
J. Funct. Anal.

SINGULAR MULTIPLE INTEGRALS AND NONLINEAR POTENTIALS

CRISTIANA DE FILIPPIS AND BIANCA STROFFOLINI

Abstract. We derive sharp partial regularity criteria of nonlinear potential theoretic nature for the Lebesgue-
Serrin-Marcellini extension of nonhomogeneous singular multiple integrals featuring (p, q)-growth conditions.

1. Introduction

We provide optimal partial regularity criteria for relaxed minimizers of nonhomogeneous, singular multiple
integrals of the form

W 1,p(Ω,RN ) ∋ w 7→ F(w; Ω) :=

∫
Ω

[
F (Dw)− f · w

]
dx,(1.1)

i.e., local minimizers of the Lebesgue-Serrin-Marcellini extension of F(·):

F̄(w; Ω) := inf

{
lim inf
j→∞

F(wj ; Ω) : {wj}j∈N ⊂W 1,q
loc (Ω,R

N ) : wj ⇀ w in W 1,p(Ω,RN )

}
,(1.2)

using tools from Nonlinear Potential Theory, thus completing the analysis started in [26] for degenerate func-
tionals. More precisely, we prove almost everywhere gradient continuity for local minimizers of (1.2) under sharp
assumptions on the external datum f . Here, Ω ⊂ Rn is an open, bounded set with Lipschitz boundary, n ≥ 2,
and F : RN×n → R is a strictly quasiconvex integrand, verifying so-called (p, q)-growth conditions according to
Marcellini’s terminology [64]:

(1.3) |z|p ≲ F (z) ≲ 1 + |z|q, 1 < p ≤ q;

the singular behavior of F (·) around zero being encoded in the requirement p ∈ (1, 2). Let us recall that F (·)
is quasiconvex when∫

−
B1(0)

F (z +Dφ) dx ≥ F (z) holds for all z ∈ RN×n, φ ∈ C∞
c (B1(0),RN ),(1.4)

therefore the three main aspects of (1.1)-(1.2) we are interested in are the presence of a nontrivial forcing term
f , the (p, q)-growth conditions in (1.3) and the quasiconvexity (1.4) of the integrand F (·). Let us briefly discuss
some classical and recent results on these ingredients as each of them is currently object of intense investigation.
The problem of determining the best conditions to impose on f in order to prove gradient continuity for minima
is classical and received a considerable attention in the past decades. To better understand this issue, let us
introduce the Lorentz space L(n, 1), defined by

w ∈ L(n, 1) ⇐⇒ ∥w∥L(n,1) :=

∫ ∞

0

|{x ∈ Rn : |w(x)| > t}|1/n dt <∞.

A related deep result of Stein [80] states that

(1.5) w ∈W 1,n and Dw ∈ L(n, 1) =⇒ w is continuous,

so (1.5) and the immersions Ln+ε ↪→ L(n, 1) ↪→ Ln for all ε > 0, lead to the borderline characterization of
L(n, 1) as the limiting space with respect to the Sobolev embedding theorem. A linear PDE interpretation of
Stein’s theorem relying on the combination of (1.5) with standard Calderón-Zygmund theory prescribes that

−∆u = f ∈ L(n, 1) =⇒ Du is continuous,

which turns out to be sharp, in the light of Cianchi’s counterexample [21]. Surprisingly enough, the same
conclusion holds in a way more general setting than the linear one. It is indeed true for uniformly elliptic
operators [3,8,22,23,32,34,57,58,60,71,72]; systems of differential forms [79]; fully nonlinear elliptic equations
[7,24], general nonuniformly elliptic functionals [9,11,27]; and it also holds at the level of partial regularity for
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systems of the p-Laplacian type without Uhlenbeck’s structure [17,59]. The key point consists in the possibility
of gaining local control on the gradient of solutions via the truncated Riesz potential of f , that is

If1 (x0, ϱ) :=

∫ ϱ

0

(∫
−
Bσ(x0)

|f | dx

)
dσ ≲

∫
Rn

|f(y)|
|x− y|n−1

dy,(1.6)

which is a standard aspect of linear equations and a remarkable feature of nonlinear ones, cf. Kuusi & Mingione’s
seminal works [58,60]. On the other hand, in [9,27] the gradient of minima is dominated via a nonlinear Wolff
type potential, first introduced by Havin & Maz’ya [47], defined as:

If1,m(x0, ϱ) :=

∫ ϱ

0

(
σm
∫
−
Bσ(x0)

|f |m dx

)1/m
dσ

σ
, m > 1,

sharing the same homogeneity - and therefore analogous mapping properties on function spaces - as the linear
potential in (1.6). All the aforementioned results crucially rely on the strong ellipticity of the operators involved,
while in (1.1) the integrand F (·) is only quasiconvex. This notion was first introduced by Morrey [69] and it
turns out to be a natural condition in the multidimensional Calculus of Variations. Indeed, under polynomial
growth conditions on the integrand F (·), quasiconvexity is a necessary and sufficient condition for sequential
weak lower semicontinuity in W 1,p, [2,6,16,39,62,69]. A peculiar characteristic of quasiconvexity is that it is a
purely nonlocal concept [52, 69] in the sense that there is no condition involving only F (·) and a finite number
of its derivatives, which is equivalent to quasiconvexity. Moreover, minimizers and critical points of quasiconvex
functionals have a very different behavior. Precisely, a classical result of Evans [38] states that minima are regular
outside a negligible "singular" set, while Müller & Šverák [70] proved that critical points, i.e. solutions to the
associated Euler-Lagrange system, may have everywhere discontinuous gradients. This is coherent with the
theory of elliptic systems: well-known counterexamples [68,82] show that solutions might develop singularities,
therefore in the genuine vectorial setting the best one could hope for is partial regularity. The matter of almost
everywhere regularity for minimizers of quasiconvex integrals was first treated by Evans [38] in the case of
quadratic functionals, and, after that, it received lots of attention over the years. Subsequently, partial regularity
for multiple integrals with standard p-growth was obtained in [1,18,54] exploiting Evans’ blow up method, while
in [35] a unified approach to the partial regularity for degenerate or singular quasiconvex integrals was proposed
via the p-harmonic approximation and in [53] was derived an upper bound on the Hausdorff dimension of
the singular set of minima of quasiconvex functionals. We refer to [10,14,26,30,33,43–46,49–51,61,75–77] and
references therein for a non-exhaustive list of remarkable contributions in more general settings. The other main
feature of the class of integrands considered in this paper is their (p, q)-growth conditions. This nomenclature
was introduced by Marcellini in the fundamental papers [64, 67] within the framework of nonlinear elasticity.
In fact, a basic model describing the behavior of compressible materials subject to deformations is given by

(1.7) W 1,p(Ω,Rn) ∋ w 7→ H(w; Ω) :=

∫
Ω

[
|Dw|p +

√
1 + |det(Dw)|2 − f · w

]
dx,

for some f ∈ W 1,p(Ω,RN )∗, see [5, 6, 64, 67]. A natural phenomenon in compressible elasticity is cavitation,
i.e. the possible formation of cavities (holes) in elastic bodies after stretch, corresponding to the development
of singularities in equilibrium solutions (minima) of H(·). Functional H(·) is quasiconvex in the sense of
(1.4), [42, Chapter 5], however in general it is not W 1,p-quasiconvex1 unless p ≥ n, [6, Theorem 4.1], while its
Lebesgue-Serrin-Marcellini extension H̄(·) is W 1,p-quasiconvex provided that p > n− 1, [76, Lemma 7.6]. This
means that the approach by relaxation based on the extension of the ambient space proposed in [64,67] fits the
analysis of cavitation better than the pointwise one of [5, 6], as it allows dealing with discontinuous maps thus
describing the possible formations of cavities. We also point out that the integrand H(z) := |z|p+

√
1 + |det(z)|2

in (1.7) verifies
|z|p ≤ H(z) ≲ 1 + |z|n,

that is (1.3) with q = n. This was the first main reason behind the investigation of variational integrals with
(p, q)-growth: starting with [64] for questions of semicontinuity and [65, 66] about regularity, since then such
class of functionals received lots of attention - with no pretence of completeness we mention the everywhere
regularity results in [9, 11–13, 15, 19, 27, 29, 37, 48, 55, 56], the partial regularity proven in [20, 25, 28, 31, 36, 74]
for general systems and manifold constrained problems with special structure and refer to [63] for a reasonable
survey. The aforementioned results hold for strictly convex variational integrals. In the quasiconvex setting
partial regularity has been obtained by Schmidt [75, 77] for homogeneous - f ≡ 0 in (1.1) - functionals with
(p, q)-growth and for their Lebesgue-Serrin-Marcellini extension [76], while [26] contains sharp partial regularity
criteria in terms of a nontrivial forcing term f for relaxed minimizers of degenerate integrals of the form (1.1).
The standard notion of relaxed local minimizers [76] reads as:

1I.e.: (1.4) holds for all φ ∈ W 1,p
0 (B1(0),RN ).
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Definition 1. Let p ∈ (1,∞). A function u ∈ W 1,p(Ω,RN ) is a local minimizer of (1.2) on Ω with f ∈
W 1,p(Ω,RN )∗ if and only if every x0 ∈ Ω admits a neighborhood B ⋐ Ω so that F̄(u;B) < ∞ and F̄(u;B) ≤
F̄(w;B) for all w ∈W 1,p(B,RN ) so that supp(u− w) ⋐ B.

Such definition can be immediately adapted to local minimizers of functional (1.1). Let us point out that
when considering (1.1)-(1.2) we will assume with no loss of generality that f is defined on the whole Rn, which
is always possible if we set f ≡ 0 in Rn \ Ω. For this reason, when stating that f belongs to a certain function
space, we shall often avoid to specify the underlying domain. Further details about the notation employed can
be found in Section 2 below. The main result of our paper is the following

Theorem 1. Under assumptions (2.12)-(2.14), (2.16) and (2.23), let u ∈ W 1,p(Ω,RN ) be a local minimizer of
(1.2). Suppose that

(1.8) lim
ϱ→0

If1,m(x, ϱ) = 0 locally uniformly in x ∈ Ω.

Then there exists an open "regular" set Ωu ⊂ Ω of full n-dimensional Lebesgue measure with |Ω \Ωu| = 0 such
that Vp(Du) and Du are continuous on Ωu. In particular, the regular set Ωu can be characterized as

Ωu :=

{
x0 ∈ Ω: ∃M ≡M(x0) ∈ (0,∞), ε̃ ≡ ε̃(data,M), ϱ̃ ≡ ϱ̃(data,M, f(·)) ∈ (0,min{dx0 , 1})

such that |(Vp(Du))Bϱ(x0)| < M and F(u;Bϱ(x0)) < ε̃ for some ϱ ∈ (0, ϱ̃]

}
.

Theorem 1 comes as a consequence of a fine connection established between the Lebesgue points of Du and
Vp(Du) and the pointwise behavior of the Wolff potential If1,m(·).

Theorem 2. Under assumptions (2.12)-(2.14), (2.16) and (2.23), let u ∈ W 1,p(Ω,RN ) be a local minimizer of
(1.2), x0 ∈ Ω be a point such that

(1.9) If1,m(x0, 1) <∞
and M ≡ M(x0) be a positive constant. There exist ε̃ ≡ ε̃(data,M) ∈ (0, 1) and ϱ̃ ≡ ϱ̃(data,M, f(·)) ∈
(0,min{1, dx0}) such that if

|(Vp(Du))Bϱ(x0)| < M

F(u;Bϱ(x0)) + If1,m(x0, ϱ)
p

2(p−1) + If1,m(x0, ϱ)
q

2(p−1) +M (2−p)/pIf1,m(x0, ϱ) < ε̃,
(1.10)

for some ϱ ∈ (0, ϱ̃], then

lim
s→0

(Vp(Du))Bs(x0) = Vp(Du(x0)), lim
s→0

(Du)Bs(x0) = Du(x0)(1.11)

and  |Vp(Du(x0))− (Vp(Du))Bσ(x0)| ≤ cN(x0;σ)

|Du(x0)− (Du)Bσ(x0)| ≤ cN(x0;σ)
2/p + c|(Du)Bσ(x0)|

(2−p)/2N(x0;σ),
(1.12)

for all σ ∈ (0, ϱ], where c ≡ c(data,M) and

N(x0;σ) ≈ F(u;Bσ(x0)) + If1,m(x0, σ)
p

2(p−1) + If1,m(x0, σ)
q

2(p−1)

+|(Vp(Du))Bσ(x0)|
(2−p)/pIf1,m(x0, σ),

up to constants depending on (data,M). In particular, x0 ∈ Ω satisfying (1.9) is a Lebesgue point of Vp(Du)
and of Du if and only if it verifies (1.10).

Conditions (1.8) or (1.9) can be guaranteed once prescribed the membership of f to a proper function space,
as stated in the following optimal function space criterion.

Theorem 3. Under assumptions (2.12)-(2.14), (2.16) and (2.23), let u ∈ W 1,p(Ω,RN ) be a local minimizer of
(1.2). There exists an open set Ωu ⊂ Ω of full n-dimensional Lebesgue measure such that f ∈ L(n, 1) yields that
Du, Vp(Du) are continuous on Ωu, while if f ∈ Ld for some d > n, then Du, Vp(Du) ∈ C0,α̃

loc (Ωu,R
N×n) with

α̃ ≡ α̃(n,N, p, d).

Let us point out that Theorems 1-3 are new already for singular variational integrals with standard p-growth
- the degenerate case coming as a straightforward consequence of the analysis carried out in [26]. Moreover, our
results hold for general strictly W 1,p-quasiconvex functionals2 as in (1.1), or for functionals that coincide with
their Lebesgue-Serrin-Marcellini extension, and cover in particular relaxed local minimizer of the functional
H(·) in (1.7) with the choice n = q = 2 and p ∈ (8/5, 2), cf. [26, Section 2.4]. We refer to [77, 81] for

2I.e.: (2.14) below holds for all φ ∈ W 1,p
0 (B,RN ).
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further discussions and more examples. We finally remark that the nonlinear potential theory for singular
nonhomogeneous equations or systems of the p-Laplacian type is a very recent achievement. In fact, after
Duzaar & Mingione’s breakthrough [34] on pointwise potential estimates with p ∈

(
2− 1/n,∞

)
, lots of efforts

have been devoted to the extension of such result to all p ∈ (1, 2): in [71] Nguyen & Phuc decreased the lower
bound on p switching from p > 2 − 1/n to p > (3n − 2)/(2n − 1); later on Dong & Zhu [32] and Nguyen
& Phuc [72] (singular equations with measure data) and Byun & Youn [17] (general subquadratic systems)
eventually covered the full range p ∈ (1, 2). In this respect, our paper fits such line of research as we provide
pointwise bounds on the gradient oscillation of minima of (1.2) that hold almost everywhere subject to the
validity of a smallness condition on the excess functional that naturally involves also the potential If1,m(·). It is
worth stressing that the strategy required to attack partial borderline regularity issues for singular quasiconvex
integrals is deeply different in nature from the one presented in [26] for degenerate functionals. In fact, the
iteration scheme designed here shares with [26] only the exit time (blocks and chains) technique introduced
there, that compensates the destabilizing effect of a nontrivial right-hand side term within the nonsingular
(resp. nondegenerate) regime, cf. [26, Section 1.2] for more details. All the rest of the proof requires a different
strategy due to the problematic simultaneous presence of a rough forcing term f , featuring a very limited amount
of regularity; a rather severe loss of ellipticity, that is a distinctive aspect of singular integrands; and (p, q)-
growth conditions, leading to nonhomogeneous estimates. Since the full body of nonlinear potential theoretic
techniques unavoidably breaks down as p approaches one [17,32,34,71,72], we first need an artificial, quadratic
"upgrade" of the integrand’s ellipticity fratures in terms of suitable vector fields encoding the scaling properties
of the p-Laplacian. The price to pay for such a boost is a weakened control over gradient averages, that do not
only have to remain bounded at successive scales to keep under control the rate of (p, q)-nonuniform ellipticity
of the functional, but, in contrast with what happens in [26] but coherently with previous results on singular
problems [17, 32, 72], also substantially impact the excess decay estimate. The combination of these issues
forces us to develop a delicate double iteration scheme that on one hand preserves the boundedness of gradient
averages, on the other guarantees a uniform control on the size of the excess functional in terms of hybrid terms
involving both gradient average (at the initial scale) and Wolff potential related to the nonhomogeneity f , thus
eventually leading to the almost pointwise gradient oscillation bounds in (1.12). We also mention that our
gradient oscillation estimate improves that in [17, Theorem 1.1], valid for uniformly elliptic singular systems of
the p-Laplacian type. In fact, setting p = q in (1.12), a simple application of Jensen’s inequality shows that the
quantity on the right-hand side of (1.12) is smaller than its counterpart in [17, Theorem 1.1, (1.12)]. Let us
finally point out that, since for basic homogeneity reasons functionals with (p, q)-growth do not admit higher
integrability results of self-improving nature (see [35,77] for homogeneous problems), in antithesis with [17,59],
our approach does not require any application of Gehring Lemma, so we believe it is flexible enough to find
applications to possibly more general contexts [30,46,49,50,73,78,79].

2. Preliminaries

In this section we record the notation employed throughout the paper, describe the structural assumptions
governing the ingredients appearing in (1.1) and collect certain basic results that will be helpful later on.

2.1. Notation. In this paper, Ω ⊂ Rn will always be an open, bounded domain with Lipschitz-regular boundary,
and n ≥ 2. We denote by c a general constant larger than one depending on the main parameters governing the
problem. We will still denote by c distinct occurrences of constant c from line to line. Specific occurrences will be
marked with symbols c∗, c̃ or the like. Significant dependencies on certain parameters will be outlined by putting
them in parentheses, i.e. c ≡ c(n, p) means that c depends on n and p. By Br(x0) := {x ∈ Rn : |x − x0| < r}
we indicate the open ball with center in x0 and radius r > 0; we shall avoid denoting the center when this is
clear from the context, i.e., B ≡ Br ≡ Br(x0); this happens in particular with concentric balls. For x0 ∈ Ω, it is
dx0 := dist(x0, ∂Ω) and with z1, z2 ∈ RN×n, s ≥ 0 we set Ds(z1, z2) := (s2 + |z1|2 + |z2|2). Given a measurable
set B ⊂ Rn with bounded positive Lebesgue measure |B| ∈ (0,∞), and a measurable map g : B → Rk, k ≥ 1,
we set

(g)B ≡
∫
−
B

g(x) dx :=
1

|B|

∫
B

g(x) dx.

A useful feature of the average is its almost minimality, i.e.:(∫
−
B

|g − (g)B |t dx

)1/t

≤ 2

(∫
−
B

|g − z|t dx
)1/t

for all z ∈ Rk, t ≥ 1.(2.1)

For t ≥ 1, s ≥ 0, q ≥ p > 1, we shorten:

It(g;B) :=

(∫
−
B

|g(x)|t dx
) 1

t

, K(s) := s+ sq/p(2.2)
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and define

1{q>p} :=

{
1 if q > p

0 if q = p,
1{q≥2} :=

{
1 if q ≥ 2

0 if 1 < q < 2.

Finally, if t > 1 is any number, its conjugate will be denoted by t′ := t/(t − 1) and its Sobolev esponent as
t∗ := nt/(n − t) when t < n or any number larger than one for t ≥ n. To streamline the notation, we gather
together the main parameters governing our problem in the shorthand data :=

(
n,N, λ,Λ, p, q, ω(·), F (·),m

)
,

we refer to Section 2.3 for more details on such quantities.

2.2. Tools for p-Laplacian type problems. The vector field Vs,p : RN×n → RN×n, defined as

Vs,p(z) := (s2 + |z|2)(p−2)/4z, p ∈ (1,∞) and s ≥ 0

for all z ∈ RN×n, which encodes the scaling features of the p-Laplacian operator, is a useful tool for handling
p-Laplacean type problems. If s = 0, we simply write Vs,p(·) ≡ Vp(·). Let us premise that although most of
the properties of the vector field Vs,p(·) that we are going to list below hold for all p ∈ (1,∞), from now on, we
shall always assume that p ∈ (1, 2). It is well-known that

|Vs,p(z1 + z2)|2

|z1 + z2|
≲

|Vs,p(z1)|2

|z1|
+

|Vs,p(z2)|2

|z2|
|Vs,p(z1)− Vs,p(z2)| ≈ (s2 + |z1|2 + |z2|2)(p−2)/4|z1 − z2|

|V|z1|,p(z2 − z1)| ≈ |Vp(z1)− Vp(z2)|

|Vs,p(z1)|2|z2|
|z1|

≲ |Vs,p(z1)|2 + |Vs,p(z2)|2

|Vs,p(kz)| ≲ max{k, kp/2}|Vs,p(z)|

|Vs,p(z)| ≈ min{|z|, |z|p/2}

|Vs,p(z1 + z2)| ≲ |Vs,p(z1)|+ |Vs,p(z2)|,

(2.3)

for all k > 0 cf. [18,35,77] - of course to avoid trivialities, above |z1 + z2|, |z1| are supposed to be positive - and
that whenever t > −1, s ∈ [0, 1] and z1, z2 ∈ RN×n verify s+ |z1|+ |z2| > 0, then∫ 1

0

[
s2 + |z1 + y(z2 − z1)|2

] t
2

dy ≈ (s2 + |z1|2 + |z2|2)
t
2 .(2.4)

As useful consequences of (2.3)2 we have

(2.5) |z1 − z2|p ≲ |Vs,p(z1)− Vs,p(z2)|2 + |Vs,p(z1)− Vs,p(z2)|p(|z1|+ s)p(2−p)/2,

see [57, Lemma 2]. It is also worth recalling a Poincaré-type inequality involving the vector field Vs,p(·): with
p ∈ (1, 2), Bϱ(x0) ⋐ Ω and w ∈W 1,p(Bϱ(x0),RN ) it is

∫
−
Bϱ(x0)

∣∣∣∣∣∣ Vs,p
(
w − (w)Bϱ(x0)

ϱ

) ∣∣∣∣∣∣
p#

dx ≤ c

(∫
−
Bϱ(x0)

|Vs,p(Dw)|2 dx

)p#/2
,(2.6)

with p# := 2n/(n − p) and c ≡ c(n,N, p), see [35, Lemma 8]. For Bϱ(x0) ⋐ Ω, w ∈ W 1,p(Bϱ(x0),RN ) and
z0 ∈ RN , we define the excess functional by

F(w, z0;Bϱ(x0)) :=

(∫
−
Bϱ(x0)

|Vp(Dw)− z0|2 dx

)1/2

and further introduce the auxiliary integral

F̃(w, z0;Bϱ(x0)) :=

(∫
−
Bϱ(x0)

|V|z0|,p(Dw − z0)|2 dx

)1/2

.

If z0 = (Vp(Dw))Bϱ(x0) we shall abbreviate F(w, (Vp(Dw))Bϱ(x0);Bϱ(x0)) ≡ F(w;Bϱ(x0)). Let us point out
that combining (2.1) with [41, (2.6)] it holds that

(2.7) F(w;Bϱ(x0)) ≈ F(w, Vp((Dw)Bϱ(x0));Bϱ(x0)),

while if z0 = (Vp)
−1((Vp(Dw))Bϱ(x0)) - recall that Vp(·) is an isomorphism of RN×n - via (2.3)3 we have

F(w;Bϱ(x0)) ≈ F̃(w, z0;Bϱ(x0)).(2.8)

In all the above displays, the constants implicit in "≈, ≲" depend on (n,N, p, t) - the dependency on t accounts
for the exponent appearing in (2.4). To the scopes of this paper, it is fundamental to record some well-known
scaling features of the excess functional.
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Lemma 2.1. Let 1 < p < 2 be a number, Bϱ(x0) ⊂ Rn be a ball, and w ∈ W 1,p(Bϱ(x0),RN ) be any function.
With ν ∈ (0, 1) it holds that

F(w;Bνϱ(x0)) ≤
2

νn/2
F(w;Bϱ(x0))

|(Vp(Dw))Bνϱ(x0)| ≤
1

νn/2
F(w;Bϱ(x0)) + |(Vp(Dw))Bϱ(x0)|

|(Vp(Dw))Bνϱ(x0) − (Vp(Dw))Bϱ(x0)| ≤
1

νn/2
F(w;Bϱ(x0)).

(2.9)

Moreover, if for σ ≤ ϱ there is κ ∈ N ∪ {0} satisfying νκ+1ϱ < σ ≤ νκϱ, then


F(w;Bνκ+1ϱ(x0)) ≤

2

νn/2
F(w;Bσ(x0))

≤ 22

νn
F(w;Bνκϱ(x0))

|(Vp(Dw))B
νκ+1ϱ

(x0)| ≤ |(Vp(Dw))Bσ(x0)|+
1

νn/2
F(w;Bσ(x0)) ≤ |(Vp(Dw))Bνκϱ(x0)|+

22

νn
F(w;Bνκϱ(x0)),

(2.10)

and, whenever c∗ ≥ 1 is an absolute constant it is

|(Vp(Dw))B
νκ+1ϱ

(x0)|+ c∗F(w;Bνκ+1ϱ(x0)) ≤
22

νn/2
[
|(Vp(Dw))Bσ(x0)|+ c∗F(w;Bσ(x0))

]
≤ 24

νn

[
|(Vp(Dw))Bνκϱ(x0)|+ c∗F(w;Bνκϱ(x0))

]
.(2.11)

We conclude this section with a classical iteration lemma, [42, Lemma 6.1].

Lemma 2.2. Let h : [ϱ0, ϱ1] → R be a non-negative and bounded function, and let θ ∈ (0, 1), A,B, γ1, γ2 ≥ 0
be numbers. Assume that h(t) ≤ θh(s) + A(s − t)−γ1 + B(s − t)−γ2 holds for all ϱ0 ≤ t < s ≤ ϱ1. Then the
following inequality holds h(ϱ0) ≤ c(θ, γ1, γ2)[A(ϱ1 − ϱ0)

−γ1 +B(ϱ1 − ϱ0)
−γ2 ].

2.3. Structural assumptions. We assume that F : RN×n → R is an integrand verifying:{
F ∈ C1

loc(RN×n) ∩ C2
loc(RN×n \ {0})

Λ−1|z|p ≤ F (z) ≤ Λ
(
1 + |z|q

)(2.12)

for all z ∈ RN×n, with Λ ≥ 1 being a positive, absolute constant and exponents (p, q) satisfying:

1 < p < 2 and
q

p
< 1 +

1

2n
.(2.13)

It is fundamental that F (·) is strictly degenerate quasiconvex, in the sense that whenever B ⋐ Ω is a ball it
holds that∫

B

[
F (z +Dφ)− F (z)

]
dx ≥ λ

∫
B

(|z|2 + |Dφ|2)
p−2
2 |Dφ|2 dx for all z ∈ RN×n, φ ∈ C∞

c (B,RN ),(2.14)

where λ is a positive, absolute constant. As a consequence, for all z ∈ RN×n \{0}, ξ ∈ RN , ζ ∈ Rn it holds that

∂2F (z)⟨ξ ⊗ ζ, ξ ⊗ ζ⟩ ≥ 2λ|z|p−2|ξ|2|ζ|2,(2.15)

see [42, Chapter 5] or [76, Lemma 7.14]. Moreover, as a minimal requirement on the second derivatives of F (·),
we need to prescribe their behavior near the origin. Precisely, we need that

|∂2F (z)− ∂2(|z|p/p)|
|z|p−2

→ 0 as |z| → 0.(2.16)

The by-product of (2.16) is summarized in the following lemma, that collects results from [1,62,77].

Lemma 2.3. Let F : RN×n → R be an integrand verifying (2.12), (2.13)1 and (2.16). Then,
• there exists a positive constant c ≡ c(n,N,Λ, q) such that

|∂F (z)| ≤ c(1 + |z|q−1) for all z ∈ RN×n;(2.17)

• whenever z0 ∈ RN×n verifies |z0| ≤ L+ 1 for some positive constant L, it is
|F (z0 + z)− F (z0)− ⟨∂F (z0), z⟩| ≤ c

(
|V|z0|,p(z)|

2 + |V|z0|,q(z)|
2
)

|∂F (z0 + z)− ∂F (z0)| ≤ c|z|−1
(
|V|z0|,p(z)|

2 + |V|z0|,q(z)|
2
)
,

(2.18)

for all z ∈ RN×n, with c ≡ c(n,N,Λ, p, q, F (·), L);
• there exists a concave modulus of continuity ω : (0,∞) → (0,∞) with lims→0 ω(s) = 0 such that

|z| ≤ ω(s) =⇒ |∂F (z)− ∂F (0)− |z|p−2z| ≤ s|z|p−1;(2.19)



SINGULAR MULTIPLE INTEGRALS AND NONLINEAR POTENTIALS 7

• whenever L > 0 is a positive constant and z ∈
(
RN×n \ {0}

)
∩
{
|z| ≤ L

}
it is:

|∂2F (z)| ≤ c|z|p−2,(2.20)

for c ≡ c(n,N, p, F (·), L);
• for all positive constants L and vectors z1, z2 ∈ RN×n so that 0 < |z1| ≤ L, 0 < |z2| ≤ 2L it holds that

|∂2F (z1)− ∂2F (z2)| ≤

(
|z1|2 + |z2|2

|z1|2|z2|2

)(2−p)/2

µL

(
|z1 − z2|2

|z1|2 + |z2|2

)
,(2.21)

where µL : (0,∞) → (0,∞) is a nondecreasing modulus of continuity with s 7→ µL(s)
2 concave, depend-

ing on F (·) and on L.

Proof. The proof of inequality (2.17) is contained in [62, Theorem 2.1, Step 2]; the bounds in (2.18) are the
outcome of [77, Lemma 4.3], see also [1, Lemma II.3] for the nondegenerate case; while (2.20) is a direct
consequence of (2.16) and of the uniform continuity of ∂2F (·) on compact sets away from zero prescribed by
(2.12)1. The implication in (2.19) comes by observing that (2.16) yields (∂F (z)− ∂F (0)− |z|p−2z)/|z|p−1 → 0
as |z| → 0, which in turn gives (2.19), cf. [77, Remark 5.8]. To prove (2.21), we first observe that if we denote
by g(z) either ∂2(|z|p/p) or |z|p−2, by homogeneity g(·) verifies the Hölder condition

(2.22) |g(z1)− g(z2)| ≲

(
|z21 |+ |z2|2

|z1|2|z2|2

) 2−p
2
(

|z2 − z1|2

|z1|2 + |z2|2

) γ0
2

,

for all z1, z2 ∈ RN×n \ {0} and some γ0 ∈ (0, 2 − p), up to constants depending on (n,N, p), see [75, Sections
1-2]. Next, we fix ε ∈ (0, L) and consider three cases: 0 < |z1|, |z2| < ε, 0 < |z1| < ε and ε ≤ |z2| ≤ 2L, and
ε ≤ |z1|, |z2| ≤ 2L. If 0 < |z1|, |z2| < ε or 0 < |z1| < ε and ε ≤ |z2| ≤ 2L, we recall that (2.16) and (2.12)1
assure uniform continuity of z 7→ (∂2F (z) − ∂2(|z|p/p))/|z|p−2 near the origin and of z 7→ ∂2F (z) on compact
sets away from zero, with a concave modulus of continuity µ(·) (that clearly can always be manipulated in such
a way that s 7→ µ(s)2 remains concave), so we bound via (2.22) and (2.20),

|∂2F (z1)− ∂2F (z2)| ≤ |∂2(|z1|p/p)− ∂2(|z2|p/p)|+ |(∂2F (z1)− ∂2(|z1|p/p))− (∂2F (z2)− ∂2(|z2|p/p))|

≤ c

(
|z1|2 + |z2|2

|z1|2|z2|2

) 2−p
2
(

|z2 − z1|2

|z1|2 + |z2|2

) γ0
2

+|z1|p−2

∣∣∣∣∣∣
(
∂2F (z1)− ∂2(|z1|p/p)

|z1|p−2

)
−

(
∂2F (z2)− ∂2(|z2|p/p)

|z2|p−2

)∣∣∣∣∣∣
+
∣∣∣|z1|p−2 − |z2|p−2

∣∣∣( |∂2F (z2)− ∂2(|z2|p/p)|
|z2|p−2

)

≤ c

(
|z1|2 + |z2|2

|z1|2|z2|2

) 2−p
2
(

|z2 − z1|2

|z1|2 + |z2|2

) γ0
2

+ |z1|p−2µ(|z1 − z2|2)

≤ c

(
|z1|2 + |z2|2

|z1|2|z2|2

) 2−p
2
(

|z2 − z1|2

|z1|2 + |z2|2

) γ0
2

+ cµ

(
|z1 − z2|2

|z1|2 + |z2|2

)(
|z1|2 + |z2|2

|z1|2|z2|2

) 2−p
2

,

where we also used that the composition of two concave, increasing functions is concave and increasing, that

|z1|p−2
(
|z1|2|z2|2(|z1|2 + |z2|2)−1

)(2−p)/2
≤ 1, and it is c ≡ c(n,N, p, L). On the other hand, if ε ≤ |z1|, |z2| ≤

2L, using (2.12)1 and that s 7→ µ(s) is increasing, we have

|∂2F (z1)− ∂2F (z1)| ≤ µ(|z1 − z2|2) ≤ cµ

(
|z1 − z2|2

|z1|2 + |z2|2

)(
|z1|2 + |z2|2

|z1|2|z2|2

)± 2−p
2

≤ cµ

(
|z1 − z2|2

|z1|2 + |z2|2

)(
|z1|2 + |z2|2

|z1|2|z2|2

) 2−p
2

,

with c ≡ c(n,N, p, L). The conclusion now follows by setting µL(s) := max
{
cµ(s), s

γ0
2

}
and combining the

two previous displays. □

Finally, the forcing term f : Ω → RN displayed in (1.1) is such that

f ∈ Lm(Ω,RN ) with n > m > (p∗)′ > 1(2.23)



8 DE FILIPPIS AND STROFFOLINI

which, together with (2.13)1 yields:

1 < m′ < p∗ <∞ and f ∈W 1,p(Ω,RN )∗.(2.24)

Assumption (2.23) should be interpreted as a minimal integrability requirement on the forcing term f , in the
sense that it must at least belong to some intermediate Lebesgue space between L(p∗)′ and Ln. The motivation
behind this choice is twofold: the lower bound m > (p∗)′ assures that f ∈ (W 1,p)∗, so that the linear functional
w 7→

∫
f ·w dx is continuous on W 1,p; the upper bound m < n reminds that in all the forthcoming estimates f

should appear raised to a power strictly less than n - this will eventually contribute to the construction of the
Wolff potential If1,m(·), which is well-behaved with respect to the embedding in Lorentz spaces exactly when
m < n, cf. [57, Section 2.3].

Remark 2.1. When dealing with regularity issues for functionals with (p, q)-growth, it is in general necessary
to control the size of the ratio q/p, that cannot be too far from one. In fact, a constraint of the type

(2.25)
q

p
< 1 + o(n)

turns out to be necessary and sufficient for guaranteeing regularity already in the case of (p, q)-nonuniformly
elliptic equations [65, 66] - violations of such condition might cause rather striking irregularity phenomena,
possibly affecting scalar problems [4, 37, 40]. Determining the optimal bound on the ratio q/p is an open
question even for strictly convex, autonomous integrals with (p, q)-growth: the first results [65, 66] quantified
the right-hand side of (2.25) as o(n) = 2/n, that was later on updated in [11,12,19,74] to o(n) = 2/(n−1). So far,
the only sharp results available cover zero-order regularity for minima of convex functionals with (p, q)-growth
[48, 65], and gradient regularity for strictly convex, (p, q)-nonuniformly elliptic, nonautonomous functionals
[4, 37, 40]. Concerning quasiconvex integrals, a constraint on the ratio q/p is needed already to secure basic
semicontinuity properties [16,39,64]. More precisely, an autonomous quasiconvex functional with (p, q)-growth
is W 1,p-sequentially weakly lower semicontinuous provided that o(n) = 1/(n − 1) in (2.25). The very same
constraint guarantees the applicability of extension lemmas based on the boundedness of certain trace preserving
operators that improve the degree of integrability of a function and its gradient on suitable annuli, while
conserving the function values elsewhere, [39,46]. This lifting construction is fundamental to design comparison
maps playing a crucial role when handling the delicate matter of partial regularity. In the setting of (p, q)-
growing functionals, almost everywhere regularity for minima was first obtained in [75–77] (homogeneous case)
assuming

(2.26)
q

p
< 1 +

1

nmax{p, 2} ,

that is the same constraint imposed here, cf. (2.13). Notice that (2.26) yields two bounds that differ in the
singular regime and in the degenerate one - in particular, when comparing the two cases, a natural deficit
of p/2 occurs when passing from p ≥ 2 to 1 < p < 2. This typically happens also in the strictly convex
setting [9, 11, 27, 29]. We further stress that, as in [75–77], condition (2.13) is used only when proving a
Caccioppoli type inequality. In fact, due to the very rarefied structure of quasiconvex integrals and consequent
lack of uniqueness for Dirichlet problems, we cannot apply any approximation procedure that artificially raises
the integrand’s growth and allows working within the (higher) energy class W 1,q. For this reason, to define
appropriate test functions we need lifting theorems [39, 46], that force ratio q/p to be quite close to one,
bound that is further reduced in order to derive various basic estimates, while remaining in W 1,p, the only
available energy class. We further point out that constraint (2.26) has been recently relaxed in [46] to the
essentially optimal range q < min{np/(n − 1), p + 1} [39] for nondegenerate, possibly signed quasiconvex
integrals. In the light of the previous discussion, a restriction of type (2.25) plays a role only when proving
the validity of Caccioppoli inequality, which in turn implies single-scale excess decay estimates, so, given that
the nonhomogeneity is under control as soon as some ellipticity is available - and this is the case if a strict
degenerate (resp. singular) or nondegenerate (resp. nonsingular) quasiconvexity condition is in force - we believe
that our techniques can be adapted also to the class of variational integrals considered in [46]. We finally point
out that Theorems 1-3 also hold in case of nondegenerate/nonsingular, strictly quasiconvex functionals and for
their Lebesgue-Serrin-Marcellini extension with much easier proof due to the absence of the degenerate/singular
alternative, see e.g. [38,50,75].

2.4. Harmonic approximation lemmas. This section is devoted to a quick overview of the main features of A-
harmonic maps and of p-harmonic maps. Let A be a constant bilinear form on RN×n, elliptic in the sense of
Legendre-Hadarmard i.e., satisfying

|A| ≤ H and A⟨ξ ⊗ ζ, ξ ⊗ ζ⟩ ≥ H−1|ξ|2|ζ|2,(2.27)
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for all ζ ∈ Rn, ξ ∈ RN , with H ≥ 1 being an absolute constant. An A-harmonic map on an open set Ω ⊂ Rn
is a function h ∈W 1,2(Ω,RN ) such that∫

Ω

A⟨Dh,Dφ⟩ dx = 0 for all φ ∈ C∞
c (Ω,RN ).

In [18, 33] we find that A-harmonic maps have good regularity features; in fact for Bϱ(x0) ⋐ Ω with ϱ ∈ (0, 1]
it holds that

∥Dh∥L∞(Bϱ/2(x0))
+ ϱ∥D2h∥L∞(Bϱ/2(x0))

≤ c

∫
−
Bϱ(x0)

|Dh| dx,(2.28)

for c ≡ c(n,N,H, d). We record an A-harmonic approximation result from [35, Lemma 4], see also [33, Lemma
6].

Lemma 2.4. Let A be a bilinear form on RN×n verifying (2.27), Bϱ(x0) ⋐ Ω be a ball and p > 1 be a
number. For any ε > 0 there exists δ ≡ δ(n,N,H, p, ε) ∈ (0, 1] such that if v ∈ W 1,p(Bϱ(x0),RN ) with
I2(V1,p(Dv);Bϱ(x0)) ≤ σ ≤ 1 is approximately A-harmonic in the sense that∣∣∣∣∣

∫
−
Bϱ(x0)

A⟨Dv,Dφ⟩ dx

∣∣∣∣∣ ≤ σδ∥Dφ∥L∞(Bϱ(x0)) for all φ ∈ C∞
c (Bϱ(x0),RN ),

then there exists an A-harmonic map h ∈W 1,p(Bϱ(x0),RN ) such that∫
−
Bϱ(x0)

|V1,p(Dh)|2 dx ≤ c and
∫
−
Bϱ(x0)

∣∣∣∣∣ V1,p

(
v − σh

ϱ

) ∣∣∣∣∣
2

dx ≤ cσ2ε,

for c ≡ c(n,N, p).

We further recall the definition of p-harmonic map, i.e. a function h ∈W 1,p(Ω,RN ) satisfying∫
Ω

⟨|Dh|p−2Dh,Dφ⟩ dx = 0 for all φ ∈ C∞
c (Ω,RN ).

According to the regularity theory contained in [83,84], whenever Bϱ(x0) ⋐ Br(x0) ⋐ Ω are concentric balls, it
is

∥Dh∥L∞(Bϱ/2(x0))
≤ c′

(∫
−
Bϱ(x0)

|Dh|p dx

)1/p

and F(h;Bϱ(x0)) ≤ c′′
(
ϱ

r

)α
F(h;Br(x0)),(2.29)

with c′, c′′ ≡ c′, c′′(n,N, p) and α ≡ α(n,N, p) ∈ (0, 1). As a "singular" variant of Lemma 2.4, we have the
following p-harmonic approximation lemma from [36, Lemma 1].

Lemma 2.5. Let p ∈ (1,∞) be a number and Bϱ(x0) ⋐ Ω be any ball. For all ε > 0, there exists δ ≡ δ(n,N, p, ε) ∈
(0, 1] such that if v ∈W 1,p(Bϱ(x0),RN ) with Ip(Dv;Bϱ(x0)) ≤ 1 is approximately p-harmonic in the sense that

(2.30)

∣∣∣∣∣
∫
−
Bϱ(x0)

⟨|Dv|p−2Dv,Dφ⟩ dx

∣∣∣∣∣ ≤ δ∥Dφ∥L∞(Bϱ(x0)) for all φ ∈ C∞
c (Bϱ(x0),RN ),

then there exits a p-harmonic map h ∈W 1,p(Bϱ(x0),RN ) such that

Ip(Dh;Bϱ(x0)) ≤ 1 and
∫
−
Bϱ(x0)

∣∣∣∣ v − h

ϱ

∣∣∣∣p dx ≤ cεp,

with c ≡ c(n,N, p).

2.5. On the Lebesgue-Serrin-Marcellini extension. Let BΩ be the family of all open subsets of Ω and B ∈ BΩ.
For 1 < p ≤ q < ∞, an integrand F ∈ C(RN×n), and maps f ∈ W 1,p(Ω,RN )∗ and w ∈ W 1,p(Ω,RN ), the
Lebesgue-Serrin-Marcellini extension of a functional of type (1.1), i.e.:

F(w;B) :=

∫
B

[F (Dw)− f · w] dx =: F0(w;B)−
∫
B

f · w dx,

is defined as

F̄(w;B) := inf
{wj}j∈N∈C(w;B)

lim inf
j→∞

F(wj ;B),

with

C(w;B) :=
{
{wj}j∈N ⊂W 1,q

loc (B,R
N ) ∩W 1,p(B,RN ) : wj ⇀ w weakly in W 1,p(B,RN )

}
.

By density of smooth maps in W 1,p(B,RN ) it is C(w;B) ̸= ∅ and since in particular f ∈W 1,p(B,RN )∗ we can
rewrite

F̄(w;B) = F̄0(w;B)−
∫
B

f · w dx,(2.31)
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therefore while describing the relevant features of relaxation we shall refer to the "bulk" component of F̄(·),
i.e. F̄0(·). A first crucial observation is that F̄0(·) cannot be represented as an integral. In fact, a deep result
from [16, 39] states that with F (z) ≲ (1 + |z|q) and 1 < p ≤ q < np/(n − 1), each w ∈ W 1,p(Ω,RN ) such that
F̄0(w; Ω) <∞ uniquely determines a finite outer Radon measure µw verifying

(2.32) F̄0(w; ·) = µw|BΩ
and

dµw
dLn

= QF (Dw).

HereQF (·) denotes the quasiconvex envelope of F (·), see [42, Section 5.3]. Moreover, aW 1,p-coercivity condition
like |z|p ≲ F (z) assures sequential lower semicontinuity3 of F̄0(·; Ω) with respect to the weak topology of
W 1,p(Ω,RN ), cf. [39, 76]. In [6] it is proven that W 1,p-quasiconvexity is necessary for this semicontinuity
property. However, the results of [6] hold for integral functionals, while, in the light of (2.32), F̄0(·) cannot
be represented as an integral. Despite the measure representation [39], the arguments developed in [6] can be
adapted to prove that F̄0(·) features the proper notion of W 1,p-quasiconvexity, i.e.: F̄0(ℓ + φ;B) ≥ F̄0(ℓ;B)
holds for all B ∈ BΩ, φ ∈ W 1,p(B,RN ) with supp(φ) ⋐ B and any affine function ℓ(x) := v0 + ⟨z0, x − x0⟩,
cf. [76]. Other remarkable properties of F̄0(·) such as additivity and extremality conditions can be found
in [76,77]. Now, if F (·) is a continuous and W 1,p-coercive integrand and f ∈W 1,p(Ω,RN )∗, the weak sequential
lower semicontinuity of F̄0(·) in W 1,p(Ω,RN ) and direct methods assure that once fixed a boundary datum
u0 ∈W 1,p(Ω,RN ) such that F̄0(u0; Ω) <∞ - recall (2.31) - there exists a local minimizer u ∈ u0+W

1,p
0 (Ω,RN )

of (1.2) in the sense of Definition 1. If in addition F ∈ C1
loc(RN×n) with (1.4), (2.12)2 and (2.23) in force and

exponents (p, q) satisfying 1 < p ≤ q < min
{
np/(n− 1), p+ 1

}
, then any local minimizer u ∈ W 1,p(Ω,RN ) of

(1.2) verifies by minimality the integral identity

0 =

∫
Ω

[
⟨∂F (Du), Dφ⟩ − f · φ

]
dx for all φ ∈ C∞

c (Ω,RN ),(2.33)

see [26, Section 2.7] and [76, Section 7.1].

3. Caccioppoli inequality

We start by recording a variation obtained in [75, Lemmas 6.3-6.5] and [76, Lemmas 4.4 and 4.6] of the
extension result from [39], which will be crucial for constructing comparison maps for minima of (1.2).

Lemma 3.1. Let 0 < τ1 < τ2 be two numbers and Bτ2 ⋐ Ω be a ball. There exists a bounded, linear smoothing
operator Tτ1,τ2 : W

1,1(Ω,RN ) →W 1,1(Ω,RN ) defined as

W 1,1(Ω,RN ) ∋ w 7→ Tτ1,τ2 [w](x) :=

∫
−
B1(0)

w(x+ ϑ(x)y) dy,

where it is ϑ(x) := 1
2
max

{
min

{
|x| − τ1, τ2 − |x|

}
, 0
}
. If w ∈W 1,p(Ω,RN ) for some p ≥ 1, the map Tτ1,τ2 [w]

has the following properties:
(i.) Tτ1,τ2 [w] ∈W 1,p(Ω,RN );
(ii.) w = Tτ1,τ2 [w] almost everywhere on (Ω \Bτ2) ∪Bτ1 ;
(iii.) Tτ1,τ2 [w] ∈ w +W 1,p

0 (Bτ2 \ B̄τ1 ,RN );
(iv.) |DTτ1,τ2 [w]| ≤ c(n)Tτ1,τ2 [|Dw|] almost everywhere in Ω.

Furthermore, 

∥Tτ1,τ2 [w]∥Lp(Bτ2\Bτ1 ) ≤ c∥w∥Lp(Bτ2\Bτ1 )

∥DTτ1,τ2 [w]∥Lp(Bτ2\Bτ1 ) ≤ c∥Dw∥Lp(Bτ2\Bτ1 )

∥DTτ1,τ2 [w]∥Lp(Bς\Bτ1 ) ≤ c∥Dw∥Lp(B2ς−τ1
\Bτ1 ) for τ1 ≤ ς ≤ (τ1 + τ2)/2

∥DTτ1,τ2 [w]∥Lp(Bτ2\Bς) ≤ c∥Dw∥Lp(Bτ2\B2ς−τ2
) for (τ1 + τ2)/2 ≤ ς ≤ τ2,

(3.1)

for c ≡ c(n, p). Finally, let N ⊂ R be a set with zero Lebesgue measure. There are

τ̃1 ∈
(
τ1,

2τ1 + τ2
3

)
\ N, τ̃2 ∈

(
τ1 + 2τ2

3
, τ2

)
\ N verifying (τ2 − τ1) ≈ (τ̃2 − τ̃1)(3.2)

up to absolute constants, such that if 1 ≤ p ≤ 2, s ≥ 0 and 2
p
≤ d < 2n

n−1
, it is

∥Vs,p(DTτ̃1,τ̃2 [w])∥Ld(Bτ̃2
\Bτ̃1

) ≤
c

(τ2 − τ1)
n( 1

2
− 1

d )
∥Vs,p(Dw)∥L2(Bτ2

\Bτ1
),(3.3)

for c ≡ c(n, p, d). Clearly, operator Tτ̃1,τ̃2 satisfies properties (i.)-(iv.) and (3.1) with τ̃1, τ̃2 substituting τ1, τ2.

In the next lemma we derive a preliminary version of Caccioppoli inequality that will be eventually adjusted
depending on the singular/nonsingular behavior of F̄(·).

3Recall that we always work under the assumption that Ω is an open, bounded domain with Lipschitz boundary.
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Lemma 3.2. Assume (2.12)-(2.14), (2.16) and (2.23), let u ∈ W 1,p(Ω,RN ) be a local minimizer of (1.2),
Bϱ(x0) ⋐ Ω be any ball, and ℓ(x) := v0+⟨z0, x−x0⟩ be an affine function with z0 ∈

{
z ∈ RN×n : |z| ≤

(
80000(M + 1)

)2/p}
for some positive constant M , and v0 ∈ RN . Then

F̃(u, z0;Bϱ/2(x0))
2 ≤ cK

∫−
Bϱ(x0)

∣∣∣∣∣ V|z0|,p

(
u− ℓ

ϱ

) ∣∣∣∣∣
2

dx

+ c1{q>p}F̃(u, z0;Bϱ(x0))
2q/p

+c

(ϱm ∫−
Bϱ(x0)

|f |m dx

) p
m(p−1)

+ |z0|2−p
(
ϱm
∫
−
Bϱ(x0)

|f |m dx

)2/m
(3.4)

holds with c ≡ c(data,M) and K(·) being defined in (2.2).

Proof. With ϱ/2 ≤ τ1 < τ2 ≤ ϱ being parameters, τ̃1, τ̃2 as in (3.2)4, let η ∈ C1
c (Bτ̃2(x0)) be a cut-off function

satisfying

1Bτ̃1
(x0) ≤ η ≤ 1Bτ̃2

(x0), |Dη| ≲ 1

(τ̃2 − τ̃1)
,

set S(x0) := Bτ2(x0) \Bτ1(x0), S̃(x0) := Bτ̃2(x0) \Bτ̃1(x0), u(x) := u(x)− ℓ(x) and introduce the comparison
maps

φ1(x) := Tτ̃1,τ̃2 [(1− η)u](x), φ2(x) := u(x)− φ1(x).

By Lemma 3.1 (ii.)-(iii.) it is

φ1 ≡ 0 on Bτ̃1(x0), φ2 ∈W 1,p
0 (Bτ̃2(x0),R

N ), φ2 ≡ u on Bτ̃1(x0), Du = Dφ1 +Dφ2.(3.5)

Moreover, by (2.12)-(2.14), (2.23) and Lemma 3.1, we see that the construction developed in [26, Lemma
3.1], [76, Lemma 7.13] applies to our setting as well and renders:

c

∫
Bτ̃2

(x0)

|V|z0|,p(Dφ2)|2 dx ≤
∫
S̃(x0)

[
F (Du−Dφ1)− F (Du)

]
dx

+

∫
S̃(x0)

[
F (z0 +Dφ1)− F (z0)

]
dx

+

∫
Bτ̃2

(x0)

f · φ2 dx =:
[
(I) + (II) + (III)

]
,

with c ≡ c(n,N, p, q, λ,Λ). Before proceeding further, let us notice that

D|z0|(z1, z2)
(q−p)/2 ≲

(
D|z0|(z1, z2)

(p−2)/2
D0(z1, z2)

)(q−p)/p
+ |z0|q−p,(3.6)

for all z0, z1, z2 ∈ RN×n, where D|z0|(·) has been defined in Section 2.1 and the constants implicit in "≈, ≲"
depend on (n,N, p, q), cf. [77, page 256]. We then rearrange:

(I) + (II) =

∫
S̃(x0)

〈(∫ 1

0

[
∂F (z0)− ∂F (z0 +Du− sDφ1)

]
ds

)
, Dφ1

〉
dx

+

∫
S̃(x0)

〈(∫ 1

0

[
∂F (z0 + sDφ1)− ∂F (z0)

]
ds

)
, Dφ1

〉
dx =: (I’) + (II’),

and estimate (keep in mind the upper bound on |z0|),

|(I’)|
(2.18)2
≤ c

∫
S̃(x0)

∫ 1

0

[
|V|z0|,p(Du− sDφ1)|2

|Du− sDφ1|
+

|V|z0|,q(Du− sDφ1)|2

|Du− sDφ1|

]
ds|Dφ1| dx

(2.3)1,5,(2.4)

≤ c

∫
S̃(x0)

(
|V|z0|,p(Du)|2|Dφ1|

|Du| + |V|z0|,p(Dφ1)|2
)

dx

+c

∫
S̃(x0)

(∫ 1

0

(|z0|2 + |Du− sDφ1|2)(q−2)/2 ds

)
(|Du|+ |Dφ1|)|Dφ1| dx

(2.3)4,(2.4)
≤ c

∫
S̃(x0)

|V|z0|,p(Du)|2 + |V|z0|,p(Dφ1)|2 dx

+c

∫
S̃(x0)

(|z0|2 + |Du|2 + |Dφ1|2)(q−2)/2(|Du|+ |Dφ1|)|Dφ1| dx

4The negligible set N is the set of nondifferentiability points of (τ1, τ2) ∋ t 7→ ∥Du∥p
Lp(Bt(x0))

, cf. [26, Lemma 3.1] or
in [76, Lemma 7.13].
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(3.6)
≤ c

∫
S̃(x0)

|V|z0|,p(Du)|2 + |V|z0|,p(Dφ1)|2 dx

+c

∫
S̃(x0)

|z0|q−pD|z0|(Du, Dφ1)
(p−2)/2(|Du|+ |Dφ1|)|Dφ1| dx

+c

∫
S̃(x0)

D|z0|(Du, Dφ1)
q(p−2)

2p D0(Du, Dφ1)
(q−p)/p(|Du|+ |Dφ1|)|Dφ1| dx

(2.13)1
≤ c

∫
S̃(x0)

(1 + |z0|q−p)
(
|V|z0|,p(Du)|2 + |V|z0|,p(Dφ1)|2

)
dx

+c

∫
S̃(x0)

D|z0|(Du, Dφ1)
q(p−2)

2p

(
|Du|

2q
p

−1|Dφ1|+ |Dφ1|2q/p
)

dx

≤ c

∫
S̃(x0)

(1 + |z0|q−p)
(
|V|z0|,p(Du)|2 + |V|z0|,p(Dφ1)|2

)
dx

+c

∫
S̃(x0)

|V|z0|,p(Du)|
2q
p

−1|V|z0|,p(Dφ1)|+ |V|z0|,p(Dφ1)|2q/p dx

(3.3)
≤ c(1 + |z0|q−p)

∫
S̃(x0)

|V|z0|,p(Du)|2 +

∣∣∣∣∣ V|z0|,p

(
u

τ2 − τ1

) ∣∣∣∣∣
2

dx

+c

(∫
S̃(x0)

|V|z0|,p(Du)|2 dx

)(2q−p)/2p(∫
S̃(x0)

|V|z0|,p(Dφ1)|
2p

3p−2q dx

) 3p−2q
2p

+
c1{q>p}

(τ2 − τ1)
n
(

q
p
−1

)
∫

S(x0)

|V|z0|,p(Du)|2 +

∣∣∣∣∣ V|z0|,p

(
u

τ2 − τ1

) ∣∣∣∣∣
2

dx

q/p

(2.13)
≤ c(1 + |z0|q−p)

∫
S̃(x0)

|V|z0|,p(Du)|2 +

∣∣∣∣∣ V|z0|,p

(
u

τ2 − τ1

) ∣∣∣∣∣
2

dx

+
c1{q>p}

(τ2 − τ1)
n
(

q
p
−1

)
∫

S(x0)

|V|z0|,p(Du)|2 +

∣∣∣∣∣ V|z0|,p

(
u

τ2 − τ1

) ∣∣∣∣∣
2

dx

q/p

,

where we also used (2.18)2 with L ≡ 80000(M+1), and exploited that by (2.13)2 it is max
{
2q/p, 2p/(3p− 2q)

}
<

2n/(n − 1), min
{
2q/p, 2p/(3p− 2q)

}
≥ 2/p and c ≡ c(n,N, λ,Λ, p, q,M, F (·)). In a totally similar way we

bound:

|(II’)|
(2.18)2,(2.3)5

≤ c

∫
S̃(x0)

|V|z0|,p(Dφ1)|2 + (|z0|2 + |Dφ1|2)(q−2)/2|Dφ1|2 dx

(3.6),(3.3)
≤ c(1 + |z0|q−p)

∫
S̃(x0)

|V|z0|,p(Du)|2 +

∣∣∣∣∣ V|z0|,p

(
u

τ2 − τ1

) ∣∣∣∣∣
2

dx

+c

∫
S̃(x0)

|V|z0|,p(Dφ1)|2q/p dx

(2.13),(3.3)
≤ c(1 + |z0|q−p)

∫
S̃(x0)

|V|z0|,p(Du)|2 +

∣∣∣∣∣ V|z0|,p

(
u

τ2 − τ1

) ∣∣∣∣∣
2

dx

+
c1{q>p}

(τ2 − τ1)
n
(

q
p
−1

)
∫

S(x0)

|V|z0|,p(Du)|2 +

∣∣∣∣∣ V|z0|,p

(
u

τ2 − τ1

) ∣∣∣∣∣
2

dx

q/p

for c ≡ c(n,N, λ,Λ, p, q,M, F (·)). Concerning term (III), we use (2.23), (2.24), (3.5)2, Sobolev-Poincaré in-
equality, Young inequality and (2.5) with s = |z0|, z1 = 0, z2 = Dφ2 to estimate

|(III)| ≤ c|Bτ̃2(x0)|

(
τ̃m2

∫
−
Bτ̃2

(x0)

|f |m dx

)1/m(∫
−
Bτ̃2

(x0)

|Dφ2|p dx

)1/p

≤ c|Bτ̃2(x0)|

(
τ̃m2

∫
−
Bτ̃2

(x0)

|f |m dx

)1/m(∫
−
Bτ̃2

(x0)

|V|z0|,p(Dφ2)|2 dx

)1/p

+|Bτ̃2(x0)|

(
τ̃m2

∫
−
Bτ̃2

(x0)

|f |m dx

)1/m(∫
−
Bτ̃2

(x0)

|V|z0|,p(Dφ2)|p|z0|p(2−p)/2 dx

)1/p
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≤ 1

4

∫
Bτ̃2

(x0)

|V|z0|,p(Dφ2)|2 dx+ c|Bτ̃2(x0)|

(
τ̃m2

∫
−
Bτ̃2

(x0)

|f |m dx

) p
m(p−1)

+c|Bτ̃2(x0)||z0|
2−p

(
τ̃m2

∫
−
Bτ̃2

(x0)

|f |m dx

)2/m

,

with c ≡ c(n,N, p,m). Merging the content of the previous displays, reabsorbing terms and recalling (3.5)3,
(3.2) and the upper bound imposed on the size of |z0|, we obtain∫

Bτ1
(x0)

|V|z0|,p(Du)|2 dx ≤ c

∫
Bτ2

(x0)\Bτ1
(x0)

|V|z0|,p(Du)|2 +

∣∣∣∣∣ V|z0|,p

(
u

τ2 − τ1

) ∣∣∣∣∣
2

dx

+
c1{q>p}

(τ2 − τ1)
n
(

q
p
−1

)
∫

Bτ2 (x0)\Bτ1 (x0)

|V|z0|,p(Du)|2 +

∣∣∣∣∣ V|z0|,p

(
u

τ2 − τ1

) ∣∣∣∣∣
2

dx

q/p

+ c|Bτ2(x0)|

(τm2 ∫−
Bτ2

(x0)

|f |m dx

) p
m(p−1)

+ |z0|2−p
(
τm2

∫
−
Bτ2

(x0)

|f |m dx

)2/m
 ,

for c ≡ c(data,M). We then sum to both sides of the above inequality the quantity c
∫
Bτ1

(x0)
|V|z0|,p(Du)|2 dx

and use Lemma 2.2 to conclude with (3.4). □

4. The nonsingular regime

Let us prove the approximate A-harmonic character of minima of (1.2) within the nonsingular scenario.

Lemma 4.1. Under assumptions (2.12)-(2.14), (2.16) and (2.23), let u ∈ W 1,p(Ω,RN ) be a local minimizer of
(1.2), Bϱ(x0) ⋐ Ω be a ball and z0 ∈

(
RN×n \ {0}

)
∩
{
|z| ≤

(
80000(M + 1)

)2/p} for some positive constant M

be any matrix such that F̃(u, z0;Bϱ(x0)) > 0. Then∣∣∣∣∣∣
∫
−
Bϱ(x0)

∂2F (z0)

|z0|p−2

〈
|z0|(p−2)/2(Du− z0)

F̃(u, z0;Bϱ(x0))
, Dφ

〉
dx

∣∣∣∣∣∣ ≤ c|z0|(2−p)/2∥Dφ∥L∞(Bϱ(x0))

F̃(u, z0;Bϱ(x0))

(
ϱm
∫
−
Bϱ(x0)

|f |m dx

)1/m

+ c

µM ( F̃(u, z0;Bϱ(x0))
2

|z0|p

)
+

(
F̃(u, z0;Bϱ(x0))

2

|z0|p

)(2κ−1)/2
 ∥Dφ∥L∞(Bϱ(x0)),

where κ := (q − 1)/p if q ≥ 2 and κ := 1/p when 1 < q < 2, and c ≡ c(data,M).

Proof. Let φ ∈ C∞
c (Bϱ(x0),RN ) be a map and, for the ease of reading, let us shortenBϱ(x0) ≡ Bϱ, F̃(u, z0, Bϱ(x0)) ≡

F̃0(u), ℓ(x) := v0 + ⟨z0, x− x0⟩ with v0 ∈ RN , u := u− ℓ and ∥Dφ∥L∞(Bϱ(x0)) ≡ ∥Dφ∥∞. Set

B− := Bϱ ∩
{
|Du| ≤ |z0|

}
, B+ := Bϱ ∩

{
|Du| > |z0|

}
and bound

I :=

∣∣∣∣∣
∫
−
Bϱ

∂2F (z0)⟨Du− z0, Dφ⟩ dx

∣∣∣∣∣
(2.33)
=

∣∣∣∣∣
∫
−
Bϱ

∂2F (z0)⟨Du− z0, Dφ⟩ − ⟨∂F (Du)− ∂F (z0), Dφ⟩ dx+

∫
−
Bϱ(x0)

f · φ dx

∣∣∣∣∣
≤

∫
−
Bϱ

|∂2F (z0)⟨Du− z0, Dφ⟩ − ⟨∂F (Du)− ∂F (z0), Dφ⟩| dx+

∫
−
Bϱ(x0)

|f · φ| dx

=
1

|Bϱ|

∫
B−

|∂2F (z0)⟨Du− z0, Dφ⟩ − ⟨∂F (Du)− ∂F (z0), Dφ⟩| dx

+
1

|Bϱ|

∫
B+

|∂2F (z0)⟨Du− z0, Dφ⟩ − ⟨∂F (Du)− ∂F (z0), Dφ⟩| dx

+

∫
−
Bϱ(x0)

|f · φ| dx =: I1 + I2 + I3,

where we also used that
∫
Bϱ

⟨∂F (z0), Dφ⟩ dx = 0. We then estimate

I1 ≤ ∥Dφ∥∞
|Bϱ|

∫
B−

(∫ 1

0

|∂2F (z0)− ∂2F (z0 + sDu)| ds

)
|Du| dx
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(2.21)
≤ c∥Dφ∥∞

|Bϱ|

∫
B−

µM

(
|V|z0|,p(Du)|2

|z0|p

)(∫ 1

0

|z0 + sDu|p−2 ds

)
|Du| dx

(2.4)
≤ c|z0|(p−2)/2∥Dφ∥∞

∫
−
Bϱ

µM

(
|V|z0|,p(Du)|2

|z0|p

)
|V|z0|,p(Du)| dx

≤ c|z0|(p−2)/2F̃0(u)∥Dφ∥∞

∫−
Bϱ

µM

(
|V|z0|,p(Du)|2

|z0|p

)2

dx

1/2

≤ c|z0|(p−2)/2F̃0(u)µM

(
F̃0(u)

2

|z0|p

)
∥Dφ∥∞,

for c ≡ c(n,N, p, F (·),M). We remark that the convergence of the singular integral in the previous display
can be justified as in [35, Section 4]. Moreover, when applying (2.21) above we chose L ≡ 80000(M + 1) and
consequently denote µL(·) as µM (·). Concerning term I2, notice that

|z|
(2.13)1
≤ 2|V|z0|,p(z)|

2/p for all z ∈ RN×n ∩
{
|z| ≥ |z0|

}
,(4.1)

so we have

I2

(2.18)2,(2.20)
≤ c∥Dφ∥∞

|Bϱ|

∫
B+

(
|z0|p−2 +

|V|z0|,p(Du)|2

|Du|2 +
|V|z0|,q(Du)|2

|Du|2

)
|Du| dx

(4.1)
≤ c∥Dφ∥∞

|Bϱ|

∫
B+

(
1 +

(
1− 1{q≥2}

)
|z0|q−p

)
|z0|p−2|V|z0|,p(Du)|2/p dx

+
c∥Dφ∥∞

|Bϱ|

∫
B+

1{q≥2}|V|z0|,p(Du)|2(q−1)/p dx

≤ c∥Dφ∥∞(1 + |z0|q−p)
|Bϱ|

∫
B+

|z0|p−2|V|z0|,p(Du)|2/p dx

+
c∥Dφ∥∞|z0|q−p

|Bϱ|

∫
B+

1{q≥2}|V|z0|,p(Du)|2(q−1)/p

|z0|q−p
dx

(2.13)
≤ c∥Dφ∥∞|z0|p−pκ−1F̃0(u)

2κ,

where we used that |z0| ≲ (M + 1). In the above display, κ is defined as in the statement and c ≡ c(data,M).
Trivially, we also get

I3 ≤ 4∥Dφ∥∞

(
ϱm
∫
−
Bϱ

|f |m dx

)1/m

.

Merging the content of the previous displays, dividing both sides of the resulting inequality by |z0|(p−2)/2F̃0(u)
and recalling that by (2.13)1 it is 2κ > 1 we obtain (4.1) and the proof is complete. □

Now we are ready to prove a one-scale decay result valid in the nonsingular case. To this end, a fundamental
observation is that under proper smallness conditions, local minimizers of (1.2) are approximately A-harmonic
in the sense of (2.27) for a suitable choice of the bilinear form A.

Proposition 4.1. Under hypotheses (2.12)-(2.14), (2.16) and (2.23) and let u ∈W 1,p(Ω,RN ) be a local minimizer
of (1.2) satisfying

|(Vp(Du))Bϱ(x0)| ≤ 40000(M + 1)(4.2)

for some M > 0 on a ball Bϱ(x0) ⋐ Ω. Then, for any β ∈ (0, 1) there are τ ≡ τ, (data,M, β) ∈ (0, 1/16) and
ε0, ε1 ≡ ε0, ε1(data,M, β) ∈ (0, 1] such that if the smallness conditions

F(u;Bϱ(x0)) < ε0|(Vp(Du))Bϱ(x0)|(4.3)

and (
ϱm
∫
−
Bϱ(x0)

|f |m dx

)1/m

≤ ε1F(u;Bϱ(x0))|(Vp(Du))Bϱ(x0)|
(p−2)/p(4.4)

are verified on Bϱ(x0), it holds that

F(u;Bτϱ(x0)) ≤ τβF(u;Bϱ(x0)).(4.5)
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Proof. For the transparency of the exposition, let us introduce some abbreviations. As all balls considered here
will be concentric to Bϱ(x0), we shall omit denoting the center, given any ball Bς(x0) ⊆ Bϱ(x0) we shorten
(Vp(Du))Bς(x0) ≡ (Vp(Du))ς and for all φ ∈ C∞

c (Bϱ,RN ) we denote ∥Dφ∥L∞(Bϱ) ≡ ∥Dφ∥∞. In the light of
(4.3), there is no loss of generality in assuming that

|(Vp(Du))ϱ| > 0 and F(u;Bϱ) > 0,(4.6)

otherwise (4.5) would be trivially true because of (2.9)1. Being Vp(·) an isomorphism of RN×n, we can find
z̄ ∈ RN×n \ {0} such that Vp(z̄) = (Vp(Du))ϱ and

|z̄|
(4.6)1
> 0, F̃(u, z̄;Bϱ)

(2.8)
≈ F(u;Bϱ)

(4.6)2
> 0, |z̄| = |(Vp(Du))ϱ|2/p.(4.7)

We then define u0(x) := |z̄|−1
(
u(x)− (u)ϱ − ⟨z̄, x− x0⟩

)
and, motivated by (4.7), we apply Lemma 4.1 to get∣∣∣∣∣

∫
−
Bϱ

∂2F (z̄)

|z̄|p−2
⟨Du0, Dφ⟩ dx

∣∣∣∣∣ ≤ cF̃(u, z̄;Bϱ)

|z̄|p/2

µM ( F̃(u, z̄;Bϱ)
2

|z̄|p

)
+

(
F̃(u, z̄;Bϱ)

2

|z̄|p

) 2κ−1
2

 ∥Dφ∥∞

+c|z̄|1−p
(
ϱm
∫
−
Bϱ

|f |m dx

)1/m

∥Dφ∥∞

(4.7)2,3
≤ cF(u;Bϱ)

|(Vp(Du))ϱ|

µM ( F(u;Bϱ)
2

|(Vp(Du))ϱ|2

)
+

(
F(u;Bϱ)

2

|(Vp(Du))ϱ|2

) 2κ−1
2

 ∥Dφ∥∞

+c|(Vp(Du))ϱ|2(1−p)/p
(
ϱm
∫
−
Bϱ

|f |m dx

)1/m

∥Dφ∥∞

(4.3),(4.4)
≤ c̃ε0

[
µM (ε20) + ε2κ−1

0 + ε1
]
∥Dφ∥∞,

with c̃ ≡ c̃(data,M). Moreover, it holds that(∫
−
Bϱ

|V1,p(Du0)|2 dx

)1/2

=
F̃(u, z̄;Bϱ)

|z̄|p/2
(4.7)2,3
≤ c∗F(u;Bϱ)

|(Vp(Du))ϱ|
(4.3)
≤ c∗ε0,

where c∗ ≡ c∗(n,N, p) is the constant from the upper bound in (2.8). Now notice that by (4.2), (4.7)3, (2.20)
with L = (40000(M + 1))2/p and (2.15) we see that the bilinear form A := ∂2F (z̄)|z̄|2−p satisfies (2.27) for
some H ≡ H(n,N, λ, p, F (·),M) ≥ 1. We then set σ := c∗F(u;Bϱ)/|(Vp(Du))ϱ|, let ε ∈ (0, 1] be any number to
be determined later on and, recalling that by (2.13)1 it is 2κ > 1, we assume the following smallness conditions:

max{c̃, c∗}ε0 <
δ

210
and µM (ε20) + ε2κ−1

0 + ε1 ≤ 1

210
,(4.8)

where δ ≡ δ(n,N, p, ε) ∈ (0, 1] is the small parameter given by Lemma 2.4, further restrictions on the size of
the various parameters appearing in (4.8) will be imposed later on. The choice in (4.8) requires in particular
that ε1 ∈ (0, 1/3], fixes dependency ε0 ≡ ε0(data,M, ε) and ultimately gives that∫

−
Bϱ

|V1,p(Du0)|2 dx ≤ σ2 ≤ 1 and

∣∣∣∣∣
∫
−
Bϱ

A⟨Du0, Dφ⟩ dx

∣∣∣∣∣ ≤ δ∥Dφ∥∞ for all φ ∈ C∞
c (Bϱ,RN ),

so Lemma 2.4 applies: there exists a A-harmonic map h ∈W 1,p(Bϱ,RN ) such that∫
−
Bϱ(x0)

|V1,p(Dh)|2 dx ≤ c and
∫
−
Bϱ(x0)

∣∣∣∣∣ V1,p

(
u0 − σh

ϱ

) ∣∣∣∣∣
2

dx ≤ cσ2ε,(4.9)

for c ≡ c(n,N, p). Let τ ∈ (0, 2−10) be a small number whose size will be determined later on and estimate by
(2.3)5,7, (4.9), (2.28), (4.1) with |z0| = 1 and the mean value theorem:∫

−
B2τϱ

∣∣∣∣∣ V1,p

(
u0 − σ(h(x0) + ⟨Dh(x0), x− x0⟩)

2τϱ

) ∣∣∣∣∣
2

dx

≤ c

∫
−
B2τϱ

∣∣∣∣∣V1,p

(
σ(h− h(x0)− ⟨Dh(x0), x− x0⟩)

2τϱ

) ∣∣∣∣∣
2

dx+ c

∫
−
B2τϱ

∣∣∣∣∣ V1,p

(
u0 − σh

2τϱ

) ∣∣∣∣∣
2

dx

≤ cεσ2

τn+2
+ cσ2

∫
−
B2τϱ

∣∣∣∣h− h(x0)− ⟨Dh(x0), x− x0⟩
2τϱ

∣∣∣∣2 dx ≤ cεσ2

τn+2
+ cσ2τ2ϱ2∥D2h∥2L∞(B4τϱ)

≤ cεσ2

τn+2
+ cσ2τ2I1(Dh;Bϱ)

2 ≤ cεσ2

τn+2
+ cσ2τ2,
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with c ≡ c(n,N, p). In the above display, we fix ε := τn+4 thus getting∫
−
B2τϱ

∣∣∣∣∣ V1,p

(
u0 − σ(h(x0) + ⟨Dh(x0), x− x0⟩)

2τϱ

) ∣∣∣∣∣
2

dx ≤ cσ2τ2,(4.10)

for c ≡ c(n,N, p), which yields that∫
−
B2τϱ

|V|z̄|,p(S(x))|2 dx :=

∫
−
B2τϱ

∣∣∣∣∣ V|z̄|,p

(
u− (u)ϱ − ⟨z̄, x− x0⟩ − σ|z̄|(h(x0) + ⟨Dh(x0), x− x0⟩)

2τϱ

) ∣∣∣∣∣
2

dx

= |z̄|p
∫
−
B2τϱ

∣∣∣∣∣ V1,p

(
u0 − σ(h(x0)− ⟨Dh(x0), x− x0⟩)

2τϱ

) ∣∣∣∣∣
2

dx

(4.10)
≤ cτ2|z̄|p

(
F(u;Bϱ)

|(Vp(Du))ϱ|

)2 (4.7)3
≤ cτ2F(u;Bϱ)

2,(4.11)

with c ≡ c(n,N, p). Now, notice that by (2.28) and (4.9)1 it is |Dh(x0)| ≤ c(n,N, p), so recalling (4.3) and
reducing further (with respect to (4.8)) the size of ε0 in such a way that cσ ≤ cε0 ≤ min{2−10, τn} we obtain

(4.12) |z̄|(1− cσ) ≤ |z̄ + σ|z̄|Dh(x0)| ≤ |z̄|(1 + cσ) =⇒ 1

2
|z̄| ≤ |z̄ + σ|z̄|Dh(x0)| ≤

3

2
|z̄|.

We can then estimate∣∣∣ |V|z̄|,p(S(x))|2 − |V|z̄+σ|z̄|Dh(x0)|,p(S(x))|
2
∣∣∣

≤ c|S(x)|2 sup
t∈[|z̄|(1−cσ),|z̄|(1+cσ)]

(
t2 + |S(x)|2

)(p−3)/2 ∣∣|z̄| − |z̄ + σ|z̄|Dh(x0)|
∣∣

≤ cσ|z̄||Dh(x0)||S(x)|2
(
|z̄|(1− cσ)2 + |S(x)|2

)(p−3)/2

≤
cσ|z̄||V|z̄|,p(S(x))|2

(1− cσ)3−p(|S(x)|2 + |z̄|2)1/2
≤ c|V|z̄|,p(S(x))|2,

for c ≡ c(n,N, p). This and (4.11) imply that∫
−
B2τϱ

|V|z̄+σ|z̄|Dh(x0)|,p(S(x))|
2 dx ≤ c

∫
−
B2τϱ

|V|z̄|,p(S(x))|2 dx ≤ cτ2F(u;Bϱ)
2,(4.13)

with c ≡ c(n,N, p). Next, notice that

F̃(u, z̄ + σ|z̄|Dh(x0);B2τϱ)
2

(4.12)
≤ c

∫
−
B2τϱ

|V|z̄|,p(Du− z̄ − σ|z̄|Dh(x0))|2 dx

(2.3)7
≤ c

∫
−
B2τϱ

|V|z̄|,p(Du− z̄)|2 dx+ c

∫
−
B2τϱ

|V|z̄|,p(σz̄Dh(x0))|2 dx

(4.7)2
≤ cτ−nF(u;Bϱ)

2 + cσ2|z̄|p
(4.7)3
≤ cτ−nF(u;Bϱ)

2,(4.14)

for c ≡ c(n,N, p). At this stage, keeping in mind (4.12) we apply Caccioppoli inequality (3.4) to bound

F̃(u, z̄ + σ|z̄|Dh(x0);Bτϱ)2 ≤ cK

(∫
−
B2τϱ

∣∣ V|z̄+σ|z̄|Dh(x0)|,p(S(x))
∣∣2 dx

)

+c1{q>p}F̃(u, z̄ + σ|z̄|Dh(x0);B2τϱ)
2q/p + c

(
(τϱ)m

∫
−
B2τϱ

|f |m dx

) p
m(p−1)

+c|z̄ + σ|z̄|Dh(x0)|2−p
(
(τϱ)m

∫
−
B2τϱ

|f |m dx

)2/m

= c
(
(I) + (II) + (III)

)
,

with c ≡ c(n,N, p, q,M). We continue estimating:

(I)
(4.13)
≤ cK

(
τ2F(u;Bϱ)

2
)

(2.2)
= cτ2F(u;Bϱ)

2 + cτ2q/pF(u;Bϱ)
2q/p

(4.2)
≤ cτ2F(u;Bϱ)

2 + cM2(q−p)/pτ2q/p
(

F(u;Bϱ)

|(Vp(Du))ϱ|

)2(q−p)/p

F(u;Bϱ)
2

(4.3)
≤ cτ2F(u;Bϱ)

2
(
1 +M2(q−p)/pτ2(q−p)/pε

2(q−p)/p
0

)
≤ cτ2F(u;Bϱ)

2,
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for c ≡ c(data,M),

(II)
(4.14)
≤ c1{q>p}τ

−nq/pF(u;Bϱ)
2q/p

(4.2)
≤

c1{q>p}M
2(q−p)/p

τnq/p

(
F(u;Bϱ)

|(Vp(Du))ϱ|

)2(q−p)/p

F(u;Bϱ)
2

(4.3)
≤ c1{q>p}τ

−nq/pε
2(q−p)/p
0 F(u;Bϱ)

2,

with c ≡ c(n,N, p, q,M) and

(III)
(4.12)
≤ cτ

(m−n)p
m(p−1)

(
ϱm
∫
−
Bϱ

|f |m dx

) p
m(p−1)

+ cτ
2(m−n)

m |z̄|2−p
(
ϱm
∫
−
Bϱ

|f |m dx

)2/m

(4.4)
≤ cε

p/(p−1)
1 τ

(m−n)p
m(p−1) F(u;Bϱ)

p/(p−1)|(Vp(Du))ϱ|
p−2
p−1

+cε21τ
2(m−n)

m |z̄|2−pF(u;Bϱ)2|(Vp(Du))ϱ|2(p−2)/p

(4.7)3
≤ cε

p/(p−1)
1 τ

(m−n)p
m(p−1)

(
F(u;Bϱ)

|(Vp(Du))ϱ|

) 2−p
p−1

F(u;Bϱ)
2 + cε21τ

2(m−n)
m F(u;Bϱ)

2

(4.3)
≤ c

(
ε
p/(p−1)
1 τ

(m−n)p
m(p−1) ε

2−p
p−1

0 + ε21τ
2(m−n)

m

)
F(u;Bϱ)

2,

for c ≡ c(n, p,m). Merging the previous four displays we obtain

F̃(u, z̄ + σ|z̄|Dh(x0);Bτϱ)2 ≤ cTF(u;Bϱ)
2,(4.15)

where c ≡ c(data,M) and we set

T := τ2 + 1{q>p}τ
−nq/pε

2(q−p)/p
0 + ε

p/(p−1)
1 ε

(2−p)/(p−1)
0 τ

p(m−n)
m(p−1) + ε21τ

2(m−n)/m.

Finally, let us observe that by triangular inequality it is

|Vp(Du)− Vp(z̄ + σ|z̄|Dh(x0))|2
(2.3)2
≤ c

(
|Du|2 + |z̄ + σ|z̄|Dh(x0)|2

)(p−2)/2

|Du− (z̄ + σ|z̄|Dh(x0))|2

≤ c|V|z̄+σ|z̄|Dh(x0)|,p(Du− z̄ − σ|z̄|Dh(x0))|2,(4.16)

for c ≡ c(n,N, p), therefore

F(u;Bτϱ)
2

(2.1)
≤ cF(u, Vp(z̄ + σ|z̄|Dh(x0));Bτϱ)2

(4.16)
≤ cF̃(u, z̄ + σ|z̄|Dh(x0);Bτϱ)2

(4.15)
≤ cTF(u;Bϱ)

2,(4.17)

with c ≡ c(data,M). Looking at the explicit expression of T, we let β ∈ (0, 1) be any number, first fix
τ ∈ (0, 2−10), then reduce further the size of ε0 ∈ (0, 1) and finally restrict ε1 in such a way that

cmax
{
τ2(1−β), τα/4

}
≤ 1

210

c22ε0
τn

+ c1{q>p}τ
−nq/pε

2(q−p)/p
0 <

τ2β

210

cmax

{
ε21τ

2(m−n)
m , ε

p/(p−1)
1 τ

p(m−n)
m(p−1)

}
<
τ2β0

210
,

(4.18)

where α ≡ α(n,N, p) is the same exponent appearing in (2.29)2. This way, we determine dependencies:
τ, ε0, ε1 ≡ τ, ε0, ε1(data,M, β). Plugging the above restrictions in (4.17) we get (4.5) and the proof is com-
plete. □

Let us look at what happens when the complementary condition to (4.4) is in force.

Proposition 4.2. In the setting of Proposition 4.1, assume

ε1F(u;Bϱ(x0))|(Vp(Du))Bϱ(x0)|
(p−2)/p ≤

(
ϱm
∫
−
Bϱ(x0)

|f |m dx

)1/m

(4.19)

instead of (4.4). Then, for all τ ∈ (0, 1) it is

F(u;Bτϱ(x0)) ≤ c0|(Vp(Du))Bϱ(x0)|
(2−p)/p

(
ϱm
∫
−
Bϱ(x0)

|f |m dx

)1/m

,(4.20)

where c0 := 2ε−1
1 τ−n/2 and ε1 ≡ ε1(data,M) ∈ (0, 1] is the same determined in (4.18).

Proof. Inequality (4.20) is a direct consequence of (2.9)1 and (4.19). □
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5. The singular regime

We start by proving that local minimizers of (1.2) are approximately p-harmonic within the singular scenario.

Lemma 5.1. Under assumptions (2.12)-(2.14), (2.16) and (2.23) let Bϱ(x0) ⋐ Ω be any ball and u ∈W 1,p(Ω,RN )
be a local minimizer of (1.2). Then∣∣∣∣∣

∫
−
Bϱ(x0)

|Du|p−2⟨Du,Dφ⟩ dx

∣∣∣∣∣ ≤ 4∥Dφ∥∞

(
ϱm
∫
−
Bϱ(x0)

|f |m dx

)1/m

+ s∥Dφ∥∞Jp(Du;Bϱ)
p−1

+c∥Dφ∥∞
(
ω(s)−1 + ω(s)−p + ω(s)q−p−1

)
Jp(Du;Bϱ)

p,(5.1)

for all φ ∈ C∞
c (Bϱ(x0),RN ) and any s ∈ (0,∞), with c ≡ c(n,N,Λ, q).

Proof. With the same abbreviations used in Lemma 4.1, let φ ∈ C∞
c (Bϱ,RN ) be any smooth map. We use

(2.33) to control∣∣∣∣∣
∫
−
Bϱ

|Du|p−2⟨Du,Dφ⟩ dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
−
Bϱ

⟨∂F (Du)− ∂F (0)− |Du|p−2Du,Dφ⟩ − f · φ dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫
−
Bϱ

⟨∂F (Du)− ∂F (0)− |Du|p−2Du,Dφ⟩ dx

∣∣∣∣∣
+

∫
−
Bϱ

|f ||φ| dx =: I1 + I2.

We fix s ∈ (0,∞), notice that

(5.2)
|Bϱ ∩ {|Du| > ω(s)}|

|Bϱ|
≤
(
Jp(Du;Bϱ)

ω(s)

)p
and then bound

I1 ≤ 1

|Bϱ|

∫
Bϱ∩{|Du|<ω(s)}

|⟨∂F (Du)− ∂F (0)− |Du|p−2Du,Dφ⟩| dx

+
1

|Bϱ|

∫
Bϱ∩{|Du|≥ω(s)}

|⟨∂F (Du)− ∂F (0)− |Du|p−2Du,Dφ⟩| dx

(2.19),(2.17)
≤ ∥Dφ∥∞

(
sJp(Du;Bϱ)

p−1 +
c

|Bϱ|

∫
Bϱ∩{|Du|≥ω(s)}

1 + |Du|p−1 + |Du|q−1 dx

)
(2.13)2
≤ s∥Dφ∥∞Jp(Du;Bϱ)

p−1 + c∥Dφ∥∞
|Bϱ ∩ {|Du| > ω(s)}|

|Bϱ|

+c∥Dφ∥∞
(
|Bϱ ∩ {|Du| > ω(s)}|

|Bϱ|

)1/p

Jp(Du;Bϱ)
p−1

+c∥Dφ∥∞
(
|Bϱ ∩ {|Du| > ω(s)}|

|Bϱ|

)(p−q+1)/p

Jp(Du;Bϱ)
q−1

(5.2)
≤ s∥Dφ∥∞Jp(Du;Bϱ)

p−1 + c∥Dφ∥∞
(
ω(s)−1 + ω(s)−p + ω(s)q−p−1

)
Jp(Du;Bϱ)

p,

for c ≡ c(n,N,Λ, q) and

I2 ≤ 4∥Dφ∥∞

(
ϱm
∫
−
Bϱ

|f |m dx

)1/m

.

Merging the content of the two previous display we obtain (5.1) and the proof is complete. □

Next, a one-scale decay estimate for the excess functional valid in the singular regime.

Proposition 5.1. Under hypotheses (2.12)-(2.14), (2.16) and (2.23), let u ∈W 1,p(Ω,RN ) be a local minimizer of
(1.2) satisfying (4.2) on a ball Bϱ(x0) ⋐ Ω for some positive constant M . Then, for any γ ∈ (0, α)5, χ ∈ (0, 1]
there are θ ≡ θ(data, χ, γ,M) ∈ (0, 2−10), εi ≡ εi(data, γ,M), i ∈ {2, 3}, such that if the smallness conditions

χ|(Vp(Du))Bϱ(x0)| ≤ F(u;Bϱ(x0)), F(u;Bϱ(x0)) < ε2,

(
ϱm
∫
−
Bϱ(x0)

|f |m dx

)1/m

< ε3(5.3)

5Here, α ≡ α(n,N, p) is the exponent appearing in (2.29)2.
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hold on Bϱ(x0), then

F(u;Bθϱ(x0)) ≤ θγF(u;Bϱ(x0)) + c1K

(ϱm ∫−
Bϱ(x0)

|f |m dx

)1/m


p
2(p−1)

,(5.4)

with c1 ≡ c1(data, χ, γ,M), and K(·) defined in (2.2).

Proof. Let us premise that the same abbreviations appearing in Proposition 4.1 will be adopted also here. By
triangular inequality and (5.3)1 we have that

Jp(Du;Bϱ)
p ≤ 2F(u;Bϱ)

2 + 2|(Vp(Du))ϱ|2 ≤ 2

(
1 +

1

χ2

)
F(u;Bϱ)

2 =: cχF(u;Bϱ)
2.(5.5)

With this estimate at hand, (5.1) becomes∣∣∣∣∣
∫
−
Bϱ

⟨|Du|p−2Du,Dφ⟩ dx

∣∣∣∣∣ ≤ 4∥Dφ∥∞

(
ϱm
∫
−
Bϱ

|f |m dx

)1/m

+ sc(p−1)/p
χ ∥Dφ∥∞F(u;Bϱ)

2(p−1)/p

+ccχ∥Dφ∥∞
(
ω(s)−1 + ω(s)−p + ω(s)q−p−1

)
F(u;Bϱ)

2,(5.6)

for all φ ∈ C∞
c (Bϱ,RN ), s ∈ (0,∞), with c ≡ c(n,N,Λ, q). Notice that there is no loss of generality in assuming

F(u;Bϱ) > 0, otherwise (5.4) would trivially be true by means of (2.9)1. We then let ε4 ∈ (0, 1) to be fixed in
a few lines, and set

ψ := c1/pχ F(u;Bϱ)
2/p +

(
4

ε4

)1/(p−1)
(
ϱm
∫
−
Bϱ

|f |m dx

) 1
m(p−1)

, u0 :=
u

ψ

and divide both sides of (5.6) by ψp−1 to get∣∣∣∣∣
∫
−
Bϱ

⟨|Du0|p−2Du0, Dφ⟩ dx

∣∣∣∣∣ ≤ (ε3 + s) ∥Dφ∥∞

+cc1/pχ ∥Dφ∥∞
(
ω(s)−1 + ω(s)−p + ω(s)q−p−1

)
F(u;Bϱ)

2/p

(5.3)2
≤

[
ε3 + s+ cc1/pχ

(
ω(s)−1 + ω(s)−p + ω(s)q−p−1

)
ε
2/p
2

]
∥Dφ∥∞,(5.7)

for c ≡ c(n,N,Λ, q). Now as a direct consequence of (5.5) we obtain

Jp(Du0;Bϱ) ≤ c1/pχ ψ−1F(u;Bϱ)
2/p ≤ 1,(5.8)

so fixed ε ∈ (0, 1) to be determined later on and, with δ ≡ δ(n,N, p, ε) ∈ (0, 1] being the small parameter given
by Lemma 2.5, we reduce the size of parameters ε4, s first and then that of ε2, ε3 in such a way that

ε4 + s <
δ

4
, cc1/pχ

(
ω(s)−1 + ω(s)−p + ω(s)q−p−1 + c′

)
ε
2/p
2 <

δ

4
, max{c′, 1}

(
4ε3
ε4

)1/(p−1)

<
1

4
(5.9)

thus (5.7) is turned into (2.30) and together with (5.8) legalizes the application of Lemma 2.5 which renders a
p-harmonic map h ∈W 1,p(Bϱ,RN ) such that

Jp(Dh;Bϱ) ≤ 1 and
∫
−
Bϱ

∣∣∣∣ u0 − h

ϱ

∣∣∣∣p ≤ cεp,(5.10)

for c ≡ c(n,N, p). In (5.9)3, c
′ is the constant appearing in the Lipschitz bound (2.29)1. We point out that the

choices in (5.9) fix dependencies ε3, ε4, s ≡ ε3, ε4, s(n,N, p, ε) and ε2 ≡ ε2(n,N, p, ω(·), ε, χ). Further restrictions
on the size of these parameters will be imposed in a few lines. Next, for θ ∈ (0, 2−10), we exploit the isomorphism
properties of Vp(·) to determine z2θϱ ∈ RN×n such that Vp(z2θϱ) = (Vp(Dh))2θϱ and estimate via (2.3)3,7, (2.6),
(5.10) and (2.29)2,∫

−
B2θϱ

∣∣∣∣∣ V|z2θϱ|,p

(
u0 − (h)2θϱ − ⟨z2θϱ, x− x0⟩

2θϱ

) ∣∣∣∣∣
2

dx ≤ c

∫
−
B2θϱ

∣∣∣∣∣ V|z2θϱ|,p

(
u0 − h

2θϱ

) ∣∣∣∣∣
2

dx

+ c

∫
−
B2θϱ

∣∣∣∣∣ V|z2θϱ|,p

(
h− (h)2θϱ − ⟨z2θϱ, x− x0⟩

2θϱ

) ∣∣∣∣∣
2

dx

≤ cθ−n−p
∫
Bϱ

∣∣∣∣ u0 − h

ϱ

∣∣∣∣p dx+ c

∫
−
B2θϱ

|V|z2θϱ|,p(Dh− z2θϱ)|2 dx

≤ cθ−n−pεp + c

∫
−
B2θϱ

|Vp(Dh)− (Vp(Dh))2θϱ|2 dx ≤ cθ−n−pεp + cθ2α,
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with c ≡ c(n,N, p). Scaling back to u in the previous display we obtain∫
−
B2θϱ

∣∣∣∣∣ Vψ|z2θϱ|,p

(
u− ψ((h)2θϱ + ⟨z2θϱ, x− x0⟩)

2θϱ

) ∣∣∣∣∣
2

dx ≤ cψp
(
θ−n−pεp + θ2α

)
,(5.11)

for c ≡ c(n,N, p). Notice that
|z2θϱ| = |(Vp(Du))ϱ|2/p ≤ Jp(Dh;B2θϱ)

(2.29)1
≤ c′Jp(Dh;Bϱ)

(5.10)1
≤ c′

ψ
(5.3)2,3
< c1/pχ ε

2/p
2 +

(
4ε3
ε4

)1/(p−1) (5.9)
≤ 1,

(5.12)

so we can bound

F(u;Bθϱ)
2

(2.1)
≤ 4

∫
−
Bθϱ

|Vp(Du)− Vp(ψz2θϱ)|2 dx
(2.3)3
≤ cF̃(u, ψz2θϱ;Bθϱ)

2

(5.12),(3.4)
≤ cK

∫−
B2θϱ

∣∣∣∣∣ Vψ|z2θϱ|,p

(
u− ψ((h)2θϱ − ⟨z2θϱ, x− x0⟩)

2θϱ

) ∣∣∣∣∣
2

dx


+cψ2−p|z2θϱ|2−p

(
(θϱ)m

∫
−
B2θϱ

|f |m dx

)2/m

+c

(
(θϱ)m

∫
−
B2θϱ

|f |m dx

) p
m(p−1)

+ c1{q>p}F̃(u, ψz2θϱ;B2θϱ)
2q/p

(5.11)
≤ cK

(
ψp
(
θ−n−pεp + θ2α

))
+ cψ2−p|z2θϱ|2−p

(
(θϱ)m

∫
−
B2θϱ

|f |m dx

)2/m

+c

(
(θϱ)m

∫
−
B2θϱ

|f |m dx

) p
m(p−1)

+ c1{q>p}F̃(u, ψz2θϱ;B2θϱ)
2q/p

=: (I) + (II) + (III) + (IV),

with c ≡ c(data,M). We continue estimating

(I)
(2.2)2
≤ cψp

(
θ−n−pεp + θ2α

)
+ cψq

(
θ−n−pεp + θ2α

)q/p
(5.3)2
≤ ccq/pχ

(
1 + ε

2(q−p)/p
2

)(
θ
− (n+p)q

p εp + θ2α
)
F(u;Bϱ)

2

+
c

ε
q/(p−1)
4

K

(ϱm ∫−
Bϱ

|f |m dx

)1/m
p/(p−1)

,

for c ≡ c(data,M). Moreover, by Young inequality with conjugate exponents
(

p
2−p ,

p
2(p−1)

)
we have

(II) + (III)
(5.12)1
≤ cc(2−p)/pχ F(u;Bϱ)

2(2−p)
p θ

2(m−n)
m

(
ϱm
∫
−
Bϱ

|f |m dx

)2/m

+c

(
θ

2(m−n)
m ε

p−2
p−1

4 + θ
(m−n)p
m(p−1)

)(
ϱm
∫
−
Bϱ

|f |m dx

) p
m(p−1)

≤ ccχεF(u;Bϱ)
2 + c

(
ε

p−2
2(p−1) θ

p(m−n)
m(p−1) + θ

2(m−n)
m ε

p−2
p−1

4

)(
ϱm
∫
−
Bϱ

|f |m dx

) p
m(p−1)

,

with c ≡ c(data,M). Finally, we control

(IV) ≤ cψq1{q>p}F̃(u0, z2θϱ;B2θϱ)
2q/p

(2.13)1
≤ cψqθ−nq/p1{q>p}Jp(Du0 − z2θϱ;Bϱ)

q
(5.8),(5.12)1

≤ c1{q>p}ψ
qθ−nq/p

(5.3)2
≤ ccq/pχ 1{q>p}θ

−nq/pε
2(q−p)/p
2 F(u;Bϱ)

2 +
c1{q>p}

ε
q/(p−1)
4 θnq/p

(
ϱm
∫
−
Bϱ

|f |m dx

) q
m(p−1)

,
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for c ≡ c(data,M). Setting

T1 := θ
− (n+p)q

p εp + θ2α + ε+ θ−nq/p1{q>p}ε
2(q−p)/p
2 ;

T2 := ε
−q/(p−1)
4 θ−nq/p + ε

p−2
2(p−1) θ

p(m−n)
m(p−1) + θ

2(m−n)
m ε

p−2
p−1

4

and merging the content of all the previous displays we end up with

F(u;Bθϱ)
2 ≤ ccq/pχ T1F(u;Bϱ)

2 + cT2K

(ϱm ∫−
Bϱ

|f |m dx

)1/m
p/(p−1)

,(5.13)

for c ≡ c(data,M). We then reduce the size of the various parameter appearing in the definition of T1 to get

θ
− (n+p)q

p (εp + ε) <
θ2α

210
, 4θ−(n+2)ε2 + θ−nq/p1{q>p}ε

2(q−p)/p
2 <

θ2α

210
,(5.14)

thus fixing dependencies ε, ε2 ≡ ε, ε2(n,N, p, q,m, θ), and (5.13) becomes

F(u;Bθϱ)
2 ≤ ccq/pχ θ2αF(u;Bϱ)

2 + cK

(ϱm ∫−
Bϱ

|f |m dx

)1/m
p/(p−1)

,(5.15)

with c ≡ c(data, θ,M). Finally, we pick any γ ∈ (0, α), with α ≡ α(n,N, p) being the exponent in (2.29)2 and
select θ ∈ (0, 2−10) so small that

ccq/pχ θ2(α−γ) ≤ 1

210
=⇒ θ ≡ θ(data, χ, γ,M),(5.16)

so with this choice and (5.15) we obtain (5.4) and the proof is complete. □

6. Excess decay and the Regular set

In this section we prove that the excess functional F(·) decays on a certain subset of Ω provided the bound-
edness of the potential If1,m(·). Precisely, with u ∈W 1,p(Ω,RN ) being a local minimizer of (1.2), we set

Ru :=

{
x0 ∈ Ω: ∃ M ≡M(x0) ∈ (0,∞), ϱ̄ ≡ ϱ̄(data,M, f(·)) < min{dx0 , 1}, ε̄ ≡ ε̄(data,M)

such that |(Vp(Du))Bϱ(x0)| < M and F(u;Bϱ(x0)) < ε̄ for some ϱ ∈ (0, ϱ̄]

}
.

(6.1)

According to the discussion in [26, Section 5.1], the set Ru is well defined and open, with full n-dimensional
Lebesgue measure. In particular, given any point x0 ∈ Ru, there exists an open neighborhood B(x0) ⊂ Ru of
x0 and a radius ϱx0 ∈ (0, ϱ̄] such that

|(Vp(Du))Bϱx0
(x)| < M and F(u;Bϱx0

(x)) < ε̄ for all x ∈ B(x0).(6.2)

We stress that for a given point x0 ∈ Ru, all the radii considered from now on will be implicitly assumed to be
less than min{dx0 , 1}. Next, for x0 ∈ Ru verifying conditions (6.1) for some M ≡ M(x0) > 0, and parameters
ε̄, ϱ̄ still to be fixed, we set ν := 2−2, choose γ = α/2 in (5.4), β = γ in (4.5), define α0 := γ and let χ := ε0
in (5.3)1. This eventually fixes the dependency of all the parameters appearing in Propositions 4.1, 4.2 and 5.1
on (data,M). We then define parameters

ε̂ :=
ε2ε

2
0m(τθ)32npq

240npq+10c3c′3H
, H := 28(n+10)c3 max{τ−n, ε−1

0 },(6.3)

constants
c2 := 4(c0 + c1), c3 := c2 max

δ∈{ν,τ,θ}
(1− δα0)−1

c′3 :=

(
c32

28nqH

ε0m(τθ)16nq

) p
2(p−1)

, m := min
δ∈{ν,τ,θ}

(1− δα0),

(6.4)

introduce the balanced composite excess functional

(6.5) (0, ϱ] ∋ s 7→ C(x0; s) := F(u;Bs(x0)) + |(Vp(Du))Bs(x0)|

and assume that

If1,m(x0, 1) <∞.(6.6)

Notice that, up to extending f ≡ 0 in Rn \Ω, the above position makes sense. Moreover, in (6.6) the finiteness
of If1,m(x0, ·) is assumed to hold at radius one, but of course we can suppose that it holds at any positive radius.
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By (6.6) and the absolute continuity of Lebesgue integral, we can find ϱ̂ ≡ ϱ̂(data, f(·),M) ∈ (0,min{1, dx0})
such that

c4K
(
If1,m(x0, s)

) p
2(p−1)

+ c4M
(2−p)/pIf1,m(x0, s) < ε̂, c4 :=

(
280npqc23c

′
3H

2

ε40ε3(τθ)
64npqm

) p2

4(p−1)2

(6.7)

for all s ∈ (0, ϱ̂]. Moreover, since potentials can be discretized via dyadic type sums, if δ ∈ {ν, τ, θ} it is

max
δ∈{ν,τ,θ}


∞∑
j=0

(
(δj+1s)m

∫
−
B

δj+1s
(x0)

|f |m dx

)1/m
 ≤

24nIf1,m(x0, s)

(τθ)2n
,(6.8)

for all s ∈ (0, ϱ̂]. Recalling that ν > max{τ, θ}, by (6.8) and routine interpolation arguments we obtain that(
σm
∫
−
Bσ(x0)

|f |m dx

)1/m

≤
28nIf1,m(x0, s)

(τθ)4n
for all 0 < σ ≤ s/4,(6.9)

which, together with (6.7) yields:

sup
σ≤s/4

K

(σm ∫−
Bσ(x0)

|f |m dx

)1/m


p
2(p−1)

+M (2−p)/p sup
σ≤s/4

(
σm
∫
−
Bσ(x0)

|f |m dx

)1/m

< ε̂

(
ε40ε3m(τθ)56npq

264npqc23c
′
3H

2

) p2

4(p−1)2

(6.10)

for all s ∈ (0, ϱ̂] and

lim
σ→0

(
σm
∫
−
Bσ(x0)

|f |m dx

)1/m

= 0.(6.11)

We refer to [26, Section 5.2] for more details on this matter. In (6.1), we pick ε̄ = ε̂, ϱ̄ = ϱ̂, thus determining a
ball Bϱ(x0) ⋐ Ω with ϱ ∈ (0, ϱ̂] on which

|(Vp(Du))Bϱ(x0)| < M and F(u;Bϱ(x0)) < ε̂(6.12)

hold true. Now we are ready to prove the main result of this section.

Theorem 4. Under assumptions (2.12)-(2.14), (2.16), (2.23) and (6.6), let u ∈W 1,p(Ω,RN ) be a local minimizer
of (1.2), x0 ∈ Ru be a point and M ≡ M(x0) > 0 be the corresponding constant in (6.1). There are ε̂ ≡
ε̂(data,M) ∈ (0, 1) and ϱ̂ ≡ ϱ̂(data,M, f(·)) < dx0 as in (6.3)1 and (6.7) respectively, such that if ε̄ ≡ ε̂ and
ϱ̄ ≡ ϱ̂ in (6.1), then for all balls Bς(x0) ⊂ Bϱ(x0) it holds

|(Vp(Du))Bς(x0)| < 8(1 +M)

|(Vp(Du))Bς(x0)| ≤ c6

(
C(x0; ϱ) + K

(
If1,m(x0, ϱ)

) p
2(p−1)

)
,

(6.13)

and

F(u;Bς(x0)) ≤ c5

(
ς

ϱ

)α0

F(u;Bϱ(x0)) + c6 sup
σ≤ϱ/4

K

(σm ∫−
Bσ(x0)

|f |m dx

)1/m


p
2(p−1)

+c6

(
C(x0; ϱ) + K

(
If1,m(x0, ϱ)

) p
2(p−1)

) 2−p
p

sup
σ≤ϱ/4

(
σm
∫
−
Bσ(x0)

|f |m dx

)1/m

,(6.14)

with c5, c6 ≡ c5, c6(data,M) and α0 ≡ α0(n,N, p) ∈ (0, 1).

Proof. For the ease of reading, we split the proof into five steps.

Step 1: decay estimates at the first scale. For j ∈ N ∪ {0}, ν = 1/4, and τ, θ from Propositions 4.1, 5.1
respectively, we introduce the following notation: τj := τ j , θj := θj , νj := νj with τ0 ≡ θ0 ≡ ν0 = 1, r1 := ν1ϱ
and, for s > 0 we set:

F(s) := F(u;Bs(x0)), V (s) := |(Vp(Du))Bs(x0)|,

C(s) := C(x0; s), S(s) :=

(
sm
∫
−
Bs(x0)

|f |m dx

)1/m

Hs := sup
s≤ϱ/4

S(s), Ks := sup
s≤ϱ/4

K
(
S(s)

)
.
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We then estimate 
F(r1)

(2.9)1
≤ 21+nF(ϱ)

(6.12)2
< 2n+1ε̂

(6.3)1
<

ε2(τθ)
4npq

28npq
< ε2

V (r1)
(2.9)2
≤ 2nF(ϱ) + V (ϱ)

(6.12)
< 2nε̂+M

(6.3)1
≤ 1

2
+M.

(6.15)

With the content of display (6.15) at hand, we can start iterations.

Step 2: maximal iteration chains. Let us recall from [58, Section 12.4] the definition of maximal iteration chains.
Given any nonempty set of indices J0 ⊂ N ∪ {0}, for κ ∈ N the maximal iteration chain of length κ starting at
ι is defined as:

C
κ
ι :=

{
j ∈ N ∪ {0} : ι ≤ j ≤ ι+ κ, ι ∈ J0, ι+ κ+ 1 ∈ J0, j ̸∈ J0 if j > ι

}
,

i.e., Cκι = {ι, ι + 1, · · · , ι + κ} and all its elements lie outside J0 except ι, which belongs to J0. Furthermore,
Cκι is maximal, in the sense that it cannot be properly contained in any other set of the same kind. Similarly,
the infinite maximal chain starting at ι is given by

C
∞
ι :=

{
j ∈ N ∪ {0} : ι ≤ j <∞, ι ∈ J0, j ̸∈ J0 if j > ι

}
.

We then look at two different alternatives:

C(r1) >

(
HHs

ε0

) p
2(p−1)

or C(r1) ≤
(
HHs

ε0

) p
2(p−1)

,(6.16)

with Hs and r1 defined at the beginning of Step 1, H is the constant in (6.3)2 and ε0 is the same parameter
appearing in (4.3).

Step 3: large composite excess at the first scale. In order to repeatedly apply (4.5), (4.20) and (5.4) while
keeping under control the various parameters involved and avoiding any blow-up of the bounding constants,
let us prepare the set-up for the Blocks and Chains technique introduced in [26, Section 5.2]. We assume that
(6.16)1 holds and, with ν = 1/4 as in Step 1, we consider the set of indices

J0 :=

{
j ∈ N ∪ {0} : C(νjr1) >

(
HHs

ε0

) p
2(p−1)

}
.

Notice that J0 ̸= ∅ by (6.16)1. We then look at two possibilities:
i. there is at least one maximal iteration chain Cκι starting at ι ∈ J0 for some κ ≤ ∞;
ii. J0 ≡ N ∪ {0}.

We first examine occurrence (i.) at its worst: we assume that there are (countably) infinitely many finite maximal
iteration chains {Cκd

ιd }d∈N corresponding to the discrete sequences {ιd}d∈N, {κd}d∈N ⊂ N. By maximality it is
easy to see that C

κd1
ιd1

∩ C
κd2
ιd2

= ∅ for d1 ̸= d2 and

ιd+1 ≥ ιd + κd + 1 =⇒ {ιd}d∈N is increasing and ιd → ∞.(6.17)

By (6.17) we can split the reference interval (0, r1] into the union of disjoint blocks as (0, r1] =
⋃
d∈N∪{0} Bd,

where it is B0 := I0 ∪ I11 ∪ K1, Bd := I2d ∪ I1d+1 ∪ Kd+1 for d ∈ N, with

I0 := (νι1r1, r1], Kd := (νιd+κd+1r1, νιd+1r1]

I1d := (νιd+1r1, νιdr1], I2d := (νιd+1r1, νιd+κd+1r1],

and we shall implicitly identify I0 ≡ I20. By construction, the intervals described in the above display are
disjoint and only I2d may be empty. The very definition of maximal iteration chains for the choice of J0 made
above yields that

C(νιdr1) >

(
HHs

ε0

) p
2(p−1)

for all d ∈ N

C(νjr1) ≤
(
HHs

ε0

) p
2(p−1)

for all j ∈ {ιd + 1, · · · , ιd + κd}, d ∈ N,
(6.18)

so if ς ∈ Kd we can find jς ∈ {ιd + 1, · · · , ιd + κd} such that νjς+1r1 < ς ≤ νjς r1 and

C(ς)
(2.11)
≤ 22+nC(νjς r1)

(6.18)2
≤ 2n+2

(
HHs

ε0

) p
2(p−1)

.(6.19)

On the other hand, if ς ∈ I0 or ς ∈ I2d, d ∈ N, it is possible to determine jς ∈ {0, · · · , ι1 − 1} or jς ∈
{ιd + κd + 1, · · · , ιd+1 − 1} verifying νjς+1r1 < ς ≤ νjς r1 and

C(ς)
(2.11)
≥ 1

22+n
C(νjς+1r1)

(6.18)1
>

1

22+n

(
HHs

ε0

) p
2(p−1)

.(6.20)
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Next, if I2d = ∅ so Bd = I1d+1 ∪ Kd+1, it turns out that the adjacent blocks Bd−1-Bd contain two consecutive
chains. In fact, in this case it is ιd+1 = ιd + κd + 1, therefore Bd−1 ∪ Bd = I2d−1 ∪ I1d ∪ Kd ∪ I1d+1 ∪ Kd+1 and if in
particular ς ∈ Kd ∪ I1d+1 ∪ Kd+1, there is jς ∈ {ιd + 1, · · · , ιd+1 + κd+1} such that νjς+1r1 < ς ≤ νjς r1 and

C(ς)
(2.11)
≤ 2n+2C(νjς r1)

(6.18)2
< 2n+2

(
HHs

ε0

) p
2(p−1)

if jς ̸= ιd+1

C(ς)
(2.11)
≤ 2n+2C(νιd+1r1)

(2.11)
≤ 22n+4C(νιd+κdr1)

(6.18)2
< 22n+4

(
HHs

ε0

) p
2(p−1)

if jς = ιd+1,

so in any case we have that

C(ς) < 22n+4

(
HHs

ε0

) p
2(p−1)

for all ς ∈ Kd ∪ Bd.(6.21)

We then consider two occurrences:

ε0V (r1) ≤ F(r1) or ε0V (r1) > F(r1)(6.22)

assume that (6.22)1 holds and introduce a second set of indices defined as

J1 :=
{
j ∈ N ∪ {0} : ε0V (θjr1) ≤ F(θjr1)

}
,

which is nonempty given that 0 ∈ J1 by (6.22)1.

Step 3.1: the singular regime is stable. In this case

(6.23) J1 ≡ N ∪ {0},

so we can ignore the presence of blocks {Bd}d∈N∪{0} and proceed in a more standard way, cf. [35,77]. By (6.15),
(6.10) and (6.22)1 we see that Proposition 5.1 applies and gives

F(θ1r1)
(5.4)
≤ θα0F(r1) + c1K

(
S(r1)

) p
2(p−1)

(6.15)1,(6.10)
< ε2

V (θ1r1)
(6.23)
≤ F(θ1r1)

ε0

(6.24)1
≤ 1

ε0

(
θα0F(r1) + c1K(S(r1))

p
2(p−1)

) (2.9)1
≤ 1

ε0

(
2n+1F(ϱ) + c1K

p
2(p−1)
s

)
V (θ1r1)

(6.24)2,(6.15)1,(6.10)
≤ 1,

(6.24)

where we also used that by (2.13)1 it is p
2(p−1)

> 1. Let us fix j ∈ N and assume that

F(θir1) < ε2 for all i ∈ {0, · · · , j}.(6.25)

As a consequence of (6.23) and (6.25), we have

V (θir1) ≤ F(θir1)

ε0

(6.25)
<

ε2
ε0

(5.14),(5.16)
≤ 1.(6.26)

Thanks to (6.25)-(6.26) we can apply (5.4) at the θjr1-scale to get

F(θj+1r1)
(5.4)
≤ θα0F(θjr1) + c1K

(
S(θjr1)

) p
2(p−1)

≤ θα0(j+1)F(r1) + c1

j∑
i=0

θα0(j−i)K
(
S(θir1)

) p
2(p−1)

≤ θα0(j+1)F(r1) + c3K
p

2(p−1)
s

(6.10),(6.15)1
< ε2 ,(6.27)

where α0 = α/2 has been introduced at the beginning of Section 6, and, via (6.23), (6.27), (5.14), (5.16), the
choice of χ(= ε0) made at the beginning of Section 6 and (5.9)2, we obtain

V (θj+1r1) ≤
F(θj+1r1)

ε0
≤ ε2
ε0

≤ 1.(6.28)

The arbitrariety of j ∈ N and (6.23) allow concluding that (6.27)-(6.28) hold for all j ∈ N ∪ {0}; in particular
it is

V (θj+1r1)
(6.23)
≤ F(θj+1r1)

ε0

(6.27)
≤ 1

ε0

(
θα0(j+1)F(r1) + c3K

p
2(p−1)
s

)
(2.9)
≤ 1

ε0

(
2n+1F(ϱ) + c3K

p
2(p−1)
s

)
,(6.29)

for all j ∈ N ∪ {0}. Standard interpolative arguments, (6.27), (6.29), and (6.15) then yield that whenever
ς ∈ (0, r1] there is jς ∈ J1 such that θjς+1r1 < ς ≤ θjς r1,

F(ς) ≤ 24+n

θ1+n/2

(
ς

ϱ

)α0

F(ϱ) +
2c3
θn/2

K
p

2(p−1)
s , V (ς) ≤ 3

2
(6.30)
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and

V (ς) ≤ |V (ς)− V (θjς r1)|+ V (θjς r1)
(2.10)2,(6.29)

≤ F(θjς r1)

θn/2
+

1

ε0

(
2n+1F(ϱ) + c3K

p
2(p−1)
s

)
(6.27)
≤ 2n+4c3

θn/2ε0

(
F(ϱ) + V (ϱ) + K

p
2(p−1)
s

)
=: V1.(6.31)

Finally, if ς ∈ (r1, ϱ] via (6.15) and (2.10) it is

F(ς) ≤ 24+n
(
ς

ϱ

)α0

F(ϱ) and V (ς) ≤ 2nF(ϱ) + V (ϱ) < 1 +M(6.32)

Merging the content of the three previous displays we obtain F(ς) ≤ 24+n

θ1+n/2

(
ς

ϱ

)α0

F(ϱ) +
2c3
θn/2

K
p

2(p−1)
s

V (ς) ≤ 2 +M, V (ς) ≤ V1

for all ς ∈ (0, ϱ].(6.33)

Step 3.2: first change of scale. If (6.23) does not hold, there exists j1 ∈ N such that

j1 := min{j ∈ N : ε0V (θjr1) > F(θjr1)},

and by (6.22)1 it is j1 ≥ 1. We can rephrase the minimality character of j1 as

ε0V (θjr1) ≤ F(θjr1) for all j ∈ {0, · · · , j1 − 1} and ε0V (θj1r1) > F(θj1r1),(6.34)

therefore by (6.34)1 and (6.10) we deduce that (6.27)-(6.29) hold for all j ∈ {0, · · · , j1 − 1}. In particular, it is

F(θj1r1) ≤ θα0j1F(r1) + c3K
p

2(p−1)
s , V (θj1r1) ≤

3

2
, V (θj1r1) ≤ V1,(6.35)

with V1 being defined in (6.31). We set r2 := θj1r1 and, keeping in mind the shorthand described at the
beginning of Step 1, we introduce a new set of indices

J2 :=
{
j ∈ N ∪ {0} : ε0V (τjr2) > F(τjr2)

}
,

which is nonempty given that 0 ∈ J2 because of (6.34)2 and the very definition of r2.

Step 3.3: the nonsingular regime is stable. Let us assume that

J2 ≡ N ∪ {0} that is ε0V (τjr2) > F(τjr2) for all j ∈ N ∪ {0}.(6.36)

By induction, we want to show that
V (τjr2) ≤ 2, V (τjr2) ≤ V2

F(τj+1r2) ≤ τ (j+1)α0F(r2) + c0

j∑
i=0

τα0(j−i)V (τir2)
(2−p)/pS(τir2)

(6.37)

for all j ∈ N ∪ {0}, where we set

(6.38) V2 := c′3

(
F(ϱ) + V (ϱ) + K

(
If1,m(x0, ϱ)

) p
2(p−1)

)
and c′3 ≡ c′3(data,M) has been defined at the beginning of Section 6. For j = 0, by (6.35)2,3, (6.34)2 and
Propositions 4.1-4.2 we obtain

F(τ1r2)
(4.5),(4.20)

≤ τα0F(r2) + c0V (r2)
(2−p)/pS(r2)

V (r2) ≤
3

2
, V (r2) ≤ V1,

(6.39)

thus, recalling that

(6.40) V1 < 2−4V2

by definition, (6.37) is proven for j = 0. Next, let us fix j ∈ N and assume the validity of (6.37) for all
i ∈ {0, · · · , j}. In particular it holds that F(τi+1r2) ≤ τα0(i+1)F(r2) + c0

i∑
k=0

τα0(i−k)V (τkr2)
(2−p)/pS(τkr2)

V (τir2) ≤ 2, V (τir2) ≤ V2,

(6.41)
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for all i ∈ {0, · · · , j}, therefore we estimate using the discrete Fubini theorem and Young inequality with
conjugate exponents

(
p

2−p ,
p

2(p−1)

)
,

V (τj+1r2) ≤ V (r2) +

j∑
i=0

|V (τi+1r2)− V (τir2)|
(2.9)3,(6.39)2

≤ V1 +
1

τn/2

j∑
i=0

F(τir2)

(6.41)1
≤ V1 +

F(r2)

τn/2
+

F(r2)

τn/2

j−1∑
i=0

τα0(i+1) +
c0
τn/2

j−1∑
i=0

i∑
k=0

τα0(i−k)V (τkr2)
2−p
p S(τkr2)

(6.35)
≤ V1 +

2

τn/2m

(
θα0j1F(r1) + c3K

p
2(p−1)
s

)
+

c0
τn/2

j∑
i=0

i∑
k=0

τα0(i−k)V (τkr2)
2−p
p S(τkr2)

(2.9)1
≤ V1 +

2

τn/2m

(
2n+1F(ϱ) + c3K

p
2(p−1)
s

)
+

c0
τn/2

j∑
k=0

V (τkr2)
2−p
p S(τkr2)

 j∑
i=k

τα0(i−k)


(6.9),(6.41)2

≤ V1 +
2

τn/2m

2n+1F(ϱ) +
c32

4npq
p−1

(τθ)
2npq
p−1

K
(
If1,m(x0, ϱ)

) p
2(p−1)


+
c0V

2−p
p

2

τn/2m

S(r2) +

j−1∑
k=0

S(τk+1r2)


(6.40),(6.8)

≤
(

1

24
+

1

22

)
V2 +

2n+2F(ϱ)

τn/2m
+

24n+1c0
(τθ)3nm

V
2−p
p

2 If1,m(x0, ϱ)

+
c32

4npq
p−1

+1

m(τθ)
3npq
p−1

K
(
If1,m(x0, ϱ)

) p
2(p−1)

(6.3),(6.12)2
≤

(
1

24
+

1

22
+

1

210

)
V2 +

c32
8npq
p−1

m(τθ)
4npq
p−1

K
(
If1,m(x0, ϱ)

) p
2(p−1)

(6.7)
≤

(
1

24
+

1

22
+

1

210
+

1

220

)
V2 ≤ V2(6.42)

where m has been defined in (6.4)4, and, estimating V (τj+1r2) in a slightly different way than (6.42) we also
get

V (τj+1r2) ≤ V (r2) +
2F(r2)

τn/2m
+

c0
τn/2

j−1∑
i=0

i∑
k=0

τα0(i−k)V (τkr2)
(2−p)/pS(τkr2)

(6.41)2
≤ V (r2) +

2F(r2)

τn/2m
+
c02

(2−p)/p

τn/2m

j∑
k=0

S(τkr2)

(6.35)
≤ 3

2
+

2

τn/2m

(
θj1α0F(r1) + c3K

p
2(p−1)
s

)
+
c02

(2−p)/p

τn/2m

S(r2) +

j∑
k=0

S(τk+1r2)


(2.9)1,(6.8)

≤ 3

2
+

2

τn/2m

(
2n+1F(ϱ) + c3K

p
2(p−1)
s

)
+
c02

4n+2If1,m(x0, ϱ)

(τθ)3nm

(6.3)1,(6.10)
≤ 3

2
+

1

210
+

1

220
+
c02

4n+2If1,m(x0, ϱ)

(τθ)3nm

(6.7)
≤ 3

2
+

1

210
+

1

220
+

1

220
≤ 2.(6.43)

We can then combine (6.36), (6.42)-(6.43) and Proposition 4.1-4.2 to get

F(τj+2r2) ≤ τα0F(τj+1r2) + c0V (τj+1r2)
(2−p)/pS(τj+1r2)

(6.37)2
≤ τα0(j+2)F(r2) + c0

j+1∑
k=0

τα0(j+1−k)V (τkr2)
(2−p)/pS(τkr2).(6.44)

Inequalities (6.42)-(6.44) prove the validity of the induction step, so by the arbitrariety of j ∈ N we can conclude
that (6.37) holds for all j ∈ N ∪ {0} and, once established this, we can refine (6.37)2 as

F(τj+1r2) ≤ τ (j+1)α0F(r2) + c3V
(2−p)/p
2 Hs.(6.45)
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Next, if ς ∈ (0, r2] there is jς ∈ N∪{0} such that τjς+1r2 < ς ≤ τjς r2 and, via (2.9), (2.10), (6.7), (6.10), (6.35),
(6.37) and (6.42)-(6.44) we have F(ς) ≤ 2n+4

τ1+n/2

(
ς

ϱ

)α0

F(ϱ) +
2c3
τn/2

(
K

p
2(p−1)
s +V

(2−p)/p
2 Hs

)
V (ς) ≤ 3, V (ς) ≤ 2V2

while if ς ∈ (r2, r1] we can find jς ∈ {0, · · · , j1 − 1} verifying θjς+1r1 < ς ≤ θjς r1, so as done before we can
confirm the validity of estimates (6.30)-(6.31), and when ς ∈ (r1, ϱ] the bounds in (6.32) trivially hold true. All
in all, we can conclude with F(ς) ≤ 2n+4

(τθ)1+n/2

(
ς

ϱ

)α0

F(ϱ) +
2c3

(τθ)n/2

(
K

p
2(p−1)
s +V

(2−p)/p
2 Hs

)
V (ς) ≤ 3(1 +M), V (ς) ≤ 2V2

(6.46)

for all ς ∈ (0, ϱ], where we accounted also for the case in which we directly started from (6.22)2 in case of stable
nonsingular regime - just set j1 = 0, replace r2 with r1 above and recall (6.15)2.

Step 3.4: second change of scale and block B0. We now examine the case in which J2 ̸≡ N∪{0}, i.e., there exists
j2 ∈ N such that

j2 := min
{
j ∈ N : ε0V (τjr2) ≤ F(τjr2)

}
,(6.47)

and (6.34)2 assures that j2 ≥ 1. The minimality of j2 renders that

ε0V (τjr2) > F(τjr2) for all j ∈ {0, · · · , j2 − 1} and ε0V (τj2r2) ≤ F(τj2r2).(6.48)

Set r3 := τj2r2 and notice that we can repeat the same procedure described in Step 3.3 a finite number of times
for getting

F(τj+1r2) ≤ τα0(j+1)F(r2) + c3V
(2−p)/p
2 Hs, V (τjr2) ≤ 2(M + 1), V (τjr2) ≤ V2,(6.49)

for all j ∈ {0, · · · , j2 − 1}6. Next we prove that

r3 cannot belong to I0.(6.50)

By contradiction, assume that (6.50) does not hold. We would then have

V (τj2−1r2)
(2.9)3
≤ V (r3) +

1

τn/2
F(τj2−1r2)

(6.48)1
≤ V (r3) +

ε0
τn/2

V (τj2−1r2)
(4.18)2=⇒ 2V (r3) ≥ V (τj2−1r2),(6.51)

so recalling that (6.48)1-(6.49)2 legalize the application of Propositions 4.1-4.2, we obtain

F(r3)
(4.5),(4.20)

≤ τα0F(τj2−1r2) + c0V (τj2−1r2)
(2−p)/pS(τj2−1r2)

(6.48)1,(6.51)
≤ 2τα0ε0V (r3) + c02

(2−p)/pV (r3)
(2−p)/pHs

(6.20),(6.5)
≤ 2τα0ε0V (r3) +

22n+6ε0c0C(r3)

H
(2.9)1
≤ ε0V (r3)

(
2τα0 +

22n+6c0
H

)
+

22n+8ε0c0F(τj2−1r2)

τn/2H

(6.48)1,(6.51)
≤ ε0V (r3)

(
2τα0 +

22n+6c0
H

+
22n+10ε0c0
τn/2H

)
(4.18)1,(6.3)2

< ε0V (r3),(6.52)

thus contradicting (6.48)2
7. Therefore (6.50) is true and in particular it holds that

I0 ⊆ (r3, r2] ∪ (r2, r1] or I0 ⊆ (r3, r1],(6.53)

depending on whether we started from (6.22) with a change of scale or from (6.22)2. This means that if ς ∈ I0
we can find jς ∈ {0, · · · , j1−1} or jς ∈ {0, · · · , j2−1} such that either θjς+1r1 < ς ≤ θjς r1 or τjς+1r2 < ς ≤ τjς r2
but in any case the estimates in (6.46) are valid. Next, we observe that

F(νι1r1)
(2.9)1
≤ 21+nF(νι1−1r1)

(6.46)1
≤ 22n+5

(τθ)1+n/2

(
νι1−1r1

ϱ

)α0

F(ϱ) +
2n+2c3
(τθ)n/2

(
K

p
2(p−1)
s +V

(2−p)/p
2 Hs

)
6In comparison to (6.37), here we included also the case in which we directly start from (6.22)2. In fact, by (6.15)2 the bound

on averages increases by 2M .
7Notice that in (6.51) we have also used that the constant c appearing in (4.18)2 is larger than one.
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≤ 22n+7

(τθ)1+n/2

(
νι1r1
ϱ

)α0

F(ϱ) +
2n+2c3
(τθ)n/2

(
K

p
2(p−1)
s +V

(2−p)/p
2 Hs

)
(6.54)

and, concerning the average via Young inequality we have

V (νι1r1)
(2.9)2
≤ 2nF(νι1−1r1) + V (νι1−1r1)

(6.46)
≤ 22n+4

(τθ)1+n/2

(
νι1−1r1

ϱ

)α0

F(ϱ) +
2n+1c3
(τθ)n/2

(
K

p
2(p−1)
s +V

(2−p)/p
2 Hs

)
+ 3(1 +M)

(6.12)1,(6.38)
≤ 3(M + 1) +

(
22n+4

(τθ)1+n/2
+
c′3
4

)
F(ϱ) +

 c32
n+1

(τθ)n/2
+ 2

2−p
p−1

(
22n+2c3
(τθ)n/2

) p
2(p−1)

K
p

2(p−1)
s

+
c′3
4
K
(
If1,m(x0, ϱ)

) p
2(p−1)

+
2n+1c3(c

′
3)

(2−p)/p

(τθ)n/2
M (2−p)/pHs

(6.7),(6.10)
≤ 1

2
+ 3(M + 1) + F(ϱ)

(
22n+4

(τθ)1+n/2
+
c′3
4

)
(6.12)2,(6.3)

≤ 4(M + 1),(6.55)

and, using also the definition of c′3 we get

V (νι1r1)
(2.9)2,(6.46)2

≤ 2nF(νι1−1r1) + 2V2

(6.46)1
≤ 22n+4

(τθ)1+n/2
F(ϱ) +

2n+1c3
(τθ)n/2

(
K

p
2(p−1)
s +V

(2−p)/p
2 Hs

)
+ 2V2

(6.9)
≤ 9

4
V2 +

22n+4

(τθ)1+n/2
F(ϱ) +

(
216nq

(τθ)8n

) p
2(p−1)

K
(
If1,m(x0, ϱ)

) p
2(p−1) ≤ 3V2.(6.56)

Once (6.54)-(6.56) are available, given any ς ∈ I11 by (2.9) we obtain F(ς) ≤ 23n+10

(τθ)1+n/2

(
ς

ϱ

)α0

F(ϱ) +
22n+3c3
(τθ)n/2

(
K

p
2(p−1)
s +V

(2−p)/p
2 Hs

)
V (ς) ≤ 5(1 +M), V (ς) ≤ 4V2.

(6.57)

Finally, if ς ∈ K1, by (6.19), (6.10), (6.9), and (6.7) we can conclude that
F(ς) ≤ 2n+2

(
HHs

ε0

) p
2(p−1)

V (ς) ≤ 1, V (ς) ≤ V2.

(6.58)

Combining estimates (6.46), (6.57), and (6.58) we can conclude that for all ς ∈ B0 we obtain
F(ς) ≤ 24n+12

(τθ)1+n/2

(
ς

ϱ

)α0

F(ϱ) +
22n+4c3
(τθ)n/2

(
H

ε0

) p
2(p−1)

(
K

p
2(p−1)
s +V

(2−p)/p
2 Hs

)
V (ς) ≤ 5(1 +M), V (ς) ≤ 4V2.

(6.59)

Step 3.5: the general block Bd. Here we prove that in the regularity perspective, each block Bd acts independently
for all d ∈ N (the case d = 0 is contained in Step 3.4 ). Recalling the definition of Bd given in Step 3, we
immediately notice that if I2d = ∅, we can conclude with (6.21) and, recalling the definitions given in (6.5) and
(6.38), estimate (6.9), and the smallness condition in (6.7)1, we also secure (6.58)2. Next, define quantities

V1,d := c′3,d

(
If1,m(x0, ϱ)

) p
2(p−1)

, c′3,d :=

(
210nH

(τθ)4nε0

) p
2(p−1)

V2,d := c′′3,d

(
K
(
If1,m(x0, ϱ)

)) p
2(p−1)

, c′′3,d :=

(
220nqc3H

m(τθ)16nqε20

) p
2(p−1)

,

assume I2d ̸= ∅ and observe that since d ≥ 1, the construction carried out in Step 2-Step 3 gives a chain Kd
preceding Id, thus

C(νιd+κd+1r1)
(2.11)
≤ 2n+2C(νιd+κdr1)

(6.18)2
≤ 2n+2

(
HHs

ε0

) p
2(p−1)

,(6.60)
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which, by means of (6.5), (6.10), (6.9) and (6.3)1 yields:
F(νιd+κd+1r1) ≤ 2n+2

(
HHs

ε0

) p
2(p−1)

<
ε2(τθ)

4npq

28npq
< ε2

V (νιd+κd+1r1) ≤ 1, V (νιd+κd+1r1) ≤ V1,d.

(6.61)

Therefore, up to make the following substitutions:

r1 ; rd := νιd+κd+1r1, r2 ; r2;d := θj1rd, r3 ; r3;d := τj2r2;d,

V1 ; V1,d, V2 ; V2,d,

(6.62)

we can replicate the whole procedure developed in Step 3.1 -Step 3.4 8 to obtain

F(θj+1rd)
(6.30)
≤ θα0(j+1)F(rd) + c3K

p
2(p−1)
s

(6.60)
≤

(
24nHc3
ε0

) p
2(p−1)

K
p

2(p−1)
s

V (θj+1rd)
(6.29)
≤ 1

ε0

(
θα0(j+1)F(rd) + c3K

p
2(p−1)
s

)
(6.60)
≤ 2n+2

(
HHs

ε20

) p
2(p−1)

+
c3
ε0

K
p

2(p−1)
s

(6.10)
≤ 1

V (θj+1rd)
(6.29)
≤ 1

ε0

(
θα0(j+1)F(rd) + c3K

p
2(p−1)
s

)
(6.60)
≤ 2n+2

(
HHs

ε20

) p
2(p−1)

+
c3
ε0

K
p

2(p−1)
s

(6.9)
≤ V2,d,

for all j ∈ N ∪ {0} in case of stability of the singular regime or, in case of a change of scale,

F(τj+1r2;d)
(6.45)
≤ τ (j+1)α0F(r2;d) + c3V

(2−p)/p
2,d Hs

(6.35)1
≤ τ (j+1)α0θj1α0F(rd) + τ (j+1)α0c3K

p
2(p−1)
s + c3V

(2−p)/p
2,d Hs

(6.60)
≤

(
24nHc3
ε0

) p
2(p−1)

K
p

2(p−1)
s + 24c3V

(2−p)/p
2,d Hs,(6.63)

and, concerning averages,

V (τjr2;d)
(6.43)
≤ 2, V (τjr2;d)

(6.42)
≤ V2,d,(6.64)

for any j ∈ N∪{0} if the nonsingular regime is stable. Keeping in mind (6.61) and following the same procedure
in Step 3.3, we deduce that the same bounds in (6.63)-(6.64) hold also if we started within the nonsingular,
stable scenario, modulo replacing r2;d with rd and letting j1 = 0. In any case, for all ς ∈ (0, rd] it is F(ς) ≤

(
26nHc3
ε0(τθ)n/2

) p
2(p−1)

K
p

2(p−1)
s +

24c3
(τθ)n/2

V
(2−p)/p
2,d Hs

V (ς) ≤ 5, V (ς) ≤ 5V2,d.

(6.65)

Next, let us generalize (6.50) to arbitrary d ∈ N by showing that the nonsingular regime remains stable in I2d,
i.e.:

(6.66) r3;d cannot belong to I2d for all d ∈ N.

In fact, if (6.66) were false, we would be in the same situation as in (6.51), that, together with the minimality
of j2, cf. (6.47), and (6.64)1, allows reproducing the same computations displayed in (6.52) to contradict the
very definition of j2. As a consequence, we obtain that I2d ⊆ (r3;d, r2;d]∪ (r2;d, rd] or I2d ⊆ (r3;d, rd], so whenever
ς ∈ I2d, as in Step 3.4 we assure the validity of (6.65). Since by (2.9)1, (6.65), (6.7), (6.10) and (6.3)1 it holds: F(νιd+1r1) ≤

(
28nHc3
ε0(τθ)n/2

) p
2(p−1)

K
p

2(p−1)
s +

2n+6c3
(τθ)n/2

V
(2−p)/p
2;d Hs

V (νιd+1r1) ≤ 6, V (νιd+1r1) ≤ 6V2,d

(6.67)

for ς ∈ I1d+1 we obtain thanks to (6.67): F(ς) ≤

(
210nHc3
ε0(τθ)n/2

) p
2(p−1)

K
p

2(p−1)
s +

22n+8c3
(τθ)n/2

V
(2−p)/p
2;d Hs

V (ς) ≤ 7, V (ς) ≤ 7V2,d

(6.68)

8Of course parameters j1, j2 appearing in the previous display are defined as in Step 3.2 and Step 3.4, but do not necessarily
numerically coincide with those in Step 3.2 and in Step 3.4 respectively.
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Finally, if ς ∈ Kd+1 we directly have (6.19) and (6.58)2. To summarize, we have just proven the validity of
estimates (6.68) for all ς ∈ Bd, d ∈ N, thus completing the analysis of the occurrence of an infinite number of
finite iteration chains.

Step 3.6: a finite number of finite iteration chains. Assume now that there is only a finite number, say e∗ ∈ N,
of finite iteration chains, {Cκd

ιd }d∈{1,··· ,e∗}. Such chains determine blocks {Bd}d∈{0,··· ,e∗−1}, on which estimates
(6.59) and (6.68) apply and, being only e∗ chains, by definition it follows that {j ∈ N : j ≥ ιe∗ + κe∗ + 1} ⊂ J0.
Then, for all ς ∈ (0, r1] \

⋃
d∈{0,··· ,e∗−1} Bd ≡ (0, νιe∗+κe∗+1r1] there is j ≥ ιe∗ + κe∗ + 1 such that νjς+1r1 <

ς ≤ νjς r1 and

C(ς)
(6.20)
≥ 1

22+n

(
HHs

ε0

) p
2(p−1)

for all ς ∈ (0, νιe∗+κe∗+1r1].(6.69)

Furthermore, we also have that

C(νιe∗+κe∗+1r1)
(2.11)
≤ 22+nC(νιe∗+κe∗ r1)

(6.18)2
≤ 22+n

(
HHs

ε0

) p
2(p−1) (6.10),(6.3)1

<
ε2(τθ)

4npq

28npq
,

which means that (6.61) holds and, via (6.69) we also see that the same argument leading to (6.50)-(6.66)
works in this case as well and renders that the nonsingular regime is stable over the whole (0, νιe∗+κe∗+1r1].
With these last informations at hand we gain that (6.63) (with νιe∗+κe∗+1r1 instead of r2;d) holds, and as a
consequence (6.65) is satisfied for all ς ∈ (0, νιe∗+κe∗+1r1]. To summarize, we have just proven that (6.59) or
(6.68) hold for all ς ∈ (0, r1].

Step 3.7: an infinite iteration chain. We describe the presence of an infinite iteration chains by introducing
a number e∗ ∈ N - assume e∗ ≥ 2 for the moment - and corresponding sets of integers {ι1, · · · , ιe∗} ⊂ N,
{κ1, · · · , κe∗−1} ⊂ N and κe∗ = ∞, determining e∗−1 finite iteration chains {Cκd

ιd }d∈{1,··· ,e∗−1} and one infinite
iteration chains C∞

ιe∗
that must be unique by maximality. On each of blocks {Bd}d∈{0,··· ,e∗−2} determined by

chains {Cκd
ιd }d∈{1,··· ,e∗−1} estimates (6.59) or (6.68) hold true. Concerning the last chain C∞

ιe∗
, it generates the

last block Be∗−1 = I2e∗−1 ∪ I1e∗ ∪ Ke∗ with Ke∗ = (0, νιe∗+1r1]. On intervals I2e∗−1-I1e∗ (6.67)-(6.68) are verified,
while on Ke∗ we can simply conclude by means of (6.58). On the other hand, if e∗ = 1, there is only one block
B0 = I0 ∪ I11 ∪ K1 ≡ (0, r1], on which (6.46) and (6.57)-(6.58) holds, therefore we can conclude with (6.59) also
in this case.

Step 3.8: occurrence (ii.) Since J0 ≡ N ∪ {0}, inequality (6.20) is satisfied by all ς ∈ (0, r1], so the validity
of (6.50)-(6.66) is now extended to the full interval (0, r1] and this guarantees the stability of the nonsingular
regime. Therefore we can proceed as done in Step 3.1 -Step 3.3 to get (6.46).

Step 4: small composite excess at the first scale. This time, the set J0 ⊆ N ∪ {0} is defined as

J0 :=

{
j ∈ N ∪ {0} : C(νjr1) ≤

(
HHs

ε0

) p
2(p−1)

}
(6.16)2
̸= ∅.

We immediately notice that if J0 ≡ N ∪ {0}, then (6.19) holds for all ς ∈ (0, r1] so this, (6.58) and (6.32) give
the result. We then look at the case in which there exist infinitely many finite iteration chains {Cκd

ιd }d∈N with
{ιd}d∈N, {κd}d∈N as in (6.17), determining intervals

I0 := (νι1+1r1, r1], K1d := (νιd+κdr1, νιd+1r1]

K2d := (νιd+κd+1r1, νιd+κdr1] I2d := (νιd+1+1r1, νιd+κd+1r1]

and blocks B0 := I0 ∪ K11 ∪ K21, Bd := I2d ∪ K1d+1 ∪ K2d+1 such that (0, r1] ≡
⋃
d∈N∪{0} Bd by (6.17). As done in Step

3, we readily observe that

{0, · · · , ι1}, {ιd + κd + 1, · · · , ιd+1} ⊂ J0 and {ιd + 1, · · · , ιd + κd} ⊂ C
κd
ιd ,(6.70)

therefore we have 
ς ∈ I0 or ς ∈ I2d =⇒ C(ς) ≤ 22+n

(
HHs

ε0

) p
2(p−1)

ς ∈ K1d =⇒ C(ς) >
1

22+n

(
HHs

ε0

) p
2(p−1)

.

(6.71)

Notice that I2d cannot be empty otherwise ιd+1 = κd + ιd and this is not possible by means of (6.70), while if
K1d+1 = ∅ (i.e. if κd+1 = 1), we can exploit (6.71)1, (2.11) and that ιd ∈ J0 for all d ∈ N to derive

ς ∈ B0 with K11 = ∅

ς ∈ Bd with K1d+1 = ∅, d ∈ N
=⇒ C(ς) ≤ 22n+4

(
HHs

ε0

) p
2(p−1)

;(6.72)
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in other words, whenever K1d+1 = ∅ there is nothing to prove on the related block Bd and (6.72) and (6.58)2
immediately follow. Now, given a general block Bd with K1d+1 ̸= ∅ and d ∈ N ∪ {0}, if ς ∈ I0 or ς ∈ I2d estimate
(6.71) holds. Next, observe that

C(νιd+1+1r1)
(2.11)
≤ 22+nC(νιd+1r1)

(6.70)
≤ 22+n

(
HHs

ε0

) p
2(p−1)

(6.10),(6.3)1=⇒ F(νιd+1+1r1) <
ε2(τθ)

4npq

28npq
, V (νιd+1+1r1) ≤ 1, V (νιd+1+1r1) ≤ V1,d,(6.73)

therefore, setting this time rd := νιd+1+1r1 we can plug in the substitutions in (6.62) and apply the content of
Step 3.5 (with I2d replaced by K1d+1) to get (6.65) and, recalling that K2d+1 differs from K1d+1 only by one scale,
we recover also (6.68). Merging (6.71), (6.72), (6.65) and (6.68) we can conclude that (6.68) holds for all ς ∈ Bd,
d ∈ N ∪ {0}.

Step 4.1: a finite number of finite iteration chains. Let us assume now that there is a finite number, say
e∗ ∈ N of finite iteration chains {Cκd

ιd }d∈{1,··· ,e∗} and corresponding blocks {Bd}d∈{0,··· ,e∗−1}. On every block
Bd, d ∈ N∪{0}, estimates (6.68) apply. Notice that (0, r1]\

⋃e∗−1
d=0 Bd = (0, νιe∗+κe∗+1r1] and, since the last finite

iteration chain is C
κe∗
ιe∗ , it follows that {j ∈ N : j ≥ ιe∗ + κe∗ + 1} ⊂ J0, therefore for all ς ∈ (0, νιe∗+κe∗+1r1]

the bound in (6.71) is verified, so we confirm again the validity of (6.68).

Step 4.2: an infinite iteration chain. In this case, for e∗ ∈ N (assume for the moment that e∗ ≥ 2) we can
find finite set of integers {ι1, · · · , ιe∗} ⊂ N, {κ1, · · · , κe∗−1} ⊂ N and κe∗ = ∞, thus determining e∗ − 1 finite
iteration chains {Cκd

ιd }d∈{1,··· ,e∗−1} and one infinite iteration chain C∞
ιe∗

, that is unique by maximality. Chains
{Cκdιd }d∈{1,··· ,e∗−1} determine blocks {Bd}d∈{1,··· ,e∗−2} on which the content of Step 4 applies and (6.68) holds
true, while the presence of C∞

ιe∗
results into Be∗−1 = I2e∗−1 ∪ (0, νιe∗+1r1]. If ς ∈ I2e∗−1 we directly have (6.71)

which in particular implies the validity of (6.73) with d = e∗ − 1, so we can reproduce the content of Step 3.5
with rd = νιe∗+1r1 and eventually arrive at (6.68). Finally if e∗ = 1, there is only the infinite iteration chain,
thus (0, r1] = I0 ∪ (0, νιe∗+1r1]. On I0 the bound in (6.71) is in force, this in turn yields (6.73) so, proceeding
as in Step 3.5 we obtain (6.68).

Step 5: conclusions. Collecting estimates (6.33), (6.46), (6.59), and (6.68), and setting

c5 :=
24n+12

(τθ)1+n/2
, c6 :=

(
240nqH2c23c

′
3

ε40m(τθ)32nq

) p
2(p−1)

we obtain (6.13)-(6.14) and the proof is complete. □

For later use, let us record a couple of consequences of Theorem 4, that come along the lines of [26, Proposition
5.1 and Corollary 5.1].

Corollary 6.1. Assume (2.12)-(2.14), (2.23), let u ∈ W 1,p(Ω,RN ) be a local minimizer of (1.2), x0 ∈ Ru be a
point, M ≡ M(x0) > 0 be the constant in (6.1), ε̂ ≡ ε̂(data,M) and ϱ̂ ≡ ϱ̂(data,M, f(·)) be as in (6.3)1 and
(6.7) respectively.

• If

If1,m(x, σ) → 0 locally uniformly in x ∈ Ω,(6.74)

then if ε̄ ≡ ε̂ and ϱ̄ ≡ ϱ̂ in (6.1), there is an open neighborhood B(x0) ⊂ Ru and a positive radius
ϱx0 ≡ ϱx0(data,M, f(·)) ∈ (0, ϱ̂] such that

|(Vp(Du))Bς(x)| < 8(1 +M)

|(Vp(Du))Bσ(x)| ≤ c8

(
C(x; ς) + K

(
If1,m(x, ς)

) p
2(p−1)

)(6.75)

and

F(u;Bσ(x)) ≤ c7

(
σ

ς

)α0

F(u;Bς(x)) + c8 sup
s≤ς/4

K

(sm ∫−
Bs(x)

|f |m dx

)1/m


p
2(p−1)

+c8

(
C(x; ς) + K

(
If1,m(x, ς)

) p
2(p−1)

)(2−p)/p

sup
s≤ς/4

(
sm
∫
−
Bs(x)

|f |m dx

)1/m

,(6.76)

hold for all x ∈ B(x0), 0 < σ ≤ ς ≤ ϱx0 , where c7 := c5(2
12c5)

1+ n
2α0 and c8 := c6(2

16c5)
2+ n

2α0 ,
c7, c8 ≡ c7, c8(data,M).
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• If (6.6) is in force instead of (6.74), then the following "restricted" versions of (6.75)-(6.76) hold:
|(Vp(Du))Bς(x0)| < 8(1 +M)

|(Vp(Du))Bσ(x0)| ≤ c8

(
C(x0; ς) + K

(
If1,m(x0, ς)

) p
2(p−1)

)(6.77)

and

F(u;Bσ(x0)) ≤ c7

(
σ

ς

)α0

F(u;Bς(x0)) + c8 sup
s≤ς/4

K

(sm ∫−
Bs(x0)

|f |m dx

)1/m


p
2(p−1)

+c8

(
C(x0; ς) + K

(
If1,m(x0, ς)

) p
2(p−1)

)(2−p)/p

sup
s≤ς/4

(
sm
∫
−
Bs(x0)

|f |m dx

)1/m

,(6.78)

for all balls Bσ(x0) ⊆ Bς(x0) ⊆ Bϱx0
(x0).

• With (6.6) in force, if in (6.1) it is ε̄ ≡ ε̂, ϱ̄ ≡ ϱ̂, then

sup
σ≤ϱx0

F(u;Bϱ(x0)) ≤ c9ε̂,(6.79)

with c9 := 28(c7 + c8), c9 ≡ c9(data,M).

We conclude this section with an almost everywhere VMO result. To do so, we need some preliminaries.
Assume (6.74), let x0 ∈ Ru be any point, M ≡ M(x0) be the positive constant in (6.1). With ε̄, ϱ̄ still to be
determined, we introduce constants:

H1 := max

{
224nHc9,

224nH

ε1(τθ)6n

}
, H2 :=

(
236nqc8H

ε1(τθ)20nq

) p
2(p−1)

,(6.80)

and fix

ε∗ :=
ε̂

220c9
,(6.81)

where ε̂ ≡ ε̂(data,M), H ≡ H(data,M) are defined in (6.3). Notice that (6.74) implies that

If1,m(·, 1) ∈ L∞
loc(Ω) and

(
sm
∫
−
Bs(x)

|f |m dx

)1/m

→ 0 locally uniformly in x ∈ Ω.(6.82)

By means of (6.74), we determine a threshold radius ϱ∗ ≡ ϱ∗(data,M, f(·)) ∈ (0, ϱ̂] such that

c10K
(
If1,m(x, s)

) p
2(p−1)

+ c10M
(2−p)/pIf1,m(x, s) < ε∗, c10 :=

(
224npqc9H2

ε0(τθ)20npqm

) p
2(p−1)

(6.83)

for all s ≤ ϱ∗, x ∈ Bdx0
(x0), which implies via (6.9) that

c8K

 sup
s≤ϱ∗/4

(
sm
∫
−
Bs(x)

|f |m dx

)1/m


p
2(p−1)

<
1

210

c8 (2 +M)
2−p
p

 sup
s≤ϱ∗/4

(
sm
∫
−
Bs(x)

|f |m dx

)1/m
 < 1

210
,

(6.84)

for all x ∈ Bdx0
(x0), and recalling the definition of c9 given in Corollary 6.1, we have c10 > c4 and by (6.80)

that it is H2 > H, so the choice made in (6.83) immediately implies the validity of (6.7) on Bdx0
(x0). Now we

are ready to prove:

Proposition 6.1. Under assumptions (2.12)-(2.14), (2.23) and (6.74), let u ∈ W 1,p(Ω,RN ) be a local mini-
mizer of (1.2). There exists an open set Ωu ⊂ Ω of full n-dimensional Lebesgue measure such that Du ∈
VMOloc(Ωu,RN×n) which can be characterized as

Ωu :=
{
x0 ∈ Ω: ∃M ≡M(x0) > 0: |(Vp(Du))Bϱ(x0)| < M and F(u;Bϱ(x0)) < ε∗ for some ϱ ∈ (0, ϱ∗]

}
,

with ε∗ ≡ ε∗(data,M) as in (6.83) and ϱ∗ ≡ ϱ∗(data,M, f(·)) defined by (6.83)-(6.84). In particular, for all
x0 ∈ Ωu there is an open neighborhood B(x0) ⊂ Ωu such that

lim
ϱ→0

F(u;Bϱ(x)) = 0 uniformly for all x ∈ B(x0).(6.85)
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Proof. In the light of the discussion at the beginning of Section 6, the ideal candidate for Ωu is set Ru as in
(6.1) with ε̄ ≡ ε∗ and ϱ̄ ≡ ϱ∗: in fact, we already know that it is an open set of full n-dimensional Lebesgue
measure so we only need to prove the VMO-result. We take x0 ∈ Ru with ε̄ ≡ ε∗, ϱ̄ ≡ ϱ∗ in (6.1) and observe
that (6.74) allows applying the first part of Corollary 6.1, so there exists an open neighborhood B(x0) ⊂ Ru

and a positive radius ϱx0 ≡ ϱx0(data,M, f(·)) such that (6.75)-(6.76) are verified for all x ∈ B(x0) and any
0 < σ ≤ ς ≤ ϱx0 . Of course, we can always assume that B(x0) ⊂ Bdx0

(x0). Fixed an arbitrary r ∈ (0, 1), by
(6.82)2 we can find a radius ϱ′′ ≡ ϱ′′(data,M, f(·)) ∈ (0, ϱx0 ] satisfying

c8 sup
s≤ϱ′′

K

(∫−
Bs(x)

|f |m dx

)1/m


p
2(p−1)

+ c8 (2 +M)(2−p)/p sup
s≤ϱ′′

(∫
−
Bs(x)

|f |m dx

)1/m

≤ r

24
.(6.86)

Moreover, via (6.76) with σ ≡ ϱ′′ and ς ≡ ϱx0 , (6.81), (6.83), (6.84) and (6.2) with ε̄ ≡ ε∗, ϱ̄ ≡ ϱ∗ we obtain

F(u;Bϱ′′(x)) ≤ c7

(
ϱ′′

ϱx0

)α0

F(u;Bϱx0
(x)) + c8 sup

s≤ϱx0
/4

K

(sm ∫−
Bs(x)

|f |m dx

)1/m


p
2(p−1)

+c8

(
C(x; ϱx0) + K

(
If1,m(x, ϱx0)

) p
2(p−1)

)(2−p)/p

sup
s≤ϱx0/4

(
sm
∫
−
Bs(x)

|f |m dx

)1/m

≤ c7ε∗ +
1

210
≤ 1(6.87)

Finally we pick σr ≡ σr(data,M, f(·)) ∈ (0, ϱ′′] small enough that

(6.88) c9(σr/ϱ
′′)α0 ≤ r/2.

Plugging (6.86)-(6.88) in (6.76) with σ ≡ σr and ς ≡ ϱ′′ we obtain that

σ ≤ σr =⇒ F(u;Bσ(x)) ≤ r for all x ∈ B(x0).

The arbitrariety of r, (6.75) and a standard covering argument eventually lead to (6.85) and the proof is
complete. □

Remark 6.1. Let us list some relevant observations.
• Replacing (6.74) with (6.6) in Proposition 6.1, we obtain that whenever x0 ∈ Ω verifies the conditions

in (6.1) with ε̄ ≡ ε∗ and ϱ̄ ≡ ϱ∗ it holds that

(6.89) lim
ϱ→0

F(u;Bϱ(x0)) = 0.

• Corollary 6.1 and Proposition 6.1 remain valid if M is replaced by 8(1 +M), without affecting the
magnitude of the bounding constants appearing in the various estimates as they are all derived in
correspondence of larger values than M .

• Corollary 6.1 guarantees in particular that once (6.12) - with ε̂, ϱ̂ as in (6.3)1 and (6.7) respectively - is
verified for a certain ϱ ∈ (0, ϱ̂], then the Morrey type decay estimates (6.76) and (6.78) for the excess
functional F(·) hold at all scales smaller than ϱ. This will allow us to work on all scales smaller that ϱ.

7. Borderline gradient continuity

This final section is devoted to the proof of the partial gradient continuity for minima of (1.2). Let x0 ∈ Ru be
any point, M ≡M(x0) > 0, ε̄, ϱ̄ be the parameters appearing in (6.1), still to be fixed as functions of (data,M)
and (data,M, f(·)) respectively. We assume the validity of (6.6) at x0, define the smallness threshold

ε′ :=
ε∗

28c9 max{H1, H2}
=⇒ ε′ ≡ ε′(data,M)(7.1)

and determine the radius ϱ′ ≡ ϱ′(data,M, f(·)) ∈ (0, ϱ∗] so small that

c11K
(
If1,m(x0, s)

) p
2(p−1)

+ c11M
(2−p)/pIf1,m(x0, s) < ε′, c11 :=

(
c102

32npqmax{H1, H2}
(τθ)16npq

) p
2(p−1)

.(7.2)

for all s ∈ (0, ϱ′], which yields

sup
σ≤s/4

K

(σm ∫−
Bσ(x0)

|f |m dx

)1/m


p
2(p−1)

+M (2−p)/p sup
σ≤s/4

(
σm
∫
−
Bσ(x0)

|f |m dx

)1/m

< ε′
(

(τθ)12npq

224npqc10 max{H1, H2}

) p
2(p−1)

,(7.3)
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cf. Section 6. Of course there is no loss of generality in assuming that 0 < ϱ′ ≤ ϱ∗ ≤ ϱ̂, so setting ε̄ ≡ ε′ and
ϱ̄ ≡ ϱ′ in (6.1) we can find ϱ ∈ (0, ϱ′] such that

F(u;Bϱ(x0)) < ε′ and |(Vp(Du))Bϱ(x0)| < M.(7.4)

Thanks to the choices made in (7.1)-(7.2) we see that (6.77)-(6.78) and (6.89) are available; later on, we
shall strengthen (6.6) by assuming (6.74) thus (6.75)-(6.76) and Proposition 6.1 will be at hand. Now, with
H ≡ H(data,M) as in (6.3)2 and H1, H2 ≡ H1, H2(data,M) being defined in (6.80), we slightly modify the
definition of the composite excess functional given in (6.5) and consider its "unbalanced" version:

(0, ϱ] ∋ s 7→ CH(x0; s) := HF(u;Bs(x0)) + |(Vp(Du))Bs(x0)|

and, for s ∈ (0, ϱ], introduce the nonhomogeneous excess functional:

N(x0; s) := H1F(u;Bs(x0)) + c12H2

(
K
(
If1,m(x0, s)

) p
2(p−1)

+ |(Vp(Du))Bs(x0)|
(2−p)/pIf1,m(x0, s)

)
,

where K(·) is defined in (2.2) and c12 :=
(
216npq(τθ)−8npq

) p
2(p−1) . Notice that by (6.89), (6.77)1 and (6.6) we

have

lim
ϱ→0

F(u;Bϱ(x0)) = 0 =⇒ lim
ϱ→0

N(x0; ϱ) = 0.(7.5)

For the ease of exposition, we shall adopt some abbreviations. With τ ≡ τ(data,M) being the parameter
determined in Propositions 4.1-4.2, j ∈ N∪{−1, 0} and σ ∈ (0, ϱ] set σj := τ j+1σ, σ−1 := σ and Bj := Bσj (x0).
From now on we will mostly employ the shorthands described in Step 1 of the proof of Theorem 4 and, with
Remark 6.1 in mind, unless otherwise specified we shall work within the setting designed at the beginning of
Section 7.

7.1. An inductive lemma. The key tool for proving our sharp partial continuity result is an inductive technical
lemma that is the subquadratic counterpart of [26, Lemma 6.1], both inspired by [59, Lemma 6.1].

Lemma 7.1. Let x0 ∈ Ru be a point with M ≡M(x0) being the positive constant in (6.1), γ be a positive number
and assume that ε̄ ≡ ε′, ϱ̄ ≡ ϱ′ in (6.1) with ε′ ≡ ε′(data,M), ϱ′ ≡ ϱ′(data,M, f(·)) defined in (7.1)-(7.2); that

N(x0;σ) ≤ 2γ for some σ ∈ (0, ϱ](7.6)

and that, for integers k ≥ i ≥ 0 inequalities

CH(σj) ≤ γ, CH(σj+1) ≥
γ

16
for all j ∈ {i, · · · , k}, CH(σi) ≤

γ

4
(7.7)

are verified. Then the following holds:

CH(σk+1) ≤ γ,

k+1∑
j=i

F(σj) ≤
γ

2H
(7.8)

and
k+1∑
j=i

F(σj) ≤
4F(σi)

3
+

23γ(2−p)/p

3ε1τn/2

k∑
j=i

S(σj),(7.9)

where H, ε1 ≡ H, ε1(data,M) defined in (6.3)2 and in Propositions 4.1-4.2 respectively.

Proof. Our preliminary observation is that x0 ∈ Ru with ε̄ ≡ ε′ and ϱ̄ ≡ ϱ′ guarantees the validity of (7.4) and
of (6.77)-(6.78). A straightforward computation shows that

|V (σj)− V (σj+1)|
(2.9)3
≤ F(σj)

τn/2
≤ CH(σj)

τn/2H

(6.3)2,(7.7)1
≤ γ

26
.(7.10)

Next, let us prove that under (7.6)-(7.7) the singular regime cannot be in force, i.e.:

ε0V (σj) ≤ F(σj) cannot hold for all j ∈ {i, · · · , k}.(7.11)

By contradiction, we assume that

there is j ∈ {i, · · · , k} such that ε0V (σj) ≤ F(σj) holds true(7.12)

and estimate via Young inequality with conjugate exponents
(

p
2−p ,

p
2(p−1)

)
,

HF(σj+1)
(6.78)
≤ c7Hτ

α0(j+2)F(σ) + c8H sup
s≤σ/4

K
(
S(s)

) p
2(p−1)

+c8H

(
C(σ) + K

(
If1,m(x0, σ)

) p
2(p−1)

)(2−p)/p

sup
s≤σ/4

S(s)
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≤ H(c7 + 2c8)F(σ) + c8H sup
s≤σ/4

K
(
S(s)

) p
2(p−1)

+c8HK(If1,m(x0, σ))
2−p

2(p−1) sup
s≤σ/4

S(s) + c8HV (σ)(2−p)/p sup
s≤σ/4

S(σ)

(6.9)
≤ N(x0;σ)

H(c7 + c8)

H1
+

Hc8
c12H2

(
28nq

(τθ)4nq

) p
2(p−1)

+
2Hc8
c12H2

(
28n

(τθ)4n

)
(7.6)
≤ γ

2H(c7 + c8)

H1
+

2Hc8
c12H2

(
28nq

(τθ)4nq

) p
2(p−1)

+
22Hc8
c12H2

(
28n

(τθ)4n

) (6.80)
≤ γ

26
.(7.13)

Furthermore, we have

V (σj)
(7.11)
≤ F(σj)

ε0
≤ CH(σj)

ε0H

(7.7)1
≤ γ

ε0H

(6.3)2
≤ γ

26
(7.14)

and so

CH(σj+1) ≤ |V (σj+1)− V (σj)|+ V (σj) +HF(σj+1)
(7.10),(7.13),(7.14)

≤ 3γ

26
<

γ

16
,

in contradiction with (7.7)2 and (7.11) is verified. Next, we prove the validity of

F(σj+1) ≤
F(σj)

4
+

2γ(2−p)/pS(σj)

ε1τn/2
.(7.15)

In the light of (7.11), we have to consider only two possibilities: either (4.4) holds and, given (7.7)1 and the
bound imposed on the size of γ, via (4.5) and (4.18) we directly have (7.15); or (4.19) is satisfied and

F(σj+1)
(2.9)1
≤ 2

τn/2
F(σj)

(4.19)
≤ 2V (σj)

(2−p)/pS(σj)

ε1τn/2

(2.13)1,(7.7)1
≤ 2γ(2−p)/pS(σj)

ε1τn/2
,

and (7.15) follows in any case. Before proceeding further, notice that k∑
j=i

S(σj)


p

2(p−1)
(6.8)
≤

2
4np
p−1

(
If1,m(x0, σ)

) p
2(p−1)

(τθ)
2np
p−1

≤ N(x0;σ)

H2

(7.6)
≤ 2γ

H2
.(7.16)

Summing (7.15) for j ∈ {i, · · · , k} we obtain

k+1∑
j=i+1

F(σj) ≤
1

4

k∑
j=i

F(σj) +
2γ(2−p)/p

ε1τn/2

k∑
j=i

S(σj)

Adding on both sides of the previous inequality F(σi) and reabsorbing terms, we get (7.9). We continue
estimating in (7.9):

k+1∑
j=i

F(σj)
(7.16)
≤ 4CH(σi)

3H
+

25γ

3ε1τn/2H
2(p−1)

p

2

(7.7)3
≤

 1

3H
+

25

3ε1τn/2H
2(p−1)

p

2

 γ
(6.80)
≤ 5γ

12H
,

which implies (7.8)2. Finally, we estimate

V (σk+1) ≤ |V (σk+1)− V (σi)|+ V (σi)
(7.7)3
≤ γ

4
+

k∑
j=i

|V (σj+1)− V (σj)|

≤ γ

4
+

1

τn/2

k∑
j=i

F(σj)
(7.8)2
≤ γ

4
+

γ

2Hτn/2

(6.3)2
≤ γ

2

and, combining the content of the above display with (7.8)2 we obtain (7.8)1 and the proof is complete. □

7.2. Oscillation estimates for large gradients. For some σ ∈ (0, ϱ] we consider the case in which

γ

8
:= V (σ0) >

N(x0;σ)

16
=⇒ N(x0;σ) ≤ 2γ.(7.17)

Before proceeding further, let us recall that by (6.6), (7.1), (7.2) and (7.4), estimates (6.77)-(6.78) of Corollary
6.1 are available, keep also in mind Remark 6.1. We then prove two technical lemmas, eventually leading to
quantitative oscillation estimates for nonzero gradients.
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Lemma 7.2. Assume (7.17). Then
∞∑
j=0

F(σj) ≤
N(x0;σ)

H
and

γ

16
≤ V (σj) ≤ γ for all j ∈ N ∪ {0},(7.18)

for any σ ∈ (0, ϱ] with H ≡ H(data,M) defined in (6.3)2.

Proof. Let us first prove that

V (σj) ≥
V (σ0)

2
for all j ∈ N ∪ {0}.(7.19)

Notice that

V (σ1) ≥ V (σ0)− |V (σ1)− V (σ0)|
(2.9)3
≥ V (σ0)−

F(σ0)

τn/2

(2.9)1
≥ V (σ0)−

2F(σ−1)

τn
≥ V (σ0)−

2N(x0;σ)

τnH1

(6.80)
≥ V (σ0)−

N(x0;σ)

27

(7.17)
≥ V (σ0)

2
.

By contradiction, we assume that there is a finite exit time index J ≥ 2 such that

V (σJ) <
V (σ0)

2
and V (σj) ≥

V (σ0)

2
for all j ∈ {0, · · · , J − 1}.(7.20)

Let us preliminary observe that

V (σj) ≥
V (σ0)

2
for all j ∈ {0, · · · , J − 1} =⇒ CH(σj) ≤ γ for all j ∈ {0, · · · , J − 1}.(7.21)

To show the validity of implication (7.21), we proceed by induction. By direct calculation, we see that

CH(σ0)
(2.9)1
≤ V (σ0) +

2HF(σ−1)

τn/2
≤ V (σ0) +

2HN(x0;σ)

τn/2H1

(7.17)
≤ γ

(
1

8
+

22H

τn/2H1

)
(6.80)
≤ γ

4
.(7.22)

We then fix an arbitrary k ∈ {0, · · · , J − 2}, assume that CH(σj) ≤ γ holds for all j ∈ {0, · · · , k} and notice
that (7.20)2 and (7.17) yield that CH(σj+1) ≥ γ/16 for all j ∈ {0, · · · , k}, therefore keeping (7.17) in mind,
we deduce that the assumptions of Lemma 7.1 are verified with i = 0 and k being the number used here so
CH(σk+1) ≤ γ. Implication (7.21) then follows by the arbitrariety of k ∈ {0, · · · , J − 2}. By (7.20)-(7.21) now
we know that CH(σj) ≤ γ for all j ∈ {0, · · · , J − 1} and CH(σj+1) ≥ γ/16 for all j ∈ {0, · · · , J − 2}, thus via
(7.18) we can apply again Lemma 7.1 with i = 0 and k = J − 2 to get

J−1∑
j=0

F(σj) ≤
γ

2H

(7.17)
≤ 4V (σ0)

H
,(7.23)

so we can bound

|V (σJ)− V (σ0)| ≤
J−1∑
j=0

|V (σj+1)− V (σj)|
(2.9)1
≤ 1

τn/2

J−1∑
j=0

F(σj)
(7.23)
≤ 4V (σ0)

τn/2H

(6.3)2
≤ V (σ0)

4
(7.24)

for concluding:

V (σJ) ≥ V (σ0)− |V (σ0)− V (σJ)|
(7.24)
≥ 3V (σ0)

4
,

in contradiction with (7.20)1. This and the arbitrariety of J ≥ 2 yield validity of (7.19), which in turn implies
the left-hand side of inequality (7.18)2 and, applying (7.21) for all j ∈ N ∪ {0} we derive the full chain of
inequalities in (7.18)2. We only need to verify (7.18)1. Using (7.17), (7.18)2 and (7.22) we apply Lemma 7.1
with i = 0 and for every integer k to have

∞∑
j=0

F(σj)
(7.9)
≤ 4F(σ0)

3
+

23γ(2−p)/p

3ε1τn/2

∞∑
j=0

S(σj)

(2.9)1,(6.8)
≤ 8F(σ−1)

3τn/2
+

23+4nγ(2−p)/pIf1,m(x0, σ)

3ε1(τθ)4n

(7.17)
≤ 8N(x0;σ)

3τn/2H1
+

210nV (σ0)
(2−p)/pIf1,m(x0, σ)

3ε1(τθ)4n

(2.9)2
≤ 8N(x0;σ)

3τn/2H1
+

210nV (σ−1)
(2−p)/pIf1,m(x0, σ)

3ε1(τθ)4n
+

212nF(σ−1)
(2−p)/pIf1,m(x0, σ)

3ε1(τθ)6n
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≤ N(x0;σ)

(
8

3τn/2H1
+

210n

3ε1(τθ)4nc12H2
+

212n

3ε1(τθ)6nH1
+

212n

3ε1c12H2(τθ)6n

)
(6.80)
≤ N(x0;σ)

H
,

where we also used Young inequality with conjugate exponents
(

p
2(p−1)

, p
2−p

)
and the proof is complete. □

Lemma 7.3. Whenever σ ∈ (0, ϱ] is such that (7.17) holds, the limits in (1.11) exist and inequalities |Vp(Du(x0))− (Vp(Du))Bσ(x0)| ≤ cN(x0;σ)

|Du(x0)− (Du)Bσ(x0)| ≤ cN(x0;σ)
2/p + c|(Du)Bσ(x0)|

(2−p)/2N(x0;σ)
(7.25)

hold true for a constant c ≡ c(data,M).

Proof. We start by showing that {(Vp(Du))Bj}j∈N∪{0} is a Cauchy sequence. In fact, fixed integers 0 ≤ i ≤ k−1
we bound

|(Vp(Du))Bk − (Vp(Du))Bi | ≤
k−1∑
j=i

|(Vp(Du))Bj+1 − (Vp(Du))Bj |

(2.9)3
≤ 1

τn/2

k−1∑
j=i

F(σj) ≤
1

τn/2

∞∑
j=i

F(σj)
(7.18)
≤ cN(x0;σ),(7.26)

and

|(Vp(Du))B0 − (Vp(Du))B−1 |
(2.9)3
≤ F(σ)

τn/2
≤ cN(x0;σ)(7.27)

with c ≡ c(data,M), therefore there exists ℓV ∈ RN×n such that

(7.28) lim
j→∞

(Vp(Du))Bj = ℓV .

Sending k → ∞ in (7.26) we obtain

|ℓV − (Vp(Du))Bi | ≤ cN(x0;σ) for all i ∈ N ∪ {0}.

Now, given any s ∈ (0, σ] - and since we are interested in s → 0 we can assume s ≤ σ0 - there is js ∈ N ∪ {0}
such that σjs+1 < s ≤ σjs and

lim
s→0

|ℓV − (Vp(Du))Bs(x0)| ≤ lim
js→∞

|ℓV − (Vp(Du))Bjs
|+ lim

js→∞
|(Vp(Du))Bs(x0) − (Vp(Du))Bjs

|

(2.9)3
≤ lim

js→∞
|ℓV − (Vp(Du))Bjs

|+ 1

τn/2
lim
js→∞

F(σjs)
(7.28),(6.89)

= 0,(7.29)

and the first limit in (1.11) equals ℓV , which defines the precise representative of Vp(Du) at x0, i.e.: ℓV =
(Vp(Du))(x0). Next, notice that whenever B ⋐ Ω is a ball, by (2.1) and [41, (2.6)] it is

F(u;B) ≈
(∫
−
B

|Vp(Du)− Vp((Du)B)|2 dx

)1/2

,(7.30)

with constants implicit in "≈" depending only on p, so for any given j ∈ N ∪ {0} it is

|(Du)Bj | ≤ J2(Vp(Du);Bj)
2/p ≤ cF(σj)

2/p + cV (σj)
2/p(7.31)

with c ≡ c(p), while for j = −1 via Hölder and Young inequalities with conjugate exponents
(

2−p
2
, 2
p

)
we have

|(Du)B−1 | ≤ J2(Vp(Du);B0)
2/p +

(∫
−
B0

|Du− (Du)B−1 |
p dx

)1/p

(2.9)1,(2.5)
≤ cF(σ−1)

2/p

τn/p
+ cV (σ0)

2/p + c

(∫
−
B0

|Vp(Du)− Vp((Du)B−1)|
2 dx

)1/p

+c|(Du)B−1 |
(2−p)/2

(∫
−
B0

|Vp(Du)− Vp((Du)B−1)|
p dx

)1/p

(7.30),(2.9)1
≤ 1

2
|(Du)B−1 |+ cF(σ−1)

2/p + cV (σ0)
2/p,(7.32)
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for c ≡ c(data,M) and using this time Young inequality with conjugate exponents
(

2
2−p ,

2
p

)
we get

V (σ0) ≤ Jp(Du;B0)
p/2 ≤ c

(∫
−
B0

|Du− (Du)B−1 |
p dx

)1/2

+ c|(Du)B−1 |
p/2

(2.5)
≤ c|(Du)B−1 |

p/2 + c

(∫
−
B0

|Vp(Du)− Vp((Du)B−1)|
2 dx

)1/2

+c|(Du)B−1 |
p(2−p)/4

(∫
−
B0

|Vp(Du)− Vp((Du)B−1)|
p dx

)1/2

(7.30),(2.9)1
≤ c|(Du)B−1 |

p/2 +
c

τn/2
F(σ−1) +

c

τ
np
4

|(Du)B−1 |
p(2−p)/4F(σ−1)

p/2

≤ c|(Du)B−1 |
p/2 + cF(σ−1),(7.33)

for c ≡ c(data,M), therefore in any case it is

|(Du)Bj |
(7.18)
≤ cN(x0;σ)

2/p + cγ2/p for all j ∈ N ∪ {0,−1},(7.34)

with c ≡ c(data,M). Moreover, given any ball B ⋐ Ω, by triangular and Hölder inequalities we bound

|Vp((Du)B)− (Vp(Du))B | ≤
(∫
−
B

|Vp(Du)− Vp((Du)B)|2 dx

)1/2 (7.30)
≤ c(p)F(u;B)(7.35)

and then estimate for integers 0 ≤ i ≤ k − 1:

|(Du)Bi − (Du)Bk | ≤
k−1∑
j=i

|(Du)Bj+1 − (Du)Bi |

(2.3)2
≤ c

k−1∑
j=i

|Vp((Du)Bj+1)− Vp((Du)Bj )|(|(Du)Bj+1 |+ |(Du)Bj |)
(2−p)/2

(2.13)1,(7.34)
≤ c

(
N(x0;σ)

(2−p)/p + γ(2−p)/p
) k−1∑
j=i

|Vp((Du)Bj+1)− Vp((Du)Bj )|

≤ c
(
N(x0;σ)

(2−p)/p + γ(2−p)/p
) k∑
j=i

|Vp((Du)Bj )− (Vp(Du))Bj |

+c
(
N(x0;σ)

(2−p)/p + γ(2−p)/p
) k−1∑
j=i

|(Vp(Du))Bj+1 − (Vp(Du))Bj |

(2.9)3,(7.35)
≤ c

τn/2

(
N(x0;σ)

(2−p)/p + γ(2−p)/p
) k∑
j=i

F(σj)

(7.18)1
≤ cN(x0, σ)

2/p + cγ(2−p)/pN(x0;σ)

(7.17),(7.33)
≤ cN(x0;σ)

2/p + c|(Du)B−1 |
(2−p)/2N(x0;σ)

for c ≡ c(data,M). Recalling (6.75)1, we get that {(Du)Bj}j∈N∪{0} is a Cauchy sequence and there exists
ℓ ∈ RN×n such that limj→∞(Du)Bj = ℓ. A standard interpolative argument analogous to that leading to
(7.29) allows concluding that ℓ defines the precise representative of Du at x0, i.e. Du(x0) = ℓ and this assures
the validity of the second limit in (1.11). Combining this last information with (7.35) and (7.29) we get that
ℓV = (Vp(Du))(x0) = Vp(Du(x0)) so via (7.28) we eventually recover the first limit in (1.11). Finally, merging
(7.27)-(7.28) and recalling that Vp(Du(x0)) = (Vp(Du))(x0) we obtain (7.25). The proof is complete. □

7.3. Oscillation estimates for small gradients. In this section we look at what happens when the complementary
condition to (7.17) holds, i.e. when for σ ∈ (0, ϱ] it is

γ

8
=:

N(x0;σ)

16
≥ V (σ0) =⇒ N(x0;σ) = 2γ.(7.36)

Let us first observe that to avoid trivialities, we can suppose γ > 0, and that there is no loss of generality in
assuming that (7.36) actually holds for all s ∈ (0, σ]. In fact, if for some s ∈ (0, σ] the opposite inequality to
(7.36), i.e. (7.17) holds, then Lemmas 7.2-7.3 apply and we can directly conclude with (1.11) and (7.25). The
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validity of (7.36) for all s ∈ (0, σ], (6.77)1 and (6.89) yield that lims→0(Vp(Du))Bs(x0) = 0, therefore keeping in
mind that also lims→0 V (s) = 0 and that

(7.37) |(Du)Bs(x0)| ≤ c(p)
(
F(u;Bs(x0))

2/p + V (s)2/p
)

we can conclude that lims→0(Du)Bs(x0) = 0 and the existence of the two limits in (1.11) is proven. Next, we
show the validity of (7.25) also in the case in which (7.36) is in force. Let us prove by induction that

CH(σj) ≤ γ for all j ∈ N ∪ {0}.(7.38)

A direct computation renders:

CH(σ0)
(7.36)
≤ N(x0;σ)

16
+

2HF(σ−1)

τn/2
≤ N(x0;σ)

(
1

16
+

2H

τn/2H1

)
(6.80),(7.36)

≤ γ

4
.(7.39)

Then, we assume by contradiction that {j ∈ N ∪ {0} : CH(σj+1) > γ} ̸= ∅, define l := min{j ∈ N ∪
{0} : CH(σj+1) > γ}, i.e. the smallest integer minus one for which (7.38) fails, introduce the set Il := {j ∈
N ∪ {0} : CH(σj) ≤ γ/4, j < l + 1} and set χ := maxIl. Notice that by (7.39) it is Il ̸= ∅, by definition
CH(σχ) ≤ γ/4 and for j ∈ {χ, · · · , l} we have γ ≥ CH(σj+1) ≥ γ/4 > γ/16, therefore, recalling also (7.36) we
can apply Lemma 7.1 with i ≡ χ and k ≡ l to conclude that CH(σl+1) ≤ γ in contradiction with the definition
of l. This means that {j ∈ N ∪ {0} : CH(σj+1) > γ} = ∅ and (7.38) holds true. Next, we take any s ∈ (0, σ0],
determine js ∈ N ∪ {0} such that σjs+1 < s ≤ σjs and estimate

V (s)
(2.10)2
≤ V (σjs) +

F(σjs)

τn/2

(6.3)2
≤ CH(σjs) ≤ γ ≤ N(x0;σ).

Moreover, if s ∈ (σ0, σ−1] we directly obtain

V (s) ≤ V (σ0) + |V (σ0)− V (s)|
(2.10)1
≤ V (σ0) +

2F(σ−1)

τn

(7.38)
≤ γ +

2N(x0;σ)

τnH1

(6.80)
≤ 2γ = N(x0;σ),

so in any case it is sups≤σ V (s) ≤ N(x0;σ), which in turn implies that |V (σ−1)−V (s)| ≤ 2N(x0;σ) and (7.25)1
can now be derived by sending s→ 0 in the previous inequality and recalling (1.11). Concerning (7.25)2, we use
(7.31)-(7.32) and (7.38) to deduce that |(Du)Bj | ≤ cγ2/p for all j ∈ N ∪ {−1, 0}. This, the same interpolation
argument exploited before and standard manipulations eventually render that |(Du)B−1 − (Du)Bs(x0)| ≤ cγ2/p,
which, together with (7.36) and (1.11) yield (7.25)2 by sending s → 0. In conclusion, we have just proven the
following lemma.

Lemma 7.4. Assume that (7.36) holds for some σ ∈ (0, ϱ]. Then the limits in (1.11) exist and the bounds in
(7.25) are verified.

7.4. Sharp partial gradient continuity and proof of Theorems 1-2. Let us complete the proof of Theorem 2,
started in Sections 7.2-7.3.

Proof of Theorem 2. Let x0 ∈ Ru be a point satisfying (1.9), M ≡ M(x0) > 0, ε̄ ∈ (0, 1), ϱ̄ ∈ (0,min{1, dx0})
be the corresponding parameters in (6.1) with ε̄, ϱ̄ to be determined. We define ε̃ := 2−10ε′ and suitably reduce
the threshold radius to determine ϱ̃ ∈ (0, ϱ′] in such a way that inequality (7.2) holds with ε̃2−2 replacing ε′

for all s ∈ (0, ϱ̃]. Setting ε̄ ≡ ε̃/2 and ϱ̄ ≡ ϱ̃ in (6.1) we see that both (1.10) and the assumptions in force in
Sections 7.2-7.3 are satisfied, therefore the existence of the limits in (1.11) follows from Lemmas 7.3-7.4, while
the (almost) pointwise oscillation estimates in (1.12) are exactly those appearing in (7.25). We are only left
with the proof of the assertion on the Lebesgue points of Vp(Du) and of Du. Let us first assume that x0 verifies
both (1.9) and (1.10) with the just fixed parameters ε̃ ≡ ε̃(data,M) and ϱ̃ ≡ ϱ̃(data,M, f(·)). This choice
assures that (1.11), (6.77) and (6.89) are available, and this in particular assures that x0 is a Lebesgue point
of Vp(Du). Moreover, with σ ∈ (0, ϱ], recalling (1.11)2, we bound by means of (2.5), (7.30), (7.37), (6.77) and
(6.89),(∫
−
Bσ(x0)

|Du− (Du)Bσ(x0)|
p dx

)1/p

≤ c

(∫
−
Bσ(x0)

|Vp(Du)− Vp((Du)Bσ(x0))|
p|(Du)Bσ(x0)|

p(2−p)/2 dx

)1/p

+c

(∫
−
Bσ(x0)

|Vp(Du)− Vp((Du)Bσ(x0))|
2 dx

)1/p

≤ cF(u;Bσ(x0))
2/p + c|(Du)Bσ(x0)|

(2−p)/2F(u;Bσ(x0))

≤ cF(u;Bσ(x0))
2/p + c(1 +M)(2−p)/pF(u;Bσ(x0)) → 0

with c ≡ c(n,N, p) and x0 is a Lebesgue point of Du as well. On the other hand, if x0 is a Lebesgue point of
Vp(Du) we know that F(u;Bσ(x0)) → 0 and that (1.11)1 exists, therefore, recalling that (1.9) is in force, we can
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fix ϱ so small that (1.10)2 holds and set M := 2 lim supσ→0|(Vp(Du))Bσ(x0)|+ 1 to verify also (1.10)1. Finally,
if x0 is a Lebesgue point of Du, then

(7.40)

(∫
−
Bσ(x0)

|Du− (Du)Bσ(x0)|
p dx

)1/p

→ 0, lim sup
σ→0

|(Du)Bσ(x0)| <∞

and (1.11)2 exists. Since

|(Vp(Du))Bσ(x0)| ≤ Jp(Du;Bσ(x0))
p/2 ≤ c

(∫
−
Bσ(x0)

|Du− (Du)Bσ(x0)|
p dx

)1/2

+ c|(Du)Bσ(x0)|
p/2,(7.41)

with c ≡ c(p) and, via triangular inequality,

F(u;Bσ(x0))
(7.30)
≤ c

(∫
−
Bσ(x0)

|Vp(Du)− Vp((Du)Bσ(x0))|
2 dx

)1/2

(2.3)2
≤ c

(∫
−
Bσ(x0)

(|Du|2 + |(Du)Bσ(x0)|
2)(p−2)/2|Du− (Du)Bσ(x0)|

2 dx

)1/2

≤ c

(∫
−
Bσ(x0)

|Du− (Du)Bσ(x0)|
p dx

)1/2
(7.40)→ 0,(7.42)

for c ≡ c(n,N, p), keeping (1.9) and (7.42) in mind we can choose ϱ so small that (1.10)2 holds true, and setting
M := c+2c lim supσ→0|(Du)Bσ(x0)|

p/2 where c ≡ c(p) is the constant appearing in (7.41), we obtain also (1.10)1
and the proof is complete. □

Next, we prove Theorem 1.

Proof of Theorem 1. Since our results are local in nature, we can assume that (1.8) holds globally in Ω - notice
that being (1.8) in force, we can always assume the validity of (6.82). Let Ru be the set defined in (6.1) with
ε̄ ≡ ε̃, ϱ̄ ≡ ϱ̃ and ε̃, ϱ̃ defined in the proof of Theorem 2. The discussion at the beginning of Section 6, see
also [26, Section 5.1], yields that Ru is an open set of full n-dimensional Lebesgue measure and |Ω \ Ru| = 0
therefore given any x0 ∈ Ru with the specifics described before there is an open neighborhood B(x0) of x0
and a positive radius ϱx0 ∈ (0, ϱ̃] such that |(Vp(Du))Bϱx0

(x)| < M and F(u;Bϱx0
(x)) < ε̃. Given (1.8) and

our choice of ϱ̄, ε̄ we see that (1.10)2 holds on B(x0), Corollary 6.1, Theorem 2 and Proposition 6.1 apply, the
limits in (1.11) exist and define the precise representative of Vp(Du) and of Du at all x ∈ B(x0). With these
informations at hand, we aim to prove that the limits in (1.11) are uniform in the sense that the continuous
maps B(x0) ∋ x 7→ (Vp(Du))Bσ(x), B(x0) ∋ x 7→ (Du)Bσ(x) with σ ∈ (0, ϱx0 ] uniformly converge to Vp(Du(x))
and to Du(x) respectively as σ → 0 thus yielding that Vp(Du) and Du are continuous on B(x0). This is a
consequence of the two inequalities in (1.12) as their right-hand side uniformly converges to zero by means of
(1.8), (6.85), (6.75) and (7.37). The proof is complete. □

7.5. Optimal function space criteria and proof of Theorem 3. This final section is devoted to the proof of
Theorem 3. Once noticed that

f ∈ L(n, 1) =⇒ If1,m(x, s) →s→0 uniformly in x ∈ Ω

f ∈ Ld, d > n =⇒ If1,m(x, s) ≤ ds1−n/d∥f∥Ld

(d− n)ω
1/d
n

,

cf. [57, Section 2.3] and [26, Section 6.5] respectively, keeping in mind (6.75), the proof goes exactly as in [26,
Proof of Theorem 2].
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