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Abstract

The purpose of the present paper is to establish the validity of the Euler—Lagrange equation for the
solutionx to the classical problem of the calculus of variations.
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1. Introduction

The purpose of the present paper is to establish (under Carathéodory’s conditions) the
validity of the Euler—-Lagrange equation (E—L) for the solutioto the classical problem
of the calculus of variations consisting in minimizing the functional

J(x) = / L(t, x(t),x'(t))dt,
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wherel = (a,b) C R, on the set of those absolutely continuous functions — R*
satisfying the boundary conditionga) = A, x(b) = B. Establishing the validity of the
Euler—Lagrange equation amounts to proving that

/[(VSL(Z, 20,2 ®),n' @)+ (Ve L(1,%(1), £ (1)), n(t))] dt =0

1

for every variationn in some suitable class. A large number of papers has been devoted
to this classical problem, e.g., [4-6,8-10]. The example obtained by Ball and Mizel [1],
modifying an earlier example of Manida [7], provides a variational problem where the inte-
grability of V, L(-, x(-), x’(-)) does not hold and, as a consequence, (E-L) is not true along
the solution. Hence, some condition on the tevpL (-, x(-), x'(-)) has to be imposed in
order to ensure the validity of (E-L). A result of Clarke [5] implies that the following
assumption on the terivi, L(-, x(-), x'(-)):

there exists a functio§(¢) integrable on/ such that, fory in a neighborhood of the
solution,

[ViL(t,y, 2 ®)] < S

is sufficient to establish the validity of (E-L). This condition implies that, locally along
the solution,x — L(z, x, x’) is Lipschitzian of Lipschitz constari(r). However, there
are simple and meaningful examples of variational problems where this Lipschitzianity
condition is not verified.

Consider the Lagrangian defined byx, &) = (¢/[x] — 2/3)?, and the problem (P) of
minimizing

1
/L(x(t), x' (1)) dt
0

over the absolutely continuous functiansvith x(0) =0, x(1) = 1.

One can easily verify thai(r) = r%/2 is a minimizer for (P) (indeed, (x(r), 2’ (t)) =0
on [0, 1], andL is non-negative everywhere). In this case, althofigh not differentiable
everywhere,L, (X(t), x'(t)) exists a.e. (it is a.e. zero) and it is integrable. The purpose
of the present paper is to provide a result on the validity of (E-L) that is satisfied by
Lagrangians that are Lipschitzian i but that applies as well to the non-Lipschitzian
cases as the example before.

In the proof we first show that the fact thétis a solution implies the integrability
of VeL(-,x(-),%'(-)). Then, using this result, we establish the validity of (E-L) under
Carathéodory’s condition.

Note that we do not assume any convexity hypothesis on the Lagrangian. Moreover, no
growth condition whatsoever is assumed so that, as far as we know, relaxation theorems
cannot be applied.
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2. Integrability of Vg L(-, X(-),*' ()
Consider the problem of minimizing the functional

J(x):/L(t,x(t),x/(t))dt
1
on the set of those absolutely continuous functisng — R* satisfying the boundary
conditionsx(a) = A, x(b) = B. Let x be a (weak local) minimizer yielding fnite value
for the functional/, and sefu = sup(, 4 IX(®) -
Our results will depend on the following assumption.

Assumption A. (i) L is differentiable inx alongx, for a.er, andthe mayy, L(-, x(-), x'(-))
is integrable on;
(ii) there exists a functios (z) integrable or¥ such that, for any € B(0, u + 1),

L(t,y, X' @®) <L(t,2(0), 2 ®)+ SO |y — 2@

Consider problem (P) as presented in the Introductioandx satisfy Assumption A:
L (%(1), ' (t)) exists a.e. (identically zero, hence integrablgy,) = r~%/3 verifies the
inequality
L(y. %' (1) <SO|y -2
since
2 o7 _ 4173
23 - 2) = AWDIEED) ey A2
3 3 9t2/3( /Iy + t1/3) 9r2/3

This is our first result on the teriig L(-, x(-), x'(:)). In what follows, R denotesk U
{+o00}.

’

Theorem 2.1. Suppose thak : I x R® x R® — R is an extended valued function, finite on
its effective domain of the fordomL = I x R’ x G, whereG C R’ is an open set, and
that it satisfies Carathéodory’s conditions, i.&.(-, x, £) is measurable for fixedx, &)
and L(t, -, -) is continuous for almost every Moreover assume thdt is differentiable
in & ondomL and thatV; L satisfies Carathéodory’s conditions domL. Suppose that
AssumptiorA holds. Then,

f IVeL(t. 20, &' (0)) | dt < +o0.
1

Proof. (1) By assumptionL(-, £(-), #'(-)) € LY(I), hence settingo = {r € I: %/(t) ¢ G},
we havemn(Sg) = 0. Givene > 0, we can covefp by an open se©; of measuren(01) <
€/2. We have also tha¥¢ L is a Carathéodory’s function and thetis measurable id.
Hence, by the theorems of Scorza Dragoni and of Lusin, for the giver® there exists
an open se0; such thatn(02) < €/2 and at once&’ is continuous in/ \ Oz, andVe L
is continuous in(1 \ 02) x R* x G. By taking K. = I \ (01 U 03), we have thatk,
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is a closed set such that oniit is continuous with values i, VgL is continuous on
Ke X R x G andm(I \ K.) < €. Forn > 1 sete, = (b —a)/2"t* andK, = K., ; set also
C,= U;le K ;. ThenC, are closed sets;, C C,41, X’ is continuous orC, with values
in G, Ve L is continuous inC, x R* x G and lim,_, 4 com(I \ C,) =0

From these properties it follows that there exists- O such that, for all € C,,

[VeL(, £0), 2'®) | < ka.

There is no loss of generality in assumikg> k,—1. Moreover, we have that(Cy) >
(b—a)/2andy % ,m(Cy \ Cp—1) < (b —a)/2.

Foralln > 1, we set4,, = C, \ C,—1. Hence we obtain that,, = C1|J,_, A, and that
I=EUC1,-1An, Wherem(E) =0

(2) Consider the function

{ 0 if VeL(t,%(1),%(1)) =0,
0(t) =

Ve L(1.2(1).3'(1)) .
VeLGimFmy) Otherwise,

and

Un Z/Q(t)dta

AI’
so that||v, || < m(A,). There exists a closed sBt C C1 such thatn(B,) = ||v,||. Set

0, (1) =—=0()xa, () + X8, ().

|| Up ||
We have that

/eg(r)dtz—fe(z)dwrvn:o.
I Ay

Hence, settind, (t) = fa[ 0 (r)dt, we see that the functiort (+) are admissible varia-
tions. Moreover we obtain

160l < sup / 16,(0)] d / 16,(0)| dv < 2m(Ay).

(3) Fortin A,, we have| Vs L(t, X(1), &' ()| < kn; forzin B, Vs L(t, (), ' ()| <
k1 < ky. Recalling that,, C C,,, we infer that, for alk € A, U By,
[VeL(t.20).8'0)) | < k.

We wish to obtain an uniform bound f¢jiV: L|| computed in a suitable neighborhood of
the solution £(-), #/(-)). Consider the setd,, U B,) x R® x G as a metric spackf,, with
distanced ((t, x, &), (', x’, §")) =sup|t — '], |x — x|, |§ — &’[). On M,,, VL is continu-
ous. Moreover, its subset

Gn={(t.2(). %' (1)): t € A, UB,}

is compact and, o, || V:L|| is bounded by,. Hence there exist;, > 0 such that, for
(t,x,&) € My withd((t, x,§), (t, X(1), X' (1)) < 8n, we have|| Ve L(t, x, §)|| <k, + 1.
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(4) For|A| <min{1/2m(A,), §,/2m(A,), 8.}, consider the integrals
/ E[L(t, (@) + A0, (), X' (1) + 16,(1)) — L(t, £(t), X' (1)) ] dt

1

1 . . . .
f Z[L(t, R(0) + 26, (1), £ (1) + 10, (1)) — L(t, 2(t) + A6, (1), £ (1)) ] dt

A,UB,
+ / 2L 20 + 26,00, #0) — L(1 20, 8'0)) .

1
For everyr € A,, U B, there existg; (1) € (0, 1) such that

1 A al / 2 o/
=[L(1, £(0) + 26, (1), 2 (1) + 26, (1)) — L (1, (1) + 26, (1), ' (1)) ]
=(VeL(1. 2(t) + 16, (). £ (1) + £,.(1)6, (1)) 6, (1))
| VeL (2, 2(0) + 16, (1), X' (0) + 8016, (1)) |
and from the choice of, || Vs L(z, £(r) + 16, (1), X' (1) + 5.(1)6) (1) || < k, + 1. Hence, we
can apply the dominated convergence theorem to obtain that

lim

1 A A~/ / oY o/
k_)O/ —[L(t, 2(0) 4+ 10,(1), £ (1) + 20, (1)) — L(t, X(t) + A6, (1), £ (1)) ] dt

AnUBy
= /(VEL(r,)E(r),;e’(t)),e;l(t))dt.

Ap,UB,
(5) Setf*(s) =maxO0, f(s)}, f~(s) =max0, — f(s)}. Since

1
0< X[L(t, R + 10, (0), 2 (1)) = L(1,5(0), ' )" <50 6.,

by the dominated convergence theorem,

A|im0/ }[L(z, X(1) + M0, (1), R (1)) — L(1, %), ;2’(;))]+ dt

I
=/Alimo%[L(t,)?(t)+A9n(t),)2’(t))—L(t,)%(t),f/(t))]+dt.
I

By the Fatou’s lemma,
liminf E[L(t, (@) + A0, (1), X' (1)) — L1, £(0), &' (1))] dt

r—0
1

>/Ii£n_jgf %[L(t,)?(t) + A0, (1), X' (1)) — L(t, 2(1), £'(1))] " dt

1
We have obtained that
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limsup %[L(t, () + M0, (1), R (1)) — L(t, £(1), X' (1)) ] dt
r—0

gxlimo/ %[L(t,)%(t)vw\@n(t),)%/(t)) —L(t, 2, % 0)]"
1
- Iirk‘nigf / %[L(z,;?(t) + A0, (1), X' (1)) — L(t, 2(t), X' ()] dt
1

< [ lim sup% [L(1,%(1) + 210,(1), &' (1)) — L(r,%(1), &' (1)) ] dt
A—0

:/(VXL(z,)G(t),f’(t)),@,,(t))dt.
1

(6) Sincex is a minimizer, we have

0< f (VeL(r,%(1), %' (1)), 6, (1)) dt

AnUB,

+ limsup %[L(t, X(t) + A0, (1), £ (1)) — L(t, 2(1), £ (1)) ] dt
r—0
1

< / (VL (. 2(0), (1)), 0,0 dt + /(VXL(t,f(t),i’(t)),Qn(t))dt. ()

AnUB, I

Sinceo;, (1) = —Ve L(t, x(1), X' (1)) /| Ve L(¢, X (¢), X' (1)) ||, for anyz in A,, it follows that
—(VeL(t,x(1),X'(1)), 6,(1)) xa, () = IVeL(t, X(2), X' (t)) || x4, (t). Hence, we obtain that
(*) can be written as

/HVgL(t,)E(t),)E’(t))” dt
A)‘l

< /(VSL(r,i(t),ae/(t)),9,;(t))dr+/(VXL(t,)e(t),)e’(t)),e,,(t))dt.
B, I
On By, |VeL(t,x(r), X' (1)) | is bounded by1; from Hoélder’s inequality and the estimate

on |16, ||~ obtained in (2) we have that there exists a constafindependent of:) such
that

f”ng(t, (1), %' ®)| dt < Cm(Ay).
Ay
(7) Asm — +o00, the sequence of functiori$Ve: L(z, x(¢), )2/(z))||x{w:2 A,1(1)m CON-

verges monotonically to the functidiV: L(z, X (), X' (¢)) I X,., 4.} (). From the estimate
above and monotone convergence, we obtain



362 A. Ferriero, E.M. Marchini / J. Math. Anal. Appl. 304 (2005) 356—369

[ vz 0.2 @) dr = 9L 508 0) [y, a0 d

I\C1 1

<Cm<UAn>.

n>1

OnCy, [[VeL(t,x(1), X' (1)) |l < k1. Hence

/”VgL(t,)?(t),)E’(t))“ dt <+o0. O
1

3. Additional regularity and the validity of the Euler—L agrange equation

Corollary 3.1. Under the same assumptions as in Theogd for every variationn,
n(a) =0, n(b) =0andn’ € L*°(I), we have

/[(VEL(t, 20,2 0),n'0))+ (Ve L(t, £1), &' (1)), n())] dt = 0.

1

Proof. We shall prove that, for evenyin AC(7) with bounded derivative, such thata) =
n(b) =0, we have

/[(VSL(I, 20,2 (0),n'0)+ (Vi L(t, £@), &' (1)), n(1))] dt > 0.
1

Fix n, let |5'(t)|| < K for almost every in I.
(1) DefineC, andk, as in point (1) of the proof of Theorem 2.1. Set

VU = / 0 (t)dt.

I\Cy

We have that lim_, 1o ||v, ]| = 0. In particular, fom > v, there existsB,, C C; such that
m(By,) = |lv,|. Set

0 forrel\ Gy,
(nn)/(t) = U’(f) forte C, \ By,
T +1'(r) forz € By.
We obtain
/n;,(t)dtz / n/(t)dt+/|:”z—n”+n/(t)] dt:/n/(t)dt+vn
1 CA\B, By o

= / n'(t)dt =0.
1

Hence, setting;, () = fat n,(v)dz, we have that the functionsg,(s) are variations and
that, for almost every in I, ||n,(t)|| < (1+ K), so that||n,|lec < 1+ K)(b — a).
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(2) As in point (3) of the proof of Theorem 2.1, there exists> 0 such that for
(t,x,6) € Cy x R* x G, withd((t,x,&), (t,x(t), X' (1)) < 8,, we have|V: L(t, x, §)|| <
ky + 1.

(3) For |A] < min{l/(1+ K)(b — a),8,/(L+ K)(b — a),,/(1 + K)}, consider the
integrals

1
/ i [L(r,X(1) + Ana(0), £ () + Ay, (1)) — L(2, 2(0), X' (1)) ] dt

1
Lo . % / : :
- / L 2@ + 2 (0, (1) + 21, (0)) = L1, £0) + A (1), £'(0) ] d
Cn
+ [ FILR0 00,8 0) - L1308 0)] .

1
For almost every € C,,, there existg;. (r) € (0, 1) such that

1 A Al i 2 af
LL(E RO + 20 (0, (@) + 2y, (1) = L1, 2(0) + 2na (1), (1) ]
=(VeL(t, (1) + Ana (1), (1) + & (1), (1)), 1, (1)
< | VeL (2, () + Ann (), 2’ (@) 4+ 0.0, ) |1+ K) < (kn + DA+ K).
Hence, we can apply the dominated convergence theorem to obtain that

. 1 A Al /7 A ~/
/\I|m0/ X[L(t’ () + Ana(0), £ @) + Ay, (1) — L(t, () + Ana (1), X' (1)) ] dt
1
= /(VgL(t,)?(t),)?’(t)), (1)) dt = f(VgL(t,)?(t),)?’(t)), (1)) dt.
Cy 1
(4) Following the point (5) of Theorem 2.1, we obtain that

limsup %[L(r, () + (1), ' @) — L(t, 2(1), ' (1)) ] dt
1—0

</<VXL(I,£(I),£’(I)),nn(t)>dt.
1
(5) Sincex is a minimizer, we have

0</(ng(z,)e(r),)e’(t)),n;(r))dt

I

+ limsup %[L(t, () + e (0), £ @) — L(t, 2(1), ' (1)) ] dt
A—0

s /[(VSL(t, 20,2 ®), 1, )+ (Ve L(t, £(0), 2'(1)). na ()] dt.

I
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(6) Since
nﬂrfoo n, (&) =n'(t)
and
[VeL(e. 2. 2 O) [ |m, @O < [VeL(t. 2. ¥ )| A+ K,
and
Nm (1) = ()
and

[VeL(t. £, &' O) | [na O] < || ViL(t, £0), & ®)] 1+ K)(b—a),
by the dominated convergence we obtain
nﬂTQQ[(VSL(t,)?(I),)?/(t)), (D)) dt = /(VgL(t,)?(t),)?’(t)), n'(t))dt
1 1
and

n—-+o0o
1 1

It follows that

/[(VEL(t, 20,2 ®),n' )+ (Ve L(1,X(0), £ (), n(t))]dt 0. O
1

lim f(vxL(t,)E(t),)e’(t)), (1)) dt = /(VXL(t,)?(t),)?’(t)), n(t))dt.

Even if the validity of the Euler-Lagrange equations already follows by the previous
Corollary 3.1 and the DuBois—Reymond’s lemma [3], we give an alternative proof in Corol-
lary 3.3.

In the following theorem we prove an additional regularity result for the Lagrangian
evaluated along the minimizer.

Theorem 3.2. Under the same assumptions as in TheoPeinthe mapVe L(-, x(-), X'(+))
isin L(I).

Proof. Using an iteration process, we shall prove that for eyeiy N,V:L(-, X(-), x'(-))
isin LP(I). Since theL? are nested, this proves th&t L(-, x(-), X'(-)) € ﬂp>lL1’(1).
At the same time, we shall prove that there exists a congfantO such that, for every
1< p <400, VL, < K, thus proving thaW: L(-, x(-), £'(-)) is in L*(I).

Suppose that: (1) From Theorem 2.1, we know #al (-, X(-), £'(-)) isin LY(I). Start-
ing the iteration process, fix € N and suppose thats L(-, x(-), x'(-)) € LP(I), to prove
thatVe L(-, £(-), /() € LPL(I).

(2) We can assumiVe L], # 0. DefineC,, A,, k, as in point (1) of the proof of The-
orem 2.1. For alk > 1, set

y (b—a)

= 2" Lt 2@), & O)|VEL(t, 2), & @) |7 d.
, 2||VsLIIZA L ( )| VeL( )|
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Since
m(C1) = (b—a)/2

and

b—a)

Pl <
1< 2y

/|| VeL(t, £@). 2 )" < b —a)/2,
An

there exists a se&? c Cy such thatn(B}) = |v|, so that

14 14
ZybviLa”)” ,, ”ZZ,” dt=/VgL(t,)?(t),)?’(t))”VEL(I,)E(t),)?’(t))Hp_l.

B} An

Set

6F) (1) = =VeL(t,2(t), &' () | Ve L (2, (1), ¥ (1)) H"*lXA,, (1)
2|VeLIl, vy

b—a) |ui|

andéy (t) = [1(67) (r)dz. We obtain that|6} [l < 2 [y, IVEL(t, %(0), ' (1))||P dr. The
variationsd} have bounded derivatives so we can apply Corollary 3.1 to obtain that

/[(VSL(t, (), %(1), (67) (O) + (VL (t, (1), & (1)), 67 (1))] dt = 0.
1
It follows that

/”VgL(t,£(t),£/(t))“p+ldt

Ap

_ 2IVeLllp N T
=00 (VeL(t,2(0), %' ®)). v [ |vr||)dt

BY

+ /(VXL(Z,)?(t),)?/(t))ﬁf(t))dt

Xg,f(t)

1
<k1/||V5L(t,)2(t),)2’(t))H”dt
All

+2/HVSL(t,)2(1),)?’(t))detfHVXL(I,)?(I),)?/(Z)) | at
1

A

<C/”VEL(I,)?(I),)?’(I))det,
Ay

whereC is independent of andp (supposeC > 1). The sequence of maps

(IVeL (e 2. 8 O) " x4, 0),,
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converges monotonically tdj VL (z, £(1), £ (1)) 1" x(y._, 4,)(t), and each integral
[y IVeL(t, 2(0), )2/(1))||P+1X{U:7=2An}(t) dt is bounded by the same constant

C‘Z/||V5L(I,£(t),£’(t))“pdt=C‘ / |VeL(z, 2(), %' )| ar.

n=24, ey
Hence, by the monotone convergence theorem,
/ |VeL (1, 2(), 2 @) |P e < € / IVeL(t,2(0). &' ®)]|" dt < +oo.
I\C1 I\C1

On Cy, |[VEL(t, 2(t), &/ (1))|| < k1, proving thatVs L(-, £(-), #/(-)) € LPT1(I). Moreover,
we have also obtained that

/||ng(t,£(z),)2/(r))||”+1dtgéﬂ / |VeL(t, 2(1), ' 1)) dt,

ne nel
so that
1(p+1)
(/HVEL(t,)?(t),)?/(t))||p+1dt) <Cs,
INC1

where S = max1, fl\cl VeL(t, x(1), x'(1))|| dt}. SettingT = max{1, m(C1)} we have
that, forallp € N,

1/(p+1)
1 A A 1
Ve Ll (p+1) < (ki”* 'm(C1) + / [VeL(r, 2), 2 0)||"* dr)
I\C1

1/(p+1)
<t ([ [iatesor o)) a)
NGy
<kiT+CS=K. O

Coroallary 3.3. Under the same conditions as in Theor2rh, for every variation,, n(a)
=0, n(b) =0andy’ € L1(I), we have

/[(VSL(t, (), %), n' )+ (Ve L(r, £@), 2 (1)), n(1))] dt = 0.
1
As a consequence;— Ve L(z, X(1), X'(¢)) is absolutely continuous.

Proof. We shall prove that, for evenyin AC(I), such that)(a) = n(b) = 0, we have

/ [(VeL (1. £, 2'(0)). ') + (Vs L (1. £(0). (). n(0))] dt > 0.
1



A. Ferriero, E.M. Marchini / J. Math. Anal. Appl. 304 (2005) 356—369 367

(2) Fix n. Through the same steps as in point (1) of the proof of Theorem 2.1, for every
n € N we can define a closed s€} such that on iy’ is continuousx’ is continuous with
values inG, Vg L is continuous irC, x R* x G and lim,_, ;oo m(I \ C,) = 0. In particular,
it follows that there are constanks andc, > 0 such that, for all € C,,,

IVeL(2,£0), 2'®)| <ks and ||n'(0)] <cn.

Definev,, By, 1, andn, as in the proof of Corollary 3.1. Since, for ale I, ||n), ()| <
1+ '], it follows that [|n;ll1 < (b — a) + [[n'll. Moreover, [[n,lleo < lIn,ll1 <
(b—a)+ 1.

(2) As in point (3) of the proof of Theorem 2.1, there exisis> 0 such that for
(t,x,£) € Cy x RS x G, withd((t,x,&), (t,%(1), £ (1)) < 8,, we have| Vs L(t, x,£)| <
kn + 1.

(3) For|x] < min{1/((b —a) + In'll1), 8, /(b — @) + IIn"ll1), 8,/ (cn + 1)}, cOnsider the
integrals

1
f i [L(r,%(1) + Ana(0), £ () + Ay, (1)) — L(2, 2(0), X' (1)) ] dt

I

1
X[L (£, X(0) + A (1), X' (1) + A (1)) — L1, £(t) + Ana (1), £ (1)) | dt

Il
~—

[L(r, %) + Ana(0), £' (1)) — L(t, 2(1), ' (1)) ] dt

+
—
>

>~

[L(7, %) + Ana(0), £ () + Ay, (1)) — L(2, £(t) 4+ Ana (1), X' (1)) ] dt
Cn

+ [L(r, %) + Ana(0), £' (1)) — L(t, 2(1), ' (1)) ] dt

\.\
>

For everyr € C,, there exists;, (r) € (0, 1) such that

[L( (@) + A0 (1), £ (1) 4+ Any (1)) — L (8, 2(0) + Ana (1), X' (1)) ]

=(VeL(t, £@) + A (), &' (1) + 00 (Ony, (D), 0, (D)
< || VeL(t, £(t) + Anu (1), £/ (1) + 5.0, () | cn < K + Dcn.

Hence, we can apply the dominated convergence theorem to obtain that
I|m f L(t, £(t) + Anyp (1), £ (1) + An, (1)) — L(t, (1) + Ana (1), X' (1)) ] dt

= /(VgL(t,)?(t),)?/(t)), (1)) dt = f(VgL(t,f(t),f’(t)), 1, (1)) dt

Cy 1

(4) Following the point (5) of Theorem 2.1, we obtain that
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limsup %[L(r, () + (1), ') — L(t, 2(1), ' (1)) ] dt
1—0

< f(VxL(t,)?(t),)?/(t)), (1)) dt

1

and, sincex is a minimizer, we have

o</(V5L(t,£(r),£/(t)),n;(t))

1

+ limsup %[L(t, () + (1), £ @) — L(t, 2(1), &' (1)) ] dt
r—0

< /[(ng(z,;e(z),)e/(r)), My () + (Ve L(t, 2(t), £ (1)), na ()] dt.
1

(5) Finally we have

im0 =n'()

n

and

[VeL(t. 20, 2 O) [ [m, O < [VeL (- £0), 2 O) | o (L + [0 @),
and

mna () = 1(0)
and

[ViL(t, 20), 2 O) | [|na @] < | VaL(z. 2@0). 2 @) | (B —a) + In'll1).

so that, by dominated convergence, we obtain
. A N ’ _ N a7 4
nﬂrroo/(vsL(r,x(t),x 1)), m,(0))dt = /(VgL(t,x(t),x 1)), n'(t))dt

I 1

and

ETOO/WXL(L)?(t),)?/(t)), (1)) dt = /(VXL(I,)?(I),)?/(Z‘)), n(t))dt.
1 1

Hence, it follows that

/[(VEL(I, 20,2 (0),n'0))+ (Ve L(t, £1), &' (1)), n(1))] dt > 0.

1

The absolute continuity af— Ve L(z, X(r), X'(¢)) is classical (e.g., [2]). O
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