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Presentation

The scope of these notes is to present a model case – but already complex
enough – of motion in heterogeneous media. Even though this analysis will be
performed in the relatively simplified setting of a periodic lattice, where the
heterogeneous structure is somewhat built-in in the environment itself, this
must be thought of as a case study for a large class of inhomogeneous media.
In such a lattice setting we consider the simplest order parameter –obtained
by labelling the nodes of the lattice with zeros or ones–, and define an energy
that favours constant values of such an order parameter and penalizes the
creation of ‘discrete interfaces’. In such a way we expect an overall geomet-
ric motion driven by surface minimization such as mean-curvature flow. The
very discrete structure of the environment provides an obstruction to this mo-
tion, with energy barriers that contrast this evolution and in our mind are
a prototype of the e↵ect of local minima in a general energy-driven motion
in a heterogeneous structure. The seemingly unsolvable contrast between an
overall tendency towards motion and a microscopic pinning by local minima
can be overcome by resorting to a notion of ‘homogenized motion’ obtained
with a balance between minimization of a scaled energy and a scaled dissi-
pation at proper time and space scales, adapting the minimizing-movement
approach that has led to a general approach to gradient flow type evolutions
in the last twenty years.

The content of these notes stem from a course given by the first author at
the Institute for Advanced Study, Technische Universität München, as part
of the Summer School “Multiscale Phenomena in Geometry and Dynamics”
organized by M. Cicalese and C. Kühn from July 22nd to 26th, 2019. The
course was aimed at treating a variational approach to geometric flow on
lattices on one hand as an example where we can tackle a simplified version
of the general problem of evolution in heterogeneous media, referred to by De
Giorgi as a “hard nut to crack”, and on the other hand as a subject where the
audience might get in touch with various advanced topics in modern Applied
Analysis, such as homogenization, gradient flows on metric spaces, geometric
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evolution, �-convergence tools, applications of Geometric Measure Theory,
properties of interfacial energies, etc. The present notes are a substantial
enlargement and a completion of the content of the course, including more
theoretical issues on minimizing movements, the detailed treatment of ex-
amples only hinted at in the course and of new ones, and some additional
results on the convergence of lattice energies.
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