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DOMAIN VARIATIONS OF THE FIRST EIGENVALUE VIA A STRICT

FABER-KRAHN TYPE INEQUALITY

T. V. ANOOP AND K. ASHOK KUMAR

Abstract. For d ≥ 2 and 2d+2

d+2
< p < ∞, we prove a strict Faber-Krahn type inequality for the first

eigenvalue λ1(Ω) of the p-Laplace operator on a bounded Lipschitz domain Ω ⊂ R
d (with mixed boundary

conditions) under the polarizations. We apply this inequality to the obstacle problems on the domains of

the form Ω \O, where O ⊂⊂ Ω is an obstacle. Under some geometric assumptions on Ω and O, we prove the
strict monotonicity of λ1(Ω \ O) with respect to certain translations and rotations of O in Ω.

1. Introduction

In 1877, Lord Rayleigh [26] conjectured that ‘the disk is the only planar domain that minimizes the
first Dirichlet eigenvalue of the Laplace operator among all planar domains of fixed area.’ Nearly after 45
years, this conjecture was proved by Faber [18] and Krahn [23] for the planar domains (in 1923), and it is
extended for higher dimensional domains by Krahn [24] (in 1925). This result is known as the Faber-Krahn
inequality which is also available for the first Dirichlet eigenvalue of the p-Laplace operator ∆p, defined by
∆pu = div(|∇u|p−2∇u) with p ∈ (1,∞), see for example [25, page 191] and [20, II.4]. For a domain Ω ⊂ Rd,
the Faber-Krahn inequality states that

λ1(Ω
∗) ≤ λ1(Ω), (1.1)

where λ1(D) denotes the first Dirichlet eigenvalue of the p-Laplace operator on a domain D and Ω∗ is the
open ball centred at the origin in Rd with the same Lebesgue measure as that of Ω. If Ω is a ball, then the
equality holds in (1.1). The question ‘for which domains the strict inequality holds in (1.1)?’ is addressed
in [2, 9, 14, 16, 21].

Noting that Ω∗ is the Schwarz symmetrization of Ω, the inequality (1.1) asserts that the first Dirichlet
eigenvalue decreases under the Schwarz symmetrization. Next, we see that a similar result easily holds
under the polarization as well. The polarization is one of the simplest rearrangements on R

d that was first
introduced for sets by Wolontis [32], and for functions by Ahlfors [1] (for d = 2) and Baernstein and Taylor [6]
(for d ≥ 2). We refer to [5, 10, 12, 28, 31] for further reading on polarizations and their applications. Now,
we define the polarization of measurable sets and functions with respect to an open affine-halfspace in Rd.
Let H be an open affine-halfspace in Rd (called a polarizer), and let σH be the reflection with respect to the
boundary ∂H in Rd. We denote the set of all polarizers in Rd by H.

Definition 1.1 (Polarization). Let H ∈ H and Ω ⊆ Rd. The polarization PH(Ω) and the dual-polarization
PH(Ω) of Ω with respect to H are defined as:

PH(Ω) = [(Ω ∪ σH(Ω)) ∩H ] ∪ [Ω ∩ σH(Ω)] ,

PH(Ω) = [(Ω ∪ σH(Ω)) ∩Hc] ∪ [Ω ∩ σH(Ω)] .

For a measurable function u : Rd −→ R, the polarization PH(u) with respect to H is defined as

PH(u)(x) =

®
max {u(x), u(σH(x))} , for x ∈ H,

min {u(x), u(σH(x))} , for x ∈ R
d \H.

Now, for u : Ω −→ R let ũ be the zero extension of u to Rd. The polarization PH(u) is defined as the
restriction of PH(ũ) to PH(Ω).
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2 ANOOP AND ASHOK

Remark 1.2. The polarization of the sets and the functions satisfy the following relation:

PH(1Ω) = 1PH (Ω), for any Ω ⊆ R
d,

where 1Ω denotes the characteristic function of Ω.

In Figure 1, the dark shaded regions on the right side represent the polarization PH(Ω) of Ω with respect
to H .

H

Ω

H

σH (Ω)
Ω

PH (Ω)

H

Ω
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Ω

σH (Ω)

PH (Ω)

Figure 1. Polarization of an ellipse and a square.

For H ∈ H, the polarization PH is a rearrangement (preserves the inclusion order and the measure) on
Rd, see [13, Section 3]. Further, PH takes an open set to an open set and a closed set to a closed set in
Rd. Throughout this article, we consider p ∈ (1,∞), unless otherwise specified. For a non-negative function
u ∈ W 1,p

0 (Ω) the polarization PH(u) ∈ W 1,p
0 (PH(Ω)) and the norms are preserved, see [13, Corollary 5.1]:

‖u‖
p,Ω

= ‖PH(u)‖
p,PHΩ

and ‖∇u‖
p,Ω

= ‖∇PH(u)‖
p,PHΩ

.

Therefore, we have the equality in the Pólya-Szëgo type inequality for the polarizations on Rd. As an
immediate consequence, the variational characterization of λ1(Ω) yields the following Faber-Krahn type
inequality:

λ1(PH(Ω)) ≤ λ1(Ω). (1.2)

Clearly, if PH(Ω) = Ω or PH(Ω) = σH(Ω) then the equality holds in (1.2). In this article, we identify the
domains for which the strict inequality holds in (1.2) for certain values of p. More precisely, we show that,
if p > 2d+2

d+2 and the equality holds in (1.2) then PH(Ω) = Ω or PH(Ω) = σH(Ω). We prove this result for
the first eigenvalue of the p-Laplace operator with mixed boundary conditions on the multiply connected
domains of the following form:

(A0) Ωout \ Ωin ⊂ Rd is a bounded Lipschitz domain with Ωin ⊂⊂ Ωout, and Ωin =
m⋃
j=1

Ωj , where Ωj is

simply connected and Ωi ∩ Ωj = ∅ for i, j ∈ {1, 2, . . . ,m} with i 6= j.

For Ωout \ Ωin as in (A0), we consider the following family of admissible polarizers

Had :=
{
H ∈ H : σH(Ωin) ⊂⊂ Ωout

}
.
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Since Ωin ⊂⊂ Ωout, the set Had is always non-empty, and for H ∈ Had we have (see Proposition 2.12):

PH(Ωout \ Ωin) = PH(Ωout) \ PH(Ωin) and ∂PH(Ωout \ Ωin) = ∂PH(Ωout) ⊔ ∂PH(Ωin).

For H ∈ Had, we consider the following eigenvalue problems for the p-Laplace operator on both Ω and PH(Ω)
with mixed boundary conditions:

Neumann condition on ∂Ωin:

−∆pu = ν|u|p−2u in Ωout \ Ωin,

u = 0 on ∂Ωout,

∂u

∂n
= 0 on ∂Ωin;





(1.3)

−∆pv = ν|v|p−2v in PH(Ωout \ Ωin),

v = 0 on ∂PH(Ωout),

∂v

∂n
= 0 on ∂PH(Ωin);





(1.4)

Neumann condition on ∂Ωout:

−∆pu = τ |u|p−2u in Ωout \ Ωin,

u = 0 on ∂Ωin,

∂u

∂n
= 0 on ∂Ωout;





(1.5)

−∆pv = τ |v|p−2v in PH(Ωout \ Ωin),

v = 0 on ∂PH(Ωin),

∂v

∂n
= 0 on ∂PH(Ωout),





(1.6)

where ν, τ ∈ R.

The above eigenvalue problems can be collectively expressed as the following problem:

−∆pu = γ|u|p−2u in Ω,

u = 0 on ΓD,

∂u

∂n
= 0 on ΓN ,





(E)

where Ω ⊂ Rd is a bounded Lipschitz domain with ∂Ω = ΓN ⊔ ΓD, and γ ∈ R. Let

C0,1
ΓD

(Ω) :=
{
v is a Lipschitz continuous function on Ω with supp (v) ∩ ΓD = ∅

}
,

and we consider the following Sobolev space:

W 1,p
ΓD

(Ω) = the closure of C0,1
ΓD

(Ω) in W 1,p(Ω).

If ΓN = ∅ (equivalently ΓD = ∂Ω) then W 1,p
ΓD

(Ω) = W 1,p
0 (Ω). A real number γ is said to be an eigenvalue

of (E) if there exists a non-zero function u ∈ W 1,p
ΓD

(Ω) such that
∫

Ω

|∇u|p−2∇u · ∇v dx− γ

∫

Ω

|u|p−2uv dx = 0 for every v ∈ W 1,p
ΓD

(Ω),

and the function u is called as an eigenfunction corresponding to the eigenvalue γ. The standard variational
arguments establish the existence of an infinite subset of eigenvalues tending to infinity (see [3, Propo-
sition A.1]). The first eigenvalue γ1(Ω) of (E) is simple (the dimension of the eigenspace is one) and the
corresponding eignfunctions have constant sign in Ω (see [3, Proposition A.2]). Moreover, the first eigenvalue
γ1(Ω) of (E) has the following variational characterization:

γ1(Ω) = inf

ß∫
Ω

|∇u|p dx : u ∈ W 1,p
ΓD

(Ω) with
∫

Ω

|u|p dx = 1

™
.

Now, we state a Faber-Krahn type inequality for the first eigenvalues of the eigenvalue problems (1.3) and (1.4),
and similarly for the first eigenvalues of the eigenvalue problems (1.5) and (1.6).

Theorem 1.3. Let p ∈ (1,∞), Ωout \ Ωin ⊂ Rd be a domain as given in (A0), and H ∈ Had.

(i) If σH(Ωin) = Ωin, then

ν1(PH(Ωout \ Ωin)) ≤ ν1(Ωout \ Ωin). (1.7)
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(ii) If Ωin 6= ∅ and σH(Ωout) = Ωout, then

τ1(PH(Ωout \ Ωin)) ≤ τ1(Ωout \ Ωin). (1.8)

(iii) If 2d+2
d+2 < p < ∞, and the equality holds in (1.7) or (1.8) then

PH(Ωout \ Ωin) = Ωout \ Ωin or PH(Ωout \ Ωin) = σH(Ωout \ Ωin).

Remark 1.4.

(i) If Ωin = ∅, in (i) then ν1 corresponds to the first Dirichlet eigenvalue λ1 and thus (1.7) gives: for
every H ∈ Had,

λ1(PH(Ωout \ Ωin)) ≤ λ1(Ωout \ Ωin).

(ii) If Ωin = ∅, then τ1(Ωout) = τ1(PH(Ωout)) = 0, for every H ∈ H. This is the reason why we impose
the condition Ωin 6= ∅ in (ii).

(iii) The symmetry assumptions in (i) and (ii) of Theorem 1.3 ensure that ΓN ⊆ ∂PH(Ω) and hence the
Neumann boundary is unaltered under such polarizations. This fact is crucially used in our proof.
Obtaining the same conclusions of Theorem 1.3 without these additional symmetry assumptions
seems to be a challenging problem.

Application to the domain variations: Next, we apply Theorem 1.3 for the domains of the form Ω\O ⊂
Rd to study the monotonicity of the first eigenvalue of (E) on Ω \O under certain translations and rotations
of O within Ω. We assume the following:

(A1) O ⊂ Ω is a closed set with nonempty interior such that Ω \ O is a bounded Lipschitz domain.

The set O in (A1) is called as an obstacle. The main idea is to express the translations and the rotations of O
in terms of polarizations of punctured domain Ω \O. Then we apply Theorem 1.3 and get the monotonicity
of the eigenvalue.

The monotonicity along a straight line: In this case, we set Ωin = ∅ and Ωout = Ω \ O is a bounded
Lipschitz domain in Rd. For a given h ∈ Sd−1, we study the monotonicity of the first Dirichlet eigenvalue of
the p-Laplace operator with respect to the translations of the obstacle O in the h-direction within Ω. Without
loss of generality, we may assume that the origin 0 ∈ O. We consider the following family of polarizers:

Hs =
{
x ∈ R

d : x · h < s
}
, for s ∈ R. (1.9)

We make the following geometric assumption on Ω and O:

(A2) PH0(Ω) = Ω, and O is Steiner symmetric with respect to the hyperplane ∂H0 (see Definition 2.7).

The translations of O in the directions of h are given by

Os = sh+ O for s ∈ R. (1.10)

For Ω and O as given in (A2), define LO =
{
s ∈ R : PHs

(Ω) = Ω and Os ⊂ Ω
}
. Let λ1(s) be the first

eigenvalue of (1.3) with Ωin = ∅ and Ωout = Ω \ Os for s ∈ LO. For s ∈ R, let Σs :=
{
x ∈ Ω : x · h > s

}
. A

set A ⊆ R is said to be convex in the h-direction, if any line segment parallel to the Rh-axis with endpoints
in A completely lies in A. Now, we have the following strict monotonicity result.

Theorem 1.5. Let 2d+2
d+2 < p < ∞ and h ∈ Sd−1. Assume that O,Ω ⊂ Rd satisfy (A1) and (A2). If the set

Σs0

⋃
σHs0

(Σs0) is convex in the h-direction for some s0 ∈ LO, then the set {s ∈ LO : s ≥ s0} is an interval

and λ1(·) is strictly decreasing on this interval.

Throughout this article, for given a ∈ Rd and r ≥ 0, we denote Br(a) =
{
x ∈ Rd : |x− a| < r

}
, the open

ball centered at a with the radius r, and the closure of Br(a) by Br(a).
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Remark 1.6. In Theorem 1.5, if Ω itself is convex in the h-direction, then LO is an interval containing 0.
In particular, if Ω = BR(0), O = Br(0) for 0 < R < r < ∞ and h = e1 = (1, 0, . . . , 0) ∈ Sd−1. Then, both
Ω and O are Steiner symmetric with respect to ∂H0, and LO = [0, R − r). Therefore, by Theorem 1.5, the
first Dirichlet eigenvalue λ1(BR(0) \ Br(se1)) is strictly decreasing for s ∈ [0, R − r). Thus, Theorem 1.5
gives an alternate proof for many existing strict monotonicity results that were proved using the shape
derivative (Hadamard perturbation) formula. For example, Kesavan [22] and Harrell-Kröger-Kurata [19],
and Anoop-Bobkov-Sasi [4] for p ∈

Ä
2d+2
d+2 ,∞

ä
.

Remark 1.7. Due to the symmetry restrictions on the Neumann boundary in Theorem 1.3, the monotonicity
results (similar to that of Dirichlet eigenvalue in Remark 1.6), when the Neumann boundary condition is
specified on ∂BR(0) can not be deduced from Theorem 1.5. However, such a monotonicity result is proved
for p = 2, by Anoop-Ashok-Kesavan [5] using the Hadamard perturbation formula and some geometric
properties of the first eigenfunctions. This result is open for general p 6= 2.

The monotonicity with respect to the rotations about a point: Next, we study the monotonicity of
the first eigenvalue of (E) on Ω\O with respect to the rotations of the obstacle O in Ω about a point a ∈ Rd.
We set R+ = [0,∞), and make the following geometric assumptions on both Ω and O:

(A3) The domain Ω and the obstacle O are foliated Schwarz symmetric with respect to the ray a+ R+η,
for some η ∈ Sd−1 (see Definition 2.7).

For s ∈ [−1, 1], let θs := arccos(s) ∈ [0, π]. For ξ ∈ Sd−1 \ {η}, let Rs,ξ be the simple rotation on Rd with the
plane of rotation is Xξ := span {η, ξ} and the angle of rotation is θs from the ray R+η in the counter-clockwise
direction. The rotation of the obstacle O by Rs,ξ about the point a is given by

Os,ξ = a+Rs,ξ(−a+ O). (1.11)

Now, we observe the following facts (see Proposition 2.9 and Lemma 4.3):

(a) The rotated obstacle Os,ξ is foliated Schwarz symmetric with respect to the ray a+ R+Rs,ξ(η).
(b) For any rotation R that fixes η, O = a+R(−a+ O) and Ω = a+R(−a+Ω).
(c) For any distinct ξ1, ξ2 ∈ S

d−1 \ {η}, there exists R that fixes η such that

R(−a+Ω \ Os,ξ1) = −a+Ω \ Os,ξ2 .

From the above observations, it is evident that we only need to consider the rotations of the obstacle by
Rs,ξ with respect to a in a Xξ-plane for a fixed ξ ∈ Sd−1 \ {η}. Thus for s ∈ [−1, 1], we set Os = Os,ξ and
consider

CO :=
{
s ∈ [−1, 1] : Os ⊂ Ω

}
,

γ1(s) := γ1(Ω \ Os), the first eigenvalue of (E) on Ω \ Os for s ∈ CO.
(1.12)

In this article, we consider the following types of Ω and ΓN ⊆ ∂Ω:

Ω

Os Ot

e1

Hs Ht

θ1

θ2

a+Rs2 (R+η)

a+
Rs1

(R
+ η)

a+R
+η

Ω

a

Figure 2. The translations of O along the e1-axis; and rotations of O about the point
a ∈ R

d, here θi = arccos (si) for i = 1, 2 with s1 > s2.
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(A4) Ω = Ω0 \Bρ0(a), where Bρ0(a) ( Ω0 ⊂ Rd, ρ0 ≥ 0; and ΓN = ∂Bρ0(a).

(A5) Ω = BR(a) \ Ω1, where Ω1 ⊂ BR(a), and ΓN = ∂BR(a).

Now, we state our monotonicity result for γ1(.) on CO.

Theorem 1.8. Let 2d+2
d+2 < p < ∞ and Ω ⊂ R

d be a domain. Assume that the pair Ω and ΓN satisfy

either (A4) or (A5). If Ω and O satisfy (A1) and (A3) for some a ∈ Rd and η ∈ Sd−1, then CO is an
interval. In addition, if Ω is not radial with respect to a, then γ1(·) is strictly increasing on CO.

Remark 1.9. If Ω is radial with respect to the point a (see Corollary 2.11), then the first eigenvalue γ1(·)
remains as a constant on CO.

The rest of this article is organized as follows. In Section 2, the polarization of measurable sets and
functions are introduced, and some of their important properties are discussed. Further, the characterizations
of Steiner and foliated Schwarz symmetries using polarizations are given in Section 2. Also, we include a
strong comparison principle and a few interior and boundary regularity results that are essential for the
development of this article. A proof of Faber-Krahn inequality (Theorem 1.3) is given in Section 3. The
proofs of strict monotonicity results (Theorem 1.5 and 1.8) are given in Section 4. Many important remarks
and explicit examples are included in Section 5.

2. Preliminaries

In this section, we discuss some of the important properties of the polarization of the sets and functions.
Further, we give the definitions of Steiner and foliated Schwarz symmetries, and their characterizations in
terms of polarizations. Lastly, we give some regularity results and strong comparison principles for the
solutions of the p-Laplace operator.

2.1. Polarization of sets. We discuss a few simple properties of the polarization of sets.

Proposition 2.1. Let H ∈ H and A,C ⊆ Rd. Then,

(i) PH(A) is open, if A is open; and PH(A) is closed if A is closed;
(ii) PH(A) ⊆ PH(C), if A ⊆ C;
(iii) PH(A ∩ C) ⊆ PH(A) ∩ PH(C) and PH(A) ∪ PH(C) ⊆ PH(A ∪ C);
(iv) PH(σH(A)) = PH(A), σH(PH(A)) = PH(A), and σH(PH(A)) = PH(A);

(v) PH(Ac) =
(
PH(A)

)
c

.

Proof. Recall that, for H ∈ H, the polarizations of a set A ⊆ Rd are given by

PH(A) = [(A ∪ σH(A)) ∩H ] ∪ [A ∩ σH(A)] , and PH(A) = [(A ∪ σH(A)) ∩Hc] ∪ [A ∩ σH(A)] .

Since A ∩ ∂H = σH(A) ∩ ∂H , we can also write

PH(A) =
[
(A ∪ σH(A)) ∩H

]
∪ [A ∩ σH(A)] and PH(A) =

î
(A ∪ σH(A)) ∩H

c
ó
∪ [A ∩ σH(A)] .

Now, (i)-(iii) follow easily from the above observations.
(iv) This follows from the fact σH(H) = H

c

and the above observations.
(v) By the definition, we have PH(Ac) = [(Ac ∪ σH(Ac)) ∩H ]

⋃
[Ac ∩ σH(Ac)] , and hence

(PH(Ac))
c

= [(A ∩ σH(A)) ∪Hc] ∩ [A ∪ σH(A)]

= [A ∩ σH(A)] ∪ [(A ∪ σH(A)) ∩Hc] = PH(A). �

The following proposition characterizes the invariance of a set under polarizations.

Proposition 2.2. Let H ∈ H and A ⊆ Rd. Then

(i) PH(A) = A if and only if σH(A) ∩H ⊆ A;
(ii) PH(A) = A if and only if σH(A) ∩Hc ⊆ A;
(iii) PH(A) = PH(A) if and only if σH(A) = A.
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Proof. (i) From the definition of PH(A), it is clear that

PH(A) = [(A ∪ σH(A)) ∩H ] ∪ [A ∩ σH(A) ∩Hc] . (2.1)

If PH(A) = A, then PH(A) ∩ H = A ∩ H. Thus the above equation yields (A ∪ σH(A)) ∩ H ⊆ A, and
hence we must have σH(A) ∩ H ⊆ A. Conversely, assume that σH(A) ∩ H ⊆ A. Then, by applying σH

on both sides, and using the fact that A ∩ ∂H = σH(A) ∩ ∂H, we obtain A ∩ Hc ⊆ σH(A), Therefore,
A∩Hc = A∩σH (A)∩Hc. From the assumption, we also have A∩H = [(A ∪ σH(A)) ∩H ]. Now, using (2.1),
we easily conclude that PH(A) = A.
(ii) From Proposition 2.1-(iv), we have σH(PH(A)) = PH(A) and PH(σH(A)) = PH(A). Therefore, we get
PH(A) = A if and only if PH(σH(A)) = σH(A). Now, from (i) we obtain

PH(σH(A)) = σH(A) if and only if A ∩H ⊆ σH(A).

Now applying σH on both sides of last inclusion and using the fact that σH(A) ∩ ∂H = A ∩ ∂H , we get

PH(A) = A if and only if σH(A) ∩Hc ⊆ A.

(iii) From the definitions of PH(A) and PH(A), it is clear that

PH(A) = [(A ∪ σH(A)) ∩H ] ∪ [A ∩ σH(A) ∩Hc] ,

PH(A) = [(A ∪ σH(A)) ∩Hc] ∪ [A ∩ σH(A) ∩H ] .

If PH(A) = PH(A), then (A ∪ σH(A)) ∩ H = A ∩ σH(A) ∩ H and A ∩ σH(A) ∩ Hc = (A ∪ σH(A)) ∩ Hc.
Therefore A ∪ σH(A) = A ∩ σH(A), and hence σH(A) = A. Conversely, assume that σH(A) = A. Then,
from above equations, we get PH(A) = PH(A) = A. �

H

σH (Ω) Ω

BH
AH

Figure 3. The sets AH and BH of PH(Ω) ∩H .

Proposition 2.3. Let H ∈ H and Ω ⊆ Rd be an open set. Then,

(i) PH(Ω) 6= Ω if and only if AH := σH(Ω) ∩ Ωc ∩H has non-empty interior;
(ii) PH(Ω) 6= Ω if and only if BH := Ω ∩ σH(Ωc) ∩H has non-empty interior.

Proof. (i) First, we observe that the interior of AH is σH(Ω) ∩ Ω
c ∩ H . Since σH(Ω) ∩ H is open, from

Proposition 2.2, we get PH(Ω) 6= Ω if and only if σH(Ω) ∩ H * Ω. Clearly, σH(Ω) ∩ H * Ω if and only if
Ω

c ∩ σH(Ω) ∩H 6= ∅.
(ii) For H ∈ H, we have σH(H) ∈ H. Then from Proposition 2.1, PH(Ω) = σH(Ω) if and only if PσH (H)(Ω) =
Ω. The proof follows from (i) by replacing H with σH(H). �

Remark 2.4. For an open set Ω ⊂ Rd, if PH(Ω) 6= Ω then the interior of PH(Ω)\Ω is non-empty. Therefore,
if PH(Ω) 6= Ω then PH(Ω) can not be equal to Ω up to a set of measure zero (or up to a set of p-capacity
zero).

Now, we prove that the set PH(Ω) ∩H is a domain when Ω is a domain. For this, we need the following
lemma.

Lemma 2.5. Let H ∈ H and Ω ⊆ Rd be a domain. If σH(Ω) = Ω, then both Ω∩H and Ω∩Hc

are connected.
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Proof. Let f : Ω ∩H −→ {0, 1} be a continuous function. Using the symmetry of Ω, we define

f̃(x) =

®
f(x), for x ∈ Ω ∩H,

f ◦ σH(x), for x ∈ Ω ∩Hc.

Then f̃ is a continuous function on Ω, since σH(x) = x for x ∈ ∂H . By the connectedness of Ω, f̃ is constant
on Ω. In particular, f is constant on Ω ∩H, and hence Ω ∩H is connected. Therefore int

(
Ω ∩H

)
= Ω ∩H

is connected, and hence σH(Ω ∩H) = Ω ∩H
c

is also connected. �

Proposition 2.6. Let H ∈ H and Ω ⊆ Rd be a domain. Then PH(Ω) ∩H is a domain.

Proof. First, we observe that PH(Ω) ∩ H = (Ω ∪ σH(Ω)) ∩ H is open. For proving the connectedness, we
consider the following two cases: (a) Ω ∩ σH(Ω) = ∅, and (b) Ω ∩ σH(Ω) 6= ∅.

(a) Ω ∩ σH(Ω) = ∅: In this case, we have Ω∩ ∂H = ∅, since Ω∩ ∂H ⊂ Ω∩ σH(Ω). Therefore, Ω is the union

of two open sets Ω∩H and Ω∩H
c

. By the connectedness of Ω, one of them is equal to Ω. If Ω∩H = Ω then
PH(Ω) = Ω, and hence PH(Ω)∩H = Ω. If Ω∩Hc

= Ω then PH(Ω) = σH(Ω), and hence PH(Ω)∩H = σH(Ω).

(b) Ω ∩ σH(Ω) 6= ∅: In this case, we have Ω ∪ σH(Ω) is connected, and it is symmetric with respect to ∂H .
Thus, by Lemma 2.5, (Ω ∪ σH(Ω)) ∩H = PH(Ω) ∩H is connected.
Therefore, in both of the cases, PH(Ω) ∩H is domain. �

The Steiner, axial and foliated Schwarz symmetries: A set in R
d is said to have certain symmetry,

if it is invariant under corresponding symmetrization or rearrangement on Rd. Here, we directly give the
definitions of the Steiner and the foliated Schwarz symmetries without defining the associated symmetriza-
tions (see [30, Definition 3.1 and Definition 3.2]). The foliated Schwarz symmetrization with respect to a ray
a+ R+η is the cap symmetrization with respect to a+ R+η, see [30, Definition 3.2].

Definition 2.7. Let A ⊆ Rd be a measurable set.

(1) Steiner symmetry. Let S be an affine-hyperplane in Rd. For each x ∈ S, let Lx be the line passing
through x and orthogonal to S. Then A is said to be Steiner symmetric with respect to S, if

for each x ∈ S, A ∩ Lx = Bρ(x) ∩ Lx for some ρ ≥ 0.

(2) Axial symmetry. Let L be a line in Rd. For each x ∈ L, let Sx be the affine hyperplane passing
through x and orthogonal to L. Then A is said to be axially symmetric with respect to L, if

for each x ∈ L, A ∩ ∂Bρ(x) ∩ Sx = ∂Bρ(x) ∩ Sx for some ρ ≥ 0.

(3) Foliated Schwarz symmetry. Let a+R+η be a ray starting for some a ∈ Rd and η ∈ Sd−1. Then
A said to be foliated Schwarz symmetric with respect to a+ R+η, if

for every r > 0, A ∩ ∂Br(a) = Bρ(a+ rη) ∩ ∂Br(a) for some ρ ≥ 0.

Remark 2.8. We observe that:

(i) a set A ⊆ Rd is Steiner symmetric with respect to an affine-hyperplane S, if and only if A is invariant
under the reflection with respect to S and convex in the orthogonal direction to S;

(ii) a set A ⊆ Rd is axially symmetric with respect to a line L, if and only if A is invariant under the
reflection with respect to every affine hyperplane containing L. In particular, if L = Rη and R is any
rotation on Rd such that R(η) = η, then R(A) = A. This follows from the definition, since the planes
of rotation of such R can not contain η, and hence those planes must be orthogonal to η;

(iii) let A ⊆ R
d be foliated Schwarz symmetric with respect to a+R

+η. Let IA :=
{
r > 0 : A∩ ∂Br(a) 6=

∅
}
. For r ∈ IA, let ρ(r) > 0 be such that A ∩ ∂Br(a) = Bρ(r)(a+ rη) ∩ ∂Br(a). Then,

A =
⋃

r∈IA

Bρ(r)(a+ rη) ∩ ∂Br(a). (2.2)

The following proposition provides some properties of the foliated Schwartz symmetric sets.

Proposition 2.9. If A ⊆ Rd is foliated Schwarz symmetric with respect to a ray a+ R+η then

(i) A is axially symmetric with respect to a+ Rη,
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(ii) for any linear map T and b ∈ Rd, the set b + T (A) is foliated Schwarz symmetric with respect to
b+ T (a) + R+T (η),

(iii) R(−a+A) = −a+A, for any rotation R on Rd that fixes η.

Proof. (i) Observe that, for every r ∈ IA, the set Bρ(r)(a + rη) ∩ ∂Br(a) is axially symmetric with respect
to a+ Rη. Now, using (2.2), we conclude that A is axially symmetric with respect to a+ Rη.
(ii) Let r > 0, then

(b+ T (A)) ∩ ∂Br(b + T (a)) = b+ T (A ∩ ∂Br(a)) = b+ T (Bρ(a+ rη) ∩ ∂Br(a)), for some ρ ≥ 0,

where the last equality follows from the definition foliated Schwarz symmetry. Thus

(b+ T (A)) ∩ ∂Br(b + T (a)) = b+Bρ(T (a) + rT (η)) ∩ ∂Br(T (a))

= Bρ(b+ T (a) + rT (η)) ∩ ∂Br(b+ T (a)).

Now, we obtain the required conclusion by the definition of foliated Schwarz symmetry.
(iii) By taking T = I and b = −a in (ii), we get −a+A is foliated Schwarz symmetric with respect to R+η.
Thus by (i), −a + A is axially symmetric with respect to Rη. Since R fixes η, from (ii) of Remark 2.8, we
conclude R(−a+A) = −a+A. �

Next, we characterize the foliated Schwarz and Steiner symmetric sets using the polarizations. First, we
consider the following polarizers: for given a ∈ Rd, η ∈ Sd−1, let

Ha,η :=
{
H ∈ H : a+ R

+η ⊂ H and a ∈ ∂H
}
.

Some useful characterizations of the Steiner symmetry (from [11, Lemma 2.2]), foliated Schwarz symmetry
(from [30, Section 3]) are given in the following proposition.

Proposition 2.10. Let A ⊆ Rd be any set.

(i) Let Hs ∈ H be as given in (1.9). Then, for s0 ∈ R, the following statements are equivalent:
(a) the set A is Steiner symmetric with respect to the affine-hyperplane ∂Hs0 ,
(b) PHs

(A) = A, for every s ≥ s0; and PHs(A) = A, for every s ≤ s0.
(ii) Let a ∈ Rd and η ∈ Sd−1. Then the following are equivalent:

(a) the set A is foliated Schwarz symmetric with respect to the ray a+ R+η,
(b) PH(A) = σH(A), for every H ∈ Ha,η.

We have the following corollary.

Corollary 2.11. Let A ⊆ Rd be any set. If A is foliated Schwarz symmetric with respect to both the rays
a+ R+η and a− R+η for some a ∈ Rd and η ∈ Sd−1. Then A is radial with respect to the point a.

Proof. Notice that, A is radial with respect to a ∈ Rd provided A∩∂Br(a) = ∂Br(a) for every r ∈ IA, where
IA = {r ∈ R : A∩∂Br(a) 6= ∅}. Since A is foliated Schwarz symmetric with respect to both the rays a+R

+η
and a− R+η, for each r ∈ IA we get:

A ∩ ∂Br(a) = Bρ1(a+ rη) ∩ ∂Br(a) = Bρ2(a− rη) ∩ ∂Br(a) for some ρ1, ρ2 ≥ 0. (2.3)

Since |a− (a− rη)| = r, from (2.3) we obtain a− rη ∈ Bρ1(a+ rη). Thus ρ1 ≥ |a− rη − (a+ rη)| = 2r, and
hence Bρ1(a+ rη) ∩ ∂Br(a) = ∂Br(a). Now, from (2.3) we conclude that A ∩ ∂Br(a) = ∂Br(a). �

2.2. Polarization of punctured domains. We consider the polarization of the punctured domains of the
form A \ C, where A ⊆ Rd is open, and C ⊂ A is closed. Clearly ∂(A \ C) = ∂A ⊔ ∂C.

Proposition 2.12. Let A ⊆ Rd be open and C ⊂ A be closed. If H ∈ H is such that σH(C) ⊂ A, then

(i) PH(A \ C) = PH(A) \ PH(C),
(ii) PH(C) ⊂ PH(A), in particular ∂PH(A \ C) = ∂PH(A) ⊔ ∂PH(C).

Proof. (i) For A ⊆ Rd, denote P+
H (A) = PH(A) ∩ H and P−

H (A) = PH(A) ∩ Hc. Thus PH(A) = P+
H (A) ⊔

P−
H (A), and

PH(A) ∩ PH(Cc) =
[
P+
H (A) ∩ P+

H (Cc)
]
⊔
[
P−
H (A) ∩ P−

H (Cc)
]
. (2.4)
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On the other hand, we have P−
H (A ∩ Cc) = P−

H (A) ∩ P−
H (Cc). Since C, σH(C) ⊆ A, we get σH(A) ∪ Cc =

A ∪ σH(Cc) = Rd. Thus, (A ∩Cc) ∪ σH(A ∩Cc) = (A ∪ σH(A)) ∩ (Cc ∪ σH(Cc)), and hence P+
H (A ∩Cc) =

P+
H (A) ∩ P+

H (Cc). Therefore, from (2.4) and using PH(Cc) = (PH(C))c (Proposition 2.1-(v)), we obtain

PH(A \C) = PH(A) ∩ PH(Cc) = PH(A) \ PH(C).

(ii) Since C ∪ σH(C) is a symmetric set in A, by the definitions of PH and PH , we get

PH(C) ⊆ C ∪ σH(C) = PH(C ∪ σH(C)) ⊂ PH(A).

Moreover, PH(C) is closed and PH(A) is open in Rd. Thus,

∂PH(A \ C) = ∂
(
PH(A) \ PH(C)

)
= ∂PH(A) ⊔ ∂PH(C). �

Remark 2.13. The assumption σH(C) ⊂ A is essential for the conclusions of the above proposition. To see
this, consider A = BR(0), C = Br(0), and the polarizers Hs := {x ∈ Rd : x1 < s} for s ∈ R. For s > R−r

2 ,
we have |σHt

(C) ∩ Ac| = |Br(2te1) ∩ BR(0)
c| > 0, where |A| is the Lebesgue measure of A ⊆ Rd. Then,

|PHt
(A) \ PHt(C)| = |BR(0) \ Br(2te1)| > |BR(0) \ Br(0)|. Since PH is measure preserving, we conclude

that PH(A) \ PH(C) 6= PH(A \ C).

2.3. Polarization of functions. Now, we consider the polarization of functions defined on a domain Ω ⊆
R
d and discuss some important properties of polarization of functions, such as Lipschitz continuity, non-

expansivity, norm preserving property. Recall the definition of polarization of functions (from Definition 1.1).

Proposition 2.14. Let H ∈ H, and u ∈ C(Rd) be a non-negative function. Then

supp (PH(u)) = PH(supp (u)).

Proof. Let F = supp (u). Clearly u = u ◦ σH = 0 on F c ∩ σH(F c), and u = 0 or u ◦ σH = 0 on F c ∪ σH(F c).
Since u ≥ 0, by the definition, we get PH(u) = 0 on

[
(F c ∪ σH(F c)) ∩ Hc

]
∪
[
F c ∩ σH(F c)

]
= PH(F c).

Now, since PH(F c) = (PH(F ))
c (from Proposition 2.1-(v)), we get supp (PH(u)) ⊆ PH(F ). The other way

inclusion is easy to see from the definition. Therefore, supp (PH(u)) = PH(supp (u)). �

Remark 2.15. Similarly, for non-positive function u ∈ C(Rd), supp (PH(u)) ⊆ PH(supp (u)). More generally,
for any function u ∈ C(Rd) we have supp (PH(u)) = PH(supp (u+)) ∪ PH(supp (u−)) (see [11, Section-2]),
where u+ = max{0, u} and u− = min{0, u}.

The Hölder continuity of polarizations of Hölder continuous functions defined on Rd is given in [13,
Corollary 3.1]. The same result holds for the functions defined on a symmetric domain.

Proposition 2.16. Let Ω0 ⊆ Rd be a domain and H ∈ H such that σH(Ω0) = Ω0. If u ∈ C0,α(Ω0) for some
α ∈ (0, 1], then PHu ∈ C0,α(Ω0).

Proof. For u ∈ C0,α(Ω0), there exists L > 0 such that |u(x) − u(y)| ≤ L|x − y|α for any x, y ∈ Ω0. For
simplicity of notation, we denote the reflection σH(z) of z ∈ Rd with respect to ∂H by z∗. Let x, y ∈ Ω0.
Since σH(Ω0) = Ω0, both x∗, y∗ ∈ Ω0, and supp (PH(u)) ⊆ Ω0 (from Remark 2.15). If both x, y ∈ H , then

|PHu(x)− PHu(y)| ≤
∣∣max

{
u(x), u(x∗)

}
−max

{
u(y), u(y∗)

}∣∣

≤ max
{
|u(x)− u(y)|, |u(x∗)− u(y∗)|

}
≤ L|x− y|α.

Similarly, if x, y ∈ Hc then |PHu(x) − PHu(y)| ≤ L|x − y|α. Now, if x ∈ H and y ∈ Hc then |x − y∗| =
|x∗ − y| ≤ |x− y|. Therefore

|PHu(x)− PHu(y)| ≤
∣∣max

{
u(x), u(x∗)

}
−min

{
u(y), u(y∗)

}∣∣

≤ max
{
|u(x)− u(y)|, |u(x)− u(y∗)|, |u(y)− u(x∗)|, |u(x∗)− u(y∗)|

}

≤ L|x− y|α. �

Now, we state the following non-expansive property of polarization, see [13, Theorem 3.1] and [15, Theorem
3, Corollary 1].
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Proposition 2.17. Let Ω0 ⊂ Rd, and j be any Young function. Then, for any H ∈ H and any non-negative
measurable functions u, v on Ω0,∫

PHΩ0

j (|PHu− PHv|) dx ≤
∫

Ω0

j(|u− v|) dx.

In particular, for j(t) = tp, 1 ≤ p < ∞,

‖PHu− PHv‖p,PHΩ0
≤ ‖u− v‖p,Ω0

for any non-negative u, v ∈ Lp(Ω0).

We state the following invariance property of polarizations, see [29, Proposition 2.3.] and [31, Lemma 3.1].

Proposition 2.18. Let Ω0 ⊆ Rd be an open set and H ∈ H such that σH(Ω0) = Ω0. If u ∈ W 1,p(Ω0) then
PH(u) ∈ W 1,p(Ω0), and

‖u‖p = ‖PHu‖p and ‖∇u‖p = ‖∇PHu‖p . (2.5)

Proof. Let u ∈ W 1,p(Ω0). Since Ω0 is symmetric with respect to ∂H , we have v := u ◦ σH ∈ W 1,p(Ω0).
Moreover, using the standard arguments we can easily show that, |u − v|, f := |u − v|1Ω0∩H , and g :=
−|u − v|1Ω0∩Hc are in W 1,p(Ω0). Thus PH(u) = 1

2 (u+ v + f + g) is also in W 1,p(Ω0). To prove that the
norms are preserved, first observe that

PHu =

®
u a.e., in [(Ω0 ∩H) ∩ {u > v}] ∪ [(Ω0 ∩Hc) ∩ {u < v}] ,
v a.e., in [(Ω0 ∩Hc) ∩ {u > v}] ∪ [(Ω0 ∩H) ∩ {u < v}] ;

∇PHu =

®∇u a.e., in [(Ω0 ∩H) ∩ {u > v}] ∪ [(Ω0 ∩Hc) ∩ {u < v}] ,
∇v a.e., in [(Ω0 ∩Hc) ∩ {u > v}] ∪ [(Ω0 ∩H) ∩ {u < v}] .

Now, by integrating |PH(u)|p and |∇PH(u)|p over Ω0, and using σH ((Ω0 ∩H) ∩ {u > v}) =
(
Ω0∩Hc

)
∩{u <

v} we get (2.5). �

Recall that, for a domain Ω ⊆ Rd and ΓD ⊆ ∂Ω, the Sobolev space W 1,p
ΓD

(Ω) is defined by

W 1,p
ΓD

(Ω) = the closure of C0,1
ΓD

(Ω) in W 1,p(Ω),

where C0,1
ΓD

(Ω) =
{
ϕ ∈ C0,1(Ω) : supp (φ)∩ΓD = ∅

}
. We give the analogous result of Proposition 2.18 for the

functions in W 1,p
ΓD

(Ω) in the following proposition.

Proposition 2.19. Let Ω = Ωout \ Ωin ⊂ Rd be as given in (A0), ΓD ⊆ ∂Ω and H ∈ Had. Let ϕ ∈ C0,1
ΓD

(Ω)
be any non-negative function.

(i) If ΓD = ∂Ωout and σH(Ωin) = Ωin, then PH(ϕ) ∈ C0,1
∂PH (Ωout)

(PH(Ω)).

(ii) If ΓD = ∂Ωin and σH(Ωout) = Ωout, then PH(ϕ) ∈ C0,1
∂PH (Ωin)

(PH(Ω)).

In both of the cases (2.5) holds.

Proof. (i) Let Ω0 = Rd \Ωin. Then Ω ⊂ Ω0, and σH(Ω0) = Ω0. Let ϕ ∈ C0,1
ΓD

(Ω) be a non-negative function,
and let ϕ̃ be its zero extension to Ω0. Then ϕ̃ ∈ C0,1(Ω0), and hence by Proposition 2.16, PH(ϕ̃) ∈ C0,1(Ω0).
Therefore, PH(ϕ) = PH(ϕ̃)1PH (Ω) ∈ C0,1(PHΩ). Next, we show that PH(ϕ) = 0 on ∂PH(Ωout). Let
M = supp (ϕ) ( Ωout. Since supp (PH(ϕ)) ⊆ PH(M) is closed, PH(Ωout) is open and PH(M) ⊂ PH(Ωout),
we obtain supp (PH(ϕ)) ∩ ∂PH(Ωout) = ∅ as required.
(ii) In this case, let Ω0 = Ωout. For a non-negative function ϕ ∈ W 1,p

ΓD
(Ω), as before we get PH(ϕ) =

PH(ϕ̃)1PH (Ω) ∈ C0,1(PH(Ω)). Let M = supp (ϕ) . Then M ∩ Ωin = ∅ and M ⊂ Ωin
c

. Now, using Proposi-
tion 2.1 we obtain

PH(M) ⊂ PH(Ωin
c

) ⊆ PH(Ωc

in) =
(
PH(Ωin)

)c
.

Since supp (PH(ϕ)) ⊆ PH(M) is closed, and PH(Ωin) is open, we get supp (PH(ϕ)) ∩ ∂PH(Ωin) = ∅. There-
fore, PH(ϕ) = 0 on ∂PH(Ωin). �

Using the standard approximation techniques and Proposition 2.17 (the non-expansivity of polarizations),
we can prove the following analogous result of Proposition 2.18, for the functions in W 1,p

ΓD
(Ω).
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Proposition 2.20. Let Ω, ΓD ⊆ ∂Ω and H be as given in Proposition 2.19. Let u ∈ W 1,p
ΓD

(Ω) be any
non-negative function.

(i) If ΓD = ∂Ωout and σH(Ωin) = Ωin, then PH(u) ∈ W 1,p
∂PH (Ωout)

(PH(Ω)).

(ii) If ΓD = ∂Ωin and σH(Ωout) = Ωout, then PH(u) ∈ W 1,p
∂PH (Ωin)

(PH(Ω)).

In both of the cases (2.5) holds.

2.4. Regularity results and Strong comparison principles. Next, we recall a few regularity results for
the eigenfunctions. Using Moser type iteration arguments [7, Proposition 1.2] and the arguments from [8,
Remark 2.8], we get that the eigenfunctions are in Lq for any q ∈ [1,∞]. Now, the local C1,α-regularity
results of [17, Theorem 1 and 2] give the following boundary regularity of the eigenfunctions.

Proposition 2.21. Let Ω ⊆ Rd be a Lipschitz domain and 1 < p < ∞. Let u ∈ W 1,p
loc (Ω)∩L∞

loc(Ω) be a weak

solution of −∆pu = λ|u|p−2u for some λ ∈ R. Then there exists α ∈ (0, 1) such that u ∈ C1,α
loc (Ω) ∩ C0,α(Ω).

The following strong comparison principle for the distributional solutions of the p-Laplace operator is
given in [27, Theorem 1.4].

Proposition 2.22. Let Ω ⊂ Rd be a bounded smooth domain and 2d+2
d+2 < p < ∞. Let u, v ∈ C1(Ω) be

positive distributional solutions of −∆pu− g(u) = 0 in Ω, for a non-negative Lipschitz function g on [0,∞)
with g(s) > 0 for s > 0. If u ≤ v in Ω, then either u < v in Ω or u ≡ v in Ω.

3. Strict Faber-Krahn type inequality under polarization

In this section, we give A proof for Theorem 1.3. Recall the following two subsets of PH(Ω) ∩H :

AH = Ωc ∩ σH(Ω) ∩H and BH = Ω ∩ σH(Ωc) ∩H.

We need the following lemma.

Lemma 3.1. Let Ω = Ωout\Ωin ⊂ Rd be a domain as given in (A0), and H ∈ Had. Then Ω ∩H∩AH ⊆ ∂Ω.
Furthermore,

(i) if σH(Ωin) = Ωin then Ω ∩H ∩ AH ⊆ ∂Ωout;
(ii) if σH(Ωout) = Ωout then Ω ∩H ∩ AH ⊆ ∂Ωin.

Proof. If AH = ∅, then trivially ∅ = Ω ∩H ∩ AH ⊂ ∂Ω. Let AH 6= ∅, then from Proposition 2.3, we obtain
PH(Ω) 6= Ω, and AH has non-empty interior. Since Ω∩H and AH are disjoint and PH(Ω)∩H = (Ω ∩H)∪AH ,
using the connectedness of PH(Ω) ∩ H we conclude that Ω ∩H ∩ AH = ∂(Ω ∩ H) ∩ ∂AH 6= ∅. Clearly
Ω ∩ ∂(Ω ∩H) ∩ ∂AH = ∅ and hence ∂(Ω ∩H) ∩ ∂AH ⊆ ∂Ω.
(i) If σH(Ωin) = Ωin, then we can write

AH = Ωc ∩ σH(Ω) ∩H = (Ωc

out ∪ Ωin) ∩ σH (Ωout) ∩ Ωc

in ∩H

= Ωc

out ∩ σH (Ωout) ∩H.

Since Ωin ⊂⊂ Ωout, we have ∂Ω = ∂Ωout ⊔ ∂Ωin and ∂Ωin ∩ ∂AH = ∅. Therefore, Ω ∩H ∩ AH ⊂ ∂Ωout.
(ii) Similarly, for σH(Ωout) = Ωout we have AH = Ωin ∩ σH(Ωin) ∩H . Therefore, we obtain Ω ∩H ∩ AH ⊂
∂Ωin. �

For any non-negative function u ∈ C(Ω), let ũ be its zero extension to Rd and let

Mu =
{
x ∈ PH(Ω) ∩H : PH(ũ)(x) > ũ(x)

}
.

Next, we prove a lemma that plays a significant role in our results.

Lemma 3.2. Let Ω = Ωout \Ωin ⊂ Rd be a domain as given in (A0), ΓD ⊆ ∂Ω, and H ∈ Had. Let u ∈ C(Ω)
be a non-negative function with u = 0 on ΓD. If ΓD satisfies one of the following assumptions:

(a) ΓD = ∂Ω, (b) ΓD = ∂Ωout and σH(Ωin) = Ωin, (c) ΓD = ∂Ωin and σH(Ωout) = Ωout,

then ũ is continuous on PH(Ω) ∩H. Moreover, if Ω 6= PH(Ω) 6= σH(Ω) then there exists a ball B0 ⊂ Ω ∩H
such that

PH(u) > u in B0 ∩Mu and PH(u) ≡ u in B0 ∩M c

u.
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Proof. If PH(Ω) = Ω then ũ = u in PH(Ω) ∩ H , and hence it is continuous. If PH(Ω) 6= Ω, then from
Proposition 2.3 we have AH 6= ∅ and Ω ∩ H ( PH(Ω) ∩ H . Clearly ũ = u on Ω ∩ H and ũ = 0 on AH ,
and hence ũ is continuous on both Ω ∩ H and AH . If ΓD satisfies one of the assumptions (a)-(c), then by
Lemma 3.1 we get ∅ 6= Ω ∩H ∩ AH ⊆ ΓD. Therefore, ũ = u = 0 on Ω ∩H ∩ AH and hence ũ is continuous
on (Ω ∩H) ∪ AH = PH(Ω) ∩H .
Now assume that Ω 6= PH(Ω) 6= σH(Ω). Then from Proposition 2.3, both AH and BH have non-empty
interiors. By the definition of PH(ũ), we get PH(ũ) ≥ ũ in PH(Ω) ∩H , and

in AH : ũ = 0, ũ ◦ σH = u ◦ σH > 0 and hence PH(ũ) = u ◦ σH > ũ;

in BH : ũ = u > 0, ũ ◦ σH = 0 and hence PH(ũ) = ũ.
(3.1)

Let N =
{
x ∈ PH(Ω) ∩ H : PH(ũ)(x) = ũ(x)

}
. Since PH(ũ) is also continuous on PH(Ω) ∩ H (Propo-

sition 2.16), from (3.1) we get N ( Ω ∩ H is a non-empty closed set and Mu = (PH(Ω) ∩ H) \ N is a
non-empty open set in PH(Ω) ∩H . Now, by the connectedness of PH(Ω) ∩H we must have ∂Mu ∩N 6= ∅.
For x0 ∈ ∂Mu ∩N , let B0 = Br(x0) ⊂ Ω ∩H . Then B0 has all the the desired properties. �

Now, we prove Theorem 1.3.

Proof of Theorem 1.3. Let 1 < p < ∞, Ωout \ Ωin ⊂ Rd be as given in (A0) and H ∈ Had. Denote
Ω = Ωout \ Ωin.
(i) Assume that σH(Ωin) = Ωin. Let 0 < u ∈ C0,α

∂PH (Ωout)
(Ω) be an eigenfunction corresponding to ν1(Ω).

Define v = PH(u) in PH(Ω) then, from Proposition 2.19, we get v ∈ C0,α
∂PH (Ωout)

(PH(Ω)), and

‖u‖p,Ω = ‖v‖p,PH (Ω) and ‖∇u‖p,Ω = ‖∇v‖p,PH (Ω) .

From the variational characterization of ν1(PH(Ω)), we obtain:

ν1(PH(Ω)) ≤ ν1(Ω). (3.2)

(ii) Assume that σH(Ωout) = Ωout. Let 0 < u ∈ C0,α
∂PH (Ωin)

(Ω) be an eigenfunction corresponding to τ1(Ω).

Define v = PH(u) in PH(Ω) then, from Proposition 2.19, we obtain v ∈ C0,α
∂PH (Ωin)

(PH(Ω)), and

‖u‖p,Ω = ‖v‖p,PH (Ω) and ‖∇u‖p,Ω = ‖∇v‖p,PH (Ω) .

From the variational characterization of τ1(PH(Ω)), we get

τ1(PH(Ω)) ≤ τ1(Ω). (3.3)

(iii) Let 2d+2
d+2 < p < ∞. Assume that, the equality holds in (3.2). Let 0 ≤ u ∈ C0,α

∂PH (Ωout)
(Ω) be an

eigenfunction corresponding to the eigenvalue ν1(Ω). On the contrary, assume that Ω 6= PH(Ω) 6= σH(Ω).
Then by Lemma 3.2, there exists a ball B0 ⊂ Ω ∩H such that

v > u in B0 ∩Mu and v ≡ u in B0 ∩M c

u, (3.4)

where Mu =
{
x ∈ PH(Ω)∩H : v(x) > u(x)

}
is a non-empty open set. Then, both u, v ∈ C1(B0) are positive

distributional solutions for the following problem in B0:

−∆pu− λ|u|p−2u = 0 in B0.

Now, for 2d+2
d+2 < p < ∞, the strong comparison principle (Proposition 2.22) implies that

either u < v or u ≡ v in B0.

This is a contradiction to (3.4), and hence we must have PH(Ω) = Ω or PH(Ω) = σH(Ω). If the equality
holds in (3.3), the proof will follow using a similar set of arguments as given above. �

4. Strict monotonicity of first eigenvalues via polarization

In this section, we prove Theorem 1.5 and Theorem 1.8. The main idea is to express the translations and
the rotations of the obstacle O in terms of polarizations and apply the Faber-Krahn type inequality to get
the desired monotonicity.
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4.1. Monotonicity along a straight line. Now, we give a proof for Theorem 1.5. First, we recall that:

for given h ∈ S
d−1, Hs :=

{
x ∈ R

d : x · h < s}, Σs := {x ∈ Ω : x · h ≥ s} , for s ∈ R,

PH0(Ω) = Ω, the obstacle O is Steiner symmetric with respect to ∂H0, and the translations of O in the
h-direction are given by Os = sh+ O for s ∈ R, and

LO :=
{
s ∈ R : PHs

(Ω) = Ω and Os ⊂ Ω
}
.

We observe the following facts:

for x ∈ R
d, σH0(x) = x− 2(x · h)h, and σHs

(x) = 2sh+ σH0(x) for s ∈ R. (4.1)

Lemma 4.1. If O ⊆ Rd satisfies σH0
(O) = O, then for any s, t ∈ R, th+ Os = Os+t and σHt

(Os) = O2t−s.

Proof. It is easy to verify that th+Os = (s+t)h+O = Os+t and σHs
(Os) = Os. Since σHt

(x) = 2th+σH0(x) =
2(t−s)h+2sh+σH0(x) = 2(t−s)h+σHs

(x) any x ∈ Rd, we get σHt
(Os) = 2(t−s)h+σHs

(Os) = 2(t−s)h+Os =
O2t−s. �

Proof of Theorem 1.5. Let the set Σs0

⋃
σHs0

(Σs0) is convex in the h-direction for some s0 ∈ LO. Let
RO := supLO.

The interval [s0,RO) ⊆ LO: Let s ∈ (s0,RO). Clearly, Σs ⊂ Σs0 and the convexity of the set Σs0

⋃
σHs0

(Σs0)

in the h-direction implies that σHs
(Σs) ⊂ Σs0

⋃
σHs0

(Σs0 ) ⊂ Ω (see Proposition 2.10-(i)). Therefore, by
Proposition 2.2, we get PHs

(Ω) = Ω. Next, we show Os ⊂ Ω. By the definition of RO, there exists s1 ∈ LO

such that s < s1 < RO. Observe that Os0 ,Os1 ⊂ Σs0

⋃
σHs0

(Σs0 ), and s = ts0+(1− t)s1, for some t ∈ (0, 1).

Thus Os = tOs0 + (1 − t)Os1 , and hence the convexity of Σs0

⋃
σHs0

(Σs0) in the h-direction implies that
Os ⊂ Ω. Therefore s ∈ LO.

Monotonicity of λ1(·) on [s0,RO): Let s < t in [s0,RO). Then s = s+t
2 ∈ LO and hence PHs

(Ω) = Ω. Since
Os is Steiner symmetric with respect to ∂Hs and s > s, from Proposition 2.10-(i), we get PHs(Os) = σHs

(Os).
From Lemma 4.1 (since σH0(O) = O) we also have σHs

(Os) = O2s−s = Ot. Therefore, from Proposition 2.12
we obtain

PHs
(Ω \ Os) = PHs

(Ω) \ PHs(Os) = Ω \ Ot.

For 2d+2
d+2 < p < ∞, the Faber-Krahn type inequality (Theorem 1.3) implies that λ1(t) < λ1(s). Therefore,

the first Dirichlet eigenvalue λ1(·) is strictly decreasing on [s0,RO). �

Remark 4.2. If we drop the convexity assumption from Theorem 1.5, then L0 might not be an interval.
However, for any s, t ∈ L0 with s+t

2 ∈ L0 and s < t, the above proof still yields λ1(t) < λ1(s).

4.2. Monotonicity with respect to the rotations about a point. Now, we prove Theorem 1.8. First
recall that, for ξ ∈ Sd−1 \ {η} the rotations of the obstacle O with the plane of rotation is Xξ = span {η, ξ}
about the point a ∈ Rd are given by: for s ∈ [−1, 1],

Os,ξ := a+Rs,ξ(−a+ O),

where Rs,ξ is the simple rotation in R
d with Xξ as the plane of rotation and θs = arccos(s) ∈ [0, π] as the

angle of rotation from the ray R+η in the counter-clockwise direction. We prove the following lemmas.

Lemma 4.3. For any distinct ξ1, ξ2 ∈ S
d−1 \ {η}, there exists a simple rotation R such that

R(−a+Ω \ Os,ξ1) = −a+Ω \ Os,ξ2 .

Proof. Let ξ1, ξ2 ∈ S
d−1 \ {η}, define

ξ̃i =
ξi − (ξi · η)η

‖ξi − (ξi · η)η‖
for i = 1, 2. (4.2)

Observe that, the rotation of η under Rs,ξi is given by Rs,ξi(η) = sη +
√
1− s2 ξ̃i for i = 1, 2. Consider the

plane X = span
¶‹ξ1,‹ξ2

©
, that is orthogonal to η. Let R be the simple rotation such that R(‹ξ1) = ‹ξ2. Thus

R must fix η, and

R ◦Rs,ξ1(η) = R(sη +
√
1− s2 ‹ξ1) = sη +

√
1− s2 ‹ξ2 = Rs,ξ2(η).



DOMAIN VARIATIONS VIA STRICT FABER-KRAHN TYPE INEQUALITY 15

Therefore, for r > 0, ρ > 0,

R (Bρ(rRs,ξ1 (η)) ∩ ∂Br(0)) = Bρ(rR ◦Rs,ξ1(η)) ∩ ∂Br(0) = Bρ(rRs,ξ2 (η)) ∩ ∂Br(0),

and from (2.2) we obtain R (Rs,ξ1(−a+ O)) = Rs,ξ2(−a+O), and hence R (−a+ Os,ξ1) = −a+Os,ξ2 . Since
R fixes η, and Ω is foliated Schwarz symmetric with respect to a+ R+η, we get R(−a+Ω) = −a+Ω. Thus
we obtain

R(−a+Ω \ Os,ξ1) = R(−a+ Ω) \R(−a+ Os,ξ1)

= (−a+Ω) \ (−a+ Os,ξ2) = −a+Ω \ Os,ξ2 .

�

From Lemma 4.3, we only need to consider the rotations of the obstacle by Rs,ξ about the point a in a
Xξ-plane for a fixed ξ ∈ S

d−1 \ {η}. Thus for s ∈ [−1, 1], we set Os = Os,ξ. Recall that:

for a ∈ R
d and η ∈ S

d−1, Ha,η =
{
H ∈ H : a ∈ ∂H and a+ R

+η ⊂ H
}
.

Lemma 4.4. Let a ∈ R
d, η ∈ S

d−1, and O ⊂ R
d is foliated Schwarz symmetric with respect to the ray

a + R+η. Let ξ ∈ Sd−1 \ {η} and the rotations of O be as given in (1.11). Then, for any s < t in [−1, 1]
there exists H ∈ Ha,η such that

(a) σH(Ot) = Os, (b) PH(Ot) = Os and (c) PH(Os) = Ot.

Proof. Let h = Rs(η) − Rt(η) and consider the polarizer H :=
{
z ∈ Rd : (z − a) · h < 0

}
. Observe that

a ∈ ∂H , and for r > 0,

(a+ rη − a) · h = rη · [Rs(η)−Rt(η)] = r(s− t) < 0,

(a+ rRt(η) − a) · h = rRt(η) · [Rs(η)−Rt(η)] = r[Rs(η) · Rt(η)− 1] < 0.

Therefore H ∈ Ha,η ∩Ha,Rt(η).
(a) Notice that, ‖h‖ = 2[1−Rs(η) · Rt(η)]. Now, for x = a+ rRt(η), r > 0 we get

σH(x) = x− 2(x− a) · h
‖h‖2 h = a+ rRt(η)−

2r[Rs(η) ·Rt(η)− 1]

2[1−Rs(η) ·Rt(η)]
(Rs(η)−Rt(η)) = a+ rRs(η).

Therefore, σH(a+ R+Rt(η)) = a+ R+Rs(η), and hence from (2.2) we obtain

σH(Ot) =
⋃

r∈IO

Bρ(r)(σH(a+ rRt(η))) ∩ ∂Br(σH(a)) =
⋃

r∈IO

Bρ(r)(a+ rRs(η)) ∩ ∂Br(a) = Os.

(b) Since H ∈ Ha,Rt(η) and Ot is foliated Schwarz symmetric with respect to a+R+Rt(η), Proposition 2.10-
(ii) implies that PH(Ot) = σH(Ot) = Os.
(c) Since PH(σH(Ot)) = PH(Ot) (Proposition 2.1-(iv)), we get PH(Os) = PH(σH(Ot)) = PH(Ot) = Ot. �

Proof of Theorem 1.8. Given 2d+2
d+2 < p < ∞, Ω and O are foliated Schwarz symmetric with respect to

a+ R+η.

The set CO is interval: We show that, for any s ∈ CO, the interval [s, 1] ⊆ CO. Let t ∈ (s, 1]. From
Lemma 4.4-(c) there exists H ∈ Ha,η such that PH(Os) = Ot. Since H ∈ Ha,η and Ω is foliated Schwarz
symmetric with respect to a + R+η, from Proposition 2.10-(ii), we get PH(Ω) = Ω. Now, Os ⊂ Ω implies
that Ot = PH(Os) ⊂ PH(Ω) = Ω. Therefore, t ∈ CO and hence [s, 1] ⊆ CO.

Monotonicity of γ1(·): Let s < t in CO. From Lemma 4.4, there exists H ∈ Ha,η such that PH(Ot) = Os.
Since Ω is foliated Schwarz symmetric with respect to a+R+η, from Proposition 2.10-(ii), we have PH(Ω) = Ω,
and from Proposition 2.12 we get

PH(Ω \ Ot) = PH(Ω) \ PH(Ot) = Ω \ Os.

If Ω satisfies (A4) then Ω = Ω0 \ Bρ(a) and ΓN = ∂Bρ(a). In this case, we set Ωout = Ω0 \ Ot and
Ωin = Bρ0(a) (in Theorem 1.3) so that Ωout \Ωin = Ω \Ot, ΓN = ∂Ωin and ΓD = ∂Ωout. Therefore, we have
ν1(Ωout \Ωin) = γ1(Ω \Ot) and ν1(PH(Ωout \Ωin)) = γ1(Ω \Os). Since σH(Ωin) = Ωin, from Theorem 1.3-(i)
we get

γ1(Ω \ Os) ≤ γ1(Ω \ Ot).
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Similarly, if Ω satisfies (A5) then Ω = BR(a) \ Ω1 and ΓN = ∂BR(a). In this case, we set Ωout = BR(a)
and Ωin = Ω1 ∪ Ot (in Theorem 1.3) so that Ωout \ Ωin = Ω \ Ot, ΓN = ∂Ωout and ΓD = ∂Ωin. Therefore,
we have τ1(Ωout \ Ωin) = γ1(Ω \ Ot) and τ1(PH(Ωout \ Ωin)) = γ1(Ω \ Os). Since σH(Ωout) = Ωout, from
Theorem 1.3-(ii) we get

γ1(Ω \ Os) ≤ γ1(Ω \ Ot).

Since Ω is not radially symmetric with the center a, in both cases, we have Ωout \ Ωin 6= PH

(
Ωout \ Ωin

)
6=

σH

(
Ωout \ Ωin

)
. Thus, the strict Faber-Krahn type inequality (Theorem 1.3-(iii)) implies

γ1(s) < γ1(t).

Therefore, γ1(·) is strictly increasing on CO. �

5. Some remarks and examples

Example 1. Let Ω ⊂ R2 is given by Ω =
{
(x, y) : x2 + y2 < R2, x ≤ 0

}
∪
{
(x, y) : |x|+ |y| < 2R, x ≥ 0

}
for

R > 0, and O is the rhombus given by |x|+ |y| ≤ 2ℓ with ℓ < R (see Figure 4). Since O is Steiner symmetric
with respect to the hyperplanes S1 := {(x, y) ∈ R2 : x = 0} and S2 := {(x, y) ∈ R2 : x + y = 0}, we can
consider the translations O along the x-axis, as well as along the straight line y = x.

e1s∗
0

Figure 4. Example 1

Along the x-axis, the translations of O are Os = (s, 0) + O ⊂ Ω for |s| < R − ℓ. For |s| < R − ℓ, let
λ1(s) = λ1(Ω \ Os), the first Dirichlet eigenvalue of the p-Laplacian, for 2d+2

d+2 < p < ∞. Let

s∗ = sup
{
s ∈ (−R+ ℓ, 0) : σHs

({(x, y) ∈ Ω : x < s}) ⊂ Ω
}
.

Now, applying Theorem 1.5

(i) with h = (1, 0), we get λ1(s) is strictly decreasing for s ∈ [0, R− ℓ),
(ii) with h = (−1, 0), we get λ1(s) is strictly increasing for s ∈ (−R+ ℓ, s∗).

We get similar monotonicity results for the translations of O along the straight line y = x.

Remark 5.1. In Theorem 1.8, we can consider the obstacle O of the form O =
k⋃

j=1

Bρj
(zj) ⊂ Ω, a finite

union of closed balls, such that the centers zj ’s lie on the ray a+ R+η. Now, the rotations of the obstacle O

about the point a are given by

Os :=
k⋃

j=1

Bρj
(a+Rs(−a+ zj)) for s ∈ [−1, 1], and CO :=

{
s ∈ [−1, 1] : Os ⊂ Ω

}
.

In this case, also, we have the same conclusions as Theorem 1.8.
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λ1↑ λ1↓

−αe1 0 rr e1

(a) Translations in the e1-direction

h

λ1↑

λ1↓

−αe1 te1

rh

e1

(b) Rotations with respect to te1, t ∈ [−α, 0]; and

translations in the h-direction

Figure 5. An eccentric annular domain with a hole.

5.1. An eccentric annular domain with a spherical hole. Let 2d+2
d+2 < p < ∞. For given 0 < r < R

and 0 ≤ α < R − r, we consider an eccentric annular domain Ω = BR(0) \ Br(−αe1) ⊂ Rd (see Figure 5).
Let ρ > 0 be such that Bρ(y) ⊂ Ω for some y ∈ Rd. Now define

Ωρ :=
{
y ∈ Ω : Bρ(y) ⊂ Ω

}
, and λ1(y) := λ1

(
Ω \Bρ(y)

)
for y ∈ Ωρ.

We want to study the behaviour of λ1(·) on Ωρ. It is easy to observe that

(a) Bρ(y) is Steiner symmetric with respect to any affine-hyperplane through x;
(b) Bρ(y) is foliated Schwarz symmetric with respect to a+ R+(y − a) for any a ∈ Rd;
(c) Ω is foliated Schwarz symmetric with respect to te1 + R+e1 for t ∈ [−α, 0];
(d) the sets {x ∈ Ω : x1 < r}⋃σHr

({x ∈ Ω : x1 < r}) and {x ∈ Ω : x1 > r}⋃σHr
({x ∈ Ω : x1 > r}) are

convex in the e1-direction, where r = R+r−α
2 , r = −R+r+α

2 .

For y ∈ Rd, we write y = (s, z) ∈ R × Rd−1. Now for a given z ∈ Rd−1, β > 0, we consider the sets

Lz :=
{
s ∈ (−R,R) : (s, z) ∈ Ωρ

}
;

Sβ(te1) := Ωρ ∩ ∂Bβ(te1), t ∈ [−α, 0].

Remark 5.2. Let (s, z1) ∈ Ωρ. Then we have the following:

(i) Using the axial symmetry of Ω, we obtain λ1(s, z) = λ1(s, z1), for z ∈ Rd−1 such that (s, z) ∈ Ωρ

and |z| = |z1|.
(ii) From (a), (d) and Theorem 1.5 with h = −e1 (and h = e1) , we get

λ1(·, z1) is strictly increasing on Lz1

⋂ (
−
»
(R − ρ)2 − |z1|2, r

]
,

and

λ1(·, z1) is strictly decreasing on Lz1

⋂[
r,
»
(R − ρ)2 − |z1|2

)
.

(iii) If (s1, z1) and (s2, z2) ∈ Ωρ such that s1 < s2 and (s1 − t)2 + |z1|2 = (s2 − t)2 + |z2|2 for some
t ∈ [−α, 0], then by Theorem 1.8, we get

λ1(s1, z1) < λ1(s2, z2).

In particular, for s1, s2 ∈ [−α, 0] with s1 < s2, by taking t = s1+s2
2 we obtain

λ1(·, z) is strictly increasing on Lz ∩ [−α, 0].
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Remark 5.3. In general, for any h = (h1, h
′) ∈ Sd−1, let

rh :=

√
R2 − α2|h′|2 + r − αh1

2
.

Then, the set {x ∈ Ω : x · h > rh}⋃σHrh
({x ∈ Ω : x · h > rh}) is convex in the h-direction. For y ∈ Ωρ,

define Ly =
{
s ∈ [0, R) : y + sh ∈ Ωρ

}
. Now, from (a) and Theorem 1.5 we get

λ1(y + sh) is strictly decreasing for s ∈ Ly ∩ [rh, R).

C2

C1

C3

−α 0 rr e1

Figure 6. Monotonicity along certain paths in Ω.

Remark 5.4. Let C : (−R,R) −→ Ω be a continuous path in Ω such that (see Figure 6):

• on (−R,−α), C is a circular arc centered at t1e1 with t1 ∈ [−α, 0];
• on [−α, 0], C is either a circular arc centered at t2e1 with t2 ∈ [−α, 0] or a line segment parallel to

the e1-axis;
• on (0, R), C is a circular arc centered at t3e1 with t3 ∈ [−α, 0].

Now, from Remark 5.2, we see that λ1(·) is strictly increasing along the path C; i.e., for any (s1, z1), (s2, z2) ∈
C with s1 < s2 we have λ1(s1, z1) < λ1(s2, z2).

Remark 5.5 (Optimal placement of the obstacle). For y ∈ Ωρ, we have y, |y|e1 ∈ S|y|(0). If y1 < |y|,
then using Theorem 1.8 we obtain λ1(y) < λ(|y|e1). Thus

sup {λ1(y) : y ∈ Ωρ} = sup {λ1(s, 0) : s ∈ L0 ∩ [0, r]} .
If 0 < ρ < α− r, then 0, r ∈ L0, and hence by (iii) of Remark 5.2 we get

sup {λ1(y) : y ∈ Ωρ} = max {λ1(s, 0) : s ∈ [0, r]} .
On the other hand, if α ≤ r or ρ > α− r, then 0 /∈ L0. Thus, the above arguments fail to conclude that the
supremum is attained in Ωρ. However, from a Mathematica 12 plot of λ1(·) on [0, R) ∩ L0 (for the various
values of α, r, and ρ), we observed that the maximum is attained at a unique point in (0, r)∩L0. Giving an
analytic explanation of this behaviour of λ1(·, 0) in [0, r]∩L0 seems to be an interesting problem to explore.

5.2. The symmetries of the first eigenfunctions: In this subsection, we take p ∈ (1,∞) and Ωout\Ωin ⊂
Rd is a domain as given in (A0). We establish that the first eigenfunctions of (1.3) and (1.6) inherit some of
the symmetries of the underlying domains.

Remark 5.6. Let H ∈ Had be such that PH(Ωout \ Ωin) = Ωout \ Ωin.

(i) Let u be an eigenfunction corresponding to the first eigenvalue ν1(Ωout \Ωin) of (1.3). Assume that
σH(Ωin) = Ωin. If u is positive, then from Proposition 2.19 and (2.5), we see that PH(u) is also an
eigenfunction corresponding to ν1(Ωout \ Ωin). Since the norms of u and PH(u) are same, by the
simplicity of ν1, we get PH(u) = u. If u is negative then, we get PH(u) = −PH(−u) = u.
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(ii) Similarly, if σH(Ωout) = Ωout and v is a positive eigenfunction corresponding to the first eigenvalue
τ1(Ωout \ Ωin) of (1.5), then PH(v) = v and PH(−v) = −v.

Definition 5.7. Let Ω be foliated Schwarz symmetric with respect to the ray a + R+η. Then a function
u : Ω −→ R is said to be foliated Schwarz symmetric with respect to the same ray, if PH(u) = u for every
H ∈ Ha,η (see [13, Lemma 6.3] and [30, Section 3]).

Remark 5.8. Let Ωout \Ωin be foliated Schwarz symmetric with respect to the ray a+R+η for some a ∈ Rd

and η ∈ Sd−1. Then, we have PH(Ωout \ Ωin) = Ωout \ Ωin for every H ∈ Ha,η.

(i) Assume that Ωin = Br(a) for some r ≥ 0. Then σH(Ωin) = Ωin for every H ∈ Ha,η. Hence, for any
positive eigenfunction u corresponding to ν1(Ωout \Ωin), from Remark 5.6, we obtain PH(u) = u for
every H ∈ Ha,η. Thus, u is foliated Schwarz symmetric with respect to the ray a+ R

+η.

(ii) Similarly, Assume that Ωout = BR(a) for some R > 0. Then, any positive eigenfunction u corre-
sponding to the first eigenvalue τ1(Ωout \Ωin) of (1.5) is foliated Schwarz symmetric with respect to
a+ R+η.

Remark 5.9. Let Ω = BR(0) \Br(−αe1) ⊂ Rd be the eccentric annular domain as given in Subsection 5.1.
Then Ω is foliated Schwarz symmetric with respect to te1 + R+e1 for t ∈ [−α, 0].

(i) If, we take Ωout = Ω and Ωin = ∅, then any positive eigenfunction corresponding to the first Dirichlet
eigenvalue λ1(Ω) is foliated Schwarz symmetric with respect to te1 + R+e1 for every t ∈ [−α, 0].

(ii) If, we take Ωout = BR(0) and Ωin = Br(−αe1), then
• any positive eigenfunction corresponding to the first eigenvalue ν1(Ω) of (1.3) is foliated Schwarz

symmetric with respect to the ray −αe1 + R+e1;
• any positive eigenfunction corresponding to the first eigenvalue τ1(Ω) of (1.5) is foliated Schwarz

symmetric with respect to the ray R+e1.
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