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Abstract. We consider a discrete model of planar elasticity where the particles, in the reference

configuration, sit on a regular triangular lattice and interact through nearest neighbor pairwise
potentials, with bonds modeled as linearized elastic springs. Within this framework we introduce

plastic slip fields, whose discrete circulation around each triangle detects the possible presence

of an edge dislocation.
We provide a Γ-convergence analysis, as the lattice spacing tends to zero, of the elastic

energy induced by edge dislocations in the energy regime corresponding to a finite number of

geometrically necessary dislocations.
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Introduction

Dislocations are line defects in the periodic structure of crystals and are considered the main
microscopic mechanism of plastic flow. Idealized straight dislocations are classified into two types,
edge and screw, while in real crystals dislocations are actually curved lines of mixed type [15, 14].
From a mathematical viewpoint, dislocations can be seen as topological line singularities around
which the elastic strain has non trivial circulation given by a vector of the underlying lattice and
referred to as Burgers vector.

Here we focus on planar elasticity, where the relevant dislocations are of edge nature and can
be seen as topological point singularities of the elastic strain. Specifically, we study the discrete
elastic energy induced by a finite system of edge dislocations in a finite portion Ω ∩ εT of the
regular triangular lattice εT , where ε is the lattice spacing.

As customary in the linearized framework, we adopt the additive decomposition of the discrete
deformation gradient du , defined on pairs of nearest neighbors, into an elastic and a plastic part.
The latter is represented by an additional variable σ , referred to as slip, defined on pairs of nearest
neighbors and taking values in the set of lattice vectors. In this way we identify dislocations as
points around which the discrete circulation of the plastic slip σ, or, equivalently, the discrete
circulation of du − σ , is non trivial (see [1, 8, 4] for related models for screw dislocations and
topological singularities in the XY model). Such a procedure agrees with the formalism of the
eigenstrains considered in [3].
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We focus on the simple case where nearest neighbors interact through linearized pairwise po-
tentials; specifically, in absence of singularities, the energy functional is defined by

Gε(u) :=
1

2ε2

∑
i,j∈Ω∩εT
|i−j|=ε

(
du(i, j) · (j − i)

)2
.

The above energy can be formally derived by linearization of suitable nonlinear frame invariant
functionals (see Remark 1.2); further rigorous linearization results in terms of Γ-convergence are
provided in [2, 6, 19]. In the limit as ε→ 0 the energy 1

ε2Gε approximates, up to a pre-factor, the
continuum isotropic elastic energy with Lamé parameters both equal to 1 (see Remark 3.1).

In presence of a plastic slip field σ, the energy functional should depend only on the elastic
strain du− σ , and hence the resulting elastic energy reads as

Fε(u, σ) :=
1

2ε2

∑
i,j∈Ω∩εT
|i−j|=ε

(
(du(i, j)− σ(i, j)) · (j − i)

)2
.

It is well known that the energy induced by an isolated edge dislocation, both in the discrete and
in the continuum setting, is of order ε2| log ε|, while short dipoles of opposite dislocations induce
a much smaller energy of order ε2. The aim of the present paper is to determine the asymptotic
behavior (as ε→ 0) of Fε in the energy regime ε2| log ε| . This corresponds to a finite distribution
of geometrically necessary edge dislocations, i.e., to the superposition of a finite number of isolated
dislocations plus clusters of singularities with total Burgers vector equal to zero (usually referred
to as statistically stored dislocations).

Our results are obtained within the rigorous formalism of Γ-convergence and consist in a com-
pactness property for the dislocation measures and in the derivation of the effective limit energy
induced by dislocations. Specifically, our analysis shows that the discrete dislocation density gen-
erated by the plastic slip σ converges, in the sense of flat convergence (1.7), to a finite sum of

Dirac deltas
∑K
k=1 b

kδxk with bk ∈ T . The effective energy (namely the Γ-limit) “counts” the
limiting singularities with a coefficient ϕ(bk) given by the explicit formula (2.13). These results
rely on a similar analysis performed in [11, 9] in a semi-discrete setting within the so-called core
radius approach.

We restrict our analysis to configurations of plastic slips inducing dislocations with minimal
mutual distance larger than or equal to

√
3ε . Roughly speaking, this means that two neighboring

triangles cannot both contain a dislocation. Such a mild separation assumption (MS) guarantees
that each dislocation induces a core energy of order ε2; the latter estimate is essential also in the
core radius approach, and represents the starting point in the so-called ball construction technique
[18], which is devised to provide sharp lower bounds. This is not a mere technical assumption;
indeed, removing it, one can exhibit unphysical configurations with zero stored elastic energy where
all triangles contain a dislocation (see Remark 3.5). In this respect, it seems that our linearized
model (without assuming (MS)) fails to describe the core energy stored in a single triangle and
induced by the presence of a dislocation. On the other hand, under the mild separation assumption
(MS), each dislocation is surrounded by an annulus of “elastically deformed” triangles where a
finite amount of energy is stored, as it follows from an application of Korn’s inequality.

Although our model provides a good description of “non-pathological” dislocation configura-
tions, it exhibits some degeneracies, due to the discrete linearized framework relying on a reference
configuration, as well as to the presence of the slip variable (see Section 4). A natural way to rule
out such degeneracies could be to include kinematic constraints on the slip fields mimicking (in a
discrete framework) pure shear/deviatoric stress conditions that are typically assumed in (contin-
uum) elasto-plasticity. In this respect, in Section 4, we discuss a possible constraint on the slip
fields, based on the (formal) linearization of the volume preserving condition on dislocation-free
ε-triangles; we remark that our Γ-convergence analysis still holds true under such a constraint.

Finally, some comments are in order. First, we do believe that a similar discrete-to-continuum
analysis could be developed in the ε2| log ε|2 regime, which corresponds to a limit diffused dis-
tribution of dislocations and to an effective energy accounting for both elastic and plastic effects
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(see [12] for an analogous result within the core-radius approach). Second, it would be interest-
ing to look at the coarse-graining for the energy Fε in even higher regimes, such as that of the
grain boundaries (see the recent papers [13, 16, 10]). Third, a challenging issue would be to deal
directly with nonlinear models built on the deformed configurations. An intriguing intermediate
attempt in this direction could be to consider hybrid models combining the mathematical effi-
ciency of linearized theories together with the mechanical understanding of dislocations in terms
of interpenetrating pentagon-heptagon pairs usually observed in the deformed configurations.

Notation. For every m,n ∈ N and for every matrix M ∈ Rm×n , we denote by M∗ ∈ Rn×m the
transpose matrix of M , i.e., such that M∗ij = Mji for every i = 1, . . . , n and j = 1, . . . ,m . In what

follows the elements (x1, x2) of R2 will be also identified (whenever it is convenient) with column

vectors

(
x1

x2

)
= (x1 x2)∗. We denote by {e1, e2} the canonical basis of R2 , where e1 = (1, 0)

and e2 = (0, 1) . Given two vectors a = (a1, a2) , b = (b1, b2) ∈ R2 , we set a ∧ b := a1b2 − a2b1 ;
moreover, we set a⊥ := (−a2, a1) .

For every open set U with ∂U smooth and for every s ∈ ∂U , we denote by τ(s) the tangent
vector to ∂U at s defined as τ(s) = n⊥(s), where n(s) denotes the outer normal unitary vector to
∂U at s.

For every p ∈ R2 and for every 0 < r < R we define the annulus Ar,R(p) := BR(p) \ Br(p) ,

where, for every ρ > 0 , Bρ(p) and Bρ(p) denote the open and the closed ball centered at p with
radius ρ , respectively.

Moreover, for every bounded open set A ⊂ R2 and for every β ∈ L2(A;R2×2) the symbol Curlβ
denotes the row-by-row distributional curl of β ; formally,

Curlβ = (∂x1
β12 − ∂x2

β11, ∂x1
β22 − ∂x2

β21) .

Analogously, the symbol Div β will denote the row-by-row distributional divergence of β , formally
given by

(Div β)i = ∂x1βi1 + ∂x2βi2 , i ∈ {1, 2} .
Finally, M(R2;R2) denotes the class of R2 valued Radon measures on R2 .

1. The model and the main result

In this section we introduce our model and state the main result.

Reference lattice. We set ν := 1
2e1 +

√
3

2 e2 and η := − 1
2e1 +

√
3

2 e2 . Let T := span Z{e1, ν} and
set

T+ := conv{0, e1, ν} and T− := conv{0, e1,−η} ,
where, for every a, b, c ∈ R2, the set conv{a, b, c} denotes the convex envelope of the points a, b,
c, i.e., the (closed) triangle with vertices at a, b, c . For every ε > 0 we denote by Tε the family of
the triangles Tε of the form i+ εT±, with i ∈ εT .

Let Ω ⊂ R2 be a bounded open set with Lipschitz continuous boundary, representing the domain
of definition of the relevant fields in the model. For every ε > 0, we set

Tε(Ω) := {Tε ∈ Tε : Tε ⊂ Ω}
and we define Ωε :=

⋃
Tε∈Tε(Ω) Tε. Moreover, we set Ω0

ε := Ωε∩εT and we denote by Ω1
ε the family

of nearest neighbor bonds in Ωε, i.e., Ω1
ε := {(i, j) ∈ Ω0

ε × Ω0
ε : |i− j| = ε}. Trivially, (i, j) ∈ Ω1

ε

if and only if (j, i) ∈ Ω1
ε .

In the following we will generalize the notation introduced above to general subsets of R2 (not
necessarily open). In particular, for every triangle Tε ∈ Tε , we have

(Tε)
1
ε = {(i, j) ∈ (Tε ∩ εT)× (Tε ∩ εT) : i 6= j} .

For every map V : (Tε)
1
ε → R2 , we define the discrete circulation of V on the “boundary of Tε” as

(1.1) dV (Tε) := V (i, j) + V (j, k) + V (k, i) ,

where (i, j, k) is a triple of counter-clockwise oriented vertices of Tε .
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Displacement, plastic slip, dislocation measure. We denote by Dε(Ω) the class of displace-
ments u : Ω0

ε → R2; moreover, for every u ∈ Dε(Ω) we define the discrete gradient du : Ω1
ε → R2

of u as du(i, j) := u(j)− u(i) for every (i, j) ∈ Ω1
ε.

We define the class of plastic slips Sε(Ω) as

Sε(Ω) :=
{
σ : Ω1

ε → εT : σ(i, j) = −σ(j, i) for every (i, j) ∈ Ω1
ε

}
.

For every σ ∈ Sε(Ω) we define the discrete dislocation measure associated to σ as

µ[σ] := −
∑

Tε∈Tε(Ω)

dσ(Tε)δxTε ,

where dσ is defined in (1.1) and xTε denotes the barycenter of the triangle Tε . Notice that for
every u ∈ Dε(Ω) and for every σ ∈ Sε(Ω) it holds

µ[σ] =
∑

Tε∈Tε(Ω)

d(du− σ)(Tε)δxTε .

The class of admissible dislocation measures, denoted by Xε(Ω), is the family of measures of
the form µ =

∑
Tε∈Tε(Ω) b(Tε)δxTε with b(Tε) ∈ εT and satisfying the following mild separation

property:

for every Tε ∈ Tε(Ω) with µ(Tε) 6= 0, we have(MS)

∂Tε ∩ ∂Ωε = ∅ and µ(T ′ε) = 0 for every T ′ε ∈ Tε(Ω) with ∂T ′ε ∩ ∂Tε 6= ∅.

Finally, we set

X(Ω) :=
{
µ =

K∑
k=1

bkδxk : K ∈ N , bk ∈ T , xk ∈ Ω
}
.

The energy functional and the main result. We are now in a position to define the energy
functionals Fε : Dε(Ω)× Sε(Ω)→ [0,+∞) as

(1.2) Fε(u, σ) :=
1

2ε2

∑
(i,j)∈Ω1

ε

[(du(i, j)− σ(i, j)) · (j − i)]2 ,

where · denotes the standard scalar product in R2 .
We will consider also localized versions of the functional Fε(u, σ) in (1.2). More specifically, for

every set A ⊂ R2 , we define Fε(·, ·;A) : Dε(A)× Sε(A)→ [0,+∞) as

(1.3) Fε(u, σ;A) :=
1

2ε2

∑
(i,j)∈A1

ε

[(du(i, j)− σ(i, j)) · (j − i)]2 ,

so that Fε(u, σ; Ω) = Fε(u, σ) .
Since in our analysis the relevant parameter is the dislocation measure µ associated to σ, we

let the energy functionals depend only on (the admissible measures) µ, by defining Fε : Xε(Ω)→
[0,+∞) as

Fε(µ) := inf
(u,σ)∈Dε(Ω)×Sε(Ω)

µ[σ]=µ

Fε(u, σ) .

For every b ∈ T, we set

(1.4) ϕ(b) :=
1

3π
min

{ 3∑
i=1

|zi| : z1, z2, z3 ∈ Z , b = z1e1 + z2ν + z3η

}
.

Our main result is the following theorem.

Theorem 1.1. The following Γ-convergence result holds true.

(i) (Compactness) Let {µε}ε ⊂ M(R2;R2) be such that µε ∈ Xε(Ω) for every ε > 0 . If

Fε(µε) ≤ Cε2| log ε| , then, up to a subsequence, µε
ε

flat→ µ (as ε→ 0) for some µ ∈ X(Ω) .
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(ii) (Γ-liminf inequality) For every µ =
∑K
k=1 b

kδxk ∈ X(Ω) and for every {µε}ε ⊂M(R2;R2)

with µε ∈ Xε(Ω) for every ε > 0 and such that µε
ε

flat→ µ (as ε→ 0) it holds

(1.5) lim inf
ε→0

Fε(µε)
ε2| log ε|

≥
√

3

2

K∑
k=1

ϕ(bk) .

(iii) (Γ-limsup inequality) For every µ =
∑K
k=1 b

kδxk ∈ X(Ω) there exists {µε}ε ⊂ M(R2;R2)

such that µε ∈ Xε(Ω) for every ε > 0 , µε
ε

flat→ µ (as ε→ 0) and

(1.6) lim sup
ε→0

Fε(µε)
ε2| log ε|

≤
√

3

2

K∑
k=1

ϕ(bk) .

The convergence appearing in Theorem 1.1 is the flat convergence , that is the convergence with
respect to the flat norm, defined by

(1.7) ‖µ‖flat := sup
φ∈C0,1

c (Ω)
‖φ‖C0,1≤1

∣∣∣ ∫
Ω

φ dµ
∣∣∣ , for every µ ∈M(R2;R2) ,

where C0,1(Ω) is the space of Lipschitz continuous functions endowed with the norm

‖φ‖C0,1 := sup
x∈Ω
|φ(x)|+ sup

x,y∈Ω
x 6=y

|φ(x)− φ(y)|
|x− y|

,

and C0,1
c (Ω) is the subspace of C0,1 functions compactly supported in Ω .

Remark 1.2. We illustrate how to formally derive (1.2) from a nonlinear frame invariant model
with nearest neighbor pairwise interaction potentials, in the case where no dislocation is present,
i.e., σ ≡ 0. We assume that, given a deformation v : Ω0

ε → R2, the total interaction energy is

Eε(v) = ε2
∑

(i,j)∈Ω1
ε

ψ
(∣∣∣dv(i, j)

ε

∣∣∣) ,
where ψ is a C2 function such that ψ(1) = ψ′(1) = 0 and ψ′′(1) > 0 , so that the identity is

an equilibrium configuration. Expressing the energy in terms of the displacement u(x) = v(x)−x
δ ,

with δ > 0, and rescaling by δ2, the total interaction energy reads as

Eδε (x+ δu) =
ε2

δ2

∑
(i,j)∈Ω1

ε

ψ
(∣∣∣j − i

ε
+ δ

du(i, j)

ε

∣∣∣) .
A second order Taylor expansion of Eδε (x+ δu) with respect to δ about the point δ = 0 gives

Eδε (x+ δu) = Fε(u) + oδ(1) ,

where

Fε(u) =
1

2ε2
ψ′′(1)

∑
(i,j)∈Ω1

ε

[du(i, j) · (j − i)]2 ,

which coincides with (1.2) up to a multiplicative constant when σ ≡ 0. We refer to [13] for a
formal derivation of (1.2) starting from a nonlinear model with discrete plastic slips.

2. The continuum case

In order to prove Theorem 1.1 we will use the corresponding result in the continuum setting
[9], that we briefly recall here. Let A be an open bounded subset of R2 with Lipschitz continuous
boundary. For every µ ∈ X(A) we set

(2.1) Aε(µ) := A \
⋃

x∈supp (µ)

Bε(x)
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and we define the set ASε(µ) of admissible strains associated to µ as

(2.2)

ASε(µ) :=
{
β ∈ L2(Aε(µ);R2×2) : Curlβ = 0 in Aε(µ) ,∫
∂U

β τ dH1 = µ(U) for every open set U ⊂ A with ∂U ⊂ Aε(µ) smooth
}
.

Let C be an elasticity tensor, i.e., a linear operator from R2×2 into itself satisfying the following
property: There exist two constants 0 < c1 < c2 such that

c1|βsym|2 ≤ 1

2
Cβ : β ≤ c2|βsym|2 for every β ∈ R2×2 ,

where βsym := 1
2 (β + β∗) .

The elastic energy of a field β ∈ ASε(µ) in the body A is given by

Eε(β;Aε(µ)) :=
1

2

∫
Aε(µ)

Cβ : β dx ,

and the energy induced by the dislocation distribution µ in the body A is defined by

(2.3) Eε(µ;A) := inf
β∈ASε(µ)

Eε(β;Aε(µ)) + |µ|(A) , for every µ ∈ X(A) .

In (2.3) , the first addendum on the right hand side is the elastic energy induced by the dislocation
measure µ , whereas the second addendum plays the role of a plastic core energy.

In order to introduce the self-energy of an edge dislocation, for every b ∈ T we first define the

strain field βb,CR2 satisfying the circulation condition

Curlβ = bδ0 in R2

and the equilibrium equation

DivCβ = 0 in R2 .

As shown in [9], the strain field βb,CR2 is given, in polar coordinates, by

(2.4) βb,CR2 (ρ, θ) :=
1

ρ

(
f b,C(θ)⊗ (− sin θ, cos θ) + gb,C ⊗ (cos θ, sin θ)

)
,

where the constant gb,C ∈ R2 and the function f b,C ∈ C0([0, 2π];R2) , with f(0) = f(2π) and∫ 2π

0
f b,C(ω) dω = b , are uniquely determined by the vector b and the tensor C .

The corresponding displacement ub,CR2 (i.e., such that ∇ub,CR2 = βb,CR2 ) is computed explicitly in
the literature (see, for instance, [5, formula 4.1.25]) and, in polar coordinates, is given by

(2.5) ub,CR2 (ρ, θ) = F b,C(θ) + gb,C log ρ ,

where F b,C(θ) =
∫ θ

0
f b,C(ω) dω , for θ ∈ [0, 2π). Note that the displacement above is uniquely

determined up to a constant.
For every b ∈ T we set

(2.6) ψC(b) :=

∫ 2π

0

1

2
CΓb,C(θ) : Γb,C(θ) dθ =

1

| log r|

∫
B1\Br

1

2
Cβb,CR2 : βb,CR2 dx , 0 < r < 1 ,

where we have set Γb,C(θ) :=
(
f b,C(θ)⊗ (− sin θ, cos θ) + gb,C ⊗ (cos θ, sin θ)

)
for every θ ∈ [0, 2π] .

Finally, for every b ∈ T we define

(2.7) ϕC(b) := min

{ N∑
i=1

|zi|ψC(bi) : zi ∈ Z , bi ∈ T , N ∈ N ,
N∑
i=1

zibi = b

}
.

The following result is a slight variant of [9, Theorem 4] .

Theorem 2.1. The following Γ-convergence result holds true.
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(i) (Compactness) Let {µε}ε ⊂ X(A) and let {βε}ε be a sequence of fields with βε ∈ ASε(µε)
(for every ε > 0) such that

(2.8) Eε(βε;Aε(µε)) + |µε|(A) ≤M | log ε| ;

then, up to a subsequence, µε
flat→ µ (as ε→ 0) for some µ ∈ X(A) .

(ii) (Γ-liminf inequality) For every µ =
∑K
k=1 b

kδxk ∈ X(A) , for every {µε}ε ⊂ X(A) with

µε
flat→ µ (as ε → 0) and |µε|(A) ≤ C| log ε| and for every sequence of fields {βε}ε with

βε ∈ ASε(µε) (for every ε > 0) it holds

(2.9) lim inf
ε→0

Eε(βε;Aε(µε))

| log ε|
≥

K∑
k=1

ϕC(bk) ;

(iii) (Γ-limsup inequality) For every µ =
∑K
k=1 b

kδxk ∈ X(A) there exists a sequence of mea-

sures {µε}ε ⊂ X(A) such that µε
flat→ µ (as ε→ 0) and

(2.10) lim sup
ε→0

Eε(µε;A)

| log ε|
≤

K∑
k=1

ϕC(bk) .

The proof of Theorem 2.1 can be obtained by arguing verbatim as in the proof of [9, Theorem
4]. In fact, the minor differences between Theorem 2.1 and [9, Theorem 4] are the following. First,
in [9] the admissible strains β should satisfy the condition∫

Aε(µ)

(β − β∗) dx = 0 .

Such a condition can be always enforced in view of the invariance of the elastic energy with respect
to translations. Second, in [9, Theorem 4] the compactness property is stated enforcing (2.8) only
for the optimal βε. Third, in [9, Theorem 4], the lower bound (2.9) is provided for the functional Eε;
there, the assumption |µε|(A) ≤ C| log ε| is automatically satisfied by sequences with equibounded
energy. However, assuming |µε|(A) ≤ C| log ε| , the same proof provides the same lower bound for

1
| log ε|Eε(βε;Aε(µε)) .

Now, we specialize the functions ψC and ϕC to the particular isotropic case we deal with in the
discrete-to-continuum limit. More specifically, let C be the isotropic elasticity tensor with Lamé
parameters both equal to 1 , i.e.,

(2.11) Cβ : β := |trβ|2 + 2|βsym|2 ,

By [7, formulas (3.3) and (3.4)], for the specific choice of C in (2.11) we have that the constant
gb,C and the function f b,C in (2.4) are given by

(2.12)
gb,C = − 1

6π
b⊥ ,

f b,C(θ) =
1

2π
b− 1

3π
(−b1 cos(2θ)− b2 sin(2θ), b2 cos(2θ)− b1 sin(2θ)) ;

therefore, by straightforward computations, in this case

ψ(b) := ψC(b) =
1

3π
|b|2 , b ∈ T ,

and hence, by (2.7),

(2.13)

ϕ(b) = ϕC(b) =
1

3π
min

{ N∑
i=1

|zi| |bi|2 : zi ∈ Z , bi ∈ T , N ∈ N ,
N∑
i=1

zibi = b

}

=
1

3π
min

{ 3∑
i=1

|zi| : z1, z2, z3 ∈ Z , b = z1e1 + z2ν + z3η

}
,

which is exactly (1.4).
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3. Proof of the main result

This section is devoted to the proof of Theorem 1.1. In Subsection 3.1 below we collect some
auxiliary results that will be instrumental to prove Theorem 1.1.

3.1. Preliminary results. We start by deriving the continuum isotropic elasticity tensor associ-
ated to our discrete functional.

Remark 3.1. Let ε > 0 and let Tε ∈ Tε . Let moreover u : Tε ∩ εT→ R2 and σ : (Tε)
1
ε → εT be

such that σ(i, j) = −σ(j, i) for every (i, j) ∈ (Tε)
1
ε . If β ∈ R2×2 satisfies

β (j − i) = du(i, j)− σ(i, j) for every (i, j) ∈ (Tε)
1
ε,

then, by straightforward computations, we have that

(3.1) Fε(u, σ;Tε) =ε2
(
|e∗1 β e1|2 + |ν∗ β ν|2 + |η∗ β η|2

)
= ε2 3

8
Cβ : β =

√
3

2

∫
Tε

Cβ : β dx ,

where Fε(·, ·;Tε) is defined in (1.3) and C is given in (2.11).

In the next lemma we construct, far from the singularities, a (continuous) strain field β that is
compatible with a given distribution of dislocations and whose (continuous) energy behaves like
the discrete energy Fε . Such an estimate, together with a bound on the total variation, will allow
us to deduce the Γ-liminf inequality in Theorem 1.1(ii) directly from the analogous statement in
the continuous setting (Theorem 2.1(ii)).

Lemma 3.2. Let ε > 0 and let (u, σ) ∈ Dε(Ω)× Sε(Ω) . Let moreover

(3.2) Kε := {Tε ∈ Tε(Ω) : µ[σ](Tε) = 0} , Kε :=
⋃

Tε∈Kε

Tε .

Then, there exists a piecewise constant (namely, constant on each triangle Tε ∈ Kε) field βu,σ,Kε ∈
L2(Kε;R2×2) such that:

(a) du(i, j)− σ(i, j) = βu,σ,Kε|Tε
(j − i) for every i, j ∈ Tε with Tε ∈ Kε ;

(b) Fε(u, σ;Kε) =
√

3
2

∫
Kε

1
2Cβ

u,σ,Kε : βu,σ,Kε dx+ 1
4ε2

∑
(i,j)∈K1

ε
i,j∈∂Kε

|(du(i, j)−σ(i, j)) · (j− i)|2 ,

where Fε is defined in (1.3) and C is defined in (2.11) ;
(c) Curlβu,σ,Kε = 0 in Kε and

∫
∂U

βu,σ,Kε τ dH1 = µ[σ](U) for every smooth open set U ⊂ Ω
such that ∂U ⊂ Kε .

Proof. Let Tε = conv{i, j, k} ∈ Kε and assume that the triple (i, j, k) is counterclockwise oriented.
Let vTε ∈ Dε(Tε) be defined by

vTε(i) = 0 , vTε(j) = du(i, j)− σ(i, j) , vTε(k) = vTε(j) + du(j, k)− σ(j, k) ,

and notice that the discrete gradient dvTε of vTε agrees with du − σ . For every Tε ∈ Kε let
ṽTε : Tε → R2 be the piecewise affine interpolation of vTε and let βu,σ,Kε : Kε → R2×2 be the map
defined by

βu,σ,Kε :=
∑
Tε∈Kε

DṽTε χTε ,

where DṽTε denotes the (continuous) gradient of the function ṽTε . Clearly βu,σ,Kε ∈ L2(Kε;R2×2) .
Moreover, by construction, we have that property (a) is satisfied; furthermore, since for every
Tε ∈ Kε and for every (i, j) ∈ T 1

ε it holds

βu,σ,Kε|Tε
(j − i) = du(i, j)− σ(i, j) ,
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by Remark 3.1 we get

Fε(u, σ;Kε) =
1

2

∑
Tε∈Kε

Fε(u, σ;Tε) +
1

4ε2

∑
(i,j)∈K1

ε
i,j∈∂Kε

|(du(i, j)− σ(i, j)) · (j − i)|2

=

√
3

2

∫
Kε

1

2
Cβu,σ,Kε : βu,σ,Kε dx+

1

4ε2

∑
(i,j)∈K1

ε
i,j∈∂Kε

|(du(i, j)− σ(i, j)) · (j − i)|2 ,

i.e., property (b).
Finally, we prove that also (c) is satisfied. To this end, we notice that if T 1

ε and T 2
ε are two

triangles sharing one edge (i, j) , then, by construction, βu,σ,Kε|T1
ε

(j − i) = βu,σ,Kε|T2
ε

(j − i) so that

Curlβu,σ,Kε = 0 on Kε . Now, since for every Tε ∈ Kε ,∫
∂Tε

βu,σ,Kε τ dH1 = 0 ,

by using Stokes’ Theorem, for every smooth open set U ⊂ Ω such that ∂U ⊂ Kε, we have∫
∂U

βu,σ,Kε τ dH1 =

∫
U∩∂Kε

βu,σ,Kε τ dH1 = −
∑
Tε⊂U

dσ(Tε) = µ[σ](U) ,

which concludes the proof of property (c) and of the whole lemma. �

The following result allows to extend the field β constructed in Lemma 3.2 above up to the
boundary of Ω .

Lemma 3.3. Let ε > 0 and let (u, σ) ∈ Dε(Ω) × Sε(Ω) be such that µ[σ] ∈ Xε(Ω) ; let moreover
Kε and Kε be defined as in (3.2) and let β = βu,σ,Kε be the field provided by Lemma 3.2. Then,

there exists a field β̂ = β̂u,σ,Kε ∈ L2(Kε ∪ (Ω \ Ωε);R2×2) such that

(i) β̂ = β in Kε ;

(ii) Curl β̂ = 0 (in the sense of distributions);

(iii)
∫
Kε∪(Ω\Ωε) Cβ̂ : β̂ dx ≤ C

∫
Kε

Cβ : β dx , for some constant C independent of ε .

Proof. It is enough to notice that, in view of (MS), each of the triangles Tε ∈ Tε(Ω) touching ∂Ωε
satisfies µ[σ](Tε) = 0 . Therefore, in order to construct a field β̂ satisfying properties (i), (ii), and
(iii), it is enough to extend locally by reflection the field β provided by Lemma 3.2. �

We conclude this subsection showing how assumption (MS) allows to estimate the total variation
of the dislocation measure µ with the elastic energy Fε(µ) .

Lemma 3.4. There exists C̄ > 0 such that |µε |(Ω) ≤ C̄ 1
ε2Fε(µ) for every ε > 0 and for every

µ ∈ Xε(Ω) .

Proof. Let ε > 0 and µ ∈ Xε(Ω) be fixed. Let moreover (u, σ) ∈ Dε(Ω) × Sε(Ω) with µ[σ] = µ .
For every p ∈ suppµ let Kpε be the set of the triangles Tε 6= T pε sharing at least one vertex with
the triangle T pε centered at p and let Kp

ε :=
⋃
Tε∈Kpε Tε . By the very definition of Xε(Ω), we have

that µ(Tε) = 0 for every Tε ∈
⋃
p∈suppµKpε . Let βu,σ,K

p
ε be the map defined in Lemma 3.2 above.

Recalling the notation for the annulus Ar,R(p) , for every p ∈ suppµ we set

Spε :=
1

|A√
3

3 ε, 5
√

3
12 ε

(p)|

∫
A√

3
3
ε, 5

√
3

12
ε
(p)

(βu,σ,K
p
ε )skewdy ,
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where, for every β ∈ R2×2 , we have set βskew := 1
2 (β − β∗) . By Korn’s inequality, there exists a

constant κ (independent of ε and p) such that∫
A√

3
3
ε, 5

√
3

12
ε
(p)

|(βu,σ,K
p
ε )sym|2dx ≥ κ

∫
A√

3
3
ε, 5

√
3

12
ε
(p)

∣∣βu,σ,Kpε − Spε ∣∣2dx

≥ κ

∫ 5
√

3
12 ε

√
3

3 ε

∫
∂Bρ(p)

∣∣(βu,σ,Kpε − Spε ) τ
∣∣2 dH1 dρ

≥ κ

2π
log 2|µ(p)|2 =

κ

2π
log 2 ε2

∣∣∣µ
ε

(p)
∣∣∣2 ≥ κ

2π
log 2 ε2

∣∣∣µ
ε

(p)
∣∣∣ ,

where the second inequality follows by Fubini theorem, estimating |βu,σ,Kpε − Spε | from below by
its tangential part, and the third one is a consequence of Jensen’s inequality using Lemma 3.2(c)
together with ∫

∂Bρ(p)

Spε τ dH1 = 0 .

By assumption (MS), Lemma 3.2(b) and the very definition of C in (2.11), using that the annuli
A√

3
3 ε, 5

√
3

12 ε
(p) are pairwise disjoint and contained in Kp

ε , we thus deduce that

Fε(u, σ) ≥
√

3

2

∑
p∈suppµ

1

2

∫
Kp
ε

Cβu,σ,K
p
ε : βu,σ,K

p
ε dx ≥ C

∑
p∈suppµ

∫
A√

3
3
ε, 5

√
3

12
ε
(p)

|(βu,σ,K
p
ε )sym|2dx

≥Cε2
∣∣∣µ
ε

∣∣∣(Ω) ,

which, taking the infimum over the pairs (u, σ) ∈ Dε(Ω)×Sε(Ω) with µ[σ] = µ , provides the claim
for C̄ = 1

C . �

Remark 3.5. Without the assumption (MS), Lemma 3.4 does not hold. As an example, for every
ε > 0 , let uε ≡ 0 and

σε(i, j) :=

 +
√

3ε e2 if j = i+ εe1 ,

−
√

3ε e2 if j = i− εe1 ,
0 elsewhere in Ω1

ε .

Trivially, |µ[σε]
ε |(Ω) ∼ 1

ε2 ,
∥∥µ[σε]

ε

∥∥
flat
∼ 1

ε , and Fε(µ[σε]) = Fε(uε, σε) ≡ 0 .

3.2. Proof of Theorem 1.1. We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1(i). For every ε > 0 , let (uε, σε) ∈ Dε(Ω) × Sε(Ω) with µ[σε] = µε be such
that

(3.3) Fε(uε, σε) ≤ 2Fε(µε) .

We let

(3.4) Kε := {Tε ∈ Tε(Ω) : µε(Tε) = 0} Kε :=
⋃

Tε∈Kε

Tε ,

and we set βε := βuε,σε,Kε and β̂ε := β̂uε,σε,Kε , where βuε,σε,Kε and β̂uε,σε,Kε are the fields provided

by Lemmas 3.2 and 3.3, respectively. Furthermore, we set µ̃ε := µε
ε and β̃ε := β̂ε

ε . Recalling the
definition of Ωε(µ̃ε) in (2.1) and using, in order of appearance, Lemma 3.3(iii), Lemma 3.2(b),
(3.3) and the energy bound, we have

(3.5)

1

2

∫
Ωε(µ̃ε)

Cβ̃ε : β̃ε dx =
1

2ε2

∫
Ωε(µ̃ε)

Cβ̂ε : β̂ε dx ≤ C

2ε2

∫
Kε

Cβε : βε dx

≤ C

ε2
Fε(uε, σε) ≤

C

ε2
Fε(µε) ≤ C| log ε| ;

moreover, by Lemma 3.4 and by the energy bound, we have

(3.6) |µ̃ε|(Ω) ≤ C| log ε| .
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xk1,ε

γk1,ε

xk2,ε

γk2,ε

i+εη

i

i−εη

Figure 1. Geometric construction used in the proof of Theorem 1.1(iii). The po-
sition of each dislocation is approximated with a point xk,ε sitting on the barycen-
ter of a triangle of Tε(Ω) . The approximate displacement is the restriction to the
lattice points of a continuum displacement having a jump on each half-line γk,ε .
The sets S1

k,ε defined in the proof contain bonds across the jumps: for example,

the points i , i±εη displayed in the picture are such that both bonds (i, i−εη) ,
(i, i+εη) belong to the set S1

k1,ε
.

In view of Lemma 3.3(ii) and of Lemma 3.2(c), we have β̃ε ∈ ASε(µ̃ε) for every ε > 0 (with

A = Ω in (2.2)) , so that, by (3.5) and (3.6), applying Theorem 2.1(i) with µε = µ̃ε and βε = β̃ε,
we deduce the claim. �

Proof of Theorem 1.1(ii). We can assume without loss of generality that Fε(µε) ≤ Cε2| log ε| ,
which in view of Lemma 3.4, implies that

∣∣µε
ε

∣∣(Ω) ≤ C| log ε| .
Let A ⊂⊂ Ω be an open bounded subset of R2 with Lipschitz continuous boundary such that

suppµ ⊂ A . Let ε > 0 small enough such that A ⊂ Ωε . Let moreover (uε, σε) ∈ Dε(Ω) × Sε(Ω)
with µ[σε] = µε be such that

(3.7) Fε(µε) ≤ Fε(uε, σε) + ε2 ,

and let Kε be defined by (3.4); we set βε := βuε,σε,Kε , where βuε,σε,Kε is the field provided by

Lemma 3.2 , µ̃ε := µε
ε and β̃ε := βε

ε . By (3.7) and Lemma 3.2 we have that β̃ε ∈ ASε(µ̃ε) (for
every ε > 0) and

Fε(µε) ≥ Fε(uε, σε)− ε2 ≥
√

3

2
ε2Eε(β̃ε;Aε(µ̃ε))− ε2 ,

whence the claim follows by applying Theorem 2.1(ii) with µε = µ̃ε and βε = β̃ε . �

Proof of Theorem 1.1(iii). Let µ =
∑K
k=1 b

kδxk ∈ X(Ω) . By standard density arguments in Γ-
convergence we can assume that ϕ(bk) = ψ(bk) for every k = 1, . . . ,K , i.e., that |bk| = 1 for every
k = 1, . . . ,K . Let εT′+(Ω) be the set of the barycenters of the triangles T+

ε = i+ εT+ ∈ Tε(Ω) .

For every k = 1, . . . ,K and for every ε > 0 , let xk,ε ∈ εT′+(Ω) be such that

|xk,ε − xk| = min{|y − xk| : y ∈ εT′+(Ω)} .
For every k = 1, . . . ,K set (see Figure 1)

γk,ε :=

 {x
k,ε + λe1 : λ ≥ 0} if bk = ± e1 ,

{xk,ε + λν : λ ≥ 0} if bk = ± ν ,
{xk,ε + λη : λ ≥ 0} if bk = ± η .

Let ūk,ε ∈ C2(R2 \ γk,ε;R2) be a function satisfying the following properties,

(3.8) Sūk,ε = γk,ε , [ūk,ε] = bk on γk,ε , ∇ūk,ε(·) = βbk,CR2 (· − xk,ε) ,
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where βb,CR2 is defined in (2.4), for the choice of gb,C and f b,C(θ) in (2.12). Note that the function

ūk,ε is uniquely determined up to a constant. We set uk,ε := εūk,ε and we define uε : εT→ R2 as

uε(i) :=

K∑
k=1

uk,ε(i) .

Furthermore, for every k = 1, . . . ,K we set

S1
k,ε := {(i, j) ∈ εT× εT : |j − i| = ε , [i, j] ∩ γk,ε 6= ∅ , dist(i, γk,ε) < dist(j, γk,ε)} ,

where [i, j] denotes the segment line with endpoints i and j, and we define σε : εT× εT→ εT as

σε =
∑K
k=1 σ

k,ε , where

σk,ε(i, j) :=


−εbk if (i, j) ∈ S1

k,ε ,

+εbk if (j, i) ∈ S1
k,ε ,

0 elsewhere .

Abusing notation, we still denote by uε and σε the restrictions of uε and σε to Ω0
ε and Ω1

ε,
respectively. Then, uε ∈ Dε(Ω) and σε ∈ Sε(Ω) ; moreover, for ε small enough,

µε := µ[σε] = ε

K∑
k=1

bkδxk,ε ∈ Xε(Ω),

and, by construction, µεε
∗
⇀ µ as ε→ 0 , which clearly implies µε

ε

flat→ µ .
Therefore, in order to prove (1.6) it is enough to show that

(3.9) lim sup
ε→0

Fε(uε, σε)

ε2| log ε|
≤
√

3

2

K∑
k=1

ψ(bk) .

To this purpose, let 0 < r < 1
4 min{distk1 6=k2(xk1 , xk2) ,dist(xk, ∂Ω)} . In analogy with the notation

introduced in Section 1, for any open ball B we denote by B1
ε or (B)1

ε the family of nearest neighbor
bonds in B. In order to show (3.9), we preliminarily notice that there exists a constant C > 0
depending only on K such that

Fε(uε, σε) ≤
1

2ε2

K∑
k=1

∑
(i,j)∈(B2r(xk,ε))1ε

[(duk,ε(i, j)− σk,ε(i, j)) · (j − i)]2

+
1

2ε2

K∑
k=1

K∑
l=1
l 6=k

∑
(i,j)∈(B2r(xk,ε))1ε

[(dul,ε(i, j)− σl,ε(i, j)) · (j − i)]2

+
1

ε2

K∑
k=1

K∑
l=1
l 6=k

∑
(i,j)∈(B2r(xk,ε))1ε

[
(duk,ε(i, j)− σk,ε(i, j)) · (j − i)

]
[
(dul,ε(i, j)− σl,ε(i, j)) · (j − i)

]

+
C

ε2

K∑
k=1

∑
(i,j)∈Ω1

ε\(
⋃K
l=1 Br(xl,ε))1ε

[(duk,ε(i, j)− σk,ε(i, j)) · (j − i)]2 .
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Therefore, (3.9) is proved once provided that for every fixed k, l = 1, . . . ,K with l 6= k it holds

lim sup
ε→0

1

2ε4| log ε|
∑

(i,j)∈(B2r(xk,ε))1ε

[(duk,ε(i, j)− σk,ε(i, j)) · (j − i)]2 =

√
3

2
ψ(bk) ,(3.10)

lim sup
ε→0

1

ε4| log ε|
∑

(i,j)∈(B2r(xk,ε))1ε

[(dul,ε(i, j)− σl,ε(i, j)) · (j − i)]2 = 0 ,(3.11)

lim sup
ε→0

1

ε4| log ε|
∑

(i,j)∈(B2r(xk,ε))1ε

[
(duk,ε(i, j)− σk,ε(i, j)) · (j − i)

]
(3.12)

[
(dul,ε(i, j)− σl,ε(i, j)) · (j − i)

]
= 0 ,

lim sup
ε→0

1

ε4| log ε|
∑

(i,j)∈Ω1
ε\(

⋃K
l=1 Br(xl,ε))1ε

[(duk,ε(i, j)− σk,ε(i, j)) · (j − i)]2 = 0 .(3.13)

Now, by the very definition of βb,CR2 in (2.4), for every b ∈ T , we have that there exists a universal
constant C > 0 such that

(3.14) |βb,CR2 (ρ, θ)| ≤ C

ρ
, |∇βb,CR2 (ρ, θ)| ≤ C

ρ2
;

moreover, by the very definition of uk,ε and σk,ε ,

(3.15)
duk,ε(i, j)

ε
− σk,ε(i, j)

ε
=

∫ 1

0

βb
k,C

R2 (i+ t(j − i)− xk,ε) (j − i) dt ,

for every k = 1, . . . ,K , for every Tε ∈ Tε , and for every (i, j) ∈ (Tε)
1
ε . As a consequence, for

every k = 1, . . . ,K , for every Tε ∈ Tε with µε(Tε) = 0 , for every (i, j) ∈ (Tε)
1
ε, and for every

x ∈ Tε , we get

(3.16)

1

ε2

[(
duk,ε(i, j)− σk,ε(i, j)

)
· (j − i)

]2
=
[(duk,ε(i, j)

ε
− σk,ε(i, j)

ε

)
· (j − i)

]2
= ε4

[∫ 1

0

(j − i
ε

)∗
βb

k,C
R2 (i+ t(j − i)− xk,ε)

(j − i
ε

)
dt

]2

≤ ε4

∫ 1

0

[(j − i
ε

)∗
βb

k,C
R2 (i+ t(j − i)− xk,ε)

(j − i
ε

)]2
dt

= ε4
[(j − i

ε

)∗
βb

k,C
R2 (x− xk,ε)

(j − i
ε

)]2
+ ε4

∫ 1

0

([(j − i
ε

)∗
βb

k,C
R2 (i+ t(j − i)− xk,ε)

(j − i
ε

)]2
−
[(j − i

ε

)∗
βb

k,C
R2 (x− xk,ε)

(j − i
ε

)]2)
dt

)
,

where the second equality follows from (3.15), and the inequality is a consequence of Jensen’s
inequality. Now, by (3.14) for every k = 1, . . . ,K and for every ξ ∈ {±e1,±ν,±η} it holds∣∣∇([ξ∗βbk,CR2 ξ]2

)
(x− xk,ε)

∣∣ ≤ C

|x− xk,ε|3
for every x 6= xk,ε .

In particular, for every k = 1, . . . ,K , for every Tε ∈ Tε with µε(Tε) = 0 , for every (i, j) ∈ (Tε)
1
ε,

and for every x ∈ Tε ,[(j − i
ε

)∗
βb

k,C
R2 (i+ t(j − i)− xk,ε)

(j − i
ε

)]2
−
[(j − i

ε

)∗
βb

k,C
R2 (x− xk,ε)

(j − i
ε

)]2
≤ C ε

|x− xk,ε|3
.
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Hence, for every Tε ∈ Tε with µε(Tε) = 0 , by (3.16) and integrating over Tε , we get

(3.17)

Fε(u
k,ε, σk,ε;Tε)

≤ 4√
3
ε2

∫
Tε

(∣∣e∗1βbk,CR2 (x− xk,ε)e1

∣∣2 +
∣∣ν∗βbk,CR2 (x− xk,ε)ν

∣∣2 +
∣∣η∗βbk,CR2 (x− xk,ε)η

∣∣2)dx

+ Cε3

∫
Tε

1

|x− xk,ε|3
dx

=
√

3ε2

∫
Tε

1

2
Cβb

k,C
R2 (x− xk,ε) : βb

k,C
R2 (x− xk,ε) dx+ Cε3

∫
Tε

1

|x− xk,ε|3
dx ,

where the equality follows by the second equality in (3.1) with β replaced by βb
k,C

R2 (x − xk,ε) .

Now, denoting by T x
k,ε

ε ∈ Tε(Ω) the triangle centered at xk,ε , by (3.14) and (3.15) for every
k = 1, . . . ,K we get

Fε(u
k,ε, σk,ε;T x

k,ε

ε ) ≤ Cε2 ,

for some constant C independent of ε . Moreover, recalling the notation previously introduced for
the annuli, an integration in polar coordinates shows that∫

Aδ,2r(xk,ε)

1

|x− xk,ε|3
dx ≤ C

δ
,

for every 0 < δ < 2r . Therefore, by (3.17) and (2.6) , for every k = 1, . . . ,K and for c > 0 small

enough (as for instance c <
√

3
6 ) we obtain

(3.18)

1

2ε2

∑
(i,j)∈(B2r(xk,ε))1ε

[(
duk,ε(i, j)− σk,ε(i, j)

)
· (j − i)

]2
≤ 1

2

∑
Tε∈Tε(B2r(xk,ε))

Fε(u
k,ε, σk,ε;Tε)

≤
√

3

2
ε2

∫
Acε,2r(xk,ε)

1

2
Cβb

k,C
R2 (x− xk,ε) : βb

k,C
R2 (x− xk,ε) dx+ Cε2

≤ ε2| log ε|
√

3

2
ψ(bk) + Cε2 ,

where the constant C changes from line to line; this proves (3.10) .
Moreover, by (3.17) together with (3.14), for every k, l = 1, . . . ,K with l 6= k , we have

(3.19)

1

ε4| log ε|
∑

(i,j)∈(B2r(xk,ε))1ε

[
(dul,ε(i, j)− σl,ε(i, j)) · (j − i)

]2
≤ 1

ε2| log ε|
∑

Tε∈Tε(B2r(xk,ε))

Fε(u
l,ε, σl,ε;Tε)

≤ C

| log ε|

(∫
B2r(xk,ε)

Cβb
l,C

R2 (x− xl,ε) : βb
l,C

R2 (x− xl,ε) dx+ ε

∫
B2r(xk,ε)

1

|x− xl,ε|3
dx
)

≤ Cr
| log ε|

→ 0 as ε→ 0 ,

where Cr depends only on r . Now, by (3.19) we obtain (3.11) . Analogously, one can prove that
also (3.13) holds true.
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Finally, by the Hölder inequality, using (3.18) and (3.19), for every k, l = 1, . . . ,K with l 6= k
we get

1

ε4| log ε|
∑

(i,j)∈(B2r(xk,ε))1ε

[
(duk,ε(i, j)− σk,ε(i, j)) · (j − i)

][
(dul,ε(i, j)− σl,ε(i, j)) · (j − i)

]
≤
(

1

ε4| log ε|
∑

(i,j)∈(B2r(xk,ε))1ε

[
(duk,ε(i, j)− σk,ε(i, j)) · (j − i)

]2) 1
2

(
1

ε4| log ε|
∑

(i,j)∈(B2r(xk,ε))1ε

[
(dul,ε(i, j)− σl,ε(i, j)) · (j − i)

]2) 1
2

≤ C√
| log ε|

→ 0 as ε→ 0 ,

which proves (3.12) and concludes the proof of the Γ-limsup inequality. �

4. Degeneracies of the model and possible kinematic constraints

We highlight that the functional (1.2) exhibits some degeneracies that are typical of linearized
energies as well as of discrete models built on a reference configuration; the presence of the plastic
slip field σ actually makes the system even less rigid and produces even more unphysical configu-
rations.

As an example, let Ω := [−1, 1]2 and define u±ε ∈ Dε(Ω) as

(4.1) u±ε (i) :=

{
±εν if i2 ≤ 0
0 elsewhere in Ω0

ε .

Notice that u−ε can be interpreted as a microscopic crack, whereas u+
ε can be seen as an unphysical

crack which produces interpenetration of matter generating the superposition of two lines of atoms.
It is easy to check that there exist σ±ε ∈ Sε(Ω) such that Fε(u

±
ε , σ

±
ε ) = 0 . Moreover, up to slightly

modifying u−ε , one can construct a function uε ∈ Dε(Ω) such that the crack does not disconnect Ω
and has two ending points which in our model are classified as dislocations with opposite Burgers
vector. In particular, what in our model is identified as a plastic slip, in some cases should be
rather understood as a microscopic crack opening.

Furthermore, we observe that the energy in (1.2) is invariant with respect to integer dilations
of the lattice. In order to see this, it is enough to fix λ ∈ Z and to take the displacement uλε and
the slip σλε defined by

(4.2) uλε (i) := λεi σλε (i, j) := ελ(j−i) .

Trivially, duλε (i, j) ≡ σλε (i, j) and hence Fε(u
λ
ε , σ

λ
ε ) ≡ 0 .

In view of the degeneracies pointed out above, one may ask whether additional suitable kine-
matic constraints on the plastic slips could prevent such unphysical behaviors. In the present
framework, it seems natural to incorporate linearized constraints on the plastic slips, mimicking
deviatoric/pure shear volume preserving conditions on each ε-triangle Tε ∈ Tε .

Let us discuss now a possible way to introduce such a kinematic constraint in our model. In
order to (formally) linearize the nonlinear volume preserving constraint, consider deformation
gradients Id + δz close to the identity, where z ∈ R2×2 represents a plastic deformation gradient,
δ > 0 is a small parameter with respect to which the linearization is performed and Id is the
identity matrix in R2×2 . Enforcing that the deformed configuration (Id + δz)(Tε) has the same
(oriented) area of Tε we obtain

[(k−i) + δ z(k−i)] ∧ [(j−i) + δ z(j−i)] = (k−i) ∧ (j−i) ,

for every triple (i, j, k) of counterclockwise oriented vertices of Tε . Neglecting lower order terms,
this yields

(4.3) z(k−i) ∧ (j−i)− z(j−i) ∧ (k−i) = 0 ,



16 R. ALICANDRO, L. DE LUCA, G. LAZZARONI, M. PALOMBARO, AND M. PONSIGLIONE

for every triple (i, j, k) as above. Summing (4.3) over two triples of the type (i, j, k), (j, k, i), one
can see that condition (4.3) is equivalent to the well known trace free constraint on z ; we refer
the interested reader to [17] for a rigorous derivation via Γ-convergence of such a kind of trace
free constraints starting from continuous nonlinear models in plasticity, relying on multiplicative
rather than additive decompositions of the deformation gradient.

We now rewrite (4.3) in terms of the (linear) slip field σ , which is, by construction, given by

(4.4) σ(i, j) = z(j−i) for every bond (i, j) of the triangle Tε .

Condition (4.3) becomes

(4.5) σ(i, k) ∧ (j−i)− σ(i, j) ∧ (k−i) = 0 ,

for every triple (i, j, k) of counterclockwise oriented vertices of Tε . As a consequence of (4.4), we
have that µ[σ](Tε) = 0 , and hence (4.5) is justified by the reasoning above only on dislocation-
free triangles. On the other hand, one can easily check that the only condition (4.5) (assumed
for every triple (i, j, k) of counterclockwise oriented vertices of Tε) implies that µ[σ](Tε) = 0 .
Summarizing, in our framework, a reasonable linearization of the volume preserving constraint
seems to be provided by condition (4.5) assumed on all dislocation-free ε-triangles Tε .

Notice that (4.5) rules out the degeneracies pointed out by the examples above. More precisely,
one can check that, given a displacement as in (4.1) or(4.2), the minimum energy in a dislocation-
free triangle among all slip fields fulfilling (4.5) is strictly positive. On the other hand (MS)
guarantees that dislocation-free triangles are necessarily present. Finally, our Γ-convergence result
still holds true under the additional constraint (4.5), which is satisfied by the recovery sequence
constructed in the proof of Theorem 1.1(iii).
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