On the validity of the Euler-Lagrange equation

A. Ferriero *, E.M. Marchini
Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R. Cozzi 53, 20125 Milano, Italia

Received 9 September 2003
Available online 14 October 2004
Submitted by B.S. Mordukhovich

Abstract

The purpose of the present paper is to establish the validity of the Euler-Lagrange equation for the solution \hat{x} to the classical problem of the calculus of variations. © 2004 Elsevier Inc. All rights reserved.

Keywords: Euler-Lagrange equation

1. Introduction

The purpose of the present paper is to establish (under Carathéodory's conditions) the validity of the Euler-Lagrange equation (E-L) for the solution \hat{x} to the classical problem of the calculus of variations consisting in minimizing the functional

$$
J(x)=\int_{I} L\left(t, x(t), x^{\prime}(t)\right) d t
$$

[^0]where $I=(a, b) \subset R$, on the set of those absolutely continuous functions $x: I \rightarrow R^{s}$ satisfying the boundary conditions $x(a)=A, x(b)=B$. Establishing the validity of the Euler-Lagrange equation amounts to proving that
$$
\int_{I}\left[\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta^{\prime}(t)\right\rangle+\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta(t)\right\rangle\right] d t=0
$$
for every variation η in some suitable class. A large number of papers has been devoted to this classical problem, e.g., [4-6,8-10]. The example obtained by Ball and Mizel [1], modifying an earlier example of Maniá [7], provides a variational problem where the integrability of $\nabla_{x} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right)$ does not hold and, as a consequence, (E-L) is not true along the solution. Hence, some condition on the term $\nabla_{x} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right)$ has to be imposed in order to ensure the validity of (E-L). A result of Clarke [5] implies that the following assumption on the term $\nabla_{x} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right)$:
there exists a function $S(t)$ integrable on I such that, for y in a neighborhood of the solution,
$$
\left\|\nabla_{x} L\left(t, y, \hat{x}^{\prime}(t)\right)\right\| \leqslant S(t)
$$
is sufficient to establish the validity of (E-L). This condition implies that, locally along the solution, $x \rightarrow L\left(t, x, x^{\prime}\right)$ is Lipschitzian of Lipschitz constant $S(t)$. However, there are simple and meaningful examples of variational problems where this Lipschitzianity condition is not verified.

Consider the Lagrangian defined by $L(x, \xi)=(\xi \sqrt{|x|}-2 / 3)^{2}$, and the problem (P) of minimizing

$$
\int_{0}^{1} L\left(x(t), x^{\prime}(t)\right) d t
$$

over the absolutely continuous functions x with $x(0)=0, x(1)=1$.
One can easily verify that $\hat{x}(t)=t^{2 / 3}$ is a minimizer for (P) (indeed, $L\left(\hat{x}(t), \hat{x}^{\prime}(t)\right)=0$ on $[0,1]$, and L is non-negative everywhere). In this case, although L is not differentiable everywhere, $L_{x}\left(\hat{x}(t), \hat{x}^{\prime}(t)\right)$ exists a.e. (it is a.e. zero) and it is integrable. The purpose of the present paper is to provide a result on the validity of ($\mathrm{E}-\mathrm{L}$) that is satisfied by Lagrangians that are Lipschitzian in x, but that applies as well to the non-Lipschitzian cases as the example before.

In the proof we first show that the fact that \hat{x} is a solution implies the integrability of $\nabla_{\xi} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right)$. Then, using this result, we establish the validity of (E-L) under Carathéodory's condition.

Note that we do not assume any convexity hypothesis on the Lagrangian. Moreover, no growth condition whatsoever is assumed so that, as far as we know, relaxation theorems cannot be applied.

2. Integrability of $\nabla_{\xi} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right)$

Consider the problem of minimizing the functional

$$
J(x)=\int_{I} L\left(t, x(t), x^{\prime}(t)\right) d t
$$

on the set of those absolutely continuous functions $x: I \rightarrow R^{s}$ satisfying the boundary conditions $x(a)=A, x(b)=B$. Let \hat{x} be a (weak local) minimizer yielding a finite value for the functional J, and set $\mu=\sup _{t \in[a, b]}\|\hat{x}(t)\|$.

Our results will depend on the following assumption.
Assumption A. (i) L is differentiable in x along \hat{x}, for a.e. t, and the map $\nabla_{x} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right)$ is integrable on I;
(ii) there exists a function $S(t)$ integrable on I such that, for any $y \in B(0, \mu+1)$,

$$
L\left(t, y, \hat{x}^{\prime}(t)\right) \leqslant L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)+S(t)\|y-\hat{x}(t)\| .
$$

Consider problem (P) as presented in the Introduction. L and \hat{x} satisfy Assumption A: $L_{x}\left(\hat{x}(t), \hat{x}^{\prime}(t)\right)$ exists a.e. (identically zero, hence integrable), $S(t)=t^{-2 / 3}$ verifies the inequality

$$
L\left(y, \hat{x}^{\prime}(t)\right) \leqslant S(t)|y-\hat{x}(t)|,
$$

since

$$
\left(\frac{2}{3} t^{-1 / 3} \sqrt{|y|}-\frac{2}{3}\right)^{2}=\frac{4\left(\sqrt{|y|}-t^{1 / 3}\right)}{9 t^{2 / 3}\left(\sqrt{|y|}+t^{1 / 3}\right)}\left(|y|-t^{2 / 3}\right) \leqslant \frac{4}{9 t^{2 / 3}}\left|y-t^{2 / 3}\right|
$$

This is our first result on the term $\nabla_{\xi} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right)$. In what follows, \bar{R} denotes $R \cup$ $\{+\infty\}$.

Theorem 2.1. Suppose that $L: I \times R^{s} \times R^{s} \rightarrow \bar{R}$ is an extended valued function, finite on its effective domain of the form $\operatorname{dom} L=I \times R^{s} \times G$, where $G \subset R^{s}$ is an open set, and that it satisfies Carathéodory's conditions, i.e., $L(\cdot, x, \xi)$ is measurable for fixed (x, ξ) and $L(t, \cdot, \cdot)$ is continuous for almost every t. Moreover assume that L is differentiable in ξ on $\operatorname{dom} L$ and that $\nabla_{\xi} L$ satisfies Carathéodory's conditions on $\operatorname{dom} L$. Suppose that Assumption A holds. Then,

$$
\int_{I}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\| d t<+\infty .
$$

Proof. (1) By assumption, $L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right) \in L^{1}(I)$, hence setting $S_{0}=\left\{t \in I: \hat{x}^{\prime}(t) \notin G\right\}$, we have $m\left(S_{0}\right)=0$. Given $\epsilon>0$, we can cover S_{0} by an open set O_{1} of measure $m\left(O_{1}\right)<$ $\epsilon / 2$. We have also that $\nabla_{\xi} L$ is a Carathéodory's function and that \hat{x}^{\prime} is measurable in I. Hence, by the theorems of Scorza Dragoni and of Lusin, for the given $\epsilon>0$ there exists an open set O_{2} such that $m\left(O_{2}\right)<\epsilon / 2$ and at once \hat{x}^{\prime} is continuous in $I \backslash O_{2}$, and $\nabla_{\xi} L$ is continuous in $\left(I \backslash O_{2}\right) \times R^{s} \times G$. By taking $K_{\epsilon}=I \backslash\left(O_{1} \cup O_{2}\right)$, we have that K_{ϵ}
is a closed set such that on it \hat{x}^{\prime} is continuous with values in $G, \nabla_{\xi} L$ is continuous on $K_{\epsilon} \times R^{s} \times G$ and $m\left(I \backslash K_{\epsilon}\right)<\epsilon$. For $n \geqslant 1$ set $\epsilon_{n}=(b-a) / 2^{n+1}$ and $K_{n}=K_{\epsilon_{n}}$; set also $C_{n}=\bigcup_{j=1}^{n} K_{j}$. Then C_{n} are closed sets, $C_{n} \subset C_{n+1}, \hat{x}^{\prime}$ is continuous on C_{n} with values in $G, \nabla_{\xi} L$ is continuous in $C_{n} \times R^{s} \times G$ and $\lim _{n \rightarrow+\infty} m\left(I \backslash C_{n}\right)=0$.

From these properties it follows that there exists $k_{n}>0$ such that, for all $t \in C_{n}$,

$$
\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|<k_{n} .
$$

There is no loss of generality in assuming $k_{n} \geqslant k_{n-1}$. Moreover, we have that $m\left(C_{1}\right) \geqslant$ $(b-a) / 2$ and $\sum_{n=2}^{\infty} m\left(C_{n} \backslash C_{n-1}\right) \leqslant(b-a) / 2$.

For all $n>1$, we set $A_{n}=C_{n} \backslash C_{n-1}$. Hence we obtain that $C_{m}=C_{1} \bigcup_{n=2}^{m} A_{n}$ and that $I=E \cup C_{1} \cup_{n>1} A_{n}$, where $m(E)=0$.
(2) Consider the function

$$
\theta(t)= \begin{cases}0 & \text { if } \nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)=0, \\ \frac{\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)}{\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|} & \text { otherwise },\end{cases}
$$

and

$$
v_{n}=\int_{A_{n}} \theta(t) d t
$$

so that $\left\|v_{n}\right\| \leqslant m\left(A_{n}\right)$. There exists a closed set $B_{n} \subseteq C_{1}$ such that $m\left(B_{n}\right)=\left\|v_{n}\right\|$. Set

$$
\theta_{n}^{\prime}(t)=-\theta(t) \chi_{A_{n}}(t)+\frac{v_{n}}{\left\|v_{n}\right\|} \chi_{B_{n}}(t)
$$

We have that

$$
\int_{I} \theta_{n}^{\prime}(t) d t=-\int_{A_{n}} \theta(t) d t+v_{n}=0
$$

Hence, setting $\theta_{n}(t)=\int_{a}^{t} \theta_{n}^{\prime}(\tau) d \tau$, we see that the functions $\theta_{n}(t)$ are admissible variations. Moreover we obtain

$$
\left\|\theta_{n}\right\|_{\infty} \leqslant \sup _{t \in I} \int_{a}^{t}\left|\theta_{n}^{\prime}(\tau)\right| d \tau \leqslant \int_{I}\left|\theta_{n}^{\prime}(\tau)\right| d \tau \leqslant 2 m\left(A_{n}\right)
$$

(3) For t in A_{n}, we have $\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|<k_{n}$; for t in $B_{n},\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|<$ $k_{1} \leqslant k_{n}$. Recalling that $\bar{A}_{n} \subset C_{n}$, we infer that, for all $t \in \bar{A}_{n} \cup B_{n}$,

$$
\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\| \leqslant k_{n} .
$$

We wish to obtain an uniform bound for $\left\|\nabla_{\xi} L\right\|$ computed in a suitable neighborhood of the solution $\left(\hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right)$. Consider the set $\left(\bar{A}_{n} \cup B_{n}\right) \times R^{s} \times G$ as a metric space M_{n} with distance $d\left((t, x, \xi),\left(t^{\prime}, x^{\prime}, \xi^{\prime}\right)\right)=\sup \left(\left|t-t^{\prime}\right|,\left|x-x^{\prime}\right|,\left|\xi-\xi^{\prime}\right|\right)$. On $M_{n}, \nabla_{\xi} L$ is continuous. Moreover, its subset

$$
G_{n}=\left\{\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right): t \in \bar{A}_{n} \cup B_{n}\right\}
$$

is compact and, on $G_{n},\left\|\nabla_{\xi} L\right\|$ is bounded by k_{n}. Hence there exists $\delta_{n}>0$ such that, for $(t, x, \xi) \in M_{n}$ with $d\left((t, x, \xi),\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right)<\delta_{n}$, we have $\left\|\nabla_{\xi} L(t, x, \xi)\right\|<k_{n}+1$.
(4) For $|\lambda|<\min \left\{1 / 2 m\left(A_{n}\right), \delta_{n} / 2 m\left(A_{n}\right), \delta_{n}\right\}$, consider the integrals

$$
\begin{aligned}
& \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)+\lambda \theta_{n}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
&= \int_{A_{n} \cup B_{n}} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)+\lambda \theta_{n}^{\prime}(t)\right)-L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
&+\int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t .
\end{aligned}
$$

For every $t \in A_{n} \cup B_{n}$ there exists $\zeta_{\lambda}(t) \in(0, \lambda)$ such that

$$
\begin{aligned}
\frac{1}{\lambda} & {\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)+\lambda \theta_{n}^{\prime}(t)\right)-L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)\right] } \\
& =\left\langle\nabla_{\xi} L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)+\zeta_{\lambda}(t) \theta_{n}^{\prime}(t)\right), \theta_{n}^{\prime}(t)\right\rangle \\
& \leqslant\left\|\nabla_{\xi} L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)+\zeta_{\lambda}(t) \theta_{n}^{\prime}(t)\right)\right\|
\end{aligned}
$$

and from the choice of $\lambda,\left\|\nabla_{\xi} L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)+\zeta_{\lambda}(t) \theta_{n}^{\prime}(t)\right)\right\|<k_{n}+1$. Hence, we can apply the dominated convergence theorem to obtain that

$$
\begin{aligned}
& \lim _{\lambda \rightarrow 0} \int_{A_{n} \cup B_{n}} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)+\lambda \theta_{n}^{\prime}(t)\right)-L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
& \quad=\int_{A_{n} \cup B_{n}}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \theta_{n}^{\prime}(t)\right\rangle d t .
\end{aligned}
$$

(5) Set $f^{+}(s)=\max \{0, f(s)\}, f^{-}(s)=\max \{0,-f(s)\}$. Since

$$
0 \leqslant \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right]^{+} \leqslant S(t)\left\|\theta_{n}(t)\right\|,
$$

by the dominated convergence theorem,

$$
\begin{aligned}
& \lim _{\lambda \rightarrow 0} \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right]^{+} d t \\
& \quad=\int_{I} \lim _{\lambda \rightarrow 0} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right]^{+} d t .
\end{aligned}
$$

By the Fatou's lemma,

$$
\begin{aligned}
& \liminf _{\lambda \rightarrow 0} \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right]^{-} d t \\
& \quad \geqslant \int_{I} \liminf _{\lambda \rightarrow 0} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right]^{-} d t .
\end{aligned}
$$

We have obtained that

$$
\begin{aligned}
& \limsup _{\lambda \rightarrow 0} \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
& \leqslant \\
& \leqslant \lim _{\lambda \rightarrow 0} \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right]^{+} \\
& \quad-\liminf _{\lambda \rightarrow 0} \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right]^{-} d t \\
& \leqslant \\
& \leqslant \int_{I} \limsup _{\lambda \rightarrow 0} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
& =\int_{I}\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \theta_{n}(t)\right\rangle d t .
\end{aligned}
$$

(6) Since \hat{x} is a minimizer, we have

$$
\begin{align*}
0 \leqslant & \int_{A_{n} \cup B_{n}}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \theta_{n}^{\prime}(t)\right\rangle d t \\
& +\limsup _{\lambda \rightarrow 0} \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \theta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
\leqslant & \int_{A_{n} \cup B_{n}}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \theta_{n}^{\prime}(t)\right\rangle d t+\int_{I}\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \theta_{n}(t)\right\rangle d t . \tag{*}
\end{align*}
$$

Since $\theta_{n}^{\prime}(t)=-\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right) /\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|$, for any t in A_{n}, it follows that $-\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \theta_{n}^{\prime}(t)\right\rangle \chi_{A_{n}}(t)=\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\| \chi_{A_{n}}(t)$. Hence, we obtain that (*) can be written as

$$
\begin{aligned}
& \int_{A_{n}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\| d t \\
& \quad \leqslant \int_{B_{n}}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \theta_{n}^{\prime}(t)\right\rangle d t+\int_{I}\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \theta_{n}(t)\right\rangle d t .
\end{aligned}
$$

On $B_{n},\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|$ is bounded by k_{1}; from Hölder's inequality and the estimate on $\left\|\theta_{n}\right\|_{\infty}$ obtained in (2) we have that there exists a constant C (independent of n) such that

$$
\int_{A_{n}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\| d t \leqslant C m\left(A_{n}\right)
$$

(7) As $m \rightarrow+\infty$, the sequence of functions $\left(\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\| \chi_{\left\{\cup_{n=2}^{m} A_{n}\right\}}(t)\right)_{m}$ converges monotonically to the function $\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\| \chi_{\left\{\cup_{n>1} A_{n}\right\}}(t)$. From the estimate above and monotone convergence, we obtain

$$
\begin{aligned}
\int_{I \backslash C_{1}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\| d t & =\int_{I}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\| \chi_{\left\{\cup_{n>1} A_{n}\right\}} d t \\
& \leqslant C m\left(\bigcup_{n>1} A_{n}\right) .
\end{aligned}
$$

On $C_{1},\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|<k_{1}$. Hence

$$
\int_{I}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\| d t<+\infty
$$

3. Additional regularity and the validity of the Euler-Lagrange equation

Corollary 3.1. Under the same assumptions as in Theorem 2.1, for every variation η, $\eta(a)=0, \eta(b)=0$ and $\eta^{\prime} \in L^{\infty}(I)$, we have

$$
\int_{I}\left[\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta^{\prime}(t)\right\rangle+\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta(t)\right\rangle\right] d t=0 .
$$

Proof. We shall prove that, for every η in $A C(I)$ with bounded derivative, such that $\eta(a)=$ $\eta(b)=0$, we have

$$
\int_{I}\left[\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta^{\prime}(t)\right\rangle+\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta(t)\right\rangle\right] d t \geqslant 0 .
$$

Fix η, let $\left\|\eta^{\prime}(t)\right\| \leqslant K$ for almost every t in I.
(1) Define C_{n} and k_{n} as in point (1) of the proof of Theorem 2.1. Set

$$
v_{n}=\int_{I \backslash C_{n}} \eta^{\prime}(t) d t
$$

We have that $\lim _{n \rightarrow+\infty}\left\|v_{n}\right\|=0$. In particular, for $n \geqslant v$, there exists $B_{n} \subseteq C_{1}$ such that $m\left(B_{n}\right)=\left\|v_{n}\right\|$. Set

$$
\left(\eta_{n}\right)^{\prime}(t)= \begin{cases}0 & \text { for } t \in I \backslash C_{n}, \\ \eta^{\prime}(t) & \text { for } t \in C_{n} \backslash B_{n}, \\ \frac{v_{n}}{\left\|v_{n}\right\|}+\eta^{\prime}(t) & \text { for } t \in B_{n}\end{cases}
$$

We obtain

$$
\begin{aligned}
\int_{I} \eta_{n}^{\prime}(t) d t & =\int_{C_{n} \backslash B_{n}} \eta^{\prime}(t) d t+\int_{B_{n}}\left[\frac{v_{n}}{\left\|v_{n}\right\|}+\eta^{\prime}(t)\right] d t=\int_{C_{n}} \eta^{\prime}(t) d t+v_{n} \\
& =\int_{I} \eta^{\prime}(t) d t=0 .
\end{aligned}
$$

Hence, setting $\eta_{n}(t)=\int_{a}^{t} \eta_{n}^{\prime}(\tau) d \tau$, we have that the functions $\eta_{n}(t)$ are variations and that, for almost every t in $I,\left\|\eta_{n}^{\prime}(t)\right\| \leqslant(1+K)$, so that $\left\|\eta_{n}\right\|_{\infty} \leqslant(1+K)(b-a)$.
(2) As in point (3) of the proof of Theorem 2.1, there exists $\delta_{n}>0$ such that for $(t, x, \xi) \in C_{n} \times R^{s} \times G$, with $d\left((t, x, \xi),\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right)<\delta_{n}$, we have $\left\|\nabla_{\xi} L(t, x, \xi)\right\|<$ $k_{n}+1$.
(3) For $|\lambda|<\min \left\{1 /(1+K)(b-a), \delta_{n} /(1+K)(b-a), \delta_{n} /(1+K)\right\}$, consider the integrals

$$
\begin{aligned}
& \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)+\lambda \eta_{n}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
& =\int_{C_{n}} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)+\lambda \eta_{n}^{\prime}(t)\right)-L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
& \quad+\int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t
\end{aligned}
$$

For almost every $t \in C_{n}$, there exists $\zeta_{\lambda}(t) \in(0, \lambda)$ such that

$$
\begin{aligned}
& \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)+\lambda \eta_{n}^{\prime}(t)\right)-L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)\right] \\
& \quad=\left\langle\nabla_{\xi} L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)+\zeta_{\lambda}(t) \eta_{n}^{\prime}(t)\right), \eta_{n}^{\prime}(t)\right\rangle \\
& \quad \leqslant\left\|\nabla_{\xi} L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)+\zeta_{\lambda}(t) \eta_{n}^{\prime}(t)\right)\right\|(1+K)<\left(k_{n}+1\right)(1+K)
\end{aligned}
$$

Hence, we can apply the dominated convergence theorem to obtain that

$$
\begin{aligned}
& \lim _{\lambda \rightarrow 0} \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)+\lambda \eta_{n}^{\prime}(t)\right)-L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
& \quad=\int_{C_{n}}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}^{\prime}(t)\right\rangle d t=\int_{I}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}^{\prime}(t)\right\rangle d t
\end{aligned}
$$

(4) Following the point (5) of Theorem 2.1, we obtain that

$$
\begin{aligned}
& \limsup _{\lambda \rightarrow 0} \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
& \quad \leqslant \int_{I}\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}(t)\right\rangle d t
\end{aligned}
$$

(5) Since \hat{x} is a minimizer, we have

$$
\begin{aligned}
0 \leqslant & \int_{I}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}^{\prime}(t)\right\rangle d t \\
& +\limsup _{\lambda \rightarrow 0} \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
\leqslant & \int_{I}\left[\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}^{\prime}(t)\right\rangle+\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}(t)\right\rangle\right] d t
\end{aligned}
$$

(6) Since

$$
\lim _{n \rightarrow+\infty} \eta_{n}^{\prime}(t)=\eta^{\prime}(t)
$$

and

$$
\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|\left\|\eta_{n}^{\prime}(t)\right\| \leqslant\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|(1+K)
$$

and

$$
\lim _{n \rightarrow+\infty} \eta_{n}(t)=\eta(t)
$$

and

$$
\left\|\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|\left\|\eta_{n}(t)\right\| \leqslant\left\|\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|(1+K)(b-a)
$$

by the dominated convergence we obtain

$$
\lim _{n \rightarrow+\infty} \int_{I}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}^{\prime}(t)\right\rangle d t=\int_{I}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta^{\prime}(t)\right\rangle d t
$$

and

$$
\lim _{n \rightarrow+\infty} \int_{I}\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}(t)\right\rangle d t=\int_{I}\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta(t)\right\rangle d t .
$$

It follows that

$$
\int_{I}\left[\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta^{\prime}(t)\right\rangle+\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta(t)\right\rangle\right] d t \geqslant 0 .
$$

Even if the validity of the Euler-Lagrange equations already follows by the previous Corollary 3.1 and the DuBois-Reymond's lemma [3], we give an alternative proof in Corollary 3.3.

In the following theorem we prove an additional regularity result for the Lagrangian evaluated along the minimizer.

Theorem 3.2. Under the same assumptions as in Theorem 2.1, the map $\nabla_{\xi} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right)$ is in $L^{\infty}(I)$.

Proof. Using an iteration process, we shall prove that for every p in $N, \nabla_{\xi} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right)$ is in $L^{p}(I)$. Since the L^{p} are nested, this proves that $\nabla_{\xi} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right) \in \bigcap_{p \geqslant 1} L^{p}(I)$. At the same time, we shall prove that there exists a constant $K>0$ such that, for every $1 \leqslant p<+\infty,\left\|\nabla_{\xi} L\right\|_{p} \leqslant K$, thus proving that $\nabla_{\xi} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right)$ is in $L^{\infty}(I)$.

Suppose that: (1) From Theorem 2.1, we know that $\nabla_{\xi} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right)$ is in $L^{1}(I)$. Starting the iteration process, fix $p \in N$ and suppose that $\nabla_{\xi} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right) \in L^{p}(I)$, to prove that $\nabla_{\xi} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right) \in L^{p+1}(I)$.
(2) We can assume $\left\|\nabla_{\xi} L\right\|_{p} \neq 0$. Define C_{n}, A_{n}, k_{n} as in point (1) of the proof of Theorem 2.1. For all $n>1$, set

$$
v_{n}^{p}=\frac{(b-a)}{2\left\|\nabla_{\xi} L\right\|_{p}^{p}} \int_{A_{n}} \nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p-1} d t
$$

Since

$$
m\left(C_{1}\right) \geqslant(b-a) / 2
$$

and

$$
\left\|v_{n}^{p}\right\| \leqslant \frac{(b-a)}{2\left\|\nabla_{\xi} L\right\|_{p}^{p}} \int_{A_{n}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p} \leqslant(b-a) / 2
$$

there exists a set $B_{n}^{p} \subset C_{1}$ such that $m\left(B_{n}^{p}\right)=\left\|v_{n}^{p}\right\|$, so that

$$
\frac{2\left\|\nabla_{\xi} L\right\|_{p}^{p}}{(b-a)} \int_{B_{n}^{p}} \frac{v_{n}^{p}}{\left\|v_{n}^{p}\right\|} d t=\int_{A_{n}} \nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p-1}
$$

Set

$$
\begin{aligned}
\left(\theta_{n}^{p}\right)^{\prime}(t)= & -\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p-1} \chi_{A_{n}}(t) \\
& +\frac{2\left\|\nabla_{\xi} L\right\|_{p}^{p}}{(b-a)} \frac{v_{n}^{p}}{\left\|v_{n}^{p}\right\|} \chi_{B_{n}^{p}}(t)
\end{aligned}
$$

and $\theta_{n}^{p}(t)=\int_{a}^{t}\left(\theta_{n}^{p}\right)^{\prime}(\tau) d \tau$. We obtain that $\left\|\theta_{n}^{p}\right\|_{\infty} \leqslant 2 \int_{A_{n}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p} d t$. The variations θ_{n}^{p} have bounded derivatives so we can apply Corollary 3.1 to obtain that

$$
\int_{I}\left[\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right),\left(\theta_{n}^{p}\right)^{\prime}(t)\right\rangle+\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \theta_{n}^{p}(t)\right\rangle\right] d t=0 .
$$

It follows that

$$
\begin{aligned}
& \int_{A_{n}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p+1} d t \\
&= \frac{2\left\|\nabla_{\xi} L\right\|_{p}^{p}}{(b-a)} \int_{B_{n}^{p}}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), v_{n}^{p} /\left\|v_{n}^{p}\right\|\right\rangle d t \\
&+\int_{I}\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \theta_{n}^{p}(t)\right\rangle d t \\
& \leqslant k_{1} \int_{A_{n}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p} d t \\
&+2 \int_{A_{n}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p} d t \int_{I}\left\|\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\| d t \\
& \leqslant \tilde{C} \int_{A_{n}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p} d t
\end{aligned}
$$

where \tilde{C} is independent of n and p (suppose $\tilde{C} \geqslant 1$). The sequence of maps

$$
\left(\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p+1} \chi_{\bigcup_{n=2}^{m} A_{n}}(t)\right)_{m}
$$

converges monotonically to $\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p+1} \chi_{\left\{\cup_{n>1} A_{n}\right\}}(t)$, and each integral $\int_{I}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p+1} \chi_{\left\{\bigcup_{n=2}^{m} A_{n}\right\}}(t) d t$ is bounded by the same constant

$$
\tilde{C} \sum_{n=2}^{\infty} \int_{A_{n}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p} d t=\tilde{C} \int_{I \backslash C_{1}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p} d t
$$

Hence, by the monotone convergence theorem,

$$
\int_{I \backslash C_{1}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p+1} d t \leqslant \tilde{C} \int_{I \backslash C_{1}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p} d t<+\infty .
$$

On $C_{1},\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|<k_{1}$, proving that $\nabla_{\xi} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right) \in L^{p+1}(I)$. Moreover, we have also obtained that

$$
\int_{I \backslash C_{1}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p+1} d t \leqslant \tilde{C}^{p} \int_{I \backslash C_{1}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\| d t
$$

so that

$$
\left(\int_{I \backslash C_{1}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p+1} d t\right)^{1 /(p+1)} \leqslant \tilde{C} S
$$

where $S=\max \left\{1, \int_{I \backslash C_{1}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\| d t\right\}$. Setting $T=\max \left\{1, m\left(C_{1}\right)\right\}$ we have that, for all $p \in N$,

$$
\begin{aligned}
\left\|\nabla_{\xi} L\right\|_{(p+1)} & \leqslant\left(k_{1}^{(p+1)} m\left(C_{1}\right)+\int_{I \backslash C_{1}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p+1} d t\right)^{1 /(p+1)} \\
& \leqslant k_{1} m\left(C_{1}\right)^{1 /(p+1)}+\left(\int_{I \backslash C_{1}}\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|^{p+1} d t\right)^{1 /(p+1)} \\
& \leqslant k_{1} T+\tilde{C} S=K . \quad \square
\end{aligned}
$$

Corollary 3.3. Under the same conditions as in Theorem 2.1, for every variation $\eta, \eta(a)$ $=0, \eta(b)=0$ and $\eta^{\prime} \in L^{1}(I)$, we have

$$
\int_{I}\left[\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta^{\prime}(t)\right\rangle+\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta(t)\right\rangle\right] d t=0 .
$$

As a consequence, $t \rightarrow \nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)$ is absolutely continuous.
Proof. We shall prove that, for every η in $A C(I)$, such that $\eta(a)=\eta(b)=0$, we have

$$
\int_{I}\left[\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta^{\prime}(t)\right\rangle+\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta(t)\right\rangle\right] d t \geqslant 0 .
$$

(1) Fix η. Through the same steps as in point (1) of the proof of Theorem 2.1, for every $n \in N$ we can define a closed set C_{n} such that on it η^{\prime} is continuous, \hat{x}^{\prime} is continuous with values in $G, \nabla_{\xi} L$ is continuous in $C_{n} \times R^{s} \times G$ and $\lim _{n \rightarrow+\infty} m\left(I \backslash C_{n}\right)=0$. In particular, it follows that there are constants k_{n} and $c_{n}>0$ such that, for all $t \in C_{n}$,

$$
\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|<k_{n} \quad \text { and } \quad\left\|\eta^{\prime}(t)\right\|<c_{n}
$$

Define $v_{n}, B_{n}, \eta_{n}^{\prime}$ and η_{n} as in the proof of Corollary 3.1. Since, for all $t \in I,\left\|\eta_{n}^{\prime}(t)\right\| \leqslant$ $1+\left\|\eta^{\prime}(t)\right\|$, it follows that $\left\|\eta_{n}^{\prime}\right\|_{1} \leqslant(b-a)+\left\|\eta^{\prime}\right\|_{1}$. Moreover, $\left\|\eta_{n}\right\|_{\infty} \leqslant\left\|\eta_{n}^{\prime}\right\|_{1} \leqslant$ $(b-a)+\left\|\eta^{\prime}\right\|_{1}$.
(2) As in point (3) of the proof of Theorem 2.1, there exists $\delta_{n}>0$ such that for $(t, x, \xi) \in C_{n} \times R^{s} \times G$, with $d\left((t, x, \xi),\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right)<\delta_{n}$, we have $\left\|\nabla_{\xi} L(t, x, \xi)\right\|<$ $k_{n}+1$.
(3) For $|\lambda|<\min \left\{1 /\left((b-a)+\left\|\eta^{\prime}\right\|_{1}\right), \delta_{n} /\left((b-a)+\left\|\eta^{\prime}\right\|_{1}\right), \delta_{n} /\left(c_{n}+1\right)\right\}$, consider the integrals

$$
\begin{aligned}
& \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)+\lambda \eta_{n}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
&= \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)+\lambda \eta_{n}^{\prime}(t)\right)-L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
&+\int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
&=\int_{C_{n}} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)+\lambda \eta_{n}^{\prime}(t)\right)-L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
&+\int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t .
\end{aligned}
$$

For every $t \in C_{n}$, there exists $\zeta_{\lambda}(t) \in(0, \lambda)$ such that

$$
\begin{aligned}
\frac{1}{\lambda} & {\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)+\lambda \eta_{n}^{\prime}(t)\right)-L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)\right] } \\
& =\left\langle\nabla_{\xi} L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)+\zeta_{\lambda}(t) \eta_{n}^{\prime}(t)\right), \eta_{n}^{\prime}(t)\right\rangle \\
& \leqslant\left\|\nabla_{\xi} L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)+\zeta_{\lambda}(t) \eta_{n}^{\prime}(t)\right)\right\| c_{n}<\left(k_{n}+1\right) c_{n}
\end{aligned}
$$

Hence, we can apply the dominated convergence theorem to obtain that

$$
\begin{aligned}
& \lim _{\lambda \rightarrow 0} \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)+\lambda \eta_{n}^{\prime}(t)\right)-L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
& \quad=\int_{C_{n}}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}^{\prime}(t)\right\rangle d t=\int_{I}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}^{\prime}(t)\right\rangle d t
\end{aligned}
$$

(4) Following the point (5) of Theorem 2.1, we obtain that

$$
\begin{aligned}
& \limsup _{\lambda \rightarrow 0} \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
& \quad \leqslant \int_{I}\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}(t)\right\rangle d t
\end{aligned}
$$

and, since \hat{x} is a minimizer, we have

$$
\begin{aligned}
0 \leqslant & \int_{I}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}^{\prime}(t)\right\rangle \\
& +\limsup _{\lambda \rightarrow 0} \int_{I} \frac{1}{\lambda}\left[L\left(t, \hat{x}(t)+\lambda \eta_{n}(t), \hat{x}^{\prime}(t)\right)-L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right] d t \\
\leqslant & \int_{I}\left[\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}^{\prime}(t)\right\rangle+\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}(t)\right\rangle\right] d t .
\end{aligned}
$$

(5) Finally we have

$$
\lim _{n \rightarrow+\infty} \eta_{n}^{\prime}(t)=\eta^{\prime}(t)
$$

and

$$
\left\|\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|\left\|\eta_{n}^{\prime}(t)\right\| \leqslant\left\|\nabla_{\xi} L\left(\cdot, \hat{x}(\cdot), \hat{x}^{\prime}(\cdot)\right)\right\|_{\infty}\left(1+\left\|\eta^{\prime}(t)\right\|\right)
$$

and

$$
\lim _{n \rightarrow+\infty} \eta_{n}(t)=\eta(t)
$$

and

$$
\left\|\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|\left\|\eta_{n}(t)\right\| \leqslant\left\|\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)\right\|\left((b-a)+\left\|\eta^{\prime}\right\|_{1}\right)
$$

so that, by dominated convergence, we obtain

$$
\lim _{n \rightarrow+\infty} \int_{I}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}^{\prime}(t)\right\rangle d t=\int_{I}\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta^{\prime}(t)\right\rangle d t
$$

and

$$
\lim _{n \rightarrow+\infty} \int_{I}\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta_{n}(t)\right\rangle d t=\int_{I}\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta(t)\right\rangle d t .
$$

Hence, it follows that

$$
\int_{I}\left[\left\langle\nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta^{\prime}(t)\right\rangle+\left\langle\nabla_{x} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right), \eta(t)\right\rangle\right] d t \geqslant 0 .
$$

The absolute continuity of $t \rightarrow \nabla_{\xi} L\left(t, \hat{x}(t), \hat{x}^{\prime}(t)\right)$ is classical (e.g., [2]).

References

[1] J.M. Ball, V.J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the EulerLagrange equation, Arch. Rational Mech. Anal. 90 (1985) 325-388.
[2] H. Brezis, Analyse fonctionnelle, théorie et applications, Masson, Paris, 1983.
[3] G. Buttazzo, M. Giaquinta, S. Hildebrant, One-Dimensional Variational Problems. An Introduction, Oxford Lecture Series in Mathematics and Its Applications, vol. 15, Oxford Univ. Press, New York, 1998.
[4] L. Cesari, Optimization. Theory and Applications, Springer, Berlin, 1983.
[5] L. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983, reprinted in: Classics in Applied Mathematics, vol. 5, SIAM, Philadelphia, 1990.
[6] A.D. Ioffe, R.T. Rockafellar, The Euler and Weierstrass conditions for nonsmooth variational problems, Calc. Var. Partial Differential Equations 4 (1996) 59-87.
[7] B. Maniá, Sopra un esempio di Lavrentieff, Boll. Unione Mat. Ital. 13 (1934) 147-153.
[8] C. Marcelli, E. Outkine, M. Sytchev, Remarks on necessary conditions for minimizers of one-dimensional variational problems, Nonlinear Anal. 48 (2002) 979-993.
[9] B.S. Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions, SIAM J. Control Optim. 33 (1995) 882-915.
[10] R. Vinter, H. Zheng, The extended Euler-Lagrange condition for nonconvex variational problems, SIAM J. Control Optim. 35 (1997) 56-77.

[^0]: * Corresponding author.

 E-mail addresses: ferriero@matapp.unimib.it (A. Ferriero), elsa@matapp.unimib.it (E.M. Marchini).

