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Abstract

Given any strictly convex norm ‖ · ‖ on R2 that is C1 in R2 \ {0}, we study the
generalized Aviles-Giga functional

Iε(m) :=

ˆ
Ω

(
ε |∇m|2 +

1

ε

(
1− ‖m‖2

)2)
dx,

for Ω ⊂ R2 and m : Ω → R2 satisfying ∇ · m = 0. Using, as in the euclidean case
‖ · ‖ = | · |, the concept of entropies for the limit equation ‖m‖ = 1, ∇ · m = 0, we
obtain the following. First, we prove compactness in Lp of sequences of bounded energy.
Second, we prove rigidity of zero-energy states (limits of sequences of vanishing energy),
generalizing and simplifying a result by Bochard and Pegon. Third, we obtain optimal
regularity estimates for limits of sequences of bounded energy, in terms of their entropy
productions. Fourth, in the case of a limit map in BV , we show that lower bound provided
by entropy productions and upper bound provided by one-dimensional transition profiles
are of the same order. The first two points are analogous to what is known in the euclidean
case ‖ · ‖ = | · |, and the last two points are sensitive to the anisotropy of the norm ‖ · ‖.

1 Introduction

The Aviles-Giga functional

AGε(u) =

ˆ
Ω

(
ε|∇2u|2 +

1

ε
(1− |∇u|2)2

)
dx, Ω ⊂ R2, u : Ω→ R,

is a second order functional that (subject to appropriate boundary conditions) models phe-
nomena from thin film blistering to smectic liquid crystals, and is also a natural higher order
generalization of the Cahn-Hilliard functional. The conjecture on the Γ-limit of the Aviles-
Giga energy, which roughly states that the energy concentrates on a one-dimensional jump
set as ε → 0, has attracted a great deal of attention, yet remains open; see for example
[3, 4, 1, 11, 9, 7, 25].
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The second term in the Aviles-Giga functional penalizes values of the divergence-free
vector field m = ∇⊥u that are far from the euclidean unit circle S1 ⊂ R2. In the present
work we continue the study, initiated in [6], of a generalized Aviles-Giga functional where S1

is replaced by the unit circle of a more general norm on R2. Specifically, we let ‖ · ‖ be a
strictly convex norm on R2 that is C1 in R2 \ {0} (strictly convex C1 norm for simplicity),
and consider the generalized Aviles-Giga functional

Iε(m) = Iε(m; Ω) =

ˆ
Ω

(
ε|∇m|2 +

1

ε
(1− ‖m‖2)2

)
dx, (1)

Ω ⊂ R2, m : Ω→ R2, ∇ ·m = 0 in D′(Ω).

Here the constraint∇·m = 0 is equivalent to m = ∇⊥u if the domain Ω is simply connected, so
Iε can effectively be seen as a second order functional generalizing the Aviles-Giga functional.
In [6] Bochard and Pegon obtain some preliminary results on the characterization of zero-
energy states of Iε (limits of sequences of asymptotically vanishing energy). In this work we
carry out a rather comprehensive analysis of this generalized Aviles-Giga functional. Our goal
is to investigate to which extent the results and methods that have been developed for the
classical Aviles-Giga functional can be extended to this more general setting. In doing so,
we hope to shed some light on what parts of the theory are contingent on specific algebraic
properties of S1, and what parts are more flexible. Similar generalized Aviles-Giga functionals
have also been studied in [15], with a focus on symmetry properties of entire critical points.
Here we concentrate on four aspects:

• compactness in Lp and energy lower bounds for sequences of bounded energy;

• characterization of zero-energy states;

• optimal regularity estimates for limits of sequences of bounded energy;

• comparison of upper and lower bounds for sequences converging to a map of bounded
variation (BV ).

For the first two aspects we obtain complete generalizations of the analogous results in the
classical case. For the last two aspects, our results demonstrate the effects induced by possible
anisotropy and degenerate convexity of ‖ · ‖.

A central tool, introduced in [11] for the classical Aviles-Giga functional, is the notion
of entropies, imported from scalar conservation laws. Formally (and this is justified by the
compactness result), limits of sequences of bounded energy should satisfy the generalized
Eikonal equation

‖m‖ = 1 a.e., ∇ ·m = 0 in D′(Ω). (2)

Writing locally the unit circle ∂B = {z ∈ R2 : ‖z‖ = 1} as the graph of a convex function f ,
this equation can formally be rewritten as the scalar conservation law

∂tu+ ∂xf(u) = 0. (3)

In direct analogy with the entropy-entropy flux pairs for this scalar conservation law, entropies
for the generalized Eikonal equation (2) are C1 maps Φ: ∂B → R2 with the property that
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∇·Φ(m) = 0 for any smooth solution m of (2). For weak solutions, the distributions ∇·Φ(m),
called entropy productions, encode the presence of singularities and can therefore be used to
understand compactness and regularity properties. The key property used in [11] is that, in
the classical case ‖ · ‖ = | · |, entropy productions are controlled by the energy. This provides
compactness [1, 11], and an energy lower bound. Thanks to the strict convexity of ‖ · ‖, this
analysis can be adapted to our generalized setting; see Theorem 1 and Proposition 2.

A further consequence of the energy lower bound is that zero-energy states, that is, limits of
sequences {mn} such that Iεn(mn)→ 0, have vanishing entropy productions. This is exploited
in [16] for the classical Aviles-Giga functional to obtain a kinetic equation which roughly
speaking ensures that zero-energy states are, in a weak way, constant along characteristics.
As a consequence, zero-energy states in the classical case ‖ · ‖ = | · | are shown in [16] to be
locally Lipschitz outside a locally finite set of singular points, and around each singular point
they must coincide with a vortex m(x) = ±ix/|x|. In [6] this rigidity result is generalized
(with appropriate modifications) to Iε associated with any C1 norm ‖ · ‖ of power type p for
some p ∈ [2,∞) (a quantitative form of strict convexity, see Remark 5). Here we extend this
further to Iε associated with any strictly convex C1 norm (see Theorem 4) using an elementary
argument that reduces it to the classical case ‖ · ‖ = | · |.

Finite-energy states, that is, limits of sequences of bounded energy, can have a much more
complicated structure. The energy lower bound ensures that entropy productions are finite
Radon measures, and a central question to solve the Γ-convergence conjecture for the classi-
cal Aviles-Giga functional is whether these measures are concentrated on a one-dimensional
rectifiable set. Substantial progress on that question has been made in [9, 24] but it remains
open. For scalar conservation laws (3) with f uniformly convex (Burgers’ equation), this rec-
tifiability property has recently been proved in [23]. The results of [9] and [24, Proposition 1.7]
can likely be generalized to the class of energy functionals (1) associated with any strictly
convex C1 norm ‖ ·‖ (using the kinetic formulation obtained in Lemma 19), but here we don’t
address that question and concentrate instead on optimal regularity estimates for solutions
of the generalized Eikonal equation (2) whose entropy productions are locally finite Radon
measures. In the classical case ‖ · ‖ = | · |, it is proved in [13] (adapting an argument of [14] for

scalar conservation laws) that such solutions must locally have the Besov regularity B
1
3
3,∞, i.e.

suph |h|−
1
3 ‖m−mh‖L3

loc
<∞ where mh = m(·+h). Moreover this estimate is strongly optimal

in the sense that it is equivalent to entropy productions being locally finite Radon measures.
In the general case, the coercivity provided by the strict convexity of the norm ‖ · ‖ depends
on the direction z on its unit circle ∂B, and optimal estimates must take that into account.
We prove therefore a regularity estimate of the form suph |h|−1‖Π(m,mh)‖L1

loc
<∞ for some

function Π: ∂B× ∂B→ [0,∞) that is sensitive to the anisotropy of ‖ · ‖, and show that it is
strongly optimal (equivalent to entropy productions being locally finite Radon measures) at
least when the norm ‖ · ‖ is analytic; see Theorems 6 and 8. (For a norm ‖ · ‖ of power type
p convexity this estimate implies in particular Besov regularity agreeing with the results of
[14] for scalar conservation laws (3) when the flux f has degenerate convexity; see Remark 7.)
Furthermore, if ‖ · ‖ is merely C1 then the quantity suph |h|−1‖Π(m,mh)‖L1

loc
is comparable

to the total entropy production when m is BV , hinting that the regularity estimate could be
strongly optimal for all strictly convex C1 norms ‖ · ‖.

The Γ-convergence of the classical Aviles-Giga functional in the BV setting is well under-
stood [1, 7, 25]. For a solution m of the generalized Eikonal equation (2) which is BV , an
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upper bound can be obtained for the minimal energy of approximating sequences mn → m by
pasting optimal one-dimensional transitions along the jump set Jm [7, 25, 26]. In the classical
case ‖ · ‖ = | · |, this upper bound happens to coincide with the lower bound provided by a
particular class of entropy productions [1], thus characterizing the Γ-limit at BV maps m.
This perfect agreement of entropy lower bound and 1D upper bound is very likely linked to
specific algebraic properties of the euclidean norm | · | (as are the symmetry results of [15]).
In fact it is known [17, § 4] that for general ‖ · ‖ optimal transition profiles may not be one-
dimensional, and in that case the 1D upper bound is strictly larger than any lower bound (see
[27, 28] for more results related to such issues). It is however interesting to find out whether
these two bounds (the entropy lower bound and the 1D upper bound) are of the same order of
magnitude, or can instead be very far apart. Like optimal regularity estimates, this question
is sensitive to the possibly anisotropic behavior of ‖ · ‖. We prove that these upper and lower
bounds do agree up to a multiplicative constant; see Theorem 11.

In the rest of this introduction we present the precise statements of our results. In Section 2
we derive some useful properties of the entropies in our generalized setting. In Section 3 we
prove the compactness result. In Section 4 we prove the rigidity of zero-energy states. In
Section 5 we prove regularity estimates for finite-energy states and their optimality. And in
Section 6 we compare upper and lower bounds for BV limits.

1.1 Notations and assumptions

Let Ω ⊂ R2 be a bounded open set and ‖ · ‖ be a strictly convex C1 norm on R2 unless
otherwise specified. We denote by B =

{
z ∈ R2 : ‖z‖ < 1

}
the open unit disk for the norm

‖·‖. The properties of ‖·‖ are equivalent to strict convexity of B and ∂B being a C1 manifold.
Without loss of generality, we assume that ∂B has length 2π, and let γ : R/2πZ→ ∂B be the
counterclockwise arc-length parametrization of ∂B (unique up to translation of the variable).
By assumption, γ ∈ C1(R/2πZ;R2). In many places we identify R2 with C and in particular
we let i denote the counterclockwise rotation by π

2 . We will use the symbols . and & to
denote inequality up to a multiplicative constant that depends only on B.

1.2 Compactness and lower bound

Our first result generalizes the compactness result obtained independently in [1, Theorem 3.3]
and [11, Proposition 1] for the Aviles-Giga functional.

Theorem 1. Suppose the sequence {mn} ⊂W 1,2(Ω;R2) satisfies ∇ ·mn = 0 and

sup
n
Iεn(mn) <∞.

Then {mn} is precompact in L2(Ω).

As explained above, this compactness result relies heavily on the notion of entropies for
the generalized Eikonal equation

‖m‖ = 1 a.e., ∇ ·m = 0 in D′(Ω). (2)

Equivalently, the first constraint ‖m‖ = 1 means that m takes values into ∂B. Entropies for
this equation are C1 maps Φ: ∂B→ R2 such that, if m is a C1 solution of (2), then Φ(m) is
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also divergence-free ∇·Φ(m) = 0. It is a lengthy but straightforward exercise to see that this
is equivalent to requiring that, for all θ ∈ R,

d

dθ
Φ(γ(θ)) is tangent to ∂B at γ(θ).

For a weak solution m of (2), the entropy production ∇ · Φ(m) is in general not zero, and
encodes the presence of singularities. The proof of Theorem 1 relies on the control of entropy
productions provided by the energy. This control is possible for regular enough entropies: we
define

ENT =
{

Φ ∈ C1(∂B;R2) :
d

dθ
Φ(γ(θ)) = λΦ(θ)γ′(θ)

for some function λΦ ∈ C1(R/2πZ)
}
. (4)

The control of entropy productions used to establish compactness also provides a lower bound
for the energy. From this point on all entropies for equation (2) in statements and proofs will
be taken to be the ones from ENT.

Proposition 2. Let m : Ω → R2 be such that m = limn→∞mn in L2(Ω) for some sequence
{mn} ⊂W 1,2(Ω;R2) with ∇·mn = 0 and supn Iεn(mn) <∞. Then m satisfies the generalized
Eikonal equation (2), its entropy productions satisfy ∇ ·Φ(m) ∈M(Ω) for all Φ ∈ ENT, and
they provide the lower bound ∨

‖λ′Φ‖∞≤1

|∇ · Φ(m)|

 (U) ≤ C0 lim inf
n→∞

Iεn(mn;U), (5)

for any open subset U ⊂ Ω and some constant C0 > 0 depending only on B. Here
∨

denotes
the lowest upper bound measure [2, Definition 1.68] of a family of measures.

Remark 3. The hypothesis that ‖·‖ is strictly convex is necessary for Theorem 1: Suppose that
∂B contains a line segment [ζ0, ζ1] then without loss of generality we can assume ζ0 = e1 +δe2

and ζ1 = e1 − δe2. Setting mε(x) = e1 + δ sin (x1/
√
ε) e2, then ∇ · mε = 0 and ‖mε‖ = 1

everywhere in Ω. Thus supε>0 Iε (mε) < ∞, but mε converges weakly to m̃ ≡ e1 in Lp as
ε→ 0 and ‖mε − m̃‖Lp & δ for all ε > 0 and all p ≥ 1.

1.3 Zero-energy states

As stated previously, Jabin, Otto and Perthame showed in [16, Theorem 1.1] that zero-energy
states of the Aviles-Giga functional are rigid. This result has several interesting implications
[9, 8, 21, 19]. It is proved in two steps: first, zero-energy states have vanishing entropy
productions and satisfy as a consequence the kinetic equation eit · ∇x1m(x)·eit>0 = 0, which
expresses in a weak way the fact thatm is constant along characteristics of the classical Eikonal
equation; second, solutions of this kinetic equation are shown to be rigid. In [6], Bochard and
Pegon generalize the second step to solutions of the kinetic equation γ′(t) · 1m(x)·iγ(t)>0 = 0
naturally associated with the generalized Eikonal equation (2), under the assumption that the
C1 norm ‖ · ‖ is of power type p (see Remark 5). They do not however prove the first step,
namely that zero-energy states of Iε satisfy this kinetic equation. Here we do establish that
missing step, and generalize their rigidity result to any strictly convex C1 norm ‖ · ‖, with a
somewhat more direct proof.
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Theorem 4. Let m : Ω → R2 be such that m = limn→∞mn in L2(Ω), where the sequence
{mn} ⊂W 1,2(Ω;R2) satisfies ∇ ·mn = 0 and

lim
n→∞

Iεn(mn) = 0.

Then m is continuous outside a locally finite set of singular points. For every singular point
x0, there exists β ∈ {−1, 1} such that in any convex neighborhood U of x0, we have m(x) =
βVB(i(x − x0)), where VB(·) := ∇‖ · ‖∗ is the vortex associated to ‖ · ‖ and ‖ · ‖∗ is the dual
norm of ‖ · ‖.

Remark 5. Our proof also recovers the result, obtained in [6], that if the C1 norm ‖ · ‖ is of
power type p for some p ≥ 2, that is,

1−
∥∥∥∥x+ y

2

∥∥∥∥ ≥ K‖x− y‖p ∀x, y ∈ ∂B,

for some constant K > 0, then m is locally 1
p−1 -Hölder outside a locally finite set of singular

points (see the end of Section 4).

1.4 Optimal regularity estimates

Proposition 2 motivates the study of finite-entropy solutions of the generalized Eikonal equa-
tion, i.e. solutions of (2) satisfying ∇ · Φ(m) ∈ Mloc(Ω) for all Φ ∈ ENT. We present here
regularity estimates for these solutions, that are strongly optimal in the sense that a converse
estimate is valid: regularity implies locally finite entropy productions. In the context of scalar
conservation laws, this type of optimality is related to “Onsager conjecture-type” statements:
see e.g. [5] where the authors investigate minimal regularity requirements that are sufficient
to ensure that entropy productions vanish.

In the classical case ‖·‖ = |·| it was shown in [13] that finite-entropy solutions coincide with

solutions of (2) that live in the Besov space B
1/3
3,∞,loc(Ω): such Besov estimates are strongly

optimal. This was obtained by adapting methods of [14] for scalar conservation laws (3) with
convex flux f . The 1/3 order of regularity is valid for uniformly convex fluxes f and an
example in [10] had also demonstrated its optimality, in a different sense than the one we
wish to study here: there exist finite-entropy solutions which don’t have a better order of
regularity.

For fluxes with degenerate convexity, quantified by the inequality

f ′(v)− f ′(w) & |v − w|p−1 ∀v > w,

for some p ≥ 2, the regularity obtained in [14] is B
1
p+1

p+1,∞,loc. This applies for instance to
f(w) = |w|p, and is shown to be optimal in [10, Proposition 3.2], again in the sense that
there exist finite-entropy solutions which don’t have a better order of regularity. However it is
clear (considering solutions whose values stay away from the point w = 0 at which convexity
degenerates) that this Besov regularity does not provide a converse estimate: it is not strongly
optimal.

Here, following [13] we adapt the methods of [14] to the generalized Eikonal equation (2)
in order to obtain regularity estimates that take into account the anisotropy of ‖ · ‖, and in
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particular the fact that the convexity of ‖ ·‖ may degenerate differently in different directions.
For a precise statement, we introduce the (unique up to an additive constant integer multiple
of 2π) continuous function α : R→ R such that

γ′(θ) = eiα(θ) ∀θ ∈ R.

The strict convexity of B ensures that this function α is increasing, and the symmetry of B
implies α(t+ π) = α(t) + π for all t ∈ R. We define a function Π: ∂B× ∂B→ [0,∞) by

Π (γ(θ1), γ(θ2)) =

ˆ θ2

θ1

ˆ θ2

θ1

|α(t)− α(s)| dtds for |θ1 − θ2| ≤ π. (6)

Using this function Π as a “metric” for the increments, we have the following regularity
estimate for finite-entropy solutions of (2).

Theorem 6. Let m satisfy the generalized Eikonal equation (2). Suppose

∇ · Φ(m) ∈Mloc(Ω) for all Φ ∈ ENT, (7)

then

sup
|h|<dist(Ω′,∂Ω)

1

|h|

ˆ
Ω′

Π (m(x+ h),m(x)) dx <∞ for any Ω′ ⊂⊂ Ω. (8)

Remark 7. If ‖·‖ is of power type p for some p ≥ 2 (see Remark 5), the estimate (8) directly

implies that m ∈ B
1
p+1

p+1,∞,loc(Ω), as explained in Remark 17. This corollary is analogous to the
regularity results obtained in [14, Theorem 4.1] for convex scalar conservation laws.

The main interest of this regularity estimate is that the “metric” Π is sensitive enough to
the local convexity of ∂B to ensure the validity of a converse estimate, at least when ‖ · ‖ is
analytic in R2 \ {0} (or equivalently ∂B is analytic):

Theorem 8. Let m satisfy (2). Assume that the strictly convex norm ‖ · ‖ is analytic in
R2 \ {0}, then (8) implies (7).

Remark 9. Note that Theorem 8 applies in particular to ‖ · ‖ = ‖ · ‖`p for any 1 < p < ∞
(see Remark 26).

We don’t know whether the analyticity assumption on ‖ · ‖ is necessary for the validity of
the converse estimate (8) implying (7). An indication that it might not be needed is given by
the following.

Theorem 10. Let ‖ · ‖ be a strictly convex C1 norm on R2 and let m ∈ BV (Ω;R2) satisfy
(2). Then for any open subset Ω′ ⊂⊂ Ω we have ∨

‖λ′Φ‖∞≤1

|∇ · Φ(m)|

 (Ω′) ≤ C0 sup
|h|<dist(Ω′,∂Ω)

1

|h|

ˆ
Ω′

Π(m(x+ h),m(x)) dx,

for some absolute constant C0 > 0.

Note that for a BV solution of (2) as in Theorem 10, both the entropy productions and
the quantity appearing in the regularity estimate (8) are finite. Here the point is that the
latter controls the former, without any further regularity assumption on the norm ‖ · ‖.
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1.5 Comparison of upper and lower bounds

For general maps m, finding an upper bound that matches (at least up to a multiplicative
constant) the lower bound of Proposition 2 is a famously hard problem even in the classical
case. However, when the limiting solution m of (2) additionally belongs to BV (Ω;R2), then
it is known [26] that an upper bound (in the sense of Γ-convergence) is obtained by pasting
optimal one-dimensional transitions at scale ε along the jump set Jm. Specifically, for any
solution m ∈ BV (Ω;R2) of the generalized Eikonal equation (2) and any smooth simply
connected open subset U ⊂ Ω, there exists a sequence mε → m in Lp(U ;R2) for 1 ≤ p <∞,
such that

lim sup
ε→0

Iε(mε;U) ≤
ˆ
U∩Jm

c1D(m+,m−) dH1, (9)

where m± are the traces of m along Jm, and c1D : ∂B× ∂B→ [0,∞) is given by

c1D(z+, z−) = 2

∣∣∣∣∣
ˆ z+·iν

z−·iν

(
1− ‖aν + siν‖2

)
ds

∣∣∣∣∣ , (10)

ν = i
z+ − z−

|z+ − z−|
, a = z+ · ν = z− · ν.

Here the unit vector ν represents a normal vector to the jump set Jm at a jump between z+

and z−. The divergence-free constraint ∇ ·m = 0 forces ν to satisfy (z+ − z−) · ν = 0, and
this characterizes ν up to a sign. Note that it is known that the upper bound provided by
one-dimensional profiles will in general not be optimal [17, § 4] (see [27, 28] for a discussion of
optimal upper bounds), but here we are only interested in optimality up to a multiplicative
constant.

We wish to compare this 1D upper bound to the lower bound provided by the entropy
productions in Proposition 2. For a solutionm of (2) which additionally belongs to BV (Ω;R2),
the BV chain rule implies that the entropy productions are absolutely continuous with respect
to H1

bJm . Thanks to [2, Remark 1.69], the resulting lowest upper bound measure is also

absolutely continuous with respect to H1
bJm , and (see Lemma 27) we have∨

‖λ′Φ‖∞≤1

|∇ · Φ(m)| = cENT(m+,m−)H1
bJm ,

where m± are the traces of m along Jm, and the jump cost cENT : ∂B× ∂B→ [0,∞) is given
by

cENT(z+, z−) = sup
‖λ′Φ‖∞≤1

ˆ θ+

θ−
λΦ(s) γ′(s) · ν ds for z± = γ(θ±),

and ν as in (10). The value of the last integral does not depend on the choices of θ± modulo 2π,
because the definition of λΦ in (4) implies

´
R/2πZ λΦ(s)γ′(s) ds = 0 for any entropy Φ ∈ ENT.

In other words, for a BV map m, the lower bound (5) becomes

lim inf
n→∞

Iεn(mn;U) &
ˆ
Jm∩U

cENT(m+,m−) dH1. (11)

We show that these lower and upper bounds (11) and (9) for BV maps m are comparable:
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Theorem 11. There exists a constant C0 > 0 depending only on B such that

C−1
0 c1D(z+, z−) ≤ cENT(z+, z−) ≤ C0 c1D(z+, z−)

for all z± ∈ ∂B.

2 Entropy productions

In this section we compute entropy productions of divergence-free m ∈W 1,2, and as a direct
consequence we prove Proposition 2. Since B is convex and centered, for any z ∈ R2 \ {0}
there is a unique (r, θ) ∈ (0,∞)×R/2πZ such that z = rγ(θ). In order to make use of classical
polar coordinates, we introduce the bijection X : R2 → R2 given by

X(reiθ) = rγ(θ) ∀r ≥ 0, θ ∈ R. (12)

The map X is C1 in R2 \ {0}, and its jacobian determinant is

det(∇X(reiθ)) = iγ(θ) · γ′(θ) ≥ α0 > 0,

where α0 is the radius of the largest euclidean ball contained in B. This last inequality follows
from the convexity of B: for any z ∈ B we have (z − γ(θ)) · iγ′(θ) ≥ 0, and applying this to
z = −iα0γ

′(θ) gives iγ(θ) · γ′(θ) ≥ α0. As a consequence, X−1 is C1 in R2 \ {0}. Moreover X
is a bi-Lipschitz homeomorphism.

In the following, we take η(r) ∈ C1([0,∞)) so that 0 ≤ η ≤ 1, η ≡ 0 in [0, 1
2 ] ∪ [2,∞) and

η(1) = 1. For Φ ∈ ENT, define Φ̂ ∈ C1(R2;R2) by

Φ̂ (rγ(θ)) = η(r)Φ (γ(θ)) . (13)

Lemma 12. Let m ∈W 1,2(Ω;R2) satisfy ∇ ·m = 0. Then for any Φ ∈ ENT, we have

∇ · Φ̂(m) =
1

2
Ψ(m) · ∇

(
1− ‖m‖2

)
, (14)

where

Ψ (rγ(θ)) =
η (r)λΦ (θ)

r2
γ (θ)− η′ (r)

r
Φ (γ(θ))

and

λΦ(θ) =
d

dθ
(Φ (γ(θ))) · γ′(θ).

Proof. It suffices to prove (14) for a smooth map m : Ω → R2, because we can then approx-
imate a W 1,2 map m with smooth maps mn → m in W 1,2 and a.e., satisfying in addition
∇ ·mn = 0, so that (14) passes to the limit in D′(Ω).

It is convenient to change variable in order to use classical polar coordinates: we set
Φ̃ = Φ̂ ◦X, m̃ = X−1(m), so that

Φ̃(reiθ) = η(r)Φ(γ(θ)), Φ̃(m̃) = Φ̂(m), and ∇ ·X(m̃) = 0. (15)
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And note that ‖X(v)‖ = |v| for all v ∈ R2, and so

|m̃| = ‖m‖. (16)

In the following we perform calculations in the open set {m 6= 0}. Using that Φ ∈ ENT, we
have

d

dθ
Φ(γ(θ)) = λΦ(θ)γ′(θ),

so computing DΦ̃ using polar coordinates we find

DΦ̃(reiθ) = η′(r)Φ(γ(θ))⊗ eiθ +
η(r)

r
λΦ(θ) γ′(θ)⊗ ieiθ.

Note that for any v, w ∈ R2 we have the identity tr (v ⊗ wDm) = ((v · ∇)m) · w. So, writing
m̃ = reiθ, we obtain

∇ · Φ̃(m̃) = tr(DΦ̃(m̃)Dm̃)

= η′(|m̃|) [(Φ(γ(θ)) · ∇) m̃] · m̃
|m̃|

+
η(|m̃|)
|m̃|

λΦ(θ)
[(
γ′(θ) · ∇

)
m̃
]
· i m̃
|m̃|

.

Applying this to η(r) = r (the above calculations only require η to be C1) and Φ(z) = z gives
in particular

∇ ·X(m̃) = [(γ(θ) · ∇) m̃] · m̃
|m̃|

+
[(
γ′(θ) · ∇

)
m̃
]
· i m̃
|m̃|

,

so the previous expression for ∇ · Φ̃(m̃) can be rewritten as

∇ · Φ̃(m̃) =
η(|m̃|)
|m̃|

λΦ(θ)∇ ·X(m̃)

+

[((
η′(|m̃|)Φ(γ(θ))− η(|m̃|)

|m̃|
λΦ(θ)γ(θ)

)
· ∇
)
m̃

]
· m̃
|m̃|

.

Using ∇ ·X(m̃) = 0 and ∂jm̃ · m̃ = ∂j |m̃|2/2, this becomes

∇ · Φ̃(m̃) =
1

2
Ψ̃(m̃) · ∇(1− |m̃|2),

Ψ̃(m̃) =
η(|m̃|)
|m̃|2

λΦ(θ)γ(θ)− η′(|m̃|)
|m̃|

Φ(γ(θ)).

The above calculations are valid in {m 6= 0}, but since η(r) = η′(r) = 0 for 0 ≤ r < 1/2, this
last expression makes sense everywhere. Recalling from (15)-(16) that Φ̃(m̃) = Φ̂(m), and
|m̃| = ‖m‖, setting Ψ = Ψ̃ ◦X−1 this is exactly the claimed expression (14) for ∇ · Φ̂(m).

Proposition 2 is a rather direct consequence of the identity obtained in Lemma 12.
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Proof of Proposition 2. Let m : Ω → R2 be such that m = limn→∞mn in L2(Ω) for some
{mn} ⊂ W 1,2(Ω;R2) with ∇ · mn = 0 and supn Iεn(mn) < ∞. The fact that ∇ · m = 0
in D′(Ω) follows from ∇ ·mn = 0 and L2 convergence. The assumption supn Iεn(mn) < ∞
implies that ‖mn‖ → 1 in L2(Ω). This together with mn → m in L2(Ω) gives ‖m‖ = 1 a.e.,
and thus m satisfies the generalized Eikonal equation (2).

Let Φ ∈ ENT and its extension Φ̂ defined in (13). First note that, in order to estimate
∇ · Φ(m), we may assume without loss of generality that

ˆ
R/2πZ

λΦ = 0 and

ˆ
∂B

Φ = 0. (17)

This is due to the fact that, for any a ∈ R and b ∈ R2 the entropy given by Φa,b(z) =
Φ(z) + az+ b for z ∈ ∂B satisfies ∇ ·Φa,b(m) = ∇ ·Φ(m) since ∇ ·m = 0, and λΦa,b = λΦ + a.
Hence we may choose a such that λΦa,b has zero average for any b ∈ R2, and b such that Φa,b

has zero average.
Thanks to Lemma 12, for any test function ζ ∈ C∞c (Ω) with support inside an open subset

V ⊂ Ω, we have

〈∇ · Φ̂(mn), ζ〉 = −1

2

ˆ
Ω
ζ (1− ‖mn‖2)∇ ·Ψ(mn) dx

− 1

2

ˆ
Ω

Ψ(mn) · ∇ζ (1− ‖mn‖2) dx

. ‖∇Ψ‖∞‖ζ‖∞Iεn(mn;V ) + ‖Ψ‖∞‖∇ζ‖∞|V |
1
2 ε

1
2
nIεn(mn)

1
2 ,

so taking the limit n→∞ we deduce

〈∇ · Φ(m), ζ〉 . ‖∇Ψ‖∞‖ζ‖∞ lim inf
n→∞

Iεn(mn;V ). (18)

This implies in particular that ∇·Φ(m) is a finite Radon measure. From the proof of Lemma
12, we have Ψ = Ψ̃ ◦X−1 with

Ψ̃(reiθ) =
η (r)λΦ (θ)

r2
γ (θ)− η′ (r)

r
Φ (γ(θ)) .

Recalling that X−1 is Lipschitz we deduce

‖∇Ψ‖∞ . ‖Φ‖C1 + ‖λΦ‖C1 .

Recall that λΦ and Φ have zero average thanks to (17) and thus ‖λΦ‖C1 is controlled by
‖λ′Φ‖∞. Further, as (d/dθ)Φ(γ(θ)) = λΦ(θ)γ′(θ), we also have that ‖Φ‖C1 is controlled by
‖λΦ‖∞ and hence controlled by ‖λ′Φ‖∞. So we have

‖∇Ψ‖∞ ≤ C0‖λ′Φ‖∞.

Plugging this into (18) and taking the supremum over all test functions ζ ∈ C∞c (V ) with
‖ζ‖∞ ≤ 1 we deduce

|∇ · Φ(m)|(V ) ≤ C0 lim inf
n→∞

Iεn(mn;V ) ∀Φ ∈ ENT with ‖λ′Φ‖∞ ≤ 1.
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Hence for any open subset U ⊂ Ω and any disjoint open subsets V1, . . . , Vk ⊂ U and entropies
Φ1, . . . ,Φk ∈ ENT with ‖λ′Φj‖∞ ≤ 1 we have∑

j

|∇ · Φj(m)|(Vj) ≤ C0

∑
j

lim inf
n→∞

Iεn(mn;Vj)

≤ C0 lim inf
n→∞

Iεn(mn;U).

Given any disjoint compact sets A1, . . . , Ak ⊂ U , we can find disjoints open sets containing
them, and so for entropies Φ1, . . . ,Φk ∈ ENT with ‖λ′Φj‖∞ ≤ 1 we have∑

j

|∇ · Φj(m)|(Aj) ≤ C0 lim inf
n→∞

Iεn(mn;U).

By inner regularity of the Radon measures ∇ · Φ(m) this is in fact valid for any disjoint
measurable sets A1, . . . , Ak, and then for any countable disjoint family of measurable sets
{Aj}. Recalling the definition [2, Definition 1.68] of the lowest upper bound measure, this
implies the lower bound (5).

3 Compactness

In this section we prove Theorem 1: let {mn} ⊂ W 1,2(Ω;R2) satisfy ∇ · mn = 0 and
supn Iεn(mn) < ∞, then {mn} is precompact in L2(Ω). The proof follows very closely the
arguments in [11, Proposition 1.2]. We only briefly sketch the main ideas and highlight the
steps that require adaptation. We refer to [11] for the details that stay unchanged.

The proof consists in showing that any Young measure {µx}x∈Ω generated by a subse-
quence of {mn} must be a family of Dirac measures. As in [11, (3.17)], the energy bound
supn Iεn(mn) <∞ implies that µx is concentrated on ∂B for a.e. x ∈ Ω. The first main step
is to prove that, for any entropy Φ ∈ ENT the sequence ∇ · Φ̂(mn) is precompact in H−1(Ω).
This follows from the identity obtained in Lemma 12, exactly as in [11, (3.1)]. The div-curl
lemma therefore implies that for any entropies Φ1,Φ2 ∈ ENT, the weak* limit of the product
Φ̂1(mn) · iΦ̂2(mn) in measures is the product of the weak limits of Φ̂1(mn) and iΦ̂2(mn) in
L2(Ω). Hence, for a.e. x ∈ Ω, µ = µx is a probability measure concentrated on ∂B and
satisfying

ˆ
Φ1 · iΦ2 dµ =

ˆ
Φ1 dµ · i

ˆ
Φ2 dµ. (19)

The conclusion of Theorem 1 then follows from the next Lemma, which is the counterpart of
[11, Lemma 2.6].

Lemma 13. Let µ be a probability measure on R2 that is supported on ∂B and satisfies (19)
for all Φ1,Φ2 ∈ ENT. Then µ is a Dirac measure.

Remark 14. In the euclidean case ‖ · ‖ = | · |, building on earlier work by Aviles and Giga
[3], Jin and Kohn [17] introduced two fundamental entropies Σ1,Σ2 : S1 → R2 given by

Σ1

(
eiθ
)

=
i

2

(
ei3θ

3
+ e−iθ

)
, Σ2

(
eiθ
)

=
1

2

(
ei3θ

3
− e−iθ

)
.

12



The proof of compactness given by [1] uses only Σ1,Σ2 but is somewhat intricate, and the one
in [11] uses an infinite family of entropies. We indicate here a somewhat shorter proof using
only Σ1,Σ2 and Šverák’s theorem [30]. To see this, rewrite (19) applied to Σ1,Σ2 as

det

(ˆ
R2×2

X dν(X)

)
=

ˆ
R2×2

det(X) dν(X),

where ν = P]µ is the pushforward of µ by the matrix-valued map P : S1 → R2×2 whose
rows are Σ1,Σ2. Hence ν is a Null Lagrangian measure (in the sense of [22]) supported on
K = P(S1) (which is the same set as in [21, (42)]). By [21, Lemma 7], the set K has no
Rank-1 connections, so [30, Lemma 3] ensures that ν is a Dirac measure.

The proof of Lemma 13 follows closely [11, Lemma 2.6]. Nevertheless we give some details,
because this is where the crucial assumption that B is strictly convex is used. In the proof we
will need the following construction.

Lemma 15. Given ξ = γ(θ0) ∈ ∂B, define Φξ : ∂B→ R2 by

Φξ(z) = 1z·iγ(θ0)>0 γ
′(θ0) = 1z·iξ>0 inB(ξ),

where nB(ξ) denotes the outer unit normal to ∂B at ξ. Then Φξ is a generalized entropy for

the equation (2) in the sense that there exists a sequence
{

Φξ
δ

}
δ>0
⊂ ENT that is uniformly

bounded and satisfies

Φξ
δ(z)→ Φξ(z) for all z ∈ ∂B. (20)

Proof. For any λ ∈ C1(R/2πZ) such that
´
R/2πZ λ(θ)γ′(θ) dθ = 0, the map Φ: ∂B→ R2 given

by

Φ(γ(θ)) =

ˆ θ

θ0

λ(t)γ′(t) dt,

is well defined and belongs to ENT. We define a sequence of functions λδ such that the
corresponding Φ = Φξ

δ has the desired properties. We fix a smooth nonnegative kernel ρ ∈
C∞c (R) with support supp ρ ⊂ (0, 1) and unit integral

´
ρ = 1, denote ρδ(t) = δ−1ρ(t/δ), and

define a function λ̂δ ∈ C∞(R/2πZ) by setting

λ̂δ(θ) = ρδ(θ − θ0) + ρδ(π + θ0 − θ) for θ0 < θ ≤ θ0 + 2π,

and λ̂δ extended as a 2π-periodic function. Note that λ̂δ is supported in

(θ0, θ0 + δ) ∪ (θ0 + π − δ, θ0 + π) + 2πZ.

Moreover, the map Ψδ : (θ0, θ0 + 2π]→ R2 defined by

Ψδ(θ) =

ˆ θ

θ0

λ̂δ(t)γ
′(t) dt for θ0 < θ ≤ θ0 + 2π,
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satisfies |Ψδ| ≤ 2 since |γ′| = 1, and

Ψδ(θ) =

{´
R ρδ(t− θ0)γ′(t) dt if θ0 + δ < θ < θ0 + π − δ,´
R ρδ(t− θ0)γ′(t) dt+

´
R ρδ(θ0 + π − t)γ′(t) dt if θ0 + π ≤ θ ≤ θ0 + 2π.

Using that γ′ is continuous and γ′(θ0 + π) = −γ′(θ0) we obtain, for any θ ∈ (θ0, θ0 + 2π], the
limit

lim
δ→0

Ψδ(θ) =

{
γ′(θ0) if θ0 < θ < θ0 + π,

0 if θ0 + π ≤ θ ≤ θ0 + 2π.

This corresponds exactly to Φξ(γ(θ)). The only issue is that λ̂δ does not satisfy the constraint´
R/2πZ λ̂δ(θ)γ

′(θ) dθ = 0, hence Ψδ cannot be extended to a 2π-periodic function and does not

define an entropy. So we need to modify λ̂δ.
1 We claim that there exists µδ ∈ C1(R/2πZ)

such that ˆ
R/2πZ

µδ(θ)γ
′(θ) dθ =

ˆ
R/2πZ

λ̂δ(θ)γ
′(θ) dθ,

and

ˆ
R/2πZ

|µδ(θ)| dθ −→ 0 as δ → 0.

(21)

Granted (21), we define λδ = λ̂δ(θ) − µδ. This function does satisfy
´
R/2πZ λδ(θ)γ

′(θ) dθ = 0

thanks to (21), so the formula

Φξ
δ(γ(θ)) =

ˆ θ

θ0

λ(t)γ′(t) dt,

defines an entropy Φξ
δ ∈ ENT. Moreover for any θ ∈ (θ0, θ0 + 2π] we have

|Ψδ(θ)− Φξ
δ(γ(θ))| ≤

ˆ
R/2πZ

|µδ(θ)| dθ −→ 0 as δ → 0.

Thanks to the convergence of Ψδ established above, this implies Φξ
δ(z)→ Φξ(z) for all z ∈ ∂B,

and uniform boundedness of Φξ
δ follows from the uniform boundedness of Ψδ. Therefore the

proof of Lemma 15 will be complete once we prove the existence of µδ ∈ C1(R/2πZ) satisfying
(21).

This construction is possible thanks to the fact that

vδ :=

ˆ
R/2πZ

λ̂δ(θ)γ
′(θ) dθ −→ γ′(θ0) + γ′(θ0 + π) = 0,

as δ → 0. To explicitly construct µδ, we introduce a (small) parameter η > 0, to be fixed
later, and two functions fη1 , f

η
2 ∈ C1(R/2πZ) such that

‖fηj − γ
′
j‖L2(R/2πZ) ≤ η for j = 1, 2,

1Note in order to get the pointwise convergence in (20) for every z ∈ ∂B we can not define λ̂δ via the
standard symmetric (across zero) kernel centered on θ0, θ0 + π. This is why we do the two step procedure of
defining λ̂δ then modifying it.

14



and look for µδ in the form

µδ(θ) = αδf
η
1 (θ) + βδf

η
2 (θ), αδ, βδ ∈ R.

With these notations, the constraint
´
µδγ

′ =
´
λ̂δγ

′ in (21) turns into

vδ = Aη

(
αδ
βδ

)
, Aη =

( ´
fη1 γ

′
1

´
fη2 γ

′
1´

fη1 γ
′
2

´
fη2 γ

′
2

)
.

Next we show that we may fix η > 0 such that Aη is invertible. As a consequence, defining

(αδ, βδ)
T = A−1

η vδ ensures that µδ satisfies the constraint
´
µδγ

′ =
´
λ̂δγ

′ in (21), and the

convergence µδ → 0 in L1 follows from vδ → 0. This concludes the proof of (21) and of
Lemma 15.

It remains to prove that Aη is invertible for small enough η > 0. To that end we remark
that thanks to the convergence fηj → γ′j in L2, we have

Aη −→ A0 =

( ´
(γ′1)2

´
γ′2γ
′
1´

γ′1γ
′
2

´
(γ′2)2

)
as η → 0.

The Cauchy-Schwarz inequality (
´
γ′1γ
′
2)2 ≤

´
(γ′1)2

´
(γ′2)2 ensures that det(A0) ≥ 0, and in

fact det(A0) > 0 because equality cannot occur in the Cauchy-Schwarz inequality: otherwise
γ′1, γ

′
2 would be colinear in L2, implying that γ′ takes values in a fixed line, which is incom-

patible with it being the unit tangent of ∂B. So the matrix A0 is invertible, and we may fix
η > 0 such that Aη is invertible.

With the construction of Lemma 15 at hand, we turn to the proof of Lemma 13.

Proof of Lemma 13. Let ξ1, ξ2 ∈ ∂B. By Lemma 15, for j = 1, 2, we can find
{

Φ
ξj
δ

}
δ
⊂ ENT

such that

Φ
ξj
δ (z)

δ→0→ Φξj (z) for all z ∈ ∂B.

Also recall that
{

Φ
ξj
δ

}
is uniformly bounded. Hence, applying (19) to Φj = Φ

ξj
δ and passing

to the limit δ → 0 we obtain, by dominated convergence,

ˆ
∂B

Φξ1(z) · iΦξ2(z)dµ(z) =

(ˆ
∂B

Φξ1(z)dµ(z)

)
· i
(ˆ

∂B
Φξ2(z)dµ(z)

)
.

In other words, recalling the definition of Φξ in Lemma 15, for any ξ1, ξ2 ∈ ∂B we have

inB(ξ1) · nB(ξ2)µ({z · iξ1 > 0} ∩ {z · iξ2 > 0})
= inB(ξ1) · nB(ξ2)µ({z · iξ1 > 0})µ({z · iξ2 > 0}).

(Here and in the rest of the proof, we use the shortened notation {z · iξ > 0} to denote the
subset of points z ∈ ∂B satisfying this inequality.) By strict convexity of ∂B, for ξ1 6= ±ξ2 we
have inB(ξ1) · nB(ξ2) 6= 0, and the last equation becomes

µ({z · iξ1 > 0} ∩ {z · iξ2 > 0}) = µ({z · iξ1 > 0})µ({z · iξ2 > 0}).
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From that point on the proof follows exactly [11, Lemma 2.6], for the reader’s convenience we
recall here the short argument. Letting ξ2 → ξ1 with ξ2 6= ±ξ1 we obtain

µ ({z · iξ1 > 0}) ≤ µ ({z · iξ1 > 0})µ ({z · iξ1 ≥ 0}) ,

which implies

µ ({z · iξ > 0}) = 0 or µ ({z · iξ ≥ 0}) = 1 for all ξ ∈ ∂B.

This is equivalent to

µ ({z · iξ > 0}) = 0 or µ ({z · iξ < 0}) = 0 for all ξ ∈ ∂B. (22)

This implies that µ is a Dirac measure: otherwise we can find ξ ∈ ∂B such that

µ ({z · iξ > 0}) > 0 and µ ({z · iξ < 0}) > 0,

which contradicts (22).

4 Zero-energy states

In this section we prove Theorem 4 on zero-energy states: let m : Ω → R2 satisfy m =
limn→∞mn in L2(Ω) for some {mn} ⊂W 1,2(Ω;R2) with ∇·mn = 0 and limn→∞ Iεn(mn) = 0
for some εn → 0, then m must be continuous outside a locally finite set of vortices associated
to the norm ‖ · ‖.

The first step, similar to [16, Proposition 1.1] is to obtain the kinetic formulation

γ′(t) · ∇x1m(x)·iγ(t)>0 = 0 in D′(Ω) for all t ∈ R. (23)

This follows from the fact that entropy productions vanish: thanks to Proposition 2, ∇ ·
Φ(m) = 0 in D′(Ω) for all Φ ∈ ENT. For any t ∈ R, we may apply this to the entropies Φ

γ(t)
δ

provided by Lemma 15, hence
ˆ

Ω
Φ
γ(t)
δ (m(x)) · ∇ζ(x) dx = 0 for all ζ ∈ C∞c (Ω).

Thanks to the pointwise convergence Φ
γ(t)
δ (z) → Φγ(t)(z) = 1z·iγ(t)>0γ

′(t) and the uniform

boundedness of Φ
γ(t)
δ , we can pass to the limit δ → 0 by dominated convergence, and deduce

ˆ
Ω
1m(x)·iγ(t)>0 γ

′(t) · ∇ζ(x) dx = 0 for all ζ ∈ C∞c (Ω),

which is exactly (23).
Next we define m̃ : Ω→ S1 by setting

m̃ = nB(m), where nB : ∂B→ S1 is the outer unit normal to ∂B.

The symmetries of B ensure that, for any z ∈ ∂B,

z · iγ(t) > 0 ⇐⇒ nB(z) · γ′(t) > 0.
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Therefore, for a fixed t ∈ R, and θt = α(t) where α : R→ R is the (unique up to an additive
constant) continuous function such that γ′(t) = eiα(t), we have

1m(x)·iγ(t)>0 γ
′(t) = 1m̃(x)·eiθt>0 e

iθt .

As t 7→ θt is a bijection from R into itself we deduce from (23) that m̃ solves the kinetic
equation

eiθ · ∇x1m̃(x)·eiθ>0 = 0 in D′(Ω) for all θ ∈ R.

This is the kinetic formulation that characterizes zero-energy states for the classical Aviles-
Giga functional: it follows from [16, Theorem 1.3] that m̃ is locally Lipschitz outside a locally
finite set. Moreover, in any convex neighborhood of a singularity x0 we have m̃(x) = βi(x−
x0)/|x− x0| for some β ∈ {±1}.

Note that, since ∂B is C1 and strictly convex, the map nB : ∂B→ S1 is a homeomorphism.
We deduce that m = n−1

B (m̃) is continuous outside a locally finite set. Moreover, from [6,
Proposition 2.2] we know that n−1

B (x/|x|) = VB(x) for any x ∈ R2, where VB = ∇‖ · ‖∗ is the
vortex associated to ‖ · ‖ and ‖ · ‖∗ is the dual norm of ‖ · ‖, and VB(−x) = −VB(x), so we
deduce m(x) = βVB(i(x−x0)) in any convex neighborhood of a singularity x0. This concludes
the proof of Theorem 4.

To prove the assertion of Remark 5, simply note that n−1
B is 1/(p − 1)-Hölder whenever

‖ · ‖ is of power type p for p ≥ 2 [6, Theorem 2.6].

5 Regularity estimates

In this section we give the proofs of Theorems 6 and 8 in Subsections 5.1 and 5.2, respectively.
The proof of Theorem 10 relies on explicit calculations in the BV setting and is postponed
to Subsection 6.1.

5.1 Finite entropy production implies regularity estimates

In this subsection we find it more convenient to work with maps m : Ω→ R2 solving

|m| = 1 a.e., ∇ ·X(m) = 0 in D′(Ω). (24)

Solutions of (24) and of the generalized Eikonal equation (2) are in correspondence via the
Lipschitz homeomorphism X defined in (12). Specifically, a map m solves (24) if and only if
m = X(m) solves (2).

This transformation also induces a correspondence between entropies. A C1 map Φ: S1 →
R2 is an entropy for equation (24) if and only if ∇ · Φ(m) = 0 for any smooth solution of
(24). It is an exercise to see that this is equivalent to (d/dθ)Φ(eiθ) being colinear to γ′(θ). As
in the definition of ENT in (4), we consider the subclass of entropies where we require a C1

colinearity coefficient:

d

dθ
Φ(eiθ) = λ(θ)γ′(θ) for some λ ∈ C1(R/2πZ).

Therefore, Φ is an entropy for equation (24) in this subclass if and only if Φ = Φ◦X−1 : ∂B→
R2 belongs to ENT, as follows directly from the definition (4) of the class ENT. Moreover we
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have Φ(m) = Φ(m). In particular, the entropy productions ∇ · Φ(m) of a solution m of (24)
are measures if and only if the entropy productions ∇ · Φ(m) of the solution m = X(m) of
(2) are measures. Thanks to the above discussion, all results we prove in this section about
solutions of (24) directly translate into corresponding results about solutions of (2).

We use the family of entropies Φψ for equation (24) given by

Φψ(eiθ) =

ˆ
R/2πZ

1eiθ·eis>0 ψ(s)γ′(s− π/2) ds, ψ ∈ C1(R/2πZ). (25)

Note that since γ′(t + π) = −γ′(t) we have that (d/dθ)Φψ

(
eiθ
)

= λ(θ)γ′(θ) with λ(θ) =
ψ(θ + π/2) + ψ(θ − π/2). Therefore (25) does define an entropy for equation (24).

Recall that α ∈ C0(R) is such that

eiα(θ) = γ′(θ) ∀θ ∈ R. (26)

The continuous function α is uniquely determined up to a constant, is strictly increasing, and
satisfies α(θ + π) = α(θ) + π for all θ ∈ R.

Proposition 16. If m satisfies (24) and

∇ · Φψ(m) ∈Mloc(Ω) ∀ψ ∈ C1(R/2πZ),

then we have

sup
0<|h|<dist(Ω′,∂Ω)

1

|h|

ˆ
Ω′

Λ(m(x),m(x+ h)) dx <∞ ∀Ω′ ⊂⊂ Ω, (27)

where Λ: S1 × S1 → [0,+∞) is given by

Λ(eiθ1 , eiθ2) =

ˆ θ2

θ1

ˆ θ2

θ1

|α(t)− α(s)| dtds for |θ1 − θ2| ≤ π. (28)

Moreover, for m1,m2 ∈ S1, we have

Λ(m1,m2) & δ2ω−1(δ/2), δ = |m1 −m2|, (29)

where ω(δ) = sup{|α−1(t)−α−1(s)| : |t−s| < δ} is the minimal modulus of continuity of α−1.

Theorem 6 is a direct consequence of Proposition 16 and the correspondence between the
generalized Eikonal equation (2) and equation (24). In particular, the regularity estimate
(8) of Theorem 6 is equivalent to (27) by noting that the function Π defined in (6) satisfies
Π(γ(θ1), γ(θ2)) = Λ(eiθ1 , eiθ2).

Remark 17. If ‖·‖ is in addition of power type p for some p ≥ 2 then α−1 is 1/(p−1)-Hölder
[6, Theorem 2.6], so ω−1(δ) & δp−1 and therefore (27) and (29) imply

sup
0<|h|<dist(Ω′,∂Ω)

1

|h|

ˆ
Ω′
|m(x+ h)−m(x)|p+1 dx <∞ ∀Ω′ ⊂⊂ Ω,

that is, m has the local Besov regularity B
1
p+1

p+1,∞.
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Remark 18. The function α is increasing and therefore Dα is a positive measure. Hence for
0 ≤ θ2 − θ1 ≤ π, one can rewrite the quantity Λ defined in (28) as

Λ(eiθ1 , eiθ2) =

˚
[θ1,θ2]3

(1s<τ<t + 1s>τ>t) dtdsDα(dτ)

= 2

ˆ θ2

θ1

(τ − θ1)(θ2 − τ)Dα(dτ)

≥ 2

9
(θ2 − θ1)2Dα([θ1 + (θ2 − θ1)/3, θ1 + 2(θ2 − θ1)/3]).

(We used the identity
˜

[θ1,θ2]2 (1s<τ<t + 1s>τ>t) dtds = 2(τ − θ1)(θ2− τ) to obtain the second

equality.)

Proof of Proposition 16. The proof is a direct combination of Lemmas 19 to 23 below.

Lemma 19. If m satisfies (24) and

∇ · Φψ(m) ∈M(Ω) ∀ψ ∈ C1 (R/2πZ) ,

then m satisfies the kinetic equation

γ′(s− π/2) · ∇x1m(x)·eis>0 = ∂sσ(s, x) in D′(R/2πZ× Ω), (30)

for some σ ∈M(R/2πZ× Ω).

Proof. For any fixed ζ ∈ C∞c (Ω), the operator Tζ : ψ 7→ 〈∇·Φψ(m), ζ〉 is a linear operator from
C1(R/2πZ) to R. Further the estimate |〈∇ · Φψ(m), ζ〉| . ‖ψ‖C1(R/2πZ)‖∇ζ‖L∞(Ω) implies
that Tζ is a bounded linear operator. Thus the same Banach-Steinhaus argument as in [13,
Lemma 3.4] provides the bound

|〈∇ · Φψ(m), ζ〉| . ‖ψ‖C1(R/2πZ)‖ζ‖L∞(Ω),

for all ζ ∈ C0
c (Ω) and ψ ∈ C1(R/2πZ). Moreover, when ψ is a constant ψ ≡ c, we have ∇ ·

Φψ(m) = 2c∇·X(m) = 0, so in the above we can consider the quotient space C1(R/2πZ)/R ≈
C0(R/2πZ). Explicitly, for any f ∈ C0(R/2πZ) consider the function ψ[f ] ∈ C1(R/2πZ) given
by

ψ[f ](t) =

ˆ t

0

(
f −−
ˆ
R/2πZ

f

)
,

then we have

〈∇ · Φψ[f ](m), ζ〉 . ‖f‖L∞(R/2πZ)‖ζ‖L∞(Ω),

for all ζ ∈ C0
c (Ω) and f ∈ C0(R/2πZ). As a consequence (see [20, Appendix B] for a

detailed proof) there exists a measure σ ∈ M(R/2πZ× Ω) such that, for all ζ ∈ C∞c (Ω) and
f ∈ C0(R/2πZ) with −́R/2πZ f = 0, we have

〈∇ · Φψ[f ](m), ζ〉 = −〈σ, f ⊗ ζ〉 = 〈∂sσ, ψ[f ]⊗ ζ〉.
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From the the definition of Φψ (25) we see that this is equivalent to

〈γ′(s− π/2) · ∇x1m(x)·eis>0 − ∂sσ, ψ(s)ζ(x)〉 = 0, (31)

for ψ = ψ[f ], that is, for all ψ ∈ C1(R/2πZ) such that ψ(0) = 0 and ζ ∈ C∞c (Ω). For constant
ψ = c, equation (31) amounts to 2c∇·X(m) = 0, so it is in fact valid for any ψ ∈ C1(R/2πZ).
This proves the kinetic equation (30).

Remark 20. Note that the kinetic equation (30) only uniquely determines ∂sσ. We may
choose the unique σ satisfying in addition 〈σ(s, x), ζ(x)〉 = 0 for all ζ ∈ C0

c (Ω).

Lemma 21. If m satisfies |m| = 1 a.e. and the kinetic equation (30), then for any ϕ ∈
BV (R/2πZ) which is odd, i.e. ϕ(−θ) = −ϕ(θ), the quantity

∆ϕ(eiθ1 , eiθ2) =

¨
R/2πZ×R/2πZ

ϕ(t− s) γ′(s− π/2) ∧ γ′(t− π/2) (32)(
1eis·eiθ2>0 − 1eis·eiθ1>0

) (
1eit·eiθ2>0 − 1eit·eiθ1>0

)
dtds,

satisfies

1

|h|

ˆ
Ω′

∆ϕ(m(x),m(x+ h)) dx .
‖ϕ‖L1(R/2πZ)

dist(Ω′, ∂Ω)
+ |Dϕ|(R/2πZ)|σ|(R/2πZ× Ω),

for all Ω′ ⊂⊂ Ω and h ∈ R2 such that |h| < dist(Ω′, ∂Ω).

Proof. This essentially follows [13, Lemma 3.9] in a slightly modified setting; we provide some
details here for the reader’s convenience. We set

χ(t, x) = 1eit·m(x)>0,

and for a small parameter ε > 0 we consider regularized (with respect to x) maps

χε = χ ∗x ρε, σε = σ ∗x ρε,

where ρε is a regularizing kernel. We have the regularized kinetic equation

γ′(s− π/2) · ∇xχε = ∂sσε.

Let Ω′ ⊂⊂ Ω be fixed and h = ue for some e ∈ S1 and u ∈ R such that |u| = |h| <
dist(Ω′, ∂Ω). Without loss of generality, assume e = e1. We denote by χu(t, x) = χ(t, x+ue1)
and Duχ(t, x) = χu(t, x)− χ(t, x). Define the quantity

∆ε
ϕ(x, u) =

¨
R/2πZ×R/2πZ

ϕ(t− s) γ′(s− π/2) ∧ γ′(t− π/2)

Duχε(s, x)Duχε(t, x) dtds,

for x ∈ Ω and |u|+ ε < dist(x, ∂Ω). Note that, as ε→ 0, we have the pointwise limit

∆ε
ϕ(x, u) −→ ∆ϕ(m(x),m(x+ ue1)) for a.e. x ∈ Ω.
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A long but direct calculation (detailed in [13, Lemma 3.9] in the case γ(t) = eit) provides, for
any smooth odd ϕ, the identity

∂

∂u
∆ε
ϕ = Iε +∇ ·Aε,

Iε = 2

¨
ϕ(t− s)γ′2(t− π/2) [χuε (t, x)∂sσε(s, x)− χε(t, x)∂sσ

u
ε (s, x)] dtds,

Aε1 = 2

¨
ϕ(t− s)γ′2(t− π/2)γ′1(s− π/2)χuε (t, x)Duχε(s, x) dtds,

Aε2 = 2

¨
ϕ(t− s)γ′2(t− π/2)γ′2(s− π/2)χε(t, x)χuε (s, x) dtds.

Note that |Aε| . ‖ϕ‖L1(R/2πZ). Integrating with respect to u and against a smooth cut-off
function in x we deduce

1

|h|

ˆ
Ω′

∆ε
ϕ(x, u) dx .

‖ϕ‖L1(R/2πZ)

dist(Ω′, ∂Ω)
+ |σ|(R/2πZ× Ω)

ˆ
R/2πZ

|ϕ′(t)| dt.

Letting ε→ 0 we infer

1

|h|

ˆ
Ω′

∆ϕ(m(x),m(x+ ue1)) dx .
‖ϕ‖L1(R/2πZ)

dist(Ω′, ∂Ω)
+ |Dϕ|(R/2πZ)|σ|(R/2πZ× Ω),

for all smooth odd ϕ, and by approximation for any odd ϕ ∈ BV (R/2πZ).

Lemma 22. There exists an odd function ϕ ∈ BV (R/2πZ) such that the quantity ∆ϕ defined
in (32) satisfies ∆ϕ & Λ, where Λ is defined in (28).

Proof. We define an odd function ϕ ∈ BV (R/2πZ) by setting

ϕ(θ) =


1 for 0 < θ < δ,

−1 for − δ < θ < 0,

0 for δ < |θ| < π,

where δ ∈ (0, π/2) is a parameter to be chosen later. Recalling the definitions of ∆ϕ (32) and
α (26), we have, for m1,m2 ∈ S1,

∆ϕ(m1,m2) =

¨
distS1 (eis,eit)<δ

| sin(α(t− π/2)− α(s− π/2))|Ξ(t) Ξ(s) dtds, (33)

Ξ(t) = Ξ(t,m1,m2) = 1eit·m2>0 − 1eit·m1>0.

Here and in what follows we let distS1 denote the geodesic distance in S1. The function
Ξ(·,m1,m2) is supported in two opposite arcs of length distS1(m1,m2):

Ξ(t,m1,m2) = 1t∈A − 1t∈−A for a.e. t ∈ R/2πZ,
A = A(m1,m2) =

{
t ∈ R/2πZ : eit ·m2 > 0 and eit ·m1 < 0

}
.

If distS1(m1,m2) ≤ π − δ, then the distance between these arcs is at least δ, so we have

Ξ(t)Ξ(s) = 1s,t∈A + 1s,t∈−A for distS1(eis, eit) < δ,
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and therefore

∆ϕ(m1,m2) =

¨
A×A

1distS1 (eis,eit)<δ| sin(α(t− π/2)− α(s− π/2))| dtds

+

¨
−A×−A

1distS1 (eis,eit)<δ| sin(α(t− π/2)− α(s− π/2))| dtds

= 2

¨
A×A

1distS1 (eis,eit)<δ| sin(α(t− π/2)− α(s− π/2))| dtds.

The last equality follows from α(t+ π) = α(t) + π for all t ∈ R/2πZ. Because α is uniformly
continuous we may choose δ0 > 0 small enough to ensure that |α(t−π/2)−α(s−π/2)| ≤ π/2
for distS1(eit, eis) < δ provided δ ≤ δ0, and then we have

∆ϕ(m1,m2) ≥ 4

π

¨
A×A

1distS1 (eis,eit)<δ|α(t− π/2)− α(s− π/2)| dtds.

Letting m1 = eiθ1 , m2 = eiθ2 with |θ1 − θ2| = distS1(m1,m2), this turns into

∆ϕ(m1,m2) ≥ 4

π

ˆ θ2+π
2

θ1+π
2

ˆ θ2+π
2

θ1+π
2

1|t−s|<δ|α(t− π/2)− α(s− π/2)| dtds

=
4

π

ˆ θ2

θ1

ˆ θ2

θ1

1|t−s|<δ|α(t)− α(s)| dtds. (34)

Recalling the definition (28) of Λ(m1,m2), we deduce

∆ϕ(m1,m2) ≥ 4

π
Λ(m1,m2) if distS1(m1,m2) ≤ δ.

For δ < distS1(m1,m2) ≤ π − δ, from (34) we have

∆ϕ(m1,m2) ≥ C1(δ) :=
4

π
inf
θ∈R

ˆ θ+δ

θ

ˆ θ+δ

θ
|α(t)− α(s)| dtds > 0

(where this infimum is indeed positive because α is strictly increasing thanks to the strict
convexity of B), so

∆ϕ(m1,m2) ≥ C1(δ)

supS1×S1 Λ
Λ(m1,m2) if δ < distS1(m1,m2) ≤ π − δ.

Finally we turn to the case π − δ < distS1(m1,m2) ≤ π, where the product Ξ(s)Ξ(t) can
take negative values. We have

Ξ(t)Ξ(s) = 1s,t∈A + 1s,t∈−A − 1t∈A,s∈−A − 1t∈−A,s∈A

≥ 1s,t∈A + 1s,t∈−A − 1s,t∈Âδ − 1s,t∈−Âδ ,

where Âδ is the arc of length 2δ given by

Âδ =
{
t ∈ R/2πZ : distS1(eit, ieiθ0) < δ

}
, θ0 =

θ1 + θ2

2
− π

2
.
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Figure 1: The two isosceles triangles in W (τ).

Plugging this into the expression of ∆ϕ in (33) and using again α(θ + π) = α(θ) + π and
|α(t− π/2)− α(s− π/2)| ≤ π/2 for distS1(eis, eit) < δ, we find

∆ϕ(m1,m2) ≥ 4

π

¨
A×A

1distS1 (eis,eit)<δ|α(t− π/2)− α(s− π/2)| dtds

− 2

¨
Âδ×Âδ

|α(t− π/2)− α(s− π/2)| dtds

≥ 4

π

ˆ θ0+π− δ
2

θ0+ δ
2

ˆ θ0+π− δ
2

θ0+ δ
2

1|t−s|<δ|α(t)− α(s)| dtds

− 2

ˆ θ0+δ

θ0−δ

ˆ θ0+δ

θ0−δ
|α(t)− α(s)| dtds. (35)

Since α is increasing, its derivative Dα is a nonnegative Radon measure. We use this to
calculate

ˆ θ0+π− δ
2

θ0+ δ
2

ˆ θ0+π− δ
2

θ0+ δ
2

1|t−s|<δ|α(t)− α(s)| dtds

=

ˆ θ0+π− δ
2

θ0+ δ
2

W (τ)Dα(dτ),

W (τ) =

¨
1|t−s|<δ1θ0+δ/2<t<τ1τ<s<θ0+π−δ/2 dtds

+

¨
1|t−s|<δ1θ0+δ/2<s<τ1τ<t<θ0+π−δ/2 dtds.

For τ ∈ [θ0 + 3δ/2, θ0 + π − 3δ/2] the quantity W (τ) is the sum of the areas of two isosceles
right-angled triangles of height δ, so W (τ) = δ2; see Figure 1. Thus we deduce
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ˆ θ0+π− δ
2

θ0+ δ
2

ˆ θ0+π− δ
2

θ0+ δ
2

1|t−s|<δ|α(t)− α(s)| dtds

≥ δ2Dα([θ0 + 3δ/2, θ0 + π − 3δ/2]). (36)

Similarly we write
ˆ θ0+δ

θ0−δ

ˆ θ0+δ

θ0−δ
|α(t)− α(s)| dtds

=

ˆ θ0+δ

θ0−δ

(¨
[θ0−δ,θ0+δ]2

(1t<τ<s + 1s<τ<t) dtds

)
Dα(dτ),

≤ 4δ2Dα([θ0 − δ, θ0 + δ]). (37)

Plugging (36)-(37) into (35) we obtain

∆ϕ(m1,m2) ≥ 4δ2

(
1

π
Dα([θ0 + 3δ/2, θ0 + π − 3δ/2])− 2Dα([θ0 − δ, θ0 + δ])

)
,

if π − δ < distS1(m1,m2) ≤ π. Since α is continuous, the measure Dα has no atoms, and we
deduce the convergence

1

π
Dα([θ0 + 3δ/2, θ0 + π − 3δ/2])− 2Dα([θ0 − δ, θ0 + δ])

−→ 1

π
Dα([θ0, θ0 + π]) = 1,

as δ → 0, uniformly with respect to θ0 ∈ R. In particular we may choose δ ∈ (0, δ0) sufficiently
small such that

∆ϕ(m1,m2) ≥ δ2 ≥ δ2

supS1×S1 Λ
Λ(m1,m2),

for π − δ < distS1(m1,m2) ≤ π, and this concludes the proof of Lemma 22.

Lemma 23. For all m1,m2 ∈ S1, the function Λ defined in (28) satisfies

Λ(m1,m2) & δ2ω−1 (δ/2) , δ = |m1 −m2|,

where ω is the minimal modulus of continuity of α−1.

Proof. By definition of the modulus of continuity ω we have

|α(t)− α(s)| ≥ ω−1(|t− s|) ∀s, t ∈ R.

Using this and the fact that ω−1 is increasing in the definition (28) of Λ we obtain, for
|θ2 − θ1| ≤ π,

Λ(eiθ1 , eiθ2) ≥
ˆ θ2

θ1

ˆ θ2

θ1

ω−1(|t− s|) dtds

≥
ˆ θ2

θ1

ˆ θ2

θ1

1 1
2
|θ2−θ1|≤|t−s|≤|θ1−θ2| dtds ω

−1

(
|θ2 − θ1|

2

)
& |θ2 − θ1|2 ω−1

(
|θ2 − θ1|

2

)
.
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Since δ = |eiθ1 − eiθ2 | ≤ |θ1 − θ2| and ω−1 is increasing we deduce

Λ(m1,m2) & δ2 ω−1 (δ/2) , δ = |m1 −m2|,

for all m1,m2 ∈ S1.

5.2 Regularity implies finite entropy production for analytic norms

Recall the definition of α in (26), i.e. α ∈ C0(R) satisfies

eiα(θ) = γ′(θ) ∀θ ∈ R,

and that α is increasing and therefore Dα is a nonnegative measure on R. Here we prove
Theorem 8, which follows from the following Lemmas 24 and 25.

Lemma 24. Let m satisfy (2). Assume Dα forms a doubling measure and for any Ω′ ⊂⊂ Ω
we have

sup
|h|<dist(Ω′,∂Ω)

1

|h|

ˆ
Ω′

Π (m(x),m(x+ h)) dx <∞, (38)

where Π is defined by (6). Then the entropy productions of m satisfy ∇·Φ(m) ∈Mloc(Ω) for
all Φ ∈ ENT, and their lowest upper bound measure satisfies the estimate ∨

‖λ′Φ‖∞≤1

|∇ · Φ(m)|

 (Ω′) ≤ C sup
|h|<dist(Ω′,∂Ω)

1

|h|

ˆ
Ω′

Π (m(x),m(x+ h)) dx,

for some constant C > 0 depending on B and the doubling constant of Dα.

Proof. Let mε = m ∗ ρε for a regularizing kernel ρε. For any Φ ∈ ENT and any test function
ζ ∈ C∞c (Ω) with support inside an open subset V ⊂ Ω, using estimates similar to those
leading to (18), we deduce that

|〈∇ · Φ(m), ζ〉| . ‖∇Ψ‖∞‖ζ‖∞ lim inf
ε→∞

ˆ
V
|Dmε|

(
1− ‖mε‖2

)
dx. (39)

Given x ∈ V , note that

|Dmε(x)| ≤
ˆ
Bε(x)

|m (z)−m (x)| |∇ρε (x− z)| dz

. ε−1−
ˆ
Bε(x)

|m (z)−m (x)| dz. (40)

Define the function F : R2 → R by F (z) = ‖z‖2 for any z ∈ R2. By convexity of F , we have

1− ‖mε(x)‖2 = F (m(x))− F (mε(x))

≤ ∇F (m(x)) · (m(x)−mε(x))

= ∇F (m(x)) ·
ˆ
Bε(x)

(m(x)−m(z)) ρε(x− z)dz.

25



As the level sets {F = λ2} are the curves {λγ(θ)}θ∈R, the gradient of F at m = γ(θ) is in the
direction of −iγ′(θ). Since moreover F is locally Lipschitz we have

∇F (γ(θ)) = −c(θ)iγ′(θ), 0 < c(θ) ≤ C,

for some constant C > 0 depending on B. (Explicitly, c(θ) = 2/(iγ(θ) · γ′(θ)).) We write
m(x) = γ(θ(x)) for some θ(x) ∈ R and m(z) = γ(θx(z)) for some θx(z) ∈ R such that
dist∂B(m(x),m(z)) = |θ(x) − θx(z)|, where dist∂B denotes the geodesic distance in ∂B, and
plug the above expression for ∇F into the previous inequality. This yields

1− ‖mε(x)‖2 ≤ C(−iγ′(θ(x))) ·
ˆ
Bε(x)

ˆ θ(x)

θx(z)
γ′(s) ds ρε(x− z)dz

= C

ˆ
Bε(x)

ˆ θ(x)

θx(z)
sin(α(θ(x))− α(s)) ds ρε(x− z)dz.

For the last equality we used the definition of the continuous increasing function α character-
ized by γ′ = eiα. Letting g(x, z) = dist∂B(m(x),m(z)), we infer

1− ‖mε(x)‖2 ≤ C
ˆ
Bε(x)

ˆ θ(x)+g(x,z)

θ(x)−g(x,z)
|α(θ(x))− α(s)| ds ρε(x− z)dz. (41)

For all θ, r ∈ R, define

Gθ(r) =

ˆ θ+r

θ−r

ˆ θ+r

θ−r
|α(t)− α(s)| dtds. (42)

It follows that

G′θ(r) = 2

ˆ θ+r

θ−r
(|α (θ + r)− α(s)|+ |α (θ − r)− α(s)|) ds. (43)

Using that α is strictly increasing, we find that G′θ is strictly increasing, and thus Gθ is strictly
convex.

Moreover, for θ−r < s < θ we have |α(θ)−α(s)| < |α(θ+r)−α(s)|, and for θ < s < θ+r
we have |α(θ) − α(s)| < |α(θ − r) − α(s)|. So we deduce from the estimate (41) and the
expression (43) of G′θ that

1− ‖mε(x)‖2 ≤ C

2

ˆ
Bε(x)

G′θ(x) (g(x, z)) ρε(x− z)dz.

Putting this together with (40), we obtain

|Dmε(x)|
(
1− ‖mε(x)‖2

)
.
C

ε
−
ˆ
Bε(x)

−
ˆ
Bε(x)

G′θ(x) (g(x, z)) g(x, y) dz dy.

Let Hθ denote the Legendre transform of Gθ, i.e. Hθ(p) = supr∈R{pr − Gθ(r)} for all p ∈ R.
It follows that

ε

C
|Dmε(x)| (1− ‖mε(x)‖) . −

ˆ
Bε(x)

Hθ(x)

(
G′θ(x) (g(x, z))

)
dz

+−
ˆ
Bε(x)

Gθ(x) (g(x, y)) dy. (44)
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Note that Gθ(r) ≥ cr2 for all r sufficiently large and for some universal constant c > 0.
Therefore, for all p ∈ R, we have Hθ(p) = pr∗ − Gθ(r∗) for the unique r∗ ∈ R characterized
by G′θ(r∗) = p. Thus for all θ, r ∈ R we have

Hθ(G′θ(r)) = G′θ(r)r − Gθ(r)

≤ G′θ(r)r = 2r

ˆ θ+r

θ−r
(|α (θ + r)− α(s)|+ |α (θ − r)− α(s)|) ds

≤ 8 r2 |α(θ + r)− α(θ − r)| = 8 r2Dα ([θ − r, θ + r]) .

For the last inequality we used again the fact that α is increasing. On the other hand, it is
clear from (42) that

Gθ (r) ≤ 4 r2Dα ([θ − r, θ + r]) .

Plugging these two inequalities for Hθ(G′θ) and Gθ into (44) and changing y to z in the second
integral on the right-hand side we obtain

|Dmε(x)| (1− ‖mε(x)‖)

.
C

ε
−
ˆ
Bε(x)

g(x, z)2Dα ([θ(x)− g(x, z), θ(x) + g(x, z)]) dz. (45)

Recall from Remark 18 that, for any θ1, θ2 ∈ R with r = |θ1 − θ2| ≤ π, we have

Π(γ(θ1), γ(θ2)) = Λ(eiθ1 , eiθ2) & r2Dα

([
θ1 + θ2

2
− r

6
,
θ1 + θ2

2
+
r

6

])
.

Using the fact that Dα is a doubling measure, we deduce

Π(γ(θ1), γ(θ2)) & C0 r
2Dα

([
θ1 + θ2

2
− 3r

2
,
θ1 + θ2

2
+

3r

2

])
≥ C0 r

2Dα ([θ1 − r, θ1 + r]) ,

for some constant C0 > 0 depending on the doubling constant of Dα. Applying this to
θ1 = θ(x), θ2 = θx(z) and r = g(x, z) and plugging the resulting inequality into (45) we find

|Dmε(x)| (1− ‖mε(x)‖) ≤ C1

ε
−
ˆ
Bε(x)

Π(m(x),m(z)) dz,

for a constant C1 > 0 depending on the doubling constant of Dα and B.
Integrating this estimate with respect to x ∈ V and recalling (39) we deduce

|〈∇ · Φ(m), ζ〉| . C1‖∇Ψ‖∞‖ζ‖∞ lim inf
ε→0

1

ε
−
ˆ
Bε(0)

ˆ
V

Π(m(x),m(x+ h)) dx dh,

for any ζ ∈ C∞c (V ). Thanks to (38), the limit in the right-hand side is finite. This implies in
particular that ∇ · Φ(m) is a locally finite Radon measure, such that

|∇ · Φ(m)| (V ) . C1‖∇Ψ‖∞ lim inf
ε→0

1

ε
−
ˆ
Bε(0)

ˆ
V

Π(m(x),m(x+ h)) dx dh.
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Moreover, from this estimate we infer (arguing as in the proof of Proposition 2) that ∨
‖λ′Φ‖∞≤1

|∇ · Φ(m)|

 (Ω′) . C1 lim inf
ε→0

1

ε
−
ˆ
Bε(0)

ˆ
Ω′

Π(m(x),m(x+ h)) dx dh,

for any open subset Ω′ ⊂⊂ Ω. This implies the conclusion of Lemma 24.

Lemma 25. Suppose ∂B is analytic. Then α is analytic and α′(t) dt forms a doubling mea-
sure.

Proof. The lemma comes down to the fact that an absolutely continuous measure whose
density is a nonnegative analytic function is doubling. This is presumably a well known fact,
but we found no direct reference for it beyond a (more general) theorem in [12] for the square
of an analytic function. Since α′ ≥ 0, the function β(t) :=

√
α′(t) is well defined. As the

square root function is analytic in (0,∞), it follows that β(t) is analytic at all t such that
α′(t) > 0 (see [18, Proposition 1.4.2]). Given t0 with α′(t0) = 0, again by the fact that α′ ≥ 0,
we can write, for t in a sufficiently small neighborhood I of t0, α′(t) = (t− t0)2ph(t) for some
integer p ≥ 1 and some analytic function h with h(t) 6= 0 in I. Thus β(t) = (t− t0)p

√
h(t) is

analytic in I. This shows that β(t) is analytic in R, and thus [12, Theorem 1] can be applied
to β to conclude that α′(t) dt = β2(t) dt is a doubling measure.

Remark 26. The unit sphere of the `p norm in R2 defined by |x|p + |y|p = 1 is analytic for

1 < p < ∞. This follows from the analyticity of the function (1− |x|p)1/p in (−1, 1), which
in turn is a consequence of the analyticity of the functions 1 − |x|p and x1/p in the intervals
(−1, 1) and (0,∞), respectively.

6 Comparison of upper and lower bounds when m is BV

In this section we consider m ∈ BV (Ω;R2) that satisfies (2) and assume that Ω ⊂ R2 is a
bounded simply connected smooth domain. Therefore the constraint ∇·m = 0 is equivalent to
the existence of a function u such that m = i∇u. Using that correspondence, it is somewhat
lengthy but straightforward to see that the upper bound construction in [26] directly applies

(taking F (A,w) = |A|2 +
(
1− ‖iw‖2

)2
for A ∈ R2×2 and w ∈ R2 in [26, Theorem 1.2]) to

provide the existence of a C1 sequence mε → m in Lp(Ω;R2) for 1 ≤ p < ∞, such that
∇ ·mε = 0 and

lim sup
ε→0

Iε(mε) ≤
ˆ
Jm

c1D(m+,m−) dH1.

Here m± are the traces of m along its jump set Jm, and c1D(z+, z−) is the optimal energy of
a one-dimensional transition between two states z± ∈ ∂B. In other words

c1D(z+, z−) = inf
ζ∈Y

{ˆ +∞

−∞

(
(ζ ′(x))2 + (1− ‖a ν + ζ(x) iν‖2)2

)
dx

}
, (46)

where Y =

{
ζ ∈ C1(R) : lim

x→±∞
ζ = z± · iν

}
,
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and

ν = νz+,z− = i
z+ − z−

|z+ − z−|
, a = az+,z− = z+ · ν = z− · ν. (47)

Classically (see e.g. [29] for details), the infimum in (46) can be explicitly calculated. Indeed,
assuming without loss of generality that z− · iν ≤ z+ · iν, for any admissible function ζ ∈ Y
we have

ˆ +∞

−∞

(
(ζ ′(x))2 + (1− ‖a ν + ζ(x) iν‖2)2

)
dx

≥ 2

ˆ +∞

−∞
(1− ‖a ν + ζ(x) iν‖2) ζ ′(x) dx

= 2

ˆ +∞

−∞

d

dx

[ˆ ζ(x)

−∞
(1− ‖a ν + s iν‖2) ds

]
dx

= 2

ˆ z+·iν

z−·iν
(1− ‖a ν + s iν‖2) ds,

and conversely, one can check that any solution of ζ ′ = 1−‖a ν+ ζ iν‖2 with initial condition
ζ(0) ∈ (z− · iν, z+ · iν) is admissible, i.e. belongs to the class Y , and achieves equality. So we
have

c1D(z+, z−) = 2

∣∣∣∣∣
ˆ z+·iν

z−·iν

(
1− ‖aν + s iν‖2

)
ds

∣∣∣∣∣ ,
which corresponds to the expression (10) given in the introduction.

Our goal in this section is to prove Theorem 11 by comparing this upper bound with the
lower bound (5) provided by the entropy productions: ∨

‖λ′Φ‖∞≤1

|∇ · Φ(m)|

 (Ω) ≤ C0 lim inf
ε→0

Iε(mε).

This follows from the estimate (49) and Lemma 29 below.

Lemma 27. For m ∈ BV (Ω;R2) satisfying (2) we have∨
‖λ′Φ‖∞≤1

|∇ · Φ(m)| = cENT(m+,m−)H1
bJm ,

where

cENT(z+, z−) = sup
λ∈Λ∗

{ˆ θ+

θ−
λ(t) γ′(t) · νz+,z− dt

}
for z± = γ(θ±), (48)

and

Λ∗ =

{
λ ∈ C1(R/2πZ) :

ˆ
R/2πZ

λ(t)γ′(t) dt = 0 and ‖λ′‖∞ ≤ 1

}
.
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Proof. For any Φ ∈ ENT, the function λΦ defined by d
dθΦ(γ(θ)) = λΦ(θ)γ′(θ) belongs to

Λ∗ if it satisfies ‖λ′Φ‖∞ ≤ 1, and reciprocally, to any λ ∈ Λ∗ one can associate an entropy
Φλ ∈ ENT by setting

Φλ(γ(θ)) =

ˆ θ

0
λ(t) γ′(t) dt.

With these notations we therefore have∨
‖λ′Φ‖∞≤1

|∇ · Φ(m)| =
∨
λ∈Λ∗

|∇ · Φλ(m)|.

For a BV map m, the BV chain rule implies that the entropy productions are absolutely
continuous with respect to H1

bJm , and

|∇ · Φλ(m)| = |(Φλ(m+)− Φλ(m−)) · ν| dH1
bJm

= |cλ(m+,m−)| dH1
bJm ,

cλ(z+, z−) =

ˆ θ+

θ−
λ(t) γ′(t) · νz+,z− dt for z± = γ(θ±).

Therefore, restricting the supremum to a countable dense subset of Λ∗ and applying [2, Re-
mark 1.69], we see that the lowest upper bound measure is also absolutely continuous with
respect to H1

bJm and given by

∨
λ∈Λ∗

|∇ · Φλ(m)| =
(

sup
λ∈Λ∗

|cλ(m+,m−)|
)
H1
bJm .

Since λ 7→ cλ is linear we can remove the absolute value in the right-hand side, concluding
the proof of Lemma 27.

Combining the lower and upper bounds, we see that for any m ∈ BV (Ω;R2) satisfying
(2) we have

ˆ
Jm

cENT(m+,m−) dH1 ≤ C0

ˆ
Jm

c1D(m+,m−) dH1.

For any fixed z± ∈ ∂B we may apply this to a divergence-free map taking only the two values
z±, and we immediately deduce the inequality

cENT(z+, z−) ≤ C0 c1D(z+, z−) ∀z± ∈ ∂B. (49)

Next we prove the reverse inequality. To that end we start by obtaining a more explicit
expression of cENT for small jumps.

Lemma 28. For all z± = γ(θ±) ∈ ∂B with |θ+ − θ−| = dist∂B(z+, z−) < π/2, we have

cENT
(
z+, z−

)
=

∣∣∣∣∣
ˆ θ+

θ−

(
θ − θ̃z+,z−

) (
γ′(θ) · νz+,z−

)
dθ

∣∣∣∣∣ , (50)
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where θ̃z+,z− ∈ R is the unique point between θ− and θ+ satisfying

γ′
(
θ̃z+,z−

)
· νz+,z− = 0.

Moreover we also have

inf
dist∂B(z+,z−)≥π

2

cENT
(
z+, z−

)
> 0. (51)

Proof. Let z± = γ(θ±) ∈ ∂B with |θ+ − θ−| < π/2. Assume without loss of generality that
θ− < θ+ < θ− + π/2. To simplify notations, in this proof we drop the indices (z+, z−) and
simply write ν = νz+,z− and θ̃ = θ̃z+,z− .

Recall that cENT is given by

cENT(z+, z−) = sup
λ∈Λ∗

cλ(z+, z−),

where cλ(z+, z−) =

ˆ θ+

θ−
λ(θ)γ′(θ) · ν dθ

=

ˆ θ+

θ−

(
λ(θ)− λ(θ̃)

)
γ′(θ) · ν dθ.

The last equality is valid because
´ θ+

θ− γ
′(θ) · ν dθ = (z+ − z−) · ν = 0 by definition of ν. Since

for all λ ∈ Λ∗ we have ‖λ′‖∞ ≤ 1, and therefore |λ(θ)− λ(θ̃)| ≤ |θ − θ̃|. This implies

cENT(z+, z−) ≤
ˆ θ+

θ−
|θ − θ̃|

∣∣γ′(θ) · ν∣∣ dθ.
The definition of θ̃ and convexity of B ensure that (θ − θ̃)(γ′(θ) · ν) ≥ 0 for θ ∈ (θ−, θ+), so
the above becomes

cENT(z+, z−) ≤

∣∣∣∣∣
ˆ θ+

θ−
(θ − θ̃) (γ′(θ) · ν) dθ

∣∣∣∣∣ .
Conversely, since |θ+−θ−| < π/2 we may choose a π-periodic λ0 ∈ C1(R/πZ) with ‖λ′0‖∞ ≤ 1
and such that λ0(θ)−λ0(θ̃) = θ− θ̃ for θ− < θ < θ+. Note that the π-periodicity of λ0 ensures´
R/2πZ λ0γ

′ = 0 since γ′(t + π) = −γ′(t), so λ0 ∈ Λ∗. Therefore we have cENT ≥ cλ0 and we

deduce that cENT is given by (50).
To prove (51), note that cENT is defined in (48) as a supremum of continuous functions,

and is therefore lower semicontinuous on ∂B× ∂B. Hence the infimum in (51) is attained at
some z± ∈ ∂B, dist∂B (z+, z−) ≥ π

2 . As B is strictly convex, the function θ 7→ γ′(θ) · ν cannot
be identically zero on any open interval, which prevents cENT from vanishing unless z+ = z−.
So the infimum in (51) is positive.

Lemma 29. We have

c1D(z+, z−) ≤ C cENT(z+, z−) ∀z± ∈ ∂B,

for some constant C > 0 depending only on B.
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Proof. Let z± = γ(θ±) ∈ ∂B be two distinct points, with |θ+ − θ−| = dist∂B(z+, z−), and
θ− < θ+ ≤ θ− + π. Dropping the indices (z+, z−) we denote

ν = i
z+ − z−

|z+ − z−|
, a = z+ · ν = z− · ν ≤ 0,

and recall that c1D is given by

c1D(z+, z−) = 2

ˆ z−·iν

z+·iν

(
1− ‖a ν + s iν‖2

)
ds.

Since B is strictly convex, for any θ ∈ (θ−, θ+) there is a unique s(θ) ∈ (z+ · iν, z− · iν) such
that

a ν + s(θ) iν = β(θ)γ(θ) for some 0 < β(θ) < 1.

The function s : (θ−, θ+)→ (z+ ·iν, z− ·iν) is a decreasing bijection. Taking the scalar product
of the above with iγ(θ) and with ν we have

s(θ) = a
γ(θ) · iν
γ(θ) · ν

, β(θ) =
a

γ(θ) · ν
.

The change of variable s = s(θ) therefore gives

c1D(z+, z−) = −2

ˆ θ+

θ−

(
1− β(θ)2

)
s′(θ) dθ

= −2

ˆ θ+

θ−

(
1− a2

(γ(θ) · ν)2

)
s′(θ) dθ

= −2

ˆ θ+

θ−
(γ(θ) · ν − a)

γ(θ) · ν + a

(γ(θ) · ν)2
s′(θ) dθ. (52)

Since |γ′| = 1, from the explicit expression of s(θ) we have |s′(θ)| ≤ 2|a| |γ(θ)|/(γ(θ) · ν)2.
For |θ+ − θ−| < π, using moreover the inequality γ(θ) · ν ≤ a < 0, which follows from the
convexity of B and implies in particular (γ(θ) · ν)2 ≥ a2, we deduce

c1D(z+, z−) ≤ 4

|a|3

ˆ θ+

θ−
(a− γ(θ) · ν) |γ(θ)| |γ(θ) · ν + a| dθ

.
1

|a|3

ˆ θ+

θ−
(a− γ(θ) · ν) dθ. (53)

The last inequality follows from diam(B) . 1. Recalling from Lemma 28 the definition of θ̃
as the unique θ̃ ∈ (θ−, θ+) such that γ′(θ̃) · ν = 0, and that a = z+ · ν = z− · ν, we write

a− γ(θ) · ν = 1θ̃<θ<θ+

ˆ θ+

θ
γ′(t) · ν dt− 1θ−<θ<θ̃

ˆ θ

θ−
γ′(t) · ν dt,
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and

ˆ θ+

θ−
(a− γ(θ) · ν) dθ =

ˆ θ+

θ̃

ˆ θ+

θ
γ′(t) · ν dt dθ −

ˆ θ̃

θ−

ˆ θ

θ−
γ′(t) · ν dt dθ

=

ˆ θ+

θ̃

ˆ t

θ̃
dθ γ′(t) · ν dt−

ˆ θ̃

θ−

ˆ θ̃

t
dθ γ′(t) · ν dt

=

ˆ θ+

θ−
(t− θ̃)(γ′(t) · ν) dt. (54)

For |θ+ − θ−| < π/2, this last integral is exactly the expression of cENT(z+, z−) given by
Lemma 28. Therefore, combining this with (53) we deduce

c1D(z+, z−) .
1

|az+,z− |3
cENT(z+, z−) for dist∂B(z+, z−) <

π

2
.

The function

(z+, z−) 7→ |az+,z− |,

is continuous on ∂B× ∂B \ {z+ = z−}, vanishes exactly when dist∂B(z+, z−) = π, and for z+

close to z− it satisfies

|az+,z− | −→ |iγ′(θ) · γ(θ)|, as (z+, z−)→ (γ(θ), γ(θ)).

By convexity of B we have |iγ′(θ) ·γ(θ)| ≥ α0 > 0, where α0 is the largest radius of a euclidean
ball contained in B. From these properties we deduce that

inf
dist∂B(z+,z−)≤π

2

|az+,z− | > 0,

and the above bound on c1D implies

c1D(z+, z−) ≤ CcENT(z+, z−) for dist∂B(z+, z−) <
π

2
,

for some constant C > 0 depending only on B. Since c1D ≤ 2π and cENT is bounded away from
zero for dist∂B(z+, z−) ≥ π/2 thanks to Lemma 28, this inequality is true for all z± ∈ ∂B.

Remark 30. Combining the expressions (52) and (54) obtained in the proof of Lemma 29
and passing to the limit as θ+ − θ− → 0 one obtains

c1D(z+, z−)

cENT(z+, z−)
−→ 2

|iγ′(θ) · γ(θ)|
as (z+, z−)→ (γ(θ), γ(θ)).

Hence for infinitesimally small jumps, the costs c1D and cENT differ by the above multiplicative
factor, which depends on the direction of the jump.
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6.1 Regularity controls entropy productions when m is BV

In this subsection we prove Theorem 10. To that end we first compare the jump cost cENT to
the regularity cost Π defined in (6).

Lemma 31. We have

cENT(z+, z−) ≤ Π(z+, z−),

for all z± ∈ ∂B.

Proof. We let z± = γ(θ±) for some θ± ∈ R such that |θ+ − θ−| = dist∂B(z+, z−) ≤ π, and
assume without loss of generality that θ− < θ+.

From the proof of Lemma 28 we have

cENT(z+, z−) ≤
ˆ θ+

θ−
(θ − θ̃)γ′(θ) · ν dθ,

where θ̃ ∈ (θ−, θ+) is such that ν = iγ′(θ̃) and ν = νz+,z− is defined in (47). Recalling that
the continuous increasing function α is defined by γ′ = eiα, we rewrite this as

cENT(z+, z−) ≤
ˆ θ+

θ−
(θ − θ̃) eiα(θ) · ieiα(θ̃) dθ

=

ˆ θ̃

θ−
(θ̃ − θ) sin(α(θ̃)− α(θ)) dθ

+

ˆ θ+

θ̃
(θ − θ̃) sin(α(θ)− α(θ̃)) dθ

≤ (θ̃ − θ−)A− + (θ+ − θ̃)A+,

where A− =

ˆ θ̃

θ−
sin(α(θ̃)− α(θ)) dθ, A+ =

ˆ θ+

θ̃
sin(α(θ)− α(θ̃)) dθ.

Next recall that (z+ − z−) · ν = 0 by definition of ν, and rewrite this as

0 =

ˆ θ+

θ−
γ′(θ) · ν dθ =

ˆ θ+

θ−
sin(α(θ)− α(θ̃)) dθ = A+ −A−,

so we have in fact A+ = A− and the above estimate for cENT becomes

cENT(z+, z−) ≤ (θ+ − θ−)A,

where A =

ˆ θ̃

θ−
sin(α(θ̃)− α(θ)) dθ =

ˆ θ+

θ̃
sin(α(θ)− α(θ̃)) dθ. (55)

Note that, using the fact that α is absolutely continuous, we have

A ≤
ˆ θ̃

θ−
(α(θ̃)− α(θ)) dθ =

ˆ θ̃

θ−

ˆ θ̃

θ
Dα(dτ) dθ =

ˆ θ̃

θ−
(τ − θ−)Dα(dτ),
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and similarly

A ≤
ˆ θ+

θ̃
(θ+ − τ)Dα(dτ).

So from (55) we infer

cENT(z+, z−)

≤ (θ+ − θ−) min

{ˆ θ̃

θ−
(τ − θ−)Dα(dτ),

ˆ θ+

θ̃
(θ+ − τ)Dα(dτ)

}
. (56)

Next we consider two cases, depending on whether θ̃ ∈ (θ−, θ+) is closer to θ− or to θ+.
If θ̃ is closer to θ− we have θ+ − θ− ≤ 2(θ+ − θ̃), so from (56) (recalling that α is increasing
and thus Dα is a nonnegative measure) we deduce

cENT(z+, z−) ≤ 2(θ+ − θ̃)
ˆ θ̃

θ−
(τ − θ−)Dα(dτ)

≤ 2

ˆ θ̃

θ−
(θ+ − τ)(τ − θ−)Dα(dτ).

Otherwise, θ̃ is closer to θ+ so we have θ+ − θ− ≤ 2(θ̃ − θ−) and we find

cENT(z+, z−) ≤ 2

ˆ θ+

θ̃
(θ+ − τ)(τ − θ−)Dα(dτ).

In both cases, we have

cENT(z+, z−) ≤ 2

ˆ θ+

θ−
(θ+ − τ)(τ − θ−)Dα(dτ),

and thanks to Remark 18 and the symmetry of Π, this last expression is exactly Λ(eiθ
−
, eiθ

+
) =

Π(γ(θ−), γ(θ+)) = Π(z+, z−).

Next we deduce from Lemma 31 and properties of BV maps that the regularity estimate
provided by Π controls the entropy productions, proving Theorem 10. Recall for an entropy
Φ ∈ ENT the C1 function λΦ is defined by d

dθΦ(γ(θ)) = λΦ(θ)γ′(θ).

Lemma 32. Let m ∈ BV
(
Ω;R2

)
satisfy (2). Then for any open set Ω′ ⊂⊂ Ω we have ∨

‖λ′Φ‖∞≤1

|∇ · Φ(m)|

(Ω′) ≤ C0 lim sup
|h|→0

1

|h|

ˆ
Ω′

Π (m(x+ h),m(x)) dx,

where C0 > 0 is an absolute constant.

Proof. We know from Lemma 27 that if m is BV then ∨
‖λ′Φ‖∞≤1

|∇ · Φ(m)|

(Ω′) =

ˆ
Jm∩Ω′

cENT
(
m+,m−

)
dH1,
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where cENT is defined by (48). Thanks to the inequality cENT ≤ Π provided by Lemma 31,
we deduce ∨

‖λ′Φ‖∞≤1

|∇ · Φ(m)|

(Ω′) ≤ ˆ
Jm∩Ω′

Π
(
m+,m−

)
dH1.

Hence the proof of Lemma 32 follows from the inequality

ˆ
Jm∩Ω′

Π
(
m+,m−

)
dH1 ≤ C0 lim sup

|h|→0
|h|−1

ˆ
Ω′

Π (m(x+ h),m(x)) dx. (57)

This inequality is valid for any Lipschitz function Π and BV map m, as a consequence of
the rectifiability of Jm and the trace properties of m (see e.g. [2]), via a Besicovitch covering
argument which we detail next.

Let δ ∈ (0, 1). There exists ε0 > 0 and a subset J̃m ⊂ Jm with H1
(
Jm ∩ Ω′ \ J̃m

)
< δ

and J̃m +Bε0(0) ⊂ Ω′, such that for any x0 ∈ J̃m and 0 < r < ε0,

−
ˆ
Br(x0)∩Jm

∣∣m± (x)−m±(x0)
∣∣ dH1(x) < δ,∣∣H1 (Br(x0) ∩ Jm)− 2r

∣∣ < δ r,

and −
ˆ
B±r (x0)

∣∣m (x)−m±(x0)
∣∣ dx < δ for all 0 < r < ε0, (58)

where B±r (x) denote the two half balls obtained by splitting Br(x) along the tangent line to
Jm at x. Let ε ∈ (0, ε0). By Besicovitch’s covering theorem [2, Theorem 2.18] there exists
an absolute constant Q ∈ N and families B1,B2, . . . ,BQ of pairwise disjoint balls in the set{
Bε(x) : x ∈ J̃m

}
such that

J̃m ⊂
Q⋃
k=1

⋃
B∈Bk

B.

In particular for some k0 ∈ {1, 2, . . . , Q} we have

ˆ
J̃m

Π
(
m+,m−

)
dH1 ≤ Q

∑
B∈Bk0

ˆ
J̃m∩B

Π
(
m+,m−

)
dH1. (59)

We have Bk0 = {Bε(xj)}j=1,...,p for some x1, . . . , xp ∈ J̃m. Using that Π is Lipschitz thanks

to its definition (6), and the properties (58) of J̃m, we find

ˆ
J̃m∩Bε(xj)

Π
(
m+,m−

)
dH1 ≤ 2εΠ

(
m+(xj),m

−(xj)
)

+ 2LδH1 (Jm ∩Bε(xj))

≤ 2ε−
ˆ
B+
ε (xj)

−
ˆ
B−ε (xj)

Π (m(x),m (x̃)) dx̃ dx+ 5Lδε,
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for some L > 0 depending only on Π. Summing over j = 1, . . . , p and taking (59) into account,
we deduce

ˆ
J̃m

Π
(
m+,m−

)
dH1 ≤ 2Qε

p∑
j=1

−
ˆ
B+
ε (xj)

−
ˆ
B−ε (xj)

Π (m(x),m (x̃)) dx̃ dx+ 5Lδ pε.

Noting from the properties (58) of J̃m that

H1
(
Jm ∩ Ω′

)
≥

p∑
k=1

H1 (Bε(xk) ∩ Jm) ≥ pε,

this implies

ˆ
J̃m

Π
(
m+,m−

)
dH1 ≤ 2Qε

p∑
j=1

−
ˆ
B+
ε (xj)

−
ˆ
B−ε (xj)

Π (m(x),m (x̃)) dx̃ dx

+ 5LδH1
(
Jm ∩ Ω′

)
.

Moreover we have

ε

p∑
j=1

−
ˆ
B+
ε (xj)

−
ˆ
B−ε (xj)

Π (m(x),m (x̃)) dx̃ dx

≤ 16

πε

p∑
j=1

ˆ
B+
ε (xj)

(
−
ˆ
B2ε(0)

Π (m(x),m (x+ h)) dh

)
dx

≤ 16

πε

ˆ
Ω′
−
ˆ
B2ε(0)

Π (m(x),m (x+ h)) dh dx

≤ 32

π
sup
|h|<2ε

1

|h|

ˆ
Ω′

Π (m(x),m (x+ h)) dx,

provided ε < 1/2 dist(Ω′, ∂Ω), so plugging this into the previous inequality we deduce

ˆ
J̃m

Π
(
m+,m−

)
dH1 ≤ 64Q

π
sup
|h|<2ε

1

|h|

ˆ
Ω′

Π (m(x),m (x+ h)) dx+ 5LδH1 (Jm) .

Taking the limits ε → 0 and then δ → 0, we obtain (57), which concludes the proof of
Lemma 32.
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[11] DeSimone, A., Müller, S., Kohn, R. V., and Otto, F. A compactness result in
the gradient theory of phase transitions. Proc. Roy. Soc. Edinburgh Sect. A 131, 4 (2001),
833–844.

[12] Garofalo, N., and Garrett, P. Ap-weight properties of real analytic functions in
Rn . Proc. Amer. Math. Soc. 96, 4 (1986), 636–642.

[13] Ghiraldin, F., and Lamy, X. Optimal Besov differentiability for entropy solutions of
the eikonal equation. Comm. Pure Appl. Math. 73, 2 (2020), 317–349.

[14] Golse, F., and Perthame, B. Optimal regularizing effect for scalar conservation laws.
Rev. Mat. Iberoam. 29, 4 (2013), 1477–1504.

[15] Ignat, R., and Monteil, A. A De Giorgi-type conjecture for minimal solutions to a
nonlinear Stokes equation. Comm. Pure Appl. Math. 73, 4 (2020), 771–854.

[16] Jabin, P.-E., Otto, F., and Perthame, B. Line-energy Ginzburg-Landau models:
zero-energy states. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1, 1 (2002), 187–202.

[17] Jin, W., and Kohn, R. V. Singular perturbation and the energy of folds. J. Nonlinear
Sci. 10, 3 (2000), 355–390.

[18] Krantz, S. G., and Parks, H. R. A primer of real analytic functions, second ed.
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