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(Elia Brué) School of Mathematics, Institute for Advanced Study, 1 Ein-
stein Dr., Princeton NJ 08540, USA

Email address : elia.brue@ias.edu

(Maria Colombo) Institute of Mathematics, EPFL SB, Station 8, CH-1015
Lausanne, Switzerland

Email address : maria.colombo@epfl.ch

(Camillo De Lellis) School of Mathematics, Institute for Advanced Study,
1 Einstein Dr., Princeton NJ 08540, USA

Email address : camillo.delellis@ias.edu

(Vikram Giri) Department of Mathematics, Princeton University, Wash-
ington Rd., Princeton, NJ 08544, USA

Email address : vgiri@math.princeton.edu

(Maximilian Janisch) Institut für Mathematik, Universität Zürich, Win-
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CHAPTER 1

Introduction

In these notes we will consider the Euler equations in the 2-dimensional space in vor-
ticity formulation, which are given by ∂tω + (v · ∇)ω = f

v(·, t) = K2 ∗ ω(·, t)
(1.1)

where K2 is the usual 2-dimensional Biot-Savart kernel and f is a given external force. v
is the velocity field, and it is a function defined on a space-time domain of type R2× [0, T ].
By the Biot-Savart law we have ω = curl v = ∂x1v2 − ∂x2v1 = ∇× v.

We will study the Cauchy problem for (1.1) with initial data

ω(·, 0) = ω0 (1.2)

on the domain R2 × [0,∞[ under the assumptions that

(i) ω0 ∈ L1 ∩ Lp for some p > 2 and v0 = K2 ∗ ω0 ∈ L2;
(ii) f ∈ L1([0, T ], L1 ∩ Lp) and K2 ∗ f ∈ L1([0, T ], L2) for every T <∞.

In particular we understand solutions ω in the usual sense of distributions, namely,∫ T

0

∫
R2

[ω(∂tϕ+K2 ∗ ω · ∇ϕ) + fϕ] dx dt = −
∫
R2

ϕ(x, 0)ω0(x) dx (1.3)

for every smooth test function ϕ ∈ C∞
c (R2× [0, T [). In view of (i)-(ii) and standard energy

estimates we will restrict our attention to weak solutions which satisfy the following bounds:

(a) ω ∈ L∞([0, T ], L1 ∩ Lp) and v ∈ L∞([0, T ], L2) for every T <∞.

The purpose of these notes is to give a proof of the following:

Theorem 1.0.1. For every p ∈]2,∞[ there is a triple ω0, v0, and f satisfing (i)-(ii)
with the property that there are uncountably many solutions (ω, v) of (1.1) and (1.2) on
R2 × [0,∞[ which satisfy the bound (a). Moreover, ω0 can be chosen to vanish identically.

In fact the f given by the proof is smooth and compactly supported on any closed
interval of time [ε, T ] ⊂]0,∞[. Moreover, a closer inspection of the argument reveals that
any of the solutions (ω, v) enjoy bounds on the W 1,4

loc norm of ω(t, ·), and good decay
properties at infinity, whenever t is positive (and obviously such estimates degenerate as
t ↓ 0). In particular v belongs to C1

loc(R2×]0,∞[). It is not difficult to modify the arguments
detailed in these notes to produce examples which have even more regularity and better
decay for positive times, but we do not pursue the issue here.

7



8 1. INTRODUCTION

Remark 1.0.2. Recall that

∥K2 ∗ ω(·, t)∥L∞ ≤ C(p)(∥ω(·, t)∥L1 + ∥ω(·, t)∥Lp) (1.4)

whenever p > 2 (cf. the Appendix for the proof). Therefore we conclude that each solution
v in Theorem 1.0.1 is bounded on R2 × [0, T ] for every positive T .

The above groundbreaking result was proved by Vishik in the two papers [33] and [34]
(upon which these notes are heavily based) and answers a long-standing open question in
the PDE theory of the incompressible Euler equations, as it shows that it is impossible to
extend to the Lp scale the following classical uniqueness result of Yudovich.

Theorem 1.0.3. Consider a strictly positive T , an initial vorticity ω0 ∈ L1 ∩ L∞ with
v0 = K2∗ω0 ∈ L2 and an external force f ∈ L1([0, T ];L1∩L∞) with K2∗f ∈ L1([0, T ];L2).
Then there is a unique solution ω of (1.1) and (1.2) on R2× [0, T ] satisfying the estimates
ω ∈ L∞([0, T ], L1 ∩ L∞) and v = K2 ∗ ω ∈ L∞([0, T ], L2).

The above theorem in a bounded domain was originally proven by Yudovich in 1963
[37], who also proved a somewhat more technical statement on unbounded domains. We
have not been able to find an exact reference for the statement above (cf. for instance [26,
Theorem 8.2] and the paragraph right afterwards, where the authors point out the validity
of the Theorem in the case of f = 0). We therefore give a detailed proof in the appendix
for the reader’s convenience.

Remark 1.0.4. We recall that the solution of Theorem 1.0.3 satisfies a set of impor-
tant a priori estimates, which can be justified using the uniqueness part and a simple
approximation procedure. Indeed if (ω, v) is a smooth solution of (1.1), then the method
of characteristics shows that, for every t, there exists a family of volume-preserving diffeo-
morphisms Ts : R2 → R2, s ∈ [0, t], such that

ω(x, t) = ω0(T0x) +

∫ t

0

f(Tsx, s) ds.

Therefore, since volume-preserving diffeomorphisms preserve all Lq norms, we get, for all
q ∈ [1,∞],

∥ω(·, t)∥Lq ≤ ∥ω0∥Lq +

∫ t

0

∥f(·, s)∥Lq ds.

Furthermore, a usual integration by parts argument, as seen in [37, Lemma 1.1], shows
that v satisfies the estimate

∥v(·, t)∥L2 ≤ ∥v0∥L2 +

∫ t

0

∥K2 ∗ f(·, s)∥L2 ds.

Remark 1.0.5. Recall that the Biot-Savart kernel is given by the formula

K2(x1, x2) =
x⊥

2π|x|2
=

1

2π|x|2
(−x2, x1) . (1.5)

In particular, while K2 ̸∈ Lp for any p, it can be easily broken into

K2 = K21B1 +K21Bc
1
, (1.6)
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where B1 denotes the unit ball around 0. Observe that K21B1 ∈ Lq for every q ∈ [1, 2[ and
K21Bc

1
∈ Lr for every r ∈]2,∞]. Under the assumption that ω ∈ L2−δ for some positive

δ > 0, this decomposition allows us to define the convolution K2 ∗ ω as (K21B1) ∗ ω +
(K21Bc

1
) ∗ ω, where each separate summand makes sense as Lebesgue integrals thanks to

Young’s convolution inequality.1

On the other hand we caution the reader that, for general ω ∈ L2, K2 ∗ ω may not be
well-defined. More precisely, if we denote by S the Schwartz space of rapidly decaying
smooth functions and by S ′ the space of tempered distributions (endowed, respectively,
with their classical Fréchet and weak topologies), it can be shown that there is no contin-
uous extension of the operator S ∋ ω 7→ K2 ∗ ω ∈ S ′ to a continuous operator from L2

to S ′, cf. Remark B.4.1.
This fact creates some technical issues in many arguments where we will indeed need

to consider a suitable continuous extension of the operator ω 7→ K2 ∗ ω to some closed
linear subspace of L2, namely, m-fold rotationally symmetric functions in L2 (for some
integer m ≥ 2). Such an extension will be shown to exist thanks to some special structural
properties of the subspace.

1.1. Idea of the proof

We now describe, briefly, the rough idea of and motivation for the proof. An extensive
description of the proof with precise statements can be found in Chapter 2, which breaks
down the whole argument into three separate (and independent) parts. The subsequent
three chapters are then dedicated to the detailed proofs.

First, we recall two essential features of the two-dimensional Euler equations:

(1) Steady states. The two-dimensional Euler equations possess a large class of ex-
plicit, radially symmetric steady states called vortices :2

ω̄(x) = g(|x|), v̄(x) = ζ(|x|)x⊥. (1.7)

(2) Scaling symmetry. The Euler equations possess a two-parameter scaling symme-
try: If (ω, v) is a solution of (1.1) with vorticity forcing f , and λ, µ > 0, then

ωλ,µ(x, t) = µω(λx, µt), vλ,µ(x, t) =
µ

λ
v(λx, µt), (1.8)

define a solution with vorticity forcing

fλ,µ(x, t) = µ2f(λx, µt). (1.9)

The scaling symmetry corresponds to the physical dimensions

[x] = L, [t] = T, [v] =
L

T
, [ω] =

1

T
, and [f ] =

1

T 2
. (1.10)

1Young’s convolution inequality states that, if g1 ∈ Lp1 and g2 ∈ Lp2 with 1 ≤ 1
p1

+ 1
p2

≤ 2, then

g1(y − ·)g2(·) belongs to L1 for a.e. y and g1 ∗ g2 ∈ Lr for 1
r = 1

p1
+ 1

p2
− 1.

2They are sometimes also called rotating or circular flows.
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We now elaborate on the above two features:

1. Unstable vortices. The stability analysis of shear flows u = (b(y), 0) and vortices (1.7)
is classical, with seminal contributions due to Rayleigh [29], Kelvin [31], Orr [28], and many
others. The linearized Euler equations around the background vortex ω̄ are

∂tω − Lstω := ∂tω + ζ(r)∂θω + (v · er)g′(r) = 0, v = K2 ∗ ω. (1.11)

Consider the eigenvalue problem associated to the linearized operator Lst. It suffices to
consider ψ = eikθψk(|x|), k ≥ 0, the stream function associated to a vorticity perturbation
ω (that is, ∆ψ = ω). It is convenient to pass to an exponential variable s = log r and define
ϕ(s) = ψk(e

s); A(s) = esg′(es) (r × the radial derivative of the background vorticity); and
Ξ(s) = ζ(es) (the differential rotation). The eigenvalue problem for Lst, with eigenvalue
λ = −ikz, can be rewritten as

(Ξ(s)− z)

(
d2

dy2
− k2

)
ϕ− A(s)ϕ = 0. (1.12)

This is Rayleigh’s stability equation. The eigenvalue λ is unstable when Im(z) > 0, in
which case we can divide by Ξ − z and analyze a steady Schrödinger equation. It is
possible to understand (1.12) well enough to design vortices for which the corresponding
linear operator has an unstable eigenfunction. For shear flows, this analysis goes back
to Tollmien [32]. The problem was treated rigorously by Z. Lin [22] for bounded and
unbounded shear flows and rotating flows in an annulus.3

The case of unbounded vortices, which is the crucial one for the purposes of these notes,
was treated by Vishik in [34], see Chapter 4 below. In the cases relevant to these notes,
Lst has at least one unstable eigenvalue λ. While the latter could well be real, for the sake
of our argument let us assume that it is a complex number λ = a0 + b0i (a0, b0 > 0) and
let λ̄ = a0 − b0i be its complex conjugate. If we denote by η and η̄ two corresponding
(nontrivial) eigenfunctions, it can be checked that they are not radially symmetric.

With the unstable modes in hand, one may seek a trajectory on the unstable manifold
associated to λ and λ̄. For example, one such trajectory may look like

ω = ω̄ + ωlin + o(ea0t), (1.13)

where ωlin = Re(eλtη) is a solution of the linearized Euler equations (1.11). These solutions
converge to ω̄ exponentially in backward time. Hence, we expect that certain unstable
vortices exhibit a kind of non-uniqueness at time t = −∞ and moreover break the radial
symmetry. The existence of unstable manifolds associated to a general class of Euler flows
in dimension n ≥ 2 was demonstrated by Lin and Zeng [25, 24].4

2. Self-similar solutions. It is natural to consider solutions invariant under the scaling
symmetry and, in particular, it is natural to consider those self-similar solutions which

3For those interested in hydrodynamic stability more generally, see the classic monograph [8]. Chap-
ter 4 therein concerns the stability of shear flows, including Rayleigh’s criterion and a sketch of Tollmien’s
idea.

4There is a substantial mathematical literature on the nonlinear instability of Euler flows, see [13, 12,
14, 2, 36, 23].
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live exactly at the desired integrability. If we fix a relationship Lα ∼ T in the scaling
symmetries, the similarity variables are5

ξ =
x

t
1
α

, τ = log t (1.14)

v(x, t) =
1

t1−
1
α

V (ξ, τ), ω(x, t) =
1

t
Ω(ξ, τ). (1.15)

Notice that physical time t = 0 corresponds to logarithmic time τ = −∞. The function Ω
is known as the profile. The Euler equations, without force, in similarity variables are ∂τΩ−

(
1 + ξ

α
· ∇ξ

)
Ω + V · ∇ξΩ = 0

V = K2 ∗ Ω .
(1.16)

Profiles Ω satisfying ∥Ω(·, τ)∥Lp = O(1) as τ → −∞ satisfy ∥ω(·, t)∥Lp = O(t−1+ 2
αp ) as

t → 0+, and similarly in the weak Lp norms. Hence, the Lebesgue and weak Lebesgue
norms with p = 2/α would be O(1) in either variables. To show sharpness of the Yudovich
class, we consider 0 < α≪ 1.

The route to non-uniqueness through unstable vortices and self-similar solutions is
as follows: Suppose that Ω̄ is an unstable steady state of the similarity variable Euler
equations (1.16) (in particular, ω̄(x, t) = t−1Ω̄(ξ) is a self-similar solution of the usual Euler
equations). Find a trajectory Ω on the unstable manifold associated to Ω̄. In similarity
variables, the steady state Ω̄ will be “non-unique at minus infinity”, which corresponds to
non-uniqueness at time t = 0 in the physical variables.

One natural class of background profiles Ω̄ consists of power-law vortices ω̄ = β|x|−α,
β ∈ R, which are simultaneously steady solutions and self-similar solutions without force.
At present, we do not know whether the above strategy can be implemented with power-law
vortices.

Instead, we choose a smooth vortex profile g(|x|), with power-law decay as |x| → +∞,
which is unstable for the Euler dynamics. Our background will be the self-similar solution
with profile Ω̄ = g(|ξ|), which solves the Euler equations with a self-similar force. This
profile may be considered a well-designed smoothing of a power-law vortex. When the
background is large, it is reasonable to expect that the additional term in the similarity
variable Euler equations (1.16) can be treated perturbatively, so that g(|ξ|) will also be
unstable for the similarity variable Euler dynamics. This heuristic is justified in Chapter 3.

In order to ensure that the solutions have finite energy, we also truncate the back-
ground velocity at distance O(1) in physical space. This generates a different force. The
truncation’s contribution to the force is smooth and heuristically does not destroy the non-
uniqueness, which can be thought of as “emerging” from the singularity at the space-time
origin. Our precise Ansatz is (2.38), which is the heart of the nonlinear part of these notes.

5We may regard the logarithmic time as τ = log(t/t0), so that t is non-dimensionalized according to
a fixed reference time t0 = 1.



12 1. INTRODUCTION

1.2. Differences with Vishik’s work

While we follow the strategy of Vishik in [33, 34], we deviate from his proof in some
ways. We start by listing two changes which, although rather minor, affect the presentation
substantially.

(1) We decouple the parameter α in (1.14) governing the self-similar scaling from the
decay rate ᾱ of the smooth profile g at infinity. In [33] these two parameters are
equal; however, it is rather obvious that the argument goes through as long as
α ≤ ᾱ. If we then choose α < ᾱ the resulting solution has zero initial data. This
is a very minor remark, but it showcases the primary role played by the forcing f
in the equation.

(2) Strictly speaking Vishik’s Ansatz for the “background solution” is in fact differ-
ent from our Ansatz (even taking into account the truncation at infinity). The
interested reader might compare (2.9) and (2.11) with [33, (6.3)]. Note in par-
ticular that the coordinates used in [33] are not really (1.14) but rather a more
complicated variant. Moreover, Vishik’s Ansatz contains a parameter ε, whose
precise role is perhaps not initially transparent, and which is ultimately scaled
away in [33, Chapter 9]. This obscures that the whole approach hinges on finding
a solution Ω of a truncated version of (1.16) asymptotic to the unstable manifold
of the steady state Ω̄ at −∞. In our case, Ω is constructed by solving appropriate
initial value problems for the truncated version of (1.16) at negative times −k and
then taking their limit; this plays the role of Vishik’s parameter ε.

We next list two more ways in which our notes deviate from [33, 34]. These differences
are much more substantial.

(3) The crucial nonlinear estimate in the proof of Theorem 1.0.1 (cf. (2.18) and the
more refined version (2.25)), which shows that the solution Ω is asymptotic, at
minus infinity, to an unstable solution of the linearized equation, is proved in a
rather different way. In particular our argument is completely Eulerian and based
on energy estimates, while a portion of Vishik’s proof relies in a crucial way on
the Lagrangian formulation of the equation. The approach introduced here will
be exploited by the first and third author in their forthcoming work [1] and we
believe it might be useful in other contexts.

(4) Another technical, but crucial, difference, concerns the simplicity of the unstable
eigenvalue η. While Vishik claims such simplicity in [34], the argument given in
the latter reference is actually incomplete. After we pointed out the gap to him, he
provided a clever way to fill it in [35]. These notes point out that such simplicity
is not really needed in the nonlinear part of the analysis: in fact a much weaker
linear analysis than the complete one carried in [34] is already enough to close the
argument for Theorem 1.0.1. However, for completeness and for the interested
readers, we include in Appendix A the necessary additional arguments needed to
conclude the more precise description of [34].
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1.3. Further remarks

Recently, Bressan, Murray, and Shen investigated in [5, 4] a different non-uniqueness
scenario for (1.1) which would demonstrate sharpness of the Yudovich class without a
force. The scenario therein, partially inspired by the works of Elling [9, 10], is also based
on self-similarity and symmetry breaking but follows a different route.

Self-similarity and symmetry breaking moreover play a central role in the work of
Jia, Šverák, and Guillod [20, 19, 16] on the conjectural non-uniqueness of weak Leray-
Hopf solutions of the Navier-Stokes equations. One crucial difficulty in [19], compared to
Vishik’s approach, is that the self-similar solutions in [19] are far from explicit. Therefore,
the spectral condition therein seems difficult to verify analytically, although it has been
checked with non-rigorous numerics in [16]. The work [19] already contains a version of
the unstable manifold approach, see p. 3759–3760, and a truncation to finite energy.

At present, the above two programs, while very intriguing and highly suggestive, require
a significant numerical component not present in Vishik’s approach. On the other hand,
at present, Vishik’s approach includes a forcing term absent from the above two programs,
whose primary role is showcased by the fact that the initial data can be taken to be zero.

Much of the recent progress on non-uniqueness of the Euler equations has been driven
by Onsager’s conjecture, which was solved in [17]. With Theorem 1.0.1 in hand, we can
now summarize the situation for the Euler equations in dimension three as follows:

• α ∈ (1, 2): (Local well-posedness and energy conservation) For each divergence-free u0 ∈
Cα(T3) and force f ∈ L1(]0, T [;Cα(T3)), there exists T ′ ∈]0, T [ and a unique local-in-
time solution u ∈ L∞(]0, T ′[;Cα(T3)). The solution u depends continuously6 in the above
class on its initial data and forcing term. Moreover, the solution u conserves energy.

• 1/3 < α < 1: (Non-uniqueness and energy conservation) There exist T > 0, a force
f ∈ L1(]0, T [;L2 ∩ Cα(R2 × T)), and two distinct weak solutions u1, u2 ∈ L∞(]0, T [;L2∩
Cα(R2 × T)) to the Euler equations with zero initial data and force f . For any T > 0,
weak solutions u ∈ L∞(]0, T [;L2 ∩ Cα(R2 × T)) with forcing in the above class conserve
energy [7].

• 0 < α < 1/3: (Non-uniqueness and anomalous dissipation) There exist T > 0 and
two distinct admissible weak solutions (see [6]) u1, u2 ∈ L∞(]0, T [;Cα(T3)) to the Euler
equations with the same initial data and zero force and which moreover dissipate energy.

6The continuous dependence is more subtle for quasilinear equations than semilinear equations, and
uniform continuity is not guaranteed in the regularity class in which the solutions are found, see the
discussion in [30]. One can see this at the level of the equation for the difference of two solutions u(1) and
u(2): One of the solutions becomes the “background” and, hence, loses a derivative. One way to recover

the continuous dependence stated above is to compare the above two solutions with initial data u
(1)
0 , u

(2)
0

and forcing terms f (1), f (2) to approximate solutions u(1),ε, u(2),ε with mollified initial data u
(1),ε
0 , u

(2),ε
0

and mollified forcing terms f (1),ε, f (2),ε. One then estimates ∥u(1) − u(2)∥ ≤ ∥u(1) − u(1),ε∥ + ∥u(1),ε −
u(2),ε∥+∥u(2),ε−u(2)∥. The approximate solutions, which are more regular, are allowed to lose derivatives
in a controlled way.
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While we are not aware of the first two statements with force in the literature, the
proofs are easy adaptations of those with zero force. In order to obtain the non-uniqueness
statement in the region 1/3 < α < 1, one can extend the non-unique solutions on R2

to be constant in the x3 direction. The borderline cases may be sensitive to the function
spaces in question. For example, the three-dimensional Euler equations are ill-posed in Ck,
k ≥ 1 [3]. Furthermore, of the above statements, only the negative direction of Onsager’s
conjecture is open in n = 2.

We finally point out that an expanded version of these notes is contained in the master’s
thesis of the sixth author, cf. [18].



CHAPTER 2

General strategy: background field and self-similar coordinates

2.1. The initial velocity and the force

First of all, the initial velocity v0 of Theorem 1.0.1 will have the following structure

v0(x) =

{
β(2− α)−1|x|−αχ(|x|)x⊥ if ᾱ = α

0 if ᾱ > α
(2.1)

where 0 < α ≤ ᾱ < 1, χ is a smooth cut-off function, compactly supported in R and
identically 1 on the interval [−1, 1], and β is a sufficiently large constant (whose choice will
depend on α). For simplicity we will assume that χ takes values in [0, 1] and it is monotone
non-increasing on [0,∞[, even though none of these conditions play a significant role.

A direct computation gives div v0 = 0. The corresponding ω0 is then given by

ω0(x) = curl v0(x) =

{
β [|x|−αχ(|x|) + (2− α)−1χ′(|x|)|x|1−α] if ᾱ = α

0 if ᾱ > α
(2.2)

and the relation v0 = K2 ∗ ω0 comes from standard Calderón-Zygmund theory (since
div v0 = 0, curl v0 = ω0 and v0 is compactly supported). ᾱ ∈]0, 1[ is chosen depending on p
in Theorem 1.0.1, so that ᾱp < 2: in the rest of the notes we assume that p, ᾱ, and α are
fixed. In particular it follows from the definition that ω0 ∈ L1 ∩Lp and that v0 ∈ L1 ∩L∞.

Next, the function |x|−ᾱ will be appropriately smoothed to a (radial) function

Ω̄(x) = g(|x|) (2.3)

such that:

g ∈ C∞([0, R]) ∀R > 0 , (2.4)

g(r) = r−ᾱ for r ≥ 2, (2.5)

g(r) = g(0) +
g′′(0)

2
r2 for r in a neighborhood of 0. (2.6)

This smoothing will be carefully chosen so to achieve some particular properties, whose
proof will take a good portion of the notes (we remark however that while a sufficient
degree of smoothness and the decay (2.5) play an important role, the condition (2.6) is
just technical and its role is to simplify some arguments). We next define the function
V̄ (x) as

V̄ (x) = ζ(|x|)x⊥ , (2.7)

15
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where ζ is

ζ(r) =
1

r2

∫ r

0

ρg(ρ) dρ . (2.8)

Remark 2.1.1. Observe that under our assumptions Ω̄ ∈ Lq(R2) for every q > 2
ᾱ
, but

it does not belong to any Lq(R2) with q ≤ 2
ᾱ
. Since when p ≥ 2 the condition ᾱp < 2

implies ᾱ < 1, we cannot appeal to Young’s Theorem as in Remark 1.0.5 to define K2 ∗ Ω̄.
Nonetheless, V̄ can be understood as a natural definition of K2 ∗ Ω̄ for radial distribu-

tions of vorticity which are in L1
loc. Indeed observe first that div V̄ = 0 and curl V̄ = Ω̄, and

notice also that V̄ would decay at infinity like |x|−1 if Ω̄ were compactly supported. This
shows that V̄ would indeed coincide with K2 ∗ Ω̄ for compactly supported radial vorticities.
Since we can approximate Ω̄ with Ω̄N := Ω̄1BN

, passing into the limit in the corresponding
formulas for K2 ∗ Ω̄N we would achieve V̄ .

Note also that in the remaining computations what really matters are the identities
div V̄ = 0 and curl V̄ = Ω̄ and so regarding V̄ as K2 ∗ Ω̄ only simplifies our terminology
and notation.

The force f will then be defined in such a way that ω̃, the curl of the velocity

ṽ(x, t) = βt1/α−1V̄
( x

t1/α

)
χ(|x|) (2.9)

is a solution of (1.1). In particular, since (ṽ · ∇)ω̃ = 0, the force f is given by the explicit
formula

f(x, t) = ∂tω̃(x, t) . (2.10)

With this choice a simple computation, left to the reader, shows that ω̃ solves (1.1) with
initial data ω0. Note in passing that, although as pointed our in Remark 2.1.1 there is not
enough summability to make sense of the identity K2 ∗ Ω̄ = V̄ by using standard Lebesgue
integration, the relation K2 ∗ ω̃ = ṽ is made obvious by div ṽ = 0, curl ṽ = ω̃, and the
boundedness of the supports of both ω̃ and ṽ.

The pair (ω̃, ṽ) is one of the solutions claimed to exist in Theorem 1.0.1. The remain-
ing ones will be described as a one-parameter family (ωε, vε) for a nonzero choice of the
parameter ε, while (ω̃, ṽ) will correspond to the choice ε = 0. We will however stick to the
notation (ω̃, ṽ) to avoid confusions with the initial data.

It remains to check that f belongs to the functional spaces claimed in Theorem 1.0.1.

Lemma 2.1.2. ω̃ is a smooth function on {t > 0} which satisfies, for all t > 0 and
x ∈ R2,

ω̃(x, t) = βt−1Ω̄
( x

t1/α

)
χ(|x|) + βt−1ζ

(
|x|
t1/α

)
|x|χ′(|x|) , (2.11)

while the external force f and ∂tṽ = K2 ∗f belong, respectively, to the spaces L1([0, T ];L1∩
Lp) and L1([0, T ], L2) for every positive T . Likewise ω̃ ∈ L∞([0, T ], L1 ∩ Lp) and ṽ ∈
L∞([0, T ], L2).

We end the section with a proof of the lemma, while we resume our explanation of the
overall approach to Theorem 1.0.1 in the next section.
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Proof. The formula (2.11) is a simple computation. From it we also conclude that
ω̃ = curl ṽ is a smooth function on {t > 0} and hence differentiable in all variables. Observe

next that |V̄ (x)| ≤ C|x|1−ᾱ and we can thus estimate |ṽ(x, t)| ≤ Ct
ᾱ
α
−1|x|1−ᾱ. Since its

spatial support is contained in spt (χ), we conclude that ṽ is bounded and belongs to
L∞([0, T ], L2) for any T > 0.

Using that Ω̄(x) = |x|−ᾱ = g(|x|) for |x| ≥ 2, we write

ω̃(x, t) =βt−1g

(
|x|
t1/α

)
χ(|x|)1{|x|≤2t1/α} + βt

ᾱ
α
−1|x|−ᾱχ(|x|)1{|x|>2t1/α}

+ βt−1ζ

(
|x|
t1/α

)
|x|χ′(|x|) .

In particular, recalling that |Ω̄(x)| ≤ C|x|−ᾱ and ζ(|x|)|x| ≤ C|x|1−ᾱ we easily see that

∥ω̃(·, t)∥L1 ≤ C

∫
{|x|∈spt (χ)}

t
ᾱ
α
−1|x|−ᾱ dx+ C

∫
{|x|∈spt (χ′)}

t
ᾱ
α
−1|x|1−ᾱ dx , (2.12)

∥ω̃(·, t)∥pLp ≤ C

∫
{|x|∈spt (χ)}

t(
ᾱ
α
−1)p|x|−pᾱ dx+ C

∫
{|x|∈spt (χ′)}

t(
ᾱ
α
−1)p|x|p−pᾱ dx . (2.13)

This implies immediately that ω̃ ∈ L∞([0, T ], L1 ∩ Lp) for any T > 0 , given that ᾱp < 2
(and hence |x|−ᾱp is locally integrable).

We now differentiate in time in the open regions {|x| < 2t1/α} and {|x| > 2t1/α}
separately to achieve1

f(x, t) =− β

(
t−2g

(
|x|
t1/α

)
+

1

α
t−2−1/α|x|g′

(
|x|
t1/α

))
χ(|x|)1{|x|≤2t1/α}

+β
( ᾱ
α
− 1
)
t
ᾱ
α
−2|x|−ᾱχ(|x|)1{|x|>2t1/α}

− β

(
t−2ζ

(
|x|
t1/α

)
+

1

α
t−2−1/αζ ′

(
|x|
t1/α

)
|x|
)
|x|χ′(|x|)

=:f1(x, t) + f2(x, t)+f3(x, t) . (2.14)

We wish to prove that f ∈ L1([0, T ], L1∩Lp). On the other hand, since for any T0 > 0 both
f1+f2 and f3 are smooth and have compact support on R2× [T0, T ], it suffices to show that
f ∈ L1([0, T0], L

1 ∩ Lp) for a sufficiently small T0. Recalling that |g(|x|)| + |g′(|x|)||x| ≤
C|x|−ᾱ, we can then bound

|f1(x, t)| ≤ Ct−2+ ᾱ
α |x|−ᾱ1|x|≤2t1/α for all 0 < t < T0 and all x. (2.15)

1Since we will only estimate integral norms of f , its values on {|x| = 2t1/α} are of no importance.
However, given that f is in fact smooth over the whole domain {t > 0}, we can infer the validity of
the formula (2.14) for every point x ∈ {|x| = 2t1/α} by approximating it with a sequence of points in
{|x| < 2t1/α} and passing to the limit in the corresponding expressions.
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Thus

∥f1∥L1(R2×[0,T0]) ≤ C

∫ T0

0

t2/α−2 dt ,<∞ (2.16)

∥f1∥L1([0,T0];Lp(R2)) ≤ C

∫ T0

0

t2/(αp)−2 dt <∞ , (2.17)

where the condition 2 > ᾱp entered precisely in the finiteness of the latter integral. Coming
to the second termred, we observe that it vanishes when ᾱ = α. When α < ᾱ, since χ is
compactly supported in R, we get

∥f2∥L1(R2×[0,T0]) ≤ C

∫ T0

0

t
ᾱ
α
−2(1 + t

1
α
(2−ᾱ))dt < +∞

∥f2∥L1([0,T0];Lp(R2)) ≤
∫ T0

0

t
ᾱ
α
−2(1 + t

p
α
(2−ᾱ))1/pdt < +∞ .

The last term can be computed explicitly as

ζ(r) =
1

r2

(
C +

∫ r

2

ρ1−ᾱ dρ

)
= ar−2 + br−ᾱ for all r ≥ 2 ,

where a and b are two fixed constants. Likewise

ζ ′(r) = −2ar−3 − ᾱbr−ᾱ−1 for all r ≥ 2 .

Recall that χ′(|x|) = 0 for |x| ≤ 1. Therefore, for t ≤ T0 sufficiently small, the functions ζ
and ζ ′ are computed on |x|t−1/α ≥ 2 in the formula for f3 (cf. (2.14)). Thus,

f3(x, t) = −βt−2

((
1− 2

ᾱ

)
at

2
α |x|−1 + b

(
1− ᾱ

α

)
t
ᾱ
α |x|1−ᾱ

)
χ′(|x|)

red In particular f3 has compact support. Since α < 1 the function

−βt−2

(
1− 2

ᾱ

)
at

2
α |x|−1χ′(|x|) ,

is bounded, and thus belongs to L1([0, T0], L
1∩Lp). As for the second summand, it vanishes

if α = ᾱ, while its Lp norm at time t can be bounded by Ct−2+ ᾱ
α if ᾱ > α. The latter

function however belongs to L1([0, T0]).
Observe next that, since for every positive t the function f(·, t) is smooth and compactly

supported, K2 ∗ f(·, t) is the unique divergence-free vector field which belongs to L1 and
such that its curl gives f(·, t). Hence, since f(·, t) = curl ∂tṽ(·, t) and ∂tṽ(·, t) is smooth
and compactly supported, we necessarily have K2 ∗ f(·, t) = ∂tṽ(·, t). It remains to show
that ∂tṽ ∈ L1([0, T ];L2) for every positive T . To that end we compute red

ṽ(x, t) = βt1/α−1V̄
( x

t1/α

)
χ(|x|) = βt−1ζ

(
|x|
t1/α

)
x⊥χ(|x|)

∂tṽ(x, t) = −βt−2χ(|x|)x⊥
(
ζ

(
|x|
t1/α

)
+

1

α

|x|
t1/α

ζ ′
(

|x|
t1/α

))
.
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In order to compute the L2 norm of ∂tṽ(·, t) we break the space into two regions as in the
computations above. In the region {|x| ≤ 2t1/α} we use that |ζ|+ |g|+ |ζ ′| are bounded to
compute ∫

|x|≤2t1/α
|∂tṽ(x, t)|2 dx ≤ Ct−4

∫
|x|≤t1/α

|x|2 dx ≤ Ct4/α−4 ,

which is a bounded function on [0, 1]. On {|x| ≥ t1/α} we observe that the function can be
explicitly computed as

−βt−2χ(|x|)x⊥
((

1− 2

α

)
t2/α|x|−2 + b

(
1− ᾱ

α

)
t
ᾱ
α |x|−ᾱ

)
.

If we let R̄ > 0 be such that the support of χ is contained in BR̄, we use polar coordinates
to estimate ∫

|x|≥2t1/α
|∂tṽ(x, t)|2 dx ≤ Ct−4+4/α

∫ R̄

2t1/α

dρ

ρ
+ C|α− ᾱ|t2

ᾱ
α
−4 .

We can therefore estimate the L2 norm of ∂tṽ at time t by

∥∂tṽ(·, t)∥L2 ≤ C + C|α− ᾱ|t
ᾱ
α
−2 .

When α = ᾱ we conclude that the L2 norm of ∂tṽ is bounded, while for ᾱ > α the function
t 7→ t

ᾱ
α
−2 belongs to L1([0, T ]). □

2.2. The infinitely many solutions

We next give a more precise statement leading to Theorem 1.0.1 as a corollary.

Theorem 2.2.1. Let p ∈]2,∞[ be given and let α and ᾱ be any positive number such
that α ≤ ᾱ and ᾱp < 2. For an appropriate choice of the smooth function Ω̄ and of a
positive constant β as in the previous section, we can find, additionally:

(a) a suitable nonzero function η ∈ (L1 ∩H2)(R2;C) with K2 ∗ η ∈ L2(R2;C2),
(b) a real number b0 and a positive number a0 > 0,

with the following property.
Consider ω0, v0, ṽ, ω̃ = curl ṽ, and f as defined in (2.1),(2.2), (2.9), and (2.10). Then

for every ε ∈ R there is a solution ωε of (1.1) with initial data ω0 such that

(i) ωε ∈ L∞([0, T ], L1 ∩ Lp) for every T > 0;
(ii) vε := K2 ∗ ωε ∈ L∞([0, T ], L2) for every T > 0;
(iii) as t→ 0,

∥ωε(·, t)− ω̃(·, t)− εta0−1Re(tib0η(t−1/α·))∥L2(R2) = o(ta0+1/α−1) ; (2.18)

(iv) if b0 = 0, then η is real-valued.

Observe that, by a simple computation,

∥ta0−1Re(tib0η(t−1/α·))∥L2 = ta0+1/α−1∥Re(tib0η)∥L2 ,



20 2. GENERAL STRATEGY: BACKGROUND FIELD AND SELF-SIMILAR COORDINATES

and thus it follows from (2.18) that

lim sup
t↓0

t1−1/α−a0∥ωε(·, t)− ωε̄(·, t)∥L2 ≥ |ε− ε̄| max
θ∈[0,2π]

∥Re(eiθη)∥L2 (2.19)

(note that in the last conclusion we need (iv) if b0 = 0). Since ∥η∥L2 > 0, we conclude that
the solutions ωε described in Theorem 2.2.1 must be all distinct.

For each fixed ε, the solution ωε will be achieved as a limit of a suitable sequence
of approximations ωε,k in the following way. After fixing a sequence of positive times tk
converging to 0, which for convenience are chosen to be tk := e−k, we solve the following
Cauchy problem for the Euler equations in vorticity formulation

∂tωε,k + ((K2 ∗ ωε,k) · ∇)ωε,k = f

ωε,k(·, tk) = ω̃(·, tk) + εta0−1
k Re(tib0k η(t

−1/α
k ·)) .

(2.20)

Observe that, since tk is positive, the initial data ωε,k(·, tk) belongs to L1 ∩ L∞, while the
initial velocity defining vk,ε := K2 ∗ ωε,k(·, tk) belongs to L2. Since K2 ∗ f ∈ L1([0, T ], L2)
for every T , we can apply the classical theorem of Yudovich (namely, Theorem 1.0.3 and
Remark 1.0.4) to conclude that

Corollary 2.2.2. For every k, ε, and every T there exists a unique solution ωε,k of
(2.20) with the property that ωε,k ∈ L∞([tk, T ], L

1∩L∞) and vε,k ∈ L∞([tk, T ], L
2) for every

positive T . Moreover, we have the following bounds for every t

∥ωε,k(·, t)∥L1 ≤∥ωε,k(·, tk)∥L1 +

∫ t

tk

∥f(·, s)∥L1 ds (2.21)

∥ωε,k(·, t)∥Lp ≤∥ωε,k(·, tk)∥Lp +

∫ t

tk

∥f(·, s)∥Lp ds (2.22)

∥vε,k(·, t)∥L2 ≤∥vε,k(·, tk)∥L2 +

∫ t

tk

∥K2 ∗ f(·, s)∥L2 ds . (2.23)

Next, since we can easily bound ∥ωε,k(·, tk)∥L1 , ∥ωε,k(·, tk)∥Lp , and ∥vε,k(·, tk)∥L2 inde-
pendently of k, for each fixed ε we conclude

sup
k∈N

sup
t∈[tk,T ]

(∥ωε,k(·, t)∥L1 + ∥ωε,k(·, t)∥Lp + ∥vε,k(·, t)∥L2) <∞ . (2.24)

In turn we can use (2.24) to conclude that, for each fixed ε, a subsequence of ωε,k converges
to a solution ωε of (1.1) which satisfies the conclusions (i) and (ii) of Theorem 2.2.1.

Proposition 2.2.3. Assume p, α, ᾱ, ω0, v0, ω̃, ṽ, f, a0, b0, and η̄ are as in Theorem 2.2.1
and let ωε,k be as in Corollary 2.2.2. Then, for every fixed ε, there is a subsequence, not
relabeled, with the property that ωε,k converges (uniformly in C([0, T ], Lqw) for every positive
T and every 1 < q ≤ p, where Lqw denotes the space Lq endowed with the weak topology) to
a solution ωε of (1.1) on [0,∞[ with initial data ω0 and satisfying the bounds (i) and (ii)
of Theorem 2.2.1.
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The proof uses classical convergence theorems and we give it in the appendix for the
reader’s convenience. The real difficulty in the proof of Theorem 2.2.1 is to ensure that the
bound (iii) holds. This is reduced to the derivation of suitable estimates on ωε,k, which we
detail in the following statement.

Theorem 2.2.4. Assume p, α, ᾱ are as in Theorem 2.2.1 and fix ε > 0. For an ap-
propriate choice of Ω̄ and β there is a triple η, a0, and b0 as in Theorem 2.2.1 and three
positive constants T0, δ0, and C with the property that

∥ωε,k(·, t)− ω̃(·, t)− εta0−1Re (tib0η(t−1/α·))∥L2 ≤ Cta0+1/α−1+δ0 ∀t ∈ [tk, T0] . (2.25)

It is then obvious that the final conclusion (iii) of Theorem 2.2.1 is a consequence of the
more precise estimate (2.25) on the approximations ωε,k. The rest of these lecture notes
are thus devoted to the proof of Theorem 2.2.4 and we will start in the next section by
breaking it into two main parts.

2.3. Logarithmic time scale and main Ansatz

First of all, we will change variables and unknowns of the Euler equations (in vorticity
formulation) in a way which will be convenient for many computations. Given a solution ω
of (1.1) on R2×[T0, T1] with 0 ≤ T0 ≤ T1, we introduce a new function Ω on R2×[lnT0, lnT1]
with the following transformation. We set τ = ln t, ξ = xt−1/α and

Ω(ξ, τ) := eτω(eτ/αξ, eτ ) , (2.26)

which in turn results in

ω(x, t) = t−1Ω(t−1/αx, ln t) . (2.27)

Observe that, if v(·, t) = K2 ∗ ω(·, t) and V (·, τ) = K2 ∗ Ω(·, τ), we can derive similar
transformation rules for the velocities as

V (ξ, τ) = eτ(1−1/α)v(eτ/αξ, eτ ) , (2.28)

v(x, t) = t−1+1/αV (t−1/αx, ln t) . (2.29)

Likewise, we have an analogous transformation rule for the force f , which results in

F (ξ, τ) = e2τf(eτ/αξ, eτ ) , (2.30)

f(x, t) = t−2F (t−1/αx, ln t) . (2.31)

In order to improve the readability of our arguments, throughout the rest of the notes we
will use the overall convention that, given some object related to the Euler equations in
the “original system of coordinates”, the corresponding object after applying the transfor-
mations above will be denoted with the same letter in capital case.

Remark 2.3.1. Note that the naming of V̄ and Ω̄ is somewhat of an exception to this
convention, since (Ω̄, V̄ ) is a solution of (1.1) in Eulerian variables. However, if you “force
them to be functions of ξ,” which is how they will be used in the non-linear part, then
they solve the Euler equations in self-similar variables with forcing (see (2.33)).
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Straightforward computations allow then to pass from (1.1) to an equation for the new
unknown Ω in the new coordinates. More precisely, we have the following

Lemma 2.3.2. Let p > 2 and ∞ ≥ T1 > T0 ≥ 0. Then ω ∈ L∞
loc(]T0, T1[;L

1 ∩ Lp) and
v(·, t) = K2 ∗ ω(·, t) satisfy

∂tω + (v · ∇)ω = f , (2.32)

if and only if Ω and V (·, t) = K2 ∗ Ω(·, t) satisfy

∂τΩ−
(
1 +

ξ

α
· ∇
)
Ω + (V · ∇)Ω = F . (2.33)

We next observe that, due to the structural assumptions on ω̃ and ṽ, the corresponding
fields Ω̃ and Ṽ can be expressed in the following way:

Ṽ (ξ, τ) = βV̄ (ξ)χ(eτ/α|ξ|) , (2.34)

Ω̃(ξ, τ) = βΩ̄(ξ)χ(eτ/α|ξ|) + βζ(|ξ|)χ′(eτ/α|ξ|)eτ/α|ξ| . (2.35)

Observe that, for every fixed compact set K there is a sufficiently negative −T (K) with
the property that

• χ(eτ/α| · |) = 1 and χ′(eτ/α·) = 0 on K whenever τ ≤ −T (K).

Since in order to prove Theorem 1.0.1 we are in fact interested in very small times t, which
in turn correspond to very negative τ , it is natural to consider Ω̃ and Ṽ as perturbations
of βΩ̄ and βV̄ . We will therefore introduce the notation

Ω̃ = βΩ̄ + Ωr , (2.36)

Ṽ = βV̄ + Vr := βV̄ +K2 ∗ Ωr . (2.37)

We are thus lead to the following Ansatz for Ωε,k(ξ, τ) = eτωε,k(e
τ/αξ, eτ ):

Ωε,k(ξ, τ) = βΩ̄(ξ) + Ωr(ξ, τ) + εeτa0Re (eiτb0η(ξ)) + Ωper,k(ξ, τ) . (2.38)

The careful reader will notice that indeed the function Ωper,k depends upon the parameter
ε as well, but since such dependence will not really play a significant role in our discussion,
in order to keep our notation simple, we will always omit it.

We are next ready to complete our Ansatz by prescribing one fundamental property of
the function η. We first introduce the integro-differential operator

Lss(Ω) :=

(
1 +

ξ

α
· ∇
)
Ω− β(V̄ · ∇)Ω− β((K2 ∗ Ω) · ∇)Ω̄ . (2.39)

We will then prescribe that η is an eigenfunction of Lss with eigenvalue z0 = a0 + ib0,
namely,

Lss(η) = z0η . (2.40)

Observe in particular that, since Lss is a real operator (i.e. Lss(η) is real-valued when η
is real-valued, cf. Section 3.1), the complex conjugate η̄ is an eigenfunction of Lss with
eigenvalue z̄0, so that, in particular, the function

Ωlin(ξ, τ) := εea0τRe (eib0τη(ξ)) =
ε

2
(ez0τη(ξ) + ez̄0τ η̄(ξ)) (2.41)
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satisfies the linear evolution equation

∂τΩlin − Lss(Ωlin) = 0 . (2.42)

The relevance of our choice will become clear from the discussion of Section 2.5. The point
is that (2.42) is close to the linearization of Euler (in the new system of coordinates) around
Ω̃. The“true linearization” would be given by (2.42) if we were to substitute Ω̄ and V̄ in
(2.39) with Ω̃ and Ṽ . Since however the pair (Ω̃, Ṽ ) is well approximated by (Ω̄, V̄ ) for
very negative times, we will show that (2.42) drives indeed the evolution of Ωε,k − Ω̃ up to
an error term (i.e. Ωper,k) which is smaller than Ωlin.

2.4. Linear theory

We will look for the eigenfunction η in a particular subspace of L2. More precisely for
every m ∈ N \ {0} we denote by L2

m the set of those elements ϑ ∈ L2(R2,C) which are
m-fold symmetric, i.e., denoting by Rθ : R2 → R2 the counterclockwise rotation of angle θ
around the origin, they satisfy the condition

ϑ = ϑ ◦R2π/m .

In particular, L2
m is a closed subspace of L2(R2,C). Note however that the term “m-

fold symmetric” is somewhat misleading when m = 1: in that case the transformation
R2π/m = R2π is the identity and in particular L2

1 = L2(R2,C). Indeed we will look for η in
L2
m for a sufficiently large m ≥ 2.
An important technical detail is that, while the operator L2 ∩ S ∋ ω 7→ K2 ∗ ω ∈ S ′

cannot be extended continuously to the whole L2 (cf. Remark B.4.1), for m ≥ 2 it can be
extended to a continuous operator from L2

m into S ′: this is the content of the following
lemma.

Lemma 2.4.1. For every m ≥ 2 there is a unique continuous operator T : L2
m → S ′

with the following properties:

(a) If ϑ ∈ S , then T (ϑ) = K2 ∗ ϑ (in the sense of distributions);
(b) There is C > 0 such that for every ϑ ∈ L2

m, there is v = v(ϑ) ∈ W 1,2
loc with

(b1) R−1∥v∥L2(BR) + ∥Dv∥L2(BR) ≤ C∥ϑ∥L2(R2) for all R > 0;
(b2) div v = 0 and ⟨T (ϑ), φ⟩ =

∫
v · φ for every test function φ ∈ S .

From now on the operator T will still be denoted by K2∗ and the function v will
be denoted by K2 ∗ ω. Observe also that, if Ω̂ is an L2

loc function such that ∥Ω̂∥L2(BR)

grows polynomially in R, the integration of a Schwartz function times vΩ̂ is a well defined
tempered distribution. In the rest of the notes, any time that we write a product Ω̂K2∗ϑ for
an element ϑ ∈ L2

m and an L2
loc function Ω̂ we will always implicitly assume that ∥Ω̂∥L2(BR)

grows at most polynomially in R and that the product is understoood as a well-defined
element of S ′. The relevance of this discussion is that, for m ≥ 2, we can now consider
the operator Lss as a closed, densely defined unbounded operator on L2

m. We let

Lss(Ω) =
(
1− 2

α

)
Ω− div

((
− ξ
α
+ βV̄

)
Ω
)
− β(K2 ∗ Ω · ∇)Ω̄ (2.43)
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and its domain is
Dm(Lss) = {Ω ∈ L2

m : Lss(Ω) ∈ L2
m} . (2.44)

When Ω ∈ S it can be readily checked that Lss as defined in (2.43) coincides with (2.39).
The definition makes obvious that Lss is a closed and densely defined unbounded op-

erator over L2
m. We will later show that Ω 7→ (K2 ∗ Ω · ∇)Ω̄ is in fact a compact operator

from L2
m into L2

m and therefore we have

Dm(Lss) :=
{
Ω ∈ L2

m : div
(
βV̄ Ω− ξ

α
Ω
)
∈ L2

m

}
. (2.45)

From now on, having fixed m ≥ 2 and regarding Lss as an unbounded, closed, and densely
defined operator in the sense given above, the spectrum specm (Lss) on L2

m is defined as
the (closed) set which is the complement of the resolvent of Lss, the latter being the (open)
set of z0 ∈ C such that Lss − z0 has a bounded inverse (Lss − z0)

−1 : L2
m → L2

m.
2.

The choice of η will then be defined by the following theorem which summarizes a quite
delicate spectral analysis.

Theorem 2.4.2. For an appropriate choice of Ω̄ there is an integer m ≥ 2 with the
following property. For every positive ā > 0, if β is chosen appropriately large, then there
is η ∈ L2

m \ {0} and z0 = a0 + ib0 such that:

(i) a0 ≥ ā and Lss(η) = z0η;
(ii) For any z ∈ specm (Lss) we have Re z ≤ a0;
(iii) If b0 = 0, then η is real valued;
(iv) There is k ≥ 1 integer and e : R+ → C such that η(x) = e(r)eikmθ if b0 ̸= 0 and

η(x) = Re (e(r)eikmθ) if b0 = 0.

In fact we will prove some more properties of η, namely, suitable regularity and decay
at infinity, but these are effects of the eigenvalue equation and will be addressed later.

The proof of Theorem 2.4.2 will be split in two chapters. In the first one we regard
Lss as perturbation of a simpler operator Lst, which is obtained from Lss by ignoring the
(1 + ξ

α
· ∇) part: the intuition behind neglecting this term is that the remaining part of

the operator Lss is multiplied by the constant β, which will be chosen appropriately large.
The second chapter will be dedicated to proving a theorem analogous to Theorem 2.4.2 for
the operator Lst. The analysis will take heavily advantage of an appropriate splitting of
L2
m as a direct sum of invariant subspaces of Lst. The latter are obtained by expanding in

Fourier series the trace of any element of L2
m on the unit circle. In each of these invariant

subspaces the spectrum of Lst can be related to the spectrum of a suitable second order
differential operator in a single real variable.

2.5. Nonlinear theory

The linear theory will then be used to show Theorem 2.2.4. In fact, given the decom-
position introduced in (2.38), we can now formulate a yet more precise statement from
which we conclude Theorem 2.2.4 as a corollary.

2The textbook definition would require the inverse to take values in Dm(Lss). Note however that this
is a consequence of our very definition of Dm(Lss).
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Theorem 2.5.1. Let p, α, and ᾱ be as in Theorem 2.2.1 and assume ā is sufficiently
large. Let Ω̄, η, a0, and b0 be as in Theorem 2.4.2 and for every ε ∈ R, k ∈ N consider
the solutions ωε,k of (2.20) and Ωε,k(ξ, τ) = eτωε,k(e

τ/αξ, eτ ). If we define Ωper,k through
(2.38), then there are τ0 = τ0(ε) and δ0 > 0, independent of k, such that

∥Ωper,k(·, τ)∥L2 ≤ eτ(a0+δ0) ∀τ ≤ τ0 . (2.46)

(2.25) is a simple consequence of (2.46) after translating it back to the original coordi-
nates. In order to give a feeling for why (2.46) holds we will detail the equation that Ωper,k

satisfies. First of all subtracting the equation satisfied by Ω̃ from the one satisfied by Ωε,k

we achieve

∂τΩlin + ∂τΩper,k −
(
1 + ξ

α
· ∇
)
Ωlin −

(
1 + ξ

α
· ∇
)
Ωper,k

+(Ṽ · ∇)Ωlin + Vlin · ∇Ω̃ + (Ṽ · ∇)Ωper,k + (Vper,k · ∇)Ω̃ + (Vlin · ∇)Ωper,k

+(Vper,k · ∇)Ωlin + (Vlin · ∇)Ωlin + (Vper,k · ∇)Ωper,k = 0 ,

where we have used the convention Ṽ = K2 ∗ Ω̃, Vper,k = K2 ∗ Ωper,k, and Vlin = K2 ∗ Ωlin.

Next recall that Ω̃ = βΩ̄ + Ωr and recall also the definition of Lss in (2.39) and the fact
that ∂τΩlin − Lss(Ωlin) = 0. In particular formally we reach

(∂τ − Lss)Ωper,k + ((Vlin + Vr) · ∇)Ωper,k + (Vper,k · ∇)(Ωlin + Ωr) + (Vper,k · ∇)Ωper,k

=− (Vlin · ∇)Ωlin − (Vr · ∇)Ωlin − (Vlin · ∇)Ωr , (2.47)

which must be supplemented with the initial condition

Ωper,k(·,−k) = 0 .

In fact, in order to justify (2.47) we need to show that Ωper,k(·, τ) ∈ L2
m for every τ , which

is the content of the following elementary lemma.

Lemma 2.5.2. The function Ωper,k(·, τ) belongs to L2
m for every τ .

Proof. It suffices to prove that ωε,k(·, t) is m-fold symmetric, since the transformation
rule then implies that Ωε,k(·, τ) is m-fold symmetric and Ωper,k(·, τ) is obtained from the

latter by subtracting ea0τRe(eib0τη) + Ω̃(·, τ), which is also m-fold symmetric. In order to
show that ωε,k ism-fold symmetric just consider that ωε,k(R2π/m(·), τ) solves (2.20) because
both the forcing term and the initial data are invariant under a rotation of 2π

m
(and the Euler

equations are rotationally invariant). Then the uniqueness part of Yudovich’s statement
implies ωε,k(·, t) = ωε,k(R2π/m(·), t). □

We proceed with our discussion and observe that Vlin + Vr and Ωlin + Ωr are both
“small” in appropriate sense for sufficiently negative times, while, because of the initial
condition being 0 at −k, for some time after −k we expect that the quadratic nonlinearity
(Vper,k · ∇)Ωper,k will not contribute much to the growth of Ωper,k(·, τ). Schematically, we
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can break (2.47) as

(∂τ − Lss)Ωper,k + ((Vlin + Vr) · ∇)Ωper,k + (Vper,k · ∇)(Ωlin + Ωr)︸ ︷︷ ︸
small linear terms

+ (Vper,k · ∇)Ωper,k︸ ︷︷ ︸
quadratic term

=−(Vlin · ∇)Ωlin − (Vr · ∇)Ωlin − (Vlin · ∇)Ωr︸ ︷︷ ︸
forcing term F

, (2.48)

In particular we can hope that the growth of Ωper,k(·, τ) is comparable to that of the solution
of the following “forced” linear problem

(∂τ − Lss)Ω = F . (2.49)

Observe that we know that Ωlin(·, τ) and Vlin(·, τ) decay like ea0τ . We can then expect to
gain a slightly faster exponential decay for F (·, τ) because of the smallness of Vr and Ωr.
On the other hand from Theorem 2.4.2 we expect that the semigroup generated by Lss

enjoys growth estimates of type ea0τ on L2
m (this will be rigorously justified using classical

results in the theory of strongly continuous semigroups). We then wish to show, using
the Duhamel’s formula for the semigroup eτLss , that the growth of Ωper,k is bounded by
ea0τ (eδ0τ − e−δ0k) for some positive δ0 for some time τ after the initial −k: the crucial
point will be to show that the latter bound is valid for τ up until a “universal” time τ0,
independent of k.

Even though intuitively sound, this approach will require several delicate arguments,
explained in the final chapter of the notes. In particular:

• we will need to show that the quadratic term (Vper,k · ∇)Ωper,k is small up to some
time τ0 independent of k, in spite of the fact that there is a “loss of derivative”
in it (and thus we cannot directly close an implicit Gronwall argument using the
Duhamel formula and the semigroup estimate for Lss);

• The terms Ωr and Vr are not really negligible in absolute terms, but rather, for
very negative times, they are supported in a region in space which goes towards
spatial ∞.

The first issue will be solved by closing the estimates in a space of more regular functions,
which contains L2 and embeds in L∞ (in fact L2 ∩W 1,4): the bound on the growth of the
L2 norm will be achieved through the semigroup estimate for Lss via Duhamel, while the
bound of the first derivative will be achieved through an energy estimate, which will profit
from the L2 one. The second point by restricting further the functional space in which we
will close to estimates for Ωper,k. We will require an appropriate decay of the derivative
of the solutions, more precisely we will require that the latter belong to L2(|x|2 dx). Of
course in order to use this strategy we will need to show that the initial perturbation η
belongs to the correct space of functions.



CHAPTER 3

Linear theory: Part I

In this chapter, we will reduce Theorem 2.4.2 to an analogous spectral result for another
differential operator, and we will also show an important corollary of Theorem 2.4.2 con-
cerning the semigroup that it generates. We start by giving the two relevant statements,
but we will need first to introduce some notation and terminology.

First of all, in the rest of the chapter we will always assume that the positive integer m
is at least 2. We then introduce a new (closed and densely defined) operator on L2

m, which
we will denote by Lst. The operator is defined by

Lst(Ω) = −div (V̄ Ω)− (K2 ∗ Ω · ∇)Ω̄ (3.1)

and (recalling that the operator Ω 7→ (K2 ∗ Ω · ∇)Ω̄ is bounded and compact, as will be
shown below) its domain in L2

m is given by

Dm(Lst) = {Ω ∈ L2
m : div (V̄ Ω) ∈ L2} . (3.2)

The key underlying idea behind the introduction of Lst is that we can write Lss as

Lss =
(
1 + ξ

α
· ∇
)
+ βLst

and since β will be chosen very large, we will basically study the spectrum of Lss as a
perturbation of the spectrum of βLst. In particular Theorem 2.4.2 will be derived from a
more precise spectral analysis of Lst. Before coming to it, we split the space L2

m into an
appropriate infinite sum of closed orthogonal subspaces.

First of all, if we fix an element ϑ ∈ L2(R2) and we introduce the polar coordinates
(θ, r) through x = r(cos θ, sin θ), we can then use the Fourier expansion to write

ϑ(x) =
∑
k∈Z

ak(r)e
ikθ (3.3)

where

ak(r) :=
1

2π

∫ 2π

0

ϑ(r cos(θ), r sin(θ))e−ikθ dθ.

By Plancherel’s formula,

∥ϑ∥2L2(R2) = 2π
∑
k∈Z

∥ak∥2L2(R+,r dr) .

In particular it will be convenient to introduce the subspaces

Uk := {f(r)eikθ : f ∈ L2(R+, r dr)} . (3.4)

27



28 3. LINEAR THEORY: PART I

Each Uk is a closed subspace of L2, distinct Uk’s are orthogonal to each other and moreover

L2
m =

⊕
k∈Z

Ukm . (3.5)

Each Umk is an invariant space of Lst, and it can be easily checked that Umk ⊂ Dm(Lst)
and that indeed the restriction of Lst to Umk is a bounded operator. Following the same
convention as for Lss we will denote by specm (Lst) the spectrum of Lst on L

2
m.

Theorem 3.0.1. For every m ≥ 2 and every Ω̄ we have

(a) each zi ∈ specm (Lst) ∩ {z : Re z ̸= 0} belongs to the discrete spectrum and if
Im (zi) = 0, then there is a nontrivial real eigenfunction relative to zi.

Moreover, for an appropriate choice of Ω̄ there is an integer m ≥ 2 such that:

(b) specm (Lst) ∩ {z : Re z > 0} is nonempty.

Remark 3.0.2. The theorem stated above contains the minimal amount of information
that we need to complete the proof of Theorem 2.2.1. We can however infer some additional
conclusions with more work, more precisely we can show that

(c) m can be chosen so that, in addition to (b), specm (Lst)∩{z : Re z > 0} is finite and
the image of the Riesz projector1 Pz of Lst relative to each z ∈ specm (Lst) ∩ {z :
Re z > 0} is contained in Um ∪ U−m.

Since this property is not needed to prove Theorem 2.2.1 we defer its proof to Appendix A.

red In [34] Vishik claims the following greatly improved statement.

Theorem 3.0.3. For a suitable Ω̄:

(c’) m can be chosen so that, in addition to (b) and (c), specm (Lst)∩{z : Re z > 0}∩Um
consists of a single element, with algebraic multiplicity 1 in Um.

Since the spectrum of Lst is invariant under complex conjugation (b), (c), and (c’)
imply that specm (Lst) ∩ {Re z > 0} consists either of a single real eigenvalue or of two
complex conjugate eigenvalues. In the first case, the algebraic and geometric multiplicity
of the eigenvalue is 2 and the space of eigenfunctions has a basis consisting of an element of
Um and its complex conjugate in U−m. In the second case the two eigenvalues z and z̄ have
algebraic multiplicity 1 and their eigenspaces are generated, respectively, by an element of
Um and its complex conjugate in U−m. The argument given in [34] for (c’) is however not
complete. Vishik provided later ([35]) a way to close the gap. In Appendix A we will give
a proof of Theorem 3.0.3 along his lines.

1Recall that in the case of an isolated point z in the spectrum of a closed, densely defined operator A,
the Riesz projector is defined as

1

2πi

∫
γ

(w −A)−1 dw

for any simple closed rectifiable contour γ bounding a closed disk D with D ∩ spec (A) = {z}. For an
element of the discrete spectrum the Riesz projector has finite rank (the algebraic multiplicity of the
eigenvalue z).
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In this chapter we also derive an important consequence of Theorem 2.4.2 for the
semigroup generated by Lss.

Theorem 3.0.4. For every m ≥ 2, Lss is the generator of a strongly continuous semi-
group on L2

m which will be denoted by eτLss, and the growth bound ω(Lss) of e
τLss equals

a0 := sup{Re z0 : z0 ∈ specm(Lss)} <∞
if a0 ≥ 1− 1

α
. In other words, for every δ > 0, there is a constant M(δ) with the property

that ∥∥eτLssΩ
∥∥
L2 ≤M(δ)e(a0+δ)τ∥Ω∥L2 ∀τ ≥ 0, ∀Ω ∈ L2

m . (3.6)

3.1. Preliminaries

In this section we start with some preliminaries which will take advantage of several
structural properties of the operators Lss and Lst. First of all we decompose Lst as

Lst = S1 + K , (3.7)

where

S1(Ω) := −div (V̄ Ω) (3.8)

K (Ω) := −(K2 ∗ Ω · ∇)Ω̄ . (3.9)

Hence we introduce the operator

S2(Ω) := div

((
ξ

α
− βV̄

)
Ω

)
− Ω

α
, (3.10)

so that we can decompose Lss as

Lss =

(
1− 1

α

)
+ S2 + βK . (3.11)

The domains of the various operators A involved are always understood as Dm(A) := {Ω :
A(Ω) ∈ L2}.

Finally, we introduce the real Hilbert spaces L2
m(R) and Uj(R) by setting

L2
m(R) := {ReΩ : Ω ∈ L2

m} (3.12)

and, for j > 0 natural,
Uj(R) := {ReΩ : Ω ∈ Uj} . (3.13)

Observe that while clearly L2
m(R) is a real subspace of L2

m, Uj(R) is a real subspace of
Uj ⊕ U−j.

As it is customary, L2
m(R) and its real vector subspaces are endowed with the inner

product

⟨Ω,Ξ⟩R =

∫
ΩΞ , (3.14)

while L2
m and its complex vector subspaces are endowed with the Hermitation product

⟨Ω,Ξ⟩C =

∫
(ReΩReΞ + ImΩ ImΞ) + i

∫
(ImΩReΞ− ReΩ ImΞ) . (3.15)
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We will omit the subscripts from ⟨·, ·⟩ when the underlying field is clear from the con-
text. The following proposition details the important structural properties of the various
operators. A closed unbounded operator A on L2

m will be called real if its restriction AR
to L2

m(R) is a closed, densely defined operator with domain Dm(A) ∩ L2
m(R) such that

A(Ω) ∈ L2
m(R) for all Ω ∈ Dm(A) ∩ L2

m(R).

Proposition 3.1.1. (i) The operators K , S1 and S2 are all real operators.
(ii) K is bounded and compact. More precisely there is a sequence of finite dimen-

sional vector spaces Vn ⊂ C∞
c (R2,C) ∩ L2

m with the property that, if Pn denotes
the orthogonal projection onto Vn, then

lim
n→∞

∥K − Pn ◦ K ∥O = 0 , (3.16)

where ∥ · ∥O denotes the operator norm.
(iii) S1 and S2 are skew-adjoint.
(iv) Dm(Lst) = Dm(S1) and Dm(Lss) = Dm(S2).
(v) Ukm is an invariant subspace of S1, S2,K , Lst, Lss.
(vi) The restrictions of S1 and Lst to each Ukm are bounded operators.

Proof. The verification of (i), (iii), (iv), (v), and (vi) are all simple and left therefore to
the reader. We thus come to (ii) and prove the compactness of the operator K . Recalling
Lemma 2.4.1, for every Ω ∈ L2

m we can write the tempered distribution K (Ω) as

K (Ω) = ∇Ω̄ · V (3.17)

where V = V (Ω) is a W 1,2
loc function with the properties that

R−1∥V ∥L2(BR) + ∥DV ∥L2(BR) ≤ C∥Ω∥L2 ∀R ≥ 0 . (3.18)

Since |∇Ω̄(ξ)| ≤ C|ξ|−ᾱ−1 for |ξ| ≥ 1, whenever R ≥ 1 we can estimate

∥K (Ω)∥2L2(Bc
R) =

∞∑
j=0

∥K (Ω)∥2L2(B
2j+1R

\B
2jR

) ≤ CR−2−2ᾱ

∞∑
j=0

2−2(1+ᾱ)j∥V ∥2L2(B
2j+1R

)

≤ CR−2−2ᾱ

∞∑
j=0

2−2(1+ᾱ)j22j+2R2∥Ω∥2L2 ≤ CR−2ᾱ∥Ω∥2L2 .

This shows at the same time that

• K is a bounded operator;
• If we introduce the operators

Ω 7→ KN(Ω) := K (Ω)1BN
, (3.19)

then ∥KN − K ∥O → 0.

Since the uniform limit of compact operators is a compact operator, it suffices to show that
each KN is a compact operator. This is however an obvious consequence of (3.18) and the
compact embedding of W 1,2(BN) into L

2(BN).
As for the remainder of the statement (ii), by the classical characterization of compact

operators on a Hilbert space, for every ε > 0 there is a finite-rank linear map LN such
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that ∥K − LN∥O ≤ ε
4
. If we denote by WN the image of LN and by QN the orthogonal

projection onto it, given that QN ◦ LN = LN we can estimate

∥QN ◦ K − K ∥O ≤ ∥QN ◦ K −QN ◦ LN∥O + ∥LN − K ∥O ≤ 2∥LN − K ∥0 ≤
ε

2
.

Fix next an orthonormal base {w1, . . . , wN} of WN and, using the density of C∞
c (R2),

approximate each element wi in the base with vi ∈ C∞
c (R2,C). This can be done for

instance convolving wi with a smooth radial kernel and multiplying by a suitable cut-off
function. If the vi’s are taken sufficiently close to wi, the orthogonal projection PN onto
VN = span (v1, . . . , vN) satisfies ∥QN − PN∥O ≤ ε

2∥K ∥O
and thus

∥K − PN ◦ K ∥O ≤ ∥K −QN ◦ K ∥O + ∥PN −QN∥O∥K ∥O ≤ ε . □

3.2. Proof of Theorem 3.0.4 and proof of Theorem 3.0.1(a)

The above structural facts allow us to gain some important consequences as simple
corollaries of classical results in spectral theory, which we gather in the next statement.
Observe in particular that the statement (a) of Theorem 3.0.1 follows from it.

In what follows we take the definition of essential spectrum of an operator as given in
[11]. We caution the reader that other authors use different definitions; at any rate the
main conclusion about the essential spectra of the operators Lss and Lst in Corollary 3.2.1
below depends only upon the property that the essential and discrete spectra are disjoint
(which is common to all the different definitions used in the literature).

Corollary 3.2.1. The essential spectrum of Lst and the essential spectrum of Lss −(
1− 1

α

)
are contained in the imaginary axis, while the remaining part of the spectrum

is contained in the discrete spectrum. In particular, every z ∈ specm(Lst) (resp. z ∈
specm(Lss)) with nonzero real part (resp. real part different from 1− 1

α
) has the following

properties.

(i) z is isolated in specm(Lst) (resp. specm(Lss));
(ii) There is at least one nontrivial Ω such that Lst(Ω) = zΩ (resp. Lss(Ω) = zΩ) and

if Im (z) = 0, then Ω can be chosen to be real-valued;
(iii) The Riesz projection Pz has finite rank;
(iv) Im (Pz) =

⊕
k∈Z\{0}(Im (Pz)∩Ukm) and in particular the intersection Im (Pz)∩Ukm

is trivial for all but a finite number of k’s and it is nontrivial for at least one k.

Moreover, Theorem 3.0.4 holds.

Proof. The points (i)-(iii) are consequence of classical theory, but we present briefly
their proofs referring to [21]. Observe that addition of a constant multiple c of the identity
only shifts the spectrum (and its properties) by the constant c. The statements for Lss are
thus reduced to similar statements for S2+βK . Next since the arguments for Lst = S1+K
only use the skew-adjointness of S1 and the compactness of K , they apply verbatim to
S2 + βK . We thus only argue for Lst. First of all observe that, since S1 is skew-adjoint,
its spectrum is contained in the imaginary axis. In particular, for every z with Re z ̸= 0
the operator S1 − z is invertible and thus Fredholm with Fredholm index 0. Hence by [21,
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Theorem 5.26, Chapter IV], Lst − z = S1 − z + K is as well Fredholm and has index 0.
By [21, Theorem 5.31, Chapter IV] there is a discrete set Σ ⊂ {z : Re z ̸= 0} with the
property that the dimension of the kernel (which equals that of the cokernel) of Lst − z is
constant on the open sets {Re z > 0} \Σ and {Re z < 0} \Σ. Since, for every z such that
|Re z| > ∥K ∥O, we know that Lst − z has a bounded inverse from the Neumann series,
the kernel (and cokernel) of Lst − z equals 0 on {Re z ̸= 0} \ Σ. From [21, Theorem 5.28,
Chapter IV] it then follows that Σ is a subset of the discrete spectrum of Lst. Obviously
the essential spectrum must be contained in the imaginary axis.

In order to show (iv), denote by Pk the orthogonal projection onto Ukm and observe
that, since Lst ◦ Pk = Pk ◦ Lst,

Pz ◦ Pk =
1

2πi

∫
γ

1

w − Lst

◦ Pk dw =
1

2πi

∫
Pk ◦

(
1

w − Lst

)
dw = Pk ◦ Pz . (3.20)

Writing

Pz =
∑
k

Pz ◦ Pk (3.21)

and observing that the commutation (3.20) gives the orthogonality of the images of the
Pz ◦ Pk, since Im (Pz) is finite dimensional, we conclude that the sum is finite, i.e. that
Pz ◦ Pk = 0 for all but finitely many k’s. Moreover, since P 2

z = Pz and Pz equals the
identity on Im (Pz), we see immediately that Ukm ∩ Im (Pz) = Im (Pz ◦ Pk).

We now come to the proof of Theorem 3.0.4. We have already shown that, if Reλ is
large enough, then λ belongs to the resolvent of Lss, which shows that a0 < ∞. Next,
observe that Lss generates a strongly continuous group if and only if S2 + βK does. On
the other hand, using the skew-adjointness of S2, we conclude that, if Re z > β∥K ∥O,
then z is in the resolvent of S2 + βK and

∥(S2 + βK − z)−1∥O ≤ 1

Re z − β∥K ∥O
.

Therefore we can apply [11, Corollary 3.6, Chapter II] to conclude that S2+βK generates
a strongly continuous semigroup. Since the same argument applies to −S2 − βK , we
actually conclude that indeed the operator generates a strongly continuous group.

Next we invoke [11, Corollary 2.11, Chapter IV] that characterizes the growth bound
ω0(Lss) of the semigroup etLss as

ω0(Lss) = max{ωess(Lss), a0} ,

where ωess is the essential growth bound of [11, Definition 2.9, Chapter IV]. By [11,
Proposition 2.12, Chapter IV], ωess(Lss) equals ωess(1− 1

α
+S2) and, since e

τS2 is a unitary

operator, the growth bound of e(1−1/α+S2)τ equals 1 − 1
α
, from which we conclude that

ωess(1− 1
α
+ S2) ≤ 1− 1

α
. In particular we infer that if a0 ≥ 1− 1

α
, then ω0(Lss) = a0. □
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3.3. Proof of Theorem 2.4.2: preliminary lemmas

In this and the next section we will derive Theorem 2.4.2 from Theorem 3.0.1. It is
convenient to introduce the following operator:

Lβ :=
1

β

(
Lss −

(
1− 1

α

))
=

1

β
S2 + K . (3.22)

In particular

Lβ(Ω) =
1

β

[
div

(
ξ

α
Ω

)
+

Ω

α

]
+ Lst . (3.23)

Clearly the spectrum of Lss can be easily computed from the spectrum of Lβ. The upshot
of this section and the next section is that, as β → ∞, the spectrum of Lβ converges to
that of Lst in a rather strong sense.

In this section we state two preliminary lemmas. We will use extensively the notation
PV for the orthogonal projection onto some closed subspace V of L2

m.

Lemma 3.3.1. Let H = L2
m, Ukm, U−km, or any closed invariant subspace common to

Lst and all the Lβ. For every compact set K ⊂ C \ (iR ∪ specm(Lst ◦ PH)), there is β0(K)
such that K ⊂ C \ (R ∪ specm(Lβ ◦ PH)) for β ≥ β0(K). Moreover,

sup
β≥β0(K)

sup
z∈K

∥(Lβ ◦ PH − z)−1∥O <∞ (3.24)

and (Lβ ◦ PH − z)−1 converges strongly to (Lst ◦ PH − z)−1 for every z ∈ K, namely,

lim
β→∞

∥(Lβ ◦ PH − z)−1(w)− (Lst ◦ PH − z)−1(w)∥ = 0 ∀w ∈ L2
m . (3.25)

Lemma 3.3.2. For every ε > 0 there is a R = R(ε) such that

specm(Lβ) ∩ {z : |z| ≥ R, |Re z| ≥ ε} = ∅ ∀β ≥ 1 . (3.26)

Proof of Lemma 3.3.1. The proof is analogous for all H and we will thus show it
for H = L2

m. Fix first z such that Re z ̸= 0 and recalling that z − β−1S2 is invertible, we
write

z − Lβ = (z − β−1S2)(1− (z − β−1S2)
−1 ◦ K ) . (3.27)

Step 1 The operators (β−1S2 − z)−1 enjoy the bound

∥(z − β−1S2)
−1∥O ≤ |Re z|−1 (3.28)

because β−1S2 are skew-adjoint. We claim that (z − β−1S2)
−1 converges strongly to (z −

S1)
−1 for β → ∞. For a family of operators with a uniform bound on the operator norm,

it suffices to show strong convergence of (z − β−1S2)
−1w for a (strongly) dense subset.

Without loss of generality we can assume Re z > 0. Recalling that β−1S2 generates a
strongly continuous unitary semigroup, we can use the formula

(z − β−1S2)
−1(w) =

∫ ∞

0

e−(z−β−1S2)τ (w) dτ . (3.29)
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Next observe that ∥eβ−1S2τ∥O = 1. Moreover if w ∈ S , eβ
−1S2τw is the solution of a

transport equation with a locally bounded and smooth coefficient and initial data w. We
can thus pass into the limit in β → ∞ and conclude that eβ

−1S2τw converges strongly in L2

to eS1τw. We can thus use the dominated convergence theorem in (3.29) to conclude that
(z − β−1S2)

−1(w) converges to (z − S1)
−1(w) strongly in L2. Since S is strongly dense,

this concludes our proof.

Step 2 We next show that (z − β−1S2)
−1 ◦ K converges in the operator norm to

(z − S1)
−1 ◦ K . Indeed using Proposition 3.1.1 we can find a sequence of finite rank

projections PN such that PN ◦ K converges to K in operator norm. From Step 1 it
suffices to show that (z−β−1S2)

−1 ◦PN ◦K converges to (z−S1)
−1 ◦PN ◦K in operator

norm for each N . But clearly (z − β−1S2)
−1 ◦ PN is a finite rank operator and for finite

rank operators the norm convergence is equivalent to strong convergence. The latter has
been proved in Step 1.

Step 3 Fix z which is outside the spectrum of Lst. Because of Step 2 we conclude that

(1− (z − β−1S2)
−1 ◦ K ) → (1− (z − S1)

−1 ◦ K )

in the operator norm. Observe that 1− (z − S1)
−1 ◦ K is a compact perturbation of the

identity. As such it is a Fredholm operator with index 0 and thus invertible if and only if
its kernel is trivial. Its kernel is given by w which satisfy

zw − S1(w)− K (w) = 0 ,

i.e. it is the kernel of z − (S1 + K ) = z − Lst, which we have assumed to be trivial since
z is in the spectrum of Lst. Thus (1− (z − S1)

−1 ◦ K ) is invertible and hence, because of
the operator convergence, so is (1− (z−β−1S2)

−1 ◦K ) for any sufficiently large β. Hence,
by (3.27) so is z − Lβ.

Step 4 The inverse (z − Lβ)
−1 is given explicitly by the formula

(z − Lβ)
−1 = (z − β−1S2)

−1(1− (z − β−1S2)
−1 ◦ K )−1 . (3.30)

Since 1 − (z − S2)
−1 ◦ K converges to 1 − (z − S1)

−1 ◦ K in the operator norm, their
inverses converge as well in the operator norm. Since the composition of strongly convergent
operators with norm convergent operators is strongly convergent, we conclude that (z −
Lβ)

−1 converges strongly to the operator

(z − S1)
−1(1− (z − S1)

−1 ◦ K )−1 = (z − Lst)
−1 .

Step 5 Choose now a compact set K ⊂ C \ (iR ∪ specm(Lst)). Recall first that

K ∋ z 7→ (z − S1)
−1

is continuous in the operator norm. Thus K ∋ z 7→ (1 − (z − S1)
−1 ◦ K ) is continuous

in the operator norm. red We claim that K × [0, 1] ∋ (z, δ) 7→ (1 − (z − δS2)
−1 ◦ K ) is

also continuous in the operator norm and in order to show this we will prove the uniform
continuity in z once we fix δ, with an estimate which is independent of δ. We first write

∥(1− (z − δS2)
−1 ◦ K)− (1− (z′ − δS2)

−1 ◦ K)∥O ≤ ∥(z − δS2)
−1 − (z′ − δS2)

−1∥O∥K∥O .
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Hence we compute

(z − δS2)
−1 − (z′ − δS2)

−1 = (z − δS2)
−1 ◦ ((z′ − δS2)− (z − δS2)) ◦ (z′ − δS2)

−1

and use (3.28) to estimate

∥(z − δS2)
−1 − (z′ − δS2)

−1∥O ≤ |z − z′|∥(z − δS2)
−1∥O∥(z′ − δS2)

−1∥O ≤ |z − z′|
|Re z||Re z′|

.

Since the space of invertible operators is open in the norm topology, this implies the
existence of a δ0 > 0 such that K × [0, δ0] ∋ (z, δ) 7→ (1 − (z − δS2)

−1 ◦ K )−1 is well
defined and continuous. Thus, for β ≥ β0 = δ−1

0 we conclude that 1− (z − β−1S2)
−1 ◦ K

is invertible and the norm of its inverse is bounded by a constant C independent of β and
z ∈ K. By (3.30) and (3.28), we infer that in the same range of z and β the norm of the
operators (z − Lβ)

−1 enjoy a uniform bound. □

Proof of Lemma 3.3.2. We show (3.26) for Re z ≥ ε replacing |Re z| ≥ ε, as the
argument for the complex lower half-plane is entirely analogous.

Using (3.27), we wish to show that there is R = R(ε) such that the operator

1− (z − β−1S2)
−1 ◦ K

is invertible for all β ≥ 1 and z such that |z| ≥ R and Re z ≥ ε. This will follow after
showing that, for β and z in the same range

∥(z − β−1S2)
−1 ◦ K ∥O ≤ 1

2
. (3.31)

By (3.28), we can use Proposition 3.1.1 to reduce (3.31) to the claim

∥(z − β−1S2)
−1 ◦ PV ◦ K ∥O ≤ 1

4
, (3.32)

where PV is the projection onto an appropriately chosen finite-dimensional space V ⊂ C∞
c .

If N is the dimension of the space and w1, . . . , wN an orthonormal base, it suffices to show
that

∥(z − β−1S2)
−1(wi)∥L2 ≤ 1

4N
∀i . (3.33)

We argue for one of them and set w = wi. The goal is thus to show (3.33) provided |z| ≥ R
for some large enough R. We use again (3.29) and write

(z − β−1S2)
−1(w) =

∫ T

0

e−(z−β−1S2)τ (w) dτ︸ ︷︷ ︸
=:(A)

+

∫ ∞

T

e−(z−β−1S2)τ (w) dτ︸ ︷︷ ︸
=:(B)

.

We first observe that

∥(B)∥ ≤
∫ ∞

T

e−ετ dτ ≤ e−εT

ε
.
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Thus, choosing T sufficiently large we achieve ∥(B)∥ ≤ 1
8N

. Having fixed T we integrate
by parts in the integral defining (A) to get

(A) =

∫ T

0

e−zτeβ
−1S2τ (w) dτ =

w − e−(z−β−1S2)T (w)

z︸ ︷︷ ︸
=:(A1)

+
1

z

∫ T

0

e−zβ−1S2 ◦ eβ
−1S2τ (w) dτ︸ ︷︷ ︸

=:(A2)

.

First of all we can bound

∥(A1)∥ ≤ 1 + e−Tε

|z|
≤ 2

R
.

As for the second term, observe that [0, T ] ∋ τ 7→ eβ
−1S2τ (w) is the solution of a trans-

port equation with smooth coefficients and smooth and compactly supported initial data,
considered over a finite interval of time. Hence the support of the solution is compact and
the solution is smooth. Moreover, the operators β−1S2 are first-order differential operators
with coefficients which are smooth and whose derivatives are all bounded. In particular

max
τ∈[0,T ]

∥β−1S2 ◦ eβ
−1S2τ (w)∥ ≤ C

for a constant C depending on w and T but not on β, in particular we can estimate

∥(A2)∥ ≤ C(T )

R
Since the choice of T has already been given, we can now choose R large enough to conclude
∥(A)∥ ≤ 1

8N
as desired. □

3.4. Proof of Theorem 2.4.2: conclusion

First of all observe that z ∈ specm(Lβ) if and only if βz + 1 − 1
α
∈ specm(Lss). Thus,

in order to prove Theorem 2.4.2 it suffices to find β0 and c0 positive such that:

(P) If β ≥ β0, then specm(Lβ) contains an element z with Re z ≥ c0 such that Re z =
max{Rew : w ∈ specm (Lβ)}.

Observe indeed that using the fact that the Ukm are invariant subspaces of Lss, βz+1− 1
α

have an eigenfunction ϑ which belongs to one of them, and we can assume that k ≥ 1 by
possibly passing to the complex conjugate z̄. If z is not real, we then set η = ϑ and the
latter has the properties claimed in Theorem 2.4.2. If z is real it then follows that the
real and imaginary part of ϑ are both eigenfunctions and upon multiplying by i we can
assume that the real part of ϑ is nonzero. We can thus set η = Reϑ as the eigenfunction
of Theorem 2.4.2.

We will split the proof in two parts, namely, we will show separately that

(P1) There are β1, c0 > 0 such that specm(Lβ) ∩ {Re z ≥ c0} ≠ ∅ for all β ≥ β1.
(P2) If β ≥ β0 := max{β1, 1}, then sup{Rew : w ∈ spec (Lβ)} is attained.

Proof of (P1). We fix z ∈ spec (Lst) with positive real part and we set 2c0 := Re z.
We then fix a contour γ ⊂ Bε(z) which:

• it is a simple smooth curve;
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• it encloses z and no other portion of the spectrum of Lst;
• it does not intersect the spectrum of Lst;
• it is contained in {w : Rew ≥ c0}.

By the Riesz formula we know that

Pz =
1

2πi

∫
γ

(w − Lst)
−1 dw

is a projection onto a subspace which contains all eigenfunctions of Lst relative to the
eigevanlue z. In particular this projection is nontrivial. By Lemma 3.3.1 for all sufficiently
large β the curve γ is not contained in the spectrum of Lβ and we can thus define

Pz,β =
1

2πi

∫
γ

(w − Lβ)
−1 dw .

If γ does not enclose any element of the spectrum of Lβ, then Pz,β = 0. On the other hand,
by Lemma 3.3.1 and the dominated convergence theorem,

Pz,β(u) → Pz(u)

strongly for every u. I.e. the operators Iz,β converge strongly to the operator Pz. If for
a sequence βk → ∞ the operators Pz,βk where trivial, then Pz would be trivial too. Since
this is excluded, we conclude that the curve γ encloses some elements of the spectrum of
Lβ for all β large enough. Each such element has real part not smaller than c0.

Proof of (P2). Set ε := c0 and apply Lemma 3.3.2 to find R > 0 such that specm(Lβ)\
BR is contained in {w : Rew < c0}. In particular, if β ≥ max{β1, 1}, then the eigenvalue
z found in the previous step belongs to BR and thus

sup {Rew : w ∈ spec (Lβ)} = sup {w : Rew ≥ c0, |w| ≤ R} ∩ spec (Lβ) .

However, since spec (Lβ) ∩ {w : Rew ̸= 0} belongs to the discrete spectrum, the set
{w : Rew ≥ c0, |w| ≤ R} ∩ spec (Lβ) is finite.





CHAPTER 4

Linear theory: Part II

This chapter is devoted to proving Theorem 3.0.1. Because of the discussions in the
previous chapter, considering the decomposition

L2
m =

⊕
k∈Z

Ukm ,

the statement of Theorem 3.0.1 can be reduced to the study of the spectra of the restrictions
Lst|Ukm

of the operator Lst to the invariant subspaces Ukm. For this reason we introduce the
notation spec (Lst, Uj) for the spectrum of the operator Lst|Uj

, understood as an operator
from Uj to Uj. The following is a very simple observation.

Lemma 4.0.1. The restriction of the operator Lst to the radial functions U0 is identically
0. Moreover, z ∈ spec (Lst, Uj) if and only if z̄ ∈ spec (Lst, U−j).

We will then focus on proving the following statement, which is slightly stronger than
what we need to infer Theorem 3.0.1.

Theorem 4.0.2. For a suitable choice of Ω̄, there is m0 ≥ 2 such that spec (Lst, Um0)∩
{Re z > 0} is nonempty and spec (Lst, Um0) ∩ {Re z ≥ ā} is finite for every positive ā.

Remark 4.0.3. As it is the case for Theorem 3.0.1 we can deepen our analysis and
prove the following stronger statement:

(i) For a suitable choice of m0, in addition to the conclusion of Theorem 4.0.2 we
have spec (Lst, Um) ⊂ iR for every m > m0.

This will be done in Appendix A, where we will also show how conclusion (c) of Remark
3.0.2 follows from it.

red Note that in [34] Vishik claims the following stronger statement.

Theorem 4.0.4. For a suitable choice of m0, in addition to the conclusion of Theorem
4.0.2 and to Remark 4.0.3(i), we have also

(ii) spec (Lst, Um0) ∩ {Re z > 0} consists of a single eigenvalue with algebraic multi-
plicity 1.

In Appendix A we will show how to prove the latter conclusion and how Theorem 3.0.3
follows from it.

39
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4.1. Preliminaries

If we write an arbitrary element Ω ∈ Um as Ω(x) = eimθγ(r) using polar coordinates,
we find an isomorphism of the Hilbert space Um with the Hilbert space

H :=

{
γ : R+ → C :

∫ ∞

0

|γ(r)|2 r dr <∞
}

(4.1)

and thus the operator Lst : Um → Um can be identified with an operator Lm : H → H. In
fact, since Lst = S1 +K , where S1 is skew-adjoint and K compact, Lm is also a compact
perturbation of a skew-adjoint operator. In order to simplify our notation and terminology,
we will then revert our considerations to the operator iLm, which will be written as the
sum of a self-adjoint operator, denoted by Sm, and a compact operator, denoted by Km.

Lemma 4.1.1. After the latter identification, if Ω̄(x) = g(|x|) and ζ is given through
the formula (2.8), then Sm : H → H is the following bounded self-adjoint operator:

γ 7→ Sm(γ) = mζγ . (4.2)

Proof. The formula is easy to check. The self-adjointness of (4.2) is obvious. Con-
cerning the boundedness we need to show that ζ is bounded. Since g is smooth (and hence
locally bounded), ζ is smooth and locally bounded by (2.8). To show that it is globally
bounded recall that g(r) = r−ᾱ for r ≥ 2, so that

ζ(r) =
c̃0
r2

+
1

r2

∫ r

2

ρ1−ᾱ dρ =
c0
r2

+
c1
rᾱ

∀r ≥ 2 ,

where c0 and c1 are two appropriate constants. □

A suitable, more complicated, representation formula can be shown for the operator
Km.

Lemma 4.1.2. Under the assumptions of Lemma 4.1.1, the compact operator Km :
H → H is given by

γ 7→ Km(γ) = −m
r
ψg′ (4.3)

where

ψ(r) = − 1

2m
rm
∫ ∞

r

γ(s)s1−m ds− 1

2m
r−m

∫ r

0

γ(s)s1+m ds . (4.4)

Remark 4.1.3. When γ is compactly supported, ϕ(θ, r) := ψ(r)eimθ with ψ as in (4.2)
gives the unique potential-theoretic solution of ∆ϕ = γeimθ, namely, ϕ obtained as the
convolution of γeimθ with the Newtonian potential 1

2π
ln r. For general γ ∈ H we do not

have enough summability to define such convolution using Lebesgue integration, but, as
already done before, we keep calling ϕ the potential-theoretic solution of ∆ϕ = γeimθ.

Proof of Lemma 4.1.2. First of all we want to show that the formula is correct
when Ω = γ(r)eimθ ∈ C∞

c ∩ L2
m. We are interested in computing −i(K2 ∗ Ω · ∇)Ω̄. First
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of all we recall that K2 ∗Ω = ∇⊥ϕ, where ϕ is the potential-theoretic solution of ∆ϕ = Ω.
Recall that for ϕ we have the explicit formula

ϕ(x) =
1

2π

∫
R2

Ω(y) ln |y − x| dy .

ϕ is clearly smooth and hence locally bounded. Observe that Ω averages to 0 and thus

ϕ(x) =
1

2π

∫
R2

Ω(y)(ln |y − x| − ln |x|) dy .

Fix R larger than 1 so that spt (Ω) ⊂ BR and choose |x| ≥ 2R. We then have the following
elementary inequality for every y ∈ spt (Ω):

| ln |x| − ln |x− y|| ≤ ln(|x− y|+ |y|)− ln(|x− y|) ≤ |y|
|y − x|

≤ 2|y|
|x|

,

from which we conclude that |ϕ(x)| ≤ C(1+ |x|)−1. Hence ϕ is the only solution to ∆ϕ = Ω
with the property that it converges to 0 at infinity. This allows us to show that ϕ satisfies
the formula

ϕ(x) = ψ(r)eimθ

where ψ is given by formula (4.4). We indeed just need to check that the Laplacian of

ψ(r)eimθ equals γ(r)eimθ and that limr→∞ ψ(r) = 0. Using the formula ∆ = 1
r2

∂2

∂θ2
+ 1
r
∂
∂r
+ ∂2

∂r2

the first claim is a direct verification. Next, since γ(r) = 0 for r ≥ R, we conclude
ψ(r) = Cr−m for all r ≥ R, which shows the second claim. Observe next that

∇ϕ =
mi

r2
ψ(r)eimθ

∂

∂θ
− ∂

∂r

(
ψ(r)eimθ

) ∂
∂r

,

which turns into

∇ϕ⊥ = −mi
r
ψ(r)eimθ

∂

∂r
− 1

r

∂

∂r

(
ψ(r)eimθ

) ∂
∂θ

.

Since Ω̄(x) = g(r), we then conclude that

−(K2 ∗ Ω · ∇)Ω̄ =
mi

r
ψ(r)eimθg′(r) .

Upon multiplication by i we obtain formula (4.3). Since we know from the previous chapter
that K is a bounded and compact operator and Km is just the restriction of iK to a
closed invariant subspace of it, the boundedness and compactness of Km is obvious. □

Notice next that, while in all the discussion so far we have always assumed that m
is an integer larger than 1, the operator Sm can in fact be easily defined for every real
m > 1, while, using the formulae (4.3) and (4.4) we can also make sense of Km for every
real m > 1. In particular we can define as well the operator Lm for every m > 1. The
possibility of varyingm as a real parameter will play a crucial role in the rest of the chapter,
and we start by showing that, for m in the above range, the boundedness of Lm and Sm
and the compactness of Km continue to hold.
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Proposition 4.1.4. The operators Lm, Sm, and Km are bounded operators from H to
H for every real m > 1, with a uniform bound on their norms if m ranges in a compact
set. Moreover, under the same assumption Km is compact. In particular:

(i) spec (Lm) is compact;
(ii) for every z with Im z ̸= 0 the operator Lm−z is a bounded Fredholm operator with

index 0;
(iii) every z ∈ spec (Lm) with Im z ̸= 0 belongs to the discrete spectrum.

Proof. The boundedness of Sm is obvious. Having shown the boundedness and com-
pactness of Km, (i) follows immediately from the boundedness of Lm, while (ii) follows
immediately from the fact that Lm − z is a compact perturbation of the operator Sm − z,
which is invertible because Sm is selfajoint, and (iii) is a standard consequence of (ii).

First of all let us prove that Km is bounded (the proof is necessary because from what
previously proved, we can just conclude the boundedness and compactness of the operator
for integer values of m larger than 1). We observe first that the function ∥r−1ψ∥∞ ≤ ∥γ∥H,
as it follows from Cauchy-Schwarz that

rm−1

∫ ∞

r

|γ(s)|s1−m ds ≤ rm−1

(∫ ∞

r

|γ(s)|2s ds
) 1

2
(∫ ∞

r

s1−2m ds

) 1
2

≤ 1√
2m− 2

∥γ∥H

r−m−1

∫ r

0

|γ(s)|s1+m ds ≤ r−m−1

(∫ r

0

|γ(s)|2s ds
) 1

2
(∫ r

0

s1+2m ds

) 1
2

≤ 1√
2m+ 2

∥γ∥H .

Since g′(r) ≤ C(1 + r)−1−ᾱ, it follows immediately that

|(Km(γ))(r)| ≤
C∥γ∥H

(1 + r)1+ᾱ
(4.5)

and in particular

∥Km(γ)∥H ≤ C∥γ∥H
(∫ ∞

0

s

(1 + s)2+2ᾱ
ds

) 1
2

≤ C∥γ∥H .

This completes the proof of boundedness of the operator. In order to show compactness
consider now a bounded sequence {γk} ⊂ H. Observe that for every fixed N , (4.4) gives
the following obvious bound

∥Km(γk)∥W 1,2[N−1,N ] ≤ C(N)∥γk∥H . (4.6)

In particular, through a standard diagonal procedure, we can extract a subsequence of
{Km(γk)} (not relabeled) which converges strongly in L2([N−1, N ], rdr) for every N . It is
now easy to show that {Km(γk)}k is a Cauchy sequence in H. Fix indeed ε > 0. Using
(4.5) it is easy to show that there is a sufficiently large N with the property that

sup
k

∥Km(γk)1[0,N−1]∪[N,∞[∥H <
ε

3
. (4.7)

Hence, given such an N , we can choose k0 big enough so that

∥(Km(γk)−Km(γj))1[N−1,N ]∥H ≤ ε

3
∀k, j ≥ k0 . (4.8)
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Combining (4.7) and (4.8) we immediately conclude

∥Km(γk)−Km(γj)∥H < ε

for every j, k ≥ k0. This completes the proof that {Km(γj)} is a Cauchy sequence and
hence the proof that Km is compact. □

4.2. The eigenvalue equation and the class C

Using the operators introduced in the previous setting, we observe that Theorem 4.0.2 is
equivalent to showing that spec (Lm0)∩{Im z > 0} is finite and nonempty. We next notice
that, thanks to Proposition 4.1.4, the latter is equivalent to showing that the equation1

mζγ − m

r
g′ψ = zγ (4.9)

has a nontrivial solution γ ∈ H for some integer m = m0 ≥ 2 and some complex number
z with positive imaginary part.

We thus turn (4.9) into an ODE problem by changing the unknown from γ to the
function ψ. In particular, recall that the relation between the two is that ∆(ψ(r)eimθ) =
γ(r)eimθ, and ψeimθ is in fact the potential-theoretic solution. We infer that

ψ′′ +
1

r
ψ′ − m2

r2
ψ = γ

and hence (4.9) becomes

− ψ′′ − 1

r
ψ′ +

m2

r2
ψ +

g′

r(ζ −m−1z)
ψ = 0 . (4.10)

Notice that, by classical estimates for ODEs, ψ ∈ W 2,2
loc (R+). Observe, moreover, that if

ψ ∈ L2(dr
r
) ∩W 2,2

loc solves (4.10) and z has nonzero imaginary part, it follows that

γ =
mg′

r(mζ − z)
ψ

belongs to L2(rdr) and solves (4.9), because the function mg′

mζ−z is bounded. Viceversa,

assume that γ ∈ L2(rdr) solves (4.9). Then ψ solves (4.10) and we claim that ψ ∈ L2(dr
r
)∩

W 2,2
loc . First of all notice that, by classical Calderón-Zygmund estimates, ϕ(x) := ψ(r)eimθ

is a W 2,2
loc function of R2. As such ϕ ∈ Cω(B1) for every ω < 1 and therefore ψ ∈ Cω([0, 1])

and, by symmetry considerations, ψ(0) = 0. Thus it turns out that |ψ(r)| ≤ Crω for every
r ∈ [0, 1], which easily shows that ψ ∈ L2([0, 1], dr

r
). It remains to show that∫ ∞

1

|ψ(r)|2

r
dr <∞ . (4.11)

1Recall that ψ is defined through (4.4).
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However recall that, for r sufficiently large, ζ(r) = c0
r2

+ c1
rᾱ

for some constants c0 and c1,
while g′(r) = −ᾱr1+ᾱ. We thus infer

|ψ(r)| =
∣∣∣∣r(ζ(r)− z

m
)

g′(r)

∣∣∣∣ ≤ C|γ(r)|
rᾱ

,

which in turn easily implies (4.11) because
∫∞
1

|γ(r)|2r dr <∞.
Hence our problem is equivalent to understand for which m and z with positive imagi-

nary part there is an L2(dr
r
)∩W 2,2

loc solution of (4.10). The next step is to change variables
to t = ln r and we thus set φ(t) = ψ(et), namely, ψ(r) = φ(ln r). The condition that
ψ ∈ L2(dr

r
) translates then into φ ∈ L2(R) and ψ ∈ W 2,2

loc translates into φ ∈ W 2,2
loc .

Moreover, if we substitute the complex number z with z
m

we can rewrite

− φ′′(t) +m2φ(t) +
A(t)

Ξ(t)− z
φ(t) = 0 , (4.12)

which is Rayleigh’s stability equation, where the functions A and Ξ are given by changing
variables in the corresponding functions g′ and ζ:

A(t) =
d

dt
g(et) (4.13)

Ξ(t) =

∫ t

−∞
e−2(t−τ)g(eτ ) dτ . (4.14)

Note in particular that we can express A and Ξ through the relation

A = Ξ′′ + 2Ξ′ . (4.15)

The function g (and so our radial function Ω̄) can be expressed in terms of Ξ through the
formula

g(et) = e−2t d

dt
(e2tΞ(t)) . (4.16)

Rather than looking for g we will then look for Ξ in an appropriate class C which we next
detail:

Definition 4.2.1. The class C consists of those functions Ξ : R →]0,∞[ such that

(i) Ξ(−∞) := limt→−∞ Ξ(t) is finite and there are constants c0 > 0 and M0 such that
Ξ(t) = Ξ(−∞)− c0e

2t for all t ≤M0;
(ii) there is a constant c1 such that Ξ(t) = c1e

−2t + 1
2−ᾱe

−ᾱt for t ≥ ln 2;
(iii) A has exactly two zeros, denoted by a < b, and A′(a) > 0 and A′(b) < 0 (in

particular A < 0 on ]−∞, a[∪]b,∞[ and A > 0 on ]a, b[);
(iv) Ξ′(t) < 0 for every t.

Fix Ξ ∈ C . By (4.16), g is then smooth, it equals 2Ξ(−∞)− 4c0r
2 in a neighborhood

of 0, and it is equal to r−ᾱ for r ≥ 2, thanks to the conditions (i)-(ii). In particular the
corresponding function Ω̄(x) = g(|x|) satisfies the requirements of Theorem 4.0.2. We are
now ready to turn Theorem 4.0.2 into a (in fact stronger) statement for the eigenvalue
equation (4.12). In order to simplify its formulation and several other ones in the rest of
these notes, we introduce the following sets
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Figure 1. A sketch of the function in the class C which will be finally
chosen in Section 4.9 to prove Theorem 4.0.2, in the t = log r axis. The
graph of A(t) is the solid curve, G(t) := Ξ′(t) + 2Ξ(t) the dashed one, and
Ξ′(t) the dotted one. Even though A is smooth, its derivative undergoes a
very sharp change around the points t = 1

2
and the point t = − 1√

B
, where B

is an appropriately large constant, cf. Section 4.9.

Definition 4.2.2. Having fixed Ξ ∈ C and a real number m > 1, we denote by Um

the set of those complex z with positive imaginary part with the property that there are
nontrivial solutions φ ∈ L2 ∩W 2,2

loc (R,C) of (4.12).

Remark 4.2.3. Observe that z belongs to Um if and only if it has positive imaginary
part and mz is an eigenvalue of Lm.

Theorem 4.2.4. There is a function Ξ ∈ C and an integer m0 ≥ 2 such that Um0 is
finite and nonempty.

4.3. Overview of the proof of Theorem 4.2.4

The rest of the chapter is devoted to proving Theorem 4.2.4. The proof will be achieved
through a careful study of Rayleigh’s stability equation (4.12) and, in particular, the set
P of pairs (m, z) such that z ∈ Um and m > 1, i.e.,

P := {(m, z) ∈ R× C : z ∈ Um,m > 1} . (4.17)

Given that Ξ is strictly decreasing, we have

lim
t→−∞

Ξ(t) > Ξ(a) > Ξ(b) > lim
t→∞

Ξ(t) = 0
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Figure 2. The profile of the background vorticity Ω̄(x) = g(r) in the orig-
inal coordinates (the solid curve). Compare with the exact singular profile
r−ᾱ (the dashed curve)

and in order to simplify our notation we will use Ξ(−∞) for limt→−∞ Ξ(t) and, occasionally,
Ξ(∞) for 0.

The first step in the proof of Theorem 4.2.4 is understanding which pairs (m, z) belong
to the closure of P and have Im z = 0. Solutions (m, z, φ) to (4.12) with (m, z) ∈ P are
sometimes called neutral limiting modes [22].2 To that end, it is convenient to introduce
the following two self-adjoint operators:

La := − d2

dt2
+

A(t)

Ξ(t)− Ξ(a)
(4.18)

Lb := − d2

dt2
+

A(t)

Ξ(t)− Ξ(b)
. (4.19)

Thanks to the definition of the class C , it is easy to see that both functions A(t)
Ξ(t)−Ξ(a)

and
A(t)

Ξ(t)−Ξ(b)
are bounded and that A(t)

Ξ(t)−Ξ(a)
< A(t)

Ξ(t)−Ξ(b)
. Moreover, the first is negative on

] − ∞, b[ and positive on ]b,∞[, while the second is negative on ] − ∞, a[ and positive
on ]a,∞[. Recall that the spectra of these operators are necessarily real and denote by
−λa and −λb the smallest element in the respective ones: observe that, by the Rayleigh
quotient characterization, −λa < −λb.

The following proposition characterizes the possible neutral limiting modes:

2The interested reader may compare with the strategy for bounded shear flows in [22].
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Proposition 4.3.1. If (m0, z) ∈ P and Im z = 0, then either z = Ξ(a) or z = Ξ(b).
red Moreover, in either case, if m0 > 1 then necessarily m0 =

√
λa or m0 =

√
λb. Assume

in addition that −λa < −1. Then, for z = Ξ(a), the unique m ≥ 1 such that (4.12) has
a nontrivial solution ψa ∈ L2 is ma =

√
λa. Moreover, any nontrivial solution has the

property that ψa(a) ̸= 0.

red

Remark 4.3.2. We remark that the exact same argument applies with b in place of a
when λb > 1, even though this fact does not play any role in the rest of the notes.

Observe that this does not yet show that (ma,Ξ(a)) ∈ P corresponds to a neutral
limiting mode. The latter property will be achieved in a second step, in which we seek a
curve of unstable modes emanating from (ma,Ξ(a)):

Proposition 4.3.3. Assume −λa < −1 and let ma =
√
λa. There are positive con-

stants ε > 0 and δ > 0 with the following property: For every h ∈]0, δ[, Uma−h∩Bε(Ξ(a)) ̸=
∅.

red

Remark 4.3.4. In fact, the argument given for the proposition proves the stronger
conclusion that Uma−h ∩ Bε(Ξ(a)) consists of a single point z, with the property that mz
is an eigenvalue of Lm with geometric multiplicity 1. Moreover, the very same argument
applies to b in place of a and h ∈]− δ, 0[ if λb > 1.

Combined with some further analysis, in which the curve of unstable modes is continued,
the latter proposition will allow us to conclude the following:

Proposition 4.3.5. Assume −λa < −1, let ma =
√
λa and set mb :=

√
max{1, λb}:

then Um ̸= ∅ for every m ∈]mb,ma[.

Thus far, we have not selected our function Ξ: the above properties are valid for any
element in the class C . The choice of Ξ comes in the very last step.

Proposition 4.3.6. There is a choice of Ξ ∈ C with the property that ]mb,ma[ contains
an integer larger than 1.

Clearly, the combination of Proposition 4.3.5 and Proposition 4.3.6 gives Theorem
4.2.4: we first choose Ξ as in Proposition 4.3.6 and hence we select m0 as the largest
natural number which belongs to the interval ]mb,ma[; the properties claimed in Theorem
4.2.4 follow then from Proposition 4.3.5. The proof of Proposition 4.3.6 is in fact a rather
straightforward application of the following.

Lemma 4.3.7. Let m0 be any integer. Then there exists Ξ ∈ C with a = 0 and b = 1
2

such that the smallest eigenvalue of the operator La is smaller than −m2
0.

Remark 4.3.8. A consequence of Lemma 4.3.7 is that the most unstable wavenumber
m0 can be made arbitrarily large. Only m0 ≥ 2 is necessary to prove non-uniqueness.
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The rest of the chapter will be devoted to proving the Propositions 4.3.1 and 4.3.3 and
Lemma 4.3.7. We finish this section by giving the simple proof of Proposition 4.3.6

Proof. For simplicity we fix a = 0 and b = 1
2
and we look at the set of functions Ξ

with this particular choice of zeros for A. We then denote by LΞ,a the operator in (4.18).
We fix an arbitrary Ξ0 ∈ C and let −λ(0) be the smallest eigenvalue of LΞ0,a. We then
consider the smallest integer m0 ≥ 3 such that m2

0 > λ(0). By Lemma 4.3.7 there is an
element Ξ1 ∈ C with the property that a = 0, b = 1

2
and, if −λ(1) is the smallest element

of the spectrum of LΞ1,a, then −λ(1) < m2
0. For σ ∈ [0, 1] consider LΞσ ,a where

Ξσ = (1− σ)Ξ0 + σΞ1

and observe that Ξσ ∈ C for every σ ∈ [0, 1].
Since σ 7→ Ξσ is continuous in the uniform convergence, by the Rayleigh quotient

characterization we see that the smallest element −λ(σ) of the spectrum of LΞσ ,a is a
continuous function of σ. There is thus one σ ∈ [0, 1[ with λ(σ) = m2

0. Let σ0 be the
largest σ with λ(σ) = m2

0. Observe now that, if we let −µ(σ0) be the smallest eigenvalue of
LΞσ0 ,b

, then µ(σ0) < m2
0. In addition, σ 7→ µ(σ) is also continuous and thus there is h > 0

such that µ(σ) < m2
0 for all σ ∈ [σ0 − h, σ0 + h]. On the other hand λ(σ0 + h) > m2

0. This
shows that mb < m0 < ma if we choose Ξ = Ξσ0+h, completing the proof of our claim. □

4.4. ODE Lemmas

An essential tool in the proofs of the Propositions 4.3.1 and 4.3.3 are the following two
ODE lemmas.

Lemma 4.4.1. Let m > 0. For every f ∈ L2(R) there is a unique ψ ∈ L2(R)∩W 2,2
loc s.t.

− d2ψ

dt2
+m2ψ = f (4.20)

and it is given by

ψ(t) =
1

2m

∫
R
e−m|t−τ |f(τ) dτ . (4.21)

Proof. The lemma is a classical well-known fact. At any rate the verification that ψ
as in (4.21) solves (4.20) is an elementary computation while, since obviosuly e−m|t| ∈ L1,

ψ ∈ L2 if f ∈ L2. Moreover, any other solution ψ̂ of (4.20) must satisfy ψ̂(t) = ψ(t) +

C+e
mt + C−e

−mt for some constants C± and the requirement ψ̂ ∈ L2 immediately implies
C+ = C− = 0. □

The second ODE Lemma is the following:

Lemma 4.4.2. Let v ∈ L1(R,C). Then for every constant c− there is a unique solution
y ∈ W 2,1

loc (R,C) of

− d2y

dt2
+ (m2 + v)y = 0 (4.22)
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with the property that

lim
t→−∞

e−mty(t) = c− . (4.23)

Moreover we have y(t) = emt(c− + z(t)) for a function z(t) which satisfies the bounds

|z(t)| ≤ |c−|
[
exp

(
1

2m

∫ t

−∞
|v(s)| ds

)
− 1

]
(4.24)

|z′(t)| ≤ 2m|c−|
[
exp

(
1

2m

∫ t

−∞
|v(s)| ds

)
− 1

]
(4.25)

A symmetric statement, left to the reader, holds for solutions such that

lim
t→∞

emty(t) = c+ . (4.26)

Important consequences of the above Lemmas are the following:

Corollary 4.4.3. If (m, z) ∈ P, then the space of solutions φ ∈ L2 ∩W 2,2
loc of (4.12)

is 1-dimensional. Moreover for any such φ there is a constant C with the property that

|φ(t)| ≤ Ce−m|t| (4.27)

and there are two constants C+ and C− such that

lim
t→∞

emtφ(t) = C+ (4.28)

lim
t→−∞

e−mtφ(t) = C− . (4.29)

The constants are either both nonzero or both zero, in which case φ vanishes identically.
The same conclusions apply if m > 1, z ∈ {Ξ(a),Ξ(b)} and φ solves (4.12).

Proof. Observe that |Ξ(t) − z| ≥ |Im z|, while A(t) = 6c0e
2t for −t sufficiently large

and |A(t)| ≤ 2e−2ᾱt for t sufficiently large. In particular

|A(t)|
|Ξ(t)− z|

≤ Ce−2ᾱ|t| . (4.30)

First of all notice that, if φ ∈ L2 ∩ W 2,2
loc solves (4.12), by Lemma 4.4.1 (applied with

f = − Aφ
Ξ−z ) we have

|φ(t)| ≤ C

2m

∫
e−m|t−τ |e−2ᾱ|τ ||φ(τ)| dτ . (4.31)

Using Cauchy-Schwarz and the fact that φ ∈ L2 we immediately obtain that φ ∈ L∞,
namely, that there is a constant C such that |φ| ≤ C. We now prove inductively that
|φ(t)| ≤ Cke

−kᾱ|t| as long as kᾱ ≤ m. The case k = 0 has already been shown. Assume
thus that the inequality holds for k − 1 and that kᾱ ≤ m. We then observe that

e−m|t−τ |e−2ᾱ|τ ||φ(τ)| ≤ Ck−1e
−m|t−τ |−kᾱ|τ |e−ᾱ|τ | ≤ Ck−1e

−kᾱ(|t−τ |+|τ |)e−ᾱ|τ |

≤ Ck−1e
−kᾱ|t|e−ᾱ|τ | .
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Inserting in (4.31) and using that e−ᾱ|τ | ∈ L1 we then obtain |φ(t)| ≤ Cke
−kᾱ|t|. Assuming

now kᾱ ≤ m < (k + 1)ᾱ we can, likewise, bound

e−m|t−τ |e−2ᾱ|τ ||φ(τ)| ≤ Cke
−m|t−τ |−(k+1)ᾱ|τ |e−ᾱ|τ | ≤ Cke

−m|t|e−ᾱ|τ |

and plugging into (4.31) one last time we conclude |φ(t)| ≤ Ce−m|t|.
In order to show that φ is unique up to a multiplicative constants, it suffices to show

that limt→−∞ e−mtφ(t) exists and is finite. Hence Lemma 4.4.2 would conclude that the
solution is uniquely determined by C−, and that the latter must be nonzero, otherwise
φ ≡ 0. In order to show existence and finiteness of C− rewrite

φ(t) =
emt

2m

∫ ∞

t

e−ms
A(s)

Ξ(s)− z
φ(s) ds+

e−mt

2m

∫ t

−∞
ems

A(s)

Ξ(s)− z
φ(s) ds .

Since by our estimates both e−ms A(s)
Ξ(s)−zφ(s) and e

ms A(s)
Ξ(s)−zφ(s) are integrable, we conclude

that C± exist and equal

C± =
1

2m

∫ ∞

−∞
e±ms

A(s)

Ξ(s)− z
φ(s) ds .

As for the last sentence of the statement of the lemma, the same arguments can be
used in the case z ∈ {Ξ(a),Ξ(b)}, since the crucial point is that, thanks to the assumption
that A(a) = A(b) = 0 and Ξ′(a) ̸= 0 ̸= Ξ′(b), the estimate (4.30) remains valid. □

Proof of Lemma 4.4.2. We distinguish between the case c− ̸= 0 and c− = 0. In the
case c− ̸= 0 we can divide by c− and reduce the statement to c− = 1. For the existence it
suffices to look for a solution of (4.22) which satisfies (4.23) on a half-line of type ]−∞, T ]
for some T . Such solution has then aW 2,1

loc continuation on [T,∞[ by standard ODE theory.
Likewise the uniqueness is settled once we can show the uniqueness holds on ] − ∞, T ].

Observe next that, if the solution exists, we would clearly conclude that d2y
dt2

∈ L1(]−∞, T ]),
hence implying that

lim
t→−∞

y′(t)

exists and is finite. On the other hand (4.23) implies that such limit must be 0.
Let ỹ(t) = e−mty(t) and observe that we are looking for a solution of

(e2mtỹ′)′ = e2mtvỹ .

Integrating between −N and t the latter identity and letting t→ −∞ we conclude

e2mtỹ′(t) =

∫ t

−∞
e2msv(s)ỹ(s) ds . (4.32)

Divide by e2mt and integrate once more to reach

ỹ(t)− 1 = −
∫ t

−∞

∫ r

−∞
e2m(s−r)v(s)ỹ(s) ds dr =

1

2m

∫ t

−∞

(
1− e−2m(t−s))v(s)ỹ(s) ds
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We then define the transformation

F (ỹ)(t) =
1

2m

∫ t

−∞

(
1− e−2m(t−s))v(s)ỹ(s) ds+ 1 (4.33)

which we consider as a map from L∞(]−∞, T ]) into itself. From our discussion we conclude
that y solves (4.22) and obeys (4.23) if and only if ỹ is a fixed point of F . Choosing T
large enough so that ∥v∥L1(]−∞,T ]) ≤ m we see immediately that F is contraction on
L∞(] −∞, T ]) and it thus has a unique fixed point. We have thus showed existence and
uniqueness of the solution in question.

Observe now that z(t) = ỹ(t)− 1 and set

Z(t) := exp

(
1

2m

∫ t

−∞
|v(s)| ds

)
− 1 .

Z solves the ODE Z ′ = |v|
2m
Z + |v|

2m
and, since limt→−∞ Z(t) = 0, the integral equation

Z(t) =
1

2m

∫ t

−∞
|v(s)|Z(s) ds+ 1

2m

∫ t

−∞
|v(s)| ds .

We first want to show that |z(t)| ≤ Z(t) on ] − ∞, T ]. We set ỹ0 := Z + 1 and define
inductively ỹi+1 = F (ỹi). From the above discussion we know that ỹi converges uniformly
to ỹ and it suffices thus to show that |ỹi−1| ≤ Z for all i. By definition we have |ỹ0−1| = Z
and thus we need to show the inductive step. We estimate

|ỹi+1(t)− 1| ≤ 1

2m

∫ t

−∞
|v(s)||ỹi(s)| ds

≤ 1

2m

∫ t

−∞
|v(s)|Z(s) ds+ 1

2m

∫ t

−∞
|v(s)| ds = Z(t) ,

We have shown (4.24) on ]−∞, T ]. In order to extend the inequality to the whole real axis
observe first that we can assume, without loss of generality, that ∥v∥L1(R) > 0, otherwise
we trivially have |ỹ(t)− 1| = Z(t) = 0 for all t. In particular we can select T so that all of
the above holds and at the same time ∥v∥L1(]−∞,T ]) > 0. This implies Z(T ) > 0. Moreover,
by (4.33) and F (ỹ) = ỹ, either

|ỹ(T )− 1| < 1

2m

∫ T

−∞
|v(s)||ỹ(s)| ds

or |v||ỹ| vanishes identically on ] −∞, T ]. In both cases we conclude |ỹ(T ) − 1| < Z(T ).
Consider now sup{t ≥ T : |ỹ(t)−1| < Z(t)}. Such supremum cannot be a finite number T0
because in that case we would have |ỹ(T0) − 1| = Z(t0) while the same argument leading
to the strict inequality |ỹ(T )− 1| < Z(T ) implies |ỹ(T0)− 1| < Z(T0).



52 4. LINEAR THEORY: PART II

Having shown (4.24) we now come to (4.25). Recalling (4.32) we have

z′(t) =

∫ t

−∞
e−2m(t−s)v(s)(z(s) + 1) ds

≤
∫ t

−∞
e−2m(t−s)|v(s)|Z(s) ds+

∫ t

−∞
e−2m(t−s)|v(s)| ds = 2mZ(t) .

We now come to the case c− = 0. In that case we need to show that the unique solution
is identically 0. Arguing as for the case c− = 1 we conclude that φ is a fixed point of the
transformation

F (φ)(t) =
1

2m

∫ t

−∞

(
1− e−2m(t−s))v(s)ỹ(s) ds

Again, for a sufficiently small T , F is a contraction on L∞(] − ∞, T ]) and hence it has
a unique fixed point. Since however 0 is, trivially, a fixed point, we conclude that φ ≡ 0
on ]−∞, T ]. Standard ODE theory implies then that φ vanishes identically on the whole
R. □

4.5. Proof of Proposition 4.3.1

We start by showing the last statement of the proposition, namely:

(A) For z = Ξ(a) and under the assumption that λa > 1, the unique m such that
(4.12) has a nontrivial solution ψa ∈ L2 is ma =

√
λa.

red Before coming to its proof we also observe that the same argument applies with b in
place of a.

First of all observe that, for z = Ξ(a), the equation (4.12), which becomes

− d2φ

dt2
+m2φ+

A

Ξ− Ξ(a)
φ = 0, (4.34)

has nontrivial solutions φ ∈ W 2,2
loc ∩ L2(R;C) if and only if it has nontrivial solution φ ∈

W 2,2
loc ∩ L2(R;R). That the equation has a nontrivial solution when m =

√
λa follows

from the classical theory of self-adjoint operators. We therefore only need to show that
the existence of a nontrivial solution is only possible for a single m ≥ 1. Arguing by
contradiction assume there are two, 1 ≤ m1 < m2, and denote by ψ1 and ψ2 the respective
solutions. Then there is a nontrivial linear combination

ψ = C1ψ1 + C2ψ2

which vanishes on a. Observe that ψ1 and ψ2 can be interpreted as eigenfuctions of the self-

adjoint operator − d2

dt2
+ A(t)

Ξ(t)−Ξ(a)
relative to distinct eigenvalues and they are, therefore, L2

orthogonal. Summing the equations, multiplying by ψ and integrating by parts we achieve∫ (
(ψ′)2 +

A

Ξ− Ξ(a)
ψ2

)
︸ ︷︷ ︸

=:I

= −C2
1m

2
1

∫
ψ2
1 − C2

2m
2
2

∫
ψ2
2 . (4.35)
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Recalling that A = Ξ′′+2Ξ′ = (Ξ′+2Ξ)′, we wish to integrate by parts the second integrand
in the left-hand side. Observe that, because ψ vanishes on a and Ξ′(a) ̸= 0, the function
ψ2

Ξ−Ξ(a)
is in fact continuously differentiable. In particular we can write∫

A

Ξ− Ξ(a)
ψ2 =

∫ (
Ξ′ + 2Ξ

(Ξ− Ξ(a))2
Ξ′ψ2 − 2

Ξ′ + 2Ξ

Ξ− Ξ(a)
ψψ′
)
.

Substituting it into I, we achieve

I =

∫ (
ψ′ − Ξ′

Ξ− Ξ(a)
ψ

)2

+

∫ (
2ΞΞ′ψ2

(Ξ− Ξ(a))2
− 4Ξψψ′

Ξ− Ξ(a)

)
=

∫ (
ψ′ − Ξ′

Ξ− Ξ(a)
ψ

)2

+ 2

∫
Ξ′

Ξ− Ξ(a)
ψ2 ,

where to reach the second line we have written the first term in the second integral as

−2Ξ
d

dt

(
1

Ξ− Ξ(a)

)
ψ2

and integrated it by parts. Again thanks to the fact that ψ vanishes at a we can write it
as ψ = (Ξ− Ξ(a))η and hence conclude

I =

∫
((Ξ− Ξ(a))η′)2 +

∫
2(Ξ− Ξ(a))Ξ′η2 =

∫
((Ξ− Ξ(a))η′)2 − 2

∫
(Ξ− Ξ(a))2ηη′

=

∫
(Ξ− Ξ(a))2(η′ − η)2 −

∫
(Ξ− Ξ(a))2η2

=

∫
(Ξ− Ξ(a))2(η′ − η)2 −

∫
(C2

1ψ
2
2 + C2

2ψ
2
2) .

Inserting the latter in (4.35) we conclude∫
(Ξ− Ξ(a))2(η′ − η)2 = −C2

1(m
2
1 − 1)

∫
ψ2
1 − C2

2(m
2
2 − 1)

∫
ψ2
2 .

Observe that, since m2 > 1 and ψ2 is nontrivial, we conclude that C2 = 0. This would
then imply that ψ = C1ψ1 and we can thus assume C1 = 1 in all our computations. In
particular η′ = η, which implies η(t) = Cet. We can now write ψ1(t) = (Ξ(t) − Ξ(a))η(t)
and given the properties of Ξ(t) we easily see that this would violate the decay at +∞ that
we know for ψ1 from Corollary 4.4.3.

red

Remark 4.5.1. We record here a consequence of the above argument: a nontrivial
solution φ of (4.34) necessarily satisfies φ(a) ̸= 0 (and thus it must be unique up to
constant factors).

We next show that

(B) If (m0, z) ∈ P, m0 ≥ 1 and z ∈ R, then z is in the closure of the range of Ξ.

We again argue by contradiction and assume the existence of
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(i) A sequence {mj} ⊂]1,∞[ converging to m0 ∈ [1,∞[;

(ii) A sequence {zj} ⊂ C with Im zj > 0 converging to z ∈ R \ Ξ(R);
(iii) A sequence ψj of nontrivial solutions of

− d2ψj
dt2

+m2ψj +
A

Ξ− zj
ψj = 0 (4.36)

By Corollary 4.4.3 we can normalize our functions ψj so that ψj(t)e
−mjt → 1 as t → −∞

and ψj(t)e
mjt → Cj ̸= 0 as t → ∞. Observe also that there is a positive constant c0 such

that |Ξ−zj| ≥ c0 for all j sufficiently large, thanks to (ii). In particular, the functions A
Ξ−zj

are uniformly bounded in L1. By Lemma 4.4.2 there is a positive T0 ≥ b+ 1, independent
of j such that ∣∣ψj(t)− Cje

−mjt
∣∣ ≤ Cj

2
e−mjt ∀t ≥ T0 , (4.37)

and there is a constant C, independent of j such that

∥ψj∥L∞([a,b]) ≤ C . (4.38)

Next multiply (4.36) by ψ̄j, integrate in t and take the imaginary part of the resulting
equality to conclude ∫

A

(Ξ− Re zj)2 + (Im zj)2
|ψj|2 = 0 . (4.39)

We might break the integral into three integrals on the regions ]−∞, a[, ]a, b[, and ]b,∞[,
where the function A is, respectively, negative, positive, and negative. This gives

−
∫ 2T0

T0

A

(Ξ− Re zj)2 + (Im zj)2
|ψj|2 ≤

∫ b

a

A

(Ξ− Re zj)2 + (Im zj)2
|ψj|2

Now, the right-hand side of the inequality can be bounded uniformly independently of j
by (4.38) and (ii). On the other hand the function −A

(Ξ−Re zj)2+(Imzj)2
is larger than a positive

constant c independent of j on [T0, 2T0]. Using (4.37) we can achieve a uniform bound
|Cj| ≤ C for the constants Cj. The latter bound, combined with the estimates of Lemma
4.4.2 and the uniform bound on ∥ A

Ξ−zj ∥L1 easily imply that ψj is precompact in L2. We

can thus extract a subsequence, not relabeled, converging to a nontrivial L2 solution ψ of

− d2ψ

dt2
+m2

0ψ +
A

Ξ− z
ψ = 0 . (4.40)

Without loss of generality we assume that ψ is real valued, since z is real. We can thus
multiply (4.40) by ψ and integrate to achieve∫

((ψ′)2 +m2
0ψ

2) +

∫
Ξ′′ + 2Ξ′

Ξ− z
ψ2 = 0 .

Integrating by parts
∫

Ξ′′

Ξ−zψ
2 we find∫

((ψ′)2 +m2
0ψ

2) +

∫ (
(Ξ′)2

(Ξ− z)2
ψ2 − 2

Ξ′

Ξ− z
ψ′ψ

)
+

∫
2Ξ′

Ξ− z
ψ2 = 0 ,
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which we can rewrite as∫ ((
ψ′ − Ξ′

Ξ− z
ψ

)2

+m2
0ψ

2

)
+ 2

∫
Ξ′

Ξ− z
ψ2 = 0 . (4.41)

As already done in the previous paragraphs we set η = ψ
Ξ−z and write the identity as∫ (

(Ξ− z)2(η′)2 +m2
0(Ξ− z)2η2 + 2Ξ′(Ξ− z)η2

)
= 0

Integrating by parts the last term we find∫
(Ξ− z)2(η′ − η)2 +

∫
(m2

0 − 1)(Ξ− z)2η2 = 0 .

We thus conclude that m0 = 1 and η′ = η, i.e. η(t) = Cet, but again we see that this
would violate ψ ∈ L2.

We next employ a suitable variation of the latter argument to show that

(C) (m0, 0) and (m0,Ξ(−∞)) do not belong to P if m0 ≥ 1.

We again argue by contradiction and assume the existence of

(i) A sequence {mj} ⊂]1,∞[ converging to m0 ∈ [1,∞[;
(ii) A sequence {zj} ⊂ C with Im zj > 0 converging to 0 or to Ξ(−∞);
(iii) A sequence ψj of nontrivial solutions of

− d2ψj
dt2

+m2
jψj +

A

Ξ− zj
ψj = 0 . (4.42)

We first focus on the case zj → 0. Normalize again the solutions so that ψj(t) is asymptotic
to em0t for t negative, and to Cje

−m0t for t positive.
Observe that in this case we have A

Ξ
∈ L1(]−∞, N ]) for every N , while A

Ξ−zj enjoys a

uniform L1 bound on any ]−∞, N ]. We can thus apply Lemma 4.4.2 and conclude the ψj
can be assumed to converge uniformly to a function ψ on ]−∞, N ] for every N and that
likewise ψ(t) is asymptotic to em0t for t negative.

As done previously we multiply the equation (4.42) by ψ̄j, integrate, and take the
imaginary part. In particular we gain the inequality∫ ∞

b

A

(Ξ− Re zj)2 + (Im zj)2
|ψj|2 ≤ −

∫ b

a

A

(Ξ− Re zj)2 + (Im zj)2
|ψj|2 .

Since zj → 0 and the range of Ξ on [a, b] is bounded away from 0, we conclude that the
right-hand side is uniformly bounded. In particular, passing to the limit we conclude that

Ξ−2A|ψ|2 ∈ L1([b,∞[) . (4.43)

Observe however that

lim
t→∞

A(t)

Ξ(t)
= lim

t→∞

−ᾱe−ᾱt

c1e−2t + 1
2−ᾱe

−ᾱt = −ᾱ(2− ᾱ) .
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In particular we conclude that ψ ∈ L2. Moreover, we can write

A

Ξ
= −ᾱ(2− ᾱ) +B

for a function B which belongs to L1([T,∞[) for every T . We thus have that

d2ψ

dt2
+ (m2

0 − ᾱ(2− ᾱ))ψ +Bψ = 0 .

Recalling that 0 < ᾱ < 1 and m0 ≥ 1, we have m2
0 − ᾱ(2 − ᾱ) > 0 and we can therefore

apply Lemma 4.4.2 to conclude that, for m̄ :=
√
m2

0 − ᾱ(2− ᾱ)

lim
t→∞

em̄tψ(t)

exists, it is finite, and nonzero. Observe however that (4.43) forces eᾱt|ψ|2 ∈ L1, which in
particular implies that m̄ > ᾱ

2
We next argue as in the derivation of (4.41) to get∫ ((

ψ′ − Ξ′

Ξ
ψ

)2

+m0ψ
2

)
+ 2

∫
Ξ′

Ξ
ψ2 = 0 .

We again set ψ = Ξη and observe that, by our considerations, η decays exponentially at
−∞, while it is asymptotic to e(ᾱ−m̄)t at +∞. We rewrite the latter identity as∫

(Ξ2(η′)2 +m2
0Ξ

2η2 + 2ΞΞ′η2) = 0 .

We wish to integrate by parts the latter term to find∫
(Ξ2(η′ − η)2 + (m2

0 − 1)Ξ2η2) = 0 . (4.44)

Since we have exponential decay of η at −∞, while at +∞ η might grow, the latter
integration by parts need some careful justification. First of all we notice that ΞΞ′η2

decays exponentially at +∞ and thus, since the other two integrands are positive, we can
write ∫

(Ξ2(η′)2 +m2
0Ξ

2η2 + 2ΞΞ′η2) = lim
N→∞

∫ N

−∞
(Ξ2(η′)2 +m2

0Ξ
2η2 + 2ΞΞ′η2) .

Next, we can integrate by parts the second integrand (before passing to the limit) to write∫ N

−∞
(Ξ2(η′)2 +m2

0Ξ
2η2 + 2ΞΞ′η2) =

∫ N

−∞
(Ξ2(η′ − η)2 + (m2

0 − 1)Ξ2η2) + Ξ2(N)η2(N) .

Since Ξ(N)η(N) converges to 0 exponentially, passing into the limit we conclude (4.44).
As before this would imply m0 = 1 and η(t) = Cet, while we have already argued that η
decays exponentially at ∞.

We next tackle the case zj → Ξ(−∞). This time we observe that A
Ξ−zj enjoys a uniform

L1 bound on [T,∞[ for every T and we thus normalize the functions ψj so that ψj(t) is
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asymptotic to e−mjt for t→ ∞. Arguing as above, we assume that ψj converges uniformly
on all [T,∞[ to a ψ which is asymptotic to e−m0t and solves

− d2ψ

dt2
+m2

0ψ +
A

Ξ− Ξ(−∞)
ψ = 0 . (4.45)

As above we can assume that ψ is real valued. Moreover, this time we infer (with the same
method used to prove (4.43))

(Ξ− Ξ(−∞))−2Aψ2 ∈ L1(R) (4.46)

This time observe that, for t sufficiently negative, A(t)
Ξ(t)−Ξ(−∞)

= 8. In particular we can

explicitly solve the equation as

ψ(t) = C1e
−t
√
m2

0+8 + C2e
t
√
m2

0+8

when t is sufficiently negative. However, if C1 were positive, (4.46) would not hold. In
particular we infer exponential decay at −∞. We can now argue as for the case zj → 0:
we multiply (4.45) by ψ, integrate in time and perform an integration by part to infer∫ ((

ψ′ − Ξ′

Ξ− Ξ(−∞)
ψ

)2

+m0ψ
2

)
+ 2

∫
Ξ′

Ξ− Ξ(−∞)
ψ2 = 0 .

We then introduce η so that ψ = (Ξ−Ξ(−∞))η. This time we infer exponential decay for
η at both ∞ and −∞. Arguing as above we rewrite the last identity as∫

((Ξ− Ξ(−∞))2(η′ − η)2 + (m2
0 − 1)(Ξ− Ξ(−∞))2η2) = 0 ,

reaching again a contradiction.

In order to complete the proof of the proposition we need to show

(D) If (m0,Ξ(c)) ∈ P red and m0 > 1, then either c = a or c = b red and moreover
we have, respectively, m0 =

√
λa or m0 =

√
λb.

As before we argue by contradiction and assume the existence of

(i) A sequence {mj} ⊂]1,∞[ converging to m0 ∈]1,∞[;
(ii) A sequence {zj} ⊂ C with Im zj > 0 converging to Ξ(c) for some c ̸∈ {a, b};
(iii) A sequence ψj of nontrivial solutions of

− d2ψj
dt2

+m2
jψj +

A

Ξ− zj
ψj = 0 . (4.47)

This time we normalize the ψj’s so that∫
(|ψ′

j|2 +m2
j |ψj|2) = 1 . (4.48)

By Lemma 4.4.2 we know that ψj(t) is asymptotic to ρ±j e
∓mjt for t → ±∞, where ρ±j ∈

C \ {0}. Since Ξ(c) has a positive distance from both 0 and Ξ(−∞), we can apply Lemma



58 4. LINEAR THEORY: PART II

4.4.2 to achieve uniform times T± with the properties that

∣∣ψj(t)− ρ+j e
−mjt

∣∣ ≤ |ρ+j |
2
e−mjt ∀t ≥ T+ , (4.49)∣∣ψj(t)− ρ−j e

mjt
∣∣ ≤ |ρ−j |

2
emjt ∀t ≤ T− . (4.50)

Combining the latter inequalities with (4.48) we conclude that supj |ρ±j | < ∞, and in

particular {ψj}j is tight in L2, i.e. for every ε > 0 there is N = N(ε) such that

sup
j

∫
|t|≥N

|ψj|2 < ε .

The latter bound combined with (4.48) implies, up to extraction of a subsequence which
we do not relabel, the strong L2 convergence of ψj to a function ψ. Thanks to Sobolev
embedding, the convergence is uniform on any compact set and, moreover, ψ ∈ C1/2.

Arguing as for (4.39) we infer∫
A

(Ξ− Re zj)2 + (Im zj)2
|ψj|2 = 0 (4.51)

The latter bound implies ψ(c) = 0. In fact first we observe that A
|Ξ−zj |2 |ψj|

2 converges

in L1 on R\]c − δ, c + δ[ for every δ. Choosing δ > 0 so that |A(t) − A(c)| ≤ |A(c)|
2

for
t ∈ [c− δ, c+ δ] and recalling that |A(c)| > 0, we easily infer that

sup
j

∫ c+h

c−h

|ψj|2

(Ξ− Re zj)2 + (Im zj)2
<∞ ∀h < δ .

If ψ(c) were different from 0, we can select a positive h < δ and a positive c0 with the
property that |ψ(t)|2 ≥ 2c0 for all t ∈ [c− h, c+ h]. In particular, for a large enough j we
infer |ψj(t)|2 ≥ c for all t ∈ [c− δ, c+ δ]. But then we would conclude

sup
j

∫ c+h

c−h

1

(Ξ− Re zj)2 + (Im zj)2
<∞ .

Since the denominator converges to (Ξ− Ξ(c))2, this is clearly not possible.
We now wish to pass in the limit in (4.47) to derive that

− ψ′′ +m2
0ψ +

A

Ξ− Ξ(c)
ψ = 0 , (4.52)

where we notice that, thanks to ψ(c) = 0 and the Hölder regularity of ψ, the function
A

Ξ−Ξ(c)
ψ is indeed in Lp for every p < 2. We thus understand the equation distributionally.

The equation clearly passes to the limit outside the singularity c of the denominator and
thus we just need to pass it to the limit distributionally in some interval ]c− h, c+ h[. We
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write the third term as

A

Ξ− zj
ψj =

(
d

dt
ln(Ξ− zj)

)
A

Ξ′ψ

=
d

dt

(
ln(Ξ− zj)

A

Ξ′ψj

)
− ln(Ξ− zj)

A

Ξ′ψ
′
j − ln(Ξ− zj)

d

dt

(
A

Ξ′

)
ψj .

Observe that we can define the logarithm unequivocally because Ξ is real valued and
Im zj > 0.

Next, we remark that:

(i) A
Ξ′ is smooth in ]c− h, c+ h[;

(ii) ln(Ξ−zj) converges strongly 3 to ln(Ξ−Ξ(c)) in Lq(]c−h, c+h[) for every q <∞;
(iii) ψ′

j → ψ′ weakly in L2, while ψj → ψ uniformly.

We thus conclude that A
Ξ−zjψj converges distributionally to

d

dt

(
ln(Ξ− Ξ(c))

A

Ξ′ψ

)
− ln(Ξ− Ξ(c))

A

Ξ
ψ − ln(Ξ− Ξ(c))

d

dt

(
A

Ξ′

)
ψ .

Using now that ψ ∈ W 1,2 and ψ(c) = 0 we can rewrite the latter distribution as

A

Ξ− Ξ(c)
ψ

and hence conclude the validity of (4.52).
Observe next that from (4.52) we infer ψ′′ ∈ Lp for every p < 2, which in turn implies

that ψ is indeed C1,κ
loc for every κ < 1

2
. In turn this implies that A

Ξ−Ξ(c)
ψ is continuous at c,

so that in particular ψ is twice differentiable. We thus can argue as for the derivation of
(4.41) and get ∫ ((

ψ′ − Ξ′

Ξ− Ξ(c)
ψ

)2

+m2
0ψ

2

)
+ 2

∫
Ξ′

Ξ− Ξ(c)
ψ2 = 0 . (4.53)

Once again we can set ψ = (Ξ − Ξ(c))η and observe that η ∈ W 1,2, to rewrite the latter
identity as ∫

((Ξ− Ξ(c))2(η′ − η)2 + (m2
0 − 1)(Ξ− Ξ(c))2η2) = 0 ,

inferring that η = 0.
We thus have concluded that ψ vanishes identically, but this is not yet a contradiction

since the normalization (4.48) and the strong L2 convergence does not ensure that ψ is
nontrivial. In order to complete our argument, note first that, by the monotonicity of Ξ,

3Since ln(Ξ− zj) converges uniformly to ln(Ξ−Ξ(c)) on any compact set which does not contain c, in
order to reach the conclusion it suffices to prove a uniform Lq bound on the functions, for every q < ∞.
This can be easily concluded as follows. Choose an interval [c−h, c+h] and recall that Ξ does not change
sign on it. For each j large enough we then find a unique cj ∈ [c − h, c + h] such that Ξ(cj) = Re zj .
Using the mean value theorem we easily conclude that |Ξ(t)− zj | ≥ |Ξ(t)− Ξ(cj)| ≥ C−1|t− cj | for every
t ∈ [c− h, c+ h], where C−1 = min{|Ξ′(t)| : c− h ≤ t ≤ c+ h}.
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for each j large enough there is a unique cj such that Ξ(cj) = Re zj. We then multiply the

equation (4.47) by ψ̄j − ψj(cj) to obtain∫ (
|ψ′
j|2 +m2

jψj(ψ̄j − ψj(cj)) +
A

Ξ− zj
ψj(ψ̄j − ψj(cj))

)
= 0 .

Note that cj must converge to c and that the integrals∫
ψj(ψ̄j − ψj(cj))

converges to 0 because ψj − ψj(cj) converges to 0 uniformly and, thanks to the uniform
exponential decay of ψj, the latter are uniformly bounded in L1. For the same reason the
first integral in the sum∫

|t−c|≥h

A

Ξ− zj
ψj(ψ̄j − ψj(cj)) +

∫
|t−c|≤h

A

Ξ− zj
ψj(ψ̄j − ψj(cj)) (4.54)

converges to 0 for every fixed h. On the other hand, | A(t)
Ξ(t)−zj ||ψj(t)−ψj(cj)| ≤ C|t− cj|−1/2

and thus the second integrand in (4.54) converges to 0 as well. We thus conclude that the
L2 norm of ψ′

j converges to 0 as well. This however contradicts the normalization (4.48).

4.6. Proof of Proposition 4.3.3: Part I

We set m0 = ma, z0 = Ξ(a), and we fix a ψ0 solution of

−d
2ψ0

dt2
+m2

0ψ0 +
A

Ξ− z0
ψ0 = 0

with L2 norm equal 1. Since the operator is self-adjoint we will indeed assume that ψ0 is
real. We then define the projector P0 : L

2(R;C) → {κψ0 : κ ∈ C} as

P0(ψ) = ⟨ψ, ψ0⟩ψ0 .

Observe that P0 is self-adjoint. Next, in a neighborhood of (m0, z0) we will look for solutions
of (4.12) by solving  −ψ′′ +m2ψ + A

Ξ−zψ + P0(ψ) = ψ0

⟨ψ, ψ0⟩ = 1
(4.55)

which we can rewrite as −ψ′′ +m2
0ψ + A

Ξ−z0ψ + P0(ψ) = A (((Ξ− z0)
−1 − (Ξ− z)−1)ψ) + (m2

0 −m2)ψ + ψ0

⟨ψ, ψ0⟩ = 1
(4.56)

Next we observe that the operator − d2

dt2
+ m2

0, considered as a closed unbounded self-
adjoint operator in L2 (with domain W 2,2) has an inverse Km0 : L2 → L2 which is a



4.6. PROOF OF PROPOSITION 4.3.3: PART I 61

bounded operator. We thus rewrite (4.56) as

ψ +Km0

(
A

Ξ− z0
ψ + P0(ψ)

)
︸ ︷︷ ︸

=:T (ψ)

= Km0

((
A
(
(Ξ− z0)

−1 − (Ξ− z)−1
)
+ (m2

0 −m2)
)
ψ
)︸ ︷︷ ︸

=:−Rm,z(ψ)

+Km0(ψ0)

⟨ψ, ψ0⟩ = 1 .
(4.57)

The proof of Proposition 4.3.3 will then be broken into two pieces. In this section we will
show the first part, which we can summarize in the following

Lemma 4.6.1. For every µ > 0, if (m, z) sufficiently close to (m0, z0) and Im z ≥
µ|Re (z − z0)| then there is a unique ψ = ψ(m, z) ∈ L2(R) solving

T (ψ) +Rm,z(ψ) = Km0(ψ0) . (4.58)

Before coming to its proof we single out two important ingredients.

Lemma 4.6.2. T is a bounded operator with bounded inverse on the spaces L2 and Cσ,
for any σ ∈]0, 1[.

Proof. Recall that the operator Km is given by the convolution with 1
2m
e−m|·|. In this

first step we prove that T is a bounded operator with bounded inverse in the spaces L2(R)
and Cσ(R)4 Recall that A

Ξ−z0 = A
Ξ−Ξ(a)

is indeed a bounded smooth function (thanks to

the structural assumptions on Ξ: in particular recall that Ξ′(a) ̸= 0 and A(a) = 0, which
implies that A

Ξ−Ξ(a)
is in fact smooth at a). Moreover the function and its derivatives decay

exponentially at ±∞. It follows therefore that ψ 7→ Km0(
A

Ξ−z0ψ + P0(ψ)) is a compact

operator, both on L2 and on Cσ. Thus T is a Fredholm operator with index 0. We thus
just need to check that the kernel is 0 in order to conclude that it is invertible with bounded
inverse. In both cases we need to show that the equation

− d2ψ

dt2
+m2

0ψ +
A

Ξ− Ξ(a)
ψ + P0(ψ) = 0 (4.59)

has only the trivial solution. Observe that the kernel V of the operator ψ 7→ −d2ψ
dt2

+m2
0ψ+

A
Ξ−Ξ(a)

ψ is 1-dimensional by Lemma 4.4.2 and Corollary 4.4.3. In particular V is generated

by ψ0. Since the operator P0 is the orthogonal projection onto V and −d2ψ
dt2

+m2
0++ A

Ξ−Ξ(a)
ψ

is self-adjoint, the kernel of − d2

dt2
+m2

0 +
A

Ξ−Ξ(a)
ψ + P0 in L2 must be trivial.

In order to argue that the kernel is 0 on Cσ we apply a variation of the same idea: first
we observe that if ψ is a Cσ solution of (4.59), then A

Ξ−Ξ(a)
ψ + P0(ψ) is also in Cσ and

4Observe that Km is well-defined on Cσ and so is the multiplication by A
Ξ−z0

, since the latter is a

smooth functions with bounded derivatives, and the operator P0(ψ) = ⟨ψ,ψ0⟩ψ0: for the latter we just
need to check that ψψ0 is integrable, which follows from the exponential decay of ψ0, cf. Corollary 4.4.3.



62 4. LINEAR THEORY: PART II

hence ψ′′ ∈ Cσ. Observe also that the operator is self-adjoint and thus we can assume that
ψ is real-valued. We then multiply both sides of (4.59) by ψ̄0, integrate by parts and use

the fact that ψ0 is in the kernel of the self-adjoint operator − d2

dt2
+m2

0+
A

Ξ−Ξ(a)
to conclude

that (⟨ψ, ψ0⟩)2 = 0. But then ψ is a bounded solution of − dψ
dt2

+ m0ψ
2 + A

Ξ−Ξ(a)
ψ = 0.

Given that A
Ξ−Ξ(a)

ψ is a product of an exponentially decaying function and a bounded

function, we conclude that −d2ψ
dt2

+m2
0ψ is an exponentially decaying function f . We thus

have ψ = Km(f) +C1e
−m0t +C2e

m0t for two constants C1 and C2. However Km(f) decays
exponentially at both ±∞ and thus, given that ψ is bounded, we must have C1 = C2 = 0.
In particular ψ decays exponentially at both ±∞ and so it is an L2 function. But we
already saw that every L2 solution is trivial. □

Lemma 4.6.3. For every constant µ > 0 we define the cone Cµ := {z : Imz ≥ µ|Re (z−
z0)|}. Then

lim
z∈Cµ,(m,z)→(m0,z0)

∥Rm,z∥O = 0 , (4.60)

where ∥L∥O is the operator norm of L when considered as a bounded operator from L2 to
L2.

Proof. Clearly, it suffices to show that

lim
z∈Cµ,z→z0

∥Km0 ◦ (A/(Ξ− z)− A/(Ξ− z0))∥O = 0 . (4.61)

We can rewrite the operator as

ψ 7→ Km

(
A(z − z0)

(Ξ− z)(Ξ− z0)
ψ

)
.

First of all observe that the operators

ψ 7→ Lz(ψ) =
A(z − z0)

(Ξ− z)(Ξ− z0)
ψ

are bounded in the operator norm uniformly in z ∈ Cµ by a constant M . Moreover, we

can see that the adjoint operator is given by L∗
z(ψ) = A(z̄−z0)

(Ξ−z̄)(Ξ−z0)ψ converges strongly in

L2 to 0: indeed the functions A(z̄−z0)
(Ξ−z̄)(Ξ−z0) are uniformly bounded and they converge to 0 on

R\{a}. We now use an argument entirely similar to that used in the proof of Lemma 3.3.2:
given any ε > 0 we fix the orthogonal projection PN onto a finite-dimensional subspace of
L2 with the property that ∥Km0 ◦ PN − Km0∥O is smaller than ε

2M
. We then argue that

for |z− z0| sufficiently small PN ◦Lz has operator norm smaller than ε
2
. Having chosen an

orthonormal base ψ1, . . . , ψN for V , we recall that

PN(ψ) =
∑
i

⟨ψi, ψ⟩ψi .

Therefore our claim amounts to show that

|⟨ψi, Lz(ψ)⟩| ≤
ε

2N
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for z sufficiently close to z0 and every ψ with ∥ψ∥L2 ≤ 1. For the latter we use

|⟨ψi, Lz(ψ)⟩| = |⟨L∗
z(ψi), ψ⟩| ≤ ∥L∗

z(ψi)∥L2 .

□

Proof of Lemma 4.6.1. We rewrite the equation that we want to solve as

ψ + T−1 ◦ Rm,z(ψ) = T−1 ◦ Km0(ψ0) .

Note that P0(ψ0) = ψ0. Furthermore, since Km0 is, by definition, the inverse operator of

− d2

dt2
+m2

0 Id,

K−1
m0

(
ψ0 +Km0

(
A

Ξ− z0
ψ0

))
= −ψ′′

0 +m2
0ψ0 +

A

Ξ− z0
ψ0 = 0.

Therefore,

ψ0 +Km0

(
A

Ψ− z0
ψ0

)
= 0.

In combination with the definition of T in (4.57), we get

T (ψ0) = ψ0 +Km0

(
A

Ξ− z0
ψ0 + ψ0

)
= Km0(ψ0),

in other words,
T−1 ◦ Km0(ψ0) = ψ0 . (4.62)

Therefore, (4.58) becomes

(Id+T−1 ◦ Rm,z)(ψ) = ψ0 , (4.63)

so the existence of a unique solution is guaranteed as soon as ∥T−1 ◦ Rm,z∥O < 1. □

Remark 4.6.4. In the remaining part of the proof of Proposition 4.3.3 we will take
advantage of the representation of ψ as a function of ψ0 through the Neumann series coming
from (4.63). More precisely, our proof of Lemma 4.6.1 leads to the following representation:

ψ = ψ0 − (T−1 ◦ Rm,z)(ψ0) +
∞∑
k=2

(−1)k(T−1 ◦ Rm,z)
k(ψ0) . (4.64)

4.7. Proof of Proposition 4.3.3: Part II

We now complete the proof of Proposition 4.3.3. The positive parameter µ > 0 in
Lemma 4.6.1 will have to be chosen sufficiently small: its choice will be specified in a
few paragraphs, while for the moment we assume it to be fixed. We set m0 = ma and
z0 = Ξ(a). Thus, for each (m0 + h, z) in a set

Uδ,µ := {|h| < δ, |z − z0| < δ, Imz > µ|Re (z − z0)|}
we know that that there is a solution ψ = ψ(m0 + h, z) of (4.58) which moreover satisfies
the expansion (4.64). We then define the function

H(h, z) := ⟨ψ(m0 + h, z), ψ0⟩ , (4.65)
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and obviously we are looking for those z which solve

H(h, z) = 1 (4.66)

The main point of our analysis is the following

Lemma 4.7.1. The function H is holomorphic in z and moreover

H(h, z) = 1− 2mah+ c(a)(z − z0) + o(|z − z0|+ |h|) (4.67)

where c(a) is a complex number with Im c(a) > 0.

Given Lemma 4.7.1, consider now ξ(h) which we obtain by solving c(a)(ξ−z0) = 2mah,
namely,

ξ(h) =
2mah

c(a)
+ z0 =

2mah

|c(a)|2
c(a) + z0 .

The idea behind the latter definition is that, if the term o(|z−z0|+|h|) vanished identically,
z = ξ(h) would be the solution of H(h, z) = 1. Even though o(|z − z0| + |h|) does not
vanish, we nonetheless expect that the solution z of H(h, z) = 1 is relatively close to ξ(h).

Since Im c(a) > 0, ξ(h) has positive imaginary part if h < 0. In particular we have

Im ξ(h) ≥ γ|h| ∀h < 0 .

where γ is a positive constant. We then rewrite

H(h, z) = 1 + c(a)(z − ξ(h)) + o(|ξ(h)− z0|+ h)︸ ︷︷ ︸
=:r(h)

+o(|z − ξ(h)|) .

Consider the disk Dh := {|z−ξ(h)| ≤ 2β|h|}, for a suitably chosen constant β > 0. We will
show below that adjusting the constants µ and β suitably, the disk will be in the domain of
the holomorphic function H(·, z). Leaving this aside for the moment, by Rouché Theorem,
if we choose h sufficiently small the set H(h,Dh) contains a disk of radius |c(a)|βh centered

at 1+r(h). But then for h sufficiently small we also have |r(h)| ≤ |c(a)|βh
2

and so we conclude
that 1 ∈ H(h,Dh), namely that there is a point z(h) in the disk Dh which is mapped in
1 by H(h, ·). This would then complete the proof of Proposition 4.3.3 if we were able to
prove that Im z(h) > 0. We therefore need to show that Dh is in the domain of H(h, ·),
namely,

Im z ≥ µ|Re (z − z0)| ∀z ∈ Dh .

We first estimate

Im z ≥ Im ξ(h)− 2β|h| ≥ (γ − 2β)|h| .
Then

|Re z − z0| ≤ |ξ(h)− z0|+ |z − ξ(h)| ≤ (|c(a)|+ 2β)|h| . (4.68)

We thus conclude that

Im z(h) ≥ γ − 2β

|c(a)|+ 2β
|Re (z(h)− z0)| . (4.69)
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Thus it suffices to chose β = γ
3
and µ = γ

3|c(a)|+γ . This guarantees at the same time the

existence of a solution and the fact that z(h) has positive imaginary part when h < 0
(which results from combining (4.68) and (4.69).

In order to complete the proof of Proposition 4.3.3 we therefore just need to show
Lemma 4.7.1.

Proof of Lemma 4.7.1. In order to show holomorphicity we just need to show that,
for each fixed z,

z 7→
∞∑
k=0

(−T−1 ◦ Rm,z)
k

is holomorphic. Since the series converges in the operator norm, it suffices to show that
each map z 7→ (−T−1 ◦ Rm,z)

k is holomorphic for every k, for which indeed it suffices to
show that z 7→ Rm,z is holomorphic. This is however obvious from the explicit formula.
We therefore now come to the the Taylor expansion (4.67).

Step 1 We will show here that

∥Rm0+h,z∥L(Cσ) ≤ C(σ)(|h|+ |z − z0|) (4.70)

for every σ ∈]0, 1[, where ∥L∥L(Cσ) is the operator norm of a bounded linear operator L
on Cσ. The estimate will have the following consequence. First of all using (4.64) and
∥ψ0∥2L2 = 1 we expand

H(h, z) = 1− ⟨T−1 ◦ Rm0+h,z(ψ0), ψ0⟩+
∞∑
k=2

⟨(−T−1 ◦ Rm0+h,z)
k(ψ0), ψ0⟩︸ ︷︷ ︸

=:R1(z,h)

. (4.71)

Hence using (4.70) we estimate

|R1(z, h)| ≤
∞∑
k=2

∥(−T−1 ◦ Rm0+h,z)
k(ψ0)∥∞∥ψ0∥L1

≤ C
∞∑
k=2

(∥T−1∥Cσ∥Rm0+h,z∥L(Cσ))
k∥ψ0∥Cσ∥ψ0∥L1 = o(|h|+ |z − z0|) , (4.72)

for some fixed σ. In order to show (4.70) we write

Rm0+h,z(ψ) = (z − z0)Km0

(
1

Ξ− z

(
A

Ξ− z0
ψ

))
+ (2m0h+ h2)Km0(ψ) .

Since A
Ξ−z0 is smooth, it suffices to show that the operators Bz := Km0 ◦ 1

Ξ−z are uniformly

bounded in L(Cσ). We first fix a smooth cut-off function φ ∈ C∞
c (]a − 2, a + 2[) which

equals 1 on [a− 1, a+ 1] and write

Bz = B1
z +B2

z := Km0 ◦
(
1− φ

Ξ− z

)
+Km0 ◦

(
φ

Ξ− z

)
.
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But since (1−φ)/(Ξ−z) enjoys a uniform bound in Ck, it is easy to conclude that ∥B1
z∥L(Cσ)

is bounded uniformly in z. We thus need to bound

B2
z (ψ)(t) =

1

2m0

∫
e−m0|t−s| φ(s)

Ξ(s)− z
ψ(s) ds .

We first bound ∥B2
z∥L∞ . We write z = x+ iy and, since x is close to a, we select the only

a′ such that Ξ(a′) = x and write

B2
z (ψ)(t) =

1

2m0

∫
e−m0|t−s| φ(s)(ψ(s)− ψ(a′))

(Ξ(s)− Ξ(a′))− iy
ds︸ ︷︷ ︸

=:I1(t)

+
ψ(a′)

2m0

∫
e−m0|t−s| φ(s)

Ξ(s)− z
ds︸ ︷︷ ︸

=:I2(t)

Writing 1
Ξ−z =

1
Ξ′

d
dt
ln(Ξ− z) we can integrate by parts to get

I2(t) = −
∫
m0

t− s

|t− s|
e−m0|t−s|(Ξ′(s))−1 ln(Ξ(s)− z)φ(s) ds︸ ︷︷ ︸

=:I2,1(t)

−
∫
e−m0|t−s| ln(Ξ(s)− z)

d

ds
((Ξ′)−1φ)(s) ds︸ ︷︷ ︸

=:I2,2(t)

and use the uniform bound for ln(Ξ(s)− z) in L1([a− 2, a+2]) to conclude that |I2,1| and
|I2,2| are both bounded uniformly. As for I1, note that, on any compact interval K around
a′, we have, since Ξ′ is continuous and Ξ′ < 0,

C(K) := inf
x∈K

|Ξ′(x)| = −max
x∈K

Ξ′(x) > 0.

Therefore by the mean value theorem, for all s ∈ K, there exists a ι = ι(s) ∈ K such that

|Ξ(s)− Ξ(a′)− iy| = |y|+ |Ξ(s)− Ξ(a′)| > |Ξ(s)− Ξ(a′)| = |s− a′||Ξ′(ι)| ≥ |s− a′|C(K).

By the definition of the Hölder semi-norm, we thus have, for all s ∈ K,∣∣∣∣ ψ(s)− ψ(a′)

Ξ(s)− Ξ(a′)− iy

∣∣∣∣ ≤ ∥ψ∥Cσ

C(K)|s− a′|1−σ
,

which is integrable. Furthermore, outside of K the integrand of I1 is bounded and decays
exponentially, therefore one can uniformly bound I1.

We next wish to bound the seminorm

[B2
z (ψ)]σ := sup

t̸=t′

|B2
z (ψ)(t)−B2

z (ψ)(t
′)|

|t− t′|σ
.

We write
B2
z (ψ)(t)−B2

z (ψ)(t
′) = (I1(t)− I1(t

′)) + ψ′(a)(I2(t)− I2(t
′)) .

Using that |e−m0|t−s| − e−m0|t′−s|| ≤ C|t− t′| we can bound

|I1(t)− I1(t
′)| ≤ C|t− t′|

∫
|φ(s)| |ψ(s)− ψ(a′)|

|Ξ(s)− Ξ(a′)|
ds ≤ C∥ψ∥Cσ |t− t′| .
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Similarly we can write

|I2,2(t)− I2,2(t
′)| ≤ C|t− t′|

∫ ∣∣∣∣ln(Ξ(s)− z)
d

ds
((Ξ′)−1φ)(s)

∣∣∣∣ ds ≤ C|t− t′| .

Next denoting the function (Ξ′(s))−1φ(s) ln(Ξ(s)− z) by B(s) we assume t > t′ and write
further

I2,1(t)− I2,1(t
′) = m0

(∫ ∞

t

e−m0(s−t)B(s) ds−
∫ ∞

t′
e−m0(s−t′)B(s) ds︸ ︷︷ ︸

=:J+(t,t′)

)

−m0

(∫ t

−∞
e−m0(t−s)B(s) ds−

∫ t′

−∞
e−m0(t′−s)B(s) ds︸ ︷︷ ︸

=:J−(t,t′)

)
.

Then we choose p = 1
σ
, let p′ be the dual exponent and estimate

|J+(t, t′)| ≤ C|t− t′|
∫ ∞

t

|B(s)| ds+
∫ t

t′
|B(s)| ds

≤ C|t− t′|∥B∥L1 + |t− t′|σ∥B∥Lp′ .

A similar estimate for J−(t, t
′) finally shows the existence of a constant C such that

|B2
z (ψ)(t)−B2

z (ψ)(t
′)| ≤ C∥ψ∥Cσ (|t− t′|+ |t− t′|σ) .

Clearly this implies

|B2
z (ψ)(t)−B2

z (ψ)(t
′)| ≤ C∥ψ∥Cσ |t− t′|σ if |t− t′| ≤ 1.

On the other hand we can trivially bound

|B2
z (ψ)(t)−B2

z (ψ)(t
′)| ≤ 2∥B2

z (ψ)∥∞ ≤ C∥ψ∥Cσ |t− t′|σ if |t− t′| ≥ 1.

Step 2. In this second step we compute

⟨T−1Rm,z(ψ0), ψ0⟩ = ⟨T−1 ◦ Km0

(
A((Ξ− z)−1 − (Ξ− z0)

−1)ψ0

)
, ψ0⟩

+ (2m0h+ h2)⟨T−1 ◦ Km0(ψ0), ψ0⟩ .
Recalling (4.62) (and using that both T−1 and Km0 are self-adjoint) we rewrite the expres-
sion as

⟨T−1Rm,z(ψ0), ψ0⟩ = (z − z0)⟨T−1 ◦ Km0

(
A(Ξ− z)−1(Ξ− z0)

−1ψ0

)
, ψ0⟩+ 2mah+ h2

= (z − z0)⟨A(Ξ− z)−1(Ξ− z0)
−1ψ0, T

−1 ◦ Km0(ψ0)⟩+ 2mah + h2

= (z − z0) ⟨A(Ξ− z)−1(Ξ− z0)
−1ψ0, ψ0⟩︸ ︷︷ ︸

=:G(z)

+2mah+ h2 . (4.73)

We thus want to show that the following limit exists and to compute its imaginary part:

−c(a) := lim
Im z>0,z→Ξ(a)

G(z) = lim
Im z>0,z→Ξ(a)

∫
1

Ξ(s)− z
|ψ0(s)|2

A(s)

Ξ(s)− Ξ(a)
ds .
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Observe indeed that inserting G(z) = −c(a)+o(1) in (4.73) and taking into account (4.71)
and (4.72) we conclude that (4.67) holds.

In order to compute c(a) we observe first that the function ϕ(s) := |ψ0(s)|2 A(s)
Ξ(s)−Ξ(a)

is

smooth and decays exponentially. We thus rewrite

G(z) =

∫
1

Ξ(s)− z
ϕ(s) ds .

Next we decompose z into its real and imaginary part as z = x+ iy and observe that

lim
Im z>0,z→Ξ(a)

ReG(z) = lim
x→Ξ(a),y↓0

∫
Ξ(s)− x

(Ξ(s)− x)2 + y2
ϕ(s) ds

Here we are only interested in showing that the limit exists and we thus fix a cut-off
function φ ∈ C∞

c (]a− 2, a+ 2[), identically 1 on [a− 1, a+ 1] and split the integral into

ReG(z) =

∫
Ξ(s)− x

(Ξ(s)− x)2 + y2
ϕ(s)φ(s) ds+

∫
Ξ(s)− x

(Ξ(s)− x)2 + y2
ϕ(s)(1− φ(s)) ds .

The second integral has a limit, while in order to show that the first has a limit we write

Ξ(s)− x

(Ξ(s)− x)2 + y2
=

1

2Ξ′(s)

d

ds
ln((Ξ(s)− x)2 + y2) .

We then integrate by parts and use the fact that ln((Ξ(s)−x)2+y2) converges to 2 ln |(Ξ(s)−
Ξ(a)| strongly in Lq([a− 2, a+2]) for every q to infer the existence of the limit of the first
integral.

As for the imaginary part we write instead

lim
Im z>0,z→Ξ(a)

ImG(z) = lim
x→Ξ(a),y↓0

∫
y

(Ξ(s)− x)2 + y2
ϕ(s) ds . (4.74)

We wish to show that the latter integral converges to

I = ϕ(a)

∫
ds

(Ξ′(a))2s2 + 1
=

πϕ(a)

2|Ξ′(a)|
. (4.75)

On the other hand ϕ(a) = |ψ0(a)|2A′(a)(Ξ′(a))−1. Since A′(a) > 0 and Ξ′(a) < 0, we
conclude that c(a) exists and it is a complex number with positive imaginary part, which
completes the proof of the lemma.

It remains to show the convergence of (4.74) to (4.75). First observe that for each x
sufficiently close to Ξ(a) there is a unique a′ = Ξ−1(x) such that Ξ(a′) = x. Changing
variables (s becomes a′ + s), the integral in (4.74) becomes∫

y

(Ξ(a′ + s)− x)2 + y2
ϕ(a′ + s) ds (4.76)

and we wish to show that its limit is I as (a′, y) → (a, 0). Next, fix any δ > 0 and observe
that

lim
y→0

∫
|s|≥δ

y

(Ξ(a′ + s)− x)2 + y2
ϕ(a′ + s) ds = 0



4.8. PROOF OF PROPOSITION 4.3.5 69

uniformly in a′ ∈ [a− 1, a+ 1]. We therefore define

I(δ, a′, y) :=

∫ δ

−δ

y

(Ξ(a′ + s)− x)2 + y2
ϕ(a′ + s) ds

and we wish to show that, for every ε > 0 there is a δ > 0 such that

lim sup
(a′,y)↓(a,0)

|I(δ, a′, y)− I| ≤ Cε , (4.77)

where C is a geometric constant. We rewrite

I(δ, a′, y) =

∫ δy−1

−δy−1

ϕ(a′ + ys)

y−2(Ξ(a′ + ys)− Ξ(a′))2 + 1
ds .

Fix now ε and observe that, since Ξ′ and ϕ are continuous, if δ is chosen sufficiently small,
then

((Ξ′(a))2 − ε2)s2 ≤ y−2(Ξ(a′ + ys)− Ξ(a′))2 ≤ ((Ξ′(a))2 + ε2)s2 (4.78)

|ϕ(a′ + ys)− ϕ(a)| ≤ ε . (4.79)

for all |a′ − a| < δ and y|s| ≤ δ. Choosing ε > 0 so that ε ≤ |Ξ′(a)|
2

we easily see that, when
|a′ − a| < δ, we have ∣∣∣∣∣I(δ, a′, y)− ϕ(a)

∫ δy−1

−δy−1

ds

(Ξ′(a))2s2 + 1

∣∣∣∣∣ ≤ Cε .

In particular, as y ↓ 0, we conclude (4.77). □

4.8. Proof of Proposition 4.3.5

We reduce the proof of Proposition 4.3.5 to the following lemma.

Lemma 4.8.1. Consider G := {m > 1,m ̸= ma,mb : Um ̸= ∅}. Then G is relatively
open and relatively closed in ]1,∞[\{ma,mb}.

Proposition 4.3.5 is an obvious consequence of the latter lemma and of Proposition 4.3.3:
Lemma 4.8.1 implies that G is the union of connected components of [1,∞[\{ma,mb}. On
the other hand the connected component ]mb,ma[ intersects G because of Proposition 4.3.3
and thus it is contained in G. We thus complete the proof of Proposition 4.3.5 showing
Lemma 4.8.1

Proof of Lemma 4.8.1. We start with some preliminary considerations. Fix an in-
terval [c, d] ⊂]1,∞[\{ma,mb}. Recalling Proposition 4.1.4 we know that, since the operator
norm of Lm is bounded uniformly in m ∈ [c, d],

(a) There is R > 0 such that Um ⊂ BR(0) for all m ∈ [c, d].

However it also follows from Proposition 4.3.1 that

(b) There is a δ > 0 such that Um ⊂ {Im z > δ}.
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Step 1. We first prove that G is relatively closed. To that end we fix a sequence
mj → m ∈]1,∞[\{ma,mb} such that mj belongs to G. Without loss of generality we can
assume {mj} ⊂ [c, d] ⊂]1,∞[\{ma,mb}. For each mj we can then consider zj ∈ Umj

,
which by (a) and (b) we can assume to converge to some z ∈ C with positive imaginary
part. We then let ψj be a sequence of nontrivial elements in L2 such that

− ψ′′
j +m2

jψj +
A

Ξ− zj
ψj = 0 , (4.80)

and normalize them to ∥ψj∥L2 = 1 Since Im zj ≥ δ > 0, the sequence of functions A
Ξ−zj

enjoy uniform bounds in the spaces L1 and Ck. We can then argue as in Section 4.5 to
find that

(i) ∥ψ′
j∥L2 enjoy a uniform bound;

(ii) There are uniformly bounded nonzero constants {C±
j } with the property that ψj

is asymptotic to C±
j e

∓mjt and ±∞;
(iii) There is a T0 > 0 independent of j with the property that

|ψj(t)− Cje
∓mjt| ≤ |Cj|

2
e∓mjt ∀ ± t > T0 .

These three properties together imply that a subsequence, not relabeled, converges strongly
in L2 to some ψ. Passing into the limit in (4.80) we conclude that

−ψ′′ +m2ψ +
A

Ξ− z
ψ = 0 .

This shows that z ∈ Um, i.e. that m ∈ G.

Step 2. Here we show that G is relatively open. To that end we consider some sequence
mj → m ∈]1,∞[\{ma,mb} with the property that mj ̸∈ G and we show that m ̸∈ G. By
(a) and (b) above, it suffices to show that the domain

∆ := {|z| < BR : Im z > δ}
does not contain any element of specm−1Lm. Observe first that, since we know that it
does not intersect γ = ∂∆, the distance between γ and any element in specm−1Lm is larger
than a positive constant ε. Recalling that the spectrum on the upper half complex space
is discrete, we have that

Pm :=

∫
γ

(m−1Lm − z)−1 dz

is a projection on a finite-dimensional space which contains all eigenspaces of the elements
z ∈ specm−1Lm ∩∆ = Um. And since all such elements belong to the discrete spectrum,
Um = ∅ if and only if Pm = 0. On the other hand

Pmj
:=

∫
γ

(m−1
j Lmj

− z)−1 dz

equals 0 precisely because mj ̸∈ G. We thus just need to show that Pmj
converges to Pm

to infer that m ∈ G. The latter follows from the following observations:
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(i) Since γ is a compact set and does not intersect the spectrum of m−1Lm, there is
a constant M such that ∥(m−1Lm − z)−1∥O ≤M for all z ∈ γ;

(ii) Lmj
converges to Lm in the operator norm;

(iii) Writing

(m−1
j Lmj

− z)−1 = (Id + (m−1Lm − z)−1(m−1
j Lmj

−m−1Lm))−1(m−1Lm − z)−1 ,

when ∥m−1
j Lmj

−m−1Lm∥L ≤ 1
2M

we can use the Neumann series for the inverse
to infer

sup
z∈γ

∥(m−1
j Lmj

− z)−1 − (m−1Lm − z)−1∥O ≤ C∥m−1Lm −m−1
j Lmj

∥O ,

for some constant C independent of j.

We then conclude that Pmj
converges to Pm in the operator norm. □

Remark 4.8.2. An immediate outcome of the argument above is that the sum of the
algebraic multiplicities of z ∈ Um, as eigenvalues of m−1Lm, is constant on any connected
component of ]−∞,∞[\{ma,mb}. Indeed, it coincides with the rank of the operator Pm
defined in Step 2.

4.9. Proof of Lemma 4.3.7

Rather than looking for a suitable Ξ we will write G := Ξ′ + 2Ξ and look for the latter
function after expressing

Ξ(t) :=

∫ t

−∞
e−2(t−τ)G(τ) dτ .

To check that the above formula recovers Ξ under our assumptions, observe first that

G = Ξ′ + 2Ξ

by the classical solution formula for first order ODEs with constant coefficients. It thus
suffices to show that that the integral and Ξ coincide in a neighborhood of −∞. To that
end consider that that Ξ(t) = Ξ(−∞)− c0e

2t for any sufficiently negative t and thus

G(t) = 2Ξ(−∞)− 4c0e
2t ,

so that, for any such t,

Ξ(t) = e−2t

∫ t

−∞
(2Ξ(−∞)e2τ − 4c0e

4τ ) dτ = Ξ(−∞)− c0e
2t .

We next read the conditions Ξ ∈ C in terms of G to find that they are

(i) G(t) = 2Ξ(−∞)− 4c0e
2t for all t sufficiently negative;

(ii) G(t) = e−ᾱt for all t ≥ ln 2;
(iii) There are exactly two zeros a < b of G′ and G′′(a) > 0, G′′(b) < 0;

(iv)
∫ t
−∞ e−2(t−τ)G′(τ)dτ < 0 for every t.
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The conditions (i), (ii), and (iii) are obviously equivalent to the corresponding ones in
Definition 4.2.1. As for (iv), we just need to check the formula

Ξ′(t) =

∫ t

−∞
e−2(t−τ)G′(τ) dτ .

Arguing as above, the solution formula for first order ODEs with constant coefficients show
that the two sides of the above identity can differ at most by a constant, while a direct
verification using (i) shows that the two sides coincide for sufficiently negative t’s.

We next can read all the above conditions in terms of A, more precisely it suffices to
impose

(i’) A(t) = −8c0e
2t for all t sufficiently negative;

(ii’) A(t) = −ᾱe−ᾱt for all t ≥ ln 2;
(iii’) There are exactly two zeros a < b of A and A′(a) > 0, A′(b) < 0;

(iv’)
∫ t
−∞ e−2(t−τ)A(τ)dτ < 0 for every t.

In fact, assuming the four conditions above we easily recover G by setting

G(t) := −
∫ ∞

t

A(τ) dτ .

Note in passing that since (i’), (ii’), (iii’), and (iv’) imply (i), (ii), (iii), and (iv), which in
turn imply the corresponding conditions in Definition 4.2.1, we derive

Ξ(−∞) =
1

2
G(−∞) = −

∫ ∞

−∞
A(τ) dτ .

In turn, since Ξ(∞) = 0 and Ξ′ < 0, the latter equality implies∫ ∞

−∞
A(τ) dτ < 0 .

We next fix a = 0 and b = 1
2
and rather than imposing (iv’) we impose the two conditions

(v’)
∫ 0

−∞ e2τA(τ)dτ = −1;

(vi’) maxA ≤ 1
e
.

Observe, indeed, that (iv) is equivalent to∫ t

−∞
e2τA(τ) dτ < 0

and that, since A is negative on ]−∞, 0[ and ]1
2
,∞[, the integral on the left-hand side is

maximal for t = 1
2
. We then can use (v’) and (vi’) to estimate∫ 1

2

−∞
e2τA(τ) dτ ≤ −1 +

e

2
maxA ≤ −1

2
.

We next recall that, by the Rayleigh criterion,

−λa = min
∥ψ∥L2=1

⟨ψ,Laψ⟩ = min
∥ψ∥L2=1

∫ (
|ψ′|2 + A

Ξ− Ξ(0)
|ψ|2

)
.
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We test the right-hand side with

ψ(t) :=


0 for |t| ≥ 1

2

√
2 cos(πt) for |t| ≤ 1

2
.

We therefore get

− λa ≤ 2π2 + 2

∫ 1/2

−1/2

A(t)

Ξ(t)− Ξ(0)
cos2 πt dt . (4.81)

Next, for any fixed positive constant B > 0, we impose that A(t) = Bt on the interval

] −
√
B

−1
, 0] and we then continue it smoothly on [0,∞[ so to satisfy (ii’), (iii’), and (v’)

on [0,∞[ (the verification that this is possible is rather simple). We also can continue it

smoothly on ]−∞,−
√
B

−1
] so to ensure (i’). In order to ensure (v’) as well we just need

to show that ∫ 0

−
√
B

−1
e2τA(τ) dτ ≥ −1

2
.

The latter is certainly ensured by∫ 0

−
√
B

−1
e2τA(τ) dτ ≥

∫ 0

−
√
B

−1
A(τ) dτ = −1

2
.

Now, observe that Ξ′(0) =
∫ 0

−∞ e2τA(τ) dτ = −1. For t ∈ ]−
√
B

−1
, 0[ we wish to estimate

Ξ′(t) and to do it we compute

|Ξ′(t)− Ξ′(0)| =
∣∣∣∣e−2t

∫ t

−∞
e2τA(τ) dτ −

∫ 0

−∞
e2τA(τ) dτ

∣∣∣∣
≤ e−2t

∣∣∣∣∫ 0

t

e2τA(τ) dτ

∣∣∣∣+ (e−2t − 1)

∣∣∣∣∫ 0

−∞
e2τA(τ) dτ

∣∣∣∣
≤ e2

√
B

−1

2
+ (e2

√
B

−1

− 1) ≤ 3

4
,

which can be ensured by taking B sufficiently large. In particular −1
4
≥ Ξ′(t) ≥ −2 for

t ∈ ]−
√
B

−1
, 0[. We thus conclude that

−2t ≤ Ξ(t)− Ξ(0) ≤ − t

4
∀t ∈ ]−

√
B

−1
, 0[ .

In turn the latter can be used to show

A(t)

Ξ(t)− Ξ(0)
≤ −B

2
∀t ∈ ]−

√
B

−1
, 0[ .

Since A
Ξ−Ξ(0)

is otherwise negative on ]− 1
2
, 1
2
[, we conclude

− λa ≤ 2π2 − 2

∫ 0

−
√
B

−1
B cos2 πt dt . (4.82)
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By taking B large enough we can ensure that cos2 πt ≥ 1
2
on the interval ]−

√
B

−1
, 0[. In

particular we achieve

−λa ≤ 2π2 −
√
B .

Since we can choose
√
B as large as we wish, the latter inequality completes the proof of

the lemma.



CHAPTER 5

Nonlinear theory

This final chapter will prove Theorem 2.5.1 and hence complete the argument leading
to Theorem 1.0.1. To that end we fix a choice of Ω̄, V̄ , m and η as given by Theorem 2.4.2,
where ā > 0 is a large parameter whose choice will be specified only later. We introduce
a particular space and we will indeed prove an estimate corresponding to (2.46) in this
smaller space.

Definition 5.0.1. We denote by X the subspace of elements Ω ∈ L2
m for which the

following norm is finite:

∥Ω∥X := ∥Ω∥L2 + ∥|x|∇Ω∥L2 + ∥∇Ω∥L4 . (5.1)

The above norm has two features which will play a crucial role in our estimates. The
first feature, which is obvious, is that it ensures an appropriate decay of the L2 norm of
DΩ on the complements of large disks R2 \ BR. The second feature is that it allows to
bound the L∞ norm of Ω and ∇(K2 ∗ Ω) and to give a bound on the growth of K2 ∗ Ω at
infinity. More precisely, we have the following:

Proposition 5.0.2. For all κ ∈]0, 1[, there is a constant C(κ) > 0 such that the
following estimates hold for every m-fold symmetric Ω ∈ X:

|∇(K2 ∗ Ω)(x)|+ |Ω(x)| ≤ C(κ)

1 + |x|1−κ
∥Ω∥X ∀x ∈ R2 (5.2)

|K2 ∗ Ω(x)| ≤ C∥Ω∥X min{|x|, 1} ∀x ∈ R2 . (5.3)

The aim of this chapter is therefore to give the bound

∥Ωper,k(·, τ)∥X ≤ eτ(a0+δ0) ∀τ ≤ τ0 (5.4)

for some appropriately chosen constants δ0 > 0 and τ0 < 0, independent of k. Of course
the main difficulty will be to give the explicit estimate (5.4). However a first point will be
to show that the norm is indeed finite for every τ ≥ −k. This will be a consequence of the
following:

Lemma 5.0.3. Provided a0 is large enough, the eigenfunction η of Theorem 2.4.2 belongs
to C2(R2 \ {0}) and satisfies the pointwise estimates

|Dℓη|(x) ≤ C(1 + |x|)−ℓ−ϱ ∀ℓ ∈ {0, 1, 2},∀ϱ ∈ [0, 2[ (5.5)

(in particular η ∈ W 2,∞). Moreover Ωper,k ∈ C([−k, T ];X) for every T <∞.

75
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In fact we can prove even sharper estimates if m were larger than 2. At any rate, one
relevant outcome of Lemma 5.0.3 is that the bound (5.4) holds at least for τ sufficiently
close to −k, given that Ωper,k(·,−k) ≡ 0. The main point of (5.4) is then that we will be
able to deduce the following estimates.

Lemma 5.0.4. Under the assumptions of Theorem 2.5.1 there is a constant C0 (in-
dependent of k) such that the following holds. Assume that τ̄ ≤ 0 is such that for all
τ ∈ [−k, τ̄ ] we have the estimate

∥Ωper,k(·, τ)∥X ≤ e(a0+δ0)τ . (5.6)

Then

∥Ωper,k(·, τ̄)∥L2 ≤ C0e
(a0+δ0+1/2)τ̄ , (5.7)

∥|x|DΩper,k(·, τ̄)∥L2 ≤ C0e
(a0+2δ0)τ̄ , (5.8)

∥DΩper,k(·, τ̄)∥L4 ≤ C0e
(a0+2δ0)τ̄ . (5.9)

With the above lemma we easily conclude (5.4) (and hence Theorem 2.5.1). Indeed
denote by τk the largest non-positive time such that

∥Ωper,k(·, τ)∥X ≤ e(a0+δ0)τ ∀τ ∈ [−k, τk] . (5.10)

Then we must have
∥Ωper,k(·, τk)∥X = e(a0+δ0)τk . (5.11)

On the other hand, summing the three estimates (5.7), (5.8), and (5.9) we conclude

∥Ωper,k(·, τk)∥X ≤ C̄e(a0+2δ0)τk (5.12)

for some constant C̄ independent of k. However (5.11) and (5.12) give eδ0τk ≥ C̄−1, i.e.
τk ≥ − 1

δ0
ln C̄, implying that (5.4) holds with τ0 := − 1

δ0
ln C̄.

After proving Proposition 5.0.2 and Lemma 5.0.3, we will dedicate two separate sections
to the three estimates (5.7), (5.8), and (5.9). The first estimate, which we will call baseline
estimate, will differ substantially from the other two, and to it we will dedicate a section. In
order to accomplish the gain in the exponent in (5.7) we will use crucially the information
on the semigroup which comes from Theorem 2.4.2 and Theorem 3.0.4, namely, that the
growth bound ω(Lss) is precisely a0 (i.e., the growth achieved by Ωlin). Since, however,
the terms in the Duhamel’s formula depend on derivatives, we need to invoke an a priori
control of them, which is present in the norm ∥ · ∥X . Indeed, one such term experiencing
the derivative loss arise from the nonlinearity is the following:∫ τ

−k
e(τ−s)Lss [(K2 ∗ Ωper,k) · ∇Ωper,k](·, s) ds . (5.13)

Note that ∥·∥X also includes the weighted L2 norm ∥|x|DΩ∥L2 because we encounter a term
whereDΩper,k is multiplied by the function V r, which grows at∞ like |x|1−ᾱ when ᾱ ∈]0, 2[.
In order to close the argument we then need to control the L4 norm and the weighted L2

norm of DΩper,k. The latter estimates will not be accomplished through a growth bound
on the semigroup eτLss (which would invoke controls on yet higher derivatives), but rather
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through some careful energy estimates. The structure of the problem will then enter
crucially, since the term (K2 ∗Ωper,k) ·∇Ω̄ which we need to bound in the energy estimates
will take advantage of the improved baseline estimate on the L2 norm. The above term,
which is responsible for the creation of unstable eigenvalues, actually gains a derivative.
Finally, there is one remaining difficulty when estimating DΩper,k due to the transport
term. Namely, differentiating the equation in cartesian coordinates contributes a term
(∂iV̄ ) · ∇Ωper,k, which could destabilize the estimates. We exploit the structure of the
problem again in a crucial way by estimating angular and radial derivatives, rather than
derivatives in cartesian coordinates, and by estimating the angular derivatives first and the
radial derivatives after.

5.1. Proof of Proposition 5.0.2

We start by bounding |Ω(x)|. Since W 1,4(B2) embeds in C1/2, the bound |Ω(x)| ≤
C∥Ω∥X is true for every x ∈ B2. Consider further R := |x|

2
≥ 1 and define uR(y) := Ω(Ry).

In particular let B := B1(
x
R
) and notice that

∥uR∥L2(B) = R−1∥Ω∥L2(BR(x)) ≤ R−1∥Ω∥X , (5.14)

∥DuR∥L2(B) = ∥DΩ∥L2(BR(x)) = R−1∥| · |DΩ∥L2(BR(x)) ≤ R−1∥Ω∥X , (5.15)

∥DuR∥L4(B) = R1/2∥DΩ∥L4(BR(x)) ≤ R1/2∥Ω∥X . (5.16)

By interpolation, for 1
p
= λ

2
+ 1−λ

4
we have

∥DuR∥Lp(B) ≤ C∥Ω∥XR−λ+(1−λ)/2 .

Choosing p very close to 2, but larger, we achieve ∥Du∥Lp(B) ≤ CR−1+κ∥Ω∥X . Since the
average of uR over B is smaller than ∥uR∥L2(B) ≤ CR−1∥Ω∥X , from Poincaré we conclude
∥uR∥W 1,p(B) ≤ CR−1+κ∥Ω∥X . In particular using the embedding ofW 1,p in L∞ we conclude

∥uR∥L∞(B) ≤ C(p)R−1+κ∥Ω∥X . (5.17)

Since however |Ω(x)| ≤ ∥uR∥L∞(B), we reach the estimate

|Ω(x)| ≤ C

|x|1−κ
∥Ω∥X . (5.18)

Note that the constant C depends on κ: κ is positive, but a very small choice of it forces
to choose a p very close to 2, which in turn gives a dependence of the constant C(p) in
(5.17) on κ.

We next come to the estimates for ∇K2 ∗ Ω. First of all, observe that

∥∇K2 ∗ Ω∥L2 ≤C∥Ω∥L2 ≤ C∥Ω∥X
∥D2K2 ∗ Ω∥L2 + ∥D2K2 ∗ Ω∥L4 ≤C∥DΩ∥L2 + C∥DΩ∥L4 ≤ C∥Ω∥X

and and thus |∇K2 ∗ Ω(x)| ≤ C∥Ω∥X follows for every x ∈ B4. Consider now |x| ≥ 4, set

R := |x|
4
and let φ ∈ C∞

c (B2R(x)) be a cut-off function identically equal to 1 on BR(x) and

ψ ∈ C∞
c (B2R) equal to 1 on BR. We choose them so that ∥Dkψ∥C0 +∥Dkφ∥C0 ≤ C(k)R−k.
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We split

∇K2 ∗ Ω = ∇K2 ∗ (φΩ) +∇K2 ∗ (ψΩ) +∇K2 ∗ ((1− φ− ψ)Ω) =: F1 + F2 + F3 .

We have

∥F1∥L2 ≤ C∥φΩ∥L2 ≤ C∥Ω∥X
∥DF1∥L2 ≤ C∥D(φΩ)∥L2 ≤ CR−1∥Ω∥L2 + C∥φDΩ∥L2 ≤ CR−1∥Ω∥X
∥DF1∥L4 ≤ C∥Ω∥X .

The argument used above implies then |F1(x)| ≤ C(κ)|x|κ−1∥Ω∥X . As for estimating F2

we observe that F2 is harmonic outside B2R. On the other hand ∥F2∥L2 ≤ C∥Ω∥X . Using
the mean-value inequality for harmonic functions we then get

|F2(x)| ≤
1

π(2R)2

∫
B2R(x)

|F2| ≤
C

R
∥Ω∥X .

As for F3 we write, using the bound on |Ω| and |∇K(x− y)| ≤ C|x− y|−2,

|F3(x)| ≤
∫
R2\(B2R(x)∪B2R)

C(κ)∥Ω∥X
|x− y|2|y|1−κ

≤
∫
(R2\B2R)∩{|x−y|≥|y|}

C(κ)∥Ω∥X
|y|3−κ

+

∫
(R2\B2R(x))∩{|y|≥|x−y|}

C(κ)∥Ω∥X
|x− y|3−κ

≤ C(κ)∥Ω∥X
R1−κ .

Recalling that K2 ∗ Ω(0) = 0, integrating(5.2) on the segment with endpoints 0 and x
we conclude (5.3) for |x| ≤ 2. In order to prove the bound when |x| ≥ 1, fix a point y with
3R := |y| ≥ 1. Let φ be a radial cut-off function which is identically equal to 1 on BR(0),
is supported in B2R(0) and whose gradient is bounded by CR−1. We then write

K2 ∗ Ω = K2 ∗ (φΩ) +K2 ∗ ((1− φ)Ω) . (5.19)

Since the distance between y and the support of φΩ is larger than R, we can estimate

|K2 ∗ (φΩ)(y)| ≤
C

R

∫
|φΩ| ≤ C∥Ω∥L2 ≤ C∥Ω∥X . (5.20)

Next observe that, by Calderon-Zygmund,

∥D2K2 ∗ (Ω(1− φ))∥L2 = ∥D((1− φ)Ω)∥L2 ≤ C

R
∥Ω∥L2 + C∥DΩ∥L2(R2\BR) ≤

C

R
∥Ω∥X .

Since (1− φ)Ω belongs to L2
m, the average over B of K2 ∗ ((1− φ)Ω) equals 0. Hence we

conclude from Poincaré inequality and Calderon-Zygmund that

∥K2 ∗ ((1−φ)Ω)∥L2(B) ≤ CR∥DK2 ∗ ((1−φ)Ω)∥L2(B) ≤ CR∥((1−φ)Ω)∥L2(B) ≤ CR∥Ω∥X
From Gagliardo-Nirenberg interpolation inequality applied on B we have

∥K2 ∗ ((1− φ)Ω)∥L∞(B) ≤ C∥D2K2 ∗ (Ω(1− φ))∥1/2L2 ∥K2 ∗ ((1− φ)Ω)∥1/2L2(B)

+
C

R
∥K2 ∗ ((1− φ)Ω)∥L2(B) ≤ C∥Ω∥X .
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5.2. Proof of Lemma 5.0.3

We will in fact prove the following more precise version of the estimates for η.

Lemma 5.2.1. Under the assumptions of Lemma 5.0.3, η ∈ C2(R2\{0}) and its deriva-
tives up to the second order satisfy the estimate

|Djη(x)| ≤ C(1 + |x|)−m−2−j−ᾱ ∀x,∀j ∈ {0, 1, 2} . (5.21)

In particular η ∈ C1(R2) and its first derivatives are Lipschitz (namely, η ∈ W 2,∞(R2)).

As for the second conclusion of the Lemma, observe that, by going back to the solutions
ωε,k, it follows from the regularity and decay of the initial data in (2.20) (just proved in the
above lemma) and the regularity and decay of the forcing term f for positive times, that
ωε,k ∈ C([tk, T ], X) for every T > tk. Given the explicit transformation from ωε,k to Ωε,k we
conclude that Ωε,k ∈ C([−k, T ], X) for every T > −k. Since the same regularity is enjoyed

by Ω̃ on [−k, T ] (the latter is in fact smooth and compactly supported on R2 × [−k, T ])
and by Ωlin, we infer that Ωper,k = Ωε,k − Ω̃− Ωlin belongs to C([−k, T ], X).

Proof of Lemma 5.2.1. Consider η ∈ L2
m, for m ≥ 2 as in Theorem 2.4.2 and write

it as η(θ, r) = ϑ(r)eikmθ when b0 ̸= 0 or η(θ, r) = ϑ(r)eikmθ + ϑ̄(r)e−ikmθ if b0 = 0 (where
ϑ̄ denotes the complex conjugate of ϑ). In both cases ϑ(r)eikmθ is an eigenfunction and
through this property we will show that it satisfies the estimates of the Lemma. We can
therefore assume without loss of generality that η(x) = ϑ(r)eikmθ. We will also see that
the argument leads in fact to estimates (5.21) with km replacing m and hence without
loss of generality we assume k = 1. Furthermore an outcome of the argument below is
that η is smooth except possibly at the origin. Note moreover that after having shown
the pointwise bounds (5.21) for η outside of the origin, the W 2,∞ regularity of η follows
immediately: indeed η and Dη can be continuously extended to the origin by setting them
equal to 0, hence showing that η ∈ C1(B1), while the uniform bound of |D2η| in B1 \ {0}
easily implies that Dη is Lipschitz.

Step 1. Exponential coordinates. We recall that the distribution K2 ∗ η is well
defined, according to Lemma 2.4.1, and its action on a test function in S is given by
integrating the scalar product of the test with a function v ∈ W 1,2

loc (R2,C2), cf. the
proof of Lemma 2.4.1 in the appendix. It follows from the argument given there that
R2π/mv(R2π/mx) = v(x). Given that div V = 0, −V ⊥ is the gradient of a continuous func-
tion, which is determined by its value ψ at the origin. ψ inherits the symmetry and can
thus be written as ψ(θ, r) = f(r)eimθ. We thus conclude that

ϑ =f ′′ +
1

r
f ′ − m2

r2
f (5.22)

v =
f ′

r

∂

∂θ
− imf

r

∂

∂r
. (5.23)

Observe moreover that v ∈ W 1,2
loc implies f ′′, f

′

r
, f
r2

∈ L2
loc. Therefore f is determined by

(5.22) and the boundary conditions
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(a) f(0) = 0;

(b)
∫ 1

0
|f ′(r)|2

r
dr <∞.

(observe that condition (b) implies f ′(0) = 0 when f ∈ C1 and we can therefore interpret
it as a surrogate for a boundary condition). We recall also that we have the estimate
∥D2ψ∥L2 ≤ C∥ϑ∥L2 <∞ and owing to

∫
BR
Dψ = 0, by Poincaré we achieve

∥Dψ∥Lp(BR) ≤ C(p)R2/p .

Using Morrey’s embedding and the fact that ψ(0) = 0 we conclude, in turn

|ψ(x)| ≤ C∥Dψ∥Lp(B|x|)|x|
1−2/p ≤ C|x| .

In particular we conclude
|f(r)| ≤ Cr . (5.24)

The equation satisfied by η can thus be written in terms of the function f as(
1 +

r

α

d

dr
− z0 − imβζ

)(
f ′′ +

f ′

r
− m2

r2
f

)
− imfβg′

r
= 0 , (5.25)

where g is the smooth function such that Ω̄(x) = g(|x|) (in particular g is constant in a
neighborhood of the origin, and equals r−α for r ≥ 2) and ζ is given by the formula (2.8).
We next set s = ln r and in particular

g̃(s) = g(es) (5.26)

h(s) = f(es) (5.27)

ζ̃(s) = ζ(es) . (5.28)

Note that
ϑ(es) = e−2s(h′′(s)−m2h(s)) =: e−2sΓ(s) . (5.29)

In these new coordinates we observe that the claim of the lemma corresponds then to
showing that ϑ ∈ C2

loc(R) and
|Γ(s)|+ |Γ′(s)|+ |Γ′′(s)| ≤ Ce4s ∀s ≤ 0 , (5.30)

|Γ(s)|+ |Γ′(s)|+ |Γ′′(s)| ≤ Ce−(m+ᾱ)s ∀s ≥ 0 . (5.31)

In order to achieve the latter estimates we will need the following bounds on g̃′, g̃′′, ζ̃, and
ζ̃ ′, which we record here and can be easily checked:

|g̃(s)|+ |g̃′(s)|+ |ζ̃(s)|+ |ζ̃ ′(s)| ≤ Ce−ᾱs ∀s ≥ 0 , (5.32)

|g̃(s)− g(0)|+ |g̃′(s)|+ |ζ̃(s)− ζ(0)|+ |ζ̃ ′(s)| ≤ Ce2s ∀s ≤ 0 . (5.33)

We observe next that, by (5.24)
|h(s)| ≤ Ces . (5.34)

Step 2. The equation for h. In these new coordinates the equation (5.25) becomes
then (

1 +
1

α

d

ds
− z0 − imβζ̃

)(
e−2s(h′′ −m2h)

)
− imhe−2sg̃′ = 0 , (5.35)
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which we simplify as[
d

ds
− α

(
imβζ̃ + z0 − 1 +

2

α

)]
(h′′ −m2h)− iαmhg̃′ = 0 . (5.36)

We then define the integrating factor

I(s) = exp

[
−α
∫ s

0

(
imβζ̃ + z0 − 1 +

2

α

)
dσ

]
We can thus write

d

ds

[
I(h′′ −m2h)

]
= iαmIhg̃′ .

Given that z0 = a0 + ib0,

|I(s)| ≤ Ce−(2+α(a0−1))s (5.37)

and in particular, by (5.32)

|Ihg̃′|(s) ≤ Ce−(1+αa0+(ᾱ−α))s . (5.38)

This implies that the latter is an integrable function on every halfline [s,∞[ so that we can
write

Γ(s) = h′′(s)−m2h(s) = −αI(s)−1

∫ ∞

s

imIhg̃′ . (5.39)

Since Γ(s) = e2sϑ(es) and ϑ ∈ L2(rdr), e−sΓ ∈ L2(ds). We claim in particular that
e−m|s|Γ(s) is integrable. Indeed:∫

R
|Γ(s)|e−m|s| ds ≤ ∥e−sΓ∥L2(R)

(∫
R
e−2(m|s|−s) ds

)1/2

<∞ .

We claim then that for the function h we have the formula

h(s) = − 1

2m
e−ms

∫ s

−∞
ems

′
Γ(s′)ds′ − 1

2m
ems

∫ ∞

s

e−ms
′
Γ(s′) ds′ . (5.40)

In order to prove the identity denote the right hand side by H and observe that it is a
solution of the same ODE satisfied by H, namely, H ′′ −m2H = Γ. Hence ( d

2

ds2
−m2)(H −

h) = 0, which implies that H(s) − h(s) = C1e
ms + C2e

−ms. On the other hand, using
the information that e−sΓ ∈ L2, it can be readily checked that H(s) = o(em|s|) at both
±∞. Since this property is shared by h, thanks to the bound (5.34), we conclude that
C1e

ms + C2e
−ms must be o(em|s|) at ±∞, implying C1 = C2 = 0.

Step 3. Estimates at +∞. In this step we give bounds for the asymptotic behavior
of h at +∞. We recall (5.32) and hence observe that

|Γ(s)| ≤ Ce(2+αa0−α)s
∫ ∞

s

|h(σ)|e−(2+αa0+(ᾱ−α))σ dσ , (5.41)

for s positive. On the other hand, for s ≥ 0 we can also write from (5.40)

|h(s)| ≤ Ce−ms + Ce−ms
∫ s

0

emσ|Γ(σ)| dσ + Cems
∫ ∞

s

e−mσ|Γ(σ)| dσ , (5.42)



82 5. NONLINEAR THEORY

Starting with the information |h(s)| ≤ Ces for s > 0, we then infer from (5.41) that
|Γ(s)| ≤ Ce(1−ᾱ)s for s > 0. In turn plugging the latter into (5.42) we infer |h(s)| ≤ Ce(1−ᾱ)s

for s > 0. The latter, plugged into (5.41) turns into |Γ(s)| ≤ Ce(1−2ᾱ)s for s > 0. We then
can keep iterating this procedure. The bootstrap argument can be repeated until we reach
the largest integer k such that (1 − kᾱ) > −m: one last iteration of the argument gives
then

|h(s)| ≤ Ce−ms (5.43)

and hence, inserting one last time in (5.41)

|Γ(s)| ≤ Ce−(m+ᾱ)s . (5.44)

In order to estimate the first and second derivatives of Γ we observe that

I ′

I
= −α(imβζ̃ + z0 − 1 + 2α)

and we compute explicitly

Γ′ = α(imβζ̃ + z0 − 1 + 2α)Γ + imhg̃′ (5.45)

Γ′′ = αimβζ̃ ′Γ + α(imβζ̃ + z0 − 1 + 2α)Γ′ + imhg̃′′ + imh′g̃′ . (5.46)

From (5.45) and the bounds (5.44),(5.43), and (5.32), we immediately conclude

|Γ′(s)| ≤ Ce−(m+ᾱ)s . (5.47)

As for the second derivative, using (5.47), (5.44),(5.43), and (5.32), we conclude

|αimβζ̃ ′Γ + α(imβζ̃ + z0 − 1 + 2α)Γ′ + imhg̃′′| ≤ Ce−(m+ᾱ)s .

In order to estimate the term imh′g̃′ we differentiate (5.40) to infer

h′(s) =
1

2
e−ms

∫ s

−∞
ems

′
Γ(s′)ds′ − 1

2
ems

∫ ∞

s

e−ms
′
Γ(s′) ds′ (5.48)

and thus derive the bound |h′(s)| ≤ Ce−ms using the same argument for bounding h. In
turn, combined again with (5.32) we conclude |imh′g̃′(s)| ≤ Ce−(m+ᾱ)s, hence completing
the proof of (5.31).

Step 4. Estimates at −∞. For the bound at −∞ we use instead (5.33) (which we
observe holds for positive s as well). This leads to the inequality

|Γ(s)| ≤ Ce(2+α(a0−1))s

∫ ∞

s

e−α(a0−1)σ|h(σ)| dσ (5.49)

In this argument we assume that a0 is selected very large, depending on m. In turn we
estimate h for negative s by

|h(s)| ≤ Cems + Cems
∫ 0

s

e−mσ|Γ(σ)| dσ + Ce−ms
∫ s

−∞
emσ|Γ(σ)| dσ . (5.50)

Observe now that we have |h(s)| ≤ Ces for every s. Inserting this bound in (5.49) and
assuming that a0 is large enough we conclude |Γ(s)| ≤ Ce3s. In turn we can insert the
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latter bound in (5.50) to conclude |h(s)| ≤ C(ems+e3s). Since m ≥ 2 we can then conclude
|h(s)| ≤ Ce2s and inserting it in (5.49) we conclude |Γ(s)| ≤ Ce4s.

For the first and second derivatives we use the formulae (5.45), (5.45), and (5.48) and
argue as above to conclude |Γ′(s)|+ |Γ′′(s)| ≤ Ce4s. □

5.3. Proof of the baseline L2 estimate

In this section we prove (5.7). In order to simplify the notation, from now on we will
use Ω in place Ωper,k. We recall next equation (2.47)

(∂τ − Lss)Ω =− (Vlin · ∇)Ω︸ ︷︷ ︸
=:F1

− (Vr · ∇)Ω︸ ︷︷ ︸
=:F2

− (V · ∇)Ωlin︸ ︷︷ ︸
=:F3

+(V · ∇)Ωr︸ ︷︷ ︸
=:F4

+(V · ∇)Ω︸ ︷︷ ︸
=:F5

− (Vlin · ∇)Ωlin︸ ︷︷ ︸
=:F6

− (Vr · ∇)Ωlin︸ ︷︷ ︸
=:F7

− (Vlin · ∇)Ωr︸ ︷︷ ︸
=:F8

. (5.51)

We then define F := −
∑8

i=1 Fi. Recalling Theorem 3.0.4 and the fact that Ω(·,−k) = 0,
we estimate via Duhamel’s formula

∥Ω(·, τ̄)∥L2 ≤ C(ε)

∫ τ̄

−k
e(a0+ε)(τ̄−s)∥F (·, s)∥L2 ds . (5.52)

We next estimate the L2 norms of the various Fi. In order to keep our notation simpler
we use ∥ · ∥2 for ∥ · ∥L2 and ∥ · ∥∞ for ∥ · ∥L∞ . F1 is simple:

∥F1(·, s)∥2 ≤ ∥Vlin(·, s)∥∞∥DΩ(·, s)∥L2 ≤ Cea0se(a0+δ0)s ≤ Ce(2a0+δ0)s . (5.53)

As for F2 we use the fact that∫
|F2(ξ, τ)|2 dξ ≤ C

∫
|ξ|≥e−τ/α

|ξ|2−2ᾱ|DΩ(ξ, τ)|2 dξ

≤ Ce
2ᾱ
α
τ

∫
|ξ|2|DΩ(ξ, τ)|2 dξ ≤ Ce

2ᾱ
α
τ∥Ω(·, τ)∥2X .

We hence conclude

∥F2(·, τ)∥L2 ≤ Ce(a0+
ᾱ
α
+δ0)τ ≤ Ce(a0+1+δ0)τ . (5.54)

As for F3, for every fixed τ with κ = 1
2
we can use Proposition 5.0.2 to conclude

∥F3(·, τ)∥L2 ≤ ∥V (·, τ)∥L∞∥∇Ωlin(·, τ)∥L2 ≤ C∥Ω(·, τ)∥X∥∇Ωlin(·, τ)∥L2 ≤ Ce(2a0+δ0)τ .
(5.55)

To estimate F4 we recall that

Ωr(ξ, τ) = β(1− χ(eτ/α(ξ))Ω̄(ξ) + eτ/α(βζ(|ξ|)|ξ|)χ′(eτ/αξ) . (5.56)

Differentiating the latter identity we get:

|∇Ωr(ξ, τ)| ≤C1|ξ|≥e−τ/α|DΩ̄|(ξ) + Ceτ/α(|Ω̄|(ξ) + |D(ζ(|ξ|)|ξ|))1e−τ/αR≥|ξ|≥e−τ/α

+ Ce2τ/α(|ζ(ξ)||ξ|)1e−τ/αR≥|ξ|≥e−τ/α

≤C1|ξ|≥e−τ/α|ξ|−1−ᾱ + C(eτ/α|ξ|−ᾱ + e2τ/α|ξ|1−ᾱ)1e−τ/αR≥|ξ|≥e−τ/α (5.57)
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where we are assuming that spt (χ) ⊂ BR. We next use Proposition 5.0.2 with κ = α/2 to
get ∥V (·, τ)∥L∞ ≤ C∥Ω(·, τ)∥X ≤ Ce(a0+δ0)τ . In particular we can estimate∫

|F4(ξ, τ)|2dξ ≤Ce2(a0+δ0)τ
∫ ∞

e−τ/α

r−1−2ᾱdr + Ce2(a0+δ0+1/α)τ

∫ e−τ/αR

e−τ/α

r−2ᾱ+1 dr

+ Ce2(a0+δ0+2/α)τ

∫ e−τ/αR

e−τ/α

r3−2ᾱ dr ≤ Ce(2a0+2δ0+2)τ .

We thus conclude

∥F4(·, τ)∥2 ≤ Ce(a0+δ0+1)τ . (5.58)

For F5 we use again ∥V (·, τ)∥L∞ ≤ Ce(a0+δ0)τ to get

∥F5(·, τ)∥2 ≤ Ce(a0+δ0)τ∥DΩ(·, τ)∥2 ≤ Ce2(a0+δ0)τ . (5.59)

F6 follows easily from Lemma 5.2.1 and Lemma 5.0.3

∥F6(·, τ)∥2 ≤ ∥Ωlin(·, τ)∥∞∥Ωlin(·, τ)∥2 ≤ Ce2(a0+δ0)τ . (5.60)

F7 and F8 can be easily estimated using the explicit formula for Ωr and the decay estimates
given by Lemma 5.2.1 for Ωlin, in particular they enjoy an estimate which is better than
(5.58), i.e.

∥F7(·, τ)∥2 + ∥F8(·, τ)∥2 ≤ Ce(a0+δ0+1/2)τ . (5.61)

Assuming that a0 is sufficiently large we then achieve the estimate

∥F (·, τ)∥2 ≤ Ce(a0+δ0+1/2)τ . (5.62)

Inserting in (5.52) we choose ε < 1/2 + δ0 and we then achieve

∥Ω(·, τ̄)∥2 ≤ Ce(a0+ε)τ̄
∫ τ̄

−k
e(δ0+1/2−ε)s ds ≤ Ce(a0+δ0+1/2)τ̄ . (5.63)

In fact, observe that the argument just given implies the stronger conclusion

∥Ω(·, τ)∥2 ≤ Ce(a0+δ0+1/2)τ , ∀τ ∈ [−k, τ̄ ] . (5.64)

5.4. Estimates on the first derivative

In this section we prove (5.8) and (5.9). The proof will be achieved via L2 and L4 energy
estimates, where we will differentiate (2.47) first with respect to the angular variable and
then with respect to the radial variable. We start rewriting (2.47) as

∂τΩ− Ω +

((
− ξ

α
+ βV̄ + Vr + Vlin + V

)
· ∇
)
Ω

=− β(V · ∇)Ω̄− (V · ∇)Ωlin − (V · ∇)Ωr − (Vlin · ∇)Ωlin − (Vr · ∇)Ωlin

− (Vlin · ∇)Ωr =: G . (5.65)

We next differentiate in θ. In order to simplify our notation we will write θ in the subscript
(or eventually , θ if there is already another subscript). We also recall that Ωr, Ω̄ are radial
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functions, while (Vr ·∇) and (V̄ ·∇) are angular derivatives times a function which is radial,
and ξ · ∇ is a radial derivative times a radial function. So we can write

∂τΩθ − Ωθ +

((
− ξ

α
+ βV̄ + Vr + Vlin + V

)
· ∇
)
Ωθ

=Gθ − (Vlin,θ · ∇)Ω− (Vθ · ∇)Ω =: H1 (5.66)

∂τ
Ωθ

r
+

(
1

α
− 1

)
Ωθ

r
+

((
− ξ

α
+ βV̄ + Vr + Vlin + V

)
· ∇
)

Ωθ

r

=
1

r
Gθ −

1

r
(Vlin,θ · ∇)Ω− 1

r
(Vθ · ∇)Ω + Ωθ((Vlin + V ) · ∇)

1

r
=: H2 . (5.67)

We then multiply by Ωθ the first equation and integrate by parts the terms on the left-hand
side to conclude

d

dτ

1

2
∥Ωθ(·, τ)∥22 =

(
1− 1

α

)
∥Ωθ(·, τ)∥22 +

∫
H1(ξ, τ)Ωθ(ξ, τ)

≤ ∥H1(·, τ)∥2∥Ωθ(·, τ)∥2 (5.68)

Likewise we multiply the second identity by (1
r
Ωθ)

3 and integrate by parts to achieve

d

dτ

1

4
∥r−1Ωθ(·, τ)∥44 =

(
1− 1

α

)
∥r−1Ωθ(·, τ)∥44 +

∫
H2(ξ, τ)(r

−1Ωθ(ξ, τ))
3

≤ ∥H2(·, τ)∥4∥r−1Ωθ(·, τ)∥34 . (5.69)

We next wish to estimate the two integrals in the right-hand sides of both equations.
We summarize the relevant estimates in the Lemma 5.4.1 below. Note that they imply

d

dτ
∥Ωθ(·, τ)∥2 ≤ Ce(a0+2δ0)τ , (5.70)

d

dτ
∥r−1Ωθ(·, τ)∥4 ≤ Ce(a0+2δ0)τ , (5.71)

Integrating the latter estimate between −k and τ̄ we conclude

∥Ωθ(·, τ̄)∥2 ≤ Ce(a0+2δ0)τ̄ , (5.72)

∥r−1Ωθ(·, τ̄)∥4 ≤ Ce(a0+2δ0)τ̄ . (5.73)

But in fact the very same argument give the stronger conclusions:

∥Ωθ(·, τ̂)∥2 ≤ Ce(a0+2δ0)τ̂ ∀τ̂ ∈ [−k, τ̄ ] , (5.74)

∥r−1Ωθ(·, τ̂)∥4 ≤ Ce(a0+2δ0)τ̂ ∀τ̂ ∈ [−k, τ̄ ] . (5.75)
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Lemma 5.4.1. Under the assumptions of Lemma 5.0.4 we have

∥DG (·, τ)∥4 ≤ Ce(a0+2δ0)τ (5.76)

∥rDG (·, τ)∥2 ≤ Ce(a0+2δ0)τ (5.77)

∥|DVlin||∇Ω|(·, τ)∥4 + ∥|DV ||∇Ω|(·, τ)∥4 ≤ Ce(a0+2δ0)τ (5.78)

∥r|DVlin||∇Ω|(·, τ)∥2 + ∥r|DV ||∇Ω|(·, τ)∥2 ≤ Ce(a0+2δ0)τ (5.79)

∥r−1VlinDΩ(·, τ)∥4 + ∥r−1V DΩ(·, τ)∥4 ≤ Ce(a0+2δ0)τ . (5.80)

Proof. Proof of (5.76) and of (5.77). We break the terms as

∥DG ∥4 ≤C∥DVDΩ̄∥4 + C∥V D2Ω̄∥4 + ∥DVDΩlin∥4 + ∥V D2Ωlin∥4
+ C∥DVDΩr∥4 + C∥V D2Ωr∥4 + C∥DVlinDΩlin∥4 + C∥VlinD2Ωlin∥4
+ ∥DVrDΩlin∥4 + ∥VrD2Ωlin∥4 + ∥DVlinDΩr∥4 + ∥VlinD2Ωr∥4 (5.81)

and

∥rDG ∥2 ≤C∥rDV DΩ̄∥2 + C∥rV D2Ω̄∥2 + ∥rDV DΩlin∥2 + ∥rV D2Ωlin∥2
+ C∥rDV DΩr∥2 + C∥V rD2Ωr∥2 + C∥rDVlinDΩlin∥2 + C∥rVlinD2Ωlin∥2
+ ∥rDVrDΩlin∥2 + ∥rVrD2Ωlin∥2 + ∥rDVlinDΩr∥2 + ∥rVlinD2Ωr∥2 . (5.82)

The terms involving Ω and Ω̄ is where we use the baseline L2 estimate. Observe that

∥Ω(·, τ)∥4 ≤ ∥Ω(·, τ)∥1/2∞ ∥DΩ(·, τ)∥1/22 ≤ Ce(a0+δ0+1/4)τ (5.83)

and, by Calderón-Zygmund,

∥DK2 ∗ Ω(·, τ)∥4 ≤ C∥Ω(·, τ)∥4 ≤ Ce(a0+δ0+1/4)τ . (5.84)

Next we estimate

∥DVDΩ̄(·, τ)∥4 ≤ ∥DΩ̄(·, τ)∥∞∥DV (·, τ)∥4 ≤ C∥Ω(·, τ)∥4 ≤ Ce(a0+δ0+1/4)τ (5.85)

∥rDV DΩ̄(·, τ)∥L2 ≤ ∥rDΩ̄(·, τ)∥∞∥DV (·, τ)∥2 ≤ C∥Ω(·, τ)∥L2 ≤ Ce(a0+δ0+1/2)τ (5.86)

Next, recalling Lemma 2.4.1 we get

∥V (·, τ)∥L2(BR) ≤ CR∥Ω(·, τ)∥2 ≤ CRe(a0+δ0+1/2)τ . (5.87)

However, using
∫
BR
V (·, τ) = 0, we can in fact estimate also

∥V (·, τ)∥L4(BR) ≤ CR1/2∥Ω(·, τ)∥2 ≤ CR1/2e(a0+δ0+1/2)τ (5.88)

In particular we can infer

∥(1 + |ξ|)−(1+ε)V (·, τ)∥2 ≤ C(ε)e(a0+δ0+1/2)τ (5.89)

and

∥(1 + ξ)−(1/2+ε)V (·, τ)∥4 ≤ C(ε)e(a0+δ0+1/2)τ (5.90)
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for every positive ε. On the other hand, given that |D2Ω̄(ξ)| ≤ C(1 + |ξ|)−2−ᾱ, we easily
infer

∥V D2Ω̄(·, τ)∥2 ≤ C∥(1 + |ξ|)−1V (·, τ)∥4 ≤ Ce(a0+δ0+1/2)τ (5.91)

∥rV D2Ω̄(·, τ)∥2 ≤ C∥(1 + |ξ|)−1−ᾱV (·, τ)∥2 ≤ Ce(a0+δ0+1/2)τ . (5.92)

From now on we will not handle the terms with the weight r as the proof is entirely
analogous: we will just focus on the L4 estimates and leave to the reader the computations
with the weight.

For the two quadratic terms in Vlin we can use Lemma 5.2.1 to achieve

∥DVlinDΩlin(·, τ)∥4 + ∥VlinD2Ωlin(·, τ)∥4 ≤ Ce2a0τ . (5.93)

Likewise we can estimate

∥DVDΩlin(·, τ)∥4 + ∥V D2Ωlin∥4 ≤ Cea0τ∥Ω(·, τ)∥X ≤ Ce(2a0+δ0)τ , (5.94)

(where for the second term we use the decay at infinity of D2Ωlin to compensate the
moderate growth of V , the argument is the same as for (5.91) and we do not repeat it
here). Observe next that, by (5.57), ∥DΩr(·, τ)∥∞ ≤ C for τ ≤ 0. Hence the term DVDΩr

can be estimated as in (5.85):

∥DVDΩr(·, τ)∥4 ≤ C∥DV (·, τ)∥4 ≤ Ce(a0+δ0+1/4)τ . (5.95)

As for the other term, differentiating once more and arguing as for (5.57) we get:

|D2Ωr(ξ, τ)|
≤C|ξ|−2−ᾱ1|ξ|≥e−τ/α + (eτ/α|ξ|−1−ᾱ + e2τ/α|ξ|−ᾱ + e3τ/α|ξ|1−ᾱ)1e−τ/αR≥|ξ|≥e−τ/α

≤C|ξ|−2−ᾱ1|ξ|≥e−τ/α + Ce3τ/α|ξ|1−ᾱ1e−τ/αR≥|ξ|≥e−τ/α . (5.96)

We can thus argue similarly as for (5.91) to conclude

∥V D2Ω̄r(·, τ)∥4 ≤ C∥(1 + |ξ|)−3/2V (·, τ)∥4 + Ce3τ/α∥V ∥L4(B
Re−ξ/τ )

≤ Ce(a0+δ0+1/4)τ . (5.97)

In order to handle the remaining three terms, we recall that, by Lemma 5.2.1,

∥Vlin(·, τ)∥∞ ≤ Cea0τ (5.98)

|DVlin(ξ, τ)| ≤ Cea0τ |ξ|−2−ᾱ (5.99)

|DkΩlin(ξ, τ)| ≤ Cea0τ |ξ|−2−k−ᾱ . (5.100)

On the other hand, owing to the computations in this and the previous section we can also
write

|Vr(ξ, τ)| ≤ C|ξ|1−ᾱ1|ξ|≥e−τ/α

|DVr(ξ, τ)|+ |Ωr(ξ, τ)| ≤ C|ξ|−ᾱ1|ξ|≥e−τ/α + Ceτ/α|ξ|1−ᾱ1e−τ/αR≥|ξ|≥e−τ/α

|DkΩr(ξ, τ)| ≤ C|ξ|−k−ᾱ1|ξ|≥e−τ/α + Cekτ/α|ξ|1−ᾱ1e−τ/αR≥|ξ|≥e−τ/α .
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Integrating the estimates in the respective domain we easily get

∥DVrDΩlin∥4 + ∥VrD2Ωlin∥4 + ∥DVlinDΩr∥4 + ∥VlinD2Ωr∥4 ≤ Ce(a0+1)τ . (5.101)

Remaining estimates. The two terms (5.78) and (5.79) have already been covered
in the argument above. It remains to handle (5.80). Notice that, by Lemma 5.2.1 and
Proposition 5.0.2 we have

∥r−1V (·, τ)∥∞ ≤ C∥Ω(·, τ)∥X ≤ Ce(a0+δ0)τ (5.102)

∥r−1Vlin(·, τ)∥∞ ≤ Cea0τ . (5.103)

We thus conclude easily

∥r−1V DΩ(·, τ)∥4 ≤ Ce(a0+δ0)τ∥DΩ(·, τ)∥4 ≤ Ce2(a0+δ0)τ (5.104)

∥r−1VlinDΩ(·, τ)∥4 ≤ Cea0τ∥DΩ(·, τ)∥4 ≤ Ce(2a0+δ0)τ . (5.105)

□

We next differentiate in r (5.65) in order to achieve similar identities to (5.66) and
(5.67). This time, given the ambiguity with Vr and Ωr, we write , r in the subscript to
denote the radial derivative of any function.

∂τΩ,r +

(
1− 1

α

)
Ω,r +

((
− ξ

α
+ βV̄ + Vr + Vlin + V

)
· ∇
)
Ω,r

=G,r − (Vlin,r · ∇)Ω− (V,r · ∇)Ω− β(V̄,r · ∇)Ω− (Vr,r · ∇)Ω (5.106)

∂τrΩ,r − rΩ,r +

((
− ξ

α
+ βV̄ + Vlin + V

)
· ∇
)
(rΩ,r)

=rG,r − r(Vlin,r · ∇)Ω− r(V,r · ∇)Ω− r(V̄,r · ∇)Ω− r(Vr,r · ∇)Ω

+ Ω,r(Vlin + V ) · ∇r . (5.107)

Multiplying by (Ω,r)
3 and rΩ,r respectively, and using the estimates (5.76) and (5.77), we

achieve, in the respective cases:

d

dτ
∥Ω,r(·, τ)∥4 ≤ Ce(a0+2δ0)τ + C∥DVlinDΩ(·, τ)∥4 + C∥DVDΩ(·, τ)∥4

+ C∥V̄,r · ∇Ω(·, τ)∥4 + ∥DVrDΩ(·, τ)∥4 (5.108)

d

dτ
∥rΩ,r(·, τ)∥2 ≤ Ce(a0+2δ0)τ + C∥rVlin,rDΩ(·, τ)∥2 + C∥r(V,r · ∇)Ω(·, τ)∥2

+ C∥rV̄,r · ∇Ω(·, τ)∥2 + ∥r(Vr,r · ∇)Ω(·, τ)∥2 + ∥VlinDΩ∥2 + ∥V DΩ∥2 .
(5.109)

Note next that

∥DVlinDΩ(·, τ)∥4 + ∥DVDΩ(·, τ)∥4 ≤ (∥DVlin(·, τ)∥∞ + ∥DV (·, τ)∥∞)∥DΩ(·, τ)∥4
≤ Ce(2a0+δ0)τ , (5.110)
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and likewise

∥rDVlinDΩ(·, τ)∥2 + ∥rDV DΩ(·, τ)∥2 ≤ (∥DVlin(·, τ)∥∞ + ∥DV (·, τ)∥∞)∥rDΩ(·, τ)∥2
≤ Ce(2a0+δ0)τ , (5.111)

The terms (V̄,r · ∇)Ω and r(V̄,r · ∇)Ω can be bounded observing that they involve only the
angular derivative and that V̄,r is bounded. Since the angular derivative has already been
estimated (this is the reason for estimating it before estimating the radial derivative), we
get

∥V̄,r · ∇Ω(·, τ)∥4 ≤ C∥r−1Ωθ(·, τ)∥4 ≤ Ce(a0+2δ0)τ . (5.112)

∥rV̄,r · ∇Ω(·, τ)∥2 ≤ C∥Ωθ(·, τ)∥2 ≤ Ce(a0+2δ0)τ . (5.113)

As for DVrDΩ and rDVrDΩ we observe that ∥DVr∥∞ ≤ eτ and thus we easily get

∥DVrDΩ(·, τ)∥4 ≤ Ceτ∥DΩ(·, τ)∥4 ≤ Ce(a0+δ0+1)τ (5.114)

∥rDVrDΩ(·, τ)∥2 ≤ Ceτ∥rDΩ(·, τ)∥2 ≤ Ce(a0+δ0+1)τ (5.115)

We finally need to estimate ∥VlinDΩ∥2 and ∥V DΩ∥2, but we observe that this has already
been done in the previous section, since they correspond to the terms F1 and F4 in (5.51),
cf. (5.53) and (5.58). Summarizing, we conclude

d

dτ
∥Ω,r(·, τ)∥2 ≤ Ce(a0+δ0+1/2)τ (5.116)

d

dτ
∥rΩ,r(·, τ)∥2 ≤ Ce(a0+δ0+1/2)τ , (5.117)

which we then integrate between 0 and τ̄ to achieve the desired conclusion.





APPENDIX A

A more detailed spectral analysis

A.1. From Remark 4.0.3(i) to Remark 3.0.2(c)

Let us assume the validity of 4.0.3(i) and prove Remark 3.0.2(c). Let m0 ≥ 2 be the
integer such that

spec (Lst, Um0) ∩ {Re z > 0} ≠ ∅ , (A.1)

spec (Lst, Um) ∩ {Re z > 0} = ∅ for any m > m0 . (A.2)

We show that Remark 3.0.2(c) holds with m = m0.
For any z ∈ specm0

(Lst) ∩ {Re z > 0} we denote by Vz := Pz(L
2
m0

) the image of the
Riesz projector

Pz =
1

2πi

∫
γ

(w − Lst)
−1dw ,

where γ parameterizes the boundary of a ball containing z and no other eigenvalues of Lst.
It is enough to show that Pz(Ukm0) = {0} for any k ∈ Z \ {−1, 1}, z ∈ specm0

(Lst) ∩
{Re z > 0} since it gives

Vz = Pz(Um0 ∪ U−m0) ⊂ Um0 ∪ U−m0 ,

where the second inclusion follows from the fact that Um is always an invariant space of
Lst.

If k > 1, from (A.1) we know that z /∈ spec (Lst, Ukm0), hence Pz(Ukm0) is trivial. If

k < −1, we reduce to the previous situation by observing that Pz(Ukm0) = Pz̄(U−km0).

A.2. Proof of Remark 4.0.3(i)

In order to show this point, given Lemma 4.8.1, we just need to prove the following
statement.

Lemma A.2.1. For every fixed Ξ ∈ C there is M0 > 0 such that Um is empty for every
m ≥M0.

Indeed, given the conclusion above we infer that Um is empty for every m ≥ ma and it
thus suffices to select m0 as the largest integer strictly smaller than ma.

Before coming to the proof of Lemma A.2.1 we state an auxiliary fact which will be
used in the argument and which can be readily inferred from the computations in Step 1
of the proof of Lemma 4.7.1.
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Lemma A.2.2. For every 0 < σ < τ < 1 there is a constant C (depending only upon σ
and τ) such that Bz := Km0 ◦ 1

Ξ−z is a bounded operator from Cσ to Cτ for every z with
Im z > 0 and

∥Bz∥L(Cσ ,Cτ ) ≤ C .

Proof of Lemma A.2.1. The proof will be by contradiction and thus, assuming that
the statement is false, we can select:

(i) a sequence {mj} ⊂ [1,∞[ with mj → ∞;
(ii) a sequence {zj} ⊂ C with Im zj > 0;
(iii) and a sequence {ψj} ⊂ L2(R) solving the equation

− d2ψj
dt2

+m2
jψj +

A

Ξ− zj
ψj = 0 . (A.3)

Step 1. We first prove that {zj} is bounded and every cluster point must be an element
of [0,Ξ(−∞)]. Otherwise for a subsequence, not relabeled, we get the estimate

sup

∥∥∥∥ A

Ξ− zj

∥∥∥∥
L∞

=: C0 <∞ .

By scalar multiplying (A.3) by ψj and taking the real part of the resulting equation we
then conclude ∫

(|ψ′
j|2 +m2

j |ψj|2) ≤ C0

∫
|ψj|2 ,

which clearly it is not feasible because C0 < m2
j for a sufficiently large j (and ψj is non-

trivial).
Up to subsequences we can thus assume that zj converges to some z0 ∈ [0,Ξ(−∞)].

Step 2. We next analyze the cases z0 = 0 and z0 = Ξ(−∞). The argument is similar
to that used in Section 4.5 in case (C). Let us argue first for z0 = 0. We observe that
Ξ−1|A| belongs to L1(] −∞, N ]) for any fixed N and that, likewise, |Ξ − zj|−1|A| have a
uniform L1 bound on any ]−∞, N ]. We can then use the Lemma 4.4.2 to normalize ψj so
that it is asymptotic to emjt and also to write

ψj(t) = emj(t)(1 + zj(t))

with

|zj(t)| ≤ exp

(
1

mj

∫ N

−∞

|A|
|Ξ− zj|

)
− 1 for all t ≤ N .

In particular, we have |zj(t)| ≤ C(N)
mj

on ] − ∞, N ]. We next scalar multiply (A.3) by ψj
and take the imaginary part to conclude

−
(∫ a

−∞
+

∫ ∞

b

)
A

|Ξ− zj|2
|ψj|2 ≤

∫ b

a

A

|Ξ− zj|2
|ψj|2 .
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In particular, since A
|Ξ−zj |2 is bounded from above by a constant C independent of j on [a, b]

and − A
|Ξ−zj |2 is bounded from below by a constant c > 0 independent of j on [b+ 1, b+ 2],

we conclude ∫ b+2

b+1

|ψj|2 ≤
C

c

∫ b

a

|ψj|2 .

We next choose N larger than b+ 2 and use the estimate |zj(t)| ≤ C(N)
mj

to argue that, for

j large enough, we have 1
2
emjt ≤ |ψj(t)| ≤ 2emjt on ]−∞, N ]. In particular, we infer∫ b+2

b+1

e2mjt ≤ C

∫ b

a

e2mjt

provided the constant C is chosen large enough (but independent of j) and j is large
enough. The latter inequality is certainly impossible for mj large enough, leading to a
contradiction.

The argument to exclude z0 = Ξ(−∞) is entirely analogous, this time normalizing for
t→ ∞ and reaching an inequality of type∫ a−1

a−2

e−2mjt ≤ C

∫ b

a

e−2mjt

for a constant C independent of j and any j large enough.

Step 3. We next examine the last case, that is z0 = Ξ(c). This time we fix a σ ∈ ]0, 1[
and normalize ψj so that ∥ψj∥Cσ = 1. We observe that

ψj = −Kmj

(
A

Ξ− zj
ψj

)
,

and also recall that Kmj
(φ) = 1

2mj
e−mj |·| ∗ φ. We set m0 = ma write further

ψj = −Kmj
◦
(
− d2

dt2
+m2

0

)(
Km0

(
A

Ξ− zj

)
ψj

)
.

Recalling Lemma A.2.2, we can fix a τ ∈]σ, 1[ to achieve∥∥∥∥(Km0

(
A

Ξ− zj

)
ψj

)∥∥∥∥
Cτ

≤ C

for some constant C independent of j.
We will show in the final step that

(Cl) ∥Kmj
◦ (− d2

dt2
+m2

0)∥L(Cτ ,Cτ ) ≤ C for some constant C independent of k.

In particular, we achieve

∥ψj∥Cτ ≤ C . (A.4)

We now wish to show that indeed ∥ψj∥Cσ ≤ 1
2
for j large enough, which obviously would

be a contradiction. In order to achieve the latter estimate we use a Littlewood-Paley
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decomposition. We fix a cut-off function χ which is supported in ]1
2
, 2[, define χℓ(t) :=

χ(2−ℓt) for ℓ ∈ N and assume that χ has been chosen so that∑
ℓ∈N

χℓ ≡ 1 on [1,∞[.

We then define

χ−1 := 1−
∑
ℓ∈N

χℓ

and introduce the Littlewood-Paley operator ∆ℓ as ∆ℓ(φ) = F−1(χℓF (φ)), where F is
the Fourier transform. We finally recall that (see [15, Section 1.4.2]), if we define

∥φ∥Xσ :=
∑
ℓ≥−1

2σℓ∥∆ℓφ∥L∞ ,

then

C(σ)−1∥φ∥Xσ ≤ ∥φ∥Cσ ≤ C(σ)∥φ∥Xσ .

We are now ready to perform our final estimate. We fix a large N , which will be chosen
later, and for ℓ ≥ N we write∑

ℓ≥N

2σℓ∥∆ℓψj∥∞ ≤ 2−N(τ−σ)
∑
ℓ≥N

2τℓ∥∆ℓψj∥∞ ≤ 2−N(τ−σ)C(τ)∥ψj∥Cτ ≤ C2−N(τ−σ) ,

where the constant C is independent of both N and j. Next, for any ℓ we observe that

∆ℓψj = Kmj
◦
(
− d2

dt2
+m2

0

)(
∆ℓ

(
Km0

(
A

Ξ− z
ψj

)))
︸ ︷︷ ︸

=:Γℓ,j

.

Now

∥Γℓ,j∥L∞ ≤ C2−ℓσ
∥∥∥∥Km0

(
A

Ξ− z
ψj

)∥∥∥∥
Cσ

≤ C2−ℓσ .

On the other hand, because of the frequency localization, we have

∆ℓψj = Kmj
◦
(
− d2

dt2
+m2

0

)
◦ (∆ℓ−1 +∆ℓ +∆ℓ+1)(Γℓ,j)

and the estimate∥∥∥∥Kmj
◦
(
− d2

dt2
+m2

0

)
◦∆ℓ

∥∥∥∥
L(L∞,L∞)

≤ C

m2
j

(
22ℓ +m2

0

)
.

We can therefore write the estimate

∥ψj∥Cσ ≤ C

m2
j

N∑
ℓ=−1

(2(2+2σ)ℓ +m2
0) + C2−N(τ−σ) ≤ CN

m2
j

(
2(2+2σ)N +m2

0

)
+ C2−N(τ−σ) ,
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where the constants C are independent of N and j. In particular, we fix first N large
enough to get C2−N(τ−σ) ≤ 1

4
and we then choose mj large enough so that

CN

m2
j

(
2(2+2σ)N +m2

0

)
≤ 1

4
.

These two estimates imply ∥ψj∥Cσ ≤ 1
2
, contradicting the normalization ∥ψj∥Cσ = 1.

Step 4. To complete the proof of the Lemma we need to show (Cl). We first write

Tm,ℓ := ∆ℓ ◦ Km ◦
(
− d2

dt2
+m2

0

)
.

The operator Tm,ℓ is the convolution with a kernel Km,ℓ whose Fourier symbol is given by

χℓ(ξ)
|ξ|2+m2

0

|ξ|2+m2 . Hence, for ℓ ≥ 0 we have

Km,ℓ(t) =
1

2π

∫
χ

(
ξ

2ℓ

)
|ξ|2 +m2

0

|ξ|2 +m2
eiξt dξ .

and

(−it)kKm,ℓ(t) =
1

2π

∫
dk

dξk

(
χ

(
ξ

2ℓ

)
|ξ|2 +m2

0

|ξ|2 +m2

)
eitξ dξ .

In particular, we easily conclude

∥|t|kKm,ℓ∥L∞ ≤ C(k)2ℓ(1−k) ,

for a constant C(k) independent of both m ≥ 1 and ℓ, but which depends on k. From the
latter we can estimate

∥Km,ℓ∥L1 ≤
∫
|t|≤2−ℓ

|Km,ℓ(s)| ds+
∫
|t|≥2−ℓ

|s2Km,ℓ(s)|
|s|2

ds

≤ C + C2−ℓ
∫ ∞

2−ℓ

1

s2
ds ≤ C .

For ℓ = −1 we just conclude, likewise

∥|t|kKm,−1∥L∞ ≤ C(k)

for a constant C(k) independent of m, but depending of k. Once again using the cases
k = 0 and 2 of the latter inequality we achieve

∥Km,−1∥L1 ≤ C .

We have thus bounded all ∥Km,ℓ∥L1 with a universal constant C independent of bothm ≥ 1
and ℓ ∈ N ∪ {−1}. In particular, since ∥Tm,ℓ∥L(L∞,L∞) = ∥Km,ℓ∥L1 and

Km ◦
(
− d2

dt2
+m2

0

)
=
∑
ℓ≥−1

Tm,ℓ =
∑
ℓ≥−1

Tm,ℓ ◦ (∆ℓ−1 +∆ℓ +∆ℓ+1) ,
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we can estimate∥∥∥∥Km ◦
(
− d2

dt2
+m2

0

)
(φ)

∥∥∥∥
Cσ

≤ C(σ)
∑
ℓ≥−1

2σℓ∥Tm,ℓ(φ)∥L∞ = C(σ)
∑
ℓ≥−1

2σℓ∥Tm,ℓ(∆ℓφ)∥L∞

≤ C(σ)
∑
ℓ≥−1

2σℓ∥∆ℓφ∥L∞ ≤ C(σ)∥φ∥Cσ .

This completes the proof of (Cl) and hence of the entire Lemma. □

red

A.3. Proof of Theorem 4.0.4

In [34], Vishik claims the following improved version of Theorem 4.2.4, which would
immediately imply Theorem 4.0.4.

Theorem A.3.1. There are a function Ξ ∈ C and an integer m0 ≥ 2 such that Um = ∅
for any integer m > m0 and Um0 consists of a single z. Moreover, the algebraic multiplicity
of m0z as an eigenvalue of Lm0 is 1.

Vishik’s suggested proof of Theorem A.3.1 builds upon Proposition 4.3.1 and the fol-
lowing improved versions of Proposition 4.3.3 and Proposition 4.3.5.

Proposition A.3.2. Assume −λa < −1 and let ma =
√
λa. Then there exist ε > 0

and δ > 0 with the following property. For every h ∈]0, δ[, Uma−h ∩ Bε(Ξ(a)) = {zma−h},
where (ma − h)zma−h is an eigenvalue of Lma−h with algebraic multiplicity 1.

In [34] Vishik only gives the argument that Uma−h∩Bε(Ξ(a)) contains a single element
zma−h and the corresponding eigenspace of (ma − h)−1Lma−h has dimension 1 (i.e. its
geometric multiplicity is 1, cf. Remark 4.3.4). However it is essential to have the algebraic
multiplicity equal to 1 in order to complete his suggested argument. After we pointed out
to him the gap in his paper, he suggested in [35] the proof of Proposition A.3.2 reported
below. Before coming to it, we point out that a spectral perturbation argument as in the
proof of Lemma 4.8.1 (which we outline anyway below) easily implies the following.

Proposition A.3.3. Assume −λa < −1 and let ma =
√
λa and mb := max{1,

√
λb}.

Then Um consists of a single element zm for every m ∈]mb,ma[ and moreover the algebraic
multiplicity of zm as an eigenvalue of m−1Lm is 1.

Taking the previous proposition for granted, we just need a choice of Ξ for which λa > 1
and ]mb,ma[ contains an integer, which is guaranteed by Lemma 4.3.7, and we conclude
Theorem A.3.1.

We now explain how to prove Proposition A.3.3. From Proposition 4.3.5 and Lemma
A.2.1 we know that Um ̸= ∅, for every m ∈]mb,ma[, and Um = ∅ for m ≥ ma. Moreover,
Remark 4.8.2 implies that the sum of the algebraic multiplicities of z ∈ Um, as eigenvalues
of m−1Lm, is constant for m ∈]mb,ma[. Hence, to conclude we just need to prove that the
latter is 1 for some m ∈]mb,ma[. To that aim we show that for any ε > 0 there exists δ > 0
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such that Uma−h = Uma−h ∩ Bε(Ξ(a)) for any h ∈]0, δ[. This is enough for our purposes
since, together with Proposition A.3.2, it gives Uma−h = Uma−h ∩ Bε(Ξ(a)) = {zma−h}
where zma−h is an eigenvalue of (ma − h)−1Lma−h with algebraic multiplicity 1.

Assume for contradiction the existence of a sequence (mj)j∈N in ]mb,ma[ converging to
ma such that there are zj ∈ Umj

with |zj − Ξ(a)| > ε for some ε > 0. Up to extracting
a subsequence, we may assume zj → z for some z ∈ C with |z − Ξ(a)| ≥ ε. Proposition
4.3.1 implies that the imaginary part of z is positive. Arguing as in the first step of proof
of Proposition 4.3.1 we can prove that z ∈ Uma and reach a contradiction.

A.4. Proof of Proposition A.3.2

The proof of Proposition A.3.2 can be reduced to the following weaker version using
Remark 4.8.2 and the argument outlined in the previous paragraph.

Proposition A.4.1. Assume −λa < −1 and let ma =
√
λa. Let h and ε be sufficiently

small so that Proposition 4.3.1 and Remark 4.3.4 apply, namely Uma−h ∩ Bε(Ξ(a)) =
{zma−h}, where zma−h is an eigenvalue of (ma − h)−1Lma−h with geometric multiplicity 1.
Then, if h is chosen possibly smaller, the algebraic multiplicity of zma−h is also 1.

We now come to the proof of the latter, which is the heart of the matter. First of all,
we introduce a suitable transformation of the space H (which we recall is the domain of
the operator Lm, defined in (4.1)). We introduce the Hilbert space

He :=

{
f : R → C :

∫
|f(t)|2e−2t dt <∞

}
and the isometry T : H → He given by

γ(r) 7→ e2tγ(et) .

Rather than considering the operator Lm on H, it turns out to be more convenient to
consider the operator T ◦Lm ◦T−1 on He. Since the spectra of the two operators coincide,
with a slight abuse of notation we will keep writing Lm in place of T ◦ Lm ◦ T−1, and we
will keep Um to denote the point spectrum of m−1T ◦ Lm ◦ T−1 in the upper half plane.

Simple computations show that the operator Lm is given, on He by

Lm(α) = mΞα−mAφ

where φ is the unique L2 solution of

φ′′ −m2φ = α

(note that we are claiming φ ∈ L2 rather than φ ∈ He, cf. Section 4.2).
We can now come to the main idea behind the simplicity of zma−h, which is borrowed

from [35]. A prominent role is played by the adjoint of Lm (considered as a bounded linear
operator from He into itself): for the latter we will use the notation L⋆m.

Lemma A.4.2. Assume that h and ε are small enough so that {zma−h} = Uma−h ∩
Bε(Ξ(a)) and zma−h has geometric multiplicity 1 in spec ((ma − h)−1Lma−h,He). Let αh ∈
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He \ {0} be such that (ma − h)−1Lma−h(αh) − zma−hαh = 0. If h is small enough, then
there is βh ∈ He such that (ma − h)−1L⋆ma−h(βh)− z̄ma−hβh = 0 and

⟨αh, βh⟩He =

∫
αh(t)β̄h(t) e

−2tdt ̸= 0 . (A.5)

Let us show how the latter implies Proposition A.4.1. Assume zma−h were an element
of spec ((ma−h)−1Lma−h,He)∩Bε(Ξ(a)) with geometric multiplicity 1 and algebraic mul-
tiplicity larger than 1: our goal is to show that h cannot be too small. The properties just
listed mean that the following bounded operator on He,

Lh := (ma − h)−1Lma−h − zma−h ,

has a 1-dimensional kernel, 0 is in its point spectrum, and 0 has algebraic multiplicity
strictly larger than 1. These properties imply that any element αh in the kernel of Lh (i.e.
any eigenfunction of (ma − h)−1Lma−h with eigenvalue zma−h) is in the image of Lh. Fix
one such element αh and let ηh be such that Lh(ηh) = αh. If h is small enough, we can fix
βh as in Lemma A.4.2, and observe that it is in the kernel of the adjoint operator L⋆h. We
then must have

0 ̸=
∫
αhβ̄h e

−2tdt =

∫
Lh(ηh)β̄h e

−2tdt =

∫
ηhL⋆h(βh) e

−2tdt = 0 ,

which is not possible.

Proof of Lemma A.4.2. red We begin by proving the following claim:

(Cl) For any z ∈ Um, withm > 1, such thatm−1Lm(αz)−zαz = 0, there exists βz ∈ He

such that

m−1L⋆m(βz)− z̄βz = 0 , (A.6)

and

⟨αz, βz⟩He =

∫
R

A(t)

(Ξ(t)− z)2
φz(t)

2 dt , (A.7)

where φz is the unique solution on L2(R) of φ′′
z −m2φz = αz.

To that aim we first observe that the adjoint of Lm in He is given by

L⋆m(α) = m(Ξα− e2tKm(Aαe
−2t)) , (A.8)

where Km is the inverse of − d2

dt2
+m2 as a closed unbounded self-adjoint operator in L2(R).

Notice that L⋆ is well defined because e−tα ∈ L2(R) and A ∼ e2t as t→ −∞.
We now observe that, if z ∈ Um, m−1Lm(αz) = zαz, and βz is defined by

βz := e2t
φ̄z

Ξ− z̄
= e2t

Km(ᾱz)

Ξ− z̄
,

then

m−1L⋆m(βz) = z̄βz . (A.9)
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Notice that βz ∈ W 2,2
loc ∩He decays exponentially fast at ∞ thanks to the bound |φz(t)| ≤

Ce−m|t|, for every t ∈ R, proven in Lemma 4.4.3. Let us now verify (A.9): We first observe
that

αz =
Aφz
Ξ− z

, (A.10)

hence

m−1L⋆m(βz) = Ξβz − e2tKm

(
Aφ̄z
Ξ− z̄

)
= Ξβz − e2tKm(ᾱz)

= Ξβz − (Ξ− z̄)βz = z̄βz .

It is now immediate to conclude (A.7).

red In order to simplify our notation we use Lh, zh and mh in place of Lma−h, za−h and
ma − h. Given αh ∈ He as in the statement of the Lemma we denote by φh the unique L2

solution of φ′′
h −m2

hφh = αh. We now can apply (Cl) above to find βh ∈ He which solves
m−1
h L⋆h(βh) = z̄hβh and such that

⟨αh, βh⟩He =

∫
R

A(t)

(Ξ(t)− zh)2
φh(t)

2 dt . (A.11)

To conclude the proof it suffices to show that, after appropriately normalizing the functions
αh (i.e. after multiplying them by an appropriate constant factor, which might depend on
h) we have

lim
h→0

⟨αh, βh⟩He = c ̸= 0 . (A.12)

Note that for the latter conclusion, which we will prove in the next two steps, we will use
the assumption that αh ̸= 0.

Step 1: We show that, up to multiplication of αh by a suitable constant factor (which
might vary with h), φh → φ in W 1,2 and in C1,α, as h→ 0, where φ ∈ W 2,∞ is a nontrivial
solution to

− d2φ

dt2
+m2

aφ+
A

Ξ− Ξ(a)
φ = 0 . (A.13)

By Remark 4.5.1, the nontriviality of φ implies φ(a) ̸= 0, and hence, up to multiplication
by another constant factor, we will assume, without loss of generality, that φ(a) = 1.

Recall that φh solves the equation

− d2φh
dt2

+m2
hφh +

A

Ξ− zh
φh = 0 . (A.14)

For the moment, let us normalize the functions so that∫
(|φ′

h|2 +m2
h|φh|2) = 1 , (A.15)

as in (4.48). We then can argue as for the bounds (4.49) and (4.50) to derive the existence
of constants C and β > 2 (independent of h) such that

|φh(t)| ≤ Ce−β|t| ∀t . (A.16)
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Recalling Section 4.7, we know that zh = Ξ(a) + c(a)h + o(h), where c(a) is a complex
number with positive imaginary part, which we denote by d(a). Using the monotonicity
of Ξ we can write zh = Ξ(t(h)) + i(d(a)h + o(h)) for some t(h) which satisfies the bound
|t(h)− a| ≤ Ch for some positive constant C. In particular, using the mean value theorem
and the fact that the derivative of Ξ does not vanish on [a− 1, a+ 1], we get

|Ξ(t)− zh|2 ≥ C−1(|t− t(h)|2 + |h|2) ∀t ∈ [a− 1, 1 + 1] ,

where C is some positive constant. Next, using that |t(h) − a| ≤ Ch, we conclude the
estimate

|Ξ(t)− zh| ≥ C−1|t− a| ∀t ∈ [a− 1, a+ 1] ,

with a constant C independent of h. Since a is a zero of A, we finally conclude that the
functions

A(t)

Ξ(t)− zh

are in fact uniformly bounded, independently of h. Using the latter estimate and (A.16)
we thus infer that

|φ′′
h(t)| ≤ Ce−β|t| . (A.17)

In particular, upon extraction of a subsequence, we can assume that the φh converge to a
function φ strongly inW 1,2, weakly inW 2,∞, and hence strongly in C1,α for every α < 1. In
particular, because of the normalization (A.15), φ is a nontrivial W 2,∞ function, satisfying
the same exponential decay as in (A.16) and (A.17). Moreover, given the bound on the

functions A(t)
Ξ(t)−zh

, φ is in fact a solution of

− d2φ

dt2
+m2

aφ+
A

Ξ− Ξ(a)
φ = 0 . (A.18)

Recalling Remark 4.5.1, φ(a) ̸= 0 and φ is unique up to a constant factor. In particular,
we must have

lim inf
h↓0

|φh(a)| > 0, (A.19)

otherwise for a suitable subsequence we would have convergence to a nontrivial solution φ
for which φ(a) = 0. Because of (A.19) we can use the different normalization φh(a) = 1,
which in turn implies that φh converges (without extracting subsequences) to the unique
W 2,2 solution φ of (A.18) which satisfies φ(a) = 1.

Step 2: We prove that

lim
h→0

Im

∫
R

A(t)

(Ξ(t)− zh)2
φh(t)

2 dt =
2A′(a)φ(a)2

d(a)Ξ′(a)2

∫
R

s2

(1 + s2)2
ds . (A.20)
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Recalling that zh = Ξ(t(h)) + i(d(a)h+ o(h)), we write

Im

[
A

(Ξ− zh)2
φ2
h

]
= Im

[
A((Ξ− Ξ(t(h))) + i(d(a)h+ o(h)))2

((Ξ− Ξ(t(h)))2 + (d(a)h+ o(h))2)2
(Reφh + iImφh)

2

]
=

2(d(a)h+ o(h))A(Ξ− Ξ(t(h)))

((Ξ− Ξ(t(h)))2 + (d(a)h+ o(h))2)2
(Reφ2

h − Imφ2
h)

+
2A

(Ξ− Ξ(t(h)))2 + (d(a)h+ o(h))2
ReφhImφh

− 4(d(a)h+ o(h))2A

((Ξ− Ξ(t(h)))2 + (d(a)h+ o(h))2)2
ReφhImφh

=: Ih + IIh + IIIh .

To ease notation we set

fh := Reφ2
h − Imφ2

h , gh := Reφh Imφh , (A.21)

and observe that fh → φ2, gh → 0 as h → 0, where the convergence is, in both cases, in
the strong topologies of L2 and of Cα, for every α < 1. We will show below that:

lim
h→0

∫
Ih =

2A′(a)φ(a)2

d(a)Ξ′(a)2

∫
R

s2

(1 + s2)2
ds =: L(a) , (A.22)

lim
h→0

∫
IIh = 0 , (A.23)

lim
h→0

∫
IIIh = 0 . (A.24)

Considering that none of the numbers Ξ′(a), A′(a), φ(a), and d(a) vanish, L(a) ̸= 0. This
implies (A.12) and concludes the proof. We next study separately the three limits above.

Proof of (A.22). There exists δ > 0 and r > 0 such that for any h sufficiently small
one has |Ξ(t)− Ξ(t(h))| > δ for all t ∈ R \ (a− r/2, a+ r/2). This implies that

lim
h→0

∫
R\(t(h)−r,t(h)+r)

Ih = 0 , (A.25)

hence, we are left with

lim
h→0

2hd(a)

∫ t(h)+r

t(h)−r

A(t)(Ξ(t)− Ξ(t(h))

((Ξ(t)− Ξ(t(h)))2 + (d(a)h+ o(h))2)2
fh(t) dt . (A.26)

We change variables according to t = t(h) + sh:

2

∫ r
h

− r
h

s

(
A(t(h) + sh)

h

Ξ(t(h) + sh)− Ξ(t(h))

sh

)
×(

s2
(
Ξ(t(h) + sh)− Ξ(t(h))

sh

)2

+ (d(a) + o(h)/h)2

)−2

fh(t(h) + sh) ds =: C(h) .
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Notice that, for any s ∈ R, we have

lim
h→0

Ξ(t(h) + sh)− Ξ(t(h))

sh
= Ξ′(a) . (A.27)

Moreover the monotonicity of Ξ implies that

1/C ≤
∣∣∣∣Ξ(t(h) + sh)− Ξ(t(h))

sh

∣∣∣∣ ≤ C for any s ∈ (−r/h, r/h) . (A.28)

Notice that

A(t(h) + sh)

h
=
A(t(h) + sh)− A(t(h))

h
+
A(t(h))− A(a)

h
, (A.29)

hence, up to extracting a subsequence hi → 0, we have

A(t(hi) + shi)

hi
→ A′(a)s+ x (A.30)

for some x ∈ R (recall that |t(h) − a| ≤ Ch and note that x might depend on the subse-
quence).

Collecting all the estimates above, and using the dominated convergence theorem we
deduce that, along the subsequence hi,

lim
i→∞

C(hi) = 2

∫
R

s(A′(a)s+ x)Ξ′(a)

(s2Ξ′(a)2 + d(a)2)2
φ(a)2 ds =

2A′(a)φ(a)2

d(a)Ξ′(a)2

∫
R

s2

(1 + s2)2
ds . (A.31)

Observe that the limit does not depend on x and hence does not depend on the chosen
subsequence.

Proof of (A.24). Arguing as we did for Ih and using that gh → 0 in C1/2, as h → 0,
we easily deduce that

lim
h→0

∫
IIIh = 0 . (A.32)

Proof of (A.23). We need to show that

lim
h→0

∫
R

A(t)

(Ξ(t)− Ξ(t(h))2 + (d(a)h+ o(h))2
gh(t) dt = 0 . (A.33)

Observe that Gh := gh/|φh|2 = |φh|−2ReφhImφh, and in particular, |Gh| ≤ 1
2
. Moreover

there exists r > 0 such that Gh → 0 in (a − r, a + r) in the Cα topology for every α < 1
(here, we are using that |φh(a)|2 → |φ(a)|2 ̸= 0 as h→ 0). We write∫

R

A(t)|φh(t)|2

(Ξ(t)− Ξ(t(h)))2 + (d(a)h+ o(h))2
Gh(t) dt (A.34)

=

∫
R

A(t)|φh(t)|2

(Ξ(t)− Ξ(t(h))2 + (d(a)h+ o(h))2
(Gh(t)−Gh(t(h)))dt , (A.35)

where we took advantage of the identity∫
R

A(t)|φh(t)|2

(Ξ(t)− Ξ(t(h))2 + (d(a)h+ o(h))2
dt = 0 , (A.36)
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proven in (4.39).
Arguing as we did for Ih we can reduce the problem to show

lim
h→0

∫ t(h)+r

t(h)−r

A(t)|φh(t)|2

(Ξ(t)− Ξ(t(h)))2 + (d(a)h+ o(h))2
(Gh(t)−Gh(t(h))) dt = 0 . (A.37)

We split the integral to the sum of

J1(h) :=

∫ t(h)+r

t(h)−r

(A(t)− A(t(h))|φh(t)|2

(Ξ(t)− Ξ(t(h)))2 + (d(a)h+ o(h))2
(Gh(t)−Gh(t(h))) dt

J2(h) := A(t(h))

∫ t(h)+r

t(h)−r

|φh(t)|2

(Ξ(t)− Ξ(t(h)))2 + (d(a)h+ o(h))2
(Gh(t)−Gh(t(h))) dt .

Next observe that, in the interval that interests us, the following inequalities hold provided
r and h are sufficiently small:

|A(t)− A(t(h))| ≤ C|t− t(h)|
|A(t(h)| = |A(t(h))− A(a)| ≤ C|t(h)− a| ≤ Ch

|Gh(t)−Gh(t(h))| ≤ ∥Gh∥C1/2(a−r,a+r)|t− t(h)|1/2

|Ξ(t)− Ξ(t(h))| ≥ C−1|t− t(h)|
(d(a)h+ o(h))2 ≥ C−1h2 .

Since ∥φh∥L∞ ≤ C, we can change variable in the integrals to σ = t − t(h) and estimate
them as follows:

|J1(h)| ≤ C∥Gh∥C1/2(a−r,a+r)

∫ r/2

−r/2
σ−1/2 dσ ≤ C∥Gh∥C1/2r1/2 ,

|J2(h)| ≤ Ch

∫ ∞

−∞

σ1/2

σ2 + C−1h2
dσ = Ch1/2

∫
τ 1/2

τ 2 + C−1
dτ ≤ Ch1/2 .

Clearly J2(h) → 0, while J1(h) → 0 because ∥Gh∥C1/2(a−r,a+r) → 0. □





APPENDIX B

Proofs of technical statements

B.1. Proof of Remark 1.0.2

More generally, we will show here that, for any q0 ∈ [1, 2[ and q1 ∈]2,∞], it is true that

∥K2 ∗ ω∥L∞(R2;R2) ≤ C(q0, q1)(∥ω∥Lq0 (R2) + ∥ω∥Lq1 (R2))

for all ω ∈ Lq0∩Lq1 . Indeed, passing to polar coordinates, one sees thatK2|B1 ∈ Lq
∗
1 (B1;R2)

andK2|R2\B1
∈ Lq

∗
0 (R2\B1;R2), where q∗1, q

∗
2 are given by 1

qi
+ 1
q∗i

= 1 for i ∈ {1, 2}. Hölder’s
inequality implies that for any x ∈ R2,

|(K2 ∗ ω)(x)| = |((K21B1) ∗ ω)(x) + ((K2(1− 1B1)) ∗ ω)(x)|
≤ ∥K2∥Lq∗1 (B1)

∥ω∥Lq1 (R2) + ∥K2∥Lq∗0 (R2\B1)
∥ω∥Lq0 (R2)

≤ C(q0, q1)(∥ω∥Lq0 (R2) + ∥ω∥Lq1 (R2)).

Since x is arbitrary, this achieves a proof of the claim above.

B.2. Proof of Theorem 1.0.3

Existence. The existence argument is a classical density argument. Take any sequence

(ω
(n)
0 )n∈N of functions in L1 ∩ C∞

c that converges strongly in L1 to ω0. Analogously, pick
a sequence of smooth functions (fn)n∈N in C∞

c (R2 × [0, T ]) converging in L1(R2 × [0, T ])
to f and satisfying the bound ∥fn(·, t)∥L∞ ≤ ∥f(·, t)∥L∞ for a.e. t. Then, let ω(n) denote
the solution of the corresponding Cauchy problem of the Euler equations in vorticity form.
The existence of such solutions is a classical well-known fact, see for instance [27, Theorem
A]. Following Remark 1.0.4, these solutions satisfy all the à priori estimates needed in
Proposition 2.2.3. Therefore, following the proof of Proposition 2.2.3, one obtains, in
the limit n → ∞, a solution ω ∈ L∞([0, T ];L1 ∩ L∞) of the given Cauchy problem.
Furthermore, since the à priori estimates of Remark 1.0.4 are uniform in n, one gets
K2 ∗ ω ∈ L∞([0, T ];L2).

Remark B.2.1. The proof of Proposition 2.2.3 has a fixed force f but a straightforward
adaptation of the arguments handles the case above, namely with a sequence of forces
(fn)n∈N that converges in L1(R2 × [0, T ]) to a given f . More precisely the only difference
occurs in the term I4(k) of (B.6), which anyway enjoys convergence to the same limit.

Uniqueness. The uniqueness proof needs two important facts. The first is a well-
known ODE inequality, whose short proof is given, for the reader’s convenience, at the end
of the section.
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Lemma B.2.2. Let T > 0 and let E : [0, T ] → [0,∞[ be a differentiable function
satisfying

Ė(t) ≤ pME(t)1−1/p and E(0) = 0 (B.1)

for some fixed M > 0. Then E(t) ≤ (Mt)p for all t ∈ [0, T ].

The second is the classical Calderón-Zygmund Lp estimate, where we need the sharp
p-dependence of the corresponding constant. This fact is also well known, cf. for instance
[26, Formula (8.45), page 322]).

Lemma B.2.3. For every p0 > 1 there is a constant c(p0) with the following property.
If v = K2 ∗ ω for some ω ∈ L1 ∩ Lp(R2) with p ∈ [p0,∞[, then ∥Dv∥Lp ≤ pc∥ω∥Lp.

Now, let v1 = K2 ∗ω1, v2 = K2 ∗ω2 be two solutions of (1.1) satisfying the assumptions
of Theorem 1.0.3 and note that w := v1 − v2 solves

∂tw + (v1 · ∇)w + (w · ∇)v2 = −∇(p1 − p2) (B.2)

(where p1, p2 are the pressures corresponding to v1 and v2). Clearly

E(t) :=

∫
R2

|w(x, t)|2 dx ≤ 2

∫
R2

|v1(x, t))2| dx+ 2

∫
R2

|v2(x, t)2| dx <∞

is a bounded function on [0, T ].
We scalar multiply (B.2) with w, integrate by parts and use the divergence free condi-

tions of v1, v2, and w to conclude and

Ė(t) =− 2

∫
R2

((w · ∇)v2)w dx ≤ 2

∫
R2

|w(x, t)|2|Dv2(x, t)| dx

≤2∥∇v2(·, t)∥Lp∥w(·, t)∥2/pL∞∥w(·, t)∥2−2/p

L2 .

Using Remark 1.0.2, we also have

sup
t∈[0,T ]

∥w(·, t)∥L∞ ≤ sup
t∈[0,T ]

(∥v1(·, t)∥L∞ + ∥v2(·, t)∥L∞)

≤ C sup
t∈[0,T ]

(∥ω1(·, t)∥L1 + ∥ω1(·, t)∥L∞ + ∥ω2(·, t)∥L1 + ∥ω2(·, t)∥L∞) <∞ .

Next fix any p ≥ 2. From Lemma B.2.3 and the classical Lp interpolation we conclude

∥Dv2(·, t)∥Lp ≤ pc∥ω2(·, t)∥Lp ≤ pc∥ω2∥1/pL∞([0,T ];L1)∥ω2(·, t)∥1−1/p
L∞([0,T ];L∞).

Therefore, Ė(t) ≤ pMpE(t)
1−1/p with

Mp = 2∥w∥2/pL∞([0,T ];L∞)c∥ω2∥1/pL∞([0,T ];L1)∥ω2∥1−1/p
L∞([0,T ];L∞)

≤ 2c
(

1
p
∥w∥2L∞([0,T ];L∞)∥ω2∥L∞([0,T ];L1) +

(
1− 1

p

)
∥ω2∥L∞([0,T ];L∞)

)
≤ 2c(∥w∥2L∞([0,T ];L∞)∥ω2∥L∞([0,T ];L1) + ∥ω2∥L∞([0,T ];L∞)) =:M <∞ .

We can thus apply Lemma B.2.2 to obtain that E(t) ≤ (Mpt)
p ≤ (Mt)p. In particular, for

any t ≥ 1
2M

we have E(t) ≤ 1
2p

and we can let p tend to ∞ to infer E(t) = 0. Since the same
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estimates apply to any translation Ẽ(t) := E(t + t0) of the function E, we immediately
conclude that E vanishes identically, namely that v1 = v2 on R2 × [0, T ].

Proof of Lemma B.2.2. Fix an arbitrary t0 ≤ T and note that if E(t0) = 0 there
is nothing to show. Hence assume E(t0) > 0 and set a := sup{t : E(t) = 0 and t ≤ t0}
(note that the set is nonempty because E(0) = 0). E(a) = 0 by continuity of E and
clearly E(t) > 0 for all t ∈]a, t0]. Therefore, we can divide (B.1) by E(t)1−1/p to obtain
that Ė(t)E1/p−1(t) ≤ pM for all t ∈]a, t0]. Integrating both sides gives∫ t0

a

Ė(t)E1/p−1(t) ≤ pM(t0 − a) . (B.3)

But the left hand side equals pE1/p(t0) − pE1/p(a) = pE1/p(t0), from which we infer
E1/p(t0) ≤M(t0 − a) ≤Mt0. □

B.3. Proof of Proposition 2.2.3

Recall first the following classical metrizability result of weak∗ topologies of separable
Banach spaces.

Lemma B.3.1 (Metrizability Lemma). Let X be a separable Banach space and let K ⊂
X∗ be weakly∗-compact. Then K is metrizable in the weak∗ topology inherited from X∗ and
a metric that induces this topology is given by

d(l, l̃) =
∞∑
n=1

2−nmin{1, |l(xn)− l̃(xn)|}, (B.4)

where (xn)n∈N is any sequence in X such that {xn : n ∈ N} is dense in X.

Now on to the proof of Proposition 2.2.3. We will prove convergence of the ωε,k to a ωε
for fixed ε and k → ∞ in the space C([0, T ];K), where K := {u ∈ Lq(R2) : ∥u∥Lq ≤ R}
is equipped with the weak∗ topology inherited from Lqw. (We will talk about the choice of
q later.) Here, R is the uniform bound obtained in (2.24) of Corollary 2.2.2. Note that
since every Lq space is reflexive, one can work just as well with the weak topology on K.
Let (ϕn)n∈N be a sequence of smooth functions such that {ϕn : n ∈ N} is dense in every
Lq. The metric given by (B.4) now induces the topology of K, and it does not depend on
q. Therefore, using the uniform bound (2.24), we conclude that the choice of q does not
matter. It is sufficient to prove the statement of Proposition 2.2.3 for one fixed q ∈]1, p] in
order to prove it for all q ∈]1, p].

Claim B.3.2. The ωε,k, seen as functions from [0, T ] to K, are equicontinuous (for
simplicity we define each ωε,k(·, t) on the interval [0, tk] as constantly equal to ωε,k(·, tk)).

Proof. For ω̃, ω̂ ∈ Lq(R2), let

di(ω̃, ω̂)
Def.
=

∣∣∣∣∫
R2

(ω̃ − ω̂)ϕi

∣∣∣∣ .
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Since each ωε,k solves the Euler equations in vorticity form, we can estimate

di(ωε,k(t, ·), ωε,k(s, ·)) =
∣∣∣∣∫

R2

∫ t

s

∂τωε,k(σ, x)ϕi(x) dσ dx

∣∣∣∣
=

∣∣∣∣∫
R2

∫ t

s

((K2 ∗ ωε,k) · ∇)ωε,k(x, σ + f(x, σ))ϕi(x) dσ dx

∣∣∣∣
≤ ∥∇ϕi∥L∞(R2)

∫
R2

∫ t

s

|K2 ∗ ωε,k||ωε,k| dσ dx

+ ∥ϕi∥L∞(R2)

∫
R2

∫ t

s

|f(x, σ)| dx dσ

≤ C(∥∇ϕi∥∞ + ∥ϕi∥∞)|s− t|

(B.5)

whenever t ≥ s ≥ tk. Let ε̃ > 0. We can find a N ∈ N (depending on ε̃) such that∑∞
n=N+1 2

−n ≤ ε̃
2
. If

|t− s| ≤ ε̃

2NCmaxi∈{1,...,N}(∥∇ϕi∥∞ + ∥ϕi∥∞)
,

where C is the constant from (B.5), then, by the bound in (B.5), we get

d(ωε,k(t, ·), ωε,k(s, ·)) ≤
ε̃

2
+

N∑
i=1

ε̃

2N
= ε̃. □

By the Banach-Alaoglu theorem, bounded subsets are relatively compact in the weak∗

topology. Therefore, using reflexivity, for every t ∈ [0, T ], the bounded set {ωε,k(·, t) : k ∈
N} is also relatively compact in Lqw.

Therefore, using Arzelà-Ascoli, we can conclude that there exists a subsequence of
(ωε,k)k∈N, not relabeled, that converges in C([0, T ];Lqw), for every q, to the same ωε ∈
C([0, T ];Lqw).

Claim B.3.3. The ωε is a solution of the Euler equations in vorticity formulation.

Proof. We have, for every k ∈ N and ϕ ∈ C∞
c (R2× [0, T ]) with ϕ(·, T ) = 0, (cf. (1.3))∫

R2

ωε,k(x, tk)ϕ(x, tk) dx︸ ︷︷ ︸
=:I1(k)

+

∫ T

tk

∫
R2

ωε,k(x, t)∂tϕ(x, t) dx dt︸ ︷︷ ︸
=:I2(k)

+

∫ T

tk

∫
R2

ωε,k(x, t)((K2 ∗x ωε,k)(x, t) · ∇)ϕ(x, t) dx dt︸ ︷︷ ︸
=:I3(k)

+

∫ T

tk

∫
R2

f(x, t)ϕ(x, t) dx dt︸ ︷︷ ︸
=:I4(k)

= 0 .

(B.6)

The term I4(k) converges to ∫
R2×[0,T ]

f(x, t)ϕ(x, t) dx dt .
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By the convergence of the ωε,k,

lim
k→∞

I2(k) =

∫
R2×[0,T ]

ωε(x, t)∂tϕ(x, t) dx dt.

By the definition of the initial condition of ωε,k (cf. (2.20)), ωε,k(·, tk) converges strongly
in L1(R2) to ω̃(·, 0) = ω0 = ωε(·, 0). Therefore,

lim
k→∞

I1(k) =

∫
R2

ωε(x, 0)ϕ(x, 0) dx.

It therefore only remains to prove the convergence of I3, for which we will require yet
another claim.

Claim B.3.4. For every r ∈ [2,∞[ and every t ∈ [0, 1], the set {vε,k(·, t) : k ∈ N} is
compact in Lr(BR) for every R > 0.

Proof. From (2.24), we know that ∥vε,k(·, t)∥L2(R2) ≤ C for some constant C that is
independent of t. Recall that vε,k = ∇⊥ψε,k, where ψε,k solves ∆ψε,k = ωε,k. Therefore,
using the Calderón-Zygmund inequality, one gets

∥∇vε,k(·, t)∥L2 ≤ C∥ωε,k(·, t)∥L2 .

Since the L2 norms of the ωε,k(·, t) are uniformly bounded, we can conclude that

sup
k∈∞

∥vε,k(·, t)∥L2 <∞.

Hence we conclude the compactness in Lr(BR) from Rellich’s Theorem. □

Therefore, the vε,k(·, t) converge to vε(·, t) strongly in every Lr(BR) with r ∈ [2,∞[.
Moreover, thanks to (2.24), we can apply the dominated convergence theorem by Lebesgue
to conclude that vε,k → vε as k → ∞ in the space L1([0, T ];Lr(BR)) for every r ∈ [2,∞[.

By definition,

ωε,k(vε,k · ∇)ϕ− ωε(vε · ∇)ϕ = ωε,k(vε,k − vε) · ∇ϕ+ (ωε,k − ωε)vε · ∇ϕ .

We thus rewrite

I3(k) =

∫ T

0

∫
BR

ωε,k(vε,k − vε) · ∇ϕ dx dt+
∫ T

0

∫
BR

(ωε,k − ωε)vε · ∇ϕ dx︸ ︷︷ ︸
=:Jk(t)

dt . (B.7)

Observe first that, for each fixed t,

lim
k→∞

Jk(t) = 0 ,

since ωε,k(·, t) − ωε(·, t) converges weakly to 0 in L2, while vε(·, t) · ∇ϕ(·, t) is a fixed L2

function. On the other hand

|Jk(t)| ≤ ∥∇ϕ(·, t)∥∞(∥ωε,k(·, t)∥L2 + ∥ωε(·, t)∥L2)∥vε(·, t)∥L2 .
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Therefore the second integral in (B.7) converges to 0. The first integral can be bounded
by

∥∇ϕ∥L∞∥vε,k − vε∥L1([0,T ],L2(BR))∥ωε,k∥L∞([0,T ],L2(BR)

and converges to 0 as well. □

B.4. Proof of Lemma 2.4.1

Consider ϑ ∈ L2
m ∩ S for m ≥ 2 and let v := K2 ∗ ϑ. We first claim that∫

BR

v = 0 for every R > 0. (B.8)

With (B.8) at our disposal, since ∥Dv∥L2(R2) = ∥ϑ∥L2(R2), we use the Poincaré inequality
to conclude

R−1∥v∥L2(BR) + ∥Dv∥L2(BR) ≤ C∥ϑ∥L2(R2) (B.9)

for a geometric constant C. This is then enough to infer the remaining conclusions of the
lemma.

In order to achieve (B.8) observe first that v = ∇⊥h, where h is the unique potential-
theoretic solution of ∆h = ϑ, given by h = K ∗ ϑ with K(x) = 1

2π
log |x|. Since K(Rθx) =

K(x) and ϑ(x) = ϑ(R2π/mx), it follows that h(R2π/mx) = h(x), i.e. h is m-fold symmetric.
Therefore R2π/m∇h(R2π/mx) = ∇h(x). In particular, integrating in x and using that the
rotation is a measure-preserving transformation of the disk, we conclude∫

BR

∇h = R2π/m

∫
BR

∇h ,

and thus, ∫
BR

∇h =
1

m

m−1∑
k=0

R2kπ/m

∫
BR

∇h

However, since m ≥ 2,
∑m−1

k=0 R2kπ/m = 0, showing that
∫
BR

∇h = 0.

Remark B.4.1. We next show that it is not possible to find a continuous extension of
the operator L2 ∩ S ∋ ϑ 7→ K2 ∗ ϑ ∈ S ′ to the whole L2. First of all we observe that, if
such an extension exists, it then needs to coincide with K2 ∗ ϑ when ϑ ∈ L1 ∩L2. We next
exhibit a sequence of divergence free vector fields {vk} ⊂ W 1,1 ∩W 1,2 with the property
that ωk = curl vk converge to 0 strongly in L2 but vk converge locally to a constant vector
field v0 ̸= 0. In order to do this, we first define the following functions ϕk on the positive
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real axis:

ϕk(r) :=



1 + 3
4 ln k

for r ≤ k
2

1 + 3
4 ln k

− 1
k2 ln k

(
r − k

2

)2
for k

2
≤ r ≤ k

1 + 1
2 ln k

− 1
ln k

ln r
k

for k ≤ r ≤ k2

1
2k4 ln k

(r − 2k2)2 for k2 ≤ r ≤ 2k2

0 for r ≥ 2k2 .

Observe that ϕk is C1 and its derivative is Lipschitz. Next we define the stream functions

ψk(x) = −ϕk(|x|)v⊥0 · x
and the vector field vk(x) = ∇⊥ψk(x). By construction vk is divergence free, compactly
supported, and Lipschitz. In particular, it belongs toW 1,p for every p. Moreover, vk equals
(1+ 3

4 ln k
)v0 on Bk/2 and it thus follows that, as k → ∞, vk converges locally to the constant

vector field v0. It remains to check that curl vk = ∆ψk converges to 0 strongly in L2. We
compute

∆ψk = − v⊥0 · x∆(ϕk(|x|))︸ ︷︷ ︸
=:fk

−∇(ϕk(|x|)) · v⊥0︸ ︷︷ ︸
=:gk

and we seek to bound fk and gk pointwise. For what concerns fk observe that ∆ϕk vanishes
on |x| ≤ k

2
, k ≤ |x| ≤ k2, and 2k2 ≤ |x|. On the remaining regions, using the formula for

the Laplacian in polar coordinates, we can estimate

|fk(x)| ≤ |v0||x|(|ϕ′′(|x|)|+ |x|−1|ϕ′(|x|)|) .
In particular, we conclude

|fk(|x|)| ≤
C

|x| ln k
,

for a constant C independent of k. As for gk, it vanishes for |x| ≤ k
2
and |x| ≥ k2, and

where it does not vanish we have the estimate

|gk(x)| ≤ |v0||ψ′(|x|)| ≤ C

|x| ln k
,

again for a constant C independent of k. Passing to polar coordinates, we can thus estimate

∥∆ψk∥2L2(R2) ≤
C

(ln k)2

∫ 2k2

k/2

1

r
dr =

C

(ln k)2
(
ln(2k2)− ln k

2

)
=
C ln(4k)

(ln k)2
.
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