower semi-continuous functionals, respectively, such that H2(0) = 0.
Let û ∈ Z be a given ground truth variable such that Sf is the discrepancy with respect to a
noisy version f ∈ Y of Kû. Defining α̃ ∈ [0,∞)E by α̃e = inf{αe |α ∈ dom(H1)}, further
assume that

i) dom(Rα̃) is dense in Xn̂,

ii) Sf is continuous and dom(Sf ) open,

iii) dom(Sf ◦K) ∩ Lα̃ 6= ∅, where Lα̃ is the invariant subspace of Rα̃ as in Remark 4.4,

iv) ‖α‖ ≤ CH1(α) +D for C,D > 0,

v)
∑

e∈E ‖P ewe‖ ≤ CH2((we)e) +D for C,D > 0 and with P e as in (7.2).

Then, there exist α̂ ∈ [0,∞)E , β̂ ∈ [0,∞], uα̂,β̂ and (wα̂,β̂
e )e∈E such that (uα̂,β̂, (w

α̂,β̂
e )e∈E)

solves the lower level problem in (7.5) with parameters (α̂, β̂) and such that

‖uα̂,β̂ − û‖Z +H1(α̂) +H2((w
α̂,β̂
e )e) = inf

α∈[0,∞)E , β∈(0,∞),

uα,β∈X, (wα,β
e )e

‖uα,β − û‖Z +H1(α) +H2((w
α,β
e )e)

s.t. (uα,β, (w
α,β
e )e) ∈ argmin

u∈Xn̂, (we)e

Sf (Ku) + βRα(u, (we)e).

(7.6)
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Proof. In case the infimum in the bilevel problem (7.5) is infinite, any parameter combination
together with a corresponding solution of the lower level problem will be a solution, hence
we assume from now on that the infinum in (7.5) is finite. Take (αk, βk)k to be a minimizing

sequence in [0,∞)E × (0,∞) for (7.5) with (uk)k = (uαk ,βk
)k and ((wk

e )e)k = ((wαk ,βk
e )e)k

corresponding sequences of solutions to the lower level problem. Then, obviously (uk)k is
bounded in Z and by ‖ · ‖Xn̂

≤ C‖ · ‖Z we obtain a (non-relabeled) subsequence weakly
converging to some u in Xn̂. By the coercivity of H1 (hypothesis iv)) we can also assume
that, up to a subsequence, αk → α̂ ∈ dom(H1). By possibly considering another (non-
relabeled) subsequence, we can further achieve that, for each e ∈ E, either αk

e > 0 for all k or
αk
e = 0 for all k. Noting that in the latter case we can remove the subgraphs of G = (V,E)

after e ∈ E with αk
e = 0 for all k without changing the value of Rα or any of the Rαk , we can

further assume that αk
e > 0 for all k and e ∈ E.

At first assume that there exists a subsequence of (βk)k converging to zero. Then, moving to
this subsequence, we obtain for any z ∈ dom(Rα̃) ⊂ dom(Rα̂) (where dom(Rα̃) ⊂ dom(Rα̂)
follows from Lemma 3.3 and the definition of α̃) and z ∈ dom(Sf ◦K) that

Sf (Ku) ≤ lim inf
k

Sf (Ku
k) + βkRαk(uk) ≤ lim inf

k
Sf (γkKz) + βkRαk(γkz)

≤ lim inf
k

Sf (γkKz) + βkRα̂(z) = Sf (Kz),

where we have used that Rαk(γkz) ≤ R̂α̂(z) ≤ Rα̂(z) for γk according to (6.6) by Theorem
6.6 and Lemma 6.5, and that Sf is continuous on dom(Sf ) with dom(Sf ) open (hypothesis
ii)). Density of dom(Rα̃) and continuity of Sf then implies that (u, (0)e∈E) is a solution to

the lower level problem in (7.6) for β̂ = 0. Lower semi-continuity of ‖ · ‖Z and H1, and the
fact that 0 = H2((0)e∈E) ≤ lim infkH2((w

k
e )e) then yields the claimed optimality of (α̂, β̂)

with β̂ = 0.
Assume now that (βk)k is unbounded such that, again by using a non-relabeled subsequence,
we can assume that βk → ∞. Optimality and the estimate (6.8) then give for any z ∈
dom(Sf ◦K) with Rα̂(z) = 0 (such a z exists by hypothesis iii) since Lα̃ ⊂ Lα̂, with Lα̃ and
Lα̂ being the invariant subspaces of Rα̃ and Rα̂, respectively) that

Sf (Ku
k) + βkRαk(uk, (wk

e )e) ≤ Sf (γkKz) → Sf (Kz) <∞.

This implies in particular that (Rαk(uk, (wk
e )e))k is bounded such that, using that (P ewk

e )k
is bounded for each e ∈ E due to coercivity of H2 as in assumption v), by Lemma 7.1,
the sequence ((wk

e )e)k admits a subsequence weak* converging to some (we)e. Weak* lower
semi-continuity then yields

Rα̂(u, (we)e) ≤ lim inf
k

Rαk(uk, (wk
e )e) = 0.

Also, from weak lower semi-continuity of Sf ◦ K, we obtain that Sf (Ku) ≤ Sf (Kz) and,

consequently, that (u, (we)e) solves the lower level problem in (7.6) for (α̂, β̂) with β̂ = ∞.
Lower semi-continuity of ‖ · ‖Z and H1, and weak* lower semi-continuity of H2 finally implies
that (α̂, β̂) is optimal as claimed.
At last assume that, again up to a non-relabeled subsequence, βk → β̂ ∈ (0,∞). Then,
we get for any z ∈ dom(Rα̂) ∩ dom(Sf ◦ K) (which again exists by hypothesis iii) since
Lα̃ ⊂ dom(Rα̃) ⊂ dom(Rα̂)) that

lim inf
k

Sf (Ku
k) + βkRαk(uk, (wk

e )e) ≤ lim inf
k

Sf (γkKz) + βkRαk(γkz) ≤ Sf (Kz) + βRα̂(z),
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such that again, (Rαk(uk, (wk
e )e))k and (P ewk

e )k are bounded and by Lemma 7.1, we can
assume that ((wk

e )e)k admits a subsequence weak* converging to some (we)e. Lower semi-
continuity then yields

Sf (Ku) + βRα̂(u, (we)e) ≤ Sf (Kz) + βRα̂(z),

which shows that (u, (we)e) solves the lower level problem in (7.6). Finally, again lower semi-
continuity of ‖ · ‖Z , H1 and weak* lower semi-continuity of H2 imply optimality of (α̂, β̂) as
claimed.

Before discussing the assumptions and results of Theorem 7.4 in detail, we provide an example.

TGV2-shearlet infimal convolution. With the notation of Section 2.1 we can define a
regularization graph Gα to be the one in Section 2.1 such that Rα = R(Gα) : L

2(Ω) → [0,∞]
with Ω ⊂ R

2 a bounded Lipschitz domain is given as

Rα(u) = inf
w1∈BD(Ω),
w2∈L2(R2)

‖∇(u− α0rΩw2)− α1w1‖M + ‖Ew1‖M + ‖SHw2‖1,

where α ∈ [0,∞)2 is chosen accordingly. Then, for K : L2(Ω) → Y linear and continuous and
some Banach space Y , we can consider the bilevel problem

inf
β∈(0,∞),

(α0,α1)∈[0,c]2

‖uα,β − û‖L2(Ω) + I[0,d]
(

∥

∥

∥
Pker(E)w

α,β
1

∥

∥

∥

L2(Ω)

)

s.t. (uα,β, w
α,β
1 , wα,β

2 ) ∈ argmin
u,w1,w2

1

2
‖Ku− f‖2Y + βRα(u,w1, w2),

(7.7)

where c, d > 0 and Pker(E) : BD(Ω) → ker(E) is a projection to the finite dimensional

space ker(E) = {x 7→ Ax + b |A ∈ R
2×2, b ∈ R

2, AT = −A}. Then, with e0 and e1 be-
ing the edges such that αe0 = α0 and αe1 = α1, respectively, H1(α) = I[0,c]2((αe0 , αe1)) +
I{α |αe=1 for e/∈{e0,e1}}(α) andH2(w1, w2) = I[0,d](‖Pker(E)w1‖L2(Ω)), we have with α̃e = inf{αe |
α ∈ dom(H1)} that Rα̃ = TV. Hence, dom(Rα̃) ⊃ C∞

c (Ω) is dense in Xn̂ = L2(Ω) and all
assumptions of Theorem 7.4 hold.
Consequently there exist parameters (α̂, β̂) which are optimal for (7.7) as stated in Theo-
rem 7.4. Denoting by △ the infimal convolution operator, we observe for the corresponding
parameters α̂0, α̂1 that:

• If α̂0 = 0, α̂1 > 0, then Rα̂ = TGV2
(1,1/α̂1)

.

• If α̂0 = α̂1 = 0, then Rα̂ = TV.

• If α̂1 = 0, α̂0 > 0, then Rα̂ = TV△(‖ · ‖1 ◦ SH).

• If α̂1 > 0, α̂0 > 0, then Rα̂ = TGV2
(1,1/α̂1)

△(‖ · ‖1 ◦ SH).

Thus, the model is able to learn different functionals by modifying the graph accordingly.
This extends directly, e.g., to learning the order of TGV or the infimal convolution of TGV

with other regularization functionals. The term I[0,d]
(

‖Pker(E)w
α,β
1 ‖L2(Ω)

)

puts a constraint

on the norm of the projection of the auxiliary variable wα,β
1 to ker(E). Avoiding such a term
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is also possible, but would lead to different limit functionals in case of vanishing α: Without
a bound on the elements of ker(E), the limit graph in case α̂0 = α̂1 = 0 would in this example
for instance be

R̂α̂(u) = inf
w∈ker(E)

‖∇u− w‖M

instead of Rα̂(u) = ‖∇u‖M. Hence, in case of using the infimal convolution of functionals
with non-trivial invariant subspace, the limit functional still allows to subtract an arbitrary
element of this subspace.

Remark 7.5. We now discuss necessity of the additional density and continuity assumptions
of the theorem and the obtained result in more detail.

• If β̂ = 0, the theorem states that uα̂,β̂ is a solution to

min
u∈Xn̂

Sf (Ku),

and in particular that a best approximation of the noisy data exists. Note that this
is not true in general. In a classical Hilbert space setting with Sf (v) = ‖u − f‖22 for
instance, existence of a best approximation for every f ∈ Y is in fact equivalent to K
having closed range [24].

• If β̂ = ∞, we see that uα̂,β̂ solves

min
u∈Xn̂

Sf (Ku) subject to Rα̂(u) = 0.

Here, it can be shown as in Theorem 6.2 that solution always exists and we could have
alternatively used β ∈ (0,∞] in the bilevel problem (7.5).

• Density of dom(Rα̃) is only required in case β̂ = 0 to ensure optimality over the entire
space instead of dom(Rα̂). In particular, this assumption can be dropped by bounding
the admissible β away from zero.

• The assumption Sf being continuous and dom(Sf ) open is always fulfilled if, for instance,
Sf (u) = ‖u − f‖qY . It can be replaced by the weaker assumption that Sf (γ

kKz) →
Sf (Kz) for all z ∈ dom(Sf ◦ K) and γk ∈ (0, 1] converging to 1 by either bounding

β away from zero or reducing the optimality of uα̂,β̂ in case β̂ = 0 to optimality with

respect to all functions in dom(Rα̂) instead of the entire space.

• The assumption dom(Sf ◦K) ∩ Lα̃ 6= ∅ is always true if, for instance, 0 ∈ dom(Sf ). It
can be weakened to dom(Sf ◦K) ∩ dom(Rα̃) 6= ∅ if the set of admissible β is bounded
above.

• Typical examples for H1 fulfilling the assumption of Theorem 7.4 would be H1 that
constrains αe ∈ [0, c] for all e ∈ E0 or penalizes

∑

e∈E0
|αe|, with some E0 ⊂ E, and

fixes αe = 1 for all remaining e ∈ E \E0. Here, a penalization of
∑

e∈E0
|αe| is expected

to promote sparsity of α and hence, a reduced complexity of the optimal regularization
graph. The purpose of the constraints αe = 1 for e ∈ E \E0 is to avoid overparametriza-
tion, i.e., the usage of unnecessary parameters. This happens, for instance, in case of
splitting nodes, i.e., if Ψn = I{0} for some n. Further, the constraint αe = 1 for
e ∈ E \ E0 can be used to avoid Rα̃ = I{0}, which is the case if all weights are set to
zero and Ψn̂ = I{0} (see Definition 2.3).
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• The coercivity of H2 is only required on the finite dimensional spaces Me for all e ∈ E,
and is used to allow for the bilevel framework to cut edges of the graph by setting
weights to zero. Without this assumption, a similar existence result with Rα being
replaced by R̂α can be obtained.

8 Conclusions

In this work, we have introduced regularization graphs as a flexible framework for designing
regularization functionals for the variational regularization of inverse problems. The proposed
framework thoroughly covers existing regularization approaches and allows to define new
ones in a simple and constructive way, essentially by drawing corresponding regularization
graphs. We have provided a comprehensive analysis of the class of functionals derived from
regularization graphs, which in particular includes well-posedness and convergence results
for applying this class of functionals in a general inverse problems setting. Furthermore,
we have developed and analyzed a bilevel optimization approach that allows to learn an
optimal structure and complexity of a regularization graph, and hence of the corresponding
regularization functional, from training data.
Future goals are to develop an equally flexible numerical framework for the application of
regulariazation graphs to general inverse problems, as well as the numerical realization of the
proposed bilevel approach.

A Appendix

Here we provide a list extending the examples of Section 2.1, that outlines the representation of
different, existing regularization functionals as regularization graphs. Note that, as discussed
in Section 3, also a finite combination of any of those functionals via summation or infimal
convolution can again be represented as regularization graph.

TV−Lq infimal convolution [14, 15].

Rα(u) = inf
w1∈BV(Ω), w2∈M(Ω,Rd),

w3∈Lq(Ω,Rd)

I{0}(u− w1)

+ I{0}(∇w1 − w2 − αw3) + ‖w2‖M + ‖w3‖Lq

= inf
w∈Lq(Ω,Rd)

‖∇u− αw‖M + ‖w‖Lq

with 1 < p ≤ d′ and q ∈ (1,∞).

Lp(Ω)

I{0}

M(Ω, Rd) M(Ω, Rd)

‖ · ‖

Lq(Ω, Rd)

‖ · ‖

I

Ld′ (Ω)

∇

Id

M(Ω, Rd)

Id

αI

Lq(Ω, Rd)

Id

Infimal convolution of spatio-temporal TV [33, 48].

Rα(u) = inf
w1,w2∈BV(Ω)

I{0}(u − w1 − αw2) + ‖∇w1‖M,β1
+ ‖∇w2‖M,β2

= inf
w∈BV(Ω)

‖∇u− α∇w‖M,β1
+ ‖∇w‖M,β2

where 1 < p ≤ d′ and ‖ · ‖M,βi
= ‖ · ‖βi

are anisotropic norms.

Lp(Ω)

I{0}

M(Ω, Rd)

‖ · ‖β1

M(Ω, Rd)

‖ · ‖β2

I

Ld′ (Ω)

∇

αI

Ld′ (Ω)

∇
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Sum of convex functions of TV and TV2 [42].

Rα(u) = inf
w∈BV2(Ω)

I{0}(u − w) + Ψf,g

(

(∇w,∇2w)
)

=‖∇u‖f + ‖∇2u‖g

Lp(Ω)

I{0}

M(. . .) × M(. . .)

Ψf,g

I

Ld′ (Ω)

(∇,∇2)

where 1 < p ≤ d′, Ψf,g(z1, z2) = ‖f(z1)‖M + ‖g(z2)‖M with ‖f(·)‖M, ‖g(·)‖M appropriate convex
functions of measures generalizing ‖ · ‖M such that coercivity and weak* lower semicontinuity holds.

General second-order model [12, 19].

Rα(u) = inf
w1∈BV(Ω), w2∈M(Ω,Rd),

w3∈BV(Ω,Rd)

I{0}(u− w1)

+ I{0}(∇w1 − w2 − αw3) + ‖w2‖M + ‖A∇w3‖M
= inf

w∈BV(Ω,Rd)
‖∇u− w‖M +

1

α
‖A∇w‖M

Lp(Ω)

I{0}

M(Ω, Rd) M(Ω, Rd)

‖ · ‖

M(Ω, Rm)

‖ · ‖

I

Ld′ (Ω)

∇

Id

M(Ω, Rd)

Id

α Id

M(Ω, Rd)

A∇

where 1 < p ≤ d′, m ∈ N and the linear operator A : Rd×d → R
m is defined pointwise on ∇w such

that suitable lower semicontinuity and coercivity assumptions hold.

Infimal convolution of tight frames [35].

Rα(u) = inf
w1,w2∈L2(Ω)

I{0}(u− w1 − αw2) + ‖Φ∗
1w1‖1 + ‖Φ∗

2w2‖1

= inf
u=w1+w2

‖Φ∗
1w1‖1 +

1

α
‖Φ∗

2w2‖1

where Φ∗
i are associated with tight frames such as curvelets or

Gabor frames [35] and ‖ ·‖1 is the extension to +∞ of the ℓ1-norm
to ℓ2.

L2(Ω)

I{0}

ℓ2

‖ · ‖1

ℓ2

‖ · ‖1

Id

L2(Ω)

Φ∗
1

α Id

L2(Ω)

Φ∗
2

TVpwL regularization [13].

Rα(u) = inf
w1∈BV(Ω),

w2,w3∈M(Ω,Rd)

I{0}(u − w1)

+ I{0}(∇w1 − w2 − αw3) + ‖w2‖M + I{|·|≤γ}(w3)

= inf
w∈M(Ω,Rd)

‖∇u− αw‖M s.t. |w| ≤ γ

Lp(Ω)

I{0}

M(Ω, Rd) M(Ω, Rd)

‖ · ‖

M(Ω, Rd)

I|·|≤γ

I

Ld′ (Ω)

∇

Id

M(Ω, Rd)

Id

α Id

M(Ω, Rd)

Id

where |w| ∈ M+(Ω) is the variation of the measure w ∈ M(Ω,Rd), γ ∈ M+(Ω) is a given positive
measure and |w| ≤ γ means that γ − |w| is a positive measure.

For the sake of completeness, we also provide the proof of the equivalence of a coercivity- and
and closed-range assertion for the operators considered in this paper.

Lemma A.1. Let Θ : dom(Θ) ⊂ Xe → Xm be a linear operator between Banach spaces Xe

and Xm that both admit a predual space and such that bounded sequences in Xe admit weak*
convergent subsequences. Further, assume that Θ is weak* closed and has finite dimensional
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kernel. Then, there exists C > 0 and Pker(Θ) : Xe → ker(Θ) a linear, continuous projection
such that

‖w − Pker(Θ)w‖Xe ≤ C‖Θw‖Xm

for all w ∈ dom(Θ) if and only if Θ has closed range.

Proof. Assuming that the coercivity assertion holds, the closedness of rg(Θ) can be proven
directly using the weak* closedness of Θ. On other hand, if rg(Θ) is closed, then from [11,
Remark 2.18] we deduce that there exists C̃ > 0 such that

inf
z∈ker(Θ)

‖w − z‖Xe ≤ C̃‖Θw‖Xm ∀w ∈ dom(Θ). (A.1)

In particular, due to finite dimensionality of ker(Θ), we deduce the existence of a map G :
dom(Θ) → ker(Θ) such that

‖w −G(w)‖Xe ≤ C̃‖Θw‖Xm ∀w ∈ dom(Θ). (A.2)

Defining now

R(w) :=

{

‖Θw‖Xm w ∈ dom(Θ),
+∞ otherwise,

(A.3)

and arbitrarily extending G outside dom(Θ) to a function G : Xe → ker(Θ) we obtain that

‖w −G(w)‖Xe ≤ C̃R(w) ∀w ∈ Xe . (A.4)

Finally, applying Lemma 4.1 with D = 0 (which yields D̃ = 0) and K = Xe, we obtain the
existence of a bounded, linear projection Pker(Θ) and a constant C > 0 such that the claimed
coercivity holds.
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