Instability and nonuniqueness for the 2d

Euler equations in vorticity form,
after M. Vishik

Dallas Albritton
Elia Brué
Maria Colombo
Camillo De Lellis
Vikram Giri
Maximilian Janisch

Hyunju Kwon



(Dallas Albritton) SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY,
1 EINSTEIN DR., PRINCETON NJ 08540, USA
Email address: dallas.albritton@ias.edu

(Elia Brué) SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, 1 EIN-
STEIN DR., PRINCETON NJ 08540, USA
Email address: elia.brue@ias.edu

(Maria Colombo) INSTITUTE OF MATHEMATICS, EPFL SB, StATION 8, CH-1015
LAUSANNE, SWITZERLAND
Email address: maria.colombo@epfl.ch

(Camillo De Lellis) SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY,
1 EINSTEIN DR., PRINCETON NJ 08540, USA
Email address: camillo.delellis@ias.edu

(Vikram Giri) DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, WASH-
INGTON RD., PRINCETON, NJ 08544, USA

Email address: vgiri@math.princeton.edu

(Maximilian Janisch) INSTITUT FUR MATHEMATIK, UNIVERSITAT ZURICH, WIN-
TERTHURERSTRASSE 190, 8057 ZURICH, SWITZERLAND
Email address: mail@maximilianjanisch.com

(Hyunju Kwon) SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, 1
EINSTEIN DR., PRINCETON NJ 08540, USA
Email address: hkwon@ias.edu



DA was supported by NSF Postdoctoral Fellowship Grant No. 2002023 and Simons
Foundation Grant No. 816048.
EB was supported by the Giorgio and Elena Petronio Fellowship.
MC was supported by the SNSF Grant 182565.
CDL was supported by the NSF under Grant No. DMS-1946175.
VG was supported by the NSF under Grant No. DMS-FRG-1854344.
HK was supported by the NSF under Grant No. DMS-1926686.






Contents

Chapter 1. Introduction
1.1. Idea of the proof
1.2. Differences with Vishik’s work
1.3. Further remarks

Chapter 2. General strategy: background field and self-similar coordinates
2.1.  The initial velocity and the force
2.2.  The infinitely many solutions
2.3. Logarithmic time scale and main Ansatz
2.4. Linear theory
2.5. Nonlinear theory

Chapter 3. Linear theory: Part I
3.1. Preliminaries
3.2.  Proof of Theorem 3.0.4 and proof of Theorem 3.0.1(a)
3.3. Proof of Theorem 2.4.2: preliminary lemmas
3.4. Proof of Theorem 2.4.2: conclusion

Chapter 4. Linear theory: Part II
4.1. Preliminaries
4.2. The eigenvalue equation and the class &
4.3. Overview of the proof of Theorem 4.2.4
4.4. ODE Lemmas
4.5. Proof of Proposition 4.3.1
4.6. Proof of Proposition 4.3.3: Part |
4.7.  Proof of Proposition 4.3.3: Part 11
4.8. Proof of Proposition 4.3.5
4.9. Proof of Lemma 4.3.7

Chapter 5. Nonlinear theory
5.1.  Proof of Proposition 5.0.2
5.2. Proof of Lemma 5.0.3
5.3. Proof of the baseline L? estimate
5.4. Estimates on the first derivative

Appendix A. A more detailed spectral analysis
A.1l. From Remark 4.0.3(i) to Remark 3.0.2(c)

5

12
13

15
15
19
21
23
24

27
29
31
33
36

39
40
43
45
48
52
60
63
69
71

1)
7
79
83
84

91
91



6 CONTENTS

A.2. Proof of Remark 4.0.3(i)
A.3. Proof of Theorem 4.0.4
A.4. Proof of Proposition A.3.2

Appendix B. Proofs of technical statements
B.1. Proof of Remark 1.0.2
B.2. Proof of Theorem 1.0.3
B.3. Proof of Proposition 2.2.3
B.4. Proof of Lemma 2.4.1

Appendix. Index
Appendix. Bibliography

91
96
97

105
105
105
107
110

113
115



CHAPTER 1

Introduction

In these notes we will consider the Euler equations in the 2-dimensional space in vor-
ticity formulation, which are given by

Ow+ (v-Vw=f

(1.1)
v(+,t) = Ky xw(-,1)

where K5 is the usual 2-dimensional Biot-Savart kernel and f is a given external force. v
is the velocity field, and it is a function defined on a space-time domain of type R? x [0, T].
By the Biot-Savart law we have w = curlv = 9,,v2 — 0,,v1 =V X v.

We will study the Cauchy problem for (1.1) with initial data

w(+,0) = wy (1.2)
on the domain R? x [0, co[ under the assumptions that
(i) wo € L' N LP for some p > 2 and vy = Ky * wy € L?;
(i) fe LY[0,T],L* N LP) and K, * f € L'([0,T], L?) for every T' < oo.

In particular we understand solutions w in the usual sense of distributions, namely,

/0 /RQ[W(ath + Kyxw- Vo) + foldrdt = — . o(x,0)wo(x) dz (1.3)

for every smooth test function ¢ € C°(R? x [0, T]). In view of (i)-(ii) and standard energy
estimates we will restrict our attention to weak solutions which satisfy the following bounds:

(a) we L>([0,T),L* N LP) and v € L>([0,T], L?) for every T < co.
The purpose of these notes is to give a proof of the following:

THEOREM 1.0.1. For every p €]2,00[ there is a triple wy,vo, and f satisfing (i)-(ii)
with the property that there are uncountably many solutions (w,v) of (1.1) and (1.2) on
R? x [0, oo[ which satisfy the bound (a). Moreover, wy can be chosen to vanish identically.

In fact the f given by the proof is smooth and compactly supported on any closed
interval of time [e,T] CJ0, oo[. Moreover, a closer inspection of the argument reveals that
any of the solutions (w,v) enjoy bounds on the VVI})CA‘ norm of w(t,-), and good decay
properties at infinity, whenever ¢ is positive (and obviously such estimates degenerate as
t 1 0). In particular v belongs to CL_(R?x]0, oo[). It is not difficult to modify the arguments
detailed in these notes to produce examples which have even more regularity and better
decay for positive times, but we do not pursue the issue here.

7



8 1. INTRODUCTION

REMARK 1.0.2. Recall that
[ Ko * w(-,t)||pe < Cp)(lw(- )l + [l )] z0) (1.4)

whenever p > 2 (cf. the Appendix for the proof). Therefore we conclude that each solution
v in Theorem 1.0.1 is bounded on R? x [0, T for every positive T.

The above groundbreaking result was proved by Vishik in the two papers [33] and [34]
(upon which these notes are heavily based) and answers a long-standing open question in
the PDE theory of the incompressible Euler equations, as it shows that it is impossible to
extend to the L scale the following classical uniqueness result of Yudovich.

THEOREM 1.0.3. Consider a strictly positive T, an initial vorticity wy € L' N L* with
vo = Kay*xwy € L? and an external force f € L'([0, T); L' N L>®) with Kyx f € L'([0,T]; L?).
Then there is a unique solution w of (1.1) and (1.2) on R* x [0, T] satisfying the estimates
w e L>®([0,T],L* N L>) and v = Ky xw € L*>([0,T], L?).

The above theorem in a bounded domain was originally proven by Yudovich in 1963
[37], who also proved a somewhat more technical statement on unbounded domains. We
have not been able to find an exact reference for the statement above (cf. for instance [26,
Theorem 8.2] and the paragraph right afterwards, where the authors point out the validity
of the Theorem in the case of f = 0). We therefore give a detailed proof in the appendix
for the reader’s convenience.

REMARK 1.0.4. We recall that the solution of Theorem 1.0.3 satisfies a set of impor-
tant a priori estimates, which can be justified using the uniqueness part and a simple
approximation procedure. Indeed if (w,v) is a smooth solution of (1.1), then the method
of characteristics shows that, for every ¢, there exists a family of volume-preserving diffeo-
morphisms Ty : R? — R? s € [0, ], such that

w(z,t) = wo(Tox) —i—/o f(Tsx, s)ds.

Therefore, since volume-preserving diffeomorphisms preserve all L? norms, we get, for all
q € [1,00],

t
lw (- E)llze < flwoll e +/O £ (5 8)l[za ds.

Furthermore, a usual integration by parts argument, as seen in [37, Lemma 1.1], shows
that v satisfies the estimate

t
[0, 8)llz> < llvoll 2 +/ 1552 % f (-, 8)| 2 ds.
0

REMARK 1.0.5. Recall that the Biot-Savart kernel is given by the formula
L 1
Ky(xq,29) = S (—x9, 1) . (1.5)
S or|z)?  2w|z2t
In particular, while Ky ¢ LP for any p, it can be easily broken into

K2 = KZ]-Bl -+ K2le 5 (16)




1.1. IDEA OF THE PROOF 9

where B denotes the unit ball around 0. Observe that Ky1p, € L? for every ¢ € [1,2[ and
Kslpe € L" for every r €]2,00]. Under the assumption that w € L?7° for some positive
d > 0, this decomposition allows us to define the convolution Ks % w as (Kslp,) *x w +
(K21pe) * w, where each separate summand makes sense as Lebesgue integrals thanks to
Young’s convolution inequality.

On the other hand we caution the reader that, for general w € L?, K, * w may not be
well-defined. More precisely, if we denote by . the Schwartz space of rapidly decaying
smooth functions and by .’ the space of tempered distributions (endowed, respectively,
with their classical Fréchet and weak topologies), it can be shown that there is no contin-
uous extension of the operator . 3 w +— Ky *xw € .’ to a continuous operator from L?
to ., cf. Remark B.4.1.

This fact creates some technical issues in many arguments where we will indeed need
to consider a suitable continuous extension of the operator w — Ks *x w to some closed
linear subspace of L%, namely, m-fold rotationally symmetric functions in L? (for some
integer m > 2). Such an extension will be shown to exist thanks to some special structural
properties of the subspace.

1.1. Idea of the proof

We now describe, briefly, the rough idea of and motivation for the proof. An extensive
description of the proof with precise statements can be found in Chapter 2, which breaks
down the whole argument into three separate (and independent) parts. The subsequent
three chapters are then dedicated to the detailed proofs.

First, we recall two essential features of the two-dimensional Euler equations:

(1) Steady states. The two-dimensional Euler equations possess a large class of ex-
plicit, radially symmetric steady states called vortices:?

w(z) = g(lal),  o(z) = ((|l=])z (1.7)

(2) Scaling symmetry. The Euler equations possess a two-parameter scaling symme-
try: If (w,v) is a solution of (1.1) with vorticity forcing f, and A, x> 0, then

define a solution with vorticity forcing
Faul,t) = 2 f(Az, ut). (1.9)
The scaling symmetry corresponds to the physical dimensions
L 1 1

[z] =L, [{]=T, [v]= T [w] = T and  [f] (1.10)

1Young’s convolution inequality states that, if g7 € LP* and go € LP? with 1 < p% + p% < 2, then
91(y — -)g2(-) belongs to L* for a.e. y and gy * g € L" for £ = p% + p% - 1.
2They are sometimes also called rotating or circular flows.



10 1. INTRODUCTION

We now elaborate on the above two features:

1. Unstable vortices. The stability analysis of shear flows u = (b(y), 0) and vortices (1.7)
is classical, with seminal contributions due to Rayleigh [29], Kelvin [31], Orr [28], and many
others. The linearized Euler equations around the background vortex w are

Ow — Lgw = yw + ((r)0pw + (v-e,)d' (r) =0, v=Ky*w. (1.11)

Consider the eigenvalue problem associated to the linearized operator Lg. It suffices to
consider ¢ = %), (|x|), k > 0, the stream function associated to a vorticity perturbation
w (that is, Ay = w). It is convenient to pass to an exponential variable s = log r and define
o(s) = Pr(e®); A(s) = e°g’(e®) (r x the radial derivative of the background vorticity); and
=(s) = ((e®) (the differential rotation). The eigenvalue problem for Lg, with eigenvalue
A = —ikz, can be rewritten as

d2
(Z(s) — 2) (d—y2 — kg) ¢ — A(s)p = 0. (1.12)
This is Rayleigh’s stability equation. The eigenvalue A is unstable when Im(z) > 0, in
which case we can divide by = — 2 and analyze a steady Schrodinger equation. It is
possible to understand (1.12) well enough to design vortices for which the corresponding
linear operator has an unstable eigenfunction. For shear flows, this analysis goes back
to Tollmien [32]. The problem was treated rigorously by Z. Lin [22] for bounded and
unbounded shear flows and rotating flows in an annulus.?

The case of unbounded vortices, which is the crucial one for the purposes of these notes,
was treated by Vishik in [34], see Chapter 4 below. In the cases relevant to these notes,
L has at least one unstable eigenvalue A. While the latter could well be real, for the sake
of our argument let us assume that it is a complex number A\ = ag + byi (ag, by > 0) and
let A = ag — byi be its complex conjugate. If we denote by 7 and 7 two corresponding
(nontrivial) eigenfunctions, it can be checked that they are not radially symmetric.

With the unstable modes in hand, one may seek a trajectory on the unstable manifold
associated to A and \. For example, one such trajectory may look like

w =@ + w™ 4 o(e), (1.13)

[1]

where W' = Re(e?n) is a solution of the linearized Euler equations (1.11). These solutions
converge to w exponentially in backward time. Hence, we expect that certain unstable
vortices exhibit a kind of non-uniqueness at time t = —oo and moreover break the radial
symmetry. The existence of unstable manifolds associated to a general class of Euler flows
in dimension n > 2 was demonstrated by Lin and Zeng [25, 24].*

2. Self-similar solutions. It is natural to consider solutions invariant under the scaling
symmetry and, in particular, it is natural to consider those self-similar solutions which

3For those interested in hydrodynamic stability more generally, see the classic monograph [8]. Chap-
ter 4 therein concerns the stability of shear flows, including Rayleigh’s criterion and a sketch of Tollmien’s
idea.

4There is a substantial mathematical literature on the nonlinear instability of Euler flows, see [13, 12,
14, 2, 36, 23].
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live exactly at the desired integrability. If we fix a relationship L® ~ T in the scaling
symmetries, the similarity variables are®

£=2 . r=logt (1.14)
ta
1
v(x,t) = 1_lV(£,T), w(z,t) = ;Q(f,T). (1.15)
Notice that physical time t = 0 corresponds to logarithmic time 7 = —oo. The function (2

is known as the profile. The Euler equations, without force, in similarity variables are

;0= (14+4£-Ve)Q+V-VQ=0
(1.16)
V:KQ*Q

Profiles Q satisfying ||Q2(-,7)||zr = O(1) as 7 — —oo satisfy ||w(-,t)||r = O(t_Halp) as
t — 0T, and similarly in the weak L? norms. Hence, the Lebesgue and weak Lebesgue
norms with p = 2/a would be O(1) in either variables. To show sharpness of the Yudovich
class, we consider 0 < o < 1.

The route to non-uniqueness through unstable vortices and self-similar solutions is
as follows: Suppose that €2 is an unstable steady state of the similarity variable Euler
equations (1.16) (in particular, @(z,t) = t1Q(¢) is a self-similar solution of the usual Euler
equations). Find a trajectory Q on the unstable manifold associated to 2. In similarity
variables, the steady state Q will be “non-unique at minus infinity”, which corresponds to
non-uniqueness at time ¢ = 0 in the physical variables.

One natural class of background profiles Q consists of power-law vortices & = |z|~%,
£ € R, which are simultaneously steady solutions and self-similar solutions without force.
At present, we do not know whether the above strategy can be implemented with power-law
vortices.

Instead, we choose a smooth vortex profile g(|x|), with power-law decay as |z| — +oo,
which is unstable for the Euler dynamics. Our background will be the self-similar solution
with profile Q = g(|¢|), which solves the Euler equations with a self-similar force. This
profile may be considered a well-designed smoothing of a power-law vortex. When the
background is large, it is reasonable to expect that the additional term in the similarity
variable Euler equations (1.16) can be treated perturbatively, so that g(|¢]) will also be
unstable for the similarity variable Euler dynamics. This heuristic is justified in Chapter 3.

In order to ensure that the solutions have finite energy, we also truncate the back-
ground velocity at distance O(1) in physical space. This generates a different force. The
truncation’s contribution to the force is smooth and heuristically does not destroy the non-
uniqueness, which can be thought of as “emerging” from the singularity at the space-time
origin. Our precise Ansatz is (2.38), which is the heart of the nonlinear part of these notes.

5We may regard the logarithmic time as 7 = log(t/tg), so that ¢ is non-dimensionalized according to
a fixed reference time tg = 1.
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1.2. Differences with Vishik’s work

While we follow the strategy of Vishik in [33, 34|, we deviate from his proof in some
ways. We start by listing two changes which, although rather minor, affect the presentation
substantially.

(1)

We decouple the parameter a in (1.14) governing the self-similar scaling from the
decay rate @ of the smooth profile ¢ at infinity. In [33] these two parameters are
equal; however, it is rather obvious that the argument goes through as long as
a < a. If we then choose o < & the resulting solution has zero initial data. This
is a very minor remark, but it showcases the primary role played by the forcing f
in the equation.

Strictly speaking Vishik’s Ansatz for the “background solution” is in fact differ-
ent from our Ansatz (even taking into account the truncation at infinity). The
interested reader might compare (2.9) and (2.11) with [33, (6.3)]. Note in par-
ticular that the coordinates used in [33] are not really (1.14) but rather a more
complicated variant. Moreover, Vishik’s Ansatz contains a parameter £, whose
precise role is perhaps not initially transparent, and which is ultimately scaled
away in [33, Chapter 9]. This obscures that the whole approach hinges on finding
a solution  of a truncated version of (1.16) asymptotic to the unstable manifold
of the steady state 2 at —oo. In our case, 2 is constructed by solving appropriate
initial value problems for the truncated version of (1.16) at negative times —k and
then taking their limit; this plays the role of Vishik’s parameter €.

We next list two more ways in which our notes deviate from [33, 34]. These differences
are much more substantial.

(3)

(4)

The crucial nonlinear estimate in the proof of Theorem 1.0.1 (cf. (2.18) and the
more refined version (2.25)), which shows that the solution §2 is asymptotic, at
minus infinity, to an unstable solution of the linearized equation, is proved in a
rather different way. In particular our argument is completely Eulerian and based
on energy estimates, while a portion of Vishik’s proof relies in a crucial way on
the Lagrangian formulation of the equation. The approach introduced here will
be exploited by the first and third author in their forthcoming work [1] and we
believe it might be useful in other contexts.

Another technical, but crucial, difference, concerns the simplicity of the unstable
eigenvalue 1. While Vishik claims such simplicity in [34], the argument given in
the latter reference is actually incomplete. After we pointed out the gap to him, he
provided a clever way to fill it in [35]. These notes point out that such simplicity
is not really needed in the nonlinear part of the analysis: in fact a much weaker
linear analysis than the complete one carried in [34] is already enough to close the
argument for Theorem 1.0.1. However, for completeness and for the interested
readers, we include in Appendix A the necessary additional arguments needed to
conclude the more precise description of [34].
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1.3. Further remarks

Recently, Bressan, Murray, and Shen investigated in [5, 4] a different non-uniqueness
scenario for (1.1) which would demonstrate sharpness of the Yudovich class without a
force. The scenario therein, partially inspired by the works of Elling [9, 10], is also based
on self-similarity and symmetry breaking but follows a different route.

Self-similarity and symmetry breaking moreover play a central role in the work of
Jia, Sverdk, and Guillod [20, 19, 16] on the conjectural non-uniqueness of weak Leray-
Hopf solutions of the Navier-Stokes equations. One crucial difficulty in [19], compared to
Vishik’s approach, is that the self-similar solutions in [19] are far from explicit. Therefore,
the spectral condition therein seems difficult to verify analytically, although it has been
checked with non-rigorous numerics in [16]. The work [19] already contains a version of
the unstable manifold approach, see p. 3759-3760, and a truncation to finite energy.

At present, the above two programs, while very intriguing and highly suggestive, require
a significant numerical component not present in Vishik’s approach. On the other hand,
at present, Vishik’s approach includes a forcing term absent from the above two programs,
whose primary role is showcased by the fact that the initial data can be taken to be zero.

Much of the recent progress on non-uniqueness of the Euler equations has been driven
by Onsager’s conjecture, which was solved in [17]. With Theorem 1.0.1 in hand, we can
now summarize the situation for the Euler equations in dimension three as follows:

e € (1,2): (Local well-posedness and energy conservation) For each divergence-free ug €
C*(T?) and force f € L'(]0,T[;C*(T?)), there exists T" €]0,T[ and a unique local-in-
time solution u € L>°(]0, T"[; C%(T?)). The solution u depends continuously® in the above
class on its initial data and forcing term. Moreover, the solution u conserves energy.

e 1/3 < a < 1: (Non-uniqueness and energy conservation) There exist T > 0, a force
fe LYo, T[; L> N C*(R? x T)), and two distinct weak solutions uy,us € L=(]0, T[; L*N
C*(R? x T)) to the Euler equations with zero initial data and force f. For any T > 0,
weak solutions u € L>(]0,T[; L* N C*(R? x T)) with forcing in the above class conserve
energy [7].

e 0 < o < 1/3: (Non-uniqueness and anomalous dissipation) There exist T > 0 and
two distinct admissible weak solutions (see [6]) uy,us € L=(]0,T[; C*(T?)) to the Euler
equations with the same initial data and zero force and which moreover dissipate energy.

6The continuous dependence is more subtle for quasilinear equations than semilinear equations, and
uniform continuity is not guaranteed in the regularity class in which the solutions are found, see the
discussion in [30]. One can see this at the level of the equation for the difference of two solutions u(*) and
u®: One of the solutions becomes the “background” and, hence, loses a derivative. One way to recover

the continuous dependence stated above is to compare the above two solutions with initial data uél), u((JZ)

and forcing terms f(), ) to approximate solutions u(")¢, u(?-¢ with mollified initial data uél)’e, uéZ)’E
and mollified forcing terms f(1)-= f(2:¢ One then estimates ||u(®) — u@ || < [[u® — 2| + JuP)= —
u®# || 4 ||u®s —uP)||. The approximate solutions, which are more regular, are allowed to lose derivatives

in a controlled way.
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While we are not aware of the first two statements with force in the literature, the
proofs are easy adaptations of those with zero force. In order to obtain the non-uniqueness
statement in the region 1/3 < a < 1, one can extend the non-unique solutions on R?
to be constant in the x3 direction. The borderline cases may be sensitive to the function
spaces in question. For example, the three-dimensional Euler equations are ill-posed in C*,
k > 1 [3]. Furthermore, of the above statements, only the negative direction of Onsager’s
conjecture is open in n = 2.

We finally point out that an expanded version of these notes is contained in the master’s
thesis of the sixth author, cf. [18].



CHAPTER 2

General strategy: background field and self-similar coordinates

2.1. The initial velocity and the force

First of all, the initial velocity vy of Theorem 1.0.1 will have the following structure

-1 —a 1 A
e = {&(2 @) el x(z)lat ifa=a 21)
0 if a >«
where 0 < a < a < 1, x is a smooth cut-off function, compactly supported in R and
identically 1 on the interval [—1, 1], and § is a sufficiently large constant (whose choice will
depend on «). For simplicity we will assume that y takes values in [0, 1] and it is monotone
non-increasing on [0, 0o, even though none of these conditions play a significant role.
A direct computation gives div vy = 0. The corresponding wy is then given by

—a 2 -1,/ 11—« if @ =
(o) — curlon(e) — Bl + @ =@ (e lel ) ifa=a
0 if @ >«
and the relation vy = Kj * wy comes from standard Calderén-Zygmund theory (since

divvg = 0, curl vy = wp and vy is compactly supported). @ €]0, 1] is chosen depending on p

in Theorem 1.0.1, so that ap < 2: in the rest of the notes we assume that p, @, and « are

fixed. In particular it follows from the definition that wy € L' N LP and that vy € L' N L.
Next, the function |x|~® will be appropriately smoothed to a (radial) function

Q(x) = g(|z|) (2.3)

such that:
g € C*([0, R)) VR >0, (2.4)
g(r)y=1r"12 for r > 2, (2.5)
g(r) = g(0) + gT(O) 2 for r in a neighborhood of 0. (2.6)

This smoothing will be carefully chosen so to achieve some particular properties, whose
proof will take a good portion of the notes (we remark however that while a sufficient
degree of smoothness and the decay (2.5) play an important role, the condition (2.6) is

just technical and its role is to simplify some arguments). We next define the function
V(z) as

V(z) = ¢(Je))z, (2.7)
15
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where ( is
) == | ralo)ap. (2.9

REMARK 2.1.1. Observe that under our assumptions Q € L(R?) for every q > %, but
it does not belong to any L4(R?) with ¢ < % Since when p > 2 the condition ap < 2
implies @ < 1, we cannot appeal to Young’s Theorem as in Remark 1.0.5 to define K5 * Q).

Nonetheless, V can be understood as a natural definition of K * Q for radial distribu-
tions of vorticity which are in L. . Indeed observe first that divV = 0 and curl V = Q, and
notice also that V' would decay at infinity like |2~ if 2 were compactly supported. This
shows that V' would indeed coincide with Ky ) for compactly supported radial vorticities.
Since we can approximate Q with Qy := Q1p,, passing into the limit in the corresponding
formulas for K5 % Qy we would achieve V.

Note also that in the remaining computations what really matters are the identities
divV = 0 and curl V = Q and so regarding V as K, x Q only simplifies our terminology
and notation.

The force f will then be defined in such a way that @, the curl of the velocity
B, t) = BV (o) x(le) (2.9)

is a solution of (1.1). In particular, since (0 - V)& = 0, the force f is given by the explicit
formula

f(z,t) = Oyw(x,t). (2.10)
With this choice a simple computation, left to the reader, shows that @ solves (1.1) with
initial data wy. Note in passing that, although as pointed our in Remark 2.1.1 there is not
enough summability to make sense of the identity K, * Q) = V by using standard Lebesgue
integration, the relation K x @ = v is made obvious by diveo = 0, curlv = @, and the
boundedness of the supports of both @ and v.

The pair (@, ?) is one of the solutions claimed to exist in Theorem 1.0.1. The remain-
ing ones will be described as a one-parameter family (w.,v.) for a nonzero choice of the
parameter ¢, while (@, 0) will correspond to the choice ¢ = 0. We will however stick to the
notation (@, ¥) to avoid confusions with the initial data.

It remains to check that f belongs to the functional spaces claimed in Theorem 1.0.1.

LEMMA 2.1.2. @ is a smooth function on {t > 0} which satisfies, for all t > 0 and
x € R?,
kd

(avt) = 5729 () wlla + 7% () el (e, 2.11)

while the external force f and 0,0 = Ky* f belong, respectively, to the spaces L ([0, T], L'n
LP) and L'([0,T],L?) for every positive T. Likewise @ € L>*([0,T],L* N LP) and © €
L>([0,T], L?).

We end the section with a proof of the lemma, while we resume our explanation of the
overall approach to Theorem 1.0.1 in the next section.
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Proo¥r. The formula (2.11) is a simple computation. From it we also conclude that
@ = curl ¥ is a smooth function on {¢ > 0} and hence differentiable in all variables. Observe
next that |V (z)| < C|z|'~* and we can thus estimate |(z,t)] < Cta~!|z|'~®. Since its
spatial support is contained in spt (), we conclude that v is bounded and belongs to
L>([0,T],L?) for any T > 0.

Using that Q(x) = |2|7% = g(|z|) for |z| > 2, we write

~ - Ed L
@(z,t) =pt™'g (m X([2]) Lz <p/ay + Bto Y] X2 L0170y

]

+60°¢ (75 ) el G-

In particular, recalling that |[Q(z)] < Cla|=® and ((|z])|z| < Clz|'~® we easily see that

(D) < C'/ ta =t z|® d:B—I—C/ ta Yz da, (2.12)
{lelespt (0} {lelespt ()}

mmmmsc/ tﬁﬂmrmm+o/ (EDP|pa gy (2.13)
{lelespt (0} {lzlespt (x')}

This implies immediately that @ € L>([0,T], L' N L?) for any T > 0 , given that ap < 2
(and hence |z|~? is locally integrable).

We now differentiate in time in the open regions {|z| < 2tY/°} and {|z| > 2t}
separately to achieve!

Lo (JalY e (2]
ﬂ%w:_ﬁ(t%(ﬁz + =720y’ (S ) ) X)L ooy

a & o g
+8 (5 = 1) 1572l "X (|2l) Loppsey

~ (e (b)) + merevee (L) 1ol el (ol
=:fi(z,t) + folz, t)+f3(x,t). (2.14)

We wish to prove that f € L'([0,T], L' LP). On the other hand, since for any Ty > 0 both
f1+ f2 and f3 are smooth and have compact support on R? x [Ty, T, it suffices to show that
f € LY([0, Ty], L* N LP) for a sufficiently small Ty. Recalling that [g(|z|)| + |¢'(|z])]]|z] <
Clz|~®, we can then bound

|fi(z, )| < Ct_2+%|x|_al|w‘§2t1/a for all 0 < t < Ty and all z. (2.15)

ISince we will only estimate integral norms of f, its values on {|z| = 2¢t'/*} are of no importance.
However, given that f is in fact smooth over the whole domain {¢ > 0}, we can infer the validity of
the formula (2.14) for every point x € {|x| = 2t!/*} by approximating it with a sequence of points in
{|z| < 2t'/*} and passing to the limit in the corresponding expressions.
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Thus

To
Hﬁhmwmwéc/ 2272 dt < o0 (2.16)
0

To
IMMWMﬂW»SQ/tMW4ﬁ<%= (2.17)
0

where the condition 2 > ap entered precisely in the finiteness of the latter integral. Coming
to the second termred, we observe that it vanishes when @ = . When o < @, since y is
compactly supported in R, we get

To
a_ lio—a
Hf2||L1(JR2x[o,To]) < C'/ = 2(1 + ta( ))dt < 400
0

QR

To
||f2||L1([O,To];L1)(R2)) < / t —2(1 -+ t§(2—oz)>1/l’dt < 400,
0

The last term can be computed explicitly as

1 r _ _
¢(r)=— (C +/ p'=e dp> =ar 2 +br ® for all r > 2,
r 2
where a and b are two fixed constants. Likewise
¢'(r) = —2ar™% —abr ! for all r > 2.

Recall that x/(|z|) = 0 for |z| < 1. Therefore, for ¢t < Tj sufficiently small, the functions ¢
and ¢’ are computed on |x[t71/% > 2 in the formula for f3 (cf. (2.14)). Thus,

fala,t) = —Bt 2 ((1 - ;) attlol 45 (1-2) tiyxp—@) ()

red In particular f3 has compact support. Since o < 1 the function
2
~or* (1= 2) e e,
@

is bounded, and thus belongs to L*([0, To], L' NLP). As for the second summand, it vanishes
if @ = @&, while its L? norm at time ¢ can be bounded by Ct=2*% if @ > . The latter
function however belongs to L'([0, Tp]).

Observe next that, since for every positive ¢ the function f(-, ) is smooth and compactly
supported, Ky * f(-,t) is the unique divergence-free vector field which belongs to L' and
such that its curl gives f(-,¢). Hence, since f(-,t) = curl 9;o(-,t) and 9,0(-,t) is smooth
and compactly supported, we necessarily have Ky % f(-,t) = 0,0(-,t). It remains to show
that 9,0 € L*([0, T]; L?) for every positive T. To that end we compute red

x |z

oo, t) = A0 () lel) = 571 (it ) xtiad
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In order to compute the L? norm of d;0(-,t) we break the space into two regions as in the
computations above. In the region {|z| < 2t} we use that |¢| + |g| + |¢’| are bounded to
compute

/ 10,5, )| dae < Ct— / 22 dz < O/t
|$|§2t1/a ‘$|§t]‘/a

which is a bounded function on [0, 1]. On {|x| > t/} we observe that the function can be
explicitly computed as

2 Y\ & -
—/6’25_2x(|20|)xL <(1 — a) 152/0‘|x|_2 +b (1 - %) ta|:1c|_o‘) )

If we let R > 0 be such that the support of x is contained in By, we use polar coordinates
to estimate
R dp a
/ 10,0(z,t)]* dx < Ct4+4/a/ — + Cla —alt?*a".
|| >2t1/ 211/ P
We can therefore estimate the L? norm of 9,0 at time ¢ by
10,0(-,8)||12 < C + Clow — afta=2.

When o = @ we conclude that the L? norm of 9,0 is bounded, while for & > « the function
t +> ta~2 belongs to L'([0,T]). O

2.2. The infinitely many solutions
We next give a more precise statement leading to Theorem 1.0.1 as a corollary.

THEOREM 2.2.1. Let p €]2,00[ be given and let o and & be any positive number such
that « < & and ap < 2. For an appropriate choice of the smooth function €2 and of a
positive constant 8 as in the previous section, we can find, additionally:

(a) a suitable nonzero function n € (L' N H?)(R?; C) with Ky xn € L*(R?; C?),
(b) a real number by and a positive number ag > 0,

with the following property.
Consider wy, vg, 0, w = curl 0, and [ as defined in (2.1),(2.2), (2.9), and (2.10). Then
for every e € R there is a solution w. of (1.1) with initial data wy such that
(i) w. € L>=([0,T], L' N LP) for every T > 0;
(ii) ve = Ky x w. € L>([0,T], L?) for every T > 0;
(111) as t — 0,

|we (-, ) — @(-, t) — et ! Re(tibon(t’l/a-))HLQ(RQ) = o(t®F1/a-ly. (2.18)
() if by = 0, then n is real-valued.
Observe that, by a simple computation,

[£20 1 Re(t o (t1/2))| 2 = t20F1/271 || Re(t™n))| 2
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and thus it follows from (2.18) that

lim sup £ ||w. (- 1) — we(-,t)||2 > |e — &] max || Re(e®n)| .2 (2.19)
10 0€[0,27]

(note that in the last conclusion we need (iv) if by = 0). Since ||n||zz > 0, we conclude that

the solutions w, described in Theorem 2.2.1 must be all distinct.

For each fixed e, the solution w. will be achieved as a limit of a suitable sequence
of approximations w, j in the following way. After fixing a sequence of positive times tj
converging to 0, which for convenience are chosen to be t, := e, we solve the following
Cauchy problem for the Euler equations in vorticity formulation

atws,k -+ ((KQ * we’k> . V)w&k — f
| (2.20)
ooy t) = B, t) + etfo Re(tion(t, /%) .

Observe that, since t), is positive, the initial data w, (-, t;) belongs to L' N L™, while the
initial velocity defining vy, := Ky * w. x(+, tx) belongs to L?. Since K, * f € L*([0,T], L?)
for every T, we can apply the classical theorem of Yudovich (namely, Theorem 1.0.3 and
Remark 1.0.4) to conclude that

COROLLARY 2.2.2. For every k, ¢, and every T there exists a unique solution w. of
(2.20) with the property that w.y € L>([ty, T), LN L>®) and v.; € L>([tx, T], L*) for every
positive T'. Moreover, we have the following bounds for every t

t

Jwee ()l 21 Sllewe (- ) |2 +/ £ (s s)l[pr ds (2.21)
12
t

[[we e (5 Nl r Sllwe (- o) 2o +/ [f(,8)||Le ds (2.22)
tr
t

[V (5 D)l 22 <llvew (- )| 2 +/ [ Ky % f(-, )| 12 ds. (2.23)
ty

Next, since we can easily bound [|w x (-, &)l zt, [|wer (s tr)|lze, and |lvo k(- 2)|| L2 inde-
pendently of k, for each fixed € we conclude
sup sup (flwer(- 0)llzr + [[we (5 O)lle + [[ve k(58] £2) < o0 (2.24)
keN telty,T)

In turn we can use (2.24) to conclude that, for each fixed ¢, a subsequence of w, j converges
to a solution w, of (1.1) which satisfies the conclusions (i) and (ii) of Theorem 2.2.1.

PROPOSITION 2.2.3. Assume p, o, &, wy, Vo, W, U, f,ag, by, and 1 are as in Theorem 2.2.1
and let wy, be as in Corollary 2.2.2. Then, for every fized e, there is a subsequence, not
relabeled, with the property that w. y converges (uniformly in C([0,T], LY) for every positive
T and every 1 < q < p, where L% denotes the space L1 endowed with the weak topology) to
a solution w. of (1.1) on [0, c0[ with initial data wy and satisfying the bounds (i) and (ii)
of Theorem 2.2.1.
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The proof uses classical convergence theorems and we give it in the appendix for the
reader’s convenience. The real difficulty in the proof of Theorem 2.2.1 is to ensure that the
bound (iii) holds. This is reduced to the derivation of suitable estimates on w; x, which we
detail in the following statement.

THEOREM 2.2.4. Assume p,a, @ are as in Theorem 2.2.1 and fix € > 0. For an ap-
propriate choice of Q0 and (8 there is a triple n, ag, and by as in Theorem 2.2.1 and three
positive constants Ty, 0, and C with the property that

|we (-, 1) — @(-, 1) — et® I Re (tPon(t~1/2)) || 2 < Ctaott/a—1td Vt € [tr, To] . (2.25)

It is then obvious that the final conclusion (iii) of Theorem 2.2.1 is a consequence of the
more precise estimate (2.25) on the approximations w, ;. The rest of these lecture notes
are thus devoted to the proof of Theorem 2.2.4 and we will start in the next section by
breaking it into two main parts.

2.3. Logarithmic time scale and main Ansatz

First of all, we will change variables and unknowns of the Euler equations (in vorticity
formulation) in a way which will be convenient for many computations. Given a solution w
of (1.1) on R?x [Ty, T1] with 0 < Ty < Ty, we introduce a new function 2 on R?x [In Ty, In T}

with the following transformation. We set 7 = Int, £ = 2t~'/* and
Q& 7) == eTw(e ¢, eT), (2.26)
which in turn results in
w(z,t) =t Q" V%, Int). (2.27)

Observe that, if v(-,t) = Ky * w(-,t) and V(-,7) = Ky % Q(-,7), we can derive similar
transformation rules for the velocities as

V(1) =TI Yy(em/og T, (2.28)
v(z,t) =ty (= Veog Int) . (2.29)
Likewise, we have an analogous transformation rule for the force f, which results in
F(&, 1) = e f(eT¢,eT), (2.30)
f(z,t) =t 2F(t Y2, Int) . (2.31)

In order to improve the readability of our arguments, throughout the rest of the notes we
will use the overall convention that, given some object related to the Euler equations in
the “original system of coordinates”, the corresponding object after applying the transfor-
mations above will be denoted with the same letter in capital case.

REMARK 2.3.1. Note that the naming of V and (2 is somewhat of an exception to this
convention, since (€2, V) is a solution of (1.1) in Eulerian variables. However, if you “force
them to be functions of £,” which is how they will be used in the non-linear part, then
they solve the Euler equations in self-similar variables with forcing (see (2.33)).
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Straightforward computations allow then to pass from (1.1) to an equation for the new
unknown €2 in the new coordinates. More precisely, we have the following

LEMMA 2.3.2. Let p > 2 and oo > Ty > Ty > 0. Then w € L(|Ty, Ty[; L' N LP) and
v(-,t) = Ky xw(-,t) satisfy
Ow~+ (v-Vw=f, (2.32)
if and only if Q and V(-,t) = Ky x Q(-, t) satisfy

879—(1+§-V)Q+(V-V)Q:F. (2.33)

We next observe that, due to the structural assumptions on w and v, the corresponding
fields 2 and V' can be expressed in the following way:

V(7)) = BV(Ex(eel) (2.34)
Q(&,7) = BA (€N + BCENK (7 [eNee] (2.35)
Observe that, for every fixed compact set K there is a sufficiently negative —T'(K) with
the property that
e x(e7/?-]) =1 and x/(e”/*:) = 0 on K whenever 7 < —T(K).
Since in order to prove Theorem 1.0.1 we are in fact interested in very small times ¢, which

in turn correspond to very negative 7, it is natural to consider Q and V as perturbations
of 52 and V. We will therefore introduce the notation

Q=p50+Q,, (2.36)
V=BV+V,:=pV+EKy%Q,. (2.37)

We are thus lead to the following Ansatz for Q. ;(&,7) = 7w, x(e7/2¢, €7):
Qe(€,7) = BOUE) + (€, 7) + €™ Re (€7n(€)) + perk (&, 7) - (2.38)

The careful reader will notice that indeed the function €2, ; depends upon the parameter
€ as well, but since such dependence will not really play a significant role in our discussion,
in order to keep our notation simple, we will always omit it.

We are next ready to complete our Ansatz by prescribing one fundamental property of
the function 1. We first introduce the integro-differential operator

Lo(Q) = (1 + 2 : v) Q= BV -V)Q—B((K2 %) - V). (2.39)

We will then prescribe that n is an eigenfunction of Ly with eigenvalue zy = ag + iby,
namely,

L (n) = zom . (2.40)
Observe in particular that, since Ly is a real operator (i.e. Lg(n) is real-valued when 7
is real-valued, cf. Section 3.1), the complex conjugate 77 is an eigenfunction of Ly with
eigenvalue Zy, so that, in particular, the function

Qun(€,7) 1= ™ Re (7€) = = (e*7(€) + e™T7(€)) (2.41)

2
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satisfies the linear evolution equation
O0rin — Lgs (i) = 0. (2.42)

The relevance of our choice will become clear from the discussion of Section 2.5. The point
is that (2.42) is close to the linearization of Euler (in the new system of coordinates) around
Q). The“true linearization” would be given by (2.42) if we were to substitute Q and V in
(2.39) with Q and V. Since however the pair (€, V) is well approximated by (£, V) for
very negative times, we will show that (2.42) drives indeed the evolution of €. — Q up to
an error term (i.e. Qper,k) which is smaller than ;.

2.4. Linear theory

We will look for the eigenfunction 7 in a particular subspace of L?. More precisely for
every m € N\ {0} we denote by L? the set of those elements ¥ € L*(R? C) which are
m-fold symmetric, i.e., denoting by Ry : R? — R? the counterclockwise rotation of angle 6
around the origin, they satisfy the condition

’19:’(90R27T/m.

In particular, L? is a closed subspace of LQ(RQ,C). Note however that the term “m-
fold symmetric” is somewhat misleading when m = 1: in that case the transformation
Ron/m = Rar is the identity and in particular LT = L?*(R?, C). Indeed we will look for 7 in
L?, for a sufficiently large m > 2.

An important technical detail is that, while the operator L*N.% 3 w — Ky xw € .
cannot be extended continuously to the whole L? (cf. Remark B.4.1), for m > 2 it can be
extended to a continuous operator from L? into .#”: this is the content of the following
lemma.

LEMMA 2.4.1. For every m > 2 there is a unique continuous operator T : L% — &'
with the following properties:
(a) If 9 € ., then T(¥) = Ky x 9 (in the sense of distributions);
(b) There is C > 0 such that for every ¥ € L?,, there is v = v(9) € W,2> with
(b]) R_1||U||L2(BR) + HDU“LQ(BR) < CHﬁ“L?(R?) fOT’ all R > O,
(b2) dive =0 and (T(9),¢) = [v - for every test function ¢ € 7.

From now on the operator T' will still be denoted by Ks% and the function v will
be denoted by K, % w. Observe also that, if Q is an L2_ function such that HQHLQ(BR)
grows polynomially in R, the integration of a Schwartz function times v() is a well defined
tempered distribution. In the rest of the notes, any time that we write a product QKo#1 for
an element ¥ € L2, and an L2, function € we will always implicitly assume that [|€2]| 12(Bp)
grows at most polynomlally in R and that the product is understoood as a well-defined
element of .%’. The relevance of this discussion is that, for m > 2, we can now consider
the operator L, as a closed, densely defined unbounded operator on L?2,. We let

Ls(Q)=(1-2)Q—div (-2 +8V) Q) = B(K2 Q- V)Q (2.43)
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and its domain is
Dy(Ly) ={Q € L2, : Ly(Q) € L2}. (2.44)
When 2 € .7 it can be readily checked that Ly as defined in (2.43) coincides with (2.39).
The definition makes obvious that Ly is a closed and densely defined unbounded op-
erator over L. We will later show that Q + (K5 * Q- V)Q is in fact a compact operator
from L? into L?, and therefore we have

Dp(Lss) == {Q € L}, : div (BVQ — £Q) € L2} . (2.45)

From now on, having fixed m > 2 and regarding L as an unbounded, closed, and densely
defined operator in the sense given above, the spectrum spec,, (Lg) on L2 is defined as
the (closed) set which is the complement of the resolvent of Ly, the latter being the (open)
set of zp € C such that Ly — 2 has a bounded inverse (Lg — 2o) "' : L2, — L2,.2.

The choice of n will then be defined by the following theorem which summarizes a quite
delicate spectral analysis.

THEOREM 2.4.2. For an appropriate choice of Q0 there is an integer m > 2 with the
following property. For every positive a > 0, if 5 is chosen appropriately large, then there
ism € L2\ {0} and zy = ag + iby such that:

(i) ag > a and Lg(n) = zon;
(i1) For any z € spec,, (Lss) we have Re z < ayp;
(111) If by = 0, then n is real valued;
(iv) There is k > 1 integer and e : RY — C such that n(z) = e(r)e®*™ if by # 0 and
n(z) = Re (e(r)e?*™?) if by = 0.

In fact we will prove some more properties of 7, namely, suitable regularity and decay
at infinity, but these are effects of the eigenvalue equation and will be addressed later.

The proof of Theorem 2.4.2 will be split in two chapters. In the first one we regard
L as perturbation of a simpler operator Lg, which is obtained from Lg by ignoring the
(1+ g - V) part: the intuition behind neglecting this term is that the remaining part of
the operator Ly is multiplied by the constant S, which will be chosen appropriately large.
The second chapter will be dedicated to proving a theorem analogous to Theorem 2.4.2 for
the operator Lg. The analysis will take heavily advantage of an appropriate splitting of
L? as a direct sum of invariant subspaces of Lg. The latter are obtained by expanding in
Fourier series the trace of any element of L?, on the unit circle. In each of these invariant
subspaces the spectrum of Ly can be related to the spectrum of a suitable second order
differential operator in a single real variable.

2.5. Nonlinear theory

The linear theory will then be used to show Theorem 2.2.4. In fact, given the decom-
position introduced in (2.38), we can now formulate a yet more precise statement from
which we conclude Theorem 2.2.4 as a corollary.

2The textbook definition would require the inverse to take values in D,,(Lgss). Note however that this
is a consequence of our very definition of D,,(Lss).



2.5. NONLINEAR THEORY 25

THEOREM 2.5.1. Let p, o, and & be as in Theorem 2.2.1 and assume a 1is sufficiently
large. Let Q, 0, ag, and by be as in Theorem 2.4.2 and for every ¢ € R, k € N consider
the solutions w.y of (2.20) and Q. (&, 7) = eTwayk(eT/aﬁ, e"). If we define Qe through
(2.38), then there are 1o = 19(g) and &y > 0, independent of k, such that

HQpenk('» 7_)HLQ < g7 (@0 +00) VT <T19. (2.46)

(2.25) is a simple consequence of (2.46) after translating it back to the original coordi-
nates. In order to give a feeling for why (2.46) holds we will detail the equation that Qpe k

satisfies. First of all subtracting the equation satisfied by € from the one satisfied by Qe ke
we achieve

67'§21i11 + a7'S2per,k - (]- + g : v) Qlin - (1 + g : v) Qper,k
(V- V)i + Vi - VO + (V- V)Qperk + Voers - VIQ+ Viim - V) Qer i
+(Vper,k : V)Qljn + (‘/lin : V)Qlin + (‘/per,k : v)Qper,k = 07

where we have used the convention V = Ky * Q, Voer g = Ko * Qper i, and Vi, = Ko * iy
Next recall that Q = 8Q + €, and recall also the definition of Lg in (2.39) and the fact
that 0,y — Lgs(in) = 0. In particular formally we reach

(aﬂ' — Lss)Qper,k + ((‘/lin + ‘/7") : V)Qper,k: + (vper,k : V)(th + QT) + (Vper,k : V)gzper,k
= - (Viin : V)Qlin - (V;“ : V)Qlin - (Viin : V)Qr ) (247)

which must be supplemented with the initial condition
Qper,k('u _k) =0.

In fact, in order to justify (2.47) we need to show that Qpe (-, 7) € L2, for every 7, which
is the content of the following elementary lemma.

LEMMA 2.5.2. The function Qperi,(+, ) belongs to L2, for every T.

ProOF. It suffices to prove that w. x(-, ) is m-fold symmetric, since the transformation
rule then implies that Q. x(-,7) is m-fold symmetric and Qpe; x(-, 7) is obtained from the
latter by subtracting e Re(e®7n) + Q(-, 7), which is also m-fold symmetric. In order to
show that w, j is m-fold symmetric just consider that we i (Rox/m(-), T) solves (2.20) because
both the forcing term and the initial data are invariant under a rotation of 2= (and the Euler
equations are rotationally invariant). Then the uniqueness part of Yudovich’s statement
implies Wi (+, 1) = we i (Ror/m(-), 1) O

We proceed with our discussion and observe that Vi;, + V, and Qy, + €2, are both
“small” in appropriate sense for sufficiently negative times, while, because of the initial
condition being 0 at —k, for some time after —k we expect that the quadratic nonlinearity
(Voerk © V)Qper e will not contribute much to the growth of Quex(+, 7). Schematically, we
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can break (2.47) as
(a‘r - Lss)Qper,k + ((Viin + V;) : V)Qper,k + (Vper,k : V)(th + Qr) + (Vper,k : v)gzper,k

J/ (.

small linear terms quadra?‘cric term
= _<‘/lin : V)Qlin - (‘/;" . V)Qlin - (‘/lin : V)Qr ) (248)

. Vo
forcing term .7

In particular we can hope that the growth of Qe 1 (-, 7) is comparable to that of the solution
of the following “forced” linear problem

(0r — L) = 7. (2.49)

Observe that we know that Qu, (-, 7) and Vi, (-, 7) decay like e%7. We can then expect to
gain a slightly faster exponential decay for .# (-, 7) because of the smallness of V. and (2,.
On the other hand from Theorem 2.4.2 we expect that the semigroup generated by L
enjoys growth estimates of type e®7 on L2, (this will be rigorously justified using classical
results in the theory of strongly continuous semigroups). We then wish to show, using
the Duhamel’s formula for the semigroup e, that the growth of Qe is bounded by
€07 (e%7 — e7%k) for some positive §y for some time 7 after the initial —k: the crucial
point will be to show that the latter bound is valid for 7 up until a “universal” time 7y,
independent of k.

Even though intuitively sound, this approach will require several delicate arguments,
explained in the final chapter of the notes. In particular:

e we will need to show that the quadratic term (Vper s - V)Qperk is small up to some
time 7y independent of k, in spite of the fact that there is a “loss of derivative”
in it (and thus we cannot directly close an implicit Gronwall argument using the
Duhamel formula and the semigroup estimate for Lg);

e The terms €2, and V, are not really negligible in absolute terms, but rather, for
very negative times, they are supported in a region in space which goes towards
spatial oco.

The first issue will be solved by closing the estimates in a space of more regular functions,
which contains L? and embeds in L* (in fact L? N W'*): the bound on the growth of the
L? norm will be achieved through the semigroup estimate for Ly via Duhamel, while the
bound of the first derivative will be achieved through an energy estimate, which will profit
from the L? one. The second point by restricting further the functional space in which we
will close to estimates for €2,.,,. We will require an appropriate decay of the derivative
of the solutions, more precisely we will require that the latter belong to L?(|z|?dx). Of
course in order to use this strategy we will need to show that the initial perturbation n
belongs to the correct space of functions.



CHAPTER 3

Linear theory: Part I

In this chapter, we will reduce Theorem 2.4.2 to an analogous spectral result for another
differential operator, and we will also show an important corollary of Theorem 2.4.2 con-
cerning the semigroup that it generates. We start by giving the two relevant statements,
but we will need first to introduce some notation and terminology.

First of all, in the rest of the chapter we will always assume that the positive integer m
is at least 2. We then introduce a new (closed and densely defined) operator on L2, which
we will denote by Lg. The operator is defined by

La(Q) = —div (VQ) — (Ko % Q- V)Q2 (3.1)

and (recalling that the operator Q — (K5 * - V)Q is bounded and compact, as will be
shown below) its domain in L2 is given by

Dy (Ly) = {Q € L2, : div(VQ) € L?}. (3.2)
The key underlying idea behind the introduction of L is that we can write Ly as
Lss = (1+§V) +BLst

and since  will be chosen very large, we will basically study the spectrum of Ly as a
perturbation of the spectrum of fLg. In particular Theorem 2.4.2 will be derived from a
more precise spectral analysis of Lg. Before coming to it, we split the space L2, into an
appropriate infinite sum of closed orthogonal subspaces.

First of all, if we fix an element ¥ € L?(R?) and we introduce the polar coordinates
(0,7) through x = r(cosf,sinf), we can then use the Fourier expansion to write

I(x) = ag(r)e™’ (3.3)

where
1

" or

ag(r) : /0 ’ J(r cos(), rsin(h))e " 6.

By Plancherel’s formula,

HﬁH%Q(RQ) = 27TZ ||ak||%2(R+,rdr) :
keZ

In particular it will be convenient to introduce the subspaces
Up = {f(r)e* . fe L*RT,rdr)}. (3.4)
27
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Each Uy is a closed subspace of L?, distinct U},’s are orthogonal to each other and moreover
L = @ U - (3.5)

Each U, is an invariant space of Ly, and it can be easily checked that U, C D,, (L)
and that indeed the restriction of Ly to U, is a bounded operator. Following the same
convention as for Ly we will denote by spec,, (Lg) the spectrum of Ly on L?,.

THEOREM 3.0.1. For every m > 2 and every Q we have

(a) each z; € spec,, (Ls) N{z : Rez # 0} belongs to the discrete spectrum and if
Im (z;) = 0, then there is a nontrivial real eigenfunction relative to z;.

Moreover, for an appropriate choice of Q) there is an integer m > 2 such that:
(b) spec,, (L) N{z: Rez > 0} is nonempty.

REMARK 3.0.2. The theorem stated above contains the minimal amount of information
that we need to complete the proof of Theorem 2.2.1. We can however infer some additional
conclusions with more work, more precisely we can show that

(c) m can be chosen so that, in addition to (b), spec,, (Ls)N{z : Re z > 0} is finite and
the image of the Riesz projector' P, of Lg relative to each z € spec,, (Ls) N {2 :
Re z > 0} is contained in U, UU_,,.

Since this property is not needed to prove Theorem 2.2.1 we defer its proof to Appendix A.
red In [34] Vishik claims the following greatly improved statement.

THEOREM 3.0.3. For a suitable Q:

(¢’) m can be chosen so that, in addition to (b) and (c), spec,, (Ls)N{z : Rez > 0}NU,,
consists of a single element, with algebraic multiplicity 1 in U,,.

Since the spectrum of Ly is invariant under complex conjugation (b), (c¢), and (c’)
imply that spec,, (Lst) N {Rez > 0} consists either of a single real eigenvalue or of two
complex conjugate eigenvalues. In the first case, the algebraic and geometric multiplicity
of the eigenvalue is 2 and the space of eigenfunctions has a basis consisting of an element of
U,, and its complex conjugate in U_,,. In the second case the two eigenvalues z and z have
algebraic multiplicity 1 and their eigenspaces are generated, respectively, by an element of
U, and its complex conjugate in U_,,. The argument given in [34] for (¢’) is however not
complete. Vishik provided later ([35]) a way to close the gap. In Appendix A we will give
a proof of Theorem 3.0.3 along his lines.

IRecall that in the case of an isolated point z in the spectrum of a closed, densely defined operator A,

the Riesz projector is defined as
1
— —A)td
omi ) (WA dw
for any simple closed rectifiable contour v bounding a closed disk D with D Nspec(A) = {z}. For an
element of the discrete spectrum the Riesz projector has finite rank (the algebraic multiplicity of the
eigenvalue z).
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In this chapter we also derive an important consequence of Theorem 2.4.2 for the
semigroup generated by L.

THEOREM 3.0.4. For every m > 2, L, is the generator of a strongly continuous semi-
group on L2 which will be denoted by e™, and the growth bound w(Ls) of e+ equals

ag = sup{Re zo : zo € spec,,(Ls)} < 00

ifag > 1 — é In other words, for every 6 > 0, there is a constant M (§) with the property
that
[e75Q] ., < M(6)e“™7(|Q| 2 V7 >0,VQ € L?. (3.6)

3.1. Preliminaries

In this section we start with some preliminaries which will take advantage of several
structural properties of the operators Ly and L. First of all we decompose Ly as

Ly=5+272, (3.7)
where
S1(Q) = —div (VQ)
H(Q) = —(Ky;%Q-V)Q.

Hence we introduce the operator

— Q
S2(02) = div (<§ - BV) Q) -—, (3.10)
a a
so that we can decompose Ly as
1
Ly = (1——) + Sy + B (3.11)
o
The domains of the various operators A involved are always understood as D,,(A) := {Q:
A(Q) € L*}.
Finally, we introduce the real Hilbert spaces L2 (R) and U;(R) by setting
L2 (R):={ReQ: Qe L2} (3.12)
and, for j > 0 natural,
U;(R) :={ReQ: Qe U;}. (3.13)
Observe that while clearly L2 (R) is a real subspace of L2, U;(R) is a real subspace of

Uy U_;.
As it is customary, L2 (R) and its real vector subspaces are endowed with the inner
product

<m3R:/Qa (3.14)

while L2, and its complex vector subspaces are endowed with the Hermitation product

(Q,Z)c = /(ReQReE—i—ImQImE) —i—i/(ImQReE—ReQImE). (3.15)
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We will omit the subscripts from (-,-) when the underlying field is clear from the con-
text. The following proposition details the important structural properties of the various
operators. A closed unbounded operator A on L? will be called real if its restriction Ag
to L2 (R) is a closed, densely defined operator with domain D,,(A) N L2 (R) such that
A(Q) € L2 (R) for all Q € D,,(A) N L2, (R).

ProPOSITION 3.1.1. (i) The operators &, S1 and Sy are all real operators.

(ii) K is bounded and compact. More precisely there is a sequence of finite dimen-
sional vector spaces V,, C C°(R? C) N L2, with the property that, if P, denotes
the orthogonal projection onto V,,, then

lim ||# — Py o]0 =0, (3.16)
n—oo
where || - ||o denotes the operator norm.

(iii) Sy and Sy are skew-adjoint.

(1v) Dy (Lg) = Dy (S1) and Dy (Lss) = Dy (S2).

(v) Uk, is an invariant subspace of Sy, So, H# | L, Lss.

(vi) The restrictions of Sy and Lg to each Uy, are bounded operators.

ProoOF. The verification of (i), (iii), (iv), (v), and (vi) are all simple and left therefore to
the reader. We thus come to (ii) and prove the compactness of the operator 2. Recalling
Lemma 2.4.1, for every Q) € L? we can write the tempered distribution .7 (Q) as

H(Q)=VQ-V (3.17)

where V = V(Q) is a W, function with the properties that

loc

RilHVHLQ(BR) + HDV”LQ(BR) < CHQHL2 VR >0. (318)
Since |[VQ(&)| < Cl¢]78 for |¢] > 1, whenever R > 1 we can estimate

—2-2a —2(14+a)j || 1/112
|2 (€2 ||L2 B) Z 12(92)]|72 2By \By ) = OR 22 ( )jHVHLQ(BQjHR)
=0

< OR S 9 AR R ), < R0
j=0
This shows at the same time that

e % is a bounded operator;
e If we introduce the operators

then || £y — A |0 — 0.

Since the uniform limit of compact operators is a compact operator, it suffices to show that
each #y is a compact operator. This is however an obvious consequence of (3.18) and the
compact embedding of W?(By) into L*(By).

As for the remainder of the statement (ii), by the classical characterization of compact
operators on a Hilbert space, for every € > 0 there is a finite-rank linear map Ly such
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that ||7" — Lyl|lo < . If we denote by Wy the image of Ly and by Qx the orthogonal
projection onto it, given that )y o Ly = Ly we can estimate

e
||QNO<%/—<%/||0§||QNO%/—QNOLN||O+||LN—=/"5/||O§2||LN—«%/||0§5-

Fix next an orthonormal base {wy,...,wy} of Wy and, using the density of C2°(R?),
approximate each element w; in the base with v; € C°(R? C). This can be done for
instance convolving w; with a smooth radial kernel and multiplying by a suitable cut-off
function. If the v;’s are taken sufficiently close to w;, the orthogonal projection Py onto

Vn = span (vy, ..., vy) satisfies |Qny — Py|lo < 3o and thus

| = Py o Xlo < || = Qno Ao+ [Py —Qnlloll# o <e. O

3.2. Proof of Theorem 3.0.4 and proof of Theorem 3.0.1(a)

The above structural facts allow us to gain some important consequences as simple
corollaries of classical results in spectral theory, which we gather in the next statement.
Observe in particular that the statement (a) of Theorem 3.0.1 follows from it.

In what follows we take the definition of essential spectrum of an operator as given in
[11]. We caution the reader that other authors use different definitions; at any rate the
main conclusion about the essential spectra of the operators Ly and Ly in Corollary 3.2.1
below depends only upon the property that the essential and discrete spectra are disjoint
(which is common to all the different definitions used in the literature).

COROLLARY 3.2.1. The essential spectrum of Ly and the essential spectrum of Lgs —
(1 — é) are contained in the imaginary axis, while the remaining part of the spectrum
is contained in the discrete spectrum. In particular, every z € spec,,(Lg) (resp. z €
spec,, (Lss)) with nonzero real part (resp. real part different from 1 — 1) has the following
properties.
(i) z is isolated in spec,,(Lg) (resp. spec,,(Lss));
(ii) There is at least one nontrivial 0 such that Ly () = 2Q (resp. L () = 2Q) and
if Im (z) = 0, then Q can be chosen to be real-valued;
(11i) The Riesz projection P, has finite rank;
(iv) Im (P;) = @z oy (Im (P2)NUkm) and in particular the intersection Im (P, )NUky,
1s trivial for all but a finite number of k’s and it is nontrivial for at least one k.

Moreover, Theorem 3.0.4 holds.

PROOF. The points (i)-(iii) are consequence of classical theory, but we present briefly
their proofs referring to [21]. Observe that addition of a constant multiple ¢ of the identity
only shifts the spectrum (and its properties) by the constant c¢. The statements for Ly are
thus reduced to similar statements for So+3.#". Next since the arguments for Ly = S1+.%"
only use the skew-adjointness of S; and the compactness of JZ, they apply verbatim to
Sy 4+ 8. We thus only argue for L. First of all observe that, since S; is skew-adjoint,
its spectrum is contained in the imaginary axis. In particular, for every z with Rez # 0
the operator S; — z is invertible and thus Fredholm with Fredholm index 0. Hence by [21,
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Theorem 5.26, Chapter IV], Ly — 2 = S; — 2z + % is as well Fredholm and has index 0.
By [21, Theorem 5.31, Chapter IV] there is a discrete set ¥ C {z : Rez # 0} with the
property that the dimension of the kernel (which equals that of the cokernel) of Ly — z is
constant on the open sets {Rez > 0} \ ¥ and {Rez < 0} \ X. Since, for every z such that
|Re z| > || ||o, we know that Lg — z has a bounded inverse from the Neumann series,
the kernel (and cokernel) of Ly, — z equals 0 on {Rez # 0} \ ¥. From [21, Theorem 5.28,
Chapter IV] it then follows that ¥ is a subset of the discrete spectrum of Lg. Obviously
the essential spectrum must be contained in the imaginary axis.

In order to show (iv), denote by P, the orthogonal projection onto Uy, and observe
that, since Ly o P, = P, o Ly,

1 1 1
P.oPy=-— oPydw=s— [ Pyo dw= PyoP,. (3.20)
271 ), w — Lg 2mi W — Lgt
Writing
P.=) P.oP, (3.21)
k

and observing that the commutation (3.20) gives the orthogonality of the images of the
P, o P, since Im (P,) is finite dimensional, we conclude that the sum is finite, i.e. that
P, o B, = 0 for all but finitely many k’s. Moreover, since P? = P, and P, equals the
identity on Im (P,), we see immediately that Uy, N Im (P,) = Im (P, o Py).

We now come to the proof of Theorem 3.0.4. We have already shown that, if Re A is
large enough, then A belongs to the resolvent of Ly, which shows that ag < co. Next,
observe that Lg generates a strongly continuous group if and only if Sy + . does. On
the other hand, using the skew-adjointness of S;, we conclude that, if Rez > f|||o,

then z is in the resolvent of Sy + % and

o < ! )
~ Rez—B||X o

|(Se + BH — 2)

Therefore we can apply [11, Corollary 3.6, Chapter 11| to conclude that Sy + S.% generates
a strongly continuous semigroup. Since the same argument applies to —Sy; — 5.7, we
actually conclude that indeed the operator generates a strongly continuous group.

Next we invoke [11, Corollary 2.11, Chapter IV] that characterizes the growth bound
wo(Lss) of the semigroup e'*= as

wO(LSS> - ma‘X{weSS(LSS)7 CL()} )

where wegs is the essential growth bound of [11, Definition 2.9, Chapter IV]. By [11,
Proposition 2.12, Chapter IV], wess(Lss) equals wess(1 — é +5,) and, since €72 is a unitary

operator, the growth bound of e(!=1/2+%2)7 equals 1 — é, from which we conclude that

Wess (1 — é +5)<1- é In particular we infer that if ag > 1 — é, then wo(Lg) = ag. O
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3.3. Proof of Theorem 2.4.2: preliminary lemmas

In this and the next section we will derive Theorem 2.4.2 from Theorem 3.0.1. It is
convenient to introduce the following operator:

Lg = % (Ls—(1-1)) = %52 + X (3.22)
In particular
1 Q

Clearly the spectrum of L can be easily computed from the spectrum of Lg. The upshot
of this section and the next section is that, as f — oo, the spectrum of Lz converges to
that of Ly in a rather strong sense.

In this section we state two preliminary lemmas. We will use extensively the notation
Py for the orthogonal projection onto some closed subspace V of L?,.

LEMMA 3.3.1. Let H = L2, Uppn, U_tm, or any closed invariant subspace common to
L and all the Lg. For every compact set K C C\ (iR Uspec,,(Ls o Py)), there is fy(K)
such that K C C\ (RUspec,,(Lgo Pg)) for > Bo(K). Moreover,

sup sup|[(Lgo Py —2) o < o0 (3.24)
B=Po(K) z€K

and (Lg o Py — 2)™" converges strongly to (Lg o Py — z)™' for every z € K, namely,

ﬁlim |(Lgo Py — 2) ' (w) — (Lgo Py — 2) " (w)]| =0 Yw € L2, (3.25)
—00

LEMMA 3.3.2. For every e > 0 there is a R = R(e) such that
spec,,(Lg)N{z:|z| > R,|Rez| >} =0 V5 >1. (3.26)

Proor oF LEMMA 3.3.1. The proof is analogous for all H and we will thus show it
for H = L? . Fix first z such that Rez # 0 and recalling that z — 3715, is invertible, we
write

z—Lg=(2—B8"S)(1—(2—B71Sy) ' oX). (3.27)
Step 1 The operators (8715, — z)~! enjoy the bound
I(z = 571S2) Mo < [Rez|™ (3.28)

because 3715, are skew-adjoint. We claim that (z — 871S,)~! converges strongly to (z —
S1)~! for B — oo. For a family of operators with a uniform bound on the operator norm,
it suffices to show strong convergence of (z — 371Sy)'w for a (strongly) dense subset.

Without loss of generality we can assume Rez > 0. Recalling that 3715, generates a
strongly continuous unitary semigroup, we can use the formula

(z — B718) H(w) = /000 e’(zfﬁ_ISQ)T(w) dr. (3.29)
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Next observe that ||e® '%27||p = 1. Moreover if w € ., €/ 7w is the solution of a
transport equation with a locally bounded and smooth coefficient and initial data w. We
can thus pass into the limit in 8 — oo and conclude that e~ 527w converges strongly in L?
to e*17w. We can thus use the dominated convergence theorem in (3.29) to conclude that
(z — B7185) 7 (w) converges to (2 — S;) 7' (w) strongly in L2. Since . is strongly dense,
this concludes our proof.

Step 2 We next show that (z — 715;)7! o & converges in the operator norm to
(z — S1)7' o #. Indeed using Proposition 3.1.1 we can find a sequence of finite rank
projections Py such that Py o JZ converges to # in operator norm. From Step 1 it
suffices to show that (z — 37155) ™1 o Py o % converges to (z —S;) "' o Py o in operator
norm for each N. But clearly (z — 871S5)7! o Py is a finite rank operator and for finite
rank operators the norm convergence is equivalent to strong convergence. The latter has
been proved in Step 1.

Step 3 Fix z which is outside the spectrum of L. Because of Step 2 we conclude that
L1=(z=B7"8) o) = (1— (2= 51) " o X)
in the operator norm. Observe that 1 — (2 — S;)~! o J# is a compact perturbation of the
identity. As such it is a Fredholm operator with index 0 and thus invertible if and only if
its kernel is trivial. Its kernel is given by w which satisfy

2w — Sy (w) — A (w) =0,

i.e. it is the kernel of z — (S] + #) = z — Lg, which we have assumed to be trivial since
z is in the spectrum of Ly. Thus (1 — (z — S1)™! o ¥ is invertible and hence, because of
the operator convergence, so is (1 — (2 — 3715,) " o ¢") for any sufficiently large 3. Hence,
by (3.27) so is z — Lg.

Step 4 The inverse (z — Lg)™! is given explicitly by the formula
(= L)t = (5= 5718,) (1 — (5 — 7180) Lo ). (3.30)

Since 1 — (2 — S3)~! o # converges to 1 — (z — S;)~! o # in the operator norm, their
inverses converge as well in the operator norm. Since the composition of strongly convergent
operators with norm convergent operators is strongly convergent, we conclude that (z —
Lg)~! converges strongly to the operator

(z—S) "1 —(2—8) o) =(2—Lg) .

Step 5 Choose now a compact set K C C\ (iR Uspec,,(Lg)). Recall first that
K>zr (z—8)™

is continuous in the operator norm. Thus K 3 z +— (1 — (2 — S;)"! o ¥') is continuous
in the operator norm. red We claim that K x [0,1] 2 (z,0) = (1 — (z — §S2) ' o #) is
also continuous in the operator norm and in order to show this we will prove the uniform
continuity in z once we fix J, with an estimate which is independent of §. We first write

I(1 = (2 = 082) " o K) — (1 = (' = 082) " o K)lo < (2 = 082)™" — (¢ = 6S2) " [lo[IKllo -
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Hence we compute
(2 —=08) ' = (2 —689) ' = (2 —69) o ((2/ —65,) — (2 —853)) o (2 —5,)7"

and use (3.28) to estimate
[z = 7]

I(z = 682)™" = (2" = 882) Mo < |2 = Z/|[I(2 = 8S2) " loll(z — S2) "o < Res[[Re |

Since the space of invertible operators is open in the norm topology, this implies the
existence of a dy > 0 such that K x [0,8] 3 (2,8) — (1 — (2 — 8S2) P o )7t is well
defined and continuous. Thus, for 3 > By = d; ' we conclude that 1 — (z — 371S,) "1 o H#
is invertible and the norm of its inverse is bounded by a constant C' independent of S and
z € K. By (3.30) and (3.28), we infer that in the same range of z and § the norm of the
operators (z — Lg)~! enjoy a uniform bound. O

PROOF OF LEMMA 3.3.2. We show (3.26) for Rez > ¢ replacing |Re z| > ¢, as the
argument for the complex lower half-plane is entirely analogous.
Using (3.27), we wish to show that there is R = R(e) such that the operator

1— (2= B71Sy) ot

is invertible for all § > 1 and z such that |z| > R and Rez > e. This will follow after
showing that, for 5 and z in the same range

=578 ot o < 5. (3.31)

By (3.28), we can use Proposition 3.1.1 to reduce (3.31) to the claim
1
Iz =87"82) " e Pro Ao < 7, (3.32)

where Py is the projection onto an appropriately chosen finite-dimensional space V' C C¢°.
If N is the dimension of the space and wy, ..., wy an orthonormal base, it suffices to show

that

I = 6782wl < 1

We argue for one of them and set w = w;. The goal is thus to show (3.33) provided |z| > R
for some large enough R. We use again (3.29) and write

Vi. (3.33)

T 00
(2 — B718y) " (w) = / e~ AT () dr + / eI () dr
0

T

/

—(a) —(B)

We first observe that
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Thus, choosing T sufficiently large we achieve ||(B)|| < g. Having fixed T we integrate
by parts in the integral defining (A) to get

T B _ —(2=B718)T 1 T 3
(A) —/ e T () dr = e (w) +—/ e 37185 0" (W) dr .
0 N 4 , *~Jo
=:(A1) —.(A2)
First of all we can bound .
14+e7¢ 2
AN < —— < —,
l(an) < —5— <+

As for the second term, observe that [0,7] 3 7 + e "%27(w) is the solution of a trans-
port equation with smooth coefficients and smooth and compactly supported initial data,
considered over a finite interval of time. Hence the support of the solution is compact and
the solution is smooth. Moreover, the operators =15, are first-order differential operators
with coefficients which are smooth and whose derivatives are all bounded. In particular

max || 195 0 e %7 (w)|| < C
T7€[0,T

for a constant C' depending on w and 7" but not on 3, in particular we can estimate

o(T)
I(42)) < =~

Since the choice of T" has already been given, we can now choose R large enough to conclude
I(A)|| < g as desired. -

3.4. Proof of Theorem 2.4.2: conclusion

First of all observe that z € spec,,(Lg) if and only if Bz + 1 — L € spec,,(Ls). Thus,
in order to prove Theorem 2.4.2 it suffices to find By and ¢y positive such that:

(P) If B > By, then spec,,(Lg) contains an element z with Re z > ¢y such that Re z =
max{Rew : w € spec,, (Lg)}.

Observe indeed that using the fact that the Uy, are invariant subspaces of Ly, 2z +1 — é
have an eigenfunction 9 which belongs to one of them, and we can assume that £ > 1 by
possibly passing to the complex conjugate z. If z is not real, we then set n = ¥ and the
latter has the properties claimed in Theorem 2.4.2. If z is real it then follows that the
real and imaginary part of ¥ are both eigenfunctions and upon multiplying by i we can
assume that the real part of ¥ is nonzero. We can thus set 7 = Re ¢ as the eigenfunction
of Theorem 2.4.2.
We will split the proof in two parts, namely, we will show separately that

(P1) There are 31, ¢y > 0 such that spec,,(Lg) N {Rez > ¢} # 0 for all g > f;.
(P2) If B > By := max{f, 1}, then sup{Rew : w € spec (Lg)} is attained.

Proof of (P1). We fix z € spec(Lg) with positive real part and we set 2¢q := Re 2.
We then fix a contour v C B.(z) which:

e it is a simple smooth curve;
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e it encloses z and no other portion of the spectrum of Lg;
e it does not intersect the spectrum of Lg;
e it is contained in {w : Rew > ¢ }.

By the Riesz formula we know that

1
PZ:—,/(w—LSt)ldw
2mi ),

is a projection onto a subspace which contains all eigenfunctions of Ly relative to the
eigevanlue z. In particular this projection is nontrivial. By Lemma 3.3.1 for all sufficiently
large 3 the curve v is not contained in the spectrum of Lg and we can thus define

1
P.s=— — Lg) tdw.
=5 V(UJ 8)" dw
If v does not enclose any element of the spectrum of Lg, then P, 3 = 0. On the other hand,
by Lemma 3.3.1 and the dominated convergence theorem,

P, s5(u) — P.(u)

strongly for every u. l.e. the operators I,z converge strongly to the operator P,. If for
a sequence 3 — oo the operators P, 5, where trivial, then P, would be trivial too. Since
this is excluded, we conclude that the curve 7 encloses some elements of the spectrum of
Lg for all 3 large enough. Each such element has real part not smaller than c.

Proof of (P2). Set ¢ := ¢y and apply Lemma 3.3.2 to find R > 0 such that spec,,(Lg)\
Bp, is contained in {w : Rew < ¢}. In particular, if 8 > max{f, 1}, then the eigenvalue
z found in the previous step belongs to Bg and thus

sup{Rew : w € spec (Lg)} = sup {w : Rew > ¢, |w| < R} Nspec (Lg).

However, since spec (Lg) N {w : Rew # 0} belongs to the discrete spectrum, the set
{w: Rew > ¢y, |w| < R} Nispec (Lg) is finite.






CHAPTER 4

Linear theory: Part 11

This chapter is devoted to proving Theorem 3.0.1. Because of the discussions in the
previous chapter, considering the decomposition

L2, = P U .

kEZ

the statement of Theorem 3.0.1 can be reduced to the study of the spectra of the restrictions
L|u,,, of the operator Ly to the invariant subspaces Uy,. For this reason we introduce the
notation spec (Lg, U;) for the spectrum of the operator Lg|y,, understood as an operator
from U; to U;. The following is a very simple observation.

LEMMA 4.0.1. The restriction of the operator Lg to the radial functions Uy s identically
0. Moreover, z € spec (Lg, U;) if and only if Z € spec (Lg, U_;).

We will then focus on proving the following statement, which is slightly stronger than
what we need to infer Theorem 3.0.1.

THEOREM 4.0.2. For a suitable choice of Q, there is my > 2 such that spec (Lst, Upmg ) N
{Rez > 0} is nonempty and spec (Lg, Up,) N{Rez > a} is finite for every positive a.

REMARK 4.0.3. As it is the case for Theorem 3.0.1 we can deepen our analysis and
prove the following stronger statement:

(i) For a suitable choice of my, in addition to the conclusion of Theorem 4.0.2 we
have spec (Lg, Upn) C iR for every m > my.

This will be done in Appendix A, where we will also show how conclusion (c¢) of Remark
3.0.2 follows from it.

red Note that in [34] Vishik claims the following stronger statement.

THEOREM 4.0.4. For a suitable choice of my, in addition to the conclusion of Theorem
4.0.2 and to Remark 4.0.3(i), we have also

(ii) spec (L, Upy) N {Rez > 0} consists of a single eigenvalue with algebraic multi-
plicity 1.

In Appendix A we will show how to prove the latter conclusion and how Theorem 3.0.3

follows from it.

39
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4.1. Preliminaries

If we write an arbitrary element Q € U, as Q(x) = ¢"~(r) using polar coordinates,
we find an isomorphism of the Hilbert space U, with the Hilbert space

. {7:R+—>C:/Ow|w(r)|2rdr<oo} (4.1)

and thus the operator Ly : U,, — U, can be identified with an operator L,, : H — H. In
fact, since Ly = S1 + %, where S is skew-adjoint and #° compact, L,, is also a compact
perturbation of a skew-adjoint operator. In order to simplify our notation and terminology,
we will then revert our considerations to the operator iL,,, which will be written as the
sum of a self-adjoint operator, denoted by S,,, and a compact operator, denoted by J7,,,.

LEMMA 4.1.1. After the latter identification, if Q(x) = g(|z|) and ¢ is given through
the formula (2.8), then S,, : H — H is the following bounded self-adjoint operator:

Y= Sm(y) =m(y. (4.2)

PROOF. The formula is easy to check. The self-adjointness of (4.2) is obvious. Con-
cerning the boundedness we need to show that ¢ is bounded. Since g is smooth (and hence
locally bounded), ¢ is smooth and locally bounded by (2.8). To show that it is globally
bounded recall that g(r) = r=@ for r > 2, so that

50 1 " 1—G& Co C1
r)=—+— Ydp=—+— Vr>2,
C(r)=-—3+3 P =5t G >
where ¢y and ¢; are two appropriate constants. ]

A suitable, more complicated, representation formula can be shown for the operator

H-

LEMMA 4.1.2. Under the assumptions of Lemma 4.1.1, the compact operator %, :
H — H is given by

Y () = —%wg' (4.3)

where
1 ° 1 "
W(r)=——r" 7(5)51_"Z ds — —T’_m/ v(s)sHm ds . (4.4)
2m 0

2m .

REMARK 4.1.3. When ~ is compactly supported, ¢(8,7) := ¢ (r)e"™ with ¢ as in (4.2)
gives the unique potential-theoretic solution of A¢ = ~e™? namely, ¢ obtained as the
convolution of ve™? with the Newtonian potential % Inr. For general v € H we do not
have enough summability to define such convolution using Lebesgue integration, but, as

already done before, we keep calling ¢ the potential-theoretic solution of A¢ = ve'™?.

PrRoOOF OoF LEMMA 4.1.2. First of all we want to show that the formula is correct
when Q = y(r)e?™ € C> N L2,. We are interested in computing —i(Ky * Q - V)Q. First
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of all we recall that Ky x Q = V+¢, where ¢ is the potential-theoretic solution of A¢ = .
Recall that for ¢ we have the explicit formula

1
= — | — .
o) = 5= [ Q) nly—aldy
¢ is clearly smooth and hence locally bounded. Observe that (2 averages to 0 and thus
1
o) = 5= [ w)nly | ~Inje]) dy.
T JR2

Fix R larger than 1 so that spt (£2) C Bg and choose |z| > 2R. We then have the following
elementary inequality for every y € spt (£2):

[ fz| = Inz —y|| < In(jz —y[+[y]) — In(jz —y[) < <
ly— x| — |z

from which we conclude that |¢(z)| < C(1+]z|)~!. Hence ¢ is the only solution to A¢ = Q
with the property that it converges to 0 at infinity. This allows us to show that ¢ satisfies
the formula

¢(a) = ¢(r)e™
where 1 is given by formula (4.4). We indeed just need to check that the Laplacian of
»(r)e™ equals y(r)e™ and that lim, . ¢(r) = 0. Using the formula A = 525410 4 5%

= 12062
the first claim is a direct verification. Next, since y(r) = 0 for » > R, we conclude
¥(r) = Cr~™ for all r > R, which shows the second claim. Observe next that
_ @ im@ﬁ o 2 imo 2

qu - 7"2 77[1(7")6 89 87" <¢(T)6 ) 87“ )
which turns into

1 _@ im@ﬁ _ lﬁ mb 2

Ve = T plrle or ror (¥(r)e )89'

Since Q(z) = g(r), we then conclude that
~ i 1
—(Ky%xQ-V)Q = _r D(r)e™ g (r).

Upon multiplication by ¢ we obtain formula (4.3). Since we know from the previous chapter
that # is a bounded and compact operator and %, is just the restriction of i.#" to a
closed invariant subspace of it, the boundedness and compactness of %, is obvious. [

Notice next that, while in all the discussion so far we have always assumed that m
is an integer larger than 1, the operator §,, can in fact be easily defined for every real
m > 1, while, using the formulae (4.3) and (4.4) we can also make sense of %, for every
real m > 1. In particular we can define as well the operator £,, for every m > 1. The
possibility of varying m as a real parameter will play a crucial role in the rest of the chapter,
and we start by showing that, for m in the above range, the boundedness of £,, and S,,
and the compactness of #;, continue to hold.
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PROPOSITION 4.1.4. The operators L,,, Sy, and J, are bounded operators from H to
H for every real m > 1, with a uniform bound on their norms if m ranges in a compact
set. Moreover, under the same assumption %, is compact. In particular:
(1) spec (L) is compact;
(i) for every z with Im z # 0 the operator L, — z is a bounded Fredholm operator with
idex 0;
(iii) every z € spec (L,,) with Im z # 0 belongs to the discrete spectrum.

PrOOF. The boundedness of S,, is obvious. Having shown the boundedness and com-
pactness of %, (i) follows immediately from the boundedness of L,,, while (ii) follows
immediately from the fact that £,, — z is a compact perturbation of the operator S,, — z,
which is invertible because S, is selfajoint, and (iii) is a standard consequence of (ii).

First of all let us prove that IC,, is bounded (the proof is necessary because from what
previously proved, we can just conclude the boundedness and compactness of the operator
for integer values of m larger than 1). We observe first that the function ||r='¢||o < ||7|l2,
as it follows from Cauchy-Schwarz that

1
fe'e) (e 9] oo 2 1
o [Thlsras <o ([Chepsas) ([Tsmas) < o2l

T T % T % 1
r_m_l/ s)sttmds < (/ s)|%s ds) (/ glt2m ds) < )
o h/( )| = 0 |’7( )| 0 = \/mH’VHH

Since ¢'(r) < C(1 +r)~17%, it follows immediately that

N[

(nlD )] < e (4.5

and in particular

o0 S 2
1K)l < Cllrl ( / #d) < Cllln.

1+s
This completes the proof of boundedness of the operator. In order to show compactness

consider now a bounded sequence {v,} C H. Observe that for every fixed N, (4.4) gives
the following obvious bound

1K (v [lw2 =157 < CON) [kl - (4.6)

In particular, through a standard diagonal procedure, we can extract a subsequence of
{Kum(7)} (not relabeled) which converges strongly in L*([N~!, N], rdr) for every N. It is
now easy to show that {K,,(7x)}x is a Cauchy sequence in ‘H. Fix indeed ¢ > 0. Using
(4.5) it is easy to show that there is a sufficiently large N with the property that

€

sup o () Ljo, N 1)UV oof | < 3" (4.7)

Hence, given such an N, we can choose ky big enough so that

19 .
(o (Vi) = Ko (95)) L w1, | < 3 Vhizk (4.8)
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Combining (4.7) and (4.8) we immediately conclude

1Ko (V) = Ko (95l < €

for every j,k > ko. This completes the proof that {/,,(v;)} is a Cauchy sequence and
hence the proof that kC,, is compact. O

4.2. The eigenvalue equation and the class ¥

Using the operators introduced in the previous setting, we observe that Theorem 4.0.2 is
equivalent to showing that spec (£,,,) N {Im z > 0} is finite and nonempty. We next notice
that, thanks to Proposition 4.1.4, the latter is equivalent to showing that the equation®

m@—%ﬂ¢:w (4.9)

has a nontrivial solution v € H for some integer m = mgy > 2 and some complex number
z with positive imaginary part.

We thus turn (4.9) into an ODE problem by changing the unknown from = to the
function . In particular, recall that the relation between the two is that A((r)e™?) =
y(r)e™? and e’ is in fact the potential-theoretic solution. We infer that

1 m?
ZZJ”‘F;W—Ff/J:’Y
and hence (4.9) becomes
1 m2 g/
" /
¥ rw * T2w+r((—m—1z)

Notice that, by classical estimates for ODEs, v € VVif(R*) Observe, moreover, that if
Y e L2(E)n W22 solves (4.10) and z has nonzero imaginary part, it follows that

=0, (4.10)

myg'

r(m¢ — z)

belongs to L*(rdr) and solves (4.9), because the function i is bounded. Viceversa,
assume that v € L?(rdr) solves (4.9). Then 1 solves (4.10) and we claim that ¢ € L*(£)n
W22, First of all notice that, by classical Calderén-Zygmund estimates, o(x) == (r)e™?

loc *

is a W22 function of R%. As such ¢ € C¥(B,) for every w < 1 and therefore ¢» € C*([0, 1))

and, by symmetry considerations, 1(0) = 0. Thus it turns out that |¢(r)| < Cr for every
r € [0,1], which easily shows that ¢ € L?([0,1], %). It remains to show that

/der<oo. (4.11)

r

v = (0

'Recall that 1 is defined through (4.4).
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However recall that, for r sufficiently large, ((r) = % + % for some constants ¢y and ci,
while ¢'(r) = —ar'*®. We thus infer
r(¢(r) = %)

W}(T)' = gl(T)

which in turn easily implies (4.11) because [ |y(r)[*r dr < oc.

Hence our problem is equivalent to understand for which m and z with positive imagi-
nary part there is an L*(£)N W22 solution of (4.10). The next step is to change variables
to t = Inr and we thus set ¢(t) = 1(e'), namely, ¥(r) = ¢(Inr). The condition that
¢ € L*(%) translates then into ¢ € L*(R) and ¢ € W2? translates into ¢ € W22,
Moreover, if we substitute the complex number z with = we can rewrite

— §0) + molt) + 5 () =0, (4.12)

_ Chtr)

~ )

/rnOc

| 2

which is Rayleigh’s stability equation, where the functions A and = are given by changing
variables in the corresponding functions ¢’ and (:

A(t) = o) (4.13)
=(t) :/_ e 2g(em) dr . (4.14)

Note in particular that we can express A and = through the relation
A=2"4+2=". (4.15)

The function g (and so our radial function 2) can be expressed in terms of = through the
formula p

g(e') = 6_2t£(62t5(t)) . (4.16)
Rather than looking for g we will then look for = in an appropriate class ¥ which we next

detail:

DEFINITION 4.2.1. The class € consists of those functions = : R —]0, co[ such that

(i) E(—o00) := lim;,_ Z(2) is finite and there are constants ¢y > 0 and M, such that
E(t) = E(—00) — ¢pe* for all t < My;
(i) there is a constant ¢; such that Z(t) = cie™? 4 FA=e * for t > In2;
(iii) A has exactly two zeros, denoted by a < b, and A'(a) > 0 and A’(b) < 0 (in
particular A < 0 on | — 00, a[U]b, 00 and A > 0 on |a, b[);
(iv) Z'(t) < 0 for every t.

Fix = € ¢. By (4.16), g is then smooth, it equals 2=(—00) — 4cor? in a neighborhood
of 0, and it is equal to r~* for r > 2, thanks to the conditions (i)-(ii). In particular the
corresponding function Q(x) = g(|z|) satisfies the requirements of Theorem 4.0.2. We are
now ready to turn Theorem 4.0.2 into a (in fact stronger) statement for the eigenvalue
equation (4.12). In order to simplify its formulation and several other ones in the rest of
these notes, we introduce the following sets
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1.0
0.8

0.6

FIGURE 1. A sketch of the function in the class € which will be finally
chosen in Section 4.9 to prove Theorem 4.0.2, in the ¢t = logr axis. The
graph of A(t) is the solid curve, G(t) := =Z'(t) + 2=(t) the dashed one, and
Z'(t) the dotted one. Even though A is smooth, its derivative undergoes a
very sharp change around the points t = % and the point ¢t = _\/LE’ where B

is an appropriately large constant, cf. Section 4.9.

DEFINITION 4.2.2. Having fixed = € ¢ and a real number m > 1, we denote by %,
the set of those complex z with positive imaginary part with the property that there are
nontrivial solutions ¢ € L2 NW2?(R,C) of (4.12).

REMARK 4.2.3. Observe that z belongs to %, if and only if it has positive imaginary
part and mz is an eigenvalue of L,,.

THEOREM 4.2.4. There is a function = € € and an integer mo > 2 such that Uy, is
finite and nonempty.
4.3. Overview of the proof of Theorem 4.2.4

The rest of the chapter is devoted to proving Theorem 4.2.4. The proof will be achieved
through a careful study of Rayleigh’s stability equation (4.12) and, in particular, the set
2 of pairs (m, z) such that z € %, and m > 1, i.e.,

P ={(m,z) eRxC:z¢€ X,,m>1}. (4.17)
Given that Z is strictly decreasing, we have

lim 2(t) > Z(a) > Z(b) > lim Z() = 0
t——o0 t—00
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12
1.0[-
0.6; I
04; ............................ LT

0.2

0 2 4 6 8 10

FIGURE 2. The profile of the background vorticity Q(z) = g(r) in the orig-
inal coordinates (the solid curve). Compare with the exact singular profile
r~® (the dashed curve)

and in order to simplify our notation we will use Z(—o0) for lim,_, ., Z(¢) and, occasionally,
=(00) for 0.

The first step in the proof of Theorem 4.2.4 is understanding which pairs (m, z) belong
to the closure of & and have Im z = 0. Solutions (m, z, ) to (4.12) with (m,2) € & are
sometimes called neutral limiting modes [22].> To that end, it is convenient to introduce
the following two self-adjoint operators:

& A(t)

Le=—r " 2= 20 (4.18)
o d? A(t)

b= =G ¥ =@ - =) (4.19)

Thanks to the definition of the class &, it is easy to see that both functions A0 __ and

E(t)—E(a)
% are bounded and that E(t’)q_(tg)(a) < E(t’?fg(b). Moreover, the first is negative on

| — 00, b[ and positive on ]b, 0o[, while the second is negative on | — 0o, a[ and positive
on Ja,oo[. Recall that the spectra of these operators are necessarily real and denote by
—)\, and —)\, the smallest element in the respective ones: observe that, by the Rayleigh
quotient characterization, —\, < —\.

The following proposition characterizes the possible neutral limiting modes:

2The interested reader may compare with the strategy for bounded shear flows in [22].
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PROPOSITION 4.3.1. If (mg,2) € & and Im z = 0, then either z = Z(a) or z = Z(b).
red Moreover, in either case, if mo > 1 then necessarily mo = \/Aq or mo = /Xy. Assume
in addition that —\, < —1. Then, for z = Z(a), the unique m > 1 such that (4.12) has
a nontrivial solution v, € L? is m, = /A,. Moreover, any nontrivial solution has the

property that ¥,(a) # 0.
red

REMARK 4.3.2. We remark that the exact same argument applies with b in place of a
when )\, > 1, even though this fact does not play any role in the rest of the notes.

Observe that this does not yet show that (m,,Z(a)) € & corresponds to a neutral
limiting mode. The latter property will be achieved in a second step, in which we seek a
curve of unstable modes emanating from (m,, =(a)):

PROPOSITION 4.3.3. Assume —\, < —1 and let m, = VAq. There are positive con-
stants € > 0 and 6 > 0 with the following property: For every h €]0,0[, %m,-nNB:(ZE(a)) #
0.

red

REMARK 4.3.4. In fact, the argument given for the proposition proves the stronger
conclusion that %, N B-(E(a)) consists of a single point z, with the property that mz
is an eigenvalue of £,, with geometric multiplicity 1. Moreover, the very same argument
applies to b in place of a and h €] — §,0[ if A\, > 1.

Combined with some further analysis, in which the curve of unstable modes is continued,
the latter proposition will allow us to conclude the following:

PROPOSITION 4.3.5. Assume —\, < —1, let m, = /A, and set my, := /max{1, \y}:
then Uy, # 0 for every m €|my, mg|.

Thus far, we have not selected our function =: the above properties are valid for any
element in the class €. The choice of = comes in the very last step.

PROPOSITION 4.3.6. There is a choice of = € € with the property that |my, mg| contains
an integer larger than 1.

Clearly, the combination of Proposition 4.3.5 and Proposition 4.3.6 gives Theorem
4.2.4: we first choose = as in Proposition 4.3.6 and hence we select mg as the largest
natural number which belongs to the interval |my, m,[; the properties claimed in Theorem
4.2.4 follow then from Proposition 4.3.5. The proof of Proposition 4.3.6 is in fact a rather
straightforward application of the following.

LEMMA 4.3.7. Let mq be any integer. Then there exists = € € with a = 0 and b = %
such that the smallest eigenvalue of the operator L, is smaller than —mZ.

REMARK 4.3.8. A consequence of Lemma 4.3.7 is that the most unstable wavenumber
mg can be made arbitrarily large. Only mq > 2 is necessary to prove non-uniqueness.
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The rest of the chapter will be devoted to proving the Propositions 4.3.1 and 4.3.3 and
Lemma 4.3.7. We finish this section by giving the simple proof of Proposition 4.3.6

PRrROOF. For simplicity we fix a = 0 and b = % and we look at the set of functions =

with this particular choice of zeros for A. We then denote by Lz, the operator in (4.18).
We fix an arbitrary =y € € and let —A(0) be the smallest eigenvalue of Lz, ,. We then
consider the smallest integer mgy > 3 such that m3 > A(0). By Lemma 4.3.7 there is an
element =; € ¥ with the property that a =0, b = % and, if —A(1) is the smallest element
of the spectrum of Lz, 4, then —A(1) < m3. For o € [0,1] consider Lz, , where

EU = (1 — U)EO +O’El
and observe that =, € € for every o € [0, 1].

Since o — Z, is continuous in the uniform convergence, by the Rayleigh quotient
characterization we see that the smallest element —A(o) of the spectrum of Lz_, is a
continuous function of o. There is thus one o € [0, 1] with A(0) = mZ. Let oy be the
largest o with A(¢) = m32. Observe now that, if we let —u(0og) be the smallest eigenvalue of
Lz, b, then p(oo) < mg. In addition, o+ pu(0) is also continuous and thus there is h > 0
such that u(o) < m? for all o € [0g — h, 00 + h]. On the other hand A(o¢ + h) > m?. This
shows that m;, < mo < m, if we choose = = =, 1, completing the proof of our claim. [J

4.4. ODE Lemmas

An essential tool in the proofs of the Propositions 4.3.1 and 4.3.3 are the following two
ODE lemmas.

LEMMA 4.4.1. Let m > 0. For every f € L*(R) there is a unique ¢ € L*(R)NW2? s.t.

loc
d*y
— =+ m*) = f (4.20)

and it is given by
1
= —mlt—|
Y(t) o /Re f(r)dr. (4.21)

PROOF. The lemma is a classical well-known fact. At any rate the verification that 1
as in (4.21) solves (4.20) is an elementary computation while, since obviosuly e™™l € L,
¢ e L2 if f € L2 Moreover, any other solution ¢ of (4.20) must satisfy ¢(t) = ¥(t) +
Cre™ + C_e ™ for some constants C+ and the requirement @/; € L? immediately implies

C+ = C_ = 0 D
The second ODE Lemma is the following:

LEMMA 4.4.2. Let v € L*(R,C). Then for every constant c_ there is a unique solution
y € Wil (R,C) of

d*y

-t (m*+v)y =0 (4.22)
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with the property that
lim e ™y(t) =c_. (4.23)

t——o0

Moreover we have y(t) = €™ (c_ + z(t)) for a function z(t) which satisfies the bounds

=01 et [exp (5 [ Iotsnds) -1 (1.21)

(0] < 2me | [exp (%m/w o(o)lds) ~ 1] (4.25)

A symmetric statement, left to the reader, holds for solutions such that

: mt -
tllglo e™y(t) = cy . (4.26)
Important consequences of the above Lemmas are the following:

COROLLARY 4.4.3. If (m, z) € 2, then the space of solutions p € L2NW22 of (4.12)

loc
1s 1-dimensional. Moreover for any such ¢ there is a constant C' with the property that

p(t)] < Ce™I (4.27)

and there are two constants Cy and C_ such that
tlg})lo e™op(t) = Cy (4.28)
tgr_noo e Moty =C_. (4.29)

The constants are either both nonzero or both zero, in which case ¢ vanishes identically.
The same conclusions apply if m > 1, z € {Z(a),Z(b)} and ¢ solves (4.12).

PROOF. Observe that |2(t) — 2| > |Im z|, while A(t) = 6¢oe? for —t sufficiently large
and |A(t)] < 2e72% for ¢ sufficiently large. In particular

Alt .
JA < Ce~ 2 (4.30)
=(t) — 7]
First of all notice that, if ¢ € L? N W2 solves (4.12), by Lemma 4.4.1 (applied with
f=—22) we have

=E—z

C —m|t—7|  —2a|T
POl < o [ e Tle ()] dr (4.31)

Using Cauchy-Schwarz and the fact that ¢ € L? we immediately obtain that ¢ € L,
namely, that there is a constant C' such that |p| < C. We now prove inductively that
lo(t)| < Cre %M as long as k& < m. The case k = 0 has already been shown. Assume
thus that the inequality holds for £ — 1 and that ka < m. We then observe that

efm\t77—|ef2d|7\ |90<7_>| < Ck_lefm\tfﬂfkdh\efdh\ < Ck_lefko_z(\tf‘rH»\Tl)e*&|7-|

< C«kile—ka|t|e—a\‘r| )
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Inserting in (4.31) and using that e=®I"l € L' we then obtain |p(t)| < Cre™*!. Assuming
now ka < m < (k+ 1)& we can, likewise, bound

6—m|t—’r\e—26¢|r| |S0(7_)| < Cke—m|t—’r\—(k+1)64|’r\6—647\ < Cke—m|t|€—6z\7'\

and plugging into (4.31) one last time we conclude |p(t)] < Ce ™M,

In order to show that ¢ is unique up to a multiplicative constants, it suffices to show
that lim,, ., e ™ () exists and is finite. Hence Lemma 4.4.2 would conclude that the
solution is uniquely determined by C_, and that the latter must be nonzero, otherwise
¢ = 0. In order to show existence and finiteness of C_ rewrite

emt [ A(s) e-mt [t A(s)
)= — —ms_~ 27 d ms__— -~ ds .
e(t) 2m J, c =(s) — ng(s) st 2m /Oo ‘ =(s) — ng(s) °

Since by our estimates both e =25l () and e

2(s)—z

ms%gp(s) are integrable, we conclude

that C1 exist and equal

_ 1 > +ms A(S)
Ci—zm/_ooe ——p(s)ds.

=(s) —z

As for the last sentence of the statement of the lemma, the same arguments can be
used in the case z € {Z(a), Z(b)}, since the crucial point is that, thanks to the assumption
that A(a) = A(b) = 0 and Z'(a) # 0 # Z'(b), the estimate (4.30) remains valid. O

PrOOF OF LEMMA 4.4.2. We distinguish between the case c_ # 0 and ¢_ = 0. In the
case c_ # 0 we can divide by c¢_ and reduce the statement to ¢ = 1. For the existence it
suffices to look for a solution of (4.22) which satisfies (4.23) on a half-line of type | — oo, T]
for some 7. Such solution has then a I/Vlicl continuation on [T, o[ by standard ODE theory.
Likewise the uniqueness is settled once we can show the uniqueness holds on | — oo, T1.
Observe next that, if the solution exists, we would clearly conclude that ‘%’ € LY(]—o0,T)),
hence implying that

lim y'(¢)

t——00
exists and is finite. On the other hand (4.23) implies that such limit must be 0.
Let 3(t) = e ™y(t) and observe that we are looking for a solution of

(62mtg/>/ — €2mtvg )

Integrating between —N and t the latter identity and letting ¢ — —o0 we conclude
t

2 () — / e2m50(5)ii(s) ds. (4.32)

—00

Divide by e?™ and integrate once more to reach

g(t)—1= —/_ /_T >y (5)g(s) ds dr = %/_ (1- e’Zm(t’S))v(s)gj(s) ds
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We then define the transformation

- / 29 o (s)j(s) ds + 1 (4.33)

which we consider as a map from L (] —o0, T) into itself. From our discussion we conclude
that y solves (4.22) and obeys (4.23) if and only if 7 is a fixed point of .%. Choosing T'
large enough so that |[v|[11(-0or)) < m we see immediately that .%# is contraction on
L>(] — 00,T]) and it thus has a unique fixed point. We have thus showed existence and
uniqueness of the solution in question.

Observe now that z(t) = g(t) — 1 and set

Z(t) == exp (% /; [v(s)] ds) —1.

Z solves the ODE 7' = %Z + % and, since lim;_, ., Z(t) = 0, the integral equation

Qm/ s)|Z(s) ds+—/ (s)| ds.

We first want to show that |z(t)| < Z(t) on | — 0o, T|. We set gy := Z + 1 and define
inductively g;41 = -Z (9;). From the above discussion we know that ¢; converges uniformly
to g and it suffices thus to show that |g; —1| < Z for all i. By definition we have |go—1| = Z
and thus we need to show the inductive step. We estimate

e (0= 11 5 [ ol ds

g2m/ $)Z(s ds+—/ s)|ds =Z(t),

We have shown (4.24) on | — 0o, T]. In order to extend the inequality to the whole real axis
observe first that we can assume, without loss of generality, that ||v|| 1) > 0, otherwise
we trivially have |g(t) — 1| = Z(t) = 0 for all £. In particular we can select 7" so that all of
the above holds and at the same time ||v{[11(]—o0,77) > 0. This implies Z(7") > 0. Moreover,
by (4.33) and .7 (y) = g, either

G(T) — 1] < —— / o(s)l(s)] ds

2m J_

or |v||g| vanishes identically on | — 0o, T]. In both cases we conclude |§(7T") — 1| < Z(T).
Consider now sup{t > T : |g(t) —1| < Z(t)}. Such supremum cannot be a finite number 7;
because in that case we would have |§(Ty) — 1| = Z(ty) while the same argument leading
to the strict inequality |g(T") — 1| < Z(T) implies |§(Tp) — 1| < Z(Tp).
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Having shown (4.24) we now come to (4.25). Recalling (4.32) we have

2'(t) = / e 2m=)y(5)(2(s) + 1) ds

— 00

t ¢
< / e 2= |y(s)| Z () ds + / e 2= |y(s)| ds = 2mZ(t) .

— 50 —00

We now come to the case c. = 0. In that case we need to show that the unique solution
is identically 0. Arguing as for the case ¢ = 1 we conclude that ¢ is a fixed point of the
transformation

FO =5 [ (1= No(e)(s)ds

Again, for a sufficiently small 7', .% is a contraction on L*(] — oo, T]) and hence it has
a unique fixed point. Since however 0 is, trivially, a fixed point, we conclude that ¢ = 0
on | — 0o, T]. Standard ODE theory implies then that ¢ vanishes identically on the whole
R. O

4.5. Proof of Proposition 4.3.1

We start by showing the last statement of the proposition, namely:

(A) For z = =(a) and under the assumption that A\, > 1, the unique m such that
(4.12) has a nontrivial solution 1, € L? is my, = v/Aq.

red Before coming to its proof we also observe that the same argument applies with b in
place of a.
First of all observe that, for z = Z(a), the equation (4.12), which becomes
d*p 9 A
- — ———¢ =0 4.34
az TP EIEW Y T (4:34)

has nontrivial solutions ¢ € W% N L3*(R; C) if and only if it has nontrivial solution ¢ €

loc
W22 N L*(R;R). That the equation has a nontrivial solution when m = /A, follows
from the classical theory of self-adjoint operators. We therefore only need to show that
the existence of a nontrivial solution is only possible for a single m > 1. Arguing by
contradiction assume there are two, 1 < m; < ms, and denote by 1; and 15 the respective

solutions. Then there is a nontrivial linear combination

= Ciihy + Oty

which vanishes on a. Observe that 1, and 5 can be interpreted as eigenfuctions of the self-
adjoint operator —% + % relative to distinct eigenvalues and they are, therefore, L?
orthogonal. Summing the equations, multiplying by ¢ and integrating by parts we achieve

/ ((W ¥ _L(a)w) — it [t - i3 [ 3. (4.35)

J/

[1]

-< [1]

I
~
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Recalling that A = Z"42=" = (Z'+2Z)’, we wish to integrate by parts the second integrand

in the left-hand side. Observe that, because 1 vanishes on a and ='(a) # 0, the function

_w;(a) is in fact continuously differentiable. In particular we can write

A 2 _ (E’+2H 2_25+2_ )
/E—EW /<E—E<a>> =V - E W

Substituting it into I, we achieve

- [ (v~ %‘”)*/ <<52?EE/5>>2 ==
[ ==wv) 2 =

where to reach the second line we have written the first term in the second integral as

d 1
=l (LI 1
dt <E—E(a)> 4

and integrated it by parts. Again thanks to the fact that v vanishes at a we can write it
as ¥ = (2 — Z(a))n and hence conclude

I= /((E—E(a))n’)2+/2(E—E(a))5’n2 I/((E—E(a))n) —2/<
:/<5_ (a))Q(n'—n)Q—/(E— (a))*n’
= [E-=@rw - - [+,

Inserting the latter in (4.35) we conclude

JE=z@per -2 = ~cimt - [ v - B - [ 3.

Observe that, since my > 1 and 1), is nontrivial, we conclude that C', = 0. This would
then imply that ¢ = Ci1; and we can thus assume C; = 1 in all our computations. In
particular = n, which implies n(t) = Ce'. We can now write ¢, (t) = (E(t) — Z(a))n(t)
and given the properties of Z(¢) we easily see that this would violate the decay at +oo that
we know for v; from Corollary 4.4.3.

red

[1]

[1]

[1]
[1]

(@)’

(1]
[1]

(1]

REMARK 4.5.1. We record here a consequence of the above argument: a nontrivial
solution ¢ of (4.34) necessarily satisfies ¢(a) # 0 (and thus it must be unique up to
constant factors).

We next show that
(B) If (mg,2) € &, my > 1 and z € R, then z is in the closure of the range of Z.
We again argue by contradiction and assume the existence of
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(i) A sequence {m;} C|1, 00 converging to mg € [1, o0];
(i) A sequence {z;} C C with Imz; > 0 converging to z € R\ Z(R);
(ili) A sequence 1; of nontrivial solutions of

d*; 2
dtQJ Y+ E

By Corollary 4.4.3 we can normalize our functions v; so that ¢;(t)e ™" — 1 as t — —o0
and 1;(t)e™* — C; # 0 as t — oo. Observe also that there is a positive constant ¢ such
that |2 —2;| > ¢ for all j sufficiently large, thanks to (ii). In particular, the functions HA _

W =0 (4.36)

<j

are uniformly bounded in L'. By Lemma 4.4.2 there is a positive Ty > b+ 1, mdependent
of 7 such that

C.

() — Cje ™| < Efe*mﬂ vt > Ty, (4.37)

and there is a constant C', independent of j such that
15| 2= (0 < € (4.38)
Next multiply (4.36) by &j, integrate in ¢ and take the imaginary part of the resulting

equality to conclude
A 2

12=0. 4.39
/ (2 —Rez;)? + (Imz;)? %51 (4.39)

We might break the integral into three integrals on the regions | — oo, a, ]a, b[, and ]b, oo,
where the function A is, respectively, negative, positive, and negative. This gives

2Ty A b A
_/TO ( ReZ]) (Imz) |¢j|2 S/a ( Rez]) (Imz]) ‘wj|2

Now, the right-hand side of the inequality can be bounded uniformly independently of j
by (4.38) and (ii). On the other hand the function ERes, o )2 is larger than a positive
constant ¢ independent of j on [Tp,27,]. Using (4.37) we can achieve a uniform bound
|C;| < C for the constants C;. The latter bound, combined with the estimates of Lemma

4.4.2 and the uniform bound on H%H 1 easily imply that ¢; is precompact in L% We
= J

can thus extract a subsequence, not relabeled, converging to a nontrivial L? solution v of

a2
e

dt?
Without loss of generality we assume that 1 is real valued, since z is real. We can thus

multiply (4.40) by ¢ and integrate to achieve

[t iy + [ZEE 00,

Integrating by parts [ EE_Z
N2 2 1.2 =2 ! = =
Juwr e+ [(22550 - eSS

=0. (4.40)

(| —
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which we can rewrite as

= 2 =/
/((w’— E“_ Zz/)) +m3¢2> +2/E“_ qu?:o. (4.41)

As already done in the previous paragraphs we set n = LZ and write the identity as

/ ((E — 22+ m(Z — 2)*n* + 25/ (2 - 2)772) =0
Integrating by parts the last term we find
[E=2200 =y + [ - E - 2P =0,

We thus conclude that mg = 1 and 7' = n, i.e. n(t) = Ce', but again we see that this
would violate 1) € L?.

We next employ a suitable variation of the latter argument to show that
(C) (myo,0) and (mg, Z(—o0)) do not belong to & if my > 1.
We again argue by contradiction and assume the existence of
(i) A sequence {m;} C|1, 00| converging to mg € [1, o0];
(ii) A sequence {z;} C C with Im z; > 0 converging to 0 or to =(—00);
(ili) A sequence 1; of nontrivial solutions of
d?1;
dt?
We first focus on the case z; — 0. Normalize again the solutions so that v;(¢) is asymptotic
to €' for t negative, and to Cje™" for ¢ positive.
Observe that in this case we have 24 € L'(] — oo, N]) for every N, while =2~ enjoys a

:fz W =0. (4.42)

J

+ mJQw] +

uniform L' bound on any ] — oo, N]. We can thus apply Lemma 4.4.2 and Conclude the 1;
can be assumed to converge uniformly to a function ¢ on | — oo, N| for every N and that
likewise 1 (t) is asymptotic to e™! for ¢ negative.

As done previously we multiply the equation (4.42) by &j, integrate, and take the
imaginary part. In particular we gain the inequality

h A 2 ’ A 2
/b (2 —Rez;)? + (Im2;)? 31l < /a (E—Rez)? + (Imz;)? LI

Since z; — 0 and the range of = on [a, b] is bounded away from 0, we conclude that the
right-hand side is uniformly bounded. In particular, passing to the limit we conclude that

E2 A2 € LY([b, 00]) . (4.43)

Observe however that
A(t) , —ae ™

t—00 E(t) t—oo cre 2t ﬁe—@t
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In particular we conclude that ¢ € L?. Moreover, we can write
Z=—-al2-a)+B

for a function B which belongs to L([T, oc[) for every T. We thus have that
d2¢
dar?

Recalling that 0 < @ < 1 and mg > 1, we have m2 — a(2 — @) > 0 and we can therefore

+ (mg—a2—a))+ By =0.

apply Lemma 4.4.2 to conclude that, for m := \/mg —a(2—a)
lim e™)(t)
t—o0

exists, it is finite, and nonzero. Observe however that (4.43) forces e®|)|* € L', which in
particular implies that m > § We next argue as in the derivation of (4.41) to get

/<(¢’—E§I¢)2+mow2> +2/E§I¢2:0.

We again set v = =n and observe that, by our considerations, n decays exponentially at
—o0, while it is asymptotic to e® ™ at +00. We rewrite the latter identity as

[ @+ iz + 2220 — 0.
We wish to integrate by parts the latter term to find

/ (220 — n)* + (m2 — D)E22) = 0. (4.44)

Since we have exponential decay of 1 at —oo, while at +o0o0 1 might grow, the latter
integration by parts need some careful justification. First of all we notice that =Z='n?
decays exponentially at +0o and thus, since the other two integrands are positive, we can
write
N
JE 7 vz 42z = im [ @007 w222,

N—oo oo

Next, we can integrate by parts the second integrand (before passing to the limit) to write

N N
| @y mizt w2z = @07 -+ - D))+ 2 ).
Since Z(N)n(N) converges to 0 exponentially, passing into the limit we conclude (4.44).
As before this would imply mg = 1 and 7(t) = Ce', while we have already argued that n
decays exponentially at oco.
We next tackle the case z; — Z(—o00). This time we observe that % enjoys a uniform
= J

L' bound on [T, 00] for every T and we thus normalize the functions v; so that ;(¢) is
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asymptotic to e™™" for t — oco. Arguing as above, we assume that t; converges uniformly
on all [T, o0 to a ¥ which is asymptotic to e™" and solves

Py, A
“aE T E TR L)

As above we can assume that v is real valued. Moreover, this time we infer (with the same
method used to prove (4.43))

(2 - 2(—00)) 2 AY? € LY(R) (4.46)

A(t)
—E(—00)

W=0. (4.45)

—~

This time observe that, for ¢ sufficiently negative, =0 = 8. In particular we can

explicitly solve the equation as
w(t) — Cle—tw/m%—i—S + C«QGt\/m(Q)+8

when ¢ is sufficiently negative. However, if C} were positive, (4.46) would not hold. In
particular we infer exponential decay at —oo. We can now argue as for the case z; — 0:
we multiply (4.45) by 1), integrate in time and perform an integration by part to infer

—/ 2 =/
I — 2 - 2 _
/(G” E—a—mﬂa'““¢)+2/a—zemﬂ’ "

We then introduce 1 so that ¢ = (2 — Z(—o00))n. This time we infer exponential decay for
7 at both co and —oo. Arguing as above we rewrite the last identity as

[ (&= 20012 = 0 + (1~ 1)(E - Z(=o0)) = 0,
reaching again a contradiction.

In order to complete the proof of the proposition we need to show
(D) If (mg,Z(c)) € & red and mg > 1, then either ¢ = a or ¢ = b red and moreover
we have, respectively, mg = v/Aq or mo = v/Ap.
As before we argue by contradiction and assume the existence of
(i) A sequence {m;} C|1, 00| converging to mg €|1, ool;
(ii) A sequence {z;} C C with Im z; > 0 converging to Z(c) for some ¢ ¢ {a, b};
(iii) A sequence 1; of nontrivial solutions of

d*; A
_ dt2j +m2p; + = Y; =0. (4.47)
This time we normalize the 1);’s so that
S+ o =1, (1.45)

By Lemma 4.4.2 we know that ;(¢) is asymptotic to p?:epnjt for t — 400, where pji €
C\ {0}. Since Z(c) has a positive distance from both 0 and =(—o0), we can apply Lemma
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4.4.2 to achieve uniform times Ty with the properties that

IR V7 a B
[45(8) = pye™™! | < Zmem! vt > T, (4.49)
]dga)-—pjemﬂ}ggkglemﬁ VE<T.. (4.50)

Combining the latter inequalities with (4.48) we conclude that sup; |p;’| < oo, and in
particular {1, }; is tight in L?, i.e. for every € > 0 there is N = N(e) such that

wg/ ;* <e.
i Jit>N

The latter bound combined with (4.48) implies, up to extraction of a subsequence which

we do not relabel, the strong L? convergence of 1; to a function ¢. Thanks to Sobolev

embedding, the convergence is uniform on any compact set and, moreover, 1) € C'/2.
Arguing as for (4.39) we infer

A 2
/ (E—=Rez;)?+ (Imz,)? sl =0 (4.51)

The latter bound implies (c¢) = 0. In fact first we observe that ﬁw# converges
= J

in L' on R\Jec — §,c¢ + §] for every §. Choosing & > 0 so that |A(t) — A(c)| < @ for
t € [c — 0, c+ §] and recalling that |A(c)| > 0, we easily infer that

ct+h |¢j|2 6
Yh .
Sup / (E—Rez)?+ (mz)? ¢ =

If ¥(c) were different from 0, we can select a positive h < ¢ and a positive ¢y with the
property that |¢(t)[* > 2¢, for all t € [c — h,c+ h]. In particular, for a large enough j we
infer [¢;(t)|? > ¢ for all t € [c — 6, ¢+ §]. But then we would conclude

c+h 1
su — < 0.
7 / (E—Rez)? + (Imz;)?

Since the denominator converges to (£ — Z(c))?, this is clearly not possible.
We now wish to pass in the limit in (4.47) to derive that

A
— "+ mi + ———
=—Z(c)
where we notice that, thanks to 1(c) = 0 and the Holder regularity of v, the function
E—LE(c)w is indeed in L? for every p < 2. We thus understand the equation distributionally.
The equation clearly passes to the limit outside the singularity ¢ of the denominator and
thus we just need to pass it to the limit distributionally in some interval |¢ — h, ¢+ h[. We

Y =0, (4.52)
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write the third term as
A d A

d A - A / =z d
~d (m( zﬂaw)—ln(fzﬂa%‘m(“ >dt< )%

— —

Observe that we can define the logarithm unequivocally because Z is real valued and
Im Zj > 0.
Next, we remark that:
(i) & is smooth in Jc — h,c+ hj;
(ii) In(Z — 2;) converges strongly * to In(2—Z(c)) in L(Je— h, c+ h[) for every ¢ < oo;
(iil) 95 — 9" weakly in L?, while 1; — v uniformly.
We thus conclude that = % converges distributionally to

d N | N | — d (A
7 (ln(: — :(c))§¢> —In(E — :(c))Ew —In(= - :(c))% (5) Y.
Using now that ¢ € W2 and v (c) = 0 we can rewrite the latter distribution as

and hence conclude the validity of (4.52).

Observe next that from (4.52) We infer ¢" € LP for every p < 2 which in turn implies
that ¢ is indeed C for every k < 5. In turn this implies that =—= )w is continuous at ¢,
so that in partlcular W is twice dlfferentlable We thus can argue as for the derivation of

(4.41) and get
/ <(¢ - :—/Uw)z +m3¢2> + 2/5_5—%@02 =0. (4.53)

Once again we can set 1) = (2 — Z(c))n and observe that € W2, to rewrite the latter
identity as

[I]

o

/((E —Z(0))*(n —m)* + (mg — (= - Z(c))*n*) =0,

inferring that n = 0.

We thus have concluded that 1) vanishes identically, but this is not yet a contradiction
since the normalization (4.48) and the strong L? convergence does not ensure that 1 is
nontrivial. In order to complete our argument, note first that, by the monotonicity of =,

3Since In(Z — z;) converges uniformly to In(Z — Z(c)) on any compact set which does not contain ¢, in
order to reach the conclusion it suffices to prove a uniform L? bound on the functions, for every ¢ < oo.
This can be easily concluded as follows. Choose an interval [c — h, ¢+ h] and recall that = does not change
sign on it. For each j large enough we then find a unique ¢; € [c — h,c + h] such that Z(c;) = Rez,.
Using the mean value theorem we easily conclude that |2(t) — z;| > |E(t) — E(¢j)| > C |t — ¢, for every
t € [c—h,c+ h], where C~1 = min{|Z'(t)| : ¢ — h <t < c+ h}.
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for each j large enough there is a unique ¢; such that =(c;) = Re z;. We then multiply the
equation (4.47) by ¥; — 1;(c;) to obtain

[ (1 + s - e +

Note that ¢; must converge to ¢ and that the mtegrals

o)

converges to 0 because ¢; — 1;(c;) converges to 0 uniformly and, thanks to the uniform
exponential decay of 1;, the latter are uniformly bounded in L'. For the same reason the
first integral in the sum

/ — %(w by(ey)) + / — %(w by(ey)) (4.54)
[t— c|>h = [t— c|<h =

il - @) ) =0.

=

(1) = y(c))| < Clt—¢;| 712
and thus the second integrand in (4.54) converges to 0 as well. We thus conclude that the
L? norm of % converges to 0 as well. This however contradicts the normalization (4.48).

4.6. Proof of Proposition 4.3.3: Part I

We set mg = mg, 20 = Z(a), and we fix a 1)y solution of

_ %%
2

A
+mgwo+: Zlﬂo:()
— 7 <0

with L? norm equal 1. Since the operator is self-adjoint we will indeed assume that 1), is
real. We then define the projector Py : L*(R; C) — {kt)p : k € C} as

Po(d’) = Wﬂ/}oﬂbo .

Observe that Fj is self-adjoint. Next, in a neighborhood of (my, zo) we will look for solutions
of (4.12) by solving

—" +mPY + 2 + Po(y) = o
<77/}7¢0> =

(4.55)

which we can rewrite as

—¥"+mi + 5 (¥) = A((E = 20)7" = (E = 2)7)e) + (m§ — m*)¥ + 1o

(¥, o) =
(4.56)

Next we observe that the operator —% + m3, considered as a closed unbounded self-
adjoint operator in L? (with domain W??) has an inverse K,,, : L? — L? which is a
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bounded operator. We thus rewrite (4.56) as

1/1 + Icmo (%?ﬂ + PO(¢))

—

-~

=T

(1]

)
Koy ((A((E = 20)"" = (E=2)7") + (m§ = m?)) ) +Komy (t0)

R, ()

\ <¢> ¢0> =1

(4.57)
The proof of Proposition 4.3.3 will then be broken into two pieces. In this section we will
show the first part, which we can summarize in the following

LEMMA 4.6.1. For every p > 0, if (m,z) sufficiently close to (mg,z0) and Imz >
w|Re (z — zo)| then there is a unique v = 1)(m, z) € L*(R) solving

T(9) + R,z (¥) = Ko (v0) - (4.58)
Before coming to its proof we single out two important ingredients.

LEMMA 4.6.2. T is a bounded operator with bounded inverse on the spaces L? and O,
for any o €]0, 1].

PRroOF. Recall that the operator K, is given by the convolution with ﬁe*mH. In this
first step we prove that T is a bounded operator with bounded inverse in the spaces L*(R)
and C°(R)* Recall that E%;() = E%E(a) is indeed a bounded smooth function (thanks to
the structural assumptions on =: in particular recall that ='(a) # 0 and A(a) = 0, which
implies that = ‘3( ] is in fact smooth at a). Moreover the function and its derivatives decay

exponentlally at £oo. It follows therefore that ¢ — Ky, (27 A —U+ Py(1)) is a compact

operator, both on L? and on C°. Thus T is a Fredholm operator with index 0. We thus
just need to check that the kernel is 0 in order to conclude that it is invertible with bounded
inverse. In both cases we need to show that the equation

2

a2

+ may = Y+ Py(¢) =0 (4.59)

A
—E(a)
has only the trivial solution. Observe that the kernel V' of the operator ¢ +— — dt2 +m0¢+
E%é(a)@b is 1-dimensional by Lemma 4.4.2 and Corollary 4.4.3. In particular V' is generated
by 1)y. Since the operator F is the orthogonal projection onto V and — dtg +m0++:_:(a)w

is self-adjoint, the kernel of —% +mg + =0 w + P, in L? must be trivial.

In order to argue that the kernel is 0 on C" we apply a variation of the same idea: first
we observe that if ¢ is a C? solution of (4.59), then E—LE(a)w + Py(v) is also in C7 and

4Observe that K, is well-defined on C° and so is the multiplication by = fZO, since the latter is a
smooth functions with bounded derivatives, and the operator Py(v) = (3, o))g: for the latter we just
need to check that 1) is integrable, which follows from the exponential decay of g, cf. Corollary 4.4.3.
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hence 9" € C?. Observe also that the operator is self-adjoint and thus we can assume that
¥ is real-valued. We then multiply both sides of (4.59) by 1, integrate by parts and use

the fact that 1 is in the kernel of the self-adjoint operator —j—; +m2 + =2 to conclude

=—E=(a)
that ((¢,1))? = 0. But then ¢ is a bounded solution of —2& + mgy? + E%E(a)zﬂ = 0.
Given that =—4—1 is a product of an exponentially decaying function and a bounded

=2—E(a)
function, we conclude that —% + m31 is an exponentially decaying function f. We thus
have 1 = IC,,,(f) + Cre™ ™! + Coe™! for two constants C; and Cy. However K,,(f) decays
exponentially at both 00 and thus, given that ¢ is bounded, we must have C; = C5 = 0.
In particular v decays exponentially at both oo and so it is an L? function. But we
already saw that every L? solution is trivial. O

LEMMA 4.6.3. For every constant > 0 we define the cone C,, := {z : Imz > p|Re (z —
20)|}. Then
lim 1 Romllo =0, (4.60)

z€Cy,(m,z)—(mo,20)
where || L||o is the operator norm of L when considered as a bounded operator from L* to
L2

PRrooOF. Clearly, it suffices to show that
lim ||y 0 (A/(E—2)—A/(E - 20))]lo =0. (4.61)
0

2€C,z— 2
We can rewrite the operator as

oo (EE )

First of all observe that the operators

Az — zp)

iﬂ = Lz<w) = 7= p
(2= 2)(E - 20)

are bounded in the operator norm uniformly in z € C), by a constant M. Moreover, we

(8

can see that the adjoint operator is given by Li(v) = %@b converges strongly in
L? to 0: indeed the functions % are uniformly bounded and they converge to 0 on

R\ {a}. We now use an argument entirely similar to that used in the proof of Lemma 3.3.2:
given any € > 0 we fix the orthogonal projection Py onto a finite-dimensional subspace of
L? with the property that ||,y © Py — Kin|lo is smaller than 55;. We then argue that
for |z — 2| sufficiently small Py o L, has operator norm smaller than §. Having chosen an

orthonormal base 1, ...,y for V, we recall that

Py(t) = (i, ).

)

Therefore our claim amounts to show that

€
[ Lo (0] < 5
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for z sufficiently close to zg and every ¢ with [[1)]|z2 < 1. For the latter we use

(i, L (V)| = [(LZ(i), )| < L2 (i)l e

PROOF OF LEMMA 4.6.1. We rewrite the equation that we want to solve as
Yp+T "o R, (¥) = T o Koo (%0) -

Note that Py(1y) = 1. Furthermore, since I, is, by definition, the inverse operator of
d? 2

A
Kone (% + King (ﬁiﬂo)) =~y +mgo + = Yo = 0.
== 20 == 2
Therefore,
A
Yo + King T _ Zowo =0.
In combination with the definition of 7" in (4.57), we get
A
T(o) = o + K, (: — zo% + Qﬁo) = Ko (¢0),
in other words,
T 0 Koo (th0) = 0. (4.62)
Therefore, (4.58) becomes
(14T 6 R 2) (1) = o (4.63)
so the existence of a unique solution is guaranteed as soon as ||T7! o R,,.|lo < 1. O

REMARK 4.6.4. In the remaining part of the proof of Proposition 4.3.3 we will take
advantage of the representation of ¢ as a function of ¢y through the Neumann series coming
from (4.63). More precisely, our proof of Lemma 4.6.1 leads to the following representation:

V=1 — (T o R 2) (1) + Y (=1 (T " o Ry ) (1) (4.64)

4.7. Proof of Proposition 4.3.3: Part II

We now complete the proof of Proposition 4.3.3. The positive parameter p > 0 in
Lemma 4.6.1 will have to be chosen sufficiently small: its choice will be specified in a
few paragraphs, while for the moment we assume it to be fixed. We set my = m, and
20 = Z(a). Thus, for each (mg + h, z) in a set

Us, == {|h] <9,|2 — 2| < §,Imz > p|Re (2 — 20)|}

we know that that there is a solution ¥ = ¥(mg + h, z) of (4.58) which moreover satisfies
the expansion (4.64). We then define the function

H(h, 2) := (¢¥(mo + h, 2), 1), (4.65)
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and obviously we are looking for those z which solve
H(h,z)=1 (4.66)
The main point of our analysis is the following
LEMMA 4.7.1. The function H is holomorphic in z and moreover
H(h,z) =1—=2m.h + c(a)(z — 2z0) + o]z — 20| + |h]) (4.67)
where c(a) is a complex number with Im c(a) > 0.

Given Lemma 4.7.1, consider now &(h) which we obtain by solving c¢(a)(§ —z9) = 2mh,
namely,

2mgh 2moh —
¢(h) = ) + 20 = |c(a)|20(a) + 2.
The idea behind the latter definition is that, if the term o(|z— 2| +|h|) vanished identically,
z = &(h) would be the solution of H(h,z) = 1. Even though o(|z — 2| + |h|) does not
vanish, we nonetheless expect that the solution z of H(h,z) =1 is relatively close to £(h).

Since Im ¢(a) > 0, £(h) has positive imaginary part if h < 0. In particular we have

Im&(h) > ~|h| Vh < 0.
where 7y is a positive constant. We then rewrite

H(h,z) = 1+ c(a)(z = £(h)) + o(|§(h) = 20| + h) +o(]z = £(h)]) .

=:r(h)

Consider the disk Dy, := {|z—¢&(h)| < 25]|h|}, for a suitably chosen constant 5 > 0. We will
show below that adjusting the constants p and 3 suitably, the disk will be in the domain of
the holomorphic function H (-, z). Leaving this aside for the moment, by Rouché Theorem,
if we choose h sufficiently small the set H(h, Dj,) contains a disk of radius |c¢(a)|8h centered
at 1+7(h). But then for h sufficiently small we also have |r(h)| < w and so we conclude
that 1 € H(h, Dy), namely that there is a point z(h) in the disk Dj which is mapped in
1 by H(h,-). This would then complete the proof of Proposition 4.3.3 if we were able to
prove that Im z(h) > 0. We therefore need to show that D), is in the domain of H(h,-),

namely,

Imz > plRe (2 — 2o)| Vz € Dy,.
We first estimate
Imz > Imé&(h) —2B|h| > (v —20)|h|.
Then
[Re z — zo| < [€(h) — 20| + [z = &(R)] < (e(a)] + 26) h]. (4.68)
We thus conclude that
v—26

Imz(h) > a) £ 28

|Re (z(h) — 20)] . (4.69)
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Thus it suffices to chose 8 = 1 and p = This guarantees at the same time the

7
3le(a)[+~
existence of a solution and the fact that z(h) has positive imaginary part when h < 0
(which results from combining (4.68) and (4.69).

In order to complete the proof of Proposition 4.3.3 we therefore just need to show

Lemma 4.7.1.

PRrROOF OF LEMMA 4.7.1. In order to show holomorphicity we just need to show that,
for each fixed z,

2 Z(—T‘1 o R )"
k=0

is holomorphic. Since the series converges in the operator norm, it suffices to show that
each map z — (—=T~! o R,,.)* is holomorphic for every k, for which indeed it suffices to
show that z — R,, . is holomorphic. This is however obvious from the explicit formula.
We therefore now come to the the Taylor expansion (4.67).

Step 1 We will show here that
[Rmo+n.zlleey < Clo)([h] + |z = 20) (4.70)

for every o €]0,1[, where ||L||z(c- is the operator norm of a bounded linear operator L
on C?. The estimate will have the following consequence. First of all using (4.64) and
l40|3. = 1 we expand

H(h2) = 1= (17 0 Rongena (), ) + S (=T 0 Ry ) (W) ) . (A71)
k=2
::R:?z,h)

Hence using (4.70) we estimate

[Bi(z, )] < D I(=T7" 0 Rngsnz)* (¥0) ool ol 1
k=2

< O (T ew I Rumgnzllewn)* 1ol ol = o] + 1z = zol) . (4.72)

k=2

for some fixed 0. In order to show (4.70) we write

Rmo-i—h,z(w) = (Z - ZO)’Cmo (:‘ i z (: AgQw)) + (2m0h + hz)lcmo(w) :

— —

Since % is smooth, it suffices to show that the operators B, := K, o EL are uniformly

bounded in L(C7). We first fix a smooth cut-off function ¢ € C°(]a —_2, a + 2[) which
equals 1 on [a — 1,a + 1] and write

1 —
BZ:B;%—BE::ICW)O(_ S0>+1Cm00( 7 )

o —Z
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But since (1—¢)/(E—z) enjoys a uniform bound in C*, it is easy to conclude that || B}||z(cr)
is bounded uniformly in z. We thus need to bound

2 _ L e—m0|t—s| SD(S) s) ds
B00) = g [ eS8y ds.

We first bound || B?||1~. We write 2 = z + iy and, since z is close to a, we select the only
a’ such that Z(a’) = = and write

B0 = g [ BNV W) [ s ),

) — iy mo s

=11 (1) =

9 [I]

~
—~

t)

2

Writing =&~ = 24 In(Z — z) we can integrate by parts to get
t—s —mg|t—s| /= — -
) = = [ mo = 2 () E() = 2)e(s) ds
::[271(15)
—mg|t—s| = d —=n—1
— [ - 2) (@) ) s) ds

N J/
-~

Z:Iz’z(t)
and use the uniform bound for In(Z(s) — 2) in L'([a — 2,a + 2]) to conclude that |I5;| and
|I52| are both bounded uniformly. As for I;, note that, on any compact interval K around
a’, we have, since Z’ is continuous and =’ < 0,

C(K):= ;g{p( z)| = —max ='(z) > 0.

rzeK

Therefore by the mean value theorem, for all s € K, there exists a ¢ = ¢(s) € K such that

=(s) = E(d') — iyl = |yl + |E(s) — ()] > |E(s) = E(a)] = [s = [|Z' ()] = |s — /| C(K),
By the definition of the Holder semi-norm, we thus have, for all s € K,
W)~ @) | [ller
E(s) —E(a) —1y| ~ C(K)|s —a'['~"
which is integrable. Furthermore, outside of K the integrand of [; is bounded and decays

exponentially, therefore one can uniformly bound I;.
We next wish to bound the seminorm

[B2(¥)], = sup |B§(¢)(t)_— ,Bf(w)(t’ﬂ |
t£t! |t t |

We write
B ()(t) = BX(W)(t') = (11(t) — Li(¥)) + ¥'(a)(12(t) — L(t)) -

Using that |e~™0lt=sl — e=molt'=sl| < C|t — | we can bound
(a)]

1) - 1) < Cle— ] [ 1o |"”)—

L] s < Clvllerlt— 11,
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Similarly we can write
aal®) - Laalt)| < Ot~/ [ |1n
1y

Next denoting the function (Z'(s))
further

La(t)— I, (t) = mo(/ e ™D PB(s) ds — / e~ B(s) ds>
¢ ¢

(.

(@) )s)

(s)In(ZE(s) — z) by B(s) we assume t > t’ and write

In(Z(s) — 2) ds < C|t —1].

=14 (L)

t t
—m0</ e~mot=9) B(s) ds—/ e =) B(s) ds).

N J/

-~

=:J_(t,t")

Then we choose p = l let p’ be the dual exponent and estimate

t
T (4,1 <C’|t—t’|/ Olds+ | |B(s)|ds

< Clt=¢[IBller + [t — t’l"HBHLp' :
A similar estimate for J_(¢,¢') finally shows the existence of a constant C' such that
[BZ(W)(t) = B2 (@) ()] < Cllvller (Jt =] + [t =#]7) .
Clearly this implies
[ B2()(t) = B2() ()] < Cll¢llealt = t']7 if Jt—¢| < 1.
On the other hand we can trivially bound
[ B2W)(t) — B2 () ()] < 2| BX ()]l < Cllellco|t = ¢|7 if [t =] > 1.

Step 2. In this second step we compute
<T_1Rm,z<¢0)a w0> = <T_1 © lcmo (A((E - Z)_l - ( - ZO) )¢O) 1/)0>
+ (2moh 4+ h*){(T ™" 0 Kyng (10), o) -

Recalling (4.62) (and using that both 7~ and KC,,, are self-adjoint) we rewrite the expres-
sion as

<T_1Rm,z(w0)7 ¢0> = (Z - ZO) T_l o ICmO (A(E - Z)_l(E - ZO)_1¢0)7¢0> + 2mah + h2
1

= (2 — 2){A(E — 2) " HE — 20) 0, T 0 Ky (¥0)) + 2may, + h?
= (2 — 20) (A(E — 2) "1 (E — 20) "o, ¥o) +2mah + h*. (4.73)
=iG(2)

—e(a):= lim  G(z)= lim /ﬁWO(S)PE(S—

Im 2>0,2—E(a) Im 2>0,z2—E(a)
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Observe indeed that inserting G(z) = —c(a)+o(1) in (4.73) and taking into account (4.71)
and (4.72) we conclude that (4.67) holds.

In order to compute c¢(a) we observe first that the function ¢(s) := [o(s)]
smooth and decays exponentially. We thus rewrite

G(e) = [ g —solo)ds.

=(s) — 2

2 As)

=)= 18

Next we decompose z into its real and imaginary part as z = x + ¢y and observe that

: : E(s)—x
lim ReG(z) = lim s)ds
Im 2>0,2—E(a) (2) x—E(a),yw/ (Z(s) —x)% + y2¢( )
Here we are only interested in showing that the limit exists and we thus fix a cut-off
function ¢ € C*(Ja — 2,a + 2]), identically 1 on [a — 1,a + 1] and split the integral into
=(s)—= / E(s)— =z
ReG(z) = — s)p(s)ds + — $)(1—p(s))ds.
0= [ mm oo it [ =) = e(s)
The second integral has a limit, while in order to show that the first has a limit we write

E(s)—x 1 d _ 5 o
= — In((2(s) — .
o) —ar =) as MEE —a) 4y
We then integrate by parts and use the fact that In((Z(s)—z)?+y?) converges to 21n [(Z(s)—
=(a)| strongly in Li([a — 2, a+ 2]) for every ¢ to infer the existence of the limit of the first
integral.
As for the imaginary part we write instead

—_
—

) . Y
lim ImG(z) = lim
Im 2>0,2—E(a) (2) e—E()yio ) (2(s) — )2 + y?

o(s)ds. (4.74)

We wish to show that the latter integral converges to

— (a ds _ wo(a)
1=00) | et~ A 47)

On the other hand ¢(a) = |¢p(a)?A’'(a)(Z'(a))~ . Since A'(a) > 0 and Z'(a) < 0, we
conclude that c(a) exists and it is a complex number with positive imaginary part, which
completes the proof of the lemma.

It remains to show the convergence of (4.74) to (4.75). First observe that for each x
sufficiently close to Z(a) there is a unique ' = Z7'(x) such that Z(¢’) = x. Changing
variables (s becomes a’ + s), the integral in (4.74) becomes

y /
/ Elats) —afg 2@ tolds (4.76)

and we wish to show that its limit is I as (a’,y) — (a,0). Next, fix any 6 > 0 and observe
that

!/

. Y
lim
v=0 Jigss (E(@ + 8) — 2)% + 3

d(a +s)ds =0
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uniformly in @’ € [a — 1,a + 1]. We therefore define

5
! - Y I
1(0,d,y) := /—5 (E(a’+s)—w)2+y2¢(a +s)ds

and we wish to show that, for every € > 0 there is a 0 > 0 such that

limsup [1(d,d’,y) — I| < Ce, (4.77)
(a’,y)1(a,0)

where C' is a geometric constant. We rewrite

v ¢(a’ +ys)
I / — .
(0,a',y) /—5311 y2(Z(a + ys) — =(a'))? + 1 ds

Fix now ¢ and observe that, since =’ and ¢ are continuous, if § is chosen sufficiently small,
then

((B'(a))? — €%)s” <y *(E(d' 4+ ys) — E(d'))? < (E'(a)® 4 £%)s? (4.78)
lp(a" +ys) — ¢(a)| < e. (4.79)

for all |[a’ —a| < ¢ and y|s| < 0. Choosing € > 0 so that ¢ < w we easily see that, when
la’ — a| < 0, we have

< (Ce.

, gy~ ds
1(6,a',y) — ¢(a) /Ml E@)P2+1

In particular, as y | 0, we conclude (4.77). O

4.8. Proof of Proposition 4.3.5
We reduce the proof of Proposition 4.3.5 to the following lemma.

LEMMA 4.8.1. Consider G := {m > 1,m # mq,my : Un # 0}. Then G is relatively
open and relatively closed in |1, 00[\{ma, ms}.

Proposition 4.3.5 is an obvious consequence of the latter lemma and of Proposition 4.3.3:
Lemma 4.8.1 implies that G is the union of connected components of [1, co[\{m,, my}. On
the other hand the connected component |m;, m,[ intersects G because of Proposition 4.3.3
and thus it is contained in GG. We thus complete the proof of Proposition 4.3.5 showing
Lemma 4.8.1

Proor or LEMMA 4.8.1. We start with some preliminary considerations. Fix an in-
terval [c, d] C]1, 00[\{m4, mp}. Recalling Proposition 4.1.4 we know that, since the operator
norm of £, is bounded uniformly in m € [c, d],

(a) There is R > 0 such that U,, C Bg(0) for all m € [c,d].
However it also follows from Proposition 4.3.1 that
(b) There is a § > 0 such that U,,, C {Imz > ¢}.
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Step 1. We first prove that G is relatively closed. To that end we fix a sequence
mj — m €)1, 00[\{m,, my} such that m; belongs to G. Without loss of generality we can
assume {m;} C [c,d] C]1,00[\{m,, my}. For each m; we can then consider z; € %,
which by (a) and (b) we can assume to converge to some z € C with positive imaginary
part. We then let 1; be a sequence of nontrivial elements in L? such that

A

— P+ mip; + =z, ¥i=0, (4.80)
= J

A

—2zj

and normalize them to |[¢;| ;2 = 1 Since Imz; > 0 > 0, the sequence of functions =

enjoy uniform bounds in the spaces L' and C*. We can then argue as in Section 4.5 to
find that
(i) [|¥}llz> enjoy a uniform bound;
(ii) There are uniformly bounded nonzero constants {C’f} with the property that ¢,
is asymptotic to C’feijjt and Foo;
(iii) There is a Ty > 0 independent of j with the property that

C.
[0;(t) — Cie™™ < |—2J|e$mﬂ Vit>Ty.

These three properties together imply that a subsequence, not relabeled, converges strongly
in L? to some 1. Passing into the limit in (4.80) we conclude that

A
_¢//+m2,¢+’:—_z¢:0

This shows that z € %,,, i.e. that m € G.

Step 2. Here we show that G is relatively open. To that end we consider some sequence
m; — m €|1,00[\{mq, mp} with the property that m; ¢ G and we show that m ¢ G. By
(a) and (b) above, it suffices to show that the domain

A:={|z| < Bg:Imz > §}

does not contain any element of specm™'L,,. Observe first that, since we know that it
does not intersect v = A, the distance between v and any element in specm=1L,, is larger
than a positive constant €. Recalling that the spectrum on the upper half complex space
is discrete, we have that
P, = /(m_lﬁm —2)'dz
v
is a projection on a finite-dimensional space which contains all eigenspaces of the elements

z € specm L, N A =U,. And since all such elements belong to the discrete spectrum,
U, = 0 if and only if P,, = 0. On the other hand

P, = /(mj_lﬁmj —2)tdz

gl
equals 0 precisely because m; € G. We thus just need to show that P, converges to P,
to infer that m € G. The latter follows from the following observations:
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(i) Since 7y is a compact set and does not intersect the spectrum of m=1L,,, there is
a constant M such that [[(m™'L,, —2)7 Yo < M for all z € ;
(ii) L., converges to L,, in the operator norm;
(iii) Writing
(m; ' Lo, —2) " =Ad+ (m Loy — 2) " (M Ly —m ™ L)) (M Ly — 2) 71
when Hm;lﬁmj —m Ll < 2LM we can use the Neumann series for the inverse
to infer

sup ||(mj_1£mj —2) = (m L = 2) o S OmTL,, — mj_lljijo ,
zZEy

for some constant C' independent of j.
We then conclude that P, converges to P, in the operator norm. O
REMARK 4.8.2. An immediate outcome of the argument above is that the sum of the
algebraic multiplicities of z € U,,, as eigenvalues of m~1L,,, is constant on any connected

component of | — oo, 0o[\{m,, my}. Indeed, it coincides with the rank of the operator P,
defined in Step 2.

4.9. Proof of Lemma 4.3.7

Rather than looking for a suitable = we will write G := Z' + 22 and look for the latter
function after expressing

¢
=(t) :—/ e 2IG (1) dr

—0o0

To check that the above formula recovers = under our assumptions, observe first that
G=='"+2=

by the classical solution formula for first order ODEs with constant coefficients. It thus
suffices to show that that the integral and = coincide in a neighborhood of —co. To that
end consider that that Z(t) = Z(—o00) — ¢pe? for any sufficiently negative ¢ and thus

G(t) = 22(—00) — 4cpe*

so that, for any such ¢,

[1]
[1]

t
() = e / (95 (—00)e?™ — dege™) dr = Z(—o00) — coet.
We next read the conditions = € % in terms of G to find that they are

(i) G(t) = 25(—00) — 4cpe? for all ¢t sufficiently negative;
(i) G(t) = e for all t > In 2;
(iii) There are exactly two zeros a < b of G’ and G"(a) > 0, G"(b) < 0;
(iv) ffoo e 2=1G (1)dr < 0 for every t.
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The conditions (i), (ii), and (iii) are obviously equivalent to the corresponding ones in
Definition 4.2.1. As for (iv), we just need to check the formula

¢
E’(t):/ e 2UIG (7Y dr

Arguing as above, the solution formula for first order ODEs with constant coefficients show
that the two sides of the above identity can differ at most by a constant, while a direct
verification using (i) shows that the two sides coincide for sufficiently negative t’s.

We next can read all the above conditions in terms of A, more precisely it suffices to
impose

(i) A(t) = —8coe2t for all ¢ sufficiently negative;

(it") A(t) = ~A 