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Abstract

Given a bounded open set Ω ⊂ R2, we study the relaxation of the nonparametric area func-
tional in the strict topology in BV (Ω;R2), and compute it for vortex-type maps, and more
generally for maps in W 1,1(Ω; S1) having a finite number of topological singularities. We also
extend the analysis to some specific piecewise constant maps in BV (Ω;S1), including the sym-
metric triple junction map.
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1 Introduction

Let Ω ⊂ R2 be a bounded open set and v = (v1, v2) : Ω → R2 be a map of class C1(Ω;R2). The
area functional A(v; Ω) computes the 2-dimensional Hausdorff measure H2 of the graph

Gv := {(x, y) ∈ Ω× R2 : y = v(x)} (1.1)

of v, a Cartesian 2-manifold in Ω× R2 ⊂ R4, and is given by the classical formula1

A(v; Ω) =

∫
Ω

√
1 + |∇v1|2 + |∇v2|2 + (det∇v)2dx, (1.2)

where

det∇v =
∂v1

∂x1

∂v2

∂x2
− ∂v1

∂x2

∂v2

∂x1
(1.3)

is the Jacobian determinant of v. As opposite to the case when the map is scalar-valued, the
functional A(·,Ω) is not convex, but only polyconvex in ∇v, and its growth is not linear, due to
the presence of det(∇v).
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1Clearly, (1.2) is finite if v ∈W 1,1(Ω;R2) and det∇v ∈ L1(Ω).
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An interesting problem is to try to extend A(· ; Ω) out of C1(Ω;R2): setting for convenience

A(v; Ω) := +∞ ∀v ∈ L1(Ω;R2) \ C1(Ω;R2),

let us consider the sequential lower semicontinuous envelope

Aτ (u; Ω) := inf

{
lim inf
k→+∞

A(vk; Ω) : (vk) ⊂ C1(Ω;R2) ∩ S, vk
τ−→ u

}
∀u ∈ S (1.4)

of A(· ; Ω) with respect to a metrizable topology τ on a subspace S ⊆ L1(Ω;R2) containing those
v ∈ C1(Ω;R2) with A(v; Ω) < +∞, and choose this as the extended notion of area.

A typical choice is S = L1(Ω;R2) and τ the L1(Ω;R2) topology, i.e., Aτ = AL1 , a case in
which little is known2. It is not difficult to show that the domain of AL1 is properly contained in
BV (Ω;R2), but its characterization is not available. Also, one can prove that

AL1(u; Ω) ≥
∫

Ω

√
1 + |∇u|2dx+ |Dsu|(Ω), (1.5)

but the inequality might be strict [1]. Here ∇u is the approximate gradient of u, | · | is the Frobenius
norm, Dsu is the singular part of the distributional gradient Du of u, and |Dsu|(Ω) stands for the
total variation of Dsu. Finding the expression of AL1(· ; Ω) is possible, at the moment, only in
very special cases. This is also due to its nonlocal behaviour, since for several maps u, the set
function U 7→ AL1(u;U) is not sub-additive with respect to the open set U ⊆ Ω. This happens,
for example, for the symmetric triple junction map uT on an open disk B`, as conjectured in [11],
and proven in [1]. A complete picture can be found in [6, 22], where AL1(uT ;B`) is explicitely
computed, taking advantage of the symmetry of the map and of B`. We refer also to [3] where an
upper bound inequality is proved for a triple junction map without symmetry assumptions.

Also for the vortex map uV : B` \ {0} → S1,

uV (x) :=
x

|x|
, (1.6)

the above mentioned nonsubadditivity holds. In [1] it is proved that

AL1(uV ;B`) =

∫
B`

√
1 + |∇uV |2dx+ π if ` is sufficiently large, (1.7)

while

AL1(uV ;B`) <

∫
B`

√
1 + |∇uV |2dx+ π if ` is sufficiently small. (1.8)

The explicit computation of AL1(uV ;B`) for small values of ` has been done in [4], again strongly
exploiting the symmetries, where it is shown that AL1(uV ;B`) is related to a Plateau-type problem
in codimension 1, whose solution is a sort of (half) catenoid constrained to contain a segment. This
“catenoid” describes the vertical part of a Cartesian current obtained as a limit of the graphs of a
recovery sequence. Specifically, the main result in [4] reads as

AL1(uV ;B`) =

∫
B`

√
1 + |∇uV |2dx+ inf Fϕ(h, ψ), (1.9)

2For scalar valued maps it is known that the domain of AL1(·; Ω) is BV (Ω), and on BV (Ω) the relaxed functional
can be represented as the right-hand side of (1.5), see [10,15].
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where the infimum is taken over all functions h ∈ C0([0, 2`]; [−1, 1]) with h(0) = h(2`) = 1, and
ψ ∈ BV ((0, 2`)× (−1, 1)) with ψ = 0 on UGh, and

Fϕ(h, ψ) =

∫
(0,2`)×(−1,1)

√
1 + |∇ψ|2 dtds+ |Dψ|((0, 2`)× (−1, 1))

+

∫
((0,2`)×{−1,1})∪({0,2`}×(−1,1))

|ψ − ϕ|dH1 − |UGh|,
(1.10)

where ϕ : R × [−1, 1] → R is ϕ(t, s) =
√

1− s2, and UGh is the region in [0, 2`] × [−1, 1] upon
the graph of h. The latter functional accounts for a Plateau problem in non-parametric form with
partial free boundary on a plane domain (see also [5] for more details). If ` is large enough, a
minimizer of Fϕ has the shape of two half-disks of radius 1, whose total area is π, recovering the
result in (1.7).

The L1-topology is rather weak, and so it is convenient in order to show compactness results,
in the effort of proving existence of minimizers of some possible weak formulation of the two-
codimensional Cartesian Plateau problem. However, the above discussion illustrates the difficulties
of the study of the corresponding relaxation problem. Besides all nonlocality phenomena, the L1

convergence does not provide any control on the derivatives of v and, of course, neither on the
Jacobian determinant. The aim of the present paper is to study the relaxation of the area in
S = BV (Ω;R2) in a different topology, stronger than the L1-topology, in order to avoid nonlocality
and keep some control of the gradient terms. Specifically, we will take as τ in (1.4) the topology
induced by the strict convergence in BV (Ω;R2). This notion of convergence, weaker than the strong
W 1,1 topology, and in general not related with the weak W 1,1 topology (see Remark 2.3), allows to
consider relaxation in (1.4) for all BV -maps. We recall that (vk) converges to u strictly BV (Ω;R2)
if vk → u in L1(Ω;R2) and |Dvk|(Ω)→ |Du|(Ω) (see Section 2.1 for details). We are therefore led
to consider, for all u ∈ BV (Ω;R2), the corresponding relaxed area functional Aτ = ABV ,

ABV (u; Ω) := inf

{
lim inf
k→+∞

A(vk; Ω) : (vk) ⊂ C1(Ω;R2) ∩BV (Ω;R2), vk → u strictly BV (Ω;R2)

}
.

(1.11)
In the first part of the paper we restrict our analysis to maps w : B`\{0} → S1 = {x ∈ R2 : |x| = 1}
of the form

w(x) = ϕ(uV (x)) = ϕ

(
x

|x|

)
, (1.12)

with ϕ : S1 → S1 Lipschitz continuous. The vortex map corresponds to the case ϕ = id.
After setting some notation and preliminaries in Section 2, in particular the total variation of the

Jacobian, the Jacobian distributional determinant Det∇u (Section 2.2), and the degree (Section
2.3), in Section 3 we prove the following result:

Theorem 1.1. Let ` > 0, and w : B` \ {0} → S1 be as in (1.12). Then

ABV (w;B`) =

∫
B`

√
1 + |∇w|2dx+ π|deg(ϕ)|. (1.13)

In particular,

ABV (uV ;B`) =

∫
B`

√
1 + |∇uV |2dx+ π. (1.14)

By (1.7), for ` large enough we find ABV (uV ;B`) = AL1(uV ;B`) while by (1.8), for small values
of ` we have ABV (uV ;B`) > AL1(uV ;B`). We also remark that for any radius `, in the computation
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of ABV (uV ;B`), the minimal surface employed to fill the holes of the graph GuV ⊂ R4 of uV is a
two dimensional disc living upon the origin of R2.

In Section 4 we extend our analysis to a more general class of maps u ∈ W 1,1(Ω;S1). To state
our result, we recall that when |Det∇u|(Ω) < +∞, then Det∇u can be written as

Det∇u = π

m∑
i=1

diδxi ,

where the points xi ∈ Ω are the topological singularities of u, around which the degree of u is
nontrivial and equals di ∈ Z \ {0} (see Theorem 2.12). We then prove the following:

Theorem 1.2. Let u ∈ W 1,1(Ω; S1). Suppose that Det∇u is a Radon measure with finite total
variation |Det∇u|(Ω). Then

ABV (u; Ω) =

∫
Ω

√
1 + |∇u|2dx+ |Det∇u|(Ω) =

∫
Ω

√
1 + |∇u|2dx+ π

N∑
i=1

|di|, (1.15)

where N ∈ N and d1, . . . , dN ∈ Z \ {0} are such that Det∇u = π
∑N

i=1 diδxi.

The total variation of Det∇u can be characterized by relaxation. More precisely, for maps
u ∈ W 1,2

loc (Ω;R2), we introduce the functional TVJ(v; Ω) :=
∫

Ω |det∇v|dx, measuring the total
variation of the Jacobian of v, and consider

TVJW 1,1(u; Ω) := inf

{
lim inf
k→+∞

TVJ(vk; Ω) : (vk) ⊂ C1(Ω;R2) ∩W 1,1(Ω;R2), vk → u in W 1,1(Ω;R2)

}
,

for all u ∈W 1,1(Ω;R2). It is known (see Theorem 2.12) that for u as in Theorem 1.2,

TVJW 1,1(u; Ω) = |Det∇u|(Ω).

In Theorem 4.3 we show that

TVJW 1,1(u; Ω) = TVJBV (u; Ω),

where

TVJBV (u; Ω) := inf

{
lim inf
k→+∞

TVJ(vk; Ω) : (vk) ⊂ C1(Ω;R2) ∩BV (Ω;R2), vk → u strictly BV (Ω;R2)

}
.

Eventually, in Section 5 we consider some piecewise constant maps valued in S1, in particular
the symmetric triple junction map (see Section 5 for the precise definition). If we call Tαβγ the
equilateral triangle with vertices α, β, γ ∈ S1 and L := |β − α| its side length, then we have:

Theorem 1.3. Let uT : B` := B`(0)→ {α, β, γ} be the symmetric triple-point map. Then

ABV (uT ;B`) = |B`|+ LH1(JuT ) + |Tαβγ |, (1.16)

where | · | is the Lebesgue measure and JuT is the jump set of uT .

In particular, in view of the results in [1], [6], we find ABV (uT ;B`) > AL1(uT ;B`). We will also
see that the same argument used to prove Theorem 1.3 provides a proof also for a symmetric n-uple
junction function, as expressed in Corollary 5.3.
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As opposite to AL1(u; Ω), we see that the functional ABV (u; Ω), at least for the maps u taking
values in S1 considered here, is local, and admits an integral representation.

We conclude this introduction by pointing out that, at the present stage, we miss the general-
ization of our results in higher dimension or codimension. On the one hand the strict convergence
in BV provides some control on the gradient of u, and consequently, on the distributional deter-
minant. In the case of maps u : Ω ⊂ R3 → R3, for instance, this notion of convergence might
be useful to get some control of the 2 × 2-subdeterminants of ∇u, but seems too weak to control
the higher order minors. On the other hand, even in the case of maps u : Ω ⊂ R3 → R2, the
strict convergence in BV is not sufficient to show the counterpart of Proposition 2.4 (see Remark
2.5) which, in our arguments, is crucial to localize the concentrations of | det∇vk| (where (vk) is a
sequence converging to u).

2 Preliminaries

In this section we collect some preliminaries. For an integerM ≥ 2, set SM−1 := {x ∈ RM : |x| = 1}.

Theorem 2.1 (Reshetnyak). Let Ω ⊆ Rn be an open set and µh, µ be (finite) Radon measures

valued in RM . Suppose that µh
∗
⇀ µ and |µh|(Ω)→ |µ|(Ω). Then

lim
h→+∞

∫
Ω
f

(
x,

µh
|µh|

(x)

)
d|µh|(x) =

∫
Ω
f

(
x,

µ

|µ|
(x)

)
d|µ|(x)

for any continuous bounded function f : Ω× SM−1 → R.

Proof. See for instance [2, Theorem 2.39].

2.1 Strict BV -convergence

In what follows, Ω ⊂ R2 is a bounded open set. For any u ∈ BV (Ω;R2), the distributional derivative
Du is a Radon measure valued in R2×2. The symbol |Du|(Ω) stands for the total variation of Du
(see [2, Definition 3.4, pag. 119], with | · | the Frobenius norm).

Definition 2.2 (Strict convergence). Let u ∈ BV (Ω;R2) and (uk) ⊂ BV (Ω;R2). We say that
(uk) converges to u strictly BV , if

uk
L1

−→ u and |Duk|(Ω)→ |Du|(Ω).

The topology of the strict convergence in BV is metrized by the distance

(u, v)→ ‖u− v‖L1(Ω;R2) + ||Du|(Ω)− |Dv|(Ω)| , u, v ∈ BV (Ω;R2).

Remark 2.3 (Weak convergences and strict convergence). If uk → u strictly BV (Ω) then
uk ⇀ u w∗-BV (Ω), where uk ⇀ u w∗-BV (Ω) means:

uk
L1

−→ u and

∫
Ω
ϕ ·Duk →

∫
Ω
ϕ ·Du ∀ϕ ∈ C0

c (Ω;R2),

with · the scalar product in R2. A similar definition holds for vector valued maps. The converse is
not true, already in one dimension: consider the sequence (fk) ⊂W 1,1((0, 2π)),

fk(x) :=
1

k
sin(kx) ∀x ∈ (0, 2π).
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Then fk ⇀ 0 weakly in W 1,1((0, 2π)), so in particular w∗-BV , but the convergence is not strict
in BV , since ‖f ′k‖L1((0,2π)) = 4 for all k ∈ N. We underline that on W 1,1(Ω;R2) the strict BV
convergence is not comparable with the weak convergence: the following slight modification of
[13, Example 4, pag. 42], provides a sequence converging strictly BV ((0, 1)) but not weakly in
W 1,1((0, 1)). Consider the sequence (gk) ⊂ L1((0, 1)) defined by

gk(x) := 2k
k−1∑
i=0

χ[
i
k
, i
k

+ 1

k2k

](x) ∀x ∈ [0, 1], ∀k ≥ 1,

where χA is the characteristic function of the set A. Then ‖gk‖L1 = 1 for every k ∈ N. Now, let
fk ∈ C([0, 1]) be the primitive of gk vanishing at 0; then (fk) converges uniformly to the identity,
and ‖f ′k‖L1 = ‖gk‖L1 = 1 = ‖id′‖L1 for any k ∈ N, and so fk → id strictly BV ((0, 1)). On the
other hand, (f ′k) cannot converge weakly in L1 since it is not equi-integrable (see [13, Theorem 2,
pag. 50]), since gk tends to concentrate a large mass in arbitrarily small sets, as k becomes large.

However, the following result (needed in the proof of Propositions 3.3 and 4.4) shows that the
strict BV convergence implies the uniform one, under certain hypotheses.

Proposition 2.4 (Strict convergence in one dimension). Let I = (a, b) ⊂ R be a bounded
interval and let (fk) be a sequence in W 1,1((a, b)). Suppose that (fk) converges strictly BV ((a, b))
to f ∈W 1,1((a, b)). Then fk → f uniformly in (a, b).

Proof. First of all, for any open interval J ⊂ I we have

lim
k→+∞

∫
J
|f ′k|dx =

∫
J
|f ′|dx. (2.1)

Indeed, since fk ⇀ f w∗-BV (I), by the lower semicontinuity of the variation, one has∫
J
|f ′|dx ≤ lim inf

k→+∞

∫
J
|f ′k|dx.

On the other hand, using the strict BV convergence on I and again the lower semicontinuity of
the variation, we get∫

J
|f ′|dx =

∫
J
|f ′|dx =

∫
I
|f ′|dx−

∫
I\J
|f ′|dx ≥ lim

k→+∞

∫
I
|f ′k|dx− lim inf

k→+∞

∫
I\J
|f ′k|dx

= lim sup
k→+∞

(∫
I
|f ′k|dx−

∫
I\J
|f ′k|dx

)
= lim sup

k→+∞

∫
J
|f ′k|dx,

so (2.1) holds.
Now, since f and fk belong to W 1,1(I), we may assume that they are continuous. By contradiction,
suppose that (fk) does not converge uniformly to f , so that, up to a not relabeled subsequence, we
may suppose:

∃δ > 0 ∃(xk) ⊂ I ∃k0 ∈ N : |fk(xk)− f(xk)| > δ ∀k ≥ k0, (2.2)

and that there exists x ∈ I such that xk → x. Now consider an open interval E ⊂ I such that
x ∈ E and ∫

E
|f ′|dx < δ

4
(2.3)
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(in case x = a or x = b, E is a semi-open interval). Using (2.1), we can find an index k1 ∈ N such
that k1 ≥ k0 and ∫

E
|f ′k|dx <

δ

2
∀k ≥ k1. (2.4)

Moreover, there exists k2 ∈ N, k2 ≥ k1, such that xk ∈ E for every k ≥ k2. Pick a point y ∈ E;
then for every k ≥ k2, using (2.2), (2.3), and (2.4), we have

|fk(y)− f(y)| ≥ −|fk(y)− fk(xk)|+ |fk(xk)− f(xk)| − |f(xk)− f(y)|

≥ −
∫ y

xk

|f ′k|dx+ δ −
∫ y

xk

|f ′|dx ≥ −
∫
E
|f ′k|dx+ δ −

∫
E
|f ′|dx

≥ −δ
2

+ δ − δ

4
=
δ

4
.

Hence, (fk) (as any subsequence of it) does not converge to f pointwise at every point of E which

leads to a contradiction, since |E| > 0 and fk
L1(E)−−−−→ f .

Remark 2.5. Proposition 2.4 is still valid with the same proof when fk and f are vector valued.
On the contrary, it is crucial that the domain is unidimensional, since counterexamples can be
done already in dimension 2: for instance, the sequence (fk) given by fk(x) := max{(1− k|x|), 0},
x ∈ R2, converges to 0 in W 1,1(R2) but not uniformly in any neighborhood of the origin.

2.2 The Jacobian determinant and its total variation

Definition 2.6 (Total variation of the Jacobian). Let u ∈ W 1,2
loc (Ω;R2). We define the total

variation of the Jacobian of u as

TVJ(u; Ω) =

∫
Ω
|det∇u|dx. (2.5)

We need to define TVJ(·; Ω) for other Sobolev maps, in particular for maps with singularities,
the main example being the vortex map uV in (1.6). This can be accomplished in two ways.
The first one is to define the distributional Jacobian determinant Det∇u: if3 p ∈ [1, 2) and u ∈
W 1,p(Ω;R2) ∩ L∞loc(Ω;R2),

< Det∇u, ϕ >:= −1

2

∫
Ω

adj∇u(x)u(x) · ∇ϕ(x)dx ∀ϕ ∈ C∞c (Ω), (2.6)

where adj∇u :=

(
∂u2
∂y −∂u1

∂y

−∂u2
∂x

∂u1
∂x

)
. This definition is justified by the property

u ∈ C2(Ω;R2)⇒ det∇u =
1

2
div(adj∇uu).

Notice that, if u ∈ C2(Ω;R2) and Br(x) ⊂⊂ Ω, then by the divergence theorem, writing the outward

3If p = 2 then u ∈W 1,2(Ω;R2).
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unit normal to ∂Br(x) as ν = (ν1, ν2), and its π/2-counterclockwise rotation ν⊥ = τ = (τ1, τ2),∫
Br(x)

det∇u dz =
1

2

∫
∂Br(x)

(adj∇uu) · ν dH1

=
1

2

∫
∂Br(x)

((∂u2

∂y
u1 −

∂u1

∂y
u2

)
ν1 +

(
− ∂u2

∂x
u1 +

∂u1

∂x
u2

)
ν2

)
dH1

=
1

2

∫
∂Br(x)

(
u1

(∂u2

∂y
,−∂u2

∂x

)
· ν + u2

(
− ∂u1

∂y
,
∂u1

∂x

)
· ν
)
dH1

=
1

2

∫
∂Br(x)

(u1∇u2 · τ − u2∇u1 · τ) dH1

=
1

2

∫
∂Br(x)

(
u1
∂u2

∂s
− u2

∂u1

∂s

)
ds.

(2.7)

By [18, Formula (3.7)] (which in turn is a consequence of Theorem 3.2 in [18]), one sees that formula
(2.7) is valid also for u ∈W 1,∞(Ω;R2).

We recall that
Det∇u = det∇u ∀u ∈W 1,2(Ω;R2),

while if p ∈ [1, 2) they can differ, for instance det∇uV is null, whereas Det∇uV = πδ0 (see [20]).
Then one is led to define TVJ(u; Ω) = |Det∇u|(Ω), for those u for which Det∇u is a Radon measure
with finite total variation in Ω.

The second way is to argue by relaxation. For p ∈ [1, 2] and u ∈W 1,p(Ω;R2) one sets

TVJW 1,p(u; Ω) := inf

{
lim inf
k→+∞

TVJ(vk; Ω) : (vk) ⊂ C1(Ω;R2) ∩W 1,p(Ω;R2), vk → u in W 1,p

}
.

(2.8)

It is known that TVJ(u; Ω) = TVJW 1,2(u; Ω) for u ∈ W 1,2(Ω;R2). Moreover, when p ∈ [1, 2),
TVJW 1,p(·; Ω) coincides with the total variation of the Jacobian distributional determinant of u,
provided u ∈ W 1,p(Ω; S1) (see Theorem 2.12 below, and [9, Theorem 11 and Remark 12]). The
same conclusions do not hold in general, for maps in W 1,p(Ω;R2) which do not take values in
S1 (see [9, Open problem 5]). Notice also that relaxation in (2.8) can also be done with respect
to the weak convergence in W 1,p (we do not treat this in the present paper and refer the reader
to [9, 12,20]).

We emphasize that we required C1-regularity for the approximating sequences in (2.8). This
ensures that such sequences are contained in W 1,2

loc (Ω;R2) which is the minimal feature to guarantee

that det∇vk ∈ L1
loc(Ω). Replacing the C1-regularity with the W 1,2

loc -regularity4 gives rise to the

same relaxed functionals; this can be seen by a density argument, since any v ∈ W 1,2
loc (Ω;R2)

can be approximated by maps vk ∈ C1(Ω;R2) in W 1,2
loc (Ω;R2) (such a convergence ensures the

corresponding convergence of TVJ(vk; Ω) to TVJ(v; Ω)). In the same way, one can also replace the
C1-regularity with the C∞-regularity.

One can also relax TVJ with respect to the strict BV convergence: this will be the content
of Theorem 4.3. Moreover, the relaxation with respect to the L1 convergence is possible, but
not interesting for us, because we will deal with maps with values in S1, so the resulting relaxed
functional turns out to be zero (see [9, Corollary 5]).

4As sometimes can be found in literature.
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2.3 Multiplicity and degree

In what follows Br(x) denotes the open ball of R2 centered at x of radius r > 0.

Definition 2.7 (Multiplicity). Given u ∈ W 1,1(Ω;R2), for all measurable sets A ⊆ Ω and all
y ∈ R2, we set

mult(u,A, y) := ]{u−1(y) ∩A ∩Ru},

where Ru ⊆ Ω is the set of regular points of u (see [13, pag. 202]). Similarly, if u ∈W 1,1(∂Br(x);S1),
we define

mult(u,A, y) := ]{u−1(y) ∩A ∩Ru},

for all measurable sets A ⊆ ∂Br(x) and all y ∈ S1.

Let u ∈W 1,1(Ω;R2); by [13, Theorem 1-6, Section 3.1.5], if det∇u ∈ L1(Ω), we have∫
A
|det∇u|dx =

∫
R2

mult(u,A, y)dy, (2.9)

for any measurable set A ⊆ Ω. In particular, mult(u,A, ·) is measurable and finite a.e. in R2.
If a Lipschitz continuous map ϕ : ∂Br(x)→ S1 has constant multiplicity on ∂Br(x), then we will

make use of the simplified notation

mult(ϕ) := mult(ϕ, ∂Br(x), ·).

Definition 2.8 (Degree). Given u ∈ W 1,1(Ω;R2) with det∇u ∈ L1(Ω), for all measurable sets
A ⊆ Ω, we let

deg(u,A, y) :=
∑

x∈u−1(y)∩A∩Ru

sign(det∇u(x)), (2.10)

for those y ∈ R2 for which mult(u,A, ·) is finite.

Clearly
mult(u,A, ·) ≥ |deg(u,A, ·)|. (2.11)

By [13, Theorem 1-6, Section 3.1.5], if det∇u ∈ L1(Ω), then∫
A

det∇u dx =

∫
R2

deg(u,A, y)dy, (2.12)

for any measurable set A ⊆ Ω, and by (2.9) and (2.11)∫
Ω
|det∇u|dx ≥

∫
R2

|deg(u,Ω, y)|dy. (2.13)

Remark 2.9. The notion (2.10) of degree is too weak to be related to the trace of u on ∂Ω.
However, homological invariance is recovered under stronger hypotheses on u; for instance if u, v
are Lipschitz in Ω̂ ⊃⊃ Ω and u = v in Ω̂\Ω, then deg(u,Ω, ·) = deg(v,Ω, ·) a.e. in R2 (see [13, pag.
233 and 469]). In particular, if u, v : Br(x) → R2 are Lipschitz continuous and u = v on ∂Br(x),
then we might extend u to a Lipschitz map u on R2; the map v coinciding with v in Br(x) and
with u outside Br(x) is a Lipschitz extension of v. Hence deg(u,Br(x), ·) = deg(v,Br(x), ·), which
implies deg(u,Br(x), ·) = deg(v,Br(x), ·).

9



Definition 2.10. For an open disc Br(x) ⊂ R2 and u ∈W 1,1(∂Br(x);S1), we define

deg(u) :=
1

2π

∫
∂Br(x)

(
u1
∂u2

∂s
− u2

∂u1

∂s

)
ds ∈ Z. (2.14)

If u ∈ W 1,1(Ω;S1), Br(x) ⊂⊂ Ω, and u ∂Br(x) ∈ W 1,1(∂Br(x);S1) (which is true for almost
every r), we set

deg(u, ∂Br(x)) := deg(u ∂Br(x)). (2.15)

Remark 2.11. If u : Br(x)→ R2 is Lipschitz continuous and |u| = 1 on ∂Br(x), then deg(u,Br(x), ·)
is constant in B1 = B1(0), and coincides with deg(u, ∂Br(x)). Indeed deg(u,Br(x), ·) is a constant
c in B1 thanks to [16, Theorem 1.3] (and zero on R2 \ B1), and then it is sufficient to check that
deg(u,Br(x), y) = deg(u, ∂Br(x)), for a.e. y ∈ B1. By applying (2.7) to the left-hand side of (2.12)
one has∫

R2

deg(u,Br(x), y) dy =

∫
B1

deg(u,Br(x), y) dy = πc =

∫
Br(x)

det∇u dx = πdeg(u ∂Br(x)).

In this particular case, thanks to (2.13), we conclude∫
Br(x)

|det∇u|dx ≥
∫
B1

|deg(u, ∂Br(x))|dy = π|deg(u, ∂Br(x))|. (2.16)

2.4 Singular Sobolev maps with values in S1

We will make use of the following theorems.

Theorem 2.12. Let u ∈W 1,1(Ω; S1). Then

TVJW 1,1(u; Ω) < +∞⇐⇒ Det∇u is a Radon measure.

In this case TVJW 1,1(u; Ω) = |Det∇u|(Ω), and there exists a finite set {x1, . . . , xm} of points in Ω
such that

Det∇u = π
m∑
i=1

diδxi , (2.17)

where di = deg(u, ∂Bri(xi)) ∈ Z \ {0} for a.e. ri > 0 small enough. In particular

|Det∇u|(Ω) = π

m∑
i=1

|di|.

Proof. See for instance [9, Theorem 11] and [17, Proposition 5.2].

Remark 2.13. Theorem 2.12 provides the existence of a radius ri > 0 such that the number di
not only is the degree of the trace of u on ∂Bri(xi), but also on almost every circumference ∂Bρ(xi)
with ρ < ri. Moreover, on these circumferences, we may assume that u is continuous, since its
trace is still of class W 1,1. For more details, we refer the reader to [9].

Theorem 2.14. Let u ∈W 1,1(S1; S1). Then there exists a sequence in C∞(S1;S1) converging to u
in W 1,1(S1; S1).

Proof. See [19, Theorem 2.1].

Theorem 2.15. Let B ⊂ R2 be a bounded open connected set, and u ∈ W 1,1(B; S1). Then there
exists a sequence in C∞(B; S1) converging to u in W 1,1(B; S1) if and only if Det∇u = 0 in the
sense of distribution.

Proof. See [21, Theorem 1.5].
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3 Relaxation for vortex-type maps in W 1,p(B`;S1): Theorem 1.1

In this section we focus on maps w ∈ W 1,1(B`; S1) of the form (1.12), where ϕ : S1 → S1 is a
Lipschitz map.

Of course det∇w = 0 a.e. on B`. Moreover, w ∈ W 1,p(B`;S1) for every p ∈ [1, 2); indeed, for
x ∈ B` \ {0}, let us write in polar coordinates

w(x) = w̃(ρ, θ) = ϕ(cos θ, sin θ) =: f(θ) = (f1(θ), f2(θ)) ∀ρ ∈ (0, `), ∀θ ∈ [0, 2π). (3.1)

Then for a.e. θ ∈ [0, 2π) and all ρ ∈ (0, `)

∇ρ,θw̃(ρ, θ) =

(
0 f ′1(θ)
0 f ′2(θ)

)
, |∇ρ,θw̃(ρ, θ)| = |∂θw̃(ρ, θ)| = |f ′(θ)|,

∫
B`

|∇w|pdx =

∫ 2π

0

∫ `

0
ρ

(
|∂ρw̃|2 +

|∂θw̃|2

ρ2

) p
2

dρdθ

=

∫ 2π

0

∫ `

0

|f ′(θ)|p

ρp−1
dρdθ ≤ 2πlip(f)p

∫ `

0

1

ρp−1
dρ < +∞;

(3.2)

in particular ∫
B`

|∇w|dx = `

∫ 2π

0
|f ′(θ)|dθ. (3.3)

Remark 3.1. We have used that f in (3.1) is Lipschitz continuous in [0, 2π). Let us check that
lip(f) = lip(ϕ) and, moreover, Var(f) :=

∫ 2π
0 |f

′(θ)|dθ =
∫
S1 |∇

S1ϕ(y)|dH1(y) = Var(ϕ), where

∇S1ϕ(z) := lim
y→z

y∈S1\{z}

ϕ(y)− ϕ(z)

|y − z|
, (3.4)

is the (tangential) derivative of ϕ on S1, that is well-defined for a.e. z ∈ S1 as an element of the
tangent space Tϕ(z)S1 to S1 at ϕ(z). Fix y0 ∈ S1 where ϕ is differentiable, and take the unique
θ0 ∈ [0, 2π) such that y0 = (cos θ0, sin θ0). From (3.4), it follows

∇S1ϕ(y0) =
d

dθ |θ=θ0
ϕ(cos θ, sin θ) = f ′(θ0), (3.5)

and therefore lip(ϕ) = lip(f). Moreover

Var(ϕ) =

∫
S1
|∇S1ϕ(y)|dH1(y) =

∫ 2π

0
|f ′(θ)|dθ = Var(f). (3.6)

In particular, from (3.3), we conclude∫
B`

|∇w| dx = `Var(ϕ). (3.7)

Remark 3.2 (Lifting). A lifting of ϕ is a map Φ : [0, 2π]→ R such that

ϕ(cos θ, sin θ) = (cos(Φ(θ)), sin(Φ(θ))) ∀θ ∈ [0, 2π]. (3.8)

The function f(·) = ϕ(cos(·), sin(·)) : [0, 2π] → S1 being continuous on a simply-connected set,
always admits a continuous lifting Φ : [0, 2π]→ R such that

ϕ(cos θ, sin θ) = f(θ) = (cos(Φ(θ)), sin(Φ(θ))).

11



Moreover, since the covering map t ∈ R 7→ eit ∈ S1 satisfies |eit1 − eit2 | ≤ |t1 − t2| ≤ π|eit1 − eit2 |
for all t1, t2 with |t1 − t2| ≤ π, any continuous lifting of ϕ must be Lipschitz, indeed

|Φ(θ1)− Φ(θ2)|
|θ1 − θ2|

≤ π |e
iΦ(θ1) − eiΦ(θ2)|
|eiθ1 − eiθ2 |

= π
|ϕ(eiθ1)− ϕ(eiθ2)|
|eiθ1 − eiθ2 |

∀θ1, θ2 ∈ [0, 2π] with |θ1 − θ2| ≤ π;

(3.9)

while if |θ1 − θ2| > π, the left-hand side is bounded by 2
π max[0,2π] |Φ|.

Using the 2π-periodicity of f , we see that Φ(2π) − Φ(0) ∈ 2πZ; hence Φ can be extended in a
Lipschitz way to the whole of R (this can be done extending periodically its first derivative). It is
possible to see that the lifting is unique up to a multiple of 2π: fix a starting point, e.g. (1, 0) ∈ S1

and set ϕ(1, 0) =: y0 ∈ S1. Now extract the Argument θ(y0) ∈ [0, 2π) of y0, and define Φ : R→ R
as

Φ(t) := θ(y0) +

∫ t

0
λϕ(s)ds, (3.10)

where λϕ(s) ∈ R is uniquely determined by

∇S1ϕ(cos s, sin s) = λϕ(s)τϕ(cos s,sin s) a.e. s ∈ R, (3.11)

with
τϕ(cos s,sin s) = ϕ⊥(cos s, sin s) =

(
− ϕ2(cos s, sin s), ϕ1(cos s, sin s)

)
(3.12)

the unit tangent vector to S1 (counter-clockwise oriented) at the point ϕ(cos s, sin s). By definition,
Φ is Lipschitz in R since lip(Φ) = ‖λϕ‖∞ = lip(ϕ). In order to show the lifting property (3.8), take
a lifting Φ : R→ R of ϕ. Differentiating the equality ϕ(cos s, sin s) = (cos(Φ(s)), sin(Φ(s))) gives

λϕ(s)τϕ(cos s,sin s) = Φ
′
(s)(− sin(Φ(s)), cos(Φ(s))) = Φ

′
(s)τϕ(cos s,sin s), a.e. s ∈ R,

so that Φ
′

= λϕ a.e. in R. This implies, by (3.10), that Φ(t) − Φ(t) is a constant multiple of 2π.
Thus Φ also satisfies (3.8), and any lifting of ϕ is of the form (3.10), up to a constant multiple of
2π.

As a further consequence of the previous discussion and of (3.11)-(3.12), for any lifting Φ̃ of ϕ,
and in particular for Φ, the map f̃(θ) = (cos(Φ̃(θ)), sin(Φ̃(θ))) satisfies the same linear ordinary
differential system as f , namely

f ′1 = −Φ′f2, f ′2 = Φ′f1 a.e. in R. (3.13)

Finally, from (3.13) it follows λϕ = f1f
′
2 − f2f

′
1 a.e. in R, so that by (2.14), we get

Φ(2π) = Φ(0) +

∫ 2π

0
λϕ(θ)dθ = Φ(0) + 2πdeg(ϕ). (3.14)

Now we can start the proof of Theorem 1.1: As usual, we divide it into two parts, the lower
bound (Proposition 3.3) and the upper bound (Proposition 3.4).

Proposition 3.3 (Lower bound). Let w : B` \ {0} → S1 be the map defined in (1.12). Suppose
that (vk) ⊂ C1(B`;R2) ∩BV (B`;R2) is such that vk → w strictly BV (B`;R2). Then

lim inf
k→+∞

A(vk;B`) ≥
∫
B`

√
1 + |∇w|2dx+ π|deg(ϕ)|.
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Proof. We may assume that

lim inf
k→+∞

A(vk;B`) = lim
k→+∞

A(vk;B`) < +∞.

We define the functions ψk, ψ : (0, `)→ [0,+∞) as

ψk(r) :=

∫
∂Br

|∇vk|ds, ψ(r) := lim inf
k→+∞

ψk(r), r ∈ (0, `),

where s is an arc length parameter on ∂Br. By Fubini’s theorem it follows∫ `

0
ψk(r)dr =

∫
B`

|∇vk|dx,

hence, using Fatou’s lemma, the strict convergence of (vk) to w, and (3.7),∫ `

0
ψ(r)dr ≤ lim inf

k→+∞

∫ `

0
ψk(r)dr = lim

k→+∞

∫
B`

|∇vk|dx

=

∫
B`

|∇w|dx = `Var(ϕ).

(3.15)

In particular,
ψ is almost everywhere finite in (0, `).

Now we claim that
ψ = Var(ϕ) a.e. in (0, `). (3.16)

Indeed, without loss of generality we may assume that (vk) converges to w almost everywhere in
B`, so that for almost every r ∈ (0, `)

vk ∂Br → w ∂Br H 1 − a.e. in ∂Br. (3.17)

Now fix r ∈ (0, `) such that (3.17) holds; consider the total variation of vk ∂Br, that is the
L1(∂Br)-norm of the tangential derivative of vk (as in (3.4)):

|D(vk ∂Br)|(∂Br) =

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds.

Clearly

lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds ≤ lim inf

k→+∞

∫
∂Br

|∇vk|ds = ψ(r). (3.18)

Let us extract a subsequence (vkh) ⊂ (vk) depending on r, such that

lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds = lim

h→+∞

∫
∂Br

∣∣∣∣∂vkh∂s

∣∣∣∣ ds. (3.19)

Since ψ is almost everywhere finite, we may suppose that ψ(r) < +∞, so that the sequence
(vkh ∂Br) is bounded in BV (∂Br;R2). Thus, using (3.17), we also have

vkh ∂Br⇀w ∂Br weakly∗ in BV (∂Br;R2) as h→ +∞. (3.20)
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Now, since ∇w is only tangential, and |∇w(r, θ)|2 = |f ′(θ)|2
r2

, we get∫
∂Br

∣∣∣∣∂w∂s
∣∣∣∣ ds =

∫
∂Br

|∇w| ds =

∫ 2π

0
r|f ′(θ)|1

r
dθ = Var(ϕ). (3.21)

Hence, using the lower semicontinuity of the variation along (vkh ∂Br), (3.19), and (3.18) we infer

Var(ϕ) =

∫
∂Br

∣∣∣∣∂w∂s
∣∣∣∣ ds ≤ lim inf

h→+∞

∫
∂Br

∣∣∣∣∂vkh∂s

∣∣∣∣ ds
= lim
h→+∞

∫
∂Br

∣∣∣∣∂vkh∂s

∣∣∣∣ ds = lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds ≤ ψ(r).

(3.22)

Thus ψ ≥ Var(ϕ) almost everywhere in (0, `) and, from (3.15), we deduce ψ = Var(ϕ) almost
everywhere in (0, `), and so (3.16) is proved.

As a consequence of the previous arguments,

∀ε ∈ (0, `) ∃rε ∈ (0, ε) ∃(vkh) ⊂ (vk) s.t.

vkh ∂Brε → w ∂Brε strictly BV (∂Brε ;R2),
(3.23)

where the subsequence (vkh) depends on ε. Indeed, proving (3.16), we have shown that for almost
every r ∈ (0, `), there exists a subsequence (vkh) satisfying (3.20); so, given ε ∈ (0, `), there exists
rε ∈ (0, ε) and a subsequence (vkh) depending on ε, such that

vkh ∂Brε⇀w ∂Brε weakly∗ in BV (∂Brε ;R2). (3.24)

But from the previous discussion we also deduce

lim
h→+∞

∫
∂Brε

∣∣∣∣∂vkh∂s

∣∣∣∣ ds = ψ(rε) = Var(ϕ) =

∫
∂Brε

∣∣∣∣∂w∂s
∣∣∣∣ ds; (3.25)

thus the convergence in (3.24) is actually strict in BV (∂Brε ;R2).
Now, fix ε ∈ (0, `) and, for simplicity, denote by (vh) the subsequence (vkh) for which (3.23)

holds. Remember that our approximating maps vh = ((vh)1, (vh)2) are of class C1(Ω;R2), so they
might have non-zero Jacobian determinant Jvh := det∇vh, as opposed to w = (w1, w2), whose
Jacobian determinant vanishes a.e. in B`. In particular, we expect the contribution of area given
by Jvh to be non trivial around the origin. Thus, we split the area functional as follows:

A(vh;B`) = A(vh;B` \Brε) +A(vh;Brε) ≥ A(vh;B` \Brε) +

∫
Brε

|Jvh|dx,

and notice that, by definition of relaxed functional and [1, Theorem 3.7],

lim inf
h→+∞

A(vh;B` \Brε) ≥ AL1(u;B` \Brε) ≥
∫
B`\Brε

√
1 + |∇w|2dx.

Hence

lim
h→+∞

A(vh;B`) ≥ lim inf
h→+∞

A(vh;B` \Brε) + lim inf
h→+∞

∫
Brε

|Jvh| dx

≥
∫
B`\Brε

√
1 + |∇w|2dx+ lim inf

h→+∞

∫
Brε

|Jvh| dx.
(3.26)
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To conclude the proof it is then sufficient to show that

lim inf
h→+∞

∫
Brε

|Jvh|dx ≥ π|deg(ϕ)|. (3.27)

Define the sequence wh : B` → R2 as

wh(x) :=


vh(x) if |x| ≤ rε
`− |x|
`− rε

vh

(
rε
x

|x|

)
+
|x| − rε
`− rε

w

(
rε
x

|x|

)
if rε < |x| < `.

(3.28)

Then wh is Lipschitz continuous and interpolates vh ∂Brε and w ∂Brε in the annulus enclosed
by ∂Brε and ∂B`. Now we show that

lim
h→+∞

∫
B`\Brε

|Jwh|dx = 0. (3.29)

Indeed, passing to polar coordinates in B` \Brε :

wh(x) = w̃h(ρ, θ) =
`− ρ
`− rε

ṽh(rε, θ) +
ρ− rε
`− rε

w̃(rε, θ),

where

ṽh(rε, θ) := vh (rε(cos θ, sin θ))) = ((ṽh)1(rε, θ), (ṽh)2(rε, θ)), w̃(rε, θ) := w (rε(cos θ, sin θ)) = f(θ).

Making use of (3.1) and (3.13), we get

∇w̃h(ρ, θ) =
1

`− rε

(
−(ṽh)1 + f1 (`− ρ)∂θ(ṽh)1 − (ρ− rε)Φ′f2

−(ṽh)2 + f2 (`− ρ)∂θ(ṽh)2 + (ρ− rε)Φ′f1

)
, (3.30)

where (ṽh)i, ∂θ(ṽh)i are evaluated at (rε, θ) for i = 1, 2, and f1, f2,Φ
′ are evaluated at θ. Then we

can compute the Jacobian determinant of wh in polar coordinates:

Jw̃h(ρ, θ) =
1

(`− rε)2

[
(`− ρ)

{
(ṽh)2∂θ(ṽh)1 − ∂θ(ṽh)1f2

}
+ (`− ρ)

{
∂θ(ṽh)2f1 − (ṽh)1∂θ(ṽh)2

}
− (ρ− rε)Φ′

{
(ṽh)1f1 + (ṽh)2f2 − 1

}]
,

where we use also that f2
1 + f2

2 = 1. Thus∫
B`\Brε

|Jwh|dx =

∫ `

rε

∫ 2π

0
|Jw̃h|dρdθ

≤C`,ε
∫ `

rε

∫ 2π

0
|(ṽh)2∂θ(ṽh)1 − ∂θ(ṽh)1f2|dρdθ

+ C`,ε

∫ `

rε

∫ 2π

0
|(ṽh)1∂θ(ṽh)2 − ∂θ(ṽh)2f1|dρdθ

+ C`,εlip(Φ)

∫ `

rε

∫ 2π

0
|(ṽh)1f1 + (ṽh)2f2 − 1|dρdθ,

(3.31)
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where C`,ε is a positive constant depending only on ` and ε. Consider the first integral on the right
hand side of (3.31): its integrand is independent of ρ, and so∫ `

rε

∫ 2π

0
|(ṽh)2∂θ(ṽh)1 − ∂θ(ṽh)1f2(θ)| dρdθ = (`− rε)

∫ 2π

0
|(ṽh)2(rε, θ)− f2(θ)| |∂θ(ṽh)1(rε, θ)| dθ

≤ C`,ε‖(vh)2 − w2‖L∞(∂Brε )

∫
∂Brε

∣∣∣∣∂vh∂s
∣∣∣∣ ds k→+∞−−−−→ 0,

where in passing to the limit we used (3.23), which implies that the variation of vh on ∂Brε is
necessarily equi-bounded and, together with Proposition 2.4, that vh → w uniformly on ∂Brε . For
the second integral, the argument is similar.
As for the third one, by the uniform convergence of (vh) to w on ∂Brε , we can pass to the limit
under the integral sign:∫ `

rε

∫ 2π

0
|(ṽh)1f1 + (ṽh)2f2 − 1|dρdθ h→+∞−−−−→

∫ `

rε

∫ 2π

0
|f2

1 + f2
2 − 1|dρdθ = 0.

Therefore, (3.29) holds.
Now, we write the Jacobian determinant of vh on Brε in the following way:∫

Brε

|Jvh|dx =

∫
B`

|Jwh|dx−
∫
B`\Brε

|Jwh|dx. (3.32)

Notice that wh = w on ∂B`, so that (see Remarks 2.9 and 2.11)

deg(wh, ∂B`) = deg(w, ∂B`) = deg(ϕ). (3.33)

We may suppose that vh takes values in B1, since the limit function w is valued in S1 (see [1, Lemma
3.3]). So wh : B` → B1 is Lipschitz continuous and maps ∂B` into ∂B1. Then, by (3.33) and (2.16),
we have ∫

B`

|Jwh|dx ≥ π|deg(w, ∂B`)| = π|deg(ϕ)|. (3.34)

Finally, passing to the lower limit as h → +∞ in (3.32), using (3.29) and the previous inequality,
we deduce estimate (3.27), which concludes the proof.

Proposition 3.4 (Upper bound). Let w : B` \ {0} → R2 be the map defined in (1.12). Then
there exists a sequence (vk) ⊂ C1(B`;R2) ∩BV (B`;R2) such that vk → w strictly BV (B`;R2) and

lim sup
k→+∞

A(vk;B`) ≤
∫
B`

√
1 + |∇w|2dx+ π|deg(ϕ)|. (3.35)

Proof. Although vk needs to be of class C1, we claim that it suffices to build vk just Lipschitz con-
tinuous. Indeed, assume that (vk) ⊂W 1,∞(B`;R2)∩C1(B`;R2) converges to w strictly BV (B`;R2)
and (3.35) holds. Consider, for all k ∈ N, a sequence (vkh) ⊂ C1(B`;R2) approaching vk in
W 1,2(B`;R2) as h → +∞. In particular, we get the L1-convergence of all minors of ∇vkh to
the corresponding ones of ∇vk. Then, by dominated convergence,

lim
h→+∞

A(vkh;B`) = A(vk;B`). (3.36)

Hence, by a diagonal argument, we find a sequence (vkhk) converging to w strictly BV (B`;R2) such

that (3.35) holds for vkhk in place of vk.
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Let us consider the map ϕ : S1 → S1 given by

ϕ(cos θ, sin θ) := (cos(dθ), sin(dθ)) where d := deg(ϕ). (3.37)

Then
mult(ϕ) = |deg(ϕ)|, deg(ϕ) = deg(ϕ), (3.38)

and, in particular, mult(ϕ) = |deg(ϕ)|. Moreover, since the maps ϕ and ϕ have the same degree,
we can construct a Lipschitz homotopy H : [0, 1] × S1 → S1 between them. Precisely, if Φ and
Φ are Lipschitz liftings of ϕ and ϕ respectively, we define Ψ(t, ·) := tΦ(·) + (1 − t)Φ(·), which is
Lipschitz. Hence one defines the map H(t, ·) : [0, 2π) → S1 as H(t, ·) := (cos(Ψ(t, ·), sin(Ψ(t, ·))),
which satisfies

H(0, ·) = ϕ(·), H(1, ·) = ϕ(·). (3.39)

It remains to show that H(t, ·) defines a continuous (and then Lipschitz) map from S1 to S1, i.e.
that is 2π-periodic: to this aim it is enough to observe that Ψ(t, 2π) and Ψ(t, 0) differ from a
constant multiple of 2π and indeed, recalling (3.14), we have Φ(2π)−Φ(0) = 2πd = Φ(2π)−Φ(0),
from which easily follows that Ψ(t, 2π)−Ψ(t, 0) = 2πd.

We now define the sequence (vk) ⊂ Lip(B`;R2) as vk(0) := 0,

vk :=


vk in B `

k
\ {0},

hk in B 2`
k
\B `

k
,

w = ϕ
(
x
|x|

)
in B` \B 2`

k
,

(3.40)

where

vk(x) :=
k

`
|x|ϕ

(
x

|x|

)
∀x ∈ B `

k
,

and

hk(x) := H

(
k

`
|x| − 1,

x

|x|

)
∀x ∈ B 2`

k
\B `

k
.

Let us check that ∫
B`

|Jvk|dx = π|d| ∀k ∈ N. (3.41)

Since H and w take values on S1, we have∫
B`\B `

k

|Jvk|dx =

∫
B 2`
k
\B `

k

|Jhk|dx+

∫
B`\B 2`

k

|Jw|dx = 0.

Moreover, mult(vk, B `
k
, ·)=mult(ϕ), and therefore, by (2.9),∫

B `
k

|Jvk|dx =

∫
B `
k

|Jvk|dx =

∫
B1

mult(vk, B `
k
, y)dy = |B1|mult(ϕ) = π|d|.

We now prove that vk → w in W 1,p(B`;R2) for every p ∈ [1, 2). This, in particular, implies the
desired strict convergence in BV . Since vk = w in B` \B 2`

k
, we have to do the computation on B 2`

k
:∫

B 2`
k

|vk − w|pdx ≤ 2p−1

∫
B 2`
k

(|vk|p + |w|p)dx ≤ 2p|B 2`
k
| k→+∞−−−−→ 0.
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In addition
|∇vk| = |∇hk| ≤ 2k lip(H) a.e. in B 2`

k
\B `

k
,

hence ∫
B 2`
k
\B `

k

|∇vk −∇w|pdx ≤ C

(2k)plip(H)p|B 2`
k
|+
∫
B 2`
k

|∇w|pdx


≤ C

Ckp
k2

+

∫
B 2`
k

|∇w|pdx

 k→+∞−−−−→ 0,

(3.42)

where C > 0 is a positive constant independent of k. Finally, setting w(x) := ϕ
(
x
|x|

)
for x ∈

B` \ {0}, we have

∇vk(x) =
k

`
|x|∇w(x) +

k

`
w(x)⊗ x

|x|
for a.e. x ∈ B `

k
.

Whence∫
B `
k

|∇vk −∇w|pdx ≤ C
∫
B `
k

(
kp|x|p|∇w|p + kp

∣∣∣∣w(x)⊗ x

|x|

∣∣∣∣+ |∇w|p
)
dx

≤ C

∫
B `
k

|∇w|pdx+ kp|B `
k
|+
∫
B `
k

|∇w|pdx

 k→+∞−−−−→ 0.

(3.43)

Now, we easily get (3.35): upon extracting a (not relabelled) subsequence such that (∇vk) converges
almost everywhere to ∇w, by (3.41) and dominated convergence theorem we have

lim sup
k→+∞

A(vk;B`) ≤ lim
k→+∞

∫
B`

√
1 + |∇vk|2dx+ lim

k→+∞

∫
B`

|Jvk|dx =

∫
B`

√
1 + |∇w|2dx+ π|d|.

Remark 3.5. In the proof of the upper bound in Proposition 3.4 we have shown the W 1,p conver-
gence of the recovery sequence to the function w, for p ∈ [1, 2). Hence

AW 1,p(w;B`) ≤
∫
B`

√
1 + |∇w|2dx+ π|deg(ϕ)|.

Moreover, since in general ABV (· ;B`) ≤ AW 1,p(· ;B`) for all p ≥ 1, we deduce

AW 1,p(w;B`) =

∫
B`

√
1 + |∇w|2dx+ π|deg(ϕ)|.

4 Relaxation for maps in W 1,1(Ω;S1): Theorem 1.2

In the following lemma we generalize to a generic function in W 1,1(B`; S1) the argument used
to prove (3.23), by showing that the strict BV convergence on B` is inherited to almost every
circumference centered at the origin. Unlike (3.23) of Proposition 3.3, in this more general context
we have to make use of Theorem 2.1.

We start to generalize the arguments leading to (3.25).
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Lemma 4.1 (Inheritance). Let (vk) ⊂ C1(B`;R2), u ∈ W 1,1(B`;R2), and suppose that vk → u
strictly BV (B`;R2). Then, for almost every r ∈ (0, `), there exists a subsequence (vkh), depending
on r, such that

vkh ∂Br → u ∂Br strictly BV (∂Br;R2).

Proof. The (tangential) variation of the restriction of u on ∂Br is well-defined and finite for almost
every r ∈ (0, 1) since u ∈W 1,1(B`;R2), and

|D(u ∂Br)|(∂Br) :=

∫
∂Br

∣∣∣∣∂u∂s
∣∣∣∣ ds =

∫ 2π

0
|∂θũ(r, θ)|dθ,

where ũ : R := (0, `)× [0, 2π)→ R2, ũ(ρ, θ) := u(ρ cos θ, ρ sin θ). We compute∫
R
|∂θũ| dρdθ =

∫
B`

|(∇u)τ |dx, (4.1)

with τ(x) := 1
|x|(−x2, x1), x 6= 0. Indeed

∫
R
|∂θũ| dρdθ =

∫ `

0

∫ 2π

0

[
2∑
i=1

ρ2
(
(∂x1ui)

2(sin θ)2 + (∂x2ui)
2(cos θ)2 − 2∂x1ui∂x2ui cos θ sin θ

)] 1
2

dρdθ

=

∫
B`

1

|x|

[
2∑
i=1

(
(∂x1ui)

2x2
2 + (∂x2ui)

2x2
1 − 2∂x1ui∂x2uix1x2

)] 1
2

dx

=

∫
B`

√
|∇u1 · τ |2 + |∇u2 · τ |2dx =

∫
B`

|(∇u)τ |dx.

In the same way we get ∫
R
|∂θṽk| dρdθ =

∫
B`

|(∇vk)τ |dx.

Thanks to Theorem 2.1, with the choices M = 4, S3 ⊂ R4 = R2×2, f ∈ Cb((B` \ {0})× S3),

f(x, σ) :=
√
|σhor · τ(x)|2 + |σvert · τ(x)|2,

where σ ∈ S3 and σhor := (σ1, σ2), σvert := (σ3, σ4), we obtain

lim
k→+∞

∫
B`

|(∇vk)τ |dx =

∫
B`

|(∇u)τ |dx. (4.2)

Now we notice that for almost every r ∈ (0, `) we have

vk ∂Br → u ∂Br in L1(∂Br;R2).

Then, since (vk ∂Br) ⊂ BV (∂Br;R2) for every r ∈ (0, `), by the lower semicontinuity of the
variation we get ∫

∂Br

∣∣∣∣∂u∂s
∣∣∣∣ ds ≤ lim inf

k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds for a.e. r ∈ (0, `). (4.3)

Integrating with respect to r and by Fatou’s lemma, we obtain∫
R
|∂θũ| drdθ =

∫ `

0

∫
∂Br

∣∣∣∣∂u∂s
∣∣∣∣ dsdr ≤ ∫ `

0
lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ dsdr ≤ lim inf

k→+∞

∫
R
|∂θṽk| drdθ. (4.4)
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But we notice that, by (4.1) and (4.2), we must have all equalities in (4.4). In particular,∫
∂Br

∣∣∣∣∂u∂s
∣∣∣∣ ds = lim inf

k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds for a.e. r ∈ (0, `),

and we conclude extracting a suitable subsequence (vkh) of (vk) depending on r such that

lim
h→+∞

∫
∂Br

∣∣∣∣∂vkh∂s

∣∣∣∣ ds = lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds.

Definition 4.2. Let u ∈W 1,1(Ω; S1) and TVJW 1,1(u; Ω) < +∞. We set

TVJBV (u; Ω) := inf

{
lim inf
k→+∞

TVJ(vk; Ω) : (vk) ⊂ C1(Ω,R2) ∩BV (Ω;R2), vk → u strictly BV

}
.

The proof of Theorem 1.2 is essentially a consequence of the following theorem.

Theorem 4.3 (Relaxation of TVJ in the strict convergence). Let u ∈ W 1,1(Ω; S1) be such
that TVJW 1,1(u; Ω) < +∞, and write Det∇u as in (2.17). Then

TVJBV (u; Ω) = π
m∑
i=1

|di|.

In particular, TVJBV (u; Ω) = TVJW 1,1(u; Ω) = |Det∇u|(Ω).

As usual, we divide the proof of Theorem 4.3 into two parts, the lower bound (Proposition 4.4)
and the upper bound (Proposition 4.5).

Proposition 4.4 (Lower bound for TVJBV ). Let u ∈W 1,1(Ω; S1) be such that TVJW 1,1(u; Ω) <
+∞, and write Det∇u as in (2.17). Then

TVJBV (u; Ω) ≥ π
m∑
i=1

|di|.

Proof. According to Theorem 2.12, we choose a radius ` > 0 so that the balls B`(xi) ⊂ Ω, i =
1, . . . ,m, are disjoint. Let (vk) ⊂ C1(Ω;R2) be such that vk → u strictly BV (B`;R2) and

lim
k→+∞

∫
Ω
|Jvk|dx = TVJBV (u; Ω).

To show the thesis it is sufficient to prove that, for all i = 1, . . . ,m,

lim
k→+∞

∫
B`(xi)

|Jvk|dx ≥ πdi,

and it suffices to show this inequality for i = 1. Let us denote B`(x1) simply by B`. Without
loss of generality we may assume x1 = (0, 0). Since u ∈ W 1,1(B`; S1), it is W 1,1(∂Br; S1), in
particular continuous, for almost every r ∈ (0, `). Thus, we can choose r > 0 small enough so
that u ∂Br ∈ W 1,1(∂Br; S1). Since the balls B`(xi), i = 1, . . . ,m, are disjoint, we also have
deg(u, ∂Br, ·) = d1. From Theorem 2.14 and Lemma 4.1, we get that

∀ε ∈ (0, r) ∃rε ∈ (0, ε) ∃(vkh) ⊂ (vk) ∃(uh) ⊂ C∞(∂Brε ;S1) s.t.

u ∂Brε ∈W 1,1(∂Brε ;S1), uh → u ∂Brε in W 1,1(∂Brε ; S1),

and vkh ∂Brε → u ∂Brε strictly BV (∂Brε ;R2).

(4.5)
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In particular, on ∂Brε we have uniform convergence of (uh) and (vkh) to u by Proposition 2.4.
Setting as usual Jvkh = det∇vkh , write∫

Brε

|Jvkh |dx =

∫
Br

|Jwh|dx−
∫
Br\Brε

|Jwh|dx,

where wh ∈ Lip(Br;R2) and is given by

wh(x) :=


vkh(x) if |x| ≤ rε
r − |x|
r − rε

vkh

(
rε
x

|x|

)
+
|x| − rε
r − rε

uh

(
rε
x

|x|

)
if rε < |x| ≤ r.

(4.6)

Now, since ‖vkh − uh‖L∞(∂Brε ) → 0 as h→ +∞, arguing as in the proof of (3.29) we have

lim
h→+∞

∫
Br\Brε

|Jwh|dx = 0. (4.7)

Moreover, from (4.6) we note that

deg(wh, ∂Br) = deg(uh, ∂Brε). (4.8)

Thanks to the uniform convergence of (uh) to u on ∂Brε , for h large enough, uh and u ∂Brε must
have the same degree

deg(uh, ∂Brε) = deg(u, ∂Brε) = d1.

Then, arguing as in (3.34), we obtain that∫
Br

|Jwh|dx ≥ π|deg(wh, ∂Br)| = π|d1|,

for h ∈ N sufficiently large. In conclusion we get

TVJBV (u;B`) = lim
h→+∞

∫
B`

|Jvkh |dx ≥ lim inf
h→+∞

∫
Brε

|Jvkh |dx ≥ lim inf
h→+∞

∫
Br

|Jwh|dx ≥ π|d1|. (4.9)

Proposition 4.5 (Upper bound for TVJBV ). Let u ∈W 1,1(Ω; S1) be such that TVJW 1,1(u; Ω) <
+∞, and write Det∇u as in (2.17). Then

TVJBV (u; Ω) ≤ π
m∑
i=1

|di|.

Proof. As in the proof of Proposition 4.4 we choose a radius ` > 0 so that the balls B`(xi) ⊂ Ω,
i = 1, . . . ,m, are disjoint.

We construct a suitable recovery sequence (vk) ⊂ Lip(Ω;R2) such that

lim
k→+∞

vk = u in W 1,1(Ω;R2) (4.10)

and setting B := ∪ni=1B`(xi),

lim
k→+∞

∫
B`(xi)

|Jvk|dx = π|di|, i = 1, . . . ,m, and

∫
Ω\B
|Jvk|dx = 0. (4.11)
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As in the proof of Proposition 4.4, we can find r1 ≤ ` so that u ∈ W 1,1(∂Br1(xi);R2) and
deg(u, ∂Br1(xi)) = di, for all i = 1, . . . ,m. For every k ∈ N, we set Bk := ∪mi=1B2−kr1(xi).
By Theorem 2.15, there exists a sequence

(
ukn
)
n∈N ⊂ C

∞(Ω \Bk;S1) such that

lim
n→+∞

ukn = u in W 1,1(Ω \Bk;S1). (4.12)

Now, for all k > 1, we choose rk ∈ (2−kr1, 2
−k+1r1) such that the following conditions hold: for all

i = 1, . . . ,m,
u ∂Brk(xi) ∈W 1,1(∂Brk(xi);S1),

lim
n→+∞

‖ukn ∂Brk(xi)− u ∂Brk(xi)‖W 1,1(∂Brk (xi);S1) = 0.
(4.13)

In particular, for all k > 1 and i = 1, . . . ,m, we have

lim
n→+∞

‖ukn ∂Brk(xi)− u ∂Brk(xi)‖L∞(∂Brk (xi);S1) = 0, (4.14)

thus, using (2.15), (4.13) and (2.14), we obtain

|deg(ukn, ∂Brk(xi))− deg(u, ∂Brk(xi))|

≤ 1

2π

(∫
∂Brk (xi)

∣∣∣∣(ukn)1
∂(ukn)2

∂s
− u1

∂u2

∂s

∣∣∣∣ ds+

∫
∂Brk (xi)

∣∣∣∣(ukn)2
∂(ukn)1

∂s
− u2

∂u1

∂s

∣∣∣∣ ds
)
−→ 0

(4.15)

as n→ +∞.
Therefore, there exists mk ∈ N such that, for all i = 1, . . . ,m,

deg(ukn, ∂Brk(xi)) = deg(u, ∂Brk(xi)) = di ∀n ≥ mk. (4.16)

Now, using (4.12) and (4.13), for all k > 1 there is m̃k ∈ N such that, for all i = 1, . . . ,m,

‖ukn − u‖W 1,1(Ω\(∪mi=1Brk (xi));S1) ≤ ‖ukn − u‖W 1,1(Ω\Bk;S1) ≤
1

k
∀n ≥ m̃k, (4.17)

‖ukn ∂Brk(xi)− u ∂Brk(xi)‖W 1,1(∂Brk (xi);S1) ≤
1

k
∀n ≥ m̃k. (4.18)

Setting nk := max{mk, m̃k}, we define uk := uknk , which satisfies (4.16) and (4.17) for all k > 1. In
particular

lim
k→+∞

‖uk − u‖W 1,1(Ω\(∪mi=1Brk (xi));S1) = 0. (4.19)

For all i = 1, . . . ,m, let now ϕi : S1 → S1 be the Lipschitz function defined in (3.37) with d = di,
which satisfies

mult(ϕi) = |deg(ϕi)| and deg(ϕi) = di;

Now, for all i = 1, . . . ,m, ϕi and uk ∂Brk(xi) have the same degree, and so there exists a Lipschitz
homotopy5 Hk,i : [0, 1]× S1 → S1 such that

Hk,i(0, y) = ϕi(y), Hk,i(1, y) = uk(rky + xi), y ∈ S1.

Let us define the sequence (vk) ⊂ Lip(Ω;R2) as follows: vk := uk in Ω\B, and, for all i = 1, . . . ,m,
vk(xi) := 0 and

vk(x) :=


|x− xi|
rk+1

ϕi

(
x− xi
|x− xi|

)
if x ∈ Brk+1

(xi) \ {0},

hk,i(x) if x ∈ Brk(xi) \Brk+1
(xi),

uk(x) if x ∈ B`(xi) \Brk(xi),

(4.20)

5To define it it suffices to consider two liftings of ϕ1 and uk(rk ·+x1) S1, and linearly interpolate them, as done
for H in (3.39). Observe that Hk,i is Lipschitz since uk ∂Brk (xi) is Lipschitz by the choice of rk.

22



where

hk,i(x) := Hk,i

(
|x− xi| − rk+1

rk − rk+1
,
x− xi
|x− xi|

)
∀x ∈ Brk(xi) \Brk+1

(xi).

Since Hk,i and uk take values in S1, we have vk(x) ∈ S1 for x ∈ Ω \ (∪mi=1Brk+1
(xi)), and so∫

Ω\(∪mi=1Brk+1
(xi))
|Jvk|dx = 0.

In particular, the second condition in (4.11) holds. Moreover, mult(vk, Brk+1
(xi), ·)=mult(ϕi), and

therefore, by (2.9),∫
Brk+1

(xi)
|Jvk|dx =

∫
B1

mult(vk, Brk+1
(xi), y)dy = |B1|mult(ϕi) = π|di|,

and also the first condition in (4.11) follows.
It remains to show (4.10). By (4.19) and (4.17) we have∫

Ω
|vk − u|dx ≤

∫
Ω\(∪mi=1Brk (xi))

|uk − u|dx+ 2m|Brk(0)| → 0 as k → +∞,∫
Ω\(∪mi=1Brk (xi))

|∇vk −∇u|dx =

∫
Ω\(∪mi=1Brk (xi))

|∇uk −∇u|dx→ 0 as k → +∞.

Now, let us show that, for all i = 1, . . . ,m,

lim
k→+∞

‖∇hk,i‖L1(Brk(xi)\Brk+1
(xi)) = 0.

Let us make the computation for i = 1, the other cases being identical. Set Hk = Hk,1 and
hk = hk,1. Assume without loss of generality that x1 = (0, 0), and denote Br(x1) = Br. By
definition of Hk we have

‖∂tHk‖L∞([0,1]×S1) ≤ ‖ϕ1‖L∞(S1) + ‖uk‖L∞(∂Brk ) ≤ 2 ∀k ∈ N. (4.21)

Moreover, since ϕ1 is Lipschitz,

|∇yHk(t, y)| ≤ |∇S1ϕ1(y)|+ rk|∇uk(rky)| ≤ C + rk|∇uk(rky)|. (4.22)

We now compute ∇hk for x ∈ Brk \Brk+1
:

∇hk(x) =
1

rk − rk+1
∂tHk

(
|x| − rk+1

rk − rk+1
,
x

|x|

)
⊗ x

|x|
+∇yHk

(
|x| − rk+1

rk − rk+1
,
x

|x|

)
∇
(
x

|x|

)
and we get∫

Brk\Brk+1

|∇hk|dx

≤
∫
Brk\Brk+1

1

rk − rk+1

∣∣∣∣∂tHk

(
|x| − rk+1

rk − rk+1
,
x

|x|

)∣∣∣∣+

∣∣∣∣∇yHk

(
|x| − rk+1

rk − rk+1
,
x

|x|

)∣∣∣∣ ∣∣∣∣∇( x

|x|

)∣∣∣∣dx
≤ 1

rk − rk+1
‖∂tHk‖L∞

∣∣Brk \Brk+1

∣∣+

∫ rk

rk+1

∫ 2π

0
ρ

1

ρ

∣∣∣∣∇yHk

(
ρ− rk+1

rk − rk+1
, (cos θ, sin θ)

)∣∣∣∣dρdθ
≤C(rk + rk+1) + C(rk − rk+1) + (rk − rk+1)

∫ 2π

0
rk|∇uk(rk(cos θ, sin θ))|dθ

≤Crk + (rk − rk+1)

∫
∂Brk

|∇uk|dH1 ≤ C (rk + (rk − rk+1))→ 0 as k → +∞,

(4.23)
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where we have used (4.18) in the last inequality. Then we conclude∫
Brk\Brk+1

|∇vk−∇u|dx =

∫
Brk\Brk+1

|∇hk−∇u|dx ≤
∫
Brk\Brk+1

|∇hk|dx+

∫
Brk\Brk+1

|∇u|dx→ 0.

Finally, for x ∈ Brk+1
, we have

∇vk(x) =
1

rk+1

x

|x|
⊗ ϕ1

(
x

|x|

)
+

1

rk+1
|x|∇

(
ϕ1

(
x

|x|

))
,

Then, since ϕ1 is Lipschitz,

|∇vk(x)| ≤ C

rk+1
,

so we get ∫
Brk+1

|∇vk −∇u|dx ≤
C

rk+1
|Brk+1

|+
∫
Brk+1

|∇u|dx→ 0,

and (4.10) follows.

Now, we can prove Theorem 1.2.

Proof. We start with the proof of the lower bound. Arguing as in the proof of Proposition 4.4,
we may suppose m = 1, Ω = B` and x1 = (0, 0). Let (vk) ⊂ C1(B`;R2) be such that vk →
u strictly BV (B`;R2) and

lim inf
k→+∞

A(vk;B`) = lim
k→+∞

A(vk;B`) < +∞.

Select r1 > 0 and d1 ∈ Z as in the proof of Proposition 4.5. Without loss of generality we can
suppose that r1 = `. So we deduce (4.5) and the uniform convergence of (vk) to u on almost
every circumference in B`. Now write A(vk;B`) = A(vk;B` \Brε) +A(vk;Brε) ≥ A(vk;B` \Brε) +∫
Brε
|Jvk| dx, so that

lim
k→+∞

A(vk;B`) ≥ lim inf
k→+∞

A(vk;B` \Brε) + lim inf
k→+∞

∫
Brε

|Jvk| dx

≥
∫
B`\Brε

√
1 + |∇u|2dx+ lim inf

k→+∞

∫
Brε

|Jvk| dx.
(4.24)

We now apply (4.9) and next pass to the limit as ε→ 0+ to get the lower bound in (1.15), i.e.,

lim inf
k→+∞

A(vk;B`) ≥
∫

Ω

√
1 + |∇u|2dx+ π

N∑
i=1

|di|.

Concerning the proof of the upper bound, consider the sequence (vk) defined in (4.20), which
converges to u in W 1,1(Ω;R2). Then, upon extracting a subsequence such that (∇vk) converges
almost everywhere to ∇u, by (4.11) and dominated convergence we have, using the inequality√

1 + a2 + b2 + c2 ≤
√

1 + a2 + b2 + |c| for a, b, c ∈ R,

lim sup
k→+∞

A(vk;B`(xi)) ≤ lim
k→+∞

∫
B`(xi)

√
1 + |∇vk|2dx+ lim

k→+∞

∫
B`(xi)

|Jvk|dx

=

∫
B`(xi)

√
1 + |∇u|2dx+ π|di|,

24



that leads to

lim sup
k→+∞

A(vk; Ω) ≤ lim
k→+∞

∫
Ω\∪mi=1B`(xi)

√
1 + |∇vk|2dx+ lim sup

k→+∞
A(vk;∪mi=1B`(xi))

=

∫
Ω

√
1 + |∇u|2dx+ π

m∑
i=1

|di|.

Remark 4.6. If u ∈ W 1,p(Ω; S1), p ∈ [1, 2), the recovery sequence defined in (4.20) converges to
u in W 1,p(Ω; S1) as well. Then, the results of Theorem 4.3 and Theorem 1.2 are still valid if one
deals with the relaxation of the area functional with respect to the strong topology of W 1,p(Ω; S1).

Remark 4.7 (Relaxation in the local uniform convergence outside singularities). If u
is continuous in Ω \ {x1, . . . , xm}, one can relax the area functional with respect to the uniform
convergence out of the singularities {xi}, i.e., we require that for every compact set K ⊂ Ω \
{x1, . . . , xm} the approximating sequence (uk) ⊂ C1(Ω; S1) satisfies

uk → u in L∞(K),

or, in other words, if uk → u in L∞loc(Ω \ {x1, . . . , xm};R2). Therefore we are led to consider

AL∞(u; Ω) := inf
{

lim inf
k→+∞

A(uk; Ω) : (uk) ⊂ C1(Ω;R2), uk → u in L1(Ω;R2)

and uk → u in L∞loc(Ω \ {x1, . . . , xm};R2)
}
. (4.25)

It is then possible to show that

AL∞(u; Ω) =

∫
Ω

√
1 + |∇u|2dx+ π

m∑
i=1

|di|. (4.26)

Notice that, if one considers the functional TVJL∞ , obtained by relaxing TVJ with this notion of
convergence, the counterpart of Theorem 4.3 does not hold anymore, since we cannot guarantee a
uniform bound on the L1 norm of ∇vk, needed to get (4.7); however, we gain such a control on
‖∇vk‖L1 in the area functional, as soon as the approximating sequence (vk) has bounded area.

The proof of (4.26) is the same of the one of Theorem 1.2, with the difference that we can deduce
straightforwardly the uniform convergence of (vk) on almost every circumference in Br1 , without
passing through (4.5).

5 An extension to symmetric piecewise constant BV (Ω;S1) maps

In this section we prove Theorem 1.3. Let us recall that a symmetric triple point map in R2 is
a map u = uT : B`(0) ⊂ R2 → S1 taking three values {α, β, γ} ⊂ S1, vertices of an equilateral
triangle, on three non-overlapping 2π/3-angular regions A,B,C with common vertex at the origin
and interfaces a, b, c (see Figure 1). We denote by Tαβγ ⊂ R2 the triangle with vertices {α, β, γ},
whose length side is |α − β| =: L =

√
3, and by Ju = a ∪ b ∪ c the jump set of u. We have

|Tαβγ | =
√

3
4 L

2 = 3
√

3
4 , and |Du|(B`) = LH1(Ju) = 3L`.

Proof of Theorem 1.3: upper bound. For simplicity of notation, in what follows we write

ε in place of 1/k,
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b

Figure 1: The symmetric triple point map: on the left the source disk B`(0), three-sided in the
regions A,B,C, where u takes the values α, β, γ, depicted in the R2 target on the right.

with k ∈ N.
We construct a recovery sequence (uε)ε ⊂ Lip(B`;R2) as ε→ 0+. Let us consider the rectangle

R := {(t, s) ∈ R2 : t ∈ (0, `), s ∈ (0, L)}

and, for ε ∈ (0, `), the functions mε : R→ [0,+∞) (whose graph is plotted in Figure 2) defined as

mε(t, s) :=


0 t ∈ [ε, `]

2 ε−tε
sh
L t ∈ [0, ε), s ∈ [0, L2 ],

2 ε−tε
(L−s)h
L t ∈ [0, ε), s ∈ (L2 , L],

(5.1)

where h := L
2
√

3
= 1

2 . The number h is the height of each of the three isosceles triangles with

common vertex at the origin of the target space that decompose Tαβγ (see Figure 1 right). Let us
denote by Saε , S

b
ε, S

c
ε three tiny stripes around a, b, c in B`, of width ε and length `− ε

2
√

3
, drawn in

Figure 3. More explicitely, we have

Sbε :=

{
(x, y) ∈ B` : |x| ≤ ε

2
, y ≥ ε

2
√

3

}
and Saε (Scε) is obtained by clockwisely rotating Sbε of an angle 2π

3 (4π
3 respectively) around the

origin.
The idea is to glue mε on each strip in order to build three surfaces embedded in R4 living in

three non-collinear copies of R3, whose total area contribution gives |Tαβγ | in the limit ε→ 0+.

We introduce the affine diffeomorphism ψε :
[

ε
2
√

3
, `
]
→ [0, `] such that

ψ′ε(y) =
`

`− ε
2
√

3

=: kε → 1 as ε→ 0+.

Now we can define uε on Sbε: we set

ξ :=
γ − α
L
∈ S1, η := −ξ⊥ = β,

(where ξ⊥ is the π
2 -counterclockwise rotation of ξ) and

uε(x, y) := α+

(
L

2
+
Lx

ε

)
ξ +mε

(
ψε(y),

L

2
+
Lx

ε

)
η ∀(x, y) ∈ Sbε.
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Figure 2: The graph of mε on the rectangle R.

In a similar way, we define uε on Saε and Scε. Setting T ε := Bε/
√

3 \ (Saε ∪ Sbε ∪ Scε) and Aε :=

A \ (Saε ∪ Sbε ∪ Scε ∪ T ε), Bε := B \ (Saε ∪ Sbε ∪ Scε ∪ T ε), Cε := C \ (Saε ∪ Sbε ∪ Scε ∪ T ε), we define

uε :=


α in Aε,

β in Bε,

γ in Cε.

(5.2)

It remains to define uε on the small triangle T ε. Let us divide it in four triangles T aε , T
b
ε , T

c
ε , T

0
ε

(see Figure 4). So, we set uε = 0 on T 0
ε and let uε be the affine function that equals α (β, γ

respectively), in the vertex of T ε confining with Aε (Bε, Cε respectively), and equals 0 on the edge
of T 0

ε . A direct check shows that the function uε is Lipschitz continuous in B`.
Let us compute the area of the graph of uε on Sbε: denoting by mε

t ,m
ε
s the partial derivatives of

mε, we have

∇uε(x, y) =

(
L
ε ξ1 +mε

s(ψε(y), L2 + L
ε x)Lε η1 mε

t (ψε(y), L2 + L
ε x)kεη1

L
ε ξ2 +mε

s(ψε(y), L2 + L
ε x)Lε η2 mε

t (ψε(y), L2 + L
ε x)kεη2.

)
(5.3)

Recalling that ξ · η = 0 and |ξ| = |η| = 1, we can compute the square of the Frobenius norm of ∇uε

|∇uε(x, y)|2 =
L2

ε2

[
ξ2

1 + (mε
s)

2η2
1 + 2ξ1η1m

ε
s + ξ2

2 + (mε
s)

2η2
2 + 2ξ2η2m

ε
s

]
+ (mε

t )
2k2
εη

2
1 + (mε

t )
2k2
εη

2
2

=
L2

ε2
(1 + (mε

s)
2) + (mε

t )
2k2
ε ,

(5.4)
where mε

s and mε
t are evaluated at

(
ψε(y), L2 + L

ε x
)
. Moreover, using that ξ · η⊥ = 1, we have

(det∇uε)2 =
k2
εL

2

ε2
[(ξ1η2m

ε
t +mε

sm
ε
tη1η2)− (ξ2η1m

ε
t +mε

sm
ε
tη1η2)]2 =

k2
εL

2

ε2
(mε

t )
2.
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y

x

Figure 3: The strips Saε , S
b
ε, S

c
ε and the little triangle T ε in the center.

So we have

A(uε;Sbε) =

∫
Sbε

√
1 +

L2

ε2
(1 + (mε

s)
2) + (mε

t )
2k2
ε +

k2
εL

2

ε2
(mε

t )
2dxdy

=
L

ε

∫
Sbε

√
1 +mε

s

(
ψε(y),

L

2
+
L

ε
x

)2

+mε
t

(
ψε(y),

L

2
+
L

ε
x

)2

k2
ε

(
1 +

ε2

L2

)
+O(ε2)dxdy

=
1

kε

∫
R\Pε

√
1 +mε

s(t, s)
2 +mε

t (t, s)
2k2
ε

(
1 +

ε2

L2

)
+O(ε2)dtds,

(5.5)
where in the last equality we have performed the change of variables

(x, y) =

(
ε

L

(
s− L

2

)
, ψ−1

ε (t)

)
=: φε(t, s)

and we have set Pε = R \φ−1
ε (Sbε). Notice that 1

kε
→ 1, k2

ε

(
1 + ε2

L2

)
→ 1 as ε→ 0+, so that we get

lim inf
ε→0+

A(uε;Sbε) ≤
∫
R

1dtds+ lim inf
ε→0+

∫
R
|mε

t (t, s)|dtds+ lim inf
ε→0+

∫
R
|mε

s(t, s)|dtds. (5.6)

Let us compute explicitely the derivatives of mε:

mε
t (t, s) =


0 t > ε

− 2
sh

εL
t < ε, s <

L

2

− 2
(L− s)h
εL

t < ε, s >
L

2

mε
s(t, s) =


0 t ≥ ε

2
ε− t
ε

h

L
t < ε, s <

L

2

− 2
ε− t
ε

h

L
t < ε, s >

L

2
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Figure 4: The triangle T ε divided further in the four triangles T aε , T
b
ε , T

c
ε , T

0
ε .

Then, we obtain ∫
{t<ε,s<L

2
}
|mε

t (t, s)|dtds = ε

∫ L
2

0
2
sh

εL
ds =

hL

4∫
{t<ε,s>L

2
}
|mε

t (t, s)|dtds = ε

∫ L

L
2

2(L− s) sh
εL
ds =

hL

4
,

so we get ∫
R
|mε

t (t, s)|dtds =
hL

4
+
hL

4
=
hL

2
∀ε > 0. (5.7)

On the other hand,∫
{t<ε,s<L

2
}
|mε

s(t, s)|dtds =

∫
{t<ε,s>L

2
}
|mε

s(t, s)|dtds =
L

2

∫ ε

0
2
ε− t
ε

h

L
ds = O(ε),

so we get

lim inf
ε→0+

∫
R
|mε

s(t, s)|dtds = 0. (5.8)

Summarizing, from (5.6) we obtain

lim inf
ε→0+

A(uε;Sbε) ≤ `L+
hL

2
.

In the same way, we can prove that

lim inf
ε→0+

A(uε;Saε ) = lim inf
ε→0+

A(uε;Scε) ≤ `L+
hL

2
.

Clearly, the definition of uε on Aε, Bε, Cε provides that

lim
ε→0+

A(uε;Aε ∪Bε ∪ Cε) = |B`| = π`2.

It remais to show that the area contribution on T ε is infinitesimal: first notice that

A(uε;T 0
ε ) = |T 0

ε | = O(ε2).
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Moreover on T aε (respectively T bε , T
c
ε ) uε is the affine parameterization of the segment (α, 0) (re-

spectively (β, 0), (γ, 0)) of the target space, therefore on T ε \T 0
ε the area integrand has no Jacobian

contribution and so is O(ε−1), giving

A(uε;T aε ) = A(uε;T bε ) = A(uε;T cε ) = O(ε).

Then we have

A(uε;T ε) = A(uε;T 0
ε ) +A(uε;T aε ) +A(uε;T bε ) +A(uε;T cε ) = O(ε2) +O(ε).

In the end, we conclude

lim inf
ε→+0

A(uε;B`) ≤ π`2 + 3`L+ 3
hL

2
,

where we recognize that the last quantity on the right-hand side is exactly |Tαβγ |.
As a final step, we have to check that (uε) converges to u strictly BV (B`;R2). Clearly uε → u

in L1(B`;R2). Let us compute the total variation of uε: we have

|Duε|(B`) = |Duε|(Saε ) + |Duε|(Sbε) + |Duε|(Scε) + |Duε|(T ε).

In particular,
|Duε|(T ε) ≤ A(uε;T ε)→ 0 as ε→ 0+.

Computing the variation on the strip Sbε (similarly for the other strips) we find

|Duε|(Sbε) =

∫
Sbε

√
L2

ε2
(1 + (mε

s)
2) + (mε

t )
2k2
εdxdy

=
L

ε

∫
Sbε

√
1 +mε

s

(
ψε(y),

L

2
+
L

ε
x

)2

+mε
t

(
ψε(y),

L

2
+
L

ε
x

)2

k2
ε

ε2

L2
dxdy

=
1

kε

∫
R\Pε

√
1 +mε

s(t, s)
2 +mε

t (t, s)
2k2
ε

ε2

L2
dtds.

Then, using (5.7) and (5.8), we conclude

lim sup
ε→0+

|Duε|(Sbε) ≤
∫
R

1dtds+ lim sup
ε→0+

∫
R
|mε

s(t, s)|dtds+O(ε) lim sup
ε→0+

∫
R
|mε

t (t, s)|dtds = `L,

so that
lim sup
ε→0+

|Duε|(B`) ≤ 3`L.

By the lower semicontinuity of the variation, we get also

lim inf
ε→0+

|Duε|(B`) ≥ |Du|(B`) = 3`L,

which shows the desired convergence of (uε) to u strictly BV (B`;R2).

Before proving the lower bound, similarly to Lemma 4.1, we show that the strict BV convergence
is inherited to almost every circumference centered at the origin.

Lemma 5.1 (Inheritance). Lemma 4.1 holds with uT in place of u.
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Proof. Let ρ < ` and u be the triple point map; clearly

|D(u ∂Bρ)|(∂Bρ) = 3L. (5.9)

On the other hand, since (vk) converges to u in L1, for almost every ρ < ` we have vk ∂Bρ →
u ∂Bρ in L1(∂Bρ;R2), and by lower semicontinuity we infer that

|D(u ∂Bρ)|(∂Bρ) ≤ lim inf
k→+∞

∫
∂Bρ

∣∣∣∣∂vk∂s
∣∣∣∣ ds for a.e. ρ < `. (5.10)

Integrating with respect to ρ ∈ (0, `), by (5.9) and Fatou’s lemma, we have

|Du|(B`) = 3`L =

∫ `

0
|D(u ∂Bρ)|(∂Bρ)dρ ≤

∫ `

0
lim inf
k→+∞

∫
∂Bρ

∣∣∣∣∂vk∂s
∣∣∣∣ dsdρ ≤ lim inf

k→+∞

∫
B`

|∇vk|dx.

(5.11)
By assumption, (vk) converges to u strictly BV (B`;R2), so we have all equalities in (5.11), in
particular, using (5.10),

|D(u ∂Bρ)|(∂Bρ) = lim inf
k→+∞

∫
∂Bρ

∣∣∣∣∂vk∂s
∣∣∣∣ ds for a.e. ρ < `.

Upon extracting a suitable subsequence (vkh) depending on ρ we get the conclusion.

Proof of Theorem 1.3 (lower bound). Let (vk) ⊂ C1(B`;R2) be a recovery sequence, i.e.,

vk → u strictly BV (B`;R2) and lim
k→+∞

A(vk;B`) = ABV (u;B`).

Fix ρ ∈ (0, `) and a subsequence (vkh) of (vk) whose restriction to ∂Bρ converges to u ∂Bρ strictly
BV (∂Bρ;R2), as in Lemma 5.1. For simplicity, let us still denote vkh by vk.

Let us split the area functional as

A(vk;B`) = A(vk;B` \Bρ) +A(vk;Bρ).

On B` \Bρ we still have L1-convergence of (vk) to u, but u (B` \Bρ) has no triple points, so by
Theorem 3.14 of [1],

lim inf
k→+∞

A(vk;B` \Bρ) ≥ AL1(u;B` \Bρ) =

∫
Br\Bρ

|
√

1 + |∇u|2dx+ |Dju|(B` \Bρ)

= |B` \Bρ|+ 3L(`− ρ) = π(`2 − ρ2) + 3L(`− ρ).

Therefore
lim

k→+∞
A(vk;B`) ≥ lim inf

k→+∞
A(vk;B` \Bρ) + lim inf

k→+∞
A(vk;Bρ)

≥π(`2 − ρ2) + 3L(`− ρ) + lim inf
k→+∞

∫
Bρ

|Jvk|dx,
(5.12)

where as usual Jvk := det∇vk.
Let us prove that

lim inf
k→+∞

∫
Bρ

|Jvk|dx ≥ |Tαβγ |, (5.13)

from which the lower bound in (1.16) is obtained by passing to the limit as ρ→ 0+ in (5.12). Now
we observe that, since vk is Lipschitz on Bρ, it satisfies the following identity (see (2.7))∫

Bρ

Jvkdx =
1

2

∫
∂Bρ

(
(vk)1

∂(vk)2

∂s
− (vk)2

∂(vk)1

∂s

)
ds ∀k ∈ N.
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Let us parametrize ∂Bρ from [0, 2π) and set ṽk(t) := vk(s(t)) for t ∈ [0, 2π); then

( ˙̃vk)i(t) =
d

dt
(vk)i(s(t)) = ρ

∂(vk)i
∂s

(s(t)), i = 1, 2.

Thus we get∫
∂Bρ

(
(vk)1

∂(vk)2

∂s
− (vk)2

∂(vk)1

∂s

)
ds =

∫ 2π

0

(
(ṽk)1(t)( ˙̃vk)2(t)− (ṽk)2(t)( ˙̃vk)1(t)

)
dt.

Denoting ṽk(t) simply by vk(t), we can write∫
Bρ

Jvkdx =
1

2

∫ 2π

0
((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt.

To show (5.13) it is sufficient to prove that

lim inf
k→+∞

1

2

∫ 2π

0
((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt ≥ |Tαβγ |, (5.14)

since obviously ∫
Bρ

|Jvk|dx ≥

∣∣∣∣∣
∫
Bρ

Jvkdx

∣∣∣∣∣ .
In order to show (5.14), denote by θ1 ∈ [0, 2π) (respectively θ2, θ3) the angle of the middle point of
the arc C ∩ ∂Bρ (respectively A ∩ ∂Bρ, B ∩ ∂Bρ) and write

1

2

∫ 2π

0
((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt

=
1

2

∫ θ2

θ1

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt

+
1

2

∫ θ3

θ2

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt

+
1

2

∫ θ1

θ3

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt.

(5.15)

Notice that, as a consequence of Lemma 5.1, vk converges to u strictly BV ([θ1, θ2];R2). Further-
more, by restricting vk to [θ1, θ1 + δ], for a small δ > 0, as a consequence of Proposition 2.4 we see
that vk converges uniformly to v ≡ γ on [θ1, θ1 + δ]. In particular we have

lim
k→∞

vk(θ1) = γ.

Similarly vk will tend to α and β in θ2 and θ3, respectively. We set

Lk :=

∫ θ2

θ1

|v̇k(t)|dt, z(t) = zk(t) :=

∫ t

θ1

|v̇k(τ)|dτ, t ∈ [θ1, θ2].

Denoting by t(z) the inverse of z(t), we define wk : [0, Lk]→ R2 as

wk(z) = vk(t(z)).
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Then we have

w′k(z) = v̇k(t(z))
dt

dz
=

v̇k(t(z))

|v̇k(t(z))|
, dt =

1

|v̇k(t(z))|
dz.

Thus

1

2

∫ θ2

θ1

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt =
1

2

∫ Lk

0

(
(wk)1(z)(w′k)2(z)− (wk)2(z)(w′k)1(z)

)
dz.

(5.16)
We also have

lim
k→+∞

Lk = lim
k→+∞

∫ θ2

θ1

|v̇k(t)|dt = |Du| {y ∈ ∂Bρ : arg(y) ∈ [θ1, θ2]} = |γ − α| = L.

Then, (wk)k is uniformly Lipschitz continuous on [0, Lk]. We further reparametrize it on [0, L] by
a multiple of the arc length parameter. Still denoting the obtained function by (wk)k, we see that
wk is uniformly bounded in W 1,∞([0, L];R2) so, upon passing to a (not relabelled) subsequence,
we have

wk
∗
⇀ w w∗-W 1,∞([0, L];R2),

for some w ∈W 1,∞([0, L];R2). Hence, we can pass to the limit in (5.16), which now reads

1

2

∫ L

0

(
(wk)1(z)(w′k)2(z)− (wk)2(z)(w′k)1(z)

)
dz

k→+∞−−−−→ 1

2

∫ L

0

(
w1(z)w′2(z)− w2(z)w′1(z)

)
dz.

(5.17)
Recalling that

w(0) = lim
k→+∞

wk(0) = lim
k→+∞

vk(θ1) = γ,

w(L) = lim
k→+∞

wk(L) = lim
k→+∞

wk(Lk) = lim
k→+∞

vk(θ2) = α,

we see that w is a 1-Lipschitz curve on [0, L] starting from γ and ending at α; therefore it must
coincide with the unit speed parameterization of the segment connecting γ to α, i.e.,

w(z) = γ +
α− γ
L

z.

So, we can easily compute the limit integral in (5.17):

1

2

∫ L

0

(
w1(z)w′2(z)− w2(z)w′1(z)

)
dz = −1

2

∫ L

0

(
γ +

α− γ
L

z

)
· (α− γ)⊥

L
dz = −1

2
γ · (α− γ)⊥

=
1

2
(γ1α2 − γ2α1) = |Tα0γ |,

where Tα0γ is the triangle with vertices α, γ and the origin 0. We conclude that

lim
k→+∞

1

2

∫ θ2

θ1

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)2(t)) dt = |Tα0γ |.

In a similar way, one can prove that

lim
k→+∞

1

2

∫ θ3

θ2

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)2(t)) dt = |Tα0β|

lim
k→+∞

1

2

∫ θ1

θ3

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)2(t)) dt = |Tβ0γ |,

and (5.14) follows.
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Remark 5.2. A result similar to Theorem 1.3 holds, up to trivial modifications, when u : B`(0)→
S1 is a symmetric n-junction map, taking (in the order) the values α1, . . . , αn vertices of the regular
n-gon Pα1···αn inscribed in the unit circle, on n non-overlapping 2π/n-angular regions with common
vertex at the origin. In formulas, let L be the side of Pα1···αn and h be the height of each isosceles
triangle that decomposes Pα1···αn , then there holds the following

Corollary 5.3. Let u : B`(0)→ S1 be a symmetric n-junction map. Then

ABV (u,B`) = |B`|+ |Du|(B`) + |Pα1···αn | = π`2 + nL`+
n

2
hL.
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