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Abstract

The purpose of the present paper is to establish the validity of the Euler–Lagrange equation
solutionx̂ to the classical problem of the calculus of variations.
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1. Introduction

The purpose of the present paper is to establish (under Carathéodory’s conditio
validity of the Euler–Lagrange equation (E–L) for the solutionx̂ to the classical problem
of the calculus of variations consisting in minimizing the functional

J (x) =
∫
I

L
(
t, x(t), x′(t)

)
dt,
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whereI = (a, b) ⊂ R, on the set of those absolutely continuous functionsx : I → Rs

satisfying the boundary conditionsx(a) = A, x(b) = B. Establishing the validity of the
Euler–Lagrange equation amounts to proving that∫

I

[〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′(t)

〉 + 〈∇xL
(
t, x̂(t), x̂′(t)

)
, η(t)

〉]
dt = 0

for every variationη in some suitable class. A large number of papers has been de
to this classical problem, e.g., [4–6,8–10]. The example obtained by Ball and Mize
modifying an earlier example of Maniá [7], provides a variational problem where the
grability of ∇xL(·, x̂(·), x̂′(·)) does not hold and, as a consequence, (E–L) is not true a
the solution. Hence, some condition on the term∇xL(·, x̂(·), x̂′(·)) has to be imposed i
order to ensure the validity of (E–L). A result of Clarke [5] implies that the follow
assumption on the term∇xL(·, x̂(·), x̂′(·)):

there exists a functionS(t) integrable onI such that, fory in a neighborhood of the
solution,

∥∥∇xL
(
t, y, x̂′(t)

)∥∥ � S(t)

is sufficient to establish the validity of (E–L). This condition implies that, locally al
the solution,x → L(t, x, x′) is Lipschitzian of Lipschitz constantS(t). However, there
are simple and meaningful examples of variational problems where this Lipschitz
condition is not verified.

Consider the Lagrangian defined byL(x, ξ) = (ξ
√|x| − 2/3)2, and the problem (P) o

minimizing

1∫
0

L
(
x(t), x′(t)

)
dt

over the absolutely continuous functionsx with x(0) = 0, x(1) = 1.
One can easily verify that̂x(t) = t2/3 is a minimizer for (P) (indeed,L(x̂(t), x̂′(t)) = 0

on [0,1], andL is non-negative everywhere). In this case, althoughL is not differentiable
everywhere,Lx(x̂(t), x̂′(t)) exists a.e. (it is a.e. zero) and it is integrable. The purp
of the present paper is to provide a result on the validity of (E–L) that is satisfie
Lagrangians that are Lipschitzian inx, but that applies as well to the non-Lipschitzi
cases as the example before.

In the proof we first show that the fact thatx̂ is a solution implies the integrabilit
of ∇ξL(·, x̂(·), x̂′(·)). Then, using this result, we establish the validity of (E–L) un
Carathéodory’s condition.

Note that we do not assume any convexity hypothesis on the Lagrangian. Moreo
growth condition whatsoever is assumed so that, as far as we know, relaxation the

cannot be applied.
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2. Integrability of ∇ξL(·, x̂(·), x̂′(·))

Consider the problem of minimizing the functional

J (x) =
∫
I

L
(
t, x(t), x′(t)

)
dt

on the set of those absolutely continuous functionsx : I → Rs satisfying the boundar
conditionsx(a) = A, x(b) = B. Let x̂ be a (weak local) minimizer yielding afinite value
for the functionalJ , and setµ = supt∈[a,b] ‖x̂(t)‖.

Our results will depend on the following assumption.

Assumption A. (i) L is differentiable inx alongx̂, for a.e.t , and the map∇xL(·, x̂(·), x̂′(·))
is integrable onI ;

(ii) there exists a functionS(t) integrable onI such that, for anyy ∈ B(0,µ + 1),

L
(
t, y, x̂′(t)

)
� L

(
t, x̂(t), x̂′(t)

) + S(t)
∥∥y − x̂(t)

∥∥.

Consider problem (P) as presented in the Introduction.L andx̂ satisfy Assumption A:
Lx(x̂(t), x̂′(t)) exists a.e. (identically zero, hence integrable),S(t) = t−2/3 verifies the
inequality

L
(
y, x̂′(t)

)
� S(t)

∣∣y − x̂(t)
∣∣,

since(
2

3
t−1/3

√|y| − 2

3

)2

= 4(
√|y| − t1/3)

9t2/3(
√|y| + t1/3)

(|y| − t2/3) � 4

9t2/3
|y − t2/3|.

This is our first result on the term∇ξL(·, x̂(·), x̂′(·)). In what follows,R̄ denotesR ∪
{+∞}.

Theorem 2.1. Suppose thatL : I × Rs × Rs → R̄ is an extended valued function, finite
its effective domain of the formdomL = I × Rs × G, whereG ⊂ Rs is an open set, an
that it satisfies Carathéodory’s conditions, i.e.,L(·, x, ξ) is measurable for fixed(x, ξ)

and L(t, ·, ·) is continuous for almost everyt . Moreover assume thatL is differentiable
in ξ on domL and that∇ξL satisfies Carathéodory’s conditions ondomL. Suppose tha
AssumptionA holds. Then,∫

I

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥dt < +∞.

Proof. (1) By assumption,L(·, x̂(·), x̂′(·)) ∈ L1(I ), hence settingS0 = {t ∈ I : x̂′(t) /∈ G},
we havem(S0) = 0. Givenε > 0, we can coverS0 by an open setO1 of measurem(O1) <

ε/2. We have also that∇ξL is a Carathéodory’s function and thatx̂′ is measurable inI .
Hence, by the theorems of Scorza Dragoni and of Lusin, for the givenε > 0 there exists
an open setO2 such thatm(O2) < ε/2 and at oncêx′ is continuous inI \ O2, and∇ξL
is continuous in(I \ O2) × Rs × G. By taking Kε = I \ (O1 ∪ O2), we have thatKε
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is a closed set such that on itx̂′ is continuous with values inG, ∇ξL is continuous on
Kε × Rs × G andm(I \ Kε) < ε. Forn � 1 setεn = (b − a)/2n+1 andKn = Kεn ; set also
Cn = ⋃n

j=1 Kj . ThenCn are closed sets,Cn ⊂ Cn+1, x̂′ is continuous onCn with values
in G, ∇ξL is continuous inCn × Rs × G and limn→+∞ m(I \ Cn) = 0.

From these properties it follows that there existskn > 0 such that, for allt ∈ Cn,∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥ < kn.

There is no loss of generality in assumingkn � kn−1. Moreover, we have thatm(C1) �
(b − a)/2 and

∑∞
n=2 m(Cn \ Cn−1) � (b − a)/2.

For alln > 1, we setAn = Cn \Cn−1. Hence we obtain thatCm = C1
⋃m

n=2 An and that
I = E ∪ C1

⋃
n>1 An, wherem(E) = 0.

(2) Consider the function

θ(t) =
{

0 if ∇ξL(t, x̂(t), x̂′(t)) = 0,
∇ξ L(t,x̂(t),x̂′(t))

‖∇ξ L(t,x̂(t),x̂′(t))‖ otherwise,

and

vn =
∫
An

θ(t) dt,

so that‖vn‖ � m(An). There exists a closed setBn ⊆ C1 such thatm(Bn) = ‖vn‖. Set

θ ′
n(t) = −θ(t)χAn(t) + vn

‖vn‖χBn(t).

We have that∫
I

θ ′
n(t) dt = −

∫
An

θ(t) dt + vn = 0.

Hence, settingθn(t) = ∫ t

a
θ ′
n(τ ) dτ , we see that the functionsθn(t) are admissible varia

tions. Moreover we obtain

‖θn‖∞ � sup
t∈I

t∫
a

∣∣θ ′
n(τ )

∣∣dτ �
∫
I

∣∣θ ′
n(τ )

∣∣dτ � 2m(An).

(3) Fort in An, we have‖∇ξL(t, x̂(t), x̂′(t))‖ < kn; for t in Bn, ‖∇ξL(t, x̂(t), x̂′(t))‖ <

k1 � kn. Recalling thatĀn ⊂ Cn, we infer that, for allt ∈ Ān ∪ Bn,∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥ � kn.

We wish to obtain an uniform bound for‖∇ξL‖ computed in a suitable neighborhood
the solution (̂x(·), x̂′(·)). Consider the set(Ān ∪ Bn) × Rs × G as a metric spaceMn with
distanced((t, x, ξ), (t ′, x′, ξ ′)) = sup(|t − t ′|, |x − x′|, |ξ − ξ ′|). On Mn, ∇ξL is continu-
ous. Moreover, its subset

Gn = {(
t, x̂(t), x̂′(t)

)
: t ∈ Ān ∪ Bn

}
is compact and, onGn, ‖∇ξL‖ is bounded bykn. Hence there existsδn > 0 such that, for

(t, x, ξ) ∈ Mn with d((t, x, ξ), (t, x̂(t), x̂′(t))) < δn, we have‖∇ξL(t, x, ξ)‖ < kn + 1.
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(4) For |λ| < min{1/2m(An), δn/2m(An), δn}, consider the integrals∫
I

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t) + λθ ′
n(t)

) − L
(
t, x̂(t), x̂′(t)

)]
dt

=
∫

An∪Bn

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t) + λθ ′
n(t)

) − L
(
t, x̂(t) + λθn(t), x̂

′(t)
)]

dt

+
∫
I

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]
dt.

For everyt ∈ An ∪ Bn there existsζλ(t) ∈ (0, λ) such that

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t) + λθ ′
n(t)

) − L
(
t, x̂(t) + λθn(t), x̂

′(t)
)]

= 〈∇ξL
(
t, x̂(t) + λθn(t), x̂

′(t) + ζλ(t)θ
′
n(t)

)
, θ ′

n(t)
〉

�
∥∥∇ξL

(
t, x̂(t) + λθn(t), x̂

′(t) + ζλ(t)θ
′
n(t)

)∥∥
and from the choice ofλ, ‖∇ξL(t, x̂(t)+λθn(t), x̂

′(t)+ ζλ(t)θ
′
n(t))‖ < kn + 1. Hence, we

can apply the dominated convergence theorem to obtain that

lim
λ→0

∫
An∪Bn

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t) + λθ ′
n(t)

) − L
(
t, x̂(t) + λθn(t), x̂

′(t)
)]

dt

=
∫

An∪Bn

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, θ ′

n(t)
〉
dt.

(5) Setf +(s) = max{0, f (s)}, f −(s) = max{0,−f (s)}. Since

0� 1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]+ � S(t)
∥∥θn(t)

∥∥,

by the dominated convergence theorem,

lim
λ→0

∫
I

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]+
dt

=
∫
I

lim
λ→0

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]+
dt.

By the Fatou’s lemma,

lim inf
λ→0

∫
I

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]−
dt

�
∫
I

lim inf
λ→0

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]−
dt.
We have obtained that
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t

te
lim sup
λ→0

∫
I

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]
dt

� lim
λ→0

∫
I

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]+

− lim inf
λ→0

∫
I

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]−
dt

�
∫
I

lim sup
λ→0

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]
dt

=
∫
I

〈∇xL
(
t, x̂(t), x̂′(t)

)
, θn(t)

〉
dt.

(6) Sincex̂ is a minimizer, we have

0�
∫

An∪Bn

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, θ ′

n(t)
〉
dt

+ lim sup
λ→0

∫
I

1

λ

[
L

(
t, x̂(t) + λθn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]
dt

�
∫

An∪Bn

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, θ ′

n(t)
〉
dt +

∫
I

〈∇xL
(
t, x̂(t), x̂′(t)

)
, θn(t)

〉
dt. (∗)

Sinceθ ′
n(t) = −∇ξL(t, x̂(t), x̂′(t))/‖∇ξL(t, x̂(t), x̂′(t))‖, for any t in An, it follows that

−〈∇ξL(t, x̂(t), x̂′(t)), θ ′
n(t)〉χAn(t) = ‖∇ξL(t, x̂(t), x̂′(t))‖χAn(t). Hence, we obtain tha

(∗) can be written as∫
An

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥dt

�
∫
Bn

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, θ ′

n(t)
〉
dt +

∫
I

〈∇xL
(
t, x̂(t), x̂′(t)

)
, θn(t)

〉
dt.

On Bn, ‖∇ξL(t, x̂(t), x̂′(t))‖ is bounded byk1; from Hölder’s inequality and the estima
on ‖θn‖∞ obtained in (2) we have that there exists a constantC (independent ofn) such
that ∫

An

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥dt � Cm(An).

(7) Asm → +∞, the sequence of functions(‖∇ξL(t, x̂(t), x̂′(t))‖χ{⋃m
n=2 An}(t))m con-

verges monotonically to the function‖∇ξL(t, x̂(t), x̂′(t))‖χ{⋃n>1 An}(t). From the estimate

above and monotone convergence, we obtain
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∫
I\C1

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥dt =
∫
I

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥χ{⋃n>1 An} dt

� Cm

( ⋃
n>1

An

)
.

OnC1, ‖∇ξL(t, x̂(t), x̂′(t))‖ < k1. Hence∫
I

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥dt < +∞. �

3. Additional regularity and the validity of the Euler–Lagrange equation

Corollary 3.1. Under the same assumptions as in Theorem2.1, for every variationη,
η(a) = 0, η(b) = 0 andη′ ∈ L∞(I ), we have∫

I

[〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′(t)

〉 + 〈∇xL
(
t, x̂(t), x̂′(t)

)
, η(t)

〉]
dt = 0.

Proof. We shall prove that, for everyη in AC(I ) with bounded derivative, such thatη(a) =
η(b) = 0, we have∫

I

[〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′(t)

〉 + 〈∇xL
(
t, x̂(t), x̂′(t)

)
, η(t)

〉]
dt � 0.

Fix η, let ‖η′(t)‖ � K for almost everyt in I .
(1) DefineCn andkn as in point (1) of the proof of Theorem 2.1. Set

vn =
∫

I\Cn

η′(t) dt.

We have that limn→+∞ ‖vn‖ = 0. In particular, forn � ν, there existsBn ⊆ C1 such that
m(Bn) = ‖vn‖. Set

(ηn)
′(t) =




0 for t ∈ I \ Cn,

η′(t) for t ∈ Cn \ Bn,
vn‖vn‖ + η′(t) for t ∈ Bn.

We obtain∫
I

η′
n(t) dt =

∫
Cn\Bn

η′(t) dt +
∫
Bn

[
vn

‖vn‖ + η′(t)
]

dt =
∫
Cn

η′(t) dt + vn

=
∫
I

η′(t) dt = 0.

Hence, settingηn(t) = ∫ t

a
η′

n(τ ) dτ , we have that the functionsηn(t) are variations and

that, for almost everyt in I , ‖η′

n(t)‖ � (1+ K), so that‖ηn‖∞ � (1+ K)(b − a).
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(2) As in point (3) of the proof of Theorem 2.1, there existsδn > 0 such that for
(t, x, ξ) ∈ Cn × Rs × G, with d((t, x, ξ), (t, x̂(t), x̂′(t))) < δn, we have‖∇ξL(t, x, ξ)‖ <

kn + 1.
(3) For |λ| < min{1/(1 + K)(b − a), δn/(1 + K)(b − a), δn/(1 + K)}, consider the

integrals∫
I

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t) + λη′
n(t)

) − L
(
t, x̂(t), x̂′(t)

)]
dt

=
∫
Cn

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t) + λη′
n(t)

) − L
(
t, x̂(t) + ληn(t), x̂

′(t)
)]

dt

+
∫
I

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]
dt.

For almost everyt ∈ Cn, there existsζλ(t) ∈ (0, λ) such that

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t) + λη′
n(t)

) − L
(
t, x̂(t) + ληn(t), x̂

′(t)
)]

= 〈∇ξL
(
t, x̂(t) + ληn(t), x̂

′(t) + ζλ(t)η
′
n(t)

)
, η′

n(t)
〉

�
∥∥∇ξL

(
t, x̂(t) + ληn(t), x̂

′(t) + ζλ(t)η
′
n(t)

)∥∥(1+ K) < (kn + 1)(1+ K).

Hence, we can apply the dominated convergence theorem to obtain that

lim
λ→0

∫
I

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t) + λη′
n(t)

) − L
(
t, x̂(t) + ληn(t), x̂

′(t)
)]

dt

=
∫
Cn

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′

n(t)
〉
dt =

∫
I

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′

n(t)
〉
dt.

(4) Following the point (5) of Theorem 2.1, we obtain that

lim sup
λ→0

∫
I

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]
dt

�
∫
I

〈∇xL
(
t, x̂(t), x̂′(t)

)
, ηn(t)

〉
dt.

(5) Sincex̂ is a minimizer, we have

0�
∫
I

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′

n(t)
〉
dt

+ lim sup
λ→0

∫
I

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]
dt

�
∫ [〈∇ξL

(
t, x̂(t), x̂′(t)

)
, η′

n(t)
〉 + 〈∇xL

(
t, x̂(t), x̂′(t)

)
, ηn(t)

〉]
dt.
I



364 A. Ferriero, E.M. Marchini / J. Math. Anal. Appl. 304 (2005) 356–369

ious
orol-

gian

-

(6) Since

lim
n→+∞η′

n(t) = η′(t)

and ∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥∥∥η′
n(t)

∥∥ �
∥∥∇ξL

(
t, x̂(t), x̂′(t)

)∥∥(1+ K),

and

lim
n→+∞ηn(t) = η(t)

and ∥∥∇xL
(
t, x̂(t), x̂′(t)

)∥∥∥∥ηn(t)
∥∥ �

∥∥∇xL
(
t, x̂(t), x̂′(t)

)∥∥(1+ K)(b − a),

by the dominated convergence we obtain

lim
n→+∞

∫
I

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′

n(t)
〉
dt =

∫
I

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′(t)

〉
dt

and

lim
n→+∞

∫
I

〈∇xL
(
t, x̂(t), x̂′(t)

)
, ηn(t)

〉
dt =

∫
I

〈∇xL
(
t, x̂(t), x̂′(t)

)
, η(t)

〉
dt.

It follows that∫
I

[〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′(t)

〉 + 〈∇xL
(
t, x̂(t), x̂′(t)

)
, η(t)

〉]
dt � 0. �

Even if the validity of the Euler–Lagrange equations already follows by the prev
Corollary 3.1 and the DuBois–Reymond’s lemma [3], we give an alternative proof in C
lary 3.3.

In the following theorem we prove an additional regularity result for the Lagran
evaluated along the minimizer.

Theorem 3.2. Under the same assumptions as in Theorem2.1, the map∇ξL(·, x̂(·), x̂′(·))
is in L∞(I ).

Proof. Using an iteration process, we shall prove that for everyp in N ,∇ξL(·, x̂(·), x̂′(·))
is in Lp(I). Since theLp are nested, this proves that∇ξL(·, x̂(·), x̂′(·)) ∈ ⋂

p�1 Lp(I).
At the same time, we shall prove that there exists a constantK > 0 such that, for every
1� p < +∞, ‖∇ξL‖p � K , thus proving that∇ξL(·, x̂(·), x̂′(·)) is in L∞(I ).

Suppose that: (1) From Theorem 2.1, we know that∇ξL(·, x̂(·), x̂′(·)) is in L1(I ). Start-
ing the iteration process, fixp ∈ N and suppose that∇ξL(·, x̂(·), x̂′(·)) ∈ Lp(I), to prove
that∇ξL(·, x̂(·), x̂′(·)) ∈ Lp+1(I ).

(2) We can assume‖∇ξL‖p �= 0. DefineCn,An, kn as in point (1) of the proof of The
orem 2.1. For alln > 1, set

v
p
n = (b − a)

p

∫
∇ξL

(
t, x̂(t), x̂′(t)

)∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p−1
dt.
2‖∇ξL‖p
An
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Since

m(C1) � (b − a)/2

and ∥∥v
p
n

∥∥ � (b − a)

2‖∇ξL‖p
p

∫
An

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p � (b − a)/2,

there exists a setBp
n ⊂ C1 such thatm(B

p
n ) = ‖vp

n ‖, so that

2‖∇ξL‖p
p

(b − a)

∫
B

p
n

v
p
n

‖vp
n ‖ dt =

∫
An

∇ξL
(
t, x̂(t), x̂′(t)

)∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p−1
.

Set (
θ

p
n

)′
(t) = −∇ξL

(
t, x̂(t), x̂′(t)

)∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p−1
χAn(t)

+ 2‖∇ξL‖p
p

(b − a)

v
p
n

‖vp
n ‖χB

p
n
(t)

andθ
p
n (t) = ∫ t

a
(θ

p
n )′(τ ) dτ . We obtain that‖θp

n ‖∞ � 2
∫
An

‖∇ξL(t, x̂(t), x̂′(t))‖p dt . The

variationsθp
n have bounded derivatives so we can apply Corollary 3.1 to obtain that∫

I

[〈∇ξL
(
t, x̂(t), x̂′(t)

)
,
(
θ

p
n

)′
(t)

〉 + 〈∇xL
(
t, x̂(t), x̂′(t)

)
, θ

p
n (t)

〉]
dt = 0.

It follows that∫
An

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p+1
dt

= 2‖∇ξL‖p
p

(b − a)

∫
B

p
n

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, v

p
n

/∥∥v
p
n

∥∥〉
dt

+
∫
I

〈∇xL
(
t, x̂(t), x̂′(t)

)
, θ

p
n (t)

〉
dt

� k1

∫
An

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p
dt

+ 2
∫
An

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p
dt

∫
I

∥∥∇xL
(
t, x̂(t), x̂′(t)

)∥∥dt

� C̃

∫
An

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p
dt,

whereC̃ is independent ofn andp (supposeC̃ � 1). The sequence of maps(∥ ( )∥ )
∥∇ξL t, x̂(t), x̂′(t) ∥p+1
χ⋃m

n=2 An
(t)

m
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l
converges monotonically to‖∇ξL(t, x̂(t), x̂′(t))‖p+1χ{⋃n>1 An}(t), and each integra∫
I
‖∇ξL(t, x̂(t), x̂′(t))‖p+1χ{⋃m

n=2 An}(t) dt is bounded by the same constant

C̃

∞∑
n=2

∫
An

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p
dt = C̃

∫
I\C1

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p
dt.

Hence, by the monotone convergence theorem,∫
I\C1

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p+1
dt � C̃

∫
I\C1

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p
dt < +∞.

On C1, ‖∇ξL(t, x̂(t), x̂′(t))‖ < k1, proving that∇ξL(·, x̂(·), x̂′(·)) ∈ Lp+1(I ). Moreover,
we have also obtained that∫

I\C1

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p+1
dt � C̃p

∫
I\C1

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥dt,

so that( ∫
I\C1

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p+1
dt

)1/(p+1)

� C̃S,

whereS = max{1,
∫
I\C1

‖∇ξL(t, x̂(t), x̂′(t))‖dt}. SettingT = max{1,m(C1)} we have
that, for allp ∈ N ,

‖∇ξL‖(p+1) �
(

k
(p+1)

1 m(C1) +
∫

I\C1

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p+1
dt

)1/(p+1)

� k1m(C1)
1/(p+1) +

( ∫
I\C1

∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥p+1
dt

)1/(p+1)

� k1T + C̃S = K. �
Corollary 3.3. Under the same conditions as in Theorem2.1, for every variationη, η(a)

= 0, η(b) = 0 andη′ ∈ L1(I ), we have∫
I

[〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′(t)

〉 + 〈∇xL
(
t, x̂(t), x̂′(t)

)
, η(t)

〉]
dt = 0.

As a consequence,t → ∇ξL(t, x̂(t), x̂′(t)) is absolutely continuous.

Proof. We shall prove that, for everyη in AC(I ), such thatη(a) = η(b) = 0, we have∫ [〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′(t)

〉 + 〈∇xL
(
t, x̂(t), x̂′(t)

)
, η(t)

〉]
dt � 0.
I
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every
(1) Fix η. Through the same steps as in point (1) of the proof of Theorem 2.1, for
n ∈ N we can define a closed setCn such that on itη′ is continuous,̂x′ is continuous with
values inG, ∇ξL is continuous inCn ×Rs ×G and limn→+∞ m(I \Cn) = 0. In particular,
it follows that there are constantskn andcn > 0 such that, for allt ∈ Cn,∥∥∇ξL

(
t, x̂(t), x̂′(t)

)∥∥ < kn and
∥∥η′(t)

∥∥ < cn.

Definevn, Bn, η′
n andηn as in the proof of Corollary 3.1. Since, for allt ∈ I , ‖η′

n(t)‖ �
1 + ‖η′(t)‖, it follows that ‖η′

n‖1 � (b − a) + ‖η′‖1. Moreover, ‖ηn‖∞ � ‖η′
n‖1 �

(b − a) + ‖η′‖1.
(2) As in point (3) of the proof of Theorem 2.1, there existsδn > 0 such that for

(t, x, ξ) ∈ Cn × Rs × G, with d((t, x, ξ), (t, x̂(t), x̂′(t))) < δn, we have‖∇ξL(t, x, ξ)‖ <

kn + 1.
(3) For|λ| < min{1/((b − a)+‖η′‖1), δn/((b − a)+‖η′‖1), δn/(cn + 1)}, consider the

integrals∫
I

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t) + λη′
n(t)

) − L
(
t, x̂(t), x̂′(t)

)]
dt

=
∫
I

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t) + λη′
n(t)

) − L
(
t, x̂(t) + ληn(t), x̂

′(t)
)]

dt

+
∫
I

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]
dt

=
∫
Cn

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t) + λη′
n(t)

) − L
(
t, x̂(t) + ληn(t), x̂

′(t)
)]

dt

+
∫
I

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]
dt.

For everyt ∈ Cn, there existsζλ(t) ∈ (0, λ) such that

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t) + λη′
n(t)

) − L
(
t, x̂(t) + ληn(t), x̂

′(t)
)]

= 〈∇ξL
(
t, x̂(t) + ληn(t), x̂

′(t) + ζλ(t)η
′
n(t)

)
, η′

n(t)
〉

�
∥∥∇ξL

(
t, x̂(t) + ληn(t), x̂

′(t) + ζλ(t)η
′
n(t)

)∥∥cn < (kn + 1)cn.

Hence, we can apply the dominated convergence theorem to obtain that

lim
λ→0

∫
I

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t) + λη′
n(t)

) − L
(
t, x̂(t) + ληn(t), x̂

′(t)
)]

dt

=
∫
Cn

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′

n(t)
〉
dt =

∫
I

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′

n(t)
〉
dt.
(4) Following the point (5) of Theorem 2.1, we obtain that
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lim sup
λ→0

∫
I

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]
dt

�
∫
I

〈∇xL
(
t, x̂(t), x̂′(t)

)
, ηn(t)

〉
dt

and, sincêx is a minimizer, we have

0�
∫
I

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′

n(t)
〉

+ lim sup
λ→0

∫
I

1

λ

[
L

(
t, x̂(t) + ληn(t), x̂

′(t)
) − L

(
t, x̂(t), x̂′(t)

)]
dt

�
∫
I

[〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′

n(t)
〉 + 〈∇xL

(
t, x̂(t), x̂′(t)

)
, ηn(t)

〉]
dt.

(5) Finally we have

lim
n→+∞η′

n(t) = η′(t)

and ∥∥∇ξL
(
t, x̂(t), x̂′(t)

)∥∥∥∥η′
n(t)

∥∥ �
∥∥∇ξL

(·, x̂(·), x̂′(·))∥∥∞
(
1+ ∥∥η′(t)

∥∥)
,

and

lim
n→+∞ηn(t) = η(t)

and ∥∥∇xL
(
t, x̂(t), x̂′(t)

)∥∥∥∥ηn(t)
∥∥ �

∥∥∇xL
(
t, x̂(t), x̂′(t)

)∥∥(
(b − a) + ‖η′‖1

)
,

so that, by dominated convergence, we obtain

lim
n→+∞

∫
I

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′

n(t)
〉
dt =

∫
I

〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′(t)

〉
dt

and

lim
n→+∞

∫
I

〈∇xL
(
t, x̂(t), x̂′(t)

)
, ηn(t)

〉
dt =

∫
I

〈∇xL
(
t, x̂(t), x̂′(t)

)
, η(t)

〉
dt.

Hence, it follows that∫
I

[〈∇ξL
(
t, x̂(t), x̂′(t)

)
, η′(t)

〉 + 〈∇xL
(
t, x̂(t), x̂′(t)

)
, η(t)

〉]
dt � 0.

′
The absolute continuity oft → ∇ξL(t, x̂(t), x̂ (t)) is classical (e.g., [2]). �
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