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Abstract. In the present work we model multi-lane traffic flow in presence
of two population of vehicles: cars and trucks. We first develop a finite-

dimensional hybrid system which rely on continuous Bando-Follow-the-Leader

dynamics coupled with discrete events motivated by the lane-change maneu-
vers. Then we rigorously prove that the mean-field limit is given by a system of

Vlasov-type PDE with source terms generated by the lane-change maneuvers

of the human-driven vehicles.

1. Introduction. Mathematical models for traffic flow are mainly classified into
microscopic, mesoscopic, macroscopic, and cellular, depending on the scale at which
they represent vehicular traffic [1, 4, 36]. Generally, the scale is chosen according
to the type of traffic characteristics to be captured. In this paper, we are interested
in microscopic models and mesoscopic descriptions.
Microscopic models are developed with the idea of explicitly reproducing the in-
dividual behaviors of drivers, such as reactions to traffic changes and interactions
with other vehicles, therefore the dynamic is expressed in terms of trajectories of
the single vehicles, by means of ODEs. Two of the most successful microscopic
models are the Optimal Velocity model, also known as the Bando model [3], and
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the Follow-the-Leader model [17, 24, 40], in which the acceleration of the single
vehicle is controlled according to the velocity of the leading vehicle.
Mesoscopic traffic flow models were derived as bridge between the family of mi-
croscopic models and the family of macroscopic models which interpret traffic as
a continuum flow. Usually mesoscopic models describe vehicle flow in aggregate
terms such as in probability distributions. Mean-field equations fall into this cat-
egory and aim to provide an aggregate and statistical view of traffic by capturing
and predicting the main phenomenology of microscopic dynamics. Among the rel-
evant literature, in this context, we can mention classic works like [32, 37, 38] and
more recent results, e.g. [9, 13, 24, 31, 33, 25]. The passagge from microscopic to
mesoscopic description can be also rigorously performed by using the generalized
version of the classical Wasserstain distance [2]. The analysis, through the progres-
sive change of scale, is not only a peculiarity of traffic flow models, but extends to
other research areas such as biology [10, 12], economics [45] and social sciences [11].

Heterogeneous and multi-lane traffic flow modeling is fundamental to understand
the dynamics and control of complex traffic systems. Specifically in this work we
consider two populations of vehicles: cars and trucks. For other relevant contribu-
tion in multipopulation traffic models, see [5, 46, 39, 29]. We model the multi-lane
traffic by hybrid systems because of its hybrid nature: the continuous dynamics on
each lane and the discrete events due to lane-changing maneuvers. The lane-change
is one of the most common maneuvers, which generates interaction and risk [26]
among vehicles on motorways. Current models for multi-lane traffic include two-
dimensional models [23, 43], in which lane changing rules are not explicitly pre-
scribed and models treating lanes as discrete entities [27, 41].

Our main contribution regards the the formalization of the passage from micro-
scopic dynamics to mesoscopic in the case of the two before mentioned populations
of vehicles (cars and trucks). The model used is the combined Bando-Follow-the-
Leader one for both the populations. In particular, we reformulate it by replacing
the interaction with the closest vehicle ahead with a short-range interaction kernel
which allows to write the system of ODEs in a convolution framework. Continu-
ous dynamics are combined with discrete dynamics generated by the lane chang-
ing rules, which are designed following [30]. This leads to an hybrid system (see
[7, 34, 16, 18, 44] ) whose mean field limit is given by a system of two Vlasov-type
PDEs with source terms [14, 22, 28]. These source terms are generated by the dis-
crete lane changing rules and induce the measure solutions to change mass in time,
thus the limit is obtained using the generalized Wasserstein distance [35].

This complete representation of multi-lane heterogenous traffic at microscopic
and mesoscopic scales together connected by a rigorous limiting procedure has also
been extendended by the same authors to the case of two populations of human-
driven vehicles and autonomous vehicles [8]. The main difference is that a control is
introduced in the acceleration of autonomous vehicles with the idea that they can
influence the general dynamics of the other two populations. Moreover the number
of autonomous vehicles remains finite in the limiting procedure.
The paper is organized as follows. In Section 2 we introduce the notation used
to capture the heterogeneous traffic and the main notions necessary for what we
are going to prove. We describe in detail the combined Bando-Follow-the-leader
model and how to reformulate it in convolution form. This is propaedeutic to
the derivation of the mean-field limit. The lane change rules, together with the
key ideas behind, are explored in the Subsection 2.2. Soon after we present an
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overview on the generalized Wasserstein distance and a revised version of Ascoli-
Arzelá theorem which play an essential role in the process of derivation of the
Vlasov-Poisson type equations with source term. In Section 3 we define the ”cool-
down” time model assumption, which is critical to describe the frequencies of the
vehicles’ lane-changing behavior and to prove the well-posedness of our heterogeneus
multi-lane traffic model. Then we introduce the finite dimensional hybrid system
which captures the continuous dynamics on each lane and discrete events for lane-
changes. Section 4 is finally devoted to the rigorous derivation of the mean-field
limit for the hybrid system which leads to two coupled Vlasov Poisson type equation
with source term. In Section 5 we discuss future research directions opened by this
work.

2. Preliminaries. In this section, we recall the original and convolutional form
of a car-following model, Bando-Follow-the-leader model, and design lane-changing
rules based on distance headway and acceleration for multi-lane traffic in both
homogeneous and heterogeneous traffic conditions. We also give an overview on
the generalized Wasserstein distance [35] and a revised version of Ascoli-Arzela
theorem introduced in [20]. In the end, we formally derive the mean-field limit of a
finite dimensional system and listed the results on partial differential equations of
Vlasov-type with and without source terms.

2.1. Car-following model: Bando-Follow-the-Leader model. The Bando-
Follow-the-Leade (Bando-FtL) model is a first order car-following model introduced
in [42]. The main idea of the Bando-FtL model is that the ego vehicle adjusts its
own acceleration based on its space headway, optimal velocity (determined by its
space headway) and its leader’s velocity. We refer the readers to [19] for the well-
posedness of the Bando-FtL model.

We assume that the vehicles move from left to right and vehicle n + 1 ∈ N≥1

is the leader of vehicle n ∈ N≥1. Let (xn, vn) : [0, T ] → R × R≥0 be the position-
velocity vector of vehicle n, where T > 0 is fixed, ln ∈ R>0 be the length of vehicle
n, hn = xn+1 − xn − ln be the space headway of vehicle n, and V : (0,+∞) 7→
[0,+∞);h → V (h) be the optimal velocity function which describes the desired
velocity corresponding to space headway. Usually, the optimal velocity function
V is increasing with respect to the headway. For example, one may choose the
following optimal velocity function as in [42], for any h ∈ (0,+∞),

V (h) = vmax
tanh (h− ds) + tanh (lv + ds)

1 + tanh (lv + ds)
, (1)

We recall the Bando-FtL model in two traffic conditions: homogeneous and hetero-
geneous. In the case of homogeneous traffic where the vehicles’ physical dimensions
do not vary much, the governing equation of the Bando-FtL model is as follows: for
vehicle n ∈ N≥1

{
ẋn = vn,

v̇n = α(V (hn)− vn) + β vn+1−vn
(hn)2 ,

(2)
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where α, β are positive with proper dimensions. We develop the homogeneous
Bando-FtL model to its heterogeneous form by giving subscripts to the model pa-
rameters as follows: for vehicle n ∈ N≥1{

ẋn = vn,

v̇n = αn(Vn(hn)− vn) + βn
vn+1−vn

(hn)2 ,
(3)

where αn, βn are again positive parameters with proper dimensions, Vn is an optimal
velocity function depending on the headway hn = xn+1 − xn − ln. In the case
of heterogeneous traffic with cars and trucks, due to the four different car-truck
car-following combinations (C-C, C-T, T-C, T-T), all parameters αn, βn and the
optimal velocity function Vn have four different alternatives. For example, αn can
be αcc,αct, αtc, or αtt. Here αct represents the weight of the Bando term in the
Bando-FtL model in the case of car-following-truck. The vehicle length ln has two
alternatives the car length lc > 0 and the truck length lt > 0,

Now we want to rewrite the heterogeneous Bando-FtL model (3) into its con-
volutional form. Instead of only considering one leading vehicle ahead, the drivers
adjust their accelerations and decelerations according to the types and velocities of
vehicles in nearby front, their own velocities and the optimal velocities depending
on their space headways. Of course, we cannot expect that the strength of the in-
teraction in C-C case is the same as in T-T case, and also the order of two different
type of vehicles plays an important role. Hence the strength of the interaction in
the configuration car-truck must be different based on the car-truck car-following
combinations. Therefore, we assume that the ego vehicle only interact with other
front nearby vehicles that is at most εn > 0, n ∈ {cc, tc, ct, tt}, away. We call εn
the strength of interaction.

For convenience of notation, for the heterogeneous traffic containing cars and
trucks, we introduce I = {1, . . . , P+S} be the set of index for all the vehicles, IP =
{1, . . . , P} the set of index for cars and IS = {P + 1, . . . , P + S} for trucks. Note
that I = IP ∪ IS . We define the following two time dependent atomic probability
measures

µP (t) =
1

P

∑
i∈IP

δ(xi(t),vi(t)), µS(t) =
1

S

∑
i∈IS

δ(xi(t),vi(t)) (4)

tracking the position-velocity of cars and trucks at time t ∈ [0, T ].
Consider convolution kernels of the form

Hn
1 : R× R≥0 → R with n ∈ {cc, tc, ct, tt}

(x, v) 7→ αnhn(x)(Vn(−x)− v)

where hn : R 7→ R≥0 is a smooth function supported compactly on [−εn, 0]. Here
hn measures the interaction of two vehicles depending on their distance and types.
The Bando-Term in (3) can be rewritten as(
Hcc

1 ∗1 µP +Htc
1 ∗1 µS

)
(xi, vi) (5)

= αcc
P

∑
k∈IP hcc(xi − xk) (Vcc(xk − xi)− vi) + αtc

S

∑
k∈IS htc(xi − xk) (Vtc(xk − xi)− vi)

for cars (i ∈ IP ) and(
Hct

1 ∗1 µP +Htt
1 ∗1 µS

)
(xi, vi) (6)

= αct
P

∑
k∈IP hct(xi − xk) (Vct(xk − xi)− vi) + αtt

S

∑
k∈IS htt(xi − xk) (Vtt(xk − xi)− vi)
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for trucks (i ∈ IS). Here ∗1 is the convolution with respect to the first variable.
In analogous way we introduce four kernels

Hn
2 : R× R≥0 → R with n ∈ {cc, tc, ct, tt}

(x, v) 7→ βnhn(x)
−v
x2

and rewrite the FtL-term in (3) as(
Hcc

2 ∗ µP +Htc
2 ∗ µS

)
(xi, vi)

=
βcc
P

∑
k∈IP

hcc(xi − xk)
vk − vi

(xi − xk)
2 +

βtc
S

∑
k∈IS

htc(xi − xk)
vk − vi

(xi − xk)2
, (7)

for i ∈ IP and(
Hct

2 ∗ µP +Htt
2 ∗ µS

)
(xi, vi)

=
βct
P

∑
k∈IP

hct(xi − xk)
vk − vi

(xi − xk)
2 +

βtt
S

∑
k∈IS

htt(xi − xk)
vk − vi

(xi − xk)
2 , (8)

for i ∈ IS . In this case ∗ is the convolution with respect to both space and speed.
This leads to the following convolutional formulation of the Bando-FtL model

with two distinct dynamics for cars and trucks:

ẋi = vi i ∈ I

v̇i =

{
(Hcc

1 ∗1 µP +Htc
1 ∗1 µS) (xi, vi) + (Hcc

2 ∗ µP +Htc
2 ∗ µS) (xi, vi) i ∈ IP

(Hct
1 ∗1 µP +Htt

1 ∗1 µS) (xi, vi) + (Hct
2 ∗ µP +Htt

2 ∗ µS) (xi, vi) i ∈ IS .
(9)

2.2. Lane-changing rules based on acceleration. Inspired by [30], we design
a lane-changing rule based on a trade-off between the expected own advantage
and the disadvantage imposed on other drivers. In particular, the follower in the
target lane is involved in the decision process. The subjective utility of a change of
lane increases with the gap to the new leader in the target lane. However, if the
velocity of this leader is lower, it may be convenient to stay in the present lane. A
criterion for the utility including the above mentioned situations is the difference
in the accelerations after and before the lane change. The formulation in terms of
accelerations has several advantages. Indeed the evaluation of the traffic situation is
transferred to the acceleration function of the Bando-FtL model with the result that
the lane change rules are compact and depend only on a small number of additional
parameters.

Now we consider P cars and S trucks on an open stretch road of L ∈ N>0

lanes. Let K = {1, . . . , L}. First of all, we consider the lane-changing condition in
a homogeneous traffic flow. Let ∆ > 0 be fixed. The choice of ∆ depends on the
vehicle type in the homogeneous traffic flow. Let aki (t) be the acceleration of vehicle

i on the current lane k ∈ K at time t ∈ [0, T ], and āk
′

i (t) the expected acceleration
of vehicle i on the adjacent lane k′ = k + 1 or k − 1 at time t. In addition, We
assume that the accelerations and expected accelerations (if there is lane-changing)
of vehicles in the homogeneous traffic flow are bounded from above by M ∈ R≥∆.

Denote ik
′

L , ik
′

F the label of the leading and following vehicle of i-th vehicle on the
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adjacent lane k′, respectively, if vehicle i performs lane-changing from lane k to lane
k′ and āk

′

ik
′
F

(t) the expected acceleration of vehicle ik
′

F at time t ∈ [0, T ].

In a homogeneous traffic flow, vehicle i will perform lane changing at time
t ∈ [0, T ] from lane k to lane k′ with probability p([āk

′

i (t) − aki (t) −∆]+, [ā
k′

i (t) +

∆]+, [ā
k′

ik
′
F

(t) + ∆]+) if the following conditions are satisfied

Incentive: āk
′

i (t) ≥ aki (t) + ∆

Safety: āk
′

i (t) ≥ −∆ and āk
′

ik
′
F

(t) ≥ −∆.

In particular, if the expected acceleration of vehicle i on its neighbor lane k′ is
sufficiently bigger than its actual acceleration on its current lane k, then vehicle
i has the incentive to perform lane-changing from lane k to lane k′. The safety
condition guarantees that there is no excessive breaking for both vehicle i and its
new follower ik

′

F on the adjacient lane k′ if vehicle i changing from lane k to lane k′.
Furthermore, a possible choice of the probability function is

p : (R+)3 → [0, 1] with p(b1, b2, b3) =
1

C

(
1− e−γb1b2b3

)
∈ [0, 1], γ > 0, (10)

where C is a renormalization constant defined as

C = max
[0,2M+∆]3

(
1− e−γb1b2b3

)
= 1− e−γ(2M+∆)3 .

But our result will be valid for any function having the following properties:

• It strictly increases with respect to each one of its input;
• If one of its input is zero, then the probability function value is zero.

Now we will consider the lane-changing condition in a heterogeneous traffic flow
encompassing cars and trucks. Specifically, we need to modify the ”incentive” and
”safety” conditions according to the different car-following combinations and vehicle
types.

Let ∆n > 0, with n ∈ {cc, ct, tc, tt, c, t} , be fixed. Vehicle i ∈ I will change from
lane k to lane k′ at time t ∈ [0, T ] with a given certain probability (to be defined
later) if the following conditions are satisfied:

Incentive: āk
′

i (t) ≥


aki (t) + ∆cc if i, ik

′

F ∈ IP ,
aki (t) + ∆tc if i ∈ IP , ik

′

F ∈ IS ,
aki (t) + ∆ct if i ∈ IS , ik

′

F ∈ IP ,
aki (t) + ∆tt if i, ik

′

F ∈ IS ;

(11)

Safety: āk
′

i (t) ≥



−∆c and āk
′

ik
′
F

(t) ≥ −∆c if i, ik
′

F ∈ IP
−∆c and āk

′

ik
′
F

(t) ≥ −∆t if i ∈ IP , ik
′

F ∈ IS ,

−∆t and āk
′

ik
′
F

(t) ≥ −∆c if i ∈ IS , ik
′

F ∈ IP ,

−∆t and āk
′

ik
′
F

(t) ≥ −∆t if i, ik
′

F ∈ IS .

(12)

For instance, the probability of vehicle i ∈ IP performing lane-changing from
lane k to lane k′ with its new follower on lane k′ being a truck, i.e., ik

′

F ∈ IS , at
time t ∈ [0, T ] is

p([āk
′

i (t)− aki (t)−∆tc]+, [āk
′

i (t) + ∆c]+, [āk
′

ik
′
F

(t) + ∆t]+)
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and the probability of vehicle i ∈ IS performing lane-changing from lane k to lane
k′ with its new follower on lane k′ being a car, i.e., ik

′

F ∈ IP , at time t ∈ [0, T ] is

p([āk
′

i (t)− aki (t)−∆ct]+, [āk
′

i (t) + ∆t]+, [āk
′

ik
′
F

(t) + ∆c]+).

Here the probability function p is defined in Eq. (10) with renormalization constant

C = max
[0,2M∗+∆∗]3

(
1− e−γb1b2b3

)
= 1− e−γ(2M∗+∆∗)3 ,

where ∆∗ = min{∆cc,∆ct,∆tc,∆tt,∆c,∆t} and M∗ ∈ R≥∆ is a common upper
bound for the acceleration of both cars and trucks, i.e., for every t ∈ [0, T ] and
i ∈ I, |ai(t)| < M∗.

Note that in the heterogeneous traffic condition, each acceleration aki , āk
′

i , and

āk
′

ik
′
L

has four different alternatives based on the four different car-truck car-following

combinations. Furthermore, by equation (3), each acceleration aki , āk
′

i , and āk
′

ik
′
L

depends on the space gap, the velocity of the reference vehicle and the velocity of
the leader of the reference vehicle. The incentive condition defined in equation (11)
implies that, before changing lane, vehicle i needs to check its space gap, velocity
and velocity difference with its leading vehicle on the current and adjacent lane. The
safety condition defined in equation (11) implies that there is no excessive breaking

for vehicle i and its follower ij
′

L on the adjacent lane k′ after lane-changing.

2.3. Overview on Generalized Wasserstein Distance and a revised version
of Ascoli-Arzelá theorem. In this subsection, we recall some notions and prop-
erties related to the generalized Wasserstein distance ([35]) and give the statement
of a revised version of Ascoli-Arzelá theorem ([20]).

The Generalized Wasserstein Distance.
In the following we denote with

• d the dimension of the space;
• M the space of Borel measures with finite mass on Rd;
• suppµ the support of measure µ ∈M;
• P be the space of probability measures (the measures in M with unit mass)

on Rd;
• Mp be the space of Borel measures with finite p-th moment on Rd;
• Mac

0 ⊂M the subset of measures that are absolutely continuous with respect
to the Lebesgue measure with bounded support.

Given a measure µ ∈ M, we denote its mass by |µ| : = µ(Rd). Given a Borel map
γ : Rd 7→ Rd, the push-forward of µ ∈ M by γ, γ#µ, is defined as for every Borel
set A ⊂ Rd, γ#µ(A) : = µ(γ−1(A)). One can see that the mass of γ#µ is identical
to the mass of µ, i.e., |µ| = |γ#µ|.

We use the notation µ1 ≤ µ when µ1 is absolutely continuous with repsect to
µ ∈M and for every Borel set A ⊂ Rd, µ1(A) ≤ µ(A).

Now we recall the definition of the generalized Wasserstein distance on M.

Definition 2.1. Given a, b ∈ (0,∞) and p ≥ 1, the generalized Wasserstein distance
between two measures µ, ν ∈Mp is

W a,b
p (µ, ν) : = inf

µ̃,ν̃∈Mp

|µ̃|=|ν̃|

(a (|µ− µ̃|+ |ν − ν̃|) + bWp(µ̃, ν̃)) , (13)



8 MARIA TERESA CHIRI, XIAOQIAN GONG, BENEDETTO PICCOLI

where Wp(µ̃, ν̃) is the Wasserstein distance between the measures µ̃, ν̃ ∈Mp with
|µ̃| = |ν̃|.

We recall that the standard Wasserstein distance is defined only for Borel mea-
sures with the same mass and combining it with the L1 distance we get the gener-
alized Wasserstein distance which can be applied instead to measures with different
masses.

Remark 2.1. Note that the infimum on the right hand side of equation (13) is
actually a minimum if one takes µ̃ ≤ µ and ν̃ ≤ ν.

We recall the following key result (Proposition 2 in [35]).

Proposition 2.2. The following properties of the generalized Wasserstein distance
W 1,1

1 hold for measures µ, ν, µ1, µ2, ν1, ν2 ∈Mp

W 1,1
1 (kµ, kν) ≤ kW 1,1

1 (µ, ν) for k ≥ 0;

W 1,1
1 (µ1 + µ2, ν1 + ν2) ≤W 1,1

1 (µ1, ν1) +W 1,1
1 (µ2, ν2).

To be self-contained, we list the following two lemmata from [20].

Lemma 2.3. For every f, g : Rn → Rn bounded Borel measureable functions and
µ ∈M1(Rn), one has

W 1,1
1 (f#µ, g#µ) ≤ ‖f − g‖L∞(suppµ).

Moreover if f is a locally Lipschitz continuous Borel measurable function with
Lipschitz constant L on the ball B of Rn, then for µ, ν ∈ M1(Rn) compactly
supported on B,

W 1,1
1 (f#µ, f#ν) ≤ max{L, 1}W 1,1

1 (µ, ν).

Lemma 2.4. Let H be a locally Lipschitz continuous map with sub-linear growth.
Let R > 0 be fixed, and d be the dimension of the space, and µ, ν : [0, T ] 7→ M1(Rd)
be continuous maps with respect to the generalized Wasserstein distance W 1,1

1 such
that for every t ∈ [0, T ]

suppµ(t) ⊂ B(0, R) and supp ν(t) ⊂ B(0, R).

For every ρ > 0, there exists a constant Lρ,R such that

‖H ∗ µ(t)−H ∗ ν(t)‖L∞(B(0,ρ)) ≤ Lρ,RW 1,1
1 (µ(t), ν(t)). (14)

An extended version of Ascoli-Arzelá theorem

In the following we recall an extended version of Ascoli-Arzelá theorem from [20].

Theorem 2.5. Let K be a compact subset of R and let E be a complete and totally
bounded metric space with metric d. Consider a sequence of functions {fn}∞n=1 in
C(K;E). If there exists L > 0, such that the following is true: for any ε > 0, there
exists N > 0, such that, whenever n ≥ N ,

d(fn(t), fn(s)) ≤ L|t− s|+ min{ε, |t− s|},∀s, t ∈ K

then the sequence {fn}∞n=1 has a uniformly convergent sub-sequence.
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2.4. Formal derivation of a mean-field limit of a finite dimensional ODE
system. In this subsection, we start with a finite dimensional ODE system and
derive its mean-field limit formally.

Let R > 0 be fixed. Let M,N ∈ Z>0. Denote with D the domain R × R≥0,
with DM = RM × RM≥0 and DN = RN × RN≥0. Let Hi : D → R with i = 1, . . . , 8
be locally Lipschitz continuous maps with sub-linear growth. Then given an initial
datum I0 : = (x0, v0, y0, w0) ∈ DM × DN , there exists a unique solution I(t) : =
(x(t), v(t), y(t), w(t)) ∈ DM ×DN on the whole time interval [0, T ] to the following
system of ODEs on DM ×DN

ẋi(t) = vi(t), i = 1, . . . ,M

v̇i(t) = (H1 ∗1 µM +H2 ∗1 νN +H3 ∗ µM +H4 ∗ νN ) (xi, vi) (15)

ẏj(t) = wj(t), j = 1, . . . , N

ẇj(t) = (H5 ∗1 µM +H6 ∗1 νN +H7 ∗ µM +H8 ∗ νN ) (yj , wj)

where µM , νN : [0, T ] 7→ P(D) ∩M1(D) are defined as follows

µM (t) =
1

M

M∑
i=1

δ(xi(t),vi(t)), νN (t) =
1

N

N∑
j=1

δ(yj(t),wj(t)). (16)

For more details, we refer the readers to [15].
Let us further assume that for each t ∈ [0, T ], the empirical measures µM (t), νN (t)

in P(D) ∩ M1(D) are with uniform support in both M and N . By Prohorov’s
theorem (see [6]) it follows that the sequences (µM )M and (νN )N are weakly* rel-
atively compact. Therefore, there exist subsequences (µMk

)k, (νNk)k and µ, ν ∈
P(D) ∩M1(D) such that

µMk
→ µ as k →∞

νNk → ν as k →∞ (17)

with weak* convergence in P(D) ∩M1(D) pointwise in time.
Now we take M,N →∞ in Eq. (15) and derive the mean-field limit of the finite-

dimensional ODE system formally. Let us consider a test function ϕ ∈ C1
0 (D) and

we compute

d

dt
〈µM (t) , ϕ〉 =

1

M

M∑
i=1

d

dt
ϕ(xi(t), vi(t))

=
1

M

M∑
i=1

(
∂xϕ(xi(t), vi(t))vi(t) + ∂vϕ(xi(t), vi(t))v̇i(t)

)
=

1

M

M∑
i=1

∂xϕ(xi(t), vi(t))vi(t)+

+
1

M

M∑
i=1

(
∂vϕ(xi(t), vi(t)) (H1 ∗1 µM +H2 ∗1 νN +H3 ∗ µM +H4 ∗ νN ) (xi, vi)

)
= 〈µM (t), ∂xϕ(x, v)v〉

+ 〈µM (t), ∂vϕ(x, v) (H1 ∗1 µM +H2 ∗1 νN +H3 ∗ µM +H4 ∗ νN ) (x, v)〉
=− 〈∂xµM (t)v, ϕ〉
− 〈∂v (H1 ∗1 µM +H2 ∗1 νN +H3 ∗ µM +H4 ∗ νN ) (x, v)µM (t), ϕ〉
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which implies

∂tµM (t) + v∂xµM (t) + ∂v[(H1 ∗1 µM +H2 ∗1 νN +H3 ∗ µM +H4 ∗ νN ) (x, v)µM (t)] = 0.

(18)
In addition, we have

d

dt
〈νN (t) , ϕ〉 =

1

N

N∑
j=1

d

dt
ϕ(yj(t), wj(t))

=

N∑
j=1

∂xϕ(yj(t), wj(t))wj(t) +

N∑
j=1

∂vϕ(yi(t), wi(t))ẇj(t)

=
1

N

N∑
j=1

∂xϕ(yj(t), wj(t))+

+
1

N

N∑
j=1

(
∂vϕ(yj(t), wj(t)) (H5 ∗1 µM +H6 ∗1 νN +H7 ∗ µM +H8 ∗ νN ) (yj , wj)

)
= 〈νN (t), ∂xϕ(x, v)v〉

+ 〈νN (t), ∂vϕ(x, v) (H5 ∗1 µM +H6 ∗1 νN +H7 ∗ µM +H8 ∗ νN ) (x, v)〉
=− 〈∂xνN (t)v, ϕ(x, v)〉

−
〈
∂v

(
νN (t) (H5 ∗1 νN +H6 ∗1 νN + 7 ∗ µM +H8 ∗ νN ) (x, v)

)
, ϕ
〉

from which we conclude

∂tνN (t) + v∂xνN (t) + ∂v [(H5 ∗1 µM +H6 ∗1 νN +H7 ∗ µM +H8 ∗ νN )(x, v)νN (t)] = 0.

(19)
Combine with equations (17), (18) and (19), for the limit of k → ∞ of the subse-
quences (µMk

)k and (νNk)k, formally we have

∂tµ(t) + v∂xµ(t) + ∂v[(H1 ∗1 µ+H2 ∗1 ν +H3 ∗ µ+H4 ∗ ν) (x, v)µ(t)] = 0,

∂tν(t) + v∂xν(t) + ∂v [(H5 ∗1 µ+H6 ∗1 ν +H7 ∗ µ+H8 ∗ ν)(x, v)ν(t)] = 0.

2.5. Partial Differential Equations of Vlasov-type. In the last section, we
recall some related results on partial differential equations of Vlasov-type with and
without source terms.

2.5.1. Partial Differential Equations of Vlasov-type without Source Term. A family
of Lipschitz continuous flow maps is associated to the system (15)

T µ,νt : I0 ∈ DM ×DN 7→ I(t) ∈ DM ×DN . (20)

indexed by t ∈ [0, T ]. For more details we refer to [15].

Given the initial conditions (µ0, ν0) ∈
(
P(D) ∩M1(D)

)2

with bounded support,

we say that the couple of measures (µ(t), ν(t)) is a weak equi-compactly supported
solution of the following Vlasov-type PDE system with the initial datum (µ0, ν0),

∂tµ+ v · ∂xµ+ ∂v · [(H1 ∗1 µ+H2 ∗1 ν +H3 ∗ µ+H4 ∗ ν)µ] = 0,

∂tν + v · ∂xν + ∂v · [(H5 ∗1 µ+H6 ∗1 ν +H7 ∗ µ+H8 ∗ ν)ν] = 0, (21)
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if (i) µ(0) = µ0 and ν(0) = ν0;
(ii) suppµ(t), supp ν(t) ⊂ BD(0, R) for all t ∈ [0, T ];
(iii) for every ϕ ∈ C∞c (R2),

d

dt

∫
D

ϕ(x, v) dµ(t)(x, v) =

∫
D

∇ϕ(x, v) · ω̃(t, x, v) dµ(t)(x, v),

d

dt

∫
D

ϕ(y, w) dν(t)(y, w) =

∫
D

∇ϕ(y, w) · ω̂(t, y, w) dν(t)(y, w)

where ω̃(t, x, v) = ω̃H1,H2,H3,H4,µ,ν(t, x, v) : [0, T ]×D 7→ R2 is defined as

ω̃H1,H2,H3,H4,µ,ν(t, x, v) : = (v, (H1 ∗1 µ+H2 ∗1 ν +H3 ∗ µ+H4 ∗ ν) (x, v)), (22)

and ω̂(t, y, w) = ω̂H5,H6,H7,H8,µ,ν(t, y, w) : [0, T ]×D 7→ R2 is defined as

ω̂H5,H6,H7,H8,µ,ν(t, y, w) : = (v, (H5 ∗1 µ+H6 ∗1 ν +H7 ∗ µ+H8 ∗ ν) (y, w)).
(23)

Furthermore, following from Section 8.1 in [2], the couple of measures (µ(t), ν(t)) is
a weak equi-compactly supported solution of the system (21) if and only if it sat-
isfies condition (ii) and the measure-theoretical fixed point equation (µ(t), ν(t)) =
(T µ,νt ) #(µ0, ν0) where the flow function T µ,νt is defined in equation (20).

2.5.2. Partial Differential Equations of Vlasov-type with Source Term. Now we
consider solutions to the following Vlasov-type PDE system with initial datum

(µ0, ν0) ∈
(
Mac

0 (D) ∩M1(D)
)2

, and source terms G1 and G2

∂tµ+ v∂xµ+ ∂v [(H1 ∗1 µ+H2 ∗1 ν +H3 ∗ µ+H4 ∗ ν)µ] = G1(µ, ν)

∂tν + v∂xν + ∂y [(H5 ∗1 µ+H6 ∗1 ν +H7 ∗ µ+H8 ∗ ν)ν] = G2(µ, ν) (24)

under the following hypotheses:

(A1) G1(µ, ν), G2(µ, ν) have uniformly bounded mass and support, that is, there

exist Q,R, such that |G1(µ, ν)|(D), |G2(µ, ν)|(D) ≤ Q,
and supp(G1(µ, ν)), supp(G2(µ, ν)) ⊂ BD(0, R);

(A2) G1 and G2 are Lipschitz, that is, there exists L, such that, for any µ, µ′,

ν, ν′ ∈M1(D),W 1,1
1 (Gi(µ, ν), Gi(µ

′, ν′)) ≤ L
(
W 1,1

1 (µ, µ′) +W 1,1
1 (ν, ν′)

)
,

i = 1, 2.

A coupled of measures (µ(t), ν(t)) are weak solutions of equation (24) with a given

initial datum (µ0, ν0) ∈
(
Mac

0 (D) ∩M1(D)
)2

, if µ(0) = µ0, ν(0) = ν0 and if for

every ϕ ∈ C∞c (R2), it holds

d

dt

∫
D

ϕ(x, v) dµ(t)(x, v) =

=

∫
D

ϕ(x, v) dG1(µ, ν)(x, v) +

∫
D1

∇ϕ(x, v) · ω̃H1,H2,H3,H4,µ,ν(t, x, v) dµ(t)(x, v),

d

dt

∫
D

ϕ(y, w) dµ(t)(y, w) =

=

∫
D

ϕ2(y, w) dG2(µ, ν)(y, w) +

∫
D

∇ϕ(y, w) · ω̂H5,H6,H7,H8,µ,ν(t, y, w) dν(t)(y, w),
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where ω̃, ω̂ is as defined in equations (22) and (23). We have the following:

Theorem 2.6. Given an initial datum (µ0, ν0) ∈
(
Mac

0 (D) ∩ M1(D)
)2

, under

the hypotheses (A1)-(A2), there exists a unique weak solution (µ(t), ν(t)) to the

system (24) in
(
Mac

0 (D) ∩M1(D)
)2

.

A weak solution (µ(t), ν(t)) to equation (24) can be constructed using a sample-
and-hold Lagrangian scheme. For a fixed j ∈ N+, define ∆t : = T

2j and decompose

the time interval [0, T ] in [0,∆t), [∆t, 2∆t), . . . , [(2j − 1)∆t, 2j∆t), define

Initial step (µj(0), νj(0)) := (µ0, ν0);

Recursive step 1 (µj((n+ 1)∆t), νj((n+ 1)∆t)) := T µj(n∆t),ν(n∆t)
∆t #(µj(n∆t),

νj(n∆t)) +∆t
(
G1(µj(n∆t), νj(n∆t)), G2(µj(n∆t), νj(n∆t))

)
;

Recursive step 2 (µj(t), νj(t)) := T µj(n∆t),ν(n∆t)
τ #(µj(n∆t), νj(n∆t))+

+τ
(
G1(µj(n∆t), νj(n∆t)), G2(µj(n∆t), νj(n∆t))

)
;

where n is the maximum integer such that t − n∆t ≥ 0 and τ : = t − n∆t. Then
(µ(t), ν(t)) = lim

j→∞
(µj(t), νj(t)) is the unique weak solution to equation (24). For

more detail, please see [35].

3. Finite-dimensional hybrid system. In order to describe the frequencies of
the vehicles’ lane change behavior and prove the well-posedness of our heterogeneus
multi-lane traffic model, it is critical to introduce the model assumption ”cool-down”
time. Indeed, empirical observations showed that the lane-changing frequency of ve-
hicles on the highway is low. A key example is a study done on the German highway
which shows that only 15% of the vehicles performes lane-change while traveling the
recorded road segment [26]. For this reason, the chance of two vehicles performing
lane-change at exactly the same time is even lower and it is reasonable to assume
that this does not happen at all. In the next we state mathematically what just
explained.

Each vehicle i ∈ I is associated to a timer τi and the initial timer differs from
vehicle to vehicle. We introduce a ”cool-down” time τ̄ = T

Nτ
, with Nτ ∈ N≥0 large.

Every vehicle checks the lane-changing conditions only when its timer reaches τ̄ .
When this happens, the vehicle’s timer is then set to 0. More explicitely, for each
vehicle i ∈ I, its timer τi satisfies the differential equation

τ̇i(t) = 1, τi(0) = τi,0, t ∈ [0, τ̄)

with the following assumption on the initial data:

i 6= j ∈ I =⇒ τi,0 6= τj,0. (25)

When t = τ̄ we set τi(t) = 0. We can also model a large lane-change frequency
by simply choosing a small cool-down time τ̄ .

In the case of finitely many vehicles, the presence of the cool-down time, τ̄ allows
us to consider a small time interval [0, t1] during which there is no vehicle changing
lane, with

t1 = min
i∈I
{τ̄ − τi,0}

Condider the space X = R×R≥0× [0, τ̄) and the set L =
{
` = (`i)i∈I ∈ KP+S

}
of symbols that represent all possible lane labels of all vehicles among cars and
trucks.
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Let A` ⊂ X be the set of triples position-velocity-timer of all vehicles among
which there are at least two vehicles occupying the same lane and position at certain
time, i.e.

A` =
{(
xi, vi, τi

)
i∈I ∈ X : ∃t ∈ [0, T ], i1, i2 ∈ I, (26)

s.t., xi1(t) = xi2(t) ∧ `i1(t) = `i2(t), with `i1 , `i2 ∈ K
}
,

As in Section 2, let I = {1, . . . , P + S} be the set of index for all the vehicles,
IP = {1, . . . , P} the set of index for cars and IS = {P + 1, . . . , P + S} for trucks.
Denote respectively with with IkP (t) and IkS(t) the set of indices for cars and trucks
on lane k at time t ∈ [0, T ], with Pk(t) and Sk(t) the number of cars and trucks on
lane k at time t ∈ [0, T ].
The time dependent atomic probability measures on the k lane are given by

µkP (t) =
1

Pk(t)

∑
i∈IkP (t)

δ(xi(t),vi(t)), µkS(t) =
1

Sk(t)

∑
i∈IkS(t)

δ(xi(t),vi(t)). (27)

where (xi(t), vi(t)) are solutions of the following first order system:

ẋi = vi i ∈ I ,

v̇i =

{(
Hcc

1 ∗1 µkP +Htc
1 ∗1 µkS

)
(xi, vi) +

(
Hcc

2 ∗ µkP +Htc
2 ∗ µkS

)
(xi, vi) i ∈ IkP(

Hct
1 ∗1 µkP +Htt

1 ∗1 µkS
)

(xi, vi) +
(
Hct

2 ∗ µkP +Htt
2 ∗ µkS

)
(xi, vi) i ∈ IkS

.

(28)

And finally consider the switching set LC(Σ) describing the lane-changing mecha-
nism of the finitely many vehicles:

LC(Σ) =
{

(`, (xi, vi, τi), `
′, (x′i, v

′
i, τ
′
i))i∈I ∈ (L ×X)2 : (29)

∃ i0 ∈ I,∃ t0 ∈ [0, τ̄), s.t., j 6= i0, (`j(t0), xj(t0), vj(t0), τj(t0))

=(`′j(t0), x′j(t0), v′j(t0), τ ′j(t0)) ∧ (xi0(t0), vi0(t0))

=(x′i0(t0), v′i0(t0)), `′i0(t0) = `i0(t0)± 1, τ ′i0(t0) = 0
}
.

Now we are ready to give the definition of hybrid system.

Definition 3.1. A hybrid system is a 4-tuple Σ = (L,M, g, SW ) where:

(1) L =
{
` = (`i)i∈I ∈ KP+S

}
is a finite set of symbols that represent all possible

lane labels of all vehicles;

(2) M = {M`}`∈L, where M` = (X \A`)P+S , with A` defined in (26).

(3) g = {g`}`∈L, g` : M` 7→ R3(P+S), g(`i) = (vi, ai, 1), where ai = v̇i as defined
in systems (28);

(4) SW is a subset of LC(Σ), where LC(Σ) is the set of states for which a lane-
changing can occur, that is (29).

We need two further definitions before stating and proving the result of existence
of solutions for the hybrid system.

Definition 3.2. A hybrid state of the hybrid system Σ is a 4-tuple (`, x, v, τ) ∈
L×M`. The set of all the hybrid states of the hybrid system Σ will be called HS.



14 MARIA TERESA CHIRI, XIAOQIAN GONG, BENEDETTO PICCOLI

Definition 3.3. Let (`0, x0, v0, τ0) ∈ (K × X)P+S be an initial condition to the
hybrid system Σ and assume that τ0 satisfies (25). A trajectory of the hybrid
system Σ with initial condition (`0, x0, v0, τ0) is a map ϕ : [0, T ] → HS, ϕ(t) =
(`(t), x(t), v(t), τ(t)), such that

(1) (`(0), x(0), v(0), τ(0)) = (`0, x0, v0, τ0);
(2) `i[0, τ̄ − τi,0) = `i,0, i ∈ I;

`i[nτ̄ − τi,0, (n+ 1)τ̄ − τi,0) = `i,n ∈ L, i ∈ I;
(3) τi(nτ̄ − τi,0) = 0 i ∈ I;
(4) lim

t→(nτ̄−τi,0)−
xi(t) = xi(nτ̄ − τi,0);

(5) For almost every t ∈ [0, T ]

d

dt
(xi, vi, τi) = g`i(t)(xi(t), vi(t), τi(t)) i ∈ I. (30)

Theorem 3.1 (Existence and uniqueness of trajectories to the hybrid system Σ).
Let Hn

1 : R × R≥0 → R, and Hn
2 : R × R≥0 → R with n ∈ {cc, ct, tc, tt} be

locally Lipschitz convolution kernels with sub-linear growth and let (`0, x0, v0, τ0) ∈
(K × X)P+S be a given initial datum. Then there exists a unique trajectory ϕ :
[0, T ] → HS to hybrid system Σ, which is also Lipschitz continuous in time over
the time interval in which no lane change occurs.

Proof. Let t0 = mini∈I{τ̄ − τi,0} where τi,0 is the i-th component of the vector
τ0 ∈ [0, τ̄)P+S . By definition no lane change is performed in the time interval [0, t0)
and the dynamic of each vehicle in the lane k is given by (28). More compactly, we
can call ϕk(t) = (xk(t), vk(t)) ∈ (R × R≥0)Pk+Sk the trajectory of vehicles on the
lane k over the time interval [0, t0) and re-write the system (28) as

ϕ̇k(t) = gk(t, ϕk(t)). (31)

Here gk : [0, t0)× (R× R≥0)Pk+Sk 7→ (R× R≥0)Pk+Sk is defined as

gk(t, ϕk(t)) = (vk(t), ak(t)),

with

aki (t) =

{(
Hcc

1 ∗1 µkP +Htc
1 ∗1 µkS

)
(xi, vi) +

(
Hcc

2 ∗ µkP +Htc
2 ∗ µkS

)
(xi, vi) i ∈ IkP(

Hct
1 ∗1 µkP +Htt

1 ∗1 µkS
)

(xi, vi) +
(
Hct

2 ∗ µkP +Htt
2 ∗ µkS

)
(xi, vi) i ∈ IkS .

By the regularity and growth assumptions on the convolution kernels, it is imme-
diate to check that

‖gk(t, ϕk(t))‖ ≤ C(1 + ‖ϕk(t)‖) (32)

for a constant C which does not depend on the number of vehicles (see Lemma 3.4
in [20] for details). Therefore the Caratheodory Theorem [21] yields the existence
of solution ϕk to the linear system (31) on the time interval [0, t0) with initial data
ϕk0 = (xk0 , v

k
0 ) ∈ (R × R≥0)Pk+Sk . Moreover the solution satisfies the following

growth condition
‖ϕk(t)‖ ≤ (‖ϕk0‖+ Ct0)eCt0 (33)

which implies also the Lipschitzianity. Indeed for any times t, t′ ∈ [0, t0) we have

‖ϕk(t′)− ϕk(t)‖ ≤
∫ t′

t

∥∥gk(s, ϕk(s))
∥∥ ds

≤
∫ t′

t

C(1 + ‖ϕk(s)‖) ds| ≤ C(1 + (‖ϕk0‖+ Ct0)eCt0)|t′ − t|.
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Analogously, on all the finitely time intervals in which there is no lane change,
the Caratheodory Theorem still yields the existence of a unique Lipschitz trajectory
for vehicles in the same lane.

4. The mean-field limit of the finite-dimensional hybrid system. In the
next, we let the number of cars and trucks approach infinity. The emerging equa-
tions do not describe anymore the trajectories of the single vehicle but the evolution
of density of each class of vehicles in space and velocity.

4.1. A system of coupled PDEs with source term. For convenience, we in-
troduce the following compact notation for equation (9):

ẋi = vi

v̇i =
(

(Hn1
1 ∗1 µP +Hn2

1 ∗1 µS +Hn1
2 ∗ µP +Hn2

2 ∗ µS
)

(xi, vi) (34)

with (n1, n2) = (cc, tc) if i ∈ IP and (n1, n2) = (ct, tt) if i ∈ IS .
What we are going to prove is that the mean field limit of the hybrid system in

Definition 3.1 is a system of two Vlasov-type equations with source terms. These
source terms are generated by the lane-change behaviour in the four different car-
truck car-following combinations and induce the measure solutions to change mass
in time, therefore the limit is obtained by using the generalized Wasserstein distance.
In detail we will derive the following limit system

∂tν
k
c +v∂xν

k
c +∂v

[(
Hcc

1 ∗1νkc +Htc
1 ∗1νkt +Hcc

2 ∗νkc +Htc
2 ∗νkt )νkc

]
= G1(νkc , ν

k
t , ν

k′

c , ν
k′

t ) ,

(35)

∂tν
k
t +v∂xν

k
t +∂v

[(
Hct

1 ∗1νkc +Htt
1 ∗1νkt +Hct

2 ∗νkc +Htt
2 ∗νkt

)
νkt

]
= G2(νkc , ν

k
t , ν

k′

c , ν
k′

t ) ,

(36)
where νkc and νkt represent respectively the density of cars and trucks on the lane
k. To describe the derivation process of the source terms G1 and G2, we need to
introduce the average accelerations AkP and AkS defined as

AkP = Hcc
1 ∗1 µkP +Htc

1 ∗1 µkS +Hcc
2 ∗ µkP +Htc

2 ∗ µkS ,

AkS = Hct
1 ∗1 µkP +Htt

1 ∗1 µkS +Hct
2 ∗ µkP +Htt

2 ∗ µkS ,
with µkP and µkS the probability measures given in (4) on lane k. Since µkP , µkS are
both compactly supported and the convolution kernels are, by assumption, locally
Lipschitz and with sub-linear growth, it follows that both the average accelerations
are bounded.

We define the map p1 as

p1(b1, b2, b3, b4, b5) =
1

C

(
1− e−γ2b1b2b3b4b5

)
,

p1([Ak
′

P −AkP −∆cc]+, [Ak
′

S −AkP −∆tc]+, [Ak
′

P + ∆c]+, [Ak
′

S + ∆t]+, [Ak
′

S + ∆t]+) ,

representing the probability of cars performing lane change from lane k to lane k′

and analogously the map p2 as

p2(b1, b2, b3, b4, b5) =
1

C

(
1− e−γ2b1b2b3b4b5

)
p2([Ak

′

P −AkS −∆ct]+, [Ak
′

S −AkS −∆tt]+, [Ak
′

P + ∆c]+, [Ak
′

S + ∆t]+, [Ak
′

S + ∆t]+)
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which is instead the probability of trucks performing lane change from lane k to
lane k′.
Looking closely at the probability p1 (the same considerations also apply to p2), we
can observe that it is strictly positive only if the safety and incentive conditions are
strictly satisfied in an average sense, i.e. if

Ak
′

P > AkP + ∆cc , Ak
′

S > AkP + ∆tc , Ak
′

P > −∆c , and Ak
′

S > −∆t.

Thanks to this notation we can define the source terms as

G1(νkc ,ν
k
t , ν

k′

c , ν
k′

t ) (37)

=
[
Gk−1,k

1 (νk−1
c , νk−1

t , νkc , ν
k
t )−Gk,k−1

1 (νk−1
c , νk−1

t , νkc , ν
k
t )
]
(1− δ1(k))

(38)

+
[
Gk+1,k

1 (νk+1
c , νk+1

t , νkc , ν
k
t )−Gk,k+1

1 (νk+1
c , νk+1

t , νkc , ν
k
t )
]
(1− δN (k))

(39)

G2(νkc ,ν
k
t , ν

k′

c , ν
k′

t ) (40)

=
[
Gk−1,k

2 (νk−1
c , νk−1

t , νkc , ν
k
t )−Gk,k−1

2 (νk−1
c , νk−1

t , νkc , ν
k
t )
]
(1− δ1(k))

(41)

+
[
Gk+1,k

2 (νk+1
c , νk+1

t , νkc , ν
k
t )−Gk,k+1

2 (νk+1
c , νk+1

t , νkc , ν
k
t )
]
(1− δN (k))

(42)

where k′ ∈ {k − 1, k + 1} and Gj,j
′

1 ,Gj,j
′

2 are respectively given by

Gj,j
′

1 (νjc , ν
j
t , ν

j′

c , ν
j′

t )

= p1([Aj
′

P −A
j
P −∆cc]+, [Aj

′

S −A
j
P −∆tc]+, [Aj

′

P + ∆c]+, [Aj
′

P + ∆c]+, [Aj
′

S + ∆t]+)νjc ,

Gj,j
′

2 (νjc , ν
j
t , ν

j′

c , ν
j′

t )

= p2([Aj
′

P −A
j
S −∆ct]+, [Aj

′

S −A
j
S −∆tt]+, [Aj

′

S + ∆t]+, [Aj
′

P + ∆c]+, [Aj
′

S + ∆t]+)νjt ,

with j, j′ ∈ {k − 1, k, k + 1}.

4.2. The weak solution to the coupled PDEs.

Definition 4.1 (Weak solution to the coupled PDEs). Given initial datum (~νc,0, ~νt,0) ∈(
Mac

0 (D) ∩M1(D)
)2L

, we say that (~νc, ~νt) : [0, T ] →
(
Mac

0 (D) ∩M1(D)
)2L

is

a solution to the coupled PDEs (35)-(36), if for every test function ϕ ∈ C∞c (D)
and for all k ∈ {1, . . . , L}, νkc and νkt are compactly supported in B(0, R) for some
R > 0, and for almost every t ∈ [0, T ],

d

dt

∫
R×R≥0

ϕ(x, v) dνkc (t)(x, v) =

=

∫
R×R≥0

ϕ(x, v) dG1(νkc , ν
k
t , ν

k′

c , ν
k′

t )(t)(x, v)

+

∫
R×R≥0

(
∇ϕ(x, v) · ωkc (t, x, v)

)
dνkc (t)(x, v) (43)
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d

dt

∫
R×R≥0

ϕ(x, v) dνkt (t)(x, v) =

=

∫
R×R≥0

ϕ(x, v) dG2(νkc , ν
k
t , ν

k′

c , ν
k′

t )(t)(x, v)

+

∫
R×R≥0

(
∇ϕ(x, v) · ωkt (t, x, v)

)
dνkt (t)(x, v) (44)

where

ωkc (t, x, v) =
(
v,
(
Hcc

1 ∗1 νkc +Htc
1 ∗1 νkt +Hcc

2 ∗ νkc +Htc
2 ∗ νkt

)
(x, v)

)
,

and

ωkt (t, x, v) =
(
v,
(
Hct

1 ∗1 νkc +Htt
1 ∗1 νkt +Hct

2 ∗ νkc +Htt
2 ∗ νkt

)
(x, v)

)
.

4.3. Existence of solutions to the coupled PDEs.

Theorem 4.1 (Existence of weak solutions to the couple PDEs). Let the initial

datum (~νc,0, ~νt,0) ∈
(
Mac

0 (D) ∩M1(D)
)2L

be given. Assume that convolutional

kernels Hn
q with q = 1, 2 and n ∈ {cc, ct, tc, tt} are locally Lipschitz and with sub-

linear growth. Then there exists a solution (~νc, ~νt) : [0.T ]→
(
Mac

0 (D)∩M1(D)
)2N

to the coupled PDEs (35)-(36) as in Definition 4.1.

Proof. As first step we construct a sequence of discrete measures converging to
the initial datum in the generalized Wasserstein distance. Indeed on each lane
k ∈ {1, . . . , L}, there exists a infinite set of couples (xki,0, v

k
i,0) ∈ R×R≥0, such that

νkc,0 = lim
pk→∞

mc

∑
i∈IkP

δ(xki,0,vki,0) (45)

and
νkt,0 = lim

sk→∞
mt

∑
i∈IkS

δ(xki,0,vki,0), (46)

where ~νc,0 = (νkc,0)Lk=1 and ~νt,0 = (νkt,0)Lk=1, IkP is a finite subset of indices for

cars and IkS is a finite subset of indices for trucks on lane k, while pk = # IkP and
sk = # IkS represent the number of cars and trucks on lane k respectively. The
constants mc and mt are the average masses for cars and trucks defined as

mc =

L∑
j=1

‖νjc,0‖

L∑
j=1

pj
, mt =

L∑
j=1

‖νjt,0‖

L∑
j=1

sj
.

Let P be the set of cars and S the set of trucks on the open stretch road. The couples
(x0, v0) = (xi,0, vi,0), with i ∈ I (set of indices for both vehicles) introduced for the
approximation represent the initial positions and velocities of cars and trucks. We
also define the following multi-valued functions:

IkP (·) : [0, T ]→ P(I) and IkS(·) : [0, T ]→ P(I)

where P(·) stands for power set. These keep trace of the set of the indices for cars
and trucks on each lane on the time interval [0, T ]. To each one of these multi-
functions it is naturally associated a map counting the number of cars and number
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of trucks present on the lane k at any time, i.e.

P k(·) : [0, T ]→ N≥0 , P k(t) = # IkP (t) ,

Sk(·) : [0, T ]→ N≥0 , Sk(t) = # IkS(t).

with P k(0) = pk and Sk(0) = sk. By theorem 3.1, we know that for t ∈ [0, T ]

and i ∈ I`i(t)P (t), there exists a unique map (xi, vi) : [0, T ]→ proj1,2(M`i(t)) (where

proj1,2 : R3 → R2; (x, y, z) 7→ (x, y)) which represents the positions and velocities
of cars on lane `i(t) during the time interval [0, T ] with (xi(0), vi(0)) = (xi,0, vi,0).
Define a discrete measure

νp
k

(t) = mc

∑
i∈IkP (t)

δ(xi(t),vi(t)). (47)

Similarly, for t ∈ [0, T ], i ∈ I`i(t)S (t), there exists a unique map (xi, vi) : [0, T ] →
proj1,2(M`i(t)) representing positions and velocities of trucks on lane `i(t) during
the time interval [0, T ] with (xi(0), vi(0)) = (xi,0, vi,0). We can define a discrete
measure

νs
k

(t) = mt

∑
i∈IkS(t)

δ(xi(t),vi(t)). (48)

Note that mc → 0 as pk → ∞. Therefore there exists a constant L > 0 which
satisfies the following condition: for every ε > 0, we can find N1 > 0, such that
whenever pk > N1,

W 1,1
1 (νp

k

(s), νp
k

(t)) < L|s− t|+ min{ε, |s− t|} ∀s, t ∈ [0, T ].

By Theorem 2.5, there exist a convergent subsequence (νp
k

) (for simplicity, we use
the some notation for the subsequence as the notation for the original sequence)
and νkc ∈M(D) such that

νp
k

→ νkc as pk →∞.

Analogously we can conclude that there exists a subsequence of νs
k

converging

to νkt ∈ M(D) as sk → ∞. Next we will show that (νkc , ν
k
t ) ∈

(
M(D)

)2
with

k ∈ {1, . . . , N}, is a weak solution to the coupled PDEs (35) and (36) as in Definition
4.1. Let IkP1

be the set of indices of cars on lane k not performing lane-change over

the whole time interval [0, T ] and set pk1 = |IkP1
|. Consider the following discrete

measure to track positions and velocities for cars in this set:

νp
k
1 (t) = mc

∑
i∈IkP1

δ(xi(t),vi(t)).

then, for any test function ϕ ∈ C∞(D) we have

d
dt 〈ϕ , ν

pk1 〉 = d
dtmc

∑
i∈IkP1

ϕ(xi(t), vi(t))

= mc

∑
i∈IkP1

(
∂xϕ(xi(t), vi(t))vi(t) + ∂vϕ(xi(t), vi(t))v̇i(t)

)
= mc

∑
i∈IkP1

∂xϕ(xi(t), vi(t))vi(t)
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+mc

∑
i∈IkP1

∂vϕ(xi(t), vi(t))
(
Hcc

1 ∗1 νp
k

(t) +Htc
1 ∗1 νs

k

(t)

+Hcc
2 ∗ νp

k

(t) +Htc
2 ∗ νs

k

(t)
)
(xi(t), vi(t))

= 〈∂xϕ(x, v)v , νp
k
1 〉

+ 〈∂vϕ(x, v)
(
Hcc

1 ∗1 νp
k

(t) +Htc
1 ∗1 νs

k

(t)

+Hcc
2 ∗ νp

k

(t) +Htc
2 ∗ νs

k

(t)
)
(x, v) , νp

k
1 〉 . (49)

For all t ∈ [0, T ] and s ∈ [0, t], by integrating both sides of (49) we get

〈ϕ, νp
k
1 (s)− νp

k
1 (0)〉 =

∫ s

0

[∫
R×R+

∂xϕ(x, v)v + ∂vϕ(x, v)
(
Hcc

1 ∗1 νp
k

(t)

+Htc
1 ∗1 νs

k

(t) +Hcc
2 ∗ νp

k

(t) +Htc
2 ∗ νs

k

(t)
)
(x, v) dνp

k
1 (t)(x, v)

]
dt. (50)

Analogously, let IkS1
be the set of indices of trucks on lane k not performing lane-

change over the whole time interval [0, T ] and set sk1 = |IkS1
| . Consider the following

discrete measure which keeps trace of positions and velocities for these trucks:

νs
k
1 (t) = mt

∑
i∈IkS1

δ(xi(t),vi(t)) .

For any test function ϕ ∈ C∞(R× R≥0) we have

d
dt 〈ϕ , ν

sk1 〉 = d
dtmt

∑
i∈IkS1

ϕ(xi(t), vi(t))

= mt

∑
i∈IkS1

(
∂xϕ(xi(t), vi(t))vi(t) + ∂vϕ(xi(t), vi(t))v̇i(t)

)
= mt

∑
i∈IkS1

∂xϕ(xi(t), vi(t))vi(t)

+mt

∑
i∈IkS1

∂vϕ(xi(t), vi(t))
(
Hct

1 ∗1 νp
k

(t) +Htt
1 ∗1 νs

k

(t)

+Hct
2 ∗ νp

k

(t) +Htt
2 ∗ νs

k

(t)
)
(xi(t), vi(t))

= 〈∂xϕ(x, v)v , νs
k
1 〉

+ 〈∂vϕ(x, v)
(
Hct

1 ∗1 νp
k

(t) +Htt
1 ∗1 νs

k

(t)

+Hct
2 ∗ νp

k

(t) +Htt
2 ∗ νs

k

(t)
)
(x, v) , νs

k
1 〉 (51)

For all t ∈ [0, T ] and s ∈ [0, t], by integrating both sides of (51)

〈ϕ, νs
k
1 (s)− νs

k
1 (0)〉 =

∫ s

0

[∫
R×R+

∂xϕ(x, v)v + ∂vϕ(x, v)
(
Hct

1 ∗1 νp
k

(t)

+Htt
1 ∗1 νs

k

(t) +Hct
2 ∗ νp

k

(t) +Htt
2 ∗ νs

k

(t)
)
(x, v) dνs

k
1 (t)(x, v)

]
dt. (52)

Let pk1 and sk1 (respectively the number of cars and trucks not performing lane
change on lane k) go to infinity, then on the left hand side of equations (50)-(52)
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we have

lim
pk1→∞

〈ϕ, νp
k
1 (s)− νp

k
1 (0)〉 = 〈ϕ, νkc − νkc,0〉, (53)

lim
sk1→∞

〈ϕ, νs
k
1 (s)− νs

1
k(0)〉 = 〈ϕ, νkt − νkt,0〉. (54)

By the dominated convergence theorem, on the right hand side of (50)-(52) we have
that for all test function ϕ ∈ C∞c (D),

lim
pk1→∞

∫ s

0

(∫
R×R+

∂xϕ(x, v)v

)
dνp

k
1 (t)(x, v) dt

=

∫ s

0

(∫
R×R+

∂xϕ(x, v)v

)
dνkc (t)(x, v) dt (55)

lim
sk1→∞

∫ s

0

(∫
R×R+

∂xϕ(x, v)v

)
dνs

k
1 (t)(x, v) dt

=

∫ s

0

(∫
R×R+

∂xϕ(x, v)v

)
dνkt (t)(x, v) dt (56)

and

lim
sk1→∞

lim
pk1→∞

∫ s

0

(
∂vϕ(x, v)

(
Hcc

1 ∗1 νp
k

(t) +Htc
1 ∗1 νs

k

(t)

+Hcc
2 ∗ νp

k

(t) +Htc
2 ∗ νs

k

(t)
)
(x, v)

)
dνp

k
1 (t)(x, v) dt

=

∫ s

0

(
∂vϕ(x, v)

(
Hcc

1 ∗1 νkc (t) +Htc
1 ∗1 νkt (t)

+Hcc
2 ∗ νkc (t) +Htc

2 ∗ νkt (t)
)
(x, v)

)
dνkc (t)(x, v) dt, (57)

lim
sk1→∞

lim
pk1→∞

∫ s

0

(
∂vϕ(x, v)

(
Hct

1 ∗1 νp
k

(t) +Htt
1 ∗1 νs

k

(t)

+Hct
2 ∗ νp

k

(t) +Htt
2 ∗ νs

k

(t)
)
(x, v)

)
dνs

k
1 (t)(x, v) dt

=

∫ s

0

(
∂vϕ(x, v)

(
Hct

1 ∗1 νkc (t) +Htt
1 ∗1 νkt (t)

+Hct
2 ∗ νkc (t) +Htt

2 ∗ νkt (t)
)
(x, v)

)
dνkt (t)(x, v) dt. (58)

Indeed,for every r > 0, Lemma 2.4 yields

lim
sk1→∞

lim
pk1→∞

∥∥∥(Hcc
1 ∗1 νp

k

(t) +Htc
1 ∗1 νs

k

(t) +Hcc
2 ∗ νp

k

(t) +Htc
2 ∗ νs

k

(t)
)
(x, v)

−
(
Hcc

1 ∗1 νkc (t) +Htc
1 ∗1 νkt (t) +Hcc

2 ∗ νkc (t) +Htc
2 ∗ νkt (t)

)
(x, v)

∥∥
L∞(B(0,r))

= 0,

(59)

lim
sk1→∞

lim
pk1→∞

∥∥∥(Hcc
1 ∗1 νp

k

(t) +Hct
1 ∗1 νs

k

(t) +Hct
2 ∗ νp

k

(t) +Htt
2 ∗ νs

k

(t)
)
(x, v)

−
(
Hct

1 ∗1 νkc (t) +Htt
1 ∗1 νkt (t) +Hct

2 ∗ νkc (t) +Htt
2 ∗ νkt (t)

)
(x, v)

∥∥
L∞(B(0,r))

= 0.

(60)
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Since ϕ ∈ C∞c (R× R≥0),

lim
sk1→∞

lim
pk1→∞

∥∥∥∂vϕ(x, v)
[(
Hcc

1 ∗1 νp
k

(t) +Htc
1 ∗1 νs

k

(t) +Hcc
2 ∗ νp

k

(t) +Htc
2 ∗ νs

k

(t)
)
(x, v)

−
(
Hcc

1 ∗1 νkP (t) +Htc
1 ∗1 νkt (t) +Hcc

2 ∗ νkc (t) +Htc
2 ∗ νkt (t)

)
(x, v)

]∥∥∥
L∞(B(0,r))

= 0, (61)

lim
sk1→∞

lim
pk1→∞

∥∥∥∂vϕ(x, v)
[(
Hct

1 ∗1 νp
k

(t) +Htt
1 ∗1 νs

k

(t) +Hct
2 ∗ νp

k

(t) +Htt
2 ∗ νs

k

(t)
)
(x, v)

−
(
Hct

1 ∗1 νkc (t) +Htt
1 ∗1 νkt (t) +Hct

2 ∗ νkc (t) +Htt
2 ∗ νkt (t)

)
(x, v)

]∥∥∥
L∞(B(0,r))

= 0, (62)

which implies equations (57) and (58). Now let IkP2
be the set of indices of cars on

lane k performing lane-change at least once during the time interval [0, T ]. Assume that
|IkP2
| = pk2 . By the lane-changing conditions (11) and (12), we consider the following

discrete measure to track the positions and velocities of these cars:

νp
k
2 (t) =

=
∑

i∈Ik−1
P2

mc δ(xi(t),vi(t))p1([ākc,i − ak−1
i −∆cc]+, [ākt,i − ak−1

i −∆tc]+,

[āki + ∆c]+, [ākik
F

+ ∆c]+, [ā
k
ik
F

+ ∆t]+)(1− δ1(k))

−
∑

i∈Ik
P2

mc δ(xi(t),vi(t))p1([āk−1
c,i − a

k
i −∆cc]+, [āk−1

t,i − a
k
i −∆tc]+,

[āk−1
i + ∆c]+, [āk−1

ik−1
F

+ ∆c]+, [ā
k−1

ik−1
F

+ ∆t]+)(1− δ1(k))

+
∑

i∈Ik+1
P2

mc δ(xi(t),vi(t))p1([ākc,i − ak+1
i −∆cc]+, [ākt,i − ak+1

i −∆tc]+,

[āki + ∆c]+, [ākik
F

+ ∆c]+, [ā
k
ik
F

+ ∆t]+)(1− δN (k))

−
∑

i∈Ik
P2

mc δ(xi(t),vi(t))p1([āk+1
c,i − a

k
i −∆cc]+, [āk+1

t,i − a
k
i −∆tc]+,

[āk+1
i + ∆c]+, [āk+1

ik+1
F

+ ∆c]+, [ā
k+1

ik+1
F

+ ∆t]+)(1− δN (k))

where for j ∈ {1, . . . , N} and j′ = j + 1 or j − 1. The accelerations aji , ā
j′

c,i and āj
′

t,i are
respectively given by

aji = v̇ji =
(
Hcc

1 ∗1 νp
j

+Htc
1 ∗1 νs

j

+Hcc
2 ∗ νp

j

+Htc
2 ∗ νs

j )
(xi, vi) i ∈ IP ,

āj
′

c,i =

(
Hcc

1 ∗1 νp
j′

+Htc
1 ∗1 νs

j′
)

(xi, vi) +

(
Hcc

2 ∗ νp
j′

+Htc
2 ∗ νs

j′
)

(xi, vi) i ∈ IjP ,

āj
′

t,i =

(
Hct

1 ∗1 νp
j′

+Htt
1 ∗1 νs

j′
)

(xi, vi) +

(
Hct

2 ∗ νp
j′

+Htt
2 ∗ νs

j′
)

(xi, vi) i ∈ IjP .

Similarly, for trucks, let IkS2
be the set of indices of trucks on lane k that perform lane-

changing at least once during the time interval [0, T ]. Denote the number of these trucks
by sk2 , i.e. |IkS2

| = sk2 . Again, by the lane-changing conditions (11) and (12), we consider
the following discrete measure to track the positions and velocities of these trucks:

νs
k
2 (t) =

=
∑

i∈Ik−1
S2

mt δ(xi(t),vi(t))p2([ākc,i − ak−1
i −∆ct]+, [ākt,i − ak−1

i −∆tt]+,

[āki + ∆t]+, [ākik
F

+ ∆c]+, [ā
k
ik
F

+ ∆t]+)(1− δ1(k))
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−
∑

i∈Ik
S2

mt δ(xi(t),vi(t))p2([āk−1
c,i − a

k
i −∆ct]+, [āk−1

t,i − a
k
i −∆tt]+,

[āk−1
i + ∆t]+, [āk−1

ik−1
F

+ ∆c]+, [ā
k−1

ik−1
F

+ ∆t]+)(1− δ1(k))

+
∑

i∈Ik+1
S2

mt δ(xi(t),vi(t))p2([ākc,i − ak+1
i −∆ct]+, [ākt,i − ak+1

i −∆tt]+,

[āki + ∆t]+, [ākik
F

+ ∆c]+, [ā
k
ik
F

+ ∆t]+)(1− δN (k))

−
∑

i∈Ik
S2

mt δ(xi(t),vi(t))p2([āk+1
c,i − a

k
i −∆ct]+, [āk+1

t,i − a
k
i −∆tt]+,

[āk+1
i + ∆t]+, [āk+1

ik+1
F

+ ∆c]+, [ā
k+1

ik+1
F

+ ∆t]+)(1− δN (k))

with j ∈ {1, . . . , N}, j′ = j + 1 or j − 1 and again the accelerations are given by

aji = v̇ji =
(
Hct

1 ∗1 νp
j

+Htt
1 ∗1 νs

j

+Hct
2 ∗ νp

j

+Htt
2 ∗ νs

j )
(xi, vi) i ∈ IS ,

āj
′

c,i =

(
Hcc

1 ∗1 νp
j′

+Htc
1 ∗1 νs

j′
)

(xi, vi) +

(
Hcc

2 ∗ νp
j′

+Htc
2 ∗ νs

j′
)

(xi, vi) i ∈ IjP

āj
′

t,i =

(
Hct

1 ∗1 νp
j′

+Htt
1 ∗1 νs

j′
)

(xi, vi) +

(
Hct

2 ∗ νp
j′

+Htt
2 ∗ νs

j′
)

(xi, vi) i ∈ IjS .

Now on each lane k we let the number of cars and trucks performing lane-chance (pk2 , sk2)
go to infinity. Then we have

lim
pk2→∞

lim
sk2→∞

νp
k
2 (t) =

= νk−1
c p1([Ak

P −Ak−1
P −∆cc]+, [A

k
S −Ak−1

P −∆tc]+,

[Ak
P + ∆c]+, [A

k
P + ∆c]+, [A

k
S + ∆t]+)(1− δ1(k))

− νkc p1([Ak−1
P −Ak

P −∆cc]+, [A
k−1
S −Ak

P −∆tc]+,

[Ak−1
P + ∆c]+, [A

k−1
P + ∆c]+, [A

k−1
S + ∆t]+)(1− δ1(k))

+ νk+1
c p1([Ak

P −Ak+1
P −∆cc]+, [A

k
S −Ak+1

P −∆tc]+,

[Ak
P + ∆c]+, [A

k
P + ∆c]+, [A

k
S + ∆t]+)(1− δN (k))

− νkc p1([Ak+1
P −Ak

P −∆cc]+, [A
k+1
S −Ak

P −∆tc]+,

[Ak+1
P + ∆c]+, [A

k+1
P + ∆c]+, [A

k+1
S + ∆t]+)(1− δN (k))

=
[
Gk−1,k

1 (νk−1
c , νk−1

t , νkc , ν
k
t )−Gk,k−1

1 (νkc , ν
k
t , ν

k−1
c , νk−1

t )
]
(1− δ1(k))

+
[
Gk+1,k

1 (νk+1
c , νk+1

t , νk−1
c , νk−1

t )−Gk,k+1
1 (νkc , ν

k
t , ν

k+1
c , νk+1

t )
]
(1− δN (k))

= G1(νkc , ν
k
t , ν

k′
c , ν

k′
t ) (63)

lim
sk2→∞

lim
pk2→∞

νs
k
2 (t) =

= νk−1
t p2([Ak

P −Ak−1
S −∆ct]+, [A

k
S −Ak−1

S −∆tt]+,

[Ak
S + ∆t]+, [A

k
P + ∆c]+, [A

k
P + ∆t]+)(1− δ1(k))

− νkt p2([Ak−1
P −Ak

S −∆ct]+, [A
k−1
S −Ak

S −∆tt]+,

[Ak−1
S + ∆t]+, [A

k−1
P + ∆c]+, [A

k−1
S + ∆t]+)(1− δ1(k))

+ νk+1
t p2([Ak

P −Ak+1
S −∆ct]+, [A

k
S −Ak+1

S −∆tt]+,

[Ak
S + ∆t]+, [A

k
P + ∆c]+, [A

k
S + ∆t]+)(1− δN (k))
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− νkt p2([Ak+1
P −Ak

S −∆ct]+, [A
k+1
S −Ak

S −∆tt]+,

[Ak+1
S + ∆t]+, [A

k+1
P + ∆c]+, [A

k+1
S + ∆t]+)(1− δN (k))

=
[
Gk−1,k

2 (µk−1
P , νk−1

t , νkc , ν
k
t )−Gk,k−1

2 (νkc , ν
k
t , µ

k−1
P , νk−1

t )
]
(1− δ1(k))

+
[
Gk+1,k

2 (νk+1
c , νk+1

t , νk−1
c , νk−1

t )−Gk,k+1
2 (νkc , ν

k
t , ν

k+1
c , νk+1

t )
]
(1− δN (k))

= G2(νkc , ν
k
t , ν

k′
c , ν

k′
t ) (64)

Set νkc = lim
pk1→∞

lim
pk2→∞

(νp
k
1 +νp

k
2 ) and νkt = lim

sk1→∞
lim

sk2→∞
(νs

k
1 +νs

k
2 ). By combining equations

(55),(57),(63) and (56),(58),(64) we can observe thath the constructed couple (νkc , ν
k
t ),

k ∈ {1, . . . , N} ∈ Mac
0 (D) ∩M1(D) is a weak solution to the coupled PDEs (4)-(36).

4.4. Uniqueness of solutions to the coupled PDEs.

Theorem 4.2 (Continuity with respect to the initial conditions). For q = 1, 2, let

(νqc , ν
q
t ) ∈

(
Mac

0 (D) ∩M1(D)
)2L

be two weak solutions for the coupled equations

(35),(36) over the time interval [0, T ] associated to the initial data (νq0,c, ν
q
0,t) ∈(

Mac
0 (D)∩M1(D)

)2L

. Then for all k ∈ {1, . . . , L}, there exists a positive constant

C0 such that

W 1,1
1 (νk,1c (t), νk,2c (t)) +W 1,1

1 (νk,1t (t), νk,2t (t))

≤ C0

L∑
i=1

(
W 1,1

1 (νi,10,c, ν
i,2
0,c) +W 1,1

1 (νi,10,t , ν
i,2
0,t)
)
, t ∈ [0, T ]. (65)

Here we have assumed for each q = 1, 2, νq0,c = (νk,q0,c )Lk=1 and the same for νqc , ν
q
t

and νq0,t.

Proof. Let (νk,qc , νk,qt ) : [0, T ] →
(
Mac

0 (D) ∩M1(D)
)2

be two solutions to system

(35),(36) over the time interval [0, T ] associated to the initial data (νk,q0,c , ν
k,q
0,t ) ∈(

Mac
0 (D) ∩ M1(D)

)2

with q = 1, 2 and k ∈ {1, . . . , L}. Let t ∈ [0, T ] be fixed

and denote ∆t = T
2j for a fixed j ∈ N+. Consider the partition of [0, T ] into

sub-intervals [0,∆t), [∆t, 2∆t), . . . , [(2j − 1)∆t, 2j∆t) and let n be the maximum
integer such that t− n∆t ≥ 0, then t ∈ [n∆t, (n+ 1)∆t). As mentioned in Section

2.5, (νk,qc , νk,qt ) = lim
j→∞

(νk,qj,c , ν
k,q
j,t ), where (νk,qj,c , ν

k,q
j,t ) is constructed according to the

following scheme:

(νk,qj,c (0), νk,qj,t (0)) := (νk,q0,c , ν
k,q
0,t );

(νk,qj,c ((n+ 1)∆t), νk,qj,t ((n+ 1)∆t)) := T ν
k,q
j,c (n∆t),νk,qj,t (n∆t)

∆t #(νk,qj,c (n∆t), νk,qj,t (n∆t))+

+ ∆t
(
G1(νk,qj,c (n∆t), νk,qj,t (n∆t), νk

′,q
j,c (n∆t), νk

′,q
j,t (n∆t)),

G2(νk,qj,c (n∆t), νk,qj,t (n∆t), νk
′,q
j,c (n∆t), νk

′,q
j,t (n∆t))

)
;

(νk,qj,c (t), νk,qj,t (t)) := T ν
k,q
j,c (n∆t),νk,qj,t (n∆t)

τ #(νk,qj,c (n∆t), νk,qj,t (n∆t))+

+ τ
(
G1(νk,qj,c (n∆t), νk,qj,t (n∆t), νk

′,q
j,c (n∆t), νk

′,q
j,t (n∆t)),

G2(νk,qj,c (n∆t), νk,qj,t (n∆t), νk
′,q
j,c (n∆t), νk

′,q
j,t (n∆t))

)
.
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with k′ ∈ {k − 1, k + 1} and τ = t− n∆t. Observe that for t = (n+ 1)∆t we have
τ = ∆t.
The key observation is that in this approximation procedure the equations in (9)
for the evolution of different vehicles, are decoupled. The consequence is that the

flow T ν
k,q
j,c (n∆t),νk,qj,t (n∆t)

τ has two components (T k,qc , T k,qt ) representing respectively
the evolution of cars and trucks.

For every t ∈ [0, T ],

W 1,1
1 (νk,1j,c (t), νk,2j,c (t)) =

= W 1,1
1

(
T k,1c #(νk,1j,c (n∆t)) + τG1(νk,1j,c (n∆t), νk,1j,t (n∆t), νk

′,1
j,c (n∆t), νk

′,1
j,t (n∆t)) ,

T k,2c #(νk,2j,c (n∆t)) + τG1(νk,2j,c (n∆t), νk,2j,t (n∆t), νk
′,2
j,c (n∆t), νk

′,2
j,t (n∆t))

)
≤W 1,1

1

(
T k,1c #(νk,1j,c (n∆t)) , T k,2c #(νk,2j,c (n∆t))

)
+ τW 1,1

1

(
G1(νk,1j,c (n∆t), νk,1j,t (n∆t), νk

′,1
j,c (n∆t), νk

′,1
j,t (n∆t)),

G1(νk,2j,c (n∆t), νk,2j,t (n∆t), νk
′,2
j,c (n∆t), νk

′,2
j,t (n∆t))

)
(66)

Lemma 2.3 together with the estimate (6.14) in [15] yield the existence of a radius
ρ > 0 and three constants L1, L2, L3 > 0 such that

W 1,1
1

(
T k,1c #(νk,1j,c (n∆t)) , T k,2c #(νk,2j,c (n∆t))

)
≤W 1,1

1

(
T k,1c #(νk,1j,c (n∆t)) , T k,1c #(νk,2j,c (n∆t))

)
+W 1,1

1

(
T k,2c #(νk,1j,c (n∆t)) , T k,2c #(νk,2j,c (n∆t))

)
≤ L1W

1,1
1 (νk,1j,c (n∆t), νk,2j,c (n∆t))

+ L3

∫ t

n∆t

eL2(t−s)
[
W 1,1

1 (νk,1j,c (s)), νk,2j,c (s)) +W 1,1
1 (νk,1j,t (s)), νk,2j,t (s))

]
ds

(67)

where in the first passage we applied the triangular inequality and then the Lipschitz
continuity of the flow map with an application of the Gronwall’s Lemma.
On the other side the source G1 is Lipschitz continuous in all the input with constant
LG1

, therefore

W 1,1
1

(
G1(νk,1j,c (n∆t), νk,1j,t (n∆t), νk

′,1
j,c (n∆t), νk

′,1
j,t (n∆t)),

G1(νk,2j,c (n∆t), νk,2j,t (n∆t), νk
′,2
j,c (n∆t), νk

′,2
j,t (n∆t))

)
≤ LG1

(
W 1,1

1 (νk,1j,c (n∆t), νk,2j,c (n∆t)) +W 1,1
1 (νk,1j,t (n∆t), νk,2j,t (n∆t))

+W 1,1
1 (νk

′,1
j,c (n∆t), νk

′,2
j,c (n∆t)) +W 1,1

1 (νk
′,1
j,t (n∆t), νk

′,2
j,t (n∆t))

)
(68)

Combining recursively (66)-(67)-(68) we find the following estimate:
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W 1,1
1 (νk,1j,c (t), νk,2j,c (t)) ≤ C1

L∑
i=1

(
W 1,1

1 (νi,10,c, ν
i,2
0,c) +W 1,1

1 (νi,10,t , ν
i,2
0,t)
)

(69)

with C1 positive constant. In analogous way we can derive

W 1,1
1 (νk,1j,t (t), νk,2j,t (t)) ≤ C2

L∑
i=1

(
W 1,1

1 (νi,10,c, ν
i,2
0,c) +W 1,1

1 (νi,10,t , ν
i,2
0,t)
)

(70)

for C2 > 0. By adding (69) to (70) and taking the limit for j →∞ we obtain (65)
with C0 = max{C1, C2}.

5. Future Work. In the future, one may study the dynamics of finitely many ve-
hicles including cars and trucks on a multi-lane in an appropriate numerical scheme.
In particular, the parameters for the Bando-Follow-the-leader model and the lane-
changing probability functions are needed to be trained. Furthermore, the conver-
gence of the finite-dimensional hybrid system to the Vlasov type PDE with a source
term can also be studied numerically. In addition, one may also add the dynamics of
finitely many controlled autonomous vehicles to the study and focus on an optimal
control problem to minimize, for instance, energy cost, and so on. In that case,
we expect to have the convergence of a finite-dimensional hybrid optimal control
problem to an infinite-dimensional hybrid optimal control problem.
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