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Abstract
We give a Γ-convergence result for vector-valued nonlinear energies defined on
periodically perforated domains. We consider integrands with n-growth where n is
the space dimension, showing that there exists a critical scale for the perforations
such that the Γ-limit is non-trivial. We prove that the limit extra-term is given by
a formula of homogenization type, which simplifies in the case of n-homogeneous
energy densities.
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1 Introduction

Variational problems on varying domains, and on perforated domains in particular, are
a very much studied class of problems, with interesting applications in homogenization
and shape optimization. In this paper we study the asymptotic behavior of a class of
vector-valued nonlinear energies defined on periodically perforated domains.

A perforated domain is obtained from a fixed Ω ⊂ Rn by removing some periodic
set, the simplest of which is a periodic array of closed sets:

Ωδ = Ω \
⋃

i∈Zn

(δi+ εK),

with ε = ε(δ) and K a bounded closed set with non-empty interior. If we consider
Dirichlet boundary conditions on the boundary of Ωδ (or on the boundary of Ωδ in-
terior to Ω), the asymptotic behavior of such problems is obtained by studying the
Γ-convergence of the functionals

Fδ(u) =


∫

Ω
f(Du) dx if u ∈W 1,p

0 (Ω; Rm) and u = 0 on Ω \ Ωδ

+∞ otherwise,
(1)

where f is an energy density satisfying a growth condition of order p > 1. From early
results by Marchenko and Khruslov [22] we know that if we set f(Du) = |Du|p in the
functionals above, then there exists a critical scaling of the perforations such that the Γ-
limit contains an additional strange term in place of the internal boundary conditions.
The limit functional, indeed, is given by

F0(u) =
∫

Ω
|Du|p dx+ κp

∫
Ω
|u|p dx,



where κp is a positive constant, explicitly calculable. This result was recast in a rigorous
variational setting by Cioranescu and Murat [13], who provided an explicit formula for
the critical choice of ε according to the space dimension n:

ε = Rδn/n−p if p < n, with R > 0

ε = exp(−aδ
−n
n−1 ) if p = n, with a > 0.

In [2] Ansini and Braides performed a complete analysis by Γ-convergence for
energies with a general integrand f with p-growth, and depending on vector-valued
functions, in the case leading to the polynomial scaling; i.e., p < n. In that setting the
additional term of the Γ-limit is given by

∫
Ω ϕ(u) dx, where the function ϕ is obtained

through a nonlinear capacitary formula.

In this paper we study in details the critical case p = n leading to the exponential
scaling. We will see that in this setting the limit extra term is not defined by a
capacitary formula, but rather by a formula of homogenization type. The additional
extra term is given by

∫
Ω ϕ(u) dx, where ϕ(z) is obtained as the limit of a family of

minimum problems of the form

| log εj |n−1 inf
{∫

Bcδj/εj

f(ε−1
j Dv)εnj : v = 0 on K, v = z on ∂Bcδj/εj

}
(see (9) in Theorem 2.1), which always exists up to subsequences. In this critical case
the energy does not concentrate at the same scale as the perforation radius, in a fashion
similar to optimal sequences for Ginzburg-Landau functionals (see e.g. [1, 3, 23]). The
proof of the Γ-convergence result is based on a careful use of a technical lemma by
Ansini and Braides [2], which allows to separate the estimate of the energies near
the perforations and far form them. The contribution of the energies close to the
perforations leads to the formula defining ϕ.

In the last section we will detail the interesting case in which the energy density f
is positively homogeneous of degree n. We will prove that under this assumption the
whole family of functionals Γ-converges to the same limit functional. The function ϕ
can be determined explicitly and is independent of the shape of the perforations. Our
arguments highlight that the exponential radius of the perforations derives from the
scaling invariance of the minimum problems and from the logarithmic behaviour of the
minimizers.

Our results can be compared with previous ones obtained (for equations) in the
framework of H-convergence and two-scale convergence (see e.g. Cioranescu and Mu-
rat [13], Casado-Diaz [11]). Furthermore, we note that although the paper is devoted to
periodically perforated domains there exists a wide literature dealing with the asymp-
totic behaviour of Dirichlet monotone problems in varying domains without periodicity
conditions (see e.g. [10, 12, 16, 17, 18, 19, 20, 21, 24]). An overview on this subject
can be found in [14].

2 The main result

In all that follows n > 1 and m ≥ 1 are fixed integers. With Mm×n we denote the space
of m×n matrices with real entries. If E ⊂ Rn is a Lebesgue-measurable set then |E| is
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its Lebesgue measure. Br(x) is the open ball of centre x and radius r; if x = 0 we will
write Br in place of Br(x). The letter c denotes a generic strictly positive constant.

Let Ω be a bounded open subset of Rn with |∂Ω| = 0. Let K ⊂ Rn be a compact
set with non-empty interior. Let (δj) be a sequence of positive real numbers converging
to zero. For all j ∈ N and i ∈ Zn we denote by xj

i the vector iδj ∈ Rn. Let a > 0; let

εj = exp
(
− aδ

−n/n−1
j

)
. (2)

For all j ∈ N and i ∈ Zn we denote by Kj
i the perforation Kj

i = xj
i + εjK. Let Ωj be

the periodically perforated domain

Ωj = Ω \
⋃

i∈Zn

Kj
i . (3)

In the following theorem we state a general Γ-convergence result for vector-valued
nonlinear energies defined on periodically perforated domains, in the case of integrands
with n-growth. For an introduction to Γ-convergence see e.g. [4, 5, 14].

Theorem 2.1 Let f : Mm×n → [0,+∞) be a quasiconvex function satisfying f(0) = 0.
We assume that there exist c1, c2, k > 0 such that

c1|A|n ≤ f(A) ≤ c2|A|n for all A ∈ Mm×n (4)

and
|f(A)− f(B)| ≤ k|A−B|

(
|A|n−1 + |B|n−1

)
for all A,B ∈ Mm×n. (5)

Let (δj) be a positive sequence converging to zero and let εj be defined as in (2). For
notational simplicity we also define

Tj = ε−1
j = exp

(
aδ
−n/n−1
j

)
, (6)

Sj =
δj
εj

= a(n−1)/n Tj

(log Tj)(n−1)/n
. (7)

For all j ∈ N, α > 0 and z ∈ Rm we set

ϕα
j (z) = (log Tj)n−1 inf

{∫
BαSj

f(TjDv)
Tn

j

: v ∈ z +W 1,n
0

(
BαSj ; R

m
)
, v = 0 on K

}
.

(8)
Then, upon possibly passing to subsequences on j, there exists the limit

ϕ(z) = lim
α→0+

lim
j→+∞

ϕα
j (z) = sup

α>0
lim

j→+∞
ϕα

j (z) (9)

uniformly on the compact sets of Rm.
Moreover, the functionals Fj : W 1,n(Ω; Rm) → [0,+∞] defined by

Fj(u) =


∫

Ω
f(Du) dx if u = 0 a.e. on

⋃
i∈Zn

Kj
i ∩ Ω,

+∞ otherwise,
(10)
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Γ-converge, with respect to the strong convergence of Ln(Ω; Rm), to the functional
F : W 1,n(Ω; Rm) → [0,+∞] defined by

F (u) =
∫

Ω
f(Du) dx+ a1−n

∫
Ω
ϕ(u) dx. (11)

Finally, if in addition f is positively homogeneous of degree n, then the function ϕ is
independent both of the subsequence of (Tj) and of the shape of the perforations. Indeed,
for all z ∈ Rm there exists the limit

ψ(z) = lim
T→+∞

(log T )n−1 min
{∫

BT

f(Du) dx : u ∈ z +W 1,n
0 (BT ; Rm), u = 0 on B1

}
.

(12)
Moreover, ϕ(z) = ψ(z) for all z ∈ Rm (in particular, the whole sequence (Fj) Γ-
converges to F and the shape of K does not affect the result).

Remark 2.2 Using the terminology introduced in [8] by Braides and Truskinovsky, our
result can be summarized by saying that the functionals (Fj) in (10) are equivalent by
Γ-convergence to the functionals Gj defined as

Gj(u) =
∫

Ω
f(Duj) dx+

| log εj |n−1

δn
j

∫
Ω
ϕ(u) dx u ∈W 1,n

0 (Ω; Rm),

meaning that both families have the same Γ-limits on all Γ-converging sequences as
j → +∞.

Corollary 2.3 (Convergence of minimum problems) Let (Fj) be a family of func-
tionals of the form (10) satisfying the statement of Theorem 2.1. Then for all φ ∈
W−1,n(Ω; Rm) the minimum values

mj = inf
{
Fj(u) + 〈φ, u〉 : u ∈W 1,n

0 (Ω; Rm)
}

converge to
m = min

{
F (u) + 〈φ, u〉 : u ∈W 1,n

0 (Ω; Rm)
}
.

Moreover, if (uj) is such that Fj(uj) + 〈φ, uj〉 = mj + o(1) as j → +∞, then it admits
a subsequence weakly converging in W 1,n

0 (Ω; Rm) to a solution of the problem defining
m.

Proof. By a cut-off argument near ∂Ω (see [6, Section 11.3]) we can prove that if
u ∈ W 1,n

0 (Ω; Rm) then the recovery sequence for u can be taken in W 1,n
0 (Ω; Rm) as

well. Since f satisfies a growth condition of order n, then uj ⇀ u in W 1,n
0 (Ω; Rm). Note

that G(u) = 〈φ, u〉 is continuous with respect to the weak convergence of W 1,n
0 (Ω; Rm).

There follows that the functionals

Φj(u) =
{
Fj(u) +G(u) if u ∈W 1,n

0 (Ω; Rm),
+∞ otherwise

Γ-converge to

Φ0(u) =
{
F (u) +G(u) if u ∈W 1,n

0 (Ω; Rm),
+∞ otherwise

in W 1,n
0 (Ω; Rm). We can then apply the fundamental property of Γ-convergence (see,

e.g. [5, Theorem 1.21]) and obtain the thesis.
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3 Preliminary results

3.1 Some auxiliary energy densities

In this section we study some properties of the energy densities ϕα
j and we prove

the existence of the limit in (9). We show that the family (ϕα
j ) is equi-bounded and

equi-continuous (both with respect to α and j), hence we can apply Ascoli-Arzelà’s
Theorem.

We recall that for fixed j ∈ N, α > 0 and z ∈ Rm we set

ϕα
j (z) = (log Tj)n−1 inf

{∫
BαSj

f(TjDv)
Tn

j

: v ∈ z +W 1,n
0

(
BαSj ; R

m
)
, v = 0 on K

}
,

where f is a function satisfying all the assumptions of Theorem 2.1. We preliminarily
note that, for fixed j ∈ N and z ∈ Rm, the function α 7→ ϕα

j (z) is decreasing in (0,+∞).
Up to translations we can assume that there exist 0 < r1 ≤ r2 such that Br1 ⊆ K ⊆

Br2 . Then, for fixed α, j and z we have

inf
{∫

BαSj

f(TjDv)
Tn

j

dx : v ∈ z +W 1,n
0 (BαSj ; R

m), v = 0 on Br1

}
≤ inf

{∫
BαSj

f(TjDv)
Tn

j

dx : v ∈ z +W 1,n
0 (BαSj ; R

m), v = 0 on K
}

≤ inf
{∫

BαSj

f(TjDv)
Tn

j

dx : v ∈ z +W 1,n
0 (BαSj ; R

m), v = 0 on Br2

}
.

By (4) and a scaling argument we get

c1 inf
{∫

B α
r1

Sj

|Dv|n dx : v ∈ z +W 1,n
0 (B α

r1
Sj

; Rm), v = 0 on B1

}
≤ inf

{∫
BαSj

f(TjDv)
Tn

j

dx : v ∈ z +W 1,n
0 (BαSj ; R

m), v = 0 on K
}

≤ c2 inf
{∫

B α
r2

Sj

|Dv|n dx : v ∈ z +W 1,n
0 (B α

r2
Sj

; Rm), v = 0 on B1

}
.(13)

The following remark shows how to get a growth condition for ϕα
j through this com-

parison argument.

Remark 3.1 If we set f(A) = |A|n and B1 = K, then the expression of ϕα
j (z) becomes

(log Tj)n−1 min
{∫

BαSj

|Dv|n dx : v ∈ z +W 1,n
0 (BαSj ; R

m), v = 0 on B1

}
. (14)

In this case the minimum can be computed explicitly. First of all we note that the
minimum in (14) equals

|z|n min
{∫

BαSj

|Dv|n dx : v ∈ z

|z|
+W 1,n

0 (BαSj ; R
m), v = 0 on B1

}
. (15)
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Up to rotations it is not restrictive to assume that z/|z| = e1. It can be easily seen that

min
{∫

BαSj

|Dv|n dx : v ∈ e1 +W 1,n
0 (BαSj ; R

m), v = 0 on B1

}
(16)

= min
{∫

BαSj

|Du|n dx : u ∈ 1 +W 1,n
0 (BαSj ; R), u = 0 on B1

}
. (17)

In fact, on one hand we can identify each test function u for the scalar minimum
problem (17) with a vector-valued test function for (16), by setting v = ue1, and we
deduce that

min
{∫

BαSj

|Dv|n dx : v ∈ e1 +W 1,n
0 (BαSj ; R

m), v = 0 on B1

}
≤ min

{∫
BαSj

|Du|n dx : u ∈ 1 +W 1,n
0 (BαSj ; R), u = 0 on B1

}
.

The converse inequality can be obtained noticing that the minimum in (16) must be
reached by a function of the form v = (v1, 0, . . . , 0). Taking u = v1 ∈ 1+W 1,n

0 (BαSj ; R)
as a test function in (17) we get the desired inequality. Therefore we can restrict our
attention to the scalar problem (17). For symmetry reasons the minimum is reached by
a radial function v(x) = w(|x|) satisfying w(1) = 0, w(αSj) = 1 and the Euler-Lagrange
equation

∂

∂ρ
(|w′(ρ)|n−2w′(ρ)ρn−1) = 0, where ρ = |x|.

Hence we get w(ρ) = log ρ
log(αSj)

∨ 0 and we can conclude that in this case

ϕα
j (z) = (log Tj)n−1 1

(log(αSj))n−1
ωn−1|z|n. (18)

Since Sj = a(n−1)/nTj(log Tj)(1−n)/n we have (for all a, α > 0)

lim
j→+∞

(log Tj)n−1 1
(log(αSj))n−1

= 1.

In conclusion, in the case f(A) = |A|n and K = B1 there exists the limit

ϕ(z) = lim
α→0+

lim
j→+∞

ϕα
j (z) = sup

α>0
lim

j→+∞
ϕα

j (z) = ωn−1|z|n,

uniformly on the compact sets of Rm.

From Remark 3.1 we deduce that the functions ϕα
j satisfy a growth condition of

order n: there exist two positive constants c̃1, c̃2 (independent of α, j and z) such that

c̃1|z|n ≤ ϕα
j (z) ≤ c̃2|z|n. (19)

In fact, let α > 0, j ∈ N and z ∈ Rm be fixed. By (13) and the computations of Remark
3.1 ((18) in particular) we get

ωn−1c1

(
log

( α
r1
Sj

))1−n
|z|n ≤

ϕα
j (z)

(log Tj)n−1
≤ ωn−1c2

(
log

( α
r2
Sj

))1−n
|z|n. (20)
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Finally we multiply (20) by (log Tj)n−1 and take into account that log Tj

log αSj
is bounded

by two positive constants (independent of α and j). Thus we get (19) and conclude
that the functions ϕα

j are equi-bounded on every bounded subset of Rm.

It remains to show that ϕα
j are equi-continuous on the compact sets of Rm. Let

α > 0, j ∈ N and z, z′ ∈ Rm \ {0}. For fixed η > 0 we consider a function uz
α,j ∈

z +W 1,n
0 (BαSj ; Rm) such that uz

α,j = 0 on K and

(log Tj)n−1

∫
BαSj

f(TjDu
z
α,j)

Tn
j

dx < ϕα
j (z) + η|z|n. (21)

A. We first consider the case in which z′ = βz for some constant β 6= 0. Note that
βuz

α,j is a good test function for ϕα
j (z′). By (5) we get

|f(βTjDu
z
α,j)− f(TjDu

z
α,j)| ≤ k(|βTjDu

z
α,j |n−1 + |TjDu

z
α,j |n−1)|βTjDu

z
α,j − TjDu

z
α,j |

= k(|β|n−1 + 1)|β − 1||TjDu
z
α,j |n

Therefore

f(βTjDu
z
α,j) ≤ f(TjDu

z
α,j) + k(|β|n−1 + 1)|β − 1| |TjDu

z
α,j |n. (22)

Taking into account (21), (22) and the growth conditions on f and ϕα
j , we get

ϕα
j (z′) ≤ (log Tj)n−1

∫
BαSj

f(βTjDu
z
α,j)

Tn
j

dx ≤ (log Tj)n−1

∫
BαSj

f(TjDu
z
α,j)

Tn
j

dx

+k|β − 1|(|β|n−1 + 1)(log Tj)n−1

∫
BαSj

|Duz
α,j |n dx

≤ ϕα
j (z) + η|z|n + k|β − 1|(|β|n−1 + 1)(log Tj)n−1

∫
BαSj

|Duz
α,j |n dx

≤ ϕα
j (z) + η|z|n +

k

c1
|β − 1|(|β|n−1 + 1)(log Tj)n−1

∫
BαSj

f(TjDu
z
α,j)

Tn
j

dx

≤ ϕα
j (z) + η|z|n +

k

c1
|β − 1|(|β|n−1 + 1)

(
ϕα

j (z) + η|z|n
)

≤ ϕα
j (z) + k|β − 1|(|β|n−1 + 1)

c̃2
c1
|z|n + η|z|n

(
1 +

k

c1
|β − 1|(|β|n−1 + 1)

)
= ϕα

j (z) + k
c̃2
c1
|z′ − z|(|z′|n−1 + |z|n−1) + ηc|z|n.

By a symmetric argument and the arbitrariness of η we get

|ϕα
j (z)− ϕα

j (z′)| ≤ k
c̃2
c1
|z′ − z|(|z′|n−1 + |z|n−1). (23)

Thus, the functions ϕα
j are equi-locally Lipschitz continuous in the radial directions of

Rm \ {0}.
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B. Now we consider the case in which |z| = |z′|; i.e., there exists A ∈ SO(m) such
that Az = z′. Note that Auz

α,j is a test function for ϕα
j (z′).

By (5) we get

|f(TjADuz
α,j)− f(TjDu

z
α,j)| ≤ k|A − Id|(|A|n−1 + 1)|TDuz

α,j |n.

Arguing as in A we get

ϕα
j (z′) ≤ (log Tj)n−1

∫
BαSj

f(TjADuz
α,j)

Tn
j

dx

≤ ϕα
j (z) + k|A − Id|(|A|n−1 + 1)

c̃2
c1
|z|n + η|z|n

(
1 +

k

c1
|A − Id|(|A|n−1 + 1)

)
= ϕα

j (z) + k
c̃2
c1
|z′ − z|(|z′|n−1 + |z|n−1) + ηc|z|n.

By a symmetric argument and the arbitrariness of η we get

|ϕα
j (z)− ϕα

j (z′)| ≤ k
c̃2
c1
|z′ − z|(|z′|n−1 + |z|n−1). (24)

We have proved that the functions ϕα
j are equi-locally Lipschitz continuous along the

tangential directions of Rm \ {0}.

C. Under general assumptions we can connect z and z′ by the composition of a
rotation and a homothety. By (23) and (24) we deduce that there exists a constant
c > 0 (independent of α and j) such that

|ϕα
j (z)− ϕα

j (z′)| ≤ c|z − z′|(|z|n−1 + |z′|n−1). (25)

The equi-locally Lipschitz continuity on the whole Rm follows easily.

For fixed α > 0, the sequence (ϕα
j )j∈N satisfies the assumptions of Ascoli-Arzelà’s

Theorem, hence there exists ϕα : Rm → [0,+∞) such that up to subsequences

ϕα(z) = lim
j→+∞

ϕα
j (z), uniformly on the compact sets of Rm.

The same argument holds for the family (ϕα
j )α>0, with j fixed: there exists ϕj : Rm →

[0,+∞) such that up to subsequences

ϕj(z) = lim
α→0+

ϕα
j (z), uniformly on the compact sets of Rm.

We recall that α 7→ ϕα
j (z) is decreasing and note that α 7→ ϕα(z) is monotone as well.

In conclusion, there exists a function ϕ : Rm → [0,+∞) such that

ϕ(z) = sup
α>0

lim
j→+∞

ϕα
j (z) = lim

α→0+
lim

j→+∞
ϕα

j (z) = lim
j→+∞

lim
α→0+

ϕα
j (z),

uniformly on the compact sets of Rm. This proves the first statement of Theorem 2.1.
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3.2 A lemma for varying domains

This section deals with a technical result by Ansini and Braides which allows to modify
sequences of functions near the perforations Kj

i . The following lemma is valid under
general assumptions (see [2, Lemma 3.1]), but we will recall it in the form we need in
this article.

Lemma 3.2 Let (uj) converge weakly to u in W 1,n(Ω; Rm). Let (ρj) be a positive
sequence of the form ρj = cδj, where c < 1/2. For all j ∈ N we define

Zj =
{
i ∈ Zn : dist

(
xj

i ,R
n \ Ω

)
> δj

}
. (26)

We fix k ∈ N. Then, for all i ∈ Zj there exists ki ∈ {0, 1, . . . , k − 1} such that, having
set

Cj
i =

{
x ∈ Ω :

1
2ki+1

ρj < |x− xj
i | <

1
2ki

ρj

}
, (27)

ui
j = |Cj

i |
−1

∫
Cj

i

uj dx,

ρi
j =

3
4
2−kiρj ,

there exists a sequence (wj), with wj ⇀ u in W 1,n(Ω; Rm), such that

wj = uj on Ω \
⋃

i∈Zj

Cj
i , (28)

wj(x) = ui
j if |x− xj

i | = ρi
j , (29)

and
∫

Ω
|f(Dwj)− f(Duj)| dx ≤

c

k
. (30)

3.3 A discretization argument

In this section we prove that the extra-term of the Γ-limit can be obtained through a
discretization argument. This technical result will play an important role in the proof
of Theorem 2.1.

Proposition 3.3 Let (uj) be a bounded sequence in L∞(Ω; Rm) converging to u weakly
in W 1,n(Ω; Rm). We fix k ∈ N. Let (ρj) be a positive sequence of the form ρj = cδj,
where c < 1/2. For all i ∈ Zj, defined as in (26), and for an arbitrary choice of
ki ∈ {0, 1, . . . , k− 1}, we consider an annuli Cj

i of the form (27). We denote by ui
j the

mean value of uj on Cj
i and by Qj

i the n-cube Qj
i = xj

i +
(
− δj

2 ,
δj

2

)n. Let ψα
j be defined

by
ψα

j =
∑
i∈Zj

ϕα
j (ui

j)χQj
i
, (31)

where α > 0 is fixed. Then, upon possibly passing to subsequences, we have

lim
j→+∞

∫
Ω
|ψα

j − ϕα(u)| dx = 0. (32)
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Proof. By the W 1,n-weak convergence of uj to u and the uniform convergence of ϕα
j to

ϕα on the compact sets of Rm, we deduce that ϕα
j (uj) tends to ϕα(u) in L1(Ω). There

follows that the limit in (32) equals the limits

lim
j

∫
Ω
|ψα

j − ϕα
j (uj)| dx = lim

j

∑
i∈Zj

∫
Qj

i

|ϕα
j (ui

j)− ϕα
j (uj)| dx.

In Section 3.1 we proved that the functions ϕα
j are equi-locally Lipschitz continuous,

hence ∑
i∈Zj

∫
Qj

i

|ϕα
j (ui

j)− ϕα
j (uj)| dx ≤ c

(
sup

j
‖uj‖n−1

∞
) ∑

i∈Zj

∫
Qj

i

|ui
j − uj | dx.

By Hölder’s inequality we get∫
Qj

i

|ui
j − uj | dx ≤ δn−1

j

( ∫
Qj

i

|ui
j − uj |n dx

) 1
n
.

We want to estimate the last integral with a quantity independent of the index i.
Poincaré-Wirtinger’s inequality states the existence of a constant P > 0 such that( ∫

Qj
i

|ui
j − uj |n dx

) 1
n ≤ Pδj

( ∫
Qj

i

|Duj |n dx
) 1

n
. (33)

Note that P depends on Cj
i and hence on the choice of ki ∈ {0, 1, . . . , k− 1}. However,

the family of homothetic annuli {Cj
i : k = 0, . . . , k − 1} is finite, hence it suffices to

take P as the maximum among the finite family of corresponding Poincaré-Wirtinger’s
constants to get a constant independent of i. To sum up, we have:

lim
j

∫
Ω
|ψα

j − ϕα(u)| dx ≤ c lim sup
j

∑
i∈Zj

δn−1
j Pδj

( ∫
Qj

i

|Duj |n dx
) 1

n

= c lim sup
j

δn
j

∑
i∈Zj

( ∫
Qj

i

|Duj |n dx
) 1

n
. (34)

Since the function y 7→ y
1
n is concave, we have∑

i∈Zj

1
#Zj

( ∫
Qj

i

|Duj |n dx
) 1

n ≤
( ∑

i∈Zj

1
#Zj

∫
Qj

i

|Duj |n dx
) 1

n

≤
( 1

#Zj

) 1
n
( ∫

Ω
|Duj |n dx

) 1
n
. (35)

Note that #Zj ' |Ω|/δn
j . By (34) and (35) we get

lim
j

∫
Ω
|ψα

j − ϕα(u)| dx ≤ c lim sup
j

δn
j (#Zj)

∑
i∈Zj

1
#Zj

( ∫
Qj

i

|Duj |n dx
) 1

n

≤ c lim sup
j

δn
j (#Zj)1−1/n

( ∫
Ω
|Duj |n dx

) 1
n

≤ c lim sup
j

δj = 0,

as desired.
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4 Proof of the main result

We divide the proof of Theorem 2.1 into two steps: first we prove the Γ-liminf inequality
and then we show how to build recovery sequences and get the Γ-limsup inequality.

4.1 Liminf inequality

Let u ∈ W 1,n(Ω; Rm) and let uj → u in Ln(Ω; Rm) be such that supj Fj(uj) < +∞.
Since f satisfies a growth condition of order n, we deduce that uj ⇀ u weakly in
W 1,n(Ω; Rm). In this section we will prove the following result:

Proposition 4.1 (Liminf inequality) Let u ∈W 1,n(Ω; Rm) and let uj → u in
Ln(Ω; Rm) be such that supj Fj(uj) < +∞. Then

lim inf
j

∫
Ω
f(Duj) dx ≥

∫
Ω
f(Du) dx+ a1−n

∫
Ω
ϕ(u) dx,

where ϕ is defined as in (9).

Proof. We divide the proof into two steps: first we assume that in addition (uj) is
bounded in L∞(Ω; Rm) and then we deal with the general case.

1 Let (uj) be bounded in L∞(Ω; Rm). We want to apply Lemma 3.2 to the sequence
uj → u. To this end we fix k ∈ N and consider the infinitesimal sequence ρj = αδj ,
with α < 1/2. Lemma 3.2 states the existence of wj → u in Ln(Ω; Rm) satisfying
(28)-(30) with ρi

j = 3
42−kiρj , where ki ∈ {0, . . . , k − 1}. We recall that Zj = {i ∈ Zn :

dist(xj
i ,Rn \ Ω) > δj} and denote by Ej the set

Ej =
⋃

i∈Zj

Bj
i , where Bj

i = Bρi
j
(xj

i ). (36)

We treat separately the contribution of f(Duj) on Ω \ Ej and on Ej (step A and B
respectively).

1.A We first deal with the contribution of f(Duj) outside the set Ej . We will
prove that

lim inf
j

∫
Ω\Ej

f(Duj) dx ≥
∫

Ω
f(Du) dx− c

k
. (37)

Let

vj(x) =
{
ui

j for x ∈ Bj
i , i ∈ Zj

wj(x) for x ∈ Ω \ Ej .

Note that (vj) is bounded in W 1,n(Ω; Rm), hence there exists a function v such that
vj → v in Ln(Ω; Rm) upon passing to subsequences. Let

χj = χ
Ω \

⋃
i∈Zj

Bρj (xj
i )
.

By construction there exists a constant β ∈ R+ such that χj converges weakly* to β in
L∞ (see e.g. [5, Example 2.4]). Hence vjχj ⇀ βv in Ln and ujχj ⇀ βu in Ln. Since

11



vjχj = ujχj we can deduce that u = v. There follows that vj ⇀ u in W 1,n(Ω; Rm).
From Lemma 3.2 and the quasiconvexity of f we obtain

lim inf
j

∫
Ω\Ej

f(Duj) dx+
c

k
≥ lim inf

j

∫
Ω\Ej

f(Dwj) dx

= lim inf
j

∫
Ω
f(Dvj) dx ≥

∫
Ω
f(Du) dx

as desired.

1.B We now turn to the estimate of the contribution of f(Duj) on Ej . We will
prove that

lim inf
j

∫
Ej

f(Duj) dx ≥ a1−n

∫
Ω
ϕα(u) dx− c

k
. (38)

Lemma 3.2 states that

lim inf
j

∫
Ej

f(Duj) dx+
c

k
≥ lim inf

j

∫
Ej

f(Dwj) dx = lim inf
j

∑
i∈Zj

∫
Bj

i

f(Dwj) dx.

We fix j ∈ N and i ∈ Zj . Let

wi
j(x) =


wj(x+ xj

i ) for |x| ≤ ρi
j ,

ui
j = |Cj

i |
−1

∫
Cj

i

uj dx otherwise.

We define a function ζ ∈ ui
j +W 1,n

0 (BαSj ; Rm) by setting ζ(y) = wi
j(εjy). Note that if

|y| = αSj then |εjy| = αδj >
3
42−kiαδj , hence ζ = ui

j on ∂BαSj . Moreover, ζ = 0 on
K. By a change of variables we obtain∫

Bj
i

f(Dwj(x)) dx =
∫

Bρj

f(Dwi
j(x)) dx =

∫
BαSj

f(TjDζ(y))
Tn

j

dy

≥ inf
{∫

BαSj

f(TjDv(y))
Tn

j

dy : v ∈ ui
j +W 1,n

0 (BαSj ; R
m), v = 0 on K

}
= ϕα

j (ui
j)

1
(log Tj)n−1

= ϕα
j (ui

j)
δn
j

an−1
.

Now we apply Proposition 3.3 and get

lim inf
j

∫
Ej

f(Duj) dx+
c

k
≥ lim inf

j

∑
i∈Zj

∫
Bj

i

f(Dwj) dx

≥ lim inf
j

∑
i∈Zj

a1−nϕα
j (ui

j)δ
n
j = a1−n

∫
Ω
ϕα(u) dx.

To sum up, we have proved that for all α ∈ (0, 1/2) the contribution of f(Duj) on Ej

can be estimated as follows:

lim inf
j

∫
Ej

f(Duj) dx ≥ a1−n

∫
Ω
ϕα(u) dx− c

k
.
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as desired.

Matching the results of steps 1.A and 1.B and taking into account the arbitrariness
of k, we get

lim inf
j

Fj(uj) ≥
∫

Ω
f(Du) dx+ a1−n

∫
Ω
ϕα(u) dx.

By Beppo Levi’s Theorem we can take the supremum over α > 0 and conclude that

lim inf
j

Fj(uj) ≥
∫

Ω
f(Du) dx+ a1−n

∫
Ω
ϕ(u) dx,

provided that (uj) is bounded in L∞(Ω; Rm).

2 We now remove the boundedness assumption on (uj). By [7, Lemma 3.5], upon
passing to a subsequence, for all M ∈ N and η > 0 there exist RM > M and a Lipschitz
function ΦM of Lipschitz constant 1 such that

ΦM (z) = z if |z| < RM ,
ΦM (z) = 0 if |z| > 2RM ,
lim

j
Fj(uj) ≥ lim infj Fj(ΦM (uj))− η.

(39)

Let α ∈ (0, 1/2). We fix M ∈ N and η > 0 and we apply the arguments of steps 1.A
and 1.B to the sequence ΦM (uj). Hence we get

lim inf
j

Fj(ΦM (uj)) ≥
∫

Ω
f(DΦM (u)) dx+ a1−n

∫
Ω
ϕα(ΦM (u)) dx.

By (39) we obtain

lim
j
Fj(uj) + η ≥ lim inf

j
Fj(ΦM (uj)) ≥

∫
Ω
f(DΦM (u)) dx+ a1−n

∫
Ω
ϕα(ΦM (u)) dx.

If M → +∞ we have ΦM (u) ⇀ u in W 1,n(Ω; Rm), thus

lim
j
Fj(uj) + η ≥

∫
Ω
f(Du) dx+ a1−n

∫
Ω
ϕα(u) dx.

Taking the supremum over α > 0 and letting η → 0 and we get the thesis.

4.2 Limsup inequality

This section completes the proof of the Γ-convergence result in the general case. A
careful use of Lemma 3.2 allows to build recovery sequences. For all u ∈ W 1,n(Ω; Rm)
we will prove an approximate limsup inequality, which is equivalent to the existence of
a recovery sequence (see, e.g. [5]).

Proposition 4.2 (Limsup inequality) For all u ∈ W 1,n(Ω; Rm) and k ∈ N there
exists a sequence uj ⇀ u in W 1,n(Ω; Rm) such that

lim sup
j

Fj(uj) ≤
∫

Ω
f(Du) dx+ a1−n

∫
Ω
ϕ(u) dx+

c

k
. (40)
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Proof. Let u ∈ W 1,n(Ω; Rm). We want to apply Lemma 3.2 to the constant sequence
uj ≡ u. To this end we fix k ∈ N and choose a positive sequence ρj = 2k+1αδj , where
α is such that α < α2k+1 < 1/2. Following the notations of Lemma 3.2, we can state
that there exist ki ∈ {0, . . . , k − 1} (for all i ∈ Zj) and a sequence (vj) ⊂W 1,n(Ω; Rm)
such that

vj ⇀ u in W 1,n(Ω; Rm), vj = u on Ω \
⋃

i∈Zj

Cj
i ,

vj(x) = ui
j = |Cj

i |
−1

∫
Cj

i

u dx for |x− xj
i | = ρi

j =
3
4
2−kiρj ,

and
∫

Ω
|f(Dvj)− f(Du)| dx ≤ c

k
. (41)

1 We first assume that in addition u ∈ L∞(Ω; Rm). We want to modify the sequence
(vj) to obtain an approximate recovery sequence uj ∈ W 1,n(Ω; Rm); i.e., a sequence
uj → u in Ln(Ω; Rm) possibly depending on k and such that (40) is satisfied.

In order to obtain the required sequence (uj) we modify the functions vj close
to the perforations; i.e., on some convenient balls surrounding them. We recall that
Zj = {i ∈ Zn : dist(xj

i , ∂Ω) > δj} and we define the set of indexes

Z ′j = {i ∈ Zn : Kj
i ∩ Ω 6= ∅ and i /∈ Zj}.

We deal separately with the case i ∈ Zj and i ∈ Z ′j . (step 1.A and 1.B respectively).

1.A We first consider the perforations such that i ∈ Zj . We denote by Gj the
union of the corresponding balls Bρi

j
(xj

i ):

Gj =
⋃

i∈Zj

Bρi
j
(xj

i ).

For fixed i ∈ Zj let ζα
i,j ∈ ui

j +W 1,n
0 (BαSj ; Rm) be a function such that ζα

i,j = 0 on K
and

(log Tj)n−1

∫
BαSj

f(TjDζ
α
i,j)

Tn
j

dx < ϕα
j (ui

j) +
1
k
. (42)

We define uj on the ball Bρi
j
(xj

i ) as follows:

uj(x) =

 ζα
i,j

(x− xj
i

εj

)
for |x− xj

i | ≤ αδj ,

ui
j for αδj < |x− xj

i | < ρi
j .

Note that uj vanishes on Kj
i . By a change of variables we get∫

B
ρi
j
(xj

i )
f(Duj) dx =

∫
B

ρi
j
(xj

i )\Bαδj
(xj

i )
f(Duj) dx+

∫
Bαδj

(xj
i )
f(Duj) dx

=
∫

BαSj

f(TjDζ
α
i,j(y))

Tn
j

dy ≤ 1
(log Tj)n−1

ϕα
j (ui

j) +
1

(log Tj)n−1

1
k

= a1−nδn
j ϕ

α
j (ui

j) + a1−nδn
j

1
k
.
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Summing up on i ∈ Zj , we get

lim sup
j

∫
Gj

f(Duj) dx = lim sup
j

∑
i∈Zj

∫
B

ρi
j
(xj

i )
f(Duj) dx

≤ lim sup
j

∑
i∈Zj

a1−nδn
j ϕ

α
j (ui

j) + a1−n|Ω|1
k
.

Taking into account Proposition 3.3, we deduce that

lim sup
j

∫
Gj

f(Duj) dx ≤ a1−n

∫
Ω
ϕα(u) dx+

c

k
≤ a1−n

∫
Ω
ϕ(u) dx+

c

k
. (43)

1.B Now we deal with the case i ∈ Z ′j . We denote by G′j the union of the
corresponding balls Bρj (x

j
i ); i.e.,

G′j =
⋃

i∈Z′
j

Bρj (x
j
i ) ∩ Ω.

Moreover, we denote by Ω′j the set given by the union of the corresponding cubes

Qj
i = xj

i +
(
− δj

2 ,
δj

2

)n
:

Ω′j =
⋃

i∈Z′
j

Qj
i .

We define uj on G′j so that∫
G′

j

f(Duj) dx = o(1) as j → +∞. (44)

We recall that up to translations there exists a ball Br2 containing K. Let ζj(x) be the
radial minimizer for the (scalar) minimum problem

µj = min
{∫

Bρj

|Du|n dx : u ∈ 1 +W 1,n
0 (Bρj ; R), u = 0 on Br2εj

}
= min

{∫
B ρj

r2

|Du|n dx : u ∈ 1 +W 1,n
0 (B ρj

r2

; R), u = 0 on Bεj

}
Arguing as in Section 3.1 we get

ζj(x) =
log

(
|x|Tj

)
log

(ρj

r2
Tj

) ∨ 0 and µj = ωn−1

(
log

(ρj

r2
Tj

))1−n
.

For all x ∈ Bρj (x
j
i )∩Ω we set uj(x) = u(x) ζj(x−xj

i ). Note that uj vanishes on Kj
i ∩Ω.

By the growth condition (4) we have∫
Bρj (xj

i )∩Ω
f(Duj(x)) dx ≤ c2

∫
Bρj (xj

i )∩Ω
|Duj(x)|n dx

≤ c

∫
Bρj∩Ω

|Du(x)|n dx+ c‖u‖n
∞

∫
Bρj

|Dζj(x)|n dx

≤ c

∫
Bρj∩Ω

|Du(x)|n dx+ c
(

log
(ρj

r2
Tj

))1−n

= cδn
j + o(1) as j → +∞.
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There follows that

lim sup
j

∫
G′

j

f(Duj) dx = lim sup
j

∑
i∈Z′

j

∫
Bρj (xj

i )∩Ω
f(Duj) dx

≤ c lim sup
j

∑
i∈Z′

j

δn
j ≤ c lim sup

j
|Ω′j |.

Since limj |Ω′j | = |∂Ω| = 0, we get

lim sup
j

∫
G′

j

f(Duj) dx = 0. (45)

Finally, we set uj(x) = vj(x) on Ω \ (Gj ∪ G′j). The sequence (uj) we have de-
fined is then an approximate recovery sequence. In fact, uj → u in Ln(Ω; Rm) since
(uj) is bounded in W 1,n(Ω; Rm) and limj |{uj 6= vj}| = 0 by construction. Moreover,
conditions (41), (43) and (45) imply that

lim sup
j

∫
Ω
f(Duj) dx ≤ lim sup

j

∫
Gj

f(Duj) dx+ lim sup
j

∫
G′

j

f(Dvj) dx

+ lim sup
j

∫
Ω\(Gj∪G′

j)
f(Duj) dx

≤ a1−n

∫
Ω
ϕ(u) dx+

c

k
+ lim sup

j

∫
Ω
f(Dvj) dx

≤ a1−n

∫
Ω
ϕ(u) dx+

∫
Ω
f(Du) dx+

c

k
,

as desired.

2 We now remove the boundedness assumption on u. Let u ∈W 1,n(Ω; Rm). Note that
u can be approximated by a sequence (uk) ⊂W 1,n(Ω; Rm)∩L∞(Ω; Rm) with respect to
the strong convergence of W 1,n(Ω; Rm). By the lower semicontinuity of the functional
F ′′(u) = Γ-lim supj Fj(u) with respect to the Ln(Ω; Rm)-convergence, we then have

F ′′(u) ≤ lim inf
k

F ′′(uk) = lim
k
F (uk) = F (u)

and the proof is complete.

5 The n-homogeneous case

In this section we want to focus our attention on the interesting case in which the
integrand function f is positively homogeneous of degree n. We will prove the last
part of Theorem 2.1, which states that in this case the Γ-limit is independent of the
subsequence of (Tj) and that the limit extra-term can be determined through a formula
of homogenization type. Moreover, from that formula we easily deduce that the result
is independent of the shape of the perforations. Note that the independence of the
shape of the perforations can be proved also without the homogeneity assumption (see
Casado-Diaz [11] for a proof in the framework of two-scale convergence method for
monotone Dirichlet problems, corresponding to f convex and smooth).

Our first step consists in proving the following proposition.
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Proposition 5.1 Let f : Rm×n → [0,+∞) be a quasiconvex function satisfying condi-
tions (4) and (5) and such that f(0) = 0. Suppose that f is positively homogeneous of
degree n. Then, for all ν ∈ Rm with |ν| = 1, there exists the limit

ψ(ν) = lim
T→+∞

(log T )n−1 min
{∫

BT

f(Du) dx : u ∈ ν +W 1,n
0 (BT ; Rm), u = 0 on B1

}
.

(46)

Proof. Let ν ∈ Rm be such that |ν| = 1. Let

gν(T ) = (log T )n−1 min
{∫

BT

f(Du) dx : u ∈ ν+W 1,n
0 (BT ; Rm), u = 0 on B1

}
. (47)

We will prove that there exists a function rν(·, ·) such that

lim inf
T→+∞

(
lim sup
S→+∞

rν(S, T )
)

= 0 (48)

and gν(S) ≤ gν(T ) + rν(S, T ) for all S ≥ T. (49)

If we first take the lim supS→+∞ and then the lim infT→+∞ in (49), we get

lim sup
S→+∞

gν(S) ≤ lim inf
T→+∞

gν(T ),

thus we obtain the thesis.
Let S ≥ T be fixed. Let uT ∈ ν +W 1,n

0 (BT ; Rm) be such that u = 0 on B1 and

(log T )n−1

∫
BT

f(DuT ) dx = gν(T ).

We denote by k the positive integer such that T k ≤ S < T k+1; i.e., k =
[

log S
log T

]
. We

will modify uT in order to obtain a function ũT (see Fig. 1), which will be re-scaled
into a test function for gν(S). Let

ũT (x) =


uT

( x

T j

)
+ jν if T j ≤ |x| ≤ T j+1, for j ∈ {0, 1, . . . , k − 1},

ν log |x|(log T )−1 if T k ≤ |x| ≤ S.

Note that ũT ∈ log S
log T ν +W 1,n

0 (BS ; Rm) and ũT = 0 on B1; hence vS(x) = log T
log S ũT (x) is

a test function for gν(S). By construction we have

DvS(x) =
log T
logS

DũT (x) =


log T
logS

DuT

( x

T j

) 1
T j

if T j ≤ |x| ≤ T j+1,

A(x)(logS)−1 if T k ≤ |x| ≤ S,

where A(x) = (ah,j(x)) is given by ah,j(x) = xj νh|x|−2, for all h ∈ {1, . . . ,m} and
j ∈ {1, . . . , n}.

17



There follows that∫
BS

f(DvS) dx =
k−1∑
j=0

( log T
logS

)n
∫

B
Tj+1\BTj

f
(
DuT

( x

T j

)) 1
(T j)n

dx

+
∫

BS\BTk

f
(A(x)

logS

)
dx

=
( log T

logS

)n
k

∫
BT

f(DuT ) dx+
1

(logS)n

∫
BS\BTk

f(A(x)) dx

≤
( log T

logS

)n
k

∫
BT

f(DuT ) dx+
1

(logS)n
c

∫
BS\BTk

|x|−n dx

=
( log T

logS

)n
k

∫
BT

f(DuT ) dx+
1

(logS)n
c

∫ S

T k

dρ

ρ
.

Hence,

(logS)n−1

∫
BS

f(DvS) dx ≤ log T
logS

k (log T )n−1

∫
BT

f(DuT ) dx

+
c

logS
(logS − log T k).

Therefore we get

gν(S) ≤ (logS)n−1

∫
BS

f(DvS) dx ≤
( log T k

logS

)
gν(T ) + c

(
1−

[ logS
log T

] log T
logS

)
.

In conclusion, the function rν(S, T ) := c
(
1−

[
log S
log T

]
log T
log S

)
satisfies conditions (48)-(49).

In fact gν(S) ≤ gν(T ) + rν(S, T ) for S ≥ T and lim sup
S→+∞

rν(S, T ) = 0.

Remark 5.2 Once the existence of the limit in (46) is proved, the function ψ can be
extended the whole space Rm by n-homogeneity; i.e.,

ψ(z) = |z|nψ
( z

|z|

)
for all z ∈ Rm.

Remark 5.3 Our argument shows that the exponential radius of the perforations de-
rives form the scaling invariance of the problems in (46) and from the logarithmic
behavior of the minimizers. This highlights that in the critical case the energy does not
concentrate at the same scale as the perforation radius, in a fashion similar to optimal
sequences for Ginzburg-Landau functionals (see e.g. [1, 3, 23]).

Now we can prove the last statement of Theorem 2.1: in the n-homogeneous case
ϕ(z) = ψ(z) for all z ∈ Rm. In particular, the whole sequence (Fj) Γ-converges to F
and the shape of K does not affect the result.

We recall that the energy densities ϕα
j in (8) and ϕ in (9) were studied in Section

3.1. Firstly we consider K = Br for fixed r > 0 and then we show that for any compact
set K with non-empty interior the result is the same.
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Let K = Br for some r > 0. For fixed z ∈ Rm, α > 0 and j ∈ N we defined

ϕα
j (z) = (log Tj)n−1 inf

{∫
BαSj

f(Dv) dx : v ∈ z +W 1,n
0 (BαSj ; R

m), v = 0 on Br

}
= (log Tj)n−1 inf

{∫
BαSj/r

f(Dv) dx : v ∈ z +W 1,n
0 (BαSj/r; Rm), v = 0 on B1

}
.

Since Sj = a(n−1)/nTj(log Tj)(1−n)/n we have log Tj w log(αSj/r), and hence

lim
j→+∞

ϕα
j (z) = lim

j→+∞

(
log

(αSj

r

))n−1

× inf
{∫

BαSj/r

f(Dv) dx : v ∈ z +W 1,n
0 (BαSj/r; Rm), v = 0 on B1

}
. (50)

Now, in (50) we compute the limit of a subsequence of the quantity appearing in the
definition of ψ (46). Since (50) is the definition of ϕα, we deduce that ϕα(z) = ψ(z)
for all α > 0 and z ∈ Rm. Hence, ϕ(z) = ψ(z) as desired. Moreover, we note that this
result is independent of the radius r.

Let K be a generic compact set with non-empty interior. Up to translations, there
exist two balls Br1 , Br2 such that Br1 ⊆ K ⊆ Br2 . By comparison,

(log Tj)n−1 inf
{∫

BαSj

f(Dv) dx : v ∈ z +W 1,n
0 (BαSj ; R

m), v = 0 on Br1

}
≤ (log Tj)n−1 inf

{∫
BαSj

f(Dv) dx : v ∈ z +W 1,n
0 (BαSj ; R

m), v = 0 on K
}

≤ (log Tj)n−1 inf
{∫

BαSj

f(Dv) dx : v ∈ z +W 1,n
0 (BαSj ; R

m), v = 0 on Br2

}
.

Having proved that the limit of the first and the third term (spherical perforations) is
ψ(z), independent of the radius of the balls, we deduce that ϕ(z) = ψ(z) for any K.

Finally, we want to focus our attention on a family of more general energy densities
f for which the asymptotic analysis of the functionals (Fj) can be easily reduced to the
case of n-homogeneous integrands. We will prove the following proposition.

Proposition 5.4 Let f, g : Mm×n → [0,+∞) be two functions satisfying all the as-
sumptions of Theorem 2.1. Assume that in addition g is positively homogeneous of
degree n. Let Fj be defined as in (10). Assume that there exists a positive infinitesimal
sequence (γj) such that∣∣∣f(TjA)

Tn
j

− g(A)
∣∣∣ ≤ γj |A|n for all A ∈ Mm×n, j ∈ N. (51)

Then, the whole sequence (Fj) Γ-converges to the functional

F (u) =
∫

Ω
f(Du) dx+

∫
Ω
ϕ(u) dx, u ∈W 1,n(Ω; Rm),

where for all z ∈ Rm the function ϕ is given by

ϕ(z) = lim
T→+∞

(log T )n−1 min
{
g(Dv) dx : v ∈ z +W 1,n

0 (BT ; Rm), v = 0 on B1

}
. (52)

In particular, the Γ-convergence result is independent of the shape of K.
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Proof. Let z ∈ Rm, j ∈ N and α > 0. Let v ∈ z +W 1,n
0 (BαSj ; Rm) with v = 0 on B1.

By (51) we get

g(Dv)− γj |Dv|n ≤
f(TjDv)
Tn

j

≤ g(Dv) + γj |Dv|n.

By assumption there exist two positive constants c1, c2 such that c1|A|n ≤ g(A) ≤
c2|A|n for all A ∈ Mm×n. Hence,(

1− γj

c1

)
g(Dv) ≤ f(TjDv)

Tn
j

≤
(
1 +

γj

c1

)
g(Dv).

Now, we multiply by (log Tj)n−1, take the integral over BαSj and then minimize over
the family of v ∈ z +W 1,n

0 (BT ; Rm), v = 0 on B1. We get:(
1− γj

c1

)
(log Tj)n−1 min

{∫
BαSj

g(Dv) dx : v ∈ z +W 1,n
0 (BT ; Rm), v = 0 on B1

}
≤ (log Tj)n−1 min

{∫
BαSj

f(TjDv)
Tn

j

dx : v ∈ z +W 1,n
0 (BT ; Rm), v = 0 on B1

}
≤

(
1 +

γj

c1

)
(log Tj)n−1 min

{∫
BαSj

g(Dv) dx : v ∈ z +W 1,n
0 (BT ; Rm), v = 0 on B1

}
.

In Proposition 5.1 we proved that there exist the limits (independent of α) of the first
and the third member as j → +∞, and that it equals

ψg(z) := lim
T→+∞

(log T )n−1 min
{
g(Dv) dx : v ∈ z +W 1,n

0 (BT ; Rm), v = 0 on B1

}
.

By comparison we get that there exists the limit

lim
j→+∞

(log Tj)n−1 min
{∫

BαSj

f(TjDv)
Tn

j

dx : v ∈ z+W 1,n
0 (BT ; Rm), v = 0 on B1

}
= ψg(z).

In conclusion, the whole family (Fj) Γ-converges and the function ϕ defined in (9)
equals ψg.
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[13] Cioranescu, D. and Murat, F. Un term étrange venu d’ailleurs, I and II. Nonlinear
Partial Differential Equations and Their Applications. Collège de France Seminar.
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