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Abstract

We prove some Lorentz-type estimates for the average in time of suitable geodesic interpolations
of probability measures, obtaining as a by product a new estimate for transport densities and a new
integral inequality in terms of Wasserstein distances and norms of gradients. This last inequality
was conjectured in a paper by S. Steinerberger.

1 Introduction
A well-known inequality in the Monge-Kantorovich optimal transport theory (see [24, 21]) is the
following: on a convex domain Ω ⊂ Rd (by “domain” we mean a compact set with non-empty interior),
for any Lipschitz function φ : Ω→ R and any two probability measures µ, ν ∈ P(Ω) we have∣∣∣∣∫ φdµ−

∫
φdν

∣∣∣∣ ≤ ||∇φ||L∞W1(µ, ν).

This is a consequence of the well-known duality formula (also called Kantorovich or Kantorovich-
Rubinstein duality) W1(µ, ν) = sup{

∫
φdµ+

∫
ψdν : φ(x) + ψ(y) ≤ |x− y|} where one can prove that

the minimization can be restricted to pairs (φ, ψ) with ψ = −φ and φ ∈ Lip1.
The above inequality shows a duality result between the distance W1 and the space of Lipschitz

functions, and one could wonder whether other distances Wp are in duality with other Sobolev spaces,
or, more generally, how to generalize the above inequality to other norms of the gradient, other
Wasserstein distances, and possible coefficients depending on some norms of µ and ν. Indeed, it would
be natural to see whether the same duality is true between Wp and the Sobolev space W 1,p′ (with
p′ = p/(p−1)). Actually, a similar inequality cannot hold. Indeed, not all probability measures belong
to the dual space W−1,p (in particular, Dirac masses only belong to the dual of W 1,q when functions
in W 1,q are continuous, i.e. when q > d). Yet, similar estimates exist when we add L∞ assumptions
on µ and ν. For instance the following inequality was proven for p = 2 in [17], then in [18] for different
purposes, and is also discussed in [21], Section 5.2.
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Proposition 1.1. Assume that µ and ν are absolutely continuous probability measures on a convex
domain Ω and that their densities are bounded by the same constant C. Then, for all function φ ∈
C1(Ω), we have the following inequality:∫

Ω
φd(µ− ν) ≤ C1/p′ ||∇φ||Lp′ (Ω)Wp(µ, ν)

Proof. Let µt be the constant speed geodesic between µ and ν, and let vt be its velocity field. According
to the theory of curves in the Wasserstein space (see [2] or Chapter 5 in [21]) the curve (µt, vt) satisfies
the continuity equation ∂tµt + ∇ · (vtµt) = 0, and ||vt||Lp(µt) = Wp(µ, ν). The geodesic convexity of
all functionals ρ 7→

∫
ρr for any r > 1 (see [19]) provides ||µt||Lr ≤ max{||µ0||Lr , ||µ1||Lr} and, at the

limit r → ∞, we obtain that µt is absolutely continuous for all t, and its density is bounded by the
same constant C. Therefore:∫

Ω
φd(µ− ν) =

∫ 1

0

d

dt

(∫
Ω
φ(x)dµt(x)

)
dt =

∫ 1

0

∫
Ω
∇φ · vt dµt dt

≤
(∫ 1

0

∫
Ω
|∇φ|p′ dµt dt

)1/p′ (∫ 1

0

∫
Ω
|vt|p dµt dt

)1/p

≤ C1/p′ ||∇φ||Lp′ (Ω)Wp(µ, ν),

and the proof is completed.

This inequality can be seen as a way to evaluate the integration error if replacing a measure µ
with another measure ν and it would be tempting to apply them to integral sampling, i.e. when
approximate an integral with a finite sum. For the history of similar inequalities which were proven
for the sake of integration, we refer to the introduction of [23] and, for instance, to the pioneering paper
by Bakhalov [4] which involves indeed the Lipschitz constant of the integrand function φ. Sharp and
recent improvements exist, and we mention, for instance, [5] for an improvement involving a different
and weaker combination of norms of ∇φ.

However, in this setting we have to compare a diffuse measure µ (often the uniform measure on
a given domain, for instance a cube) with a finitely atomic one. From this point of view, estimates
which require both measures to be L∞ are useless. It is on the other hand possible to wonder whether
similar estimates can be obtained only supposing boundedness or summability assumptions on one of
the measures and accepting the other one to be singular. This is exactly the spirit of some estimates
involving transport densities in [9] and [20] and, by the way, the strategy in the latter paper [20]
exactly starts from the case of a purely atomic target measure, and then proceeds by approximation.

Another important point in choosing the precise form of the inequality that we would like to prove
concerns the choice of the Wasserstein distance (i.e., the exponent p). Indeed, if we aim at applications
to the case where ν is a discretization of µ (for instance with ν =

∑N
i=1 aiδyi where the points yi are on

a regular grid and ai is equal to the mass given by µ to the corresponding cell on the grid), in many
situations all Wasserstein distances Wp(µ, ν) are of the same order N−1/d, where N is the number of
points in the discretization and d the space dimension. In this case, we do not lose anything if we
replace Wp with the distance W∞, defined via

W∞(µ, ν) := inf{||x− y||L∞(γ) : γ ∈ Π(µ, ν)},
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where the set Π(µ, ν) is the set of transport plans with marginals µ and ν. When µ is absolutely
continuous this quantity also equals min{||T − id||L∞(µ) : T#µ = ν}. For the supremal optimal
transport problem behind the definition of W∞ we cite the pioneering work [8] which introduced the
notion of ∞-cyclical monotonicity which we will use later on, and proved the existence of optimal
maps for this supremal transport problem.

Replacing Wasserstein distances withW∞, the natural question, introduced by Stefan Steinerberger
in [23] is then: for which functional space X can we prove an inequality of the form∣∣∣∣∫ φdµ−

∫
φdν

∣∣∣∣ ≤ C(µ)||∇φ||XW∞(µ, ν),

valid for every probability measure ν ∈ P(Ω) and for a suitable class of probability densities µ ∈ P(Ω)
which should include at least the uniform measure. The constant C(µ) will be allowed to depend on the
dimension and on possible norms (Lp, L∞,. . . ) of µ. Even if we explained the role of the W∞ distance
mentioning the example of atomic measures on regular grid, we insist that a sharp inequality in terms
of W∞ could be then succesfully applied to other forms of approximations of µ, for which the value of
such a distance could be slightly higher than O(N−1/d), for instance to random approximations as in
[15].

A first observation is that we can take X = Lp with C(µ) = p
p−d ||µ||Lp′ (the exponent p′ being the

dual of p, i.e. p′ = p/(p− 1)) for any p > d. A quick explanation is the following one: we act as in the
proof of Lemma 1.1 using a geodesic µt with µ1 = µ and µ0 = ν and obtain∫

Ω
φd(µ− ν) =

∫ 1

0

∫
Ω
∇φ · vt dµt dt ≤ ||v||L∞

∫
|∇φ|dM, (1.1)

whereM :=
∫ 1

0 µtdt. If the geodesic is chosen to be geodesic in the spaceW∞, then ||v||L∞ = W∞(µ, ν).
The question is to find the summability of M and the strategy can be the very same as used in
[20]: in the case of a measure ν which is finitely atomic we have, for any exponent q, the equality
||µt||Lq = t−d/q

′ ||µ||Lq , which becomes an inequality for general ν, obtained by approximation via
atomic measures and semicontinuity. Hence, we have ||M ||Lq ≤ ||µ||Lq

∫ 1
0 t
−d/q′ , and the integral

converges and can be explicitly computed for q′ > d.
Yet, choosing X = Lp for p > d is disappointing as it does not show a sharp space to use, but just

a family of spaces, and Steinerberger in [23] conjectured that the sharp space could be a Lorentz space
of the form X = Ld,1 (and a partial result in this direction is also shown in the same paper). This
would correspond to proving an Ld′,∞ estimate for M .

In the next section we will briefly recall the definition and main properties of the Lorentz spaces
Lp,q. Here we just finish this introduction by clarifying that the main goal of the present paper is to
prove Steinerberger’s conjecture. This will be done via a summability estimate on M which will also
imply a similar result for the transport density σ (we do not enter into details here about the definition
of the transport density, but we refer to [20]).

The main results of the paper are the following.

Theorem 1.2. Given a convex compact domain Ω ⊂ Rd, in dimension d ≥ 2, and µ, ν ∈ P(Ω),
suppose µ ∈ Ld

′,1. Then, for every p ∈ [1,+∞], there exists geodesic in Wp connecting µ0 = ν to
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µ1 = µ, of the form µt := ((1− t)id + tT )#µ where T is the corresponding optimal transport map, such
that, setting M :=

∫ 1
0 µtdt, we have

||M ||Ld′,∞ ≤ C||µ||Ld′,1 ,

for a constant C only depending on the dimension d.

It is not difficult to see that the above theorem is in some sense sharp, since when µ is the uniform
measure on the unit ball and ν = δ0 we have M(x) = c|x|1−d near the origin, and this function exactly
belongs to Ld′,∞, and not to other spaces Lp,q with p > d′ or p = d′ and q <∞.

Moreover, the above theorem has two corollaries:

Corollary 1.3. Given a convex domain Ω ⊂ Rd for d ≥ 2, a function φ ∈ C1(Ω) and µ, ν ∈ P(Ω), we
do have ∣∣∣∣∫ φdµ−

∫
φdν

∣∣∣∣ ≤ C||µ||Ld′,1 ||∇φ||Ld,1W∞(µ, ν).

Corollary 1.4. Given a convex compact domain Ω ⊂ Rd and µ, ν ∈ P(Ω), suppose µ ∈ Ld′,1. Then
the transport density σ in the Monge problem from µ to ν belongs to Ld′,∞ and we have

||σ||Ld′,∞ ≤ Cdiam(Ω)||µ||Ld′,1 ,

We see that Corollary 1.3 exactly answers Steinerberger’s conjecture, and that Corollary 1.4 slightly
extends Dweik’s result in [12] to the limit case p = d′ (but requires a loss in the q exponent, from q = 1
to q =∞).

2 Few facts about Lorentz spaces
We refer to [16, 7, 6] for the whole theory about Lorentz spaces. Here we just give a brief overview of
the main facts that we need to know in the paper, which almost coincides with the appendix in [12].

On a measurable space Ω, given p, q ∈ [1,∞], we define the Lorentz space Lp,q(Ω) as the space of
measurable functions f on Ω satisfying

||f ||Lp,q = p1/q||t 7→ t|{|f | ≥ t}|1/p||Lq(R+, dt
t

) < +∞.

In the case q = 1 this gives
||f ||Lp,1 = p

∫ ∞
0
|{|f | ≥ t}|1/pdt

and in the case q =∞ we have
||f ||Lp,∞ = sup

t≥0
t|{|f | ≥ t}|1/p.

It is easy to see that the set of functions making these quantities finite is indeed a vector space, but
these quantities themselves are not a norm, since they only satisfy a weaker version of the triangle
inequality, involving a multiplicative constant C = C(p, q), i.e. ||f + g||Lp,q ≤ C(||f ||Lp,q + ||g||Lp,q ).
Yet, it is possible to define another quantity, slightly more involved, which is indeed subadditive and
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can be used as a norm on these spaces. Using the same notations of the main references for Lorentz
spaces we set

f∗∗(s) := sup{
∫
A
|f | : |A| = s}, |||f |||p,q := ||s 7→ s1/pf∗∗(s)||Lq(R+, ds

s
).

For q ∈ [1,∞] and p > 1 we have the following inequalities

||f ||Lp,q ≤ |||f |||p,q ≤
p

p− 1 ||f ||L
p,q ,

which show that ||f ||Lp,q and |||f |||p,q are equivalent up to multiplicative constants. On the other hand,
|||f |||p,q is clearly 1-homogeneous and sub-additive, and is hence a norm. The space Lp,q endowed with
this norm is a Banach space and its dual can be identified with Lp

′,q′ . More precisely, for the case
q = 1, we have ∫

fg ≤ ||f ||Lp,1 ||g||Lp′,∞ .

Finally, in order to perform approximation, we underline that f 7→ |||f |||p,q is clearly lower semi-
continuous for the weak L1 convergence, as a consequence of Fatou’s lemma and of stability of lower
semicontinuity when taking a sup. In particular, since bounds on |||f |||p,q for p > 1 imply bounds on
any Lr norm for r ∈ (1, p), we obtain the following result, that we state only for q =∞ since its proof
can be easily detailed and it is the only case which will be used in the sequel.

Proposition 2.1. Suppose mn is a sequence of measures on a domain Ω with finite Lebesgue measure.
Suppose mn

∗
⇀m in the sense of weak-* convergence of measures (in duality with bounded continuous

functions), and suppose that mn is absolutely continuous for each n and that, identifying measures and
densities, we have |||mn|||Lp,∞ ≤ C, for some exponent p > 1. Then |||m|||Lp,∞ ≤ C.

Proof. We observe that the bound on |||mn|||Lp,∞ implies

|{|mn| > t}| ≤ min{|Ω|, Ct−p}, hence
∫
|mn|rdx = r

∫ ∞
0

tr−1|{|mn| > t}|dt ≤ C(r, p, |Ω|)

for any exponent r ∈ (1, p). In particular, mn is bounded in L(p+1)/2; it therefore weakly converges up
to subsequences in L(p+1)/2 and hence in L1 to m. For any set A the quantity m 7→

∫
Am is obviously

continuous for this convergence and this provides lim infnm∗∗n (t) ≥ m∗∗(t) for every t, and hence, by
Fatou, |||m|||Lp,∞ ≤ lim infn |||mn|||Lp,∞ .

3 Transport and geodesics in Wp and W∞

We refer to [21], Chapter 5, for most of the facts below.
We recall the definition of Wasserstein distance Wp for p ∈ [1,∞):

Wp(µ, ν) := min
{∫

Ω×Ω
|x− y|p dγ(x, y) : γ ∈ Π(µ, ν)

}1/p
. (3.1)
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We also recall that the space P(Ω) endowed with the distance Wp (when Ω is a bounded convex set)
is a geodesic space where a geodesic curve µt can be obtained by taking an optimal transport plan γ
between µ and ν and setting µt = (πt)#γ where πt(x, y) = (1− t)x+ ty. In the case where the optimal
transport plan γ is induced by a transport map T (so that we have γ = (id, T )#µ) we would have
µt = ((1− t)id + tT )#µ. This curve of measure solves a continuity equation ∂tµt +∇ · (µtvt) = 0 for a
velocity field v with ||vt||Lp(µt) = Wp(µ, ν) for every t.

Similarly, we set
W∞(µ, ν) := min

{
||x− y||L∞(γ) : γ ∈ Π(µ, ν)

}
, (3.2)

and the curve µt = (πt)#γ is also a geodesic for the distance W∞ for any optimal γ. In this case we
have ∂tµt +∇ · (µtvt) = 0 for a velocity field v with |vt(x)| ≤W∞(µ, ν) for every t, x.

We suppose now that µ is absolutely continuous and ν is purely atomic, i.e. ν =
∑N
i=1 aiδyi . When

considering a transport map T such that T#µ = ν we obtain a partition: we have T (x) = yi for every
x ∈ Ωi where the sets (Ωi)i=1,...,N form a partition of Ω, with Ωi := T−1({yi}). We call Ωi(t) the image
of Ωi via the map x 7→ (1− t)x+ tyi We need the following statement.

Proposition 3.1. Let µ be an absolutely continuous measure on a domain Ω ⊂ Rd, d ≥ 2, and
ν =

∑N
i=1 aiδyi, and consider p ∈ [1,+∞]. Then there exists an optimal transport plan γ of the form

γ = (id, T )#µ such that the sets Ωi(t) are essentially disjoint (in the sense that we have |Ωi(t)∩Ωj(t)| =
0 for i 6= j) for every t ∈ (0, 1).

Proof. In the case p <∞, the optimal transport plan γ is unique and induced by a map. We need to
prove that these sets are essentially disjoint for every t ∈ (0, 1).

In the case p = 1 this is a consequence of the fibration into transport rays: if a point z belongs
to Ωi(t) and Ωj(t), then two transport rays cross at z, the one going from xi ∈ Ωi to yi and the one
from xj ∈ Ωj to yj . The only possibility is that these two rays are actually the same, i.e. that the
five points xi, xj , z, yi, yj are aligned. But this implies that these points belong to one of the lines
connecting two atoms yi and yj . Since we have finitely many of these lines it is enough to remove a
negligible set. Notice that this argument only works for d > 1.

In the case p ∈ (1,∞) we cannot use transport rays, but the transport cost is of the form c(x, y) =
h(x−y) for h strictly convex and we can use c-cyclical monotonicity. Indeed, with z ∈ Ωi(t)∩Ωj(t) we
have, for two vectors a, b and the same notations as above, yi−xi = a, yj−xj = b, z = xj+tb = xi+ta,
yj − xi = (1− t)b+ ta, and yi − xj = (1− t)a+ tb. The c-cyclical monotonicity condition implies

h(yi−xi)+h(yj−xj) ≤ h(yj−xi)+h(yi−xj)⇒ h(a)+h(b) ≤ h((1− t)b+ ta)+h((1− t)a+ tb) (3.3)

but this last inequality is impossible for strictly convex h, unless a = b, which finally implies yj = yi.
The case p =∞ is a little more delicate. In this case it is no more true, in general, that the optimal

transport plan γ is unique and induced by a map. Yet, as it is shown in [8], there exists a particular
optimal plan, the one obtained as a limit from the case p→∞ (i.e. the weak limits of plan γp, optimal
for the integral cost |x − y|p) which is indeed induced by a transport map T , and also satisfies the
following∞-cyclical monotonocity condition: there exists a full-measure set Ω̃ ⊂ Ω such that for every
x, x′ ∈ Ω̃ we have

max{|T (x)− x|, |T (x′)− x′|} ≤ max{|T (x′)− x|, |T (x)− x′|}
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(the condition proven in [8] is actually stronger, but here we only need to apply it to pairs of points
instead of arbitrary cycles).

This also implies the disjointness of the sets Ωi(t) and Ωj(t) for t ∈ (0, 1). Indeed, the condition
(3.3) becomes now

max{|a|, |b|} ≤ max{|(1−t)a+tb|, |(1−t)b+ta|} ≤ max{(1−t)|a|+t|b|, (1−t)|b|+t|a|} ≤ max{|a|, |b|}.

For t ∈ (0, 1) the last inequality is strict unless |a| = |b|. The previous one is strict unless a and
b are colinear and with the same orientation. The two conditions together imply a = b and, again,
yi = yj .

4 Lorentz estimates and applications
We first prove Theorem 1.2.

Proof. We start from the case where ν is atomic. According to Proposition 3.1, we choose an optimal
transport map T such that T#µ = ν , ||T − id||Lp(µ) = Wp(µ, ν), and the sets Ωi(t) defined in the
previous section are disjoint. We then define Tt = tid + (1 − t)T (note that for simplicity we reverse
time, in order to have easier expressions later on in the proof). In this way µt := (Tt)#µ is a geodesic
from µ0 = ν to µ1 = µ (pay attention to the fact that, contrarily to standard notation, this curve
starts in ν and arrives at µ; this is needed to ease some notations later on in terms of t vs (1 − t for
dyadic times t). We set M :=

∫ 1
0 (Tt)#µ.

Take now a set A ⊂ {µ > 0} and define µ[A]
t := (Tt)#1A. Defining Ai := A ∩ Ωi, then the

sets Ai(t) := (Tt)(Ai) are disjoint, and we set A(t) :=
⋃
iAi(t). Since the map Tt is a homothety of

dilation ratio t on each set Ai and the images of these sets are disjoint, we have µ[A]
t = t−d1A(t) and

|A(t)| = td|A|.
Look now at M [A] :=

∫ 1
0 µ

[A]
t dt. We have

M [A](x) =
∫ 1

0
t−d1A(t)(x)dt =

∞∑
k=0

∫ 2−k

2−(k+1)
t−d1A(t)(x)dt

=
∞∑
k=0

2k(d−1)
∫ 1

1/2
t−d1A(2−kt)(x)dt

=
∫ 1

1/2
t−dM [A, t](x)dt,

where we setM [A, t] :=
∑∞
k=0 2k(d−1)

1A(2−kt).We now define, for fixed t ∈ (1
2 , 1), the function K(x) :=

sup{k : x ∈ A(2−kt)} and we have

M [A, t](x) =
∞∑
k=0

2k(d−1)
1A(2−kt)(x) ≤

K(x)∑
k=0

2k(d−1) = 2(d−1)(K(x)+1) − 1
2d−1 − 1 ≤ 2(d−1)K(x)+1,

where we used in the last inequality 2d−1/(2d−1 − 1) ≤ 2, a consequence of d ≥ 2.
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Hence, for every s > 0, writing s = 2(d−1)u+1 we have

{M [A, t] > s} ⊂ {K > u} =
∞⋃

k=buc+1
A(2−kt)

and

|{M [A, t] > s}| ≤
∞∑

k=buc+1
|A(2−kt)| =

∞∑
k=buc+1

2−kdtd|A| ≤ C(d)td|A|2−(buc+1)d ≤ C(d)|A|2−du.

We then have, using d
d′ = d− 1 and the definition of u

s|{M [A, t] > s}|1/d′ ≤ sC(d)|A|1/d′2−(d−1)u = C(d)|A|1/d′ ,

which shows
||M [A, t]||Ld′,∞ ≤ C(d)|A|1/d′ .

A similar inequality, up to changing the constant C(d), also holds for |||M [A, t]|||Ld′,∞ . We first
integrate this inequality as follows

M [A] =
∫ 1

1/2
t−dM [A, t]dt ⇒ |||M [A]|||Ld′,∞ ≤ C(d)|A|1/d′ ,

where we used the Minkowski inequality for norms (which is the reason to introduce the norm ||| · |||Lp,q

and avoid using quasi-norms).
We then write µ =

∫∞
0 1{µ>r}dr and apply the previous result to A = {µ > r}, together with the

linearity of the map µ 7→
∫ 1
0 (Tt)#µ and, again, the Minkowski inequality for norms, and obtain

|||M |||Ld′,∞ ≤ C(d)
∫ ∞

0
|{µ > r}|1/d′ = C(d)||µ||Ld′,1 ,

which proves the claim for ν atomic.
The case of general ν is obtained by approximation using Proposition 2.1.

Before going on with the consequences of this estimate we observe some facts.
The first is that the use of the countable parameter k was necessary to estimate the measure of a

union with the sum of the measures, which could not have been done with an uncountable union. If
the goal was only to prove Corollary 1.3 then it was also possible to just use a countable parameter
writing

∫
φd(µ−ν) =

∑
k

∫
φd(µ2−k−µ2−(k+1)). Yet, in this way we lose the infinitesimal and differential

approach described in (1.1) and we are forced to estimate differences instead of derivatives. This is
possible replacing |∇φ| with its maximal function, but then requires the boundedness of the maximal
operator on Lorentz space, which is a known fact (see, for instance [22]), but would only make the
proof heavier.
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Remark 4.1. We then remark that the implication µ ∈ Ld′,1 ⇒ M ∈ Ld′,∞ cannot be improved into
µ ∈ Ld′,∞ ⇒M ∈ Ld′,∞. Indeed, taking µ(x) = c|x|1−d1|x|≤1 (a typical example of function belonging
to Ld′,∞) and ν = δ0 provides a counter-example, as we have in this caseM(x) = c|x|1−d| log x|1|x|≤1 /∈
Ld
′,∞.
We now go on with the two main corollaries of Theorem 1.2 that we stated in the introduction.
We start with the proof of Corollary 1.3.

Proof. We follow the strategy described in (1.1) along the geodesic curve in W∞ obtained in the proof
of Theorem 1.2. We obtain∫

Ω
φd(µ− ν) =

∫ 1

0

∫
Ω
∇φ · vt dµt dt ≤ ||v||L∞

∫
|∇φ|dM ≤ ||v||L∞ ||∇φ||Ld,1 ||M ||Ld′,∞ ,

and we then use ||v||L∞ ≤W∞(µ, ν) and apply the estimate of Theorem 1.2 to replace ||M ||Ld′,∞ with
C(d)||µ||Ld′,1 .

We now move to the proof of Corollary 1.4.

Proof. The statement is interesting only for d > 1, otherwise the norm Ld
′∞ becomes the weak L1

norm, which is bounded by the L1 norm, and the claim is a trivial consequence of ||σ||L1 = W1(µ, ν) ≤
diam(Ω) and of the fact that µ is supposed to be a probability measure.

For d ≥ 2 we use Theorem 1.2. Indeed, the transport density σ is defined as
∫ 1

0 (πt)#(c · γ)dt where
c(x, y) = |x − y| and γ is an optimal transport plan for the cost c. The measure σ does not depend
on the choice of γ as soon as one of the measures µ, ν is absolutely continuous (see [14, 1]). On a
bounded domain, we have c ≤ diam(Ω) and hence bounds on M =

∫ 1
0 (πt)#γdt translate into bounds

on σ, following the very same technique as in [20]. It is then enough to choose the optimal transport
plan γ for which the estimate of Theorem 1.2 holds.

We underline that the counter-example of Remark 4.1 does not show that µ ∈ Ld
′,∞ does not

imply σ ∈ Ld
′,∞ since σ could be much smaller than M and, in this case, if we do not ignore the

smallness of the factor c(x, y), we obtain σ(x) = c(|x|1−d − |x|2−d)1B1(x), and we have σ ∈ Ld
′,∞.

Sharp summability results for σ are an open problem and exploiting the presence of the term c (as it
is done in [13], for instance) is in general not easy.
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