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Abstract
We show that the quantization of energy for Willmore spheres into closed Riemannian manifolds

holds provided that the Willmore energy and the area are uniformly bounded. The analogous energy
quantization result holds for Willmore surfaces of arbitrary genus, under the additional assumptions
that the immersion maps weakly converge to a limiting (possibly branched, weak immersion) map
from the same surface, and that the conformal structures stay in a compact domain of the moduli
space.
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1 Introduction

Let m ≥ 3 and (Mm, h) be a compact Riemannian manifold. For every smooth immersion ~Φ : Σ→Mm,
the (conformal) Willmore energy is defined by

W (~Φ) =
∫

Σ

(
| ~H|2 +Kh(~Φ∗TΣ)

)
dvolg,
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where g = ~Φ∗h is the induced metric by ~Φ on Σ, Kh(~Φ∗TΣ) is the sectional curvature of the two-plan
induced by ~Φ, and ~H is the mean curvature vector, defined by

~H = 1
2

2∑
i,j=1

gi,j~Ii,j ,

where ~Ii,j is the second fundamental form. This functional, first introduced in the Euclidean space by
Poisson in 1814 ([45], see also the work of Sophie Germain [11]) in the context of non-linear elasticity,
was rediscovered by Blaschke and Thomsen [5] in the 1920’s in the framework of conformal geometry
and by Willmore [58] in 1965.

A key property of such a Lagrangian is the conformal invariance. Furthermore, it has been recently
proved in [37] that the Willmore functional is the unique (up to linear combinations with topological
terms) conformally invariant integral curvature energy for surfaces (in R3, it was already known that
(H2 −Kg)dvolg is up to scaling the only pointwise conformally invariant 2-form).

In addition to the aforementioned strong connection with conformal geometry, the Willmore func-
tional in curved ambient spaces has remarkable links with other topics in mathematics and physics. For
instance, the Willmore energy is the main term of the Hawking mass [13] in the framework of general
relativity (see for instance [23, 10, 40]), moreover it corresponds to the main term of the Nambu-Gotō
action in string theory [46] and the renormalised area functional in the AdS/CFT correspondence [1, 2].

From the point of view of calculus of variations, as well as motivated by the aforementioned connec-
tions to physics, it is natural to investigate the existence and the properties of the Willmore immersions
that are by definition the critical points of the Willmore energy. The standard first variation formulae
show that critical points of W satisfy the Euler-Lagrange equation

∆⊥g ~H − 2| ~H|2 ~H + A ( ~H) + R⊥1 ( ~H)− 2 K̃h
~H + 2 R2(d~Φ) + (DR)(d~Φ) = 0 , (1.1)

where A is the Simons operator, and the other terms are curvature functionals defined by

A (~w) = −1
2

2∑
i,j=1

(
〈~ei,∇~ej ~w〉+ 〈~ej ,∇~ei ~w〉

)
~I(~ei, ~ej)

R⊥1 (~w) =
( 2∑
i=1

R(~w,~ei)~ei

)⊥
K̃h = Kh(~Φ∗TΣ)

R2(d~Φ) =
2∑
i=1

(
〈R(~I(~ei, ~e1), ~e2)~e2, ~e1〉+ 〈R(~e1,~I(~ei, ~e2))~e2, ~e1〉

)
(DR)(d~Φ) =

m∑
i=1
〈(∇~vjR)(~e1, ~e2)~e2, ~e1〉~vj ,

where (~e1, ~e2) is a orthonormal moving frame of ~Φ∗(TΣ), (~v1, · · · , ~vm) is a local orthonormal frame of
TMm, and R is the Riemann curvature tensor of the ambient space (Mm, h).

The literature about Willmore immersions in Riemannian manifolds (other than Rn or, equivalently
by conformal invariance, Sn) is relatively recent and in expansion. The first existence results for Willmore
spheres have been obtained in perturbative settings by the second author [34, 35]. Under the area-
constraint condition, the existence and the geometric properties of Willmore-type spheres have been
investigated by Lamm-Metzger-Schulze [23], Lamm-Metzger [21, 22], Laurain and the second author [24]
and Eichmair-Körber [10]. Area-constrained Willmore tori of small area have been recently constructed
by Ikoma, Malchiodi and the second author [16, 17]. All the aforementioned results are perturbative
in nature, i.e. either the surfaces have sufficiently small area, or the ambient Riemannian metric is
sufficiently close to either the Euclidean or the spherical metrics.

The global problem to study the existence of smooth immersed spheres minimising quadratic cur-
vature functionals in Riemannian manifolds was studied by the second author in collaboration with
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Kuwert and Schygulla [20] adapting Simon’s ambient approach [53], and by the second author with Riv-
ière [38, 39] via a parametric approach, proving the existence of area-constrained Willmore spheres in
homotopy classes as well as the existence of Willmore spheres under various assumptions and constraints.
Also, Chen-Li [7] proved the existence of stratified weak branched immersions of arbitrary genus min-
imising quadratic curvature functionals under various constraints (for weak immersions, refer to [41, 57]
and to [50, 27] for works more in relationship with Willmore surfaces).

The main goal of this article is to generalise the quantization result of Bernard-Rivière [4] to the
case for Willmore immersions in Riemannian manifolds. This result should be seen as the first step
to generalise Rivière’s min-max theory for Willmore spheres [51] to immersions with values into closed
Riemannian manifolds. This extension is natural since, by conformal invariance of the Willmore energy,
the quantization result in Euclidean spaces is equivalent to the energy quantization in the sphere Sn (for
n ≥ 3) equipped with its standard round metric.

Theorem A. Let (Mm, h) be a smooth compact Riemannian manifold of dimension m ≥ 3, and let
{~Φk}k∈N ⊂ Imm(S2,Mm) be a sequence of Willmore immersions. Assume that

lim sup
k→∞

W (~Φk) <∞

lim sup
k→∞

Area(~Φk) <∞.
(1.2)

Then, up to a subsequence, the following energy identity holds

lim
k→∞

W(Mm,h)(~Φk) = W(Mm,h)(~Φ∞) +
u∑
j=1

W(Mm,h)(~Ψj) +
p∑
s=1

WRm(~ηs) +
q∑
t=1

(
WRm(~ζt)− 4πθ0,t

)
,

(1.3)

where:

(1) The map ~Φ∞ is a smooth Willmore immersion of S2 into (Mm, h), possibly branched at finitely
many points a1, · · · , aN ∈ S2.

(2) For any j = 1, . . . , u ∈ N, the maps ~Ψj are smooth, possibly branched, Willmore immersions of S2

into (Mm, h).

(3) For any s = 1, . . . , p ∈ N, t = 1, . . . , q ∈ N, the maps ~ηs : S2 → Rm and ~ζt : S2 → Rm are smooth,
possibly branched, Willmore immersions in Rm and θ0,t = θ0(~ζt, xt) ∈ N is the multiplicity of ~ζt at
some point xt ∈ Rm.

(4) The map ~Φ∞ : S2 →Mm is obtained as follows: there exist a sequence of diffeomorphisms {fk}k∈N
of S2 such that ~Φk ◦ fk is conformal and

~Φk ◦ fk −→
k→∞

~Φ∞ in Clloc(S2 \ {a1, · · · , aN}), ∀l ∈ N.

Furthermore, it holds

lim
k→∞

W(Mm,h)(~Φk) = W(Mm,h)(~Φ∞) ⇐⇒ ~Φk ◦ fk −→
k→∞

~Φ∞ in Cl(Σ), ∀l ∈ N.

Moreover, if limk→∞Area(~Φk) = 0, then the first two terms in the right hand side of (1.3) are not
present, i.e. using the same notation as above for ~ηs, ~ζt and θ0,t, it holds

lim
k→∞

W(Mm,h)(~Φk) =
p∑
s=1

WRm(~ηs) +
q∑
t=1

(
WRm(~ζt)− 4πθ0,t

)
.

Remarks 1.2. Let us denote ~ξk = ~Φk ◦ fk, where fk is given by (4) in Theorem A.
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• The Riemannian Willmore bubbles ~Ψj : S2 →Mm are obtained as follows: for any j ∈ {1, . . . , u},
there exist a sequence of positive Möbius transformations ψjk of S2 concentrating at one of {a1, · · · , aN}
such that:

~ξk ◦ ψjk −→
k→∞

~Ψj in Clloc(S2 \
{
aj1, · · · , a

j
Nj

}
), ∀l ∈ N,

where
{
aj1, · · · , a

j
Nj

}
is a finite set of points in S2.

• The Euclidean Willmore bubbles ~ηs, ~ζt : S2 → Rm are obtained by the following blow up procedure:
for any s ∈ {1, . . . , p} (resp. for any t ∈ {1, . . . , q}), there exists a point xs ∈ M (resp. xt ∈ M),
there exist a sequence of positive Möbius transformations ψsk (resp. ψtk) of S2 concentrating at one
of {a1, · · · , aN}, a sequence of rescalings λsk → +∞ (resp. λtk → +∞) and inversions Ξtk of Rm
such that:

λsk · Exp−1
xs ◦ ~ξk ◦ ψ

s
k −→
k→∞

~ηs in Clloc(S2 \
{
as1, · · · , asNs

}
), ∀l ∈ N,

and, respectively,

Ξtk ◦ λtk · Exp−1
xt ◦ ~ξk ◦ ψ

t
k −→
k→∞

~ζt in Clloc(S2 \
{
at1, · · · , atNt

}
), ∀l ∈ N,

where
{
as1, · · · , asNs

}
,
{
at1, · · · , atNt

}
⊂ S2 are finite sets of points.

Arguing along the lines of the proof of Theorem A, one can prove the energy quantization for surfaces
of arbitrary genus, under the assumption of W2,2 weak convergence to a limit map and a bound on the
conformal structures; the reader is referred to Theorem 6.1 for the precise statement.

Remarks 1.3. (1) Since the Gauss curvature is quantized as well (see (6.4), and refer to [4, Lemma
V.1]), the quantization of energy stated in Theorem A and Theorem 6.1 also holds for a general
quadratic curvature functional of the form

Fλ1,λ2(~Φ) = λ1

∫
Σ
| ~H|2 dvolg + λ2

∫
Σ
|~h0|2WP dvolg ,

for some λ1, λ2 ∈ R, where ~h0 is the Weingarten tensor (see for example the form introduced by
Calabi in [6]) and | · |WP the Weil-Petersson metric. Explicitly, we have in a conformal local chart
~h0 = 2π~n(∂2

z
~Φ)dz2 = 2e2λ ∂z

(
e−2λ∂z~Φ

)
dz2, and for two 2-forms α = ϕ(z)dz2 and β = ψ(z)dz2,

we have

〈α, β〉WP = e−4λϕ(z)ψ(z) = g−2 ⊗ α⊗ β.

Indeed, the quantity ∫
Σ
Kgkdvolgk

is equal to 2πχ(Σ) in the limit by Gauss-Bonnet Theorem and the smooth convergence of the
conformal structures.

(2) In [4] the boundedness of the area is not explicitly assumed because the authors work in Rn; but
making a stereographic projection and using the conformal invariance of the Willmore energy, their
result is equivalent to the quantization of energy for Sn-valued maps, where Sn is equipped with its
standard round metric. Indeed, for all immersion ~Φ : Σ → Sn, the Willmore energy in the sphere
is defined by

WSn(~Φ) =
∫

Σ

(
1 + | ~H|2

)
dvolg,

which shows in particular that a uniform bound on the Willmore energy implies a uniform bound
on the area.

(3) Consider the following assumption.
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Assumption 1.4. The sectional curvature Kh of the ambient manifold (M,h) is bounded below
by κ0 > 0, i.e. there exists κ0 > 0 such that Kh(P ) ≥ κ0 for any 2-dimensional non-isotropic
tangent plane P ∈ G2(TM), where

Kh(P ) = 〈R(~v, ~w)~w,~v〉
|~v|2|~w|2 − 〈~v, ~w〉2

,

where P = ~v ∧ ~w.

The assumption 1.4 implies that for any immersion ~Φ : Σ→ (Mm, h), it holds

Area(~Φ) ≤ 1
κ0

∫
Σ
Kh(~Φ∗TΣ) dvolg ≤

1
κ0

∫
Σ

(
| ~H|2 +Kh(~Φ∗TΣ)

)
dvolg ≤

1
κ0
W (~Φ),

which implies in particular that the bound on the area follows once a Willmore energy bound is in
place. In particular, the theorem will hold for any small enough (in the C2 topology) perturbation
of the round metric on Sn without the assumption on the uniform boundedness of the area.

(4) Given a closed manifold Mm, for a generic Riemannian metric h (see [42]), one can control the
area of an immersion ~Φ : Σ→ (Mm, h) by its L2-curvature energy ([3]; see also [36])

F1,1(~Φ) =
∫

Σ
|~I|2 dvolg.

Therefore, the area bound in the assumption (1.2) can be dropped for a generic metric on a
closed ambient manifold, when considering the quantization of energy for a functional Fλ1,λ2 , with
λ1, λ2 > 0.

Some ideas of the proofs

Related literature on energy quantization and general strategy

The main results Theorem A and Theorem 6.1 shall be read in the context of other bubble-neck de-
composition and energy quantization results, previously obtained in the literature. One can mention
[52, 56, 18, 9, 44, 30, 47] in the setting of harmonic maps and other conformally invariant variational
problems. A fundamental difference between the aforementioned energies and the Willmore functional
is that, in the former, the corresponding Euler Lagrange equations are of second order, while the latter
is a fourth-order problem.

As already mentioned, the first quantization result for the Willmore energy was obtained by Bernard-
Rivière [4] for Willmore surfaces with bounded conformal structures and immersed in Euclidean ambient
spaces. A first generalisation of [4] was established by Laurain-Rivière [26] in the case of Willmore
immersions with degenerating conformal classes, still with values into Rn. The crux of the proof of the
quantization of energy is to obtain the no-neck energy property, once a suitable decomposition of the
domain is performed. The idea is not restricted to the Willmore energy and applies to any quadratic
energy (the Dirichlet energy [30], the Ginzburg-Landau energy [29, 28], the Euclidean Willmore energy
[4, 26], horizontal 1/2-harmonic maps [31], etc). To fix ideas, consider an immersion ~u : (Σ, g) →
(Mm, h) ⊂ RN between Riemannian manifolds (where we assume without loss of generality that (Mm, h)
is isometrically embedded into RN ) and its Dirichlet energy given by

E(~u) = 1
2

∫
Σ
|d~u|2g dvolg .

A neck region is conformally equivalent to an annulus Ω = BR \ Br(0).We say that the no-neck energy
property holds provided that for any neck-region Ωk(1) = BRk \Brk(0) ⊂ C, we have

lim
α→0

lim sup
k→∞

∫
Ωk(α)

|∇~uk|2dx = 0 , (1.4)
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where, for all 0 < α ≤ 1, Ωk(α) = BαRk \Bα−1rk(0). The idea of the proof is to use Lorentz spaces (see
the Appendix 7 for more details) and the duality between L2,1 and L2,∞, where L2,∞ is the weak L2

space and L2,1 its pre-dual which can be explicitly characterised. The duality implies in particular that
for any measured space (X,µ) and any measurable maps ~u,~v : X → RN , it holds∣∣∣∣∫

Ω
〈~u,~v〉 dµ

∣∣∣∣ ≤ ‖~u‖L2,1(Ω) ‖~v‖L2,∞(Ω) . (1.5)

The idea of the quantization is to first show that, for some α0 > 0 independent of k ∈ N, a uniform
bound

‖d~uk‖L2,1(Ωk(α0)) ≤ C (1.6)

holds. Then, if one can prove a weak quantization of energy, i.e. that

lim
α→0

lim sup
k→∞

‖∇~uk‖L2,∞(Ωk(α)) = 0, (1.7)

then the duality inequality (1.5), (1.6) and (1.7) show that the energy quantization in (1.4) holds. Indeed:∫
Ωk(α)

|∇~uk|2dx ≤ ‖∇~uk‖L2,1(Ωk(α)) ‖∇~uk‖L2,∞(Ωk(α)) ≤ C ‖∇~uk‖L2,∞(Ωk(α)) .

This approach was first developed by Lin-Rivière in the context of the Ginzburg-Landau functional
[29, 28] and for harmonic maps [30]. It was used more recently for Willmore immersions with values into
Rn by Bernard-Rivière [4] and Laurain-Rivière [26].

Difficulties and novelties of this paper

Although we build on Bernard-Rivière’s work ([4]), new technical difficulties arise in the Riemannian
setting. One key point is the need to introduce new Lorentz spaces that were not previously used in this
context to our knowledge.

A fundamental ingredient in the proof of the energy quantization for Willmore immersions in Eu-
clidean spaces [4] is the introduction of conservation laws by Rivière [48]: these permit to rewrite the
fourth-order Willmore equation into a system of second-order Jacobian-type equations which can be
handled with tools from integrability by compensation.

The first technical difficulty compared to [4] is that we do not get the existence of such an exact
system of conservation laws for any critical immersion. Indeed, it is necessary to assume that the area
in small enough to get the existence of a perturbed system of conservation laws (see [38, Lemma A.1
and Lemma A.2]), and Lemmas 3.6 and 3.15 in this paper. The perturbation is caused by the ambient
curvature, and makes the system to be complex-valued of non-pure Jacobians (rather than real-valued of
pure Jacobians as in the Euclidean setting). This is why, in order to obtain the existence of the perturbed
system of conservation laws in the neck region, we assume that the area is bounded and we prove that
the area in neck-regions (and bubble regions too) is quantized, and therefore arbitrarily small.

Another technical point is to obtain a suitable ε-regularity result for Willmore immersions with values
into curved ambient spaces. We prove in Theorem 4.9 that there exists ε0 = ε0(Mm, h) > 0 with the
following property: provided that ~Φ : B(0, 1)→Mm is a weak Willmore immersion, the estimate

Area(~Φ(B(0, 1))) +
∫
B(0,1)

|∇~n|2dx ≤ ε0

implies that ~Φ ∈ C∞(B(0, 1)) and, for all k ∈ N, there exists Ck <∞ such that∥∥∇k~n∥∥L∞(B(0, 1
2 )) ≤ Ck ‖∇~n‖L2(B(0,1)) .

Notice that by the previous Remark 1.3 (3)., the bound on area is superfluous for a generic metric on
Mm, or in case of ambient metric with positive sectional curvature.
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As mentioned above, a key technical difficulty in this paper is that the conservation laws are complex-
valued and the systems are non-pure Jacobians. This makes all the estimates more complicated: the
additional terms coming from the non-vanishing Christoffel symbols force us to obtain a priori estimates
on the functions appearing in the system, contrary to the Euclidean case where one can proceed directly
from the existence and obtain the L2,∞ estimate a posteriori.

The main technical difficulty is to obtain a pointwise L2,∞ bound (see Theorem 3.16). In order to
prove it, we will introduce a generalised Lorentz (or Orlicz-Lorentz) space modelled on L2,∞ and named
L2,∞

logβ (where 0 ≤ β ≤ 1 and L2,∞
log0 = L2,∞) in the analysis. The reader is referred to Appendix 7 for more

details on these Banach function spaces.
Another important step in the proof is to show that for holomorphic maps (the same proof works

more generally for harmonic maps), the standard ε-regularity and scaling considerations giving that a
L2,∞ bound implies locally a W1,1 ∩L2,1 estimate, hold more generally when one has a L2,∞

logβ bound (see
Lemma 3.10). Since the more classical improvement from L2,∞ to W1,1 ∩ L2,1 for harmonic maps had
several applications, it is natural to expect that the aforementioned sharpened improvement obtained in
Lemma 3.10 will be useful also in other settings.

Acknowledgments. The first author is supported by the Early Postdoc Mobility Variational Meth-
ods in Geometric Analysis P2EZP2_191893. The second author is supported by the European Research
Council (ERC), under the European Union Horizon 2020 research and innovation programme, via the
ERC Starting Grant “CURVATURE”, grant agreement No. 802689.

2 Notation and preliminaries

Throughout the paper, (Mm, h) is a compact Riemannian manifold without boundary and Σ is a closed
Riemann surface. Given a smooth immersion ~Φ : Σ → (Mm, h), we endow Σ with the pull-back metric
g = ~Φ∗h. An important role will be played by the conformal structure associated to the metric g (for
conformal structures on compact Riemann surfaces see for instance [19]). In particular we will assume
that, given a sequence of immersions ~Φk : Σ → (Mm, h), the conformal structures associated to the
pull-back metrics gk = ~Φ∗kh are contained in a compact region of the moduli space. This assumption
prevents the degeneration of the Riemann surface in the domain (see [4, 26]).

Without loss of generality, we can assume that the smooth immersion ~Φ : Σ→ (Mm, h) is a conformal
parametrisation, i.e. we can choose local coordinates (x1, x2) on Σ such that gi,j = e2λδi,j . The real
valued function λ will be called conformal factor. Sometimes, taking advantage of the complex structure
of a Riemann surface, it will be useful to switch the complex notation z = x1 + i x2.

Thanks to the Nash isometric embedding theorem, we can assume without loss of generality that
Mm ⊂ Rn, and that h = ι∗gRn , where ι : Mm ↪→ Rn is the Nash embedding. Since Mm is a compact
manifold, we have in particular ∥∥∥~IMm

∥∥∥
L∞(Mm)

≤ C0 <∞,

where ~IMm is the second fundamental form of ι. Given a smooth immersion ~Φ : Σ → (Mm, h) of the
2-dimensional surface Σ, we define the generalised Gauss map (see Hoffman-Osserman [15]) ~n~Φ : Σ →
Λm−2TMm by

~n~Φ = ?h
∂x1

~Φ ∧ ∂x2
~Φ

|∂x1
~Φ ∧ ∂x2

~Φ|

where z = x1 + i x2 are arbitrary local coordinates on Σ, and ?h : Λ2TMm → Λm−2TNm is the linear
Hodge operator associated to the metric h. We claim that the following formula holds:

~nι◦~Φ = ι∗(~n~Φ) ∧ (~nι) ◦ ~Φ. (2.1)

Indeed, we have locally ~nι = ~v1 ∧ · · · ∧ ~vn−m, and ~n~Φ = ~n1 ∧ · · · ∧ ~nm−2. If ~ei = e−λ∂xi
~Φ in a conformal

chart, we deduce by definition that (~e1, ~e2, ~n1, · · ·~nm−2) is an orthonormal basis of TMm, which implies
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that (ι∗(~e1), ι∗(~e2), ι∗(~n1), · · · , ι∗(~nm−2), ~v1, · · · , ~vn−m) is an orthonormal basis of Rn and we deduce the
claim (2.1).

Even if the main Theorem A concerns smooth immersions, some of the intermediate results that we
will establish will hold more generally for weak conformal immersions. A weak conformal immersion of
the unit ball B(0, 1) ⊂ R2 is map ~Φ ∈W1,∞∩W2,2(B(0, 1),Mm) such that the a.e. well defined pullback
metric g = ~Φ∗h is conformal to the Euclidean metric on B(0, 1), i.e. gi,j = e2λδi,j for some a.e. well
defined function λ. Observe that the space of weak (conformal) immersions corresponds to the energy
space for the Willmore functional W , thus it provides a natural functional analytic framework for the
analysis & calculus of variations of such an energy functional. Indeed the space of weak immersions with
bounded area and Willmore energy satisfy useful pre-compactness properties. Let us recall the following
pre-compactness result from [38], after [50, ?].

Theorem 2.1. Let ~Φk : S2 ↪→ (Mm, h) be a sequence of weak immersions of S2 into the closed m-
dimensional Riemannian manifold (Mm, h) and assume that the uniform area and Willmore bounds
(1.2) hold. Then, up to pre-composing with suitable bi-Lipschitz diffeomorphisms of S2, one can assume
that ~Φk are conformally parametrised. Moreover,

(1) Either, diam (~Φk(S2)) → 0 and thus there exists a point x ∈ M such that, up to a subsequence,
~Φk(S2)→ x in Hausdorff distance sense;

(2) Or, for every k ∈ N, there exists a positive Möbius transformation fk of S2 such that, called

~ξk = ~Φk ◦ fk

the reparametrised immersion and

λ̃k = log |∂x1
~ξk| = log |∂x2

~ξk|

the new conformal factor, the following holds (up to a subsequence):

(i) There exists a finite set of points {a1, . . . , aN} such that for any compact subset K ⊂ S2 \
{a1, . . . , aN}

sup
k∈N

∥∥∥λ̃k∥∥∥
L∞(K)

<∞ .

(ii) There exists a conformal weak immersion ~ξ∞ : S2 ↪→ (Mm, h), possibly branched at {a1, . . . , aN},
such that

~ξk ⇀ ~ξ∞ weakly in W2,2
loc(S2 \ {a1, . . . , aN}) . (2.2)

Moreover,
W (~ξ∞) ≤ lim inf

k→∞
W (~ξk) .

(iii) Furthermore, W (~ξ∞) = limk→∞W (~ξk) if and only if one can choose {a1, . . . , aN} = ∅ in the
above claims.

Remark 2.2. Thanks to Simon’s monotonicity formula [53], the first case in Theorem 2.1 is equivalent
to Area(~Φk(S2))→ 0.

As a consequence of the ε-regularity Theorem 4.9 that we will prove later in the paper, if ~Φk are
Willmore spheres, then (2.2) can be improved to a Clloc(S2 \ {a1, . . . , aN}) convergence for every l ∈ N.
The goal of the paper is to perform a fine analysis of ~ξk, including the conformal factor, area, andWillmore
energy, around the points a1, . . . , aN , under the assumption that ~ξk are Willmore immersions. In order
to simplify the notation, throughout the paper we will assume that the ~Φk’s are already conformally
parametrised and in the good gauge satisfying sup

k∈N
‖λk‖L∞(K) < ∞, for every compact subset K ⊂

S2 \ {a1, · · · , aN}.
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3 L2,1 estimates on the mean curvature in the neck region

The first part of the proof of the main theorem is to establish L2,1 estimates on the mean curvature in
the neck region (see Theorem 3.2). To this aim, in Subsection 3.1 we prove: a no-neck area property
(in (3.20); see [39]), a Harnack-type inequality for the conformal factors (in (3.21); see [4]), an Lp
quantization result for the conformal parameters for some p > 2 (see (3.25)) and, finally, uniform Lp
estimates for the conformal parameters for some p > 2 (see (3.26)).

These results are of independent interest as they hold in general for weak immersions, regardless
whether they satisfy the Willmore equation or not.

The heart of the proof of Theorem 3.2 will be to establish refined estimates on the approximate
conservation laws [38] satisfied by Willmore immersions. This will be achieved in Subsection 3.2.

The crux will be to remove a log |z| term in one of the key estimates (more precisely, in (3.54)). This
will take almost all of Subsection 3.3 and will be the most innovative and technical part of the paper,
requiring the introduction of apparently new Lorentz-type function spaces. Let us stress that such a
log |z| term is due to the curved ambient space and therefore was not present in the proof of the energy
quantization for Willmore surfaces in Euclidean spaces [4].
We next pass to some preliminary considerations.

Thanks to the hypothesis (1.2) of the theorem, we have

Λ = sup
k∈N

(
Area(~Φk(Σ)) +W (~Φk)

)
<∞ . (3.1)

Combining (2.1) with the triangle inequality, the Gauss equations and the conformal invariance of
the Dirichlet energy, we get:∫

Σ
|d~nι◦~Φ|

2
gdvolg ≤ 2

∫
Σ
|d~n~Φ|

2
gdvolg + 2

∫
Σ
|d(~nι ◦ ~Φ)|2gdvolg = 2

∫
Σ
|d~n~Φ|

2
gdvolg + 2

∫
~Φ(Σ)
|~IMm |2hdvolh

≤ 2
∫

Σ
|d~n~Φ|

2
gdvolg + 2C2

0 Area(~Φ) = 2
∫

Σ

(
4| ~H|2 − 2Kg + 2Kh(~Φ∗TΣ)

)
dvolg + 2C2

0 Area(~Φ)

≤ 8W (~Φ) + 2C2
0Area(~Φ) + 4 ‖Kh‖L∞(Mm) − 8π χ(Σ) . (3.2)

Since Mm is a closed manifold, we deduce that the sectional curvature Kh of the smooth metric h on
Mm is bounded. Therefore, the combination of (3.1) and (3.2) yields:

sup
k∈N

∫
Σ
|d~nι◦~Φk |

2
gdvolg ≤ (8 + 2C2

0 )Λ + 4 ‖Kh‖L∞(Mm) − 8π χ(Σ) = Λ(h) <∞ . (3.3)

This allows us to apply the bubble-neck decomposition of Bernard-Rivière [4, Proposition III.1], and the
other theorems of [4, Sections III and IV], since they do not use the Euler-Lagrange equation of Willmore
surfaces in Rn and work for any sequence of smooth immersions of bounded Willmore energy.

Lemma 3.1 (Bernard-Rivière, Lemma V.1 of [4]). There exist constants ε0(n), C0(n) > 0 with the
following property. If 0 < ε < ε0(n), 0 < 4r < R <∞, Ω = BR \Br(0), and ~Φ : Ω→ Rn is a conformal
weak immersion satisfying the conditions

‖∇~n‖L2,∞(Ω) ≤ ε∫
∂Br(0)

|∇~n|dH 1 ≤ ε∫
BR\BR

2
(0)
|∇~n|2dx+

∫
B2r\Br(0)

|∇~n|2dx ≤ ε,

(3.4)

then ∣∣∣∣∫
Ω
Kgdvolg

∣∣∣∣ ≤ C0(n) ε,

where g = ~Φ∗gRn .
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By the Theorema Egregium of Gauss, since ι : (Mm, h) → (ι(Mm), gRn) is an isometry, we deduce
that we can apply this result to ~Φk. Hence, if ~Φk is parametrising a neck-region Ω = BR \ Br(0) and
satisfies the hypothesis of Lemma 3.1, we deduce that∣∣∣∣∫

Ω
Kgkdvolgk

∣∣∣∣ ≤ C0(n)ε.

Then, the other results of [4, Section V] where no Euler-Lagrange equation is used can be applied
identically to {ι ◦ ~Φk}k∈N. The Liouville equation

−∆λk = e2λkKgk

implies by the Adams-Morrey embedding (see [49]) that

sup
k∈N
‖∇λk‖L2,∞(B(0,1)) ≤ C. (3.5)

Now, we will describe the differences from [4, Section VI] onwards.
In [4, Section VI], the conservative form of the Willmore equation for immersions in Rn discovered

in [48] plays a fundamental role. In order to extend such analysis to the curved ambient setting, we will
use the Euler-Lagrange equation in conservative form obtained in [38] for immersions into Riemannian
manifolds. However, this requires to prove that the area in neck regions is small enough (in fact, we
need a slightly stronger statement which will follow from this bound thanks to a Harnack inequality; see
Lemma 3.6).

The next theorem is the main result of this section.

Theorem 3.2. Let {rk}k∈N , {Rk}k∈N ⊂ (0,∞) be such that rk −→
k→∞

0 and Rk −→
k→∞

R ∈ (0,∞). Let
(Mm, h) ⊂ Rn be a closed Riemannian manifold that we assume isometrically embedded in Rn. For
any 0 < α ≤ 1, define the subset Ωk(α) = BαRk \ Bα−1rk(0) ⊂ B(0, Rk). There exists constants
ε0 = ε0(n, h), α0 = α0(n, h) > 0 with the following property. Let {~Φk}k∈N ⊂ C∞(B(0, Rk),Mm) be a
sequence of Willmore disks satisfying:

Λ = sup
k∈N

(
‖∇λk‖L2,∞(B(0,Rk)) + Area(~Φk(B(0, Rk))) +

∫
B(0,Rk)

|∇~nk|2dx

)
<∞

sup
s∈
[
rk,

Rk
2

]
∫
B2s\Bs(0)

|∇~nk|2dx ≤ ε0 .

Then we have ∥∥∥eλk ~Hk

∥∥∥
L2,1(Ωk(α0))

≤ C0(n, h,Λ).

The rest of the section will be devoted to the proof of Theorem 3.2. This will require to estabish
several results of independent interest.

3.1 Lp bounds and quantization for the conformal parameters

The goal of this section is four-fold: we prove a no-neck area property (see (3.20)), establish a Harnack-
type inequality for the conformal factors (see (3.21)), we prove an Lp quantization result for the conformal
parameters for some p > 2 (see (3.25)), and establish uniform Lp estimates for the conformal parameters
for some p > 2 (see (3.26)).

Let us first recall the following lemma from [33], slightly generalising [4, Lemma IV.1].

Theorem 3.3. There exists a positive real number ε1 = ε1(n) with the following property. Let 0 < 26r <

R < ∞ be fixed radii and ~Φ : Ω = BR \ Br(0) → Rn be a weak immersion of finite total curvature such
that

‖∇~n‖L2,∞(Ω) ≤ ε1(n). (3.6)
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For all
( r
R

) 1
2
< α < 1, define Ω(α) = BαR\Bα−1r(0). Then there exists a universal constant C1 = C1(n)

and d ∈ R (depending on r,R, ~Φ but not on α) such that for all
( r
R

) 1
3
< α <

1
4 , we have

‖∇(λ− d log |z|)‖L2,1(Ω(α)) ≤ C1

(√
α ‖∇λ‖L2,∞(Ω) +

∫
Ω
|∇~n|2dx

)
(3.7)

and for all r ≤ ρ < R, we have∣∣∣∣∣d− 1
2π

∫
∂Bρ

∂νλ dH
1

∣∣∣∣∣ ≤ C1

∫
Bmax{ρ,2r}\Br(0)

|∇~n|2dx+ 1
log
(
R
ρ

) ∫
Ω
|∇~n|2dx

 . (3.8)

In particular, there exists a universal constant C ′1 = C ′1(n) with the following property: for all
( r
R

) 1
3
<

α <
1
4 , there exists Aα ∈ R such that

‖λ− d log |z| −Aα‖L∞(Ω(α)) ≤ C
′
1

(√
α ‖∇λ‖L2,∞(Ω) +

∫
Ω
|∇~n|2dx

)
. (3.9)

Applying Theorem 3.3 to {~Φk}k∈N (that we see from now as a map ~Φk : Σ→ Rn such that ~Φk(Σ) ⊂
Mm for all k ∈ N), we deduce that in a neck region Ωk(α) = B(0, αRk)\B(0, α−1rk) (where lim sup

k→∞
Rk <

∞), there exists large enough dk ∈ R and Ak ∈ R such that

‖λk − dk log |z| −Ak‖L∞(Ωk(α)) ≤ C
′
1

(
√
α ‖∇λk‖L2,∞(Ωk(α)) +

∫
Ωk(1)

|∇~nk|2dx

)
≤ C ′′1 <∞

thanks to (3.3) and (3.5). We deduce that:

e−2C′′1 e2Ak |z|2dk ≤ e2λk ≤ e2C′′1 e2Ak |z|2dk , for all z ∈ Ωk(α). (3.10)

Thanks to (3.3), we deduce that

sup
k∈N

∫
Ωk(α)

e2Ak |z|2dk |dz|2 ≤ sup
k∈N

e2C′′1 Area(~Φk) ≤ e2C′′1 Λ <∞. (3.11)

Now, by the ε-regularity Theorem 4.9 to be proven below, we deduce that ~Φk −→
k→∞

~Φ∞ in Clloc(B(0, 1) \

{0}) for all l ∈ N, where ~Φ∞ : B(0, 1)→ Rn is a branched immersion having at most a branch point at
0. Therefore, by [48] (see also [4]), there exist an integer θ0 ≥ 1 and ~A0 ∈ Cn \ {0} such that

∂z~Φ∞ = ~A0z
θ0−1 + o(|z|θ0−1) .

We also let β0 > 0 such that

e2λ∞ = 2|∂z~Φ∞|2 = 2| ~A0|2|z|2θ0−2(1 + o(1)) = β2
0 |z|2θ0−2(1 + o(1)).

Now, applying (3.8) to dk and ρ = αR2 , we deduce that

lim sup
k→∞

∣∣∣∣∣∣dk − 1
2π

∫
∂B

αR2

∂νλk dH
1

∣∣∣∣∣∣ ≤ Γ2 <∞.

By the strong convergence, it follows that
1

2π

∫
∂B

αR2

∂νλk dH
1 −→
k→∞

1
2π

∫
∂B

αR2

∂νλ∞dH
1 = θ0 − 1 +O(αR)

and we deduce that {dk}k∈N ⊂ R is a bounded sequence. Therefore, we can assume up to a subsequence
that dk −→

k→∞
d ∈ R.
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Lemma 3.4. d > −1.

Proof. Define

A = lim inf
k→∞

Ak ∈ R ∪ {−∞,∞}

A = lim sup
k→∞

Ak ∈ R ∪ {−∞,∞} .

By the strong convergence, assuming without loss of generality that Rk −→
k→∞

R for some R > 0, we
deduce that for all |z| = αR, we have

e−2C′′1 e2A|z|2d ≤ β2
0 |z|2θ0−2(1 + o(1)) ≤ e2C′′1 eA|z|2d.

It follows that 
−∞ < A ≤ A <∞

e2A ≥ β2
0e
−2C′′1 (αR)2θ0−2(d+1)(1 + o(1)) ≥ 2

3β
2
0e
−2C′′1 (αR)2θ0−2(d+1)

e2A ≤ 3
2β

2
0e

2C′′1 (αR)2θ0−2(d+1).

Now, if dk 6= −1, we have∫
Ωk(α)

e2Ak |z|2dk |dz|2 = 2πe2Ak
∫ αRk

α−1rk

r2dk+1dz = π

dk + 1e
2Ak

(
(αRk)2dk+2 − (α−1rk)2dk+2) (3.12)

≥ π

2(dk + 1)β
2
0e
−2C′′1 (αR)2θ0

((
R

Rk

)−2(d+1)
(αRk)2(dk−d) − (αR)−2(dk+1)(α−1rk)2dk+2

)
.

If d < −1, we deduce that

π

2(dk + 1)β
2
0e
−2C′′1 (αR)2θ0

((
R

Rk

)−2(d+1)
(αRk)2(dk−d) − (αR)−2(dk+1)(α−1rk)2dk+2

)
−→
k→∞

∞,

which contradicts (3.11). Therefore, we have d ≥ −1. Now, notice that provided that dk = −1, we have∫
Ωk(α)

e2Ak |z|2dk |dz|2 = 2πe2Ak log
(
α2Rk
rk

)
≥ πβ2

0e
−2C′′1 (αR)2θ0−2(d+1) log

(
α2Rk
rk

)
−→
k→∞

∞.

Therefore, in the limiting case d = −1, we can assume that dk 6= −1 for k large enough. Now, notice
that since Rk −→

k→∞
R, we have

(
R

Rk

)−2(d+1)
(αRk)2(dk−d) = 1 + o(1)

(αR)−2(dk+1)(α−1rk)2dk+2 = (1 + o(1))r2dk+2
k ,

which implies that

lim sup
k→∞

(
1

dk + 1

(
1− r2dk+2

k

))
<∞. (3.13)

First assume that dk < −1 for k ∈ N large enough. Writing dk = −1−εk, we get than there exists C > 0
such that for all k ∈ N large enough

1
dk + 1

(
1− r2dk+2

k

)
= 1
−εk

(
1− 1

r2εk
k

)
= 1
εk

(
1
r2k
k

− 1
)
≤ C.
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Therefore, this implies that

1
r2εk
k

≤ 1 + Cεk .

Taking the logarithm,

2εk log
(

1
rk

)
≤ log (1 + Cεk) ≤ Cεk

and finally

log
(

1
rk

)
≤ C

2

which is absurd since rk −→
k→∞

0. Coming back to the identity (3.12), we deduce that for k large enough
if δ > 0 is such that d > −1 + δ∫

Ωk(α)
e2λk |dz|2 ≤ 4π

δ
β2

0e
2C′′1 (αR)2θ0 −→

α→0
0.

Then, provided that dk = −1 + εk, (3.13) implies that there exists some C <∞ such that

1
εk

(
1− r2εk

k

)
= 1
dk + 1

(
1− r2dk+2

k

)
≤ C,

which yields

log(rk) ≥ log(1− Cεk)
2εk

≥ −C,

for k large enough, using the inequality log(1 − x) ≥ −2x for 0 ≤ x ≤ 1
2 . Since rk −→

k→∞
0, we have

log(rk) −→
k→∞

−∞ and we obtain a contradiction. We conclude that d > −1.

Remark 3.5. Once the quantization of energy is established, it will imply a posteriori that (see [33])

dk −→
k→∞

θ0 − 1 ≥ 0 . (3.14)

In fact, [33, Theorem A] holds for an arbitrary immersion with values into Rn and yields that dk =
θ0− 1 ≥ 0. However, in the present setting of curved ambient space, we could not get (3.14) a priori (as
it happens in the case of a flat ambient space). The origin of such a difficulty lies in the non-vanishing
curvature that perturbs the system of conservation laws associated to the Willmore equation [38].

Let us also observe that the fact that a no-neck energy property implies the asymptotic integrality
of dk suggests that an hypothesis ensuring that dk > −1 + ε (for k large enough) is necessary.

Now, since by [4, Proposition III.1] neck-regions are disjoint and finite unions of such annuli, if Ωk(α)
is the whole neck-region associated to a concentration point ai (where 1 ≤ i ≤ N , and N is the number
of concentration points), we have (see also [39]):

lim
α→0

lim sup
k→∞

∫
Ωk(α)

e2λk |dz|2 = 0 . (3.15)

Consider a typical bubble region

B(i, j, α, k) = Bα−1ri,jk
(xi,jk ) \

⋃
j′∈Ii,j

Bαri,jk
(xi,j

′

k ) (3.16)

from the bubble-neck decomposition [4, Proposition III.1]. We refer to [4] for the precise statement and
relevant definitions. For our purpose here it is sufficient to recall that
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(1) Bri,jk (xi,jk ) corresponds to a bubble for ~Φk;

(2) the set of indices Ii,j corresponds to the bubbles contained in Bri,jk (xi,jk ); in this sense, the role of
(3.16) is to isolate a single bubble.

(3) the total number of bubbles is bounded: sup
k∈N

card
⋃
i,j

Ii,j <∞;

(4) lim
k→∞

xi,jk → ai, for every i, j.

(5) lim
k→∞

ri,jk → 0, for every i, j.

From [4, (VIII.10)], a uniform Harnack inequality holds : for all 0 < α < 1, there exists Cα > 1 such
that

sup
B(i,j,α,k)

e2λk ≤ Cα inf
B(i,j,α,k)

e2λk , for all k ∈ N large enough. (3.17)

Therefore, the estimate (3.10) implies that there exists C ′α such that

e2λk(z) ≤ C ′α(α−1ri,jk )2dk ≤ C ′′α
(
ri,jk

)2dk
, for all z ∈ B(i, j, α, k) . (3.18)

Since dk −→
k→

d > −1, we deduce that

∫
B(i,j,α,k)

e2λk |dz|2 ≤ πC ′′α
(
ri,jk

)2dk+2
−→
k→∞

0 , for every fixed α ∈ (0, 1). (3.19)

lim
α→0

lim sup
k→∞

∫
B(0,αRk)

e2λk |dz|2 = 0 . (3.20)

We also deduce that there exists A ∈ R such that, for all k ∈ N large enough, it holds:

e−A|z|dk ≤ eλk(z) ≤ eA|z|dk , for all z ∈ Ωk(1/2). (3.21)

For the next developments, we need to sharpen the above estimates to an L2,1 bound for the conformal
parameter and an Lp quantization result for it.

Let d ∈ R and f : B(0, R) → R ∪ {∞} be such that, for all z ∈ B(0, R), it holds f(z) = |z|d. If
d ≤ −1, since ‖ · ‖L2,1(X) ≥ 2

√
2 ‖ · ‖L2(X), we have:∥∥|z|d∥∥L2,1(B(0,R)) =∞.

Recalling that for all measured space (X,µ), for all 1 < p < ∞, it holds (see for example [33, Appedix
3.7.1])

‖f‖Lp,1(X) = p2

p− 1

∫ ∞
0

µ (X ∩ {x : |f(x)| > t})
1
p dt,

we have: ∥∥|z|d∥∥L2,1(B(0,R)) = 4
∫ 1

0
µ(B(0, R)) 1

2 dt = 4
√
πR , for d = 0,

∥∥|z|d∥∥L2,1(B(0,R)) = 4
∫ Rd

0
µ(B(0, R)) 1

2 dt+ 4
∫ ∞
Rd

µ(B(0, t 1
d )) 1

2 dt

= 4
√
πR1+d + 4

√
π
−d

1 + d
R1+d = 4

√
π

1 + d
R1+d , for −1 < d < 0,

∥∥|z|d∥∥L2,1(B(0,R)) = 4
∫ Rd

0
µ(B(0, R) \B(0, t 1

d )) 1
2 dt = 4

√
πR1+d

∫ 1

0

√
1− s 2

d ds
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≤ 4
√
πR1+d , for d > 0.

Combining the last estimates with (3.21), we deduce that, for all k ∈ N large enough, it holds

∥∥eλk∥∥L2,1(Ωk(α)) ≤ 4
√
πeA max

{
1, 1

1 + dk

}
(αRk)1+dk −→

k→∞
4
√
πeA max

{
1, 1

1 + d

}
(αR)1+d. (3.22)

By (3.18), we have

∥∥eλk∥∥L2,1(B(i,j,α,k)) ≤ 4
√
π
√
C ′′α

(
ri,jk

)1+dk
−→
k→∞

0. (3.23)

The combination of (3.22) and (3.23) yields

lim
α→0

lim sup
k→∞

∥∥eλk∥∥L2,1(B(0,αRk)) = 0. (3.24)

Later on, we will need the following improvement of the quantization (3.24). Since dk −→
k→∞

d > −1,
we deduce that there exists 0 < ε < 1 and N ∈ N such that for all k ≥ N , we have dk ≥ −1 + ε. In
particular, this implies that∫

Ωk(α)
epλk(z)|dz|2 ≤ epA

∫
B(0,αRk)

|z|pdk |dz|2 = 2πepA (αRk)2+pdk

2 + pdk
, for all p < 2

1− ε .

Using the Harnack inequality in bubble domains (3.17), we deduce that

lim
α→0

lim sup
k→∞

∥∥eλk∥∥Lp(B(0,αRk)) = 0 , for all p < 2
1− ε . (3.25)

Indeed, we have 2 + pdk > 2 + p(−1 + ε) > 0 if and only if p < 2
1− ε . In particular, we deduce that

eλk is bounded in Lp (B (0, Rk/2)) for all p < 2
1− ε . (3.26)

3.2 Refined estimates on the approximate conservation laws

From now on, {~Φk}k∈N will be a sequence of smooth Willmore immersions satisfying the assumptions of
the main Theorem A. In the next lemma, we generalise [38, Lemma A.1], by relaxing the L∞ control to
an L2,1 control.

Lemma 3.6. There exists constants ε2(m), C2(m) > 0 with the following property. For all j, k ∈
{1, · · · ,m}, let γkj ∈ W1,2 ∩ C0(C) be such that supp (γkj ) ⊂ B(0, 2) and

∥∥γkj ∥∥L2,1(C) ≤ ε0. For all
~U ∈ L1

loc(C), define

(
∇z ~U

)
j

= ∂z ~Uj +
m∑
k=1

γkj
~Uk in D ′(C), where 1 ≤ j ≤ m.

Then for all ~Y ∈
(
Ḣ−1 + L1) (C) , there exists a unique ~U ∈ L2,∞(B(0, 1)) satisfying{

∇z ~U = ~Y in D ′(B(0, 1))

Im (~U) = 0 on ∂B(0, 1).

Furthermore, we have the estimate∥∥∥~U∥∥∥
L2,∞(B(0,1))

≤ C2

∥∥∥~Y ∥∥∥
Ḣ−1+L1(B(0,1))

.
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Proof. As in [38], we use a fix point argument. For all ~U ∈ L2,∞(C), define

T (~U) =
(
− 1
πz
∗

(
~Yj −

m∑
k=1

γkj
~Uk

))
1≤j≤m

.

By the Young inequality for weak Lp spaces (that follows from the classical Young inequality by inter-
polation) and the L2,1/L2,∞ duality, we have for some Γ0 <∞∥∥∥∥T (~U) + 1

πz
∗ ~Y
∥∥∥∥

L2,∞(C)
≤

m∑
j,k=1

Γ0

∥∥∥∥ 1
πz

∥∥∥∥
L2,∞(C)

∥∥∥γkj ~Uk∥∥∥L1(C)
≤ Γ0√

π

m∑
j,k=1

∥∥γkj ∥∥L2,1(C)

∥∥∥~Uk∥∥∥
L2,∞(C)

≤ Γ0m√
π
ε0

m∑
k=1

∥∥∥~Uk∥∥∥
L2,∞(C)

≤ Γ0m
2

√
π
ε0

∥∥∥~U∥∥∥
L2,∞(C)

. (3.27)

Choose

ε0 =
√
π

2Γ0m2 .

Now, exactly as in [38], we get the estimate∥∥∥∥ 1
πz
∗ ~Y
∥∥∥∥

L2,∞(C)
≤ Γ1(m)

∥∥∥~Y ∥∥∥
Ḣ−1+L1(C)

, (3.28)

where for all u : Rm → Rm, we have

‖u‖Ḣ−1+L1(Rm) = inf
{
‖u1‖Ḣ−1(Rm) + ‖u2‖L1(Rm) : u = u1 + u2

}
.

Therefore, (3.27) and (3.28) implies that for all ~U ∈ L2,∞(C), we have∥∥∥T (~U)
∥∥∥

L2,∞(C)
≤ 1

2

∥∥∥~U∥∥∥
L2,∞(C)

+ Γ1(n)
∥∥∥~Y ∥∥∥

Ḣ−1+L1(C)
. (3.29)

By (3.27), for all ~U1, ~U2 ∈ L2,∞(C), we have∥∥∥T (~U1)− T (~U2)
∥∥∥

L2,∞(C)
≤ 1

2

∥∥∥~U1 − ~U2

∥∥∥
L2,∞(C)

. (3.30)

Therefore, (3.29) and (3.30) prove that T : L2,∞(C)→ L2,∞(C) is a contraction, and therefore admits a
fixed point by Banach contraction mapping Theorem. The estimate follows from (3.28).

Now, let fk : Cm → Cm be the linear map such that for all X ∈ C∞(B(0, Rk),Cm), we have

∇z ~X = ∂z ~X + fk( ~X) = ∂z ~X +
(

m∑
l=1

γlj,k ~Xl

)
1≤j≤m

,

where, denoting with (~Φ1
k, . . . ,

~Φmk ) the components of ~Φk in the local coordinates of Mm, we set:

γlj,k =
m∑
q=1

Γlj,q∂z~Φ
q
k,

where Γlj,q are the Christoffel symbols of the ambient Riemannian manifold (Mm, h). We now fix some
ε3(m) ≤ ε2(m) to be determined later. By the estimate (3.24), we deduce that there exists α0 > 0 and
N ∈ N such that

sup
1≤j,l≤m

∥∥γlj,k∥∥L2,1(B(0,α0Rk)) ≤ ε3(m) ≤ ε2(m) , for all k ≥ N. (3.31)
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Recalling the L2,1/L2,∞ duality, we have that for all X ∈ L2,∞(B(0, Rk),Cm) and for all r ≤ α0Rk the
following estimate holds:∥∥∥fk( ~X)

∥∥∥
L1(B(0,r))

≤
m∑

j,l=1

∥∥γlj∥∥L2,1(B(0,r))

∥∥∥ ~Xl

∥∥∥
L2,∞(B(0,r))

≤ ε3(m)m2
∥∥∥ ~X∥∥∥

L2,∞(B(0,r))
. (3.32)

We also have the pointwise estimate

|fk( ~X)(z)| ≤ C1(h) eλk(z)| ~X(z)| , (3.33)

where C1(h) > 0 depends only on h. Let ~Yk : Ωk(α0)→ Cm be defined by

~Yk = i
(
∇z ~Hk − 3∇⊥z ~Hk − i ?h

(
∇z~nk ∧ ~Hk

))
. (3.34)

Notice that ~Yk is smooth, so in particular it is an element of H−1 + L1. Thus, the extension ~Yk to the
whole C by setting ~Yk ≡ 0 on C \Ωk(α0) is an element of Ḣ−1 + L1(C). Making use of the L2,1 estimate
(3.31), we are in position to apply Lemma 3.6 and deduce that there exists ~Lk ∈ L2,∞(B(0, α0Rk),C)
such that {

∇z~Lk = ~Yk in B(0, α0Rk)

Im (~Lk) = 0 on ∂B(0, α0Rk).
(3.35)

Remark 3.7. The boundary condition for Im (~Lk) in (3.35) is obtained in the exact same way as in
Lemma A.2 in [38] since ~Φk is smooth (see Lemma 3.15 for more details). However, the L2,∞ estimate
obtained here by simply applying Lemma 3.6 will depend on k and for technical reasons we need to
obtain a function ~Lk controlled in L2,∞ independently of k. Indeed, without a priori estimates, since
the boundary condition of Re (~Lk) cannot be prescribed, we would not be able to get a L2,∞ control
on Re (~Lk) (in [4], at a crucial step, the authors use the fact that the equation in ∇~L holds up to a
constant, which allows to assume that some mean of ~Lk vanishes; however, if the Christoffel symbols do
not vanish, the equation is not invariant by translation). This is due to the fact that in general, one
cannot prescribe the full boundary condition in a ∂ equation.

From the ε-regularity Theorem 4.9 we know that there exists a constant C > 0 independent of k and
α0 such that

eλk(z)|~Yk(z)| ≤ Ce−λk(|z|) δ(|z|)
|z|

≤ C0

|z|2+dk
. (3.36)

For technical reasons, we will have to perform a disjunction of cases depending on the value of dk. The
analysis in the first case, dk ≤ 0, will take several pages; the other cases will be discussed after (3.96).

Analysis of case 1: dk ≤ 0

If dk ≤ 0, then we have a fortiori

|~Yk(z)| ≤ C0

|z|2
. (3.37)

First define ~Uk : C→ Cm by

~Uk(z) = 1
z2

(
− 1
πζ
∗
(
ζ

2~Yk(ζ)
))

(z) = − 1
πz2

∫
C

ζ
2~Yk(ζ)
z − ζ

|dζ|2 = 1
2πiz2

∫
C

ζ
2~Yk(ζ)
ζ − z

dζ ∧ dζ. (3.38)

Lemma 3.8. There exists constants C0, C1 > 0 and ak,0 ∈ Cm, for k ∈ N, with sup
k∈N
|ak,0| <∞ such that

∣∣∣~Uk(z)− ak,0

z2

∣∣∣ ≤ C1
log
(
R
|z|

)
|z|

+ 8C0

|z|
, for all z ∈ C . (3.39)
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Proof. Since z−2 is anti-holomorphic, we have:

∂z ~Uk(z) = 1
z2

(
δz ∗

(
ζ

2~Yk(ζ)
))

= 1
z2 · z

2~Yk(z) = ~Yk(z), (3.40)

where δz is the Dirac mass in z ∈ C. Write for simplicity r = 2rk and R = Rk
2 .

Fix some z ∈ B(0, R). First, if 0 < 2|z| ≤ r, we have

~Uk(z) = 1
2πiz2

∫
B(0,R)\B(0,2|z|)

ζ
2~Yk(ζ)
ζ − z

dζ ∧ dζ (3.41)

and

1
2πi

∫
B(0,R)\B(0,2|z|)

ζ
2~Yk(ζ)
ζ − z

dζ ∧ dζ =
∞∑
l=0

(
1
π

∫
B(0,R)\B(0,2|z|)

ζ
2~Yk(ζ)
ζl+1 |dζ|2

)
zl =

∞∑
l=0

ak,lz
l . (3.42)

For l = 0, we have ∣∣∣∣∣
∫
B(0,R)\B(0,2|z|)

ζ
2~Yk(ζ)
ζl+1

|dζ|2

|ζ|

∣∣∣∣∣ ≤ C0

∫
B(0,R)

|dζ|2

|ζ|
= 2πC0R, (3.43)

and for l = 1, we have∣∣∣∣∣
∫
B(0,R)\B(0,2|z|)

ζ2~Yk(ζ)
ζ − z

|dζ|2
∣∣∣∣∣ ≤ 2π

∫ R

2|z|

dt

t
= 2π log

(
R

2|z|

)
. (3.44)

Therefore, by (3.41), (3.42), (3.43) and (3.44), we deduce that there exists a universal constant C1 such
that ∣∣∣∣∣z2~Uk(z)− ak,0 −

∞∑
l=2

ak,lz
l

∣∣∣∣∣ ≤ C1|z| log
(
R

|z|

)
, (3.45)

and ak,0 is uniformly bounded for k ≥ N .
Furthermore, we have for all l ≥ 2∣∣∣∣∣

∫
B(0,R)\B(0,2|z|)

ζ
2~Yk(ζ)
ζl+1 |dζ|2

∣∣∣∣∣ ≤ C0

∫
B(0,R)\B(0,2|z|)

|dζ|2

|ζ|l−1 ≤ 2πC0

∫ R

2|z|

dt

tl
= 2πC0

l − 1

(
1

(2|z|)l−1 −
1

Rl−1

)
,

(3.46)

which implies that ∣∣∣∣∣
∞∑
l=2

ak,lz
l

∣∣∣∣∣ ≤ 2C0

∞∑
l=2

1
(2|z|)l−1 × |z|

l = 2C0|z|. (3.47)

Therefore, by (3.46) and (3.47) we get

∣∣∣~Uk(z)− ak,0

z2

∣∣∣ ≤ C1
log
(
R
|z|

)
|z|

+ 2C0

|z|
. (3.48)

Now, assume that 2|z| > r. Then we have

z2~Uk(z) = 1
2πi

∫
B(0,2|z|)\B(0,r)

ζ
2~Yk(ζ)
ζ − z

dζ ∧ dζ + 1
2πi

∫
B(0,R)\B(0,2|z|)

ζ
2~Yk(ζ)
ζ − z

dζ ∧ dζ = ~u1(z) + ~u2(z).

(3.49)
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We first easily estimate∣∣∣∣∣ 1
2πi

∫
B(0,2|z|)\B(0,r)

ζ2~Yk(ζ)
ζ − z

dζ ∧ dζ

∣∣∣∣∣ ≤ C0

π

∫
B(0,2|z|)

|dζ|2

|ζ − z|
≤ C0

π

∫
B(z,3|z|)

|dζ|2

|ζ − z|
= 6C0R|z| (3.50)

and the previous argument shows that (notice that this is the same constant ak,0)

|~u2(z)− ak,0| ≤ C1|z|log
(
R

|z|

)
+ 2C0|z|. (3.51)

Finally, by (3.49), (3.50) and (3.51), we deduce that

∣∣∣~Uk(z)− ak,0

z2

∣∣∣ ≤ C1
log
(
R
|z|

)
|z|

+ 8C0

|z|
, (3.52)

which concludes the proof of the lemma.

Next, define ~Vk : C→ Cm by:

~Vk(z) = ~Uk(z)− ak,0

z2 , for all z ∈ C. (3.53)

Lemma 3.9. Let ~Vk : C→ Cm be defined in (3.53). Then there exists C2 > 0 such that∣∣∣~Vk(z)
∣∣∣ ≤ C2

|z|

(
log
(
R

|z|

)
+ 1
)
. (3.54)

Moreover, ∇Im (~Vk) ∈ L2,∞(C) which shows in particular that Im (~Vk) ∈ W1,(2,∞)(B(0, Rk)). Further-
more, by the Sobolev embedding, it holds:

Im (~Vk) ∈
⋂
p<∞

Lp(B(0, Rk)).

Proof. From Lemma 3.8, we get that ∂z ~Vk = ~Yk on C and that there exists C2 > 0 such that:∣∣∣~Vk(z)
∣∣∣ ≤ C2

|z|

(
log
(
R

|z|

)
+ 1
)
, for all z ∈ C.

Furthermore, we have

∆Im
(
~Vk

)
= 4 Im

(
∂z ~Yk

)
= 4 Im

(
∇z ~Yk(z)

)
− 4 Im

(
fk(~Yk)

)
on Ωk(1/2) ,

while Im (~Vk) is harmonic on B(0, α−1
0 rk). Recall that by [38, Lemma 3.2 and Theorem 3.1], the following

identities hold:

~Yk = i
(
∇z ~Hk − 3∇⊥z ~Hk − i ?h (∇z~nk ∧ ~Hk)

)
= −2i

(
∇⊥z ~Hk + 〈 ~Hk, ~Hk,0〉∂z~Φk

)
4e−2λRe

(
∇z
(
∇⊥z ~Hk + 〈 ~Hk, ~H0,k〉∂z~Φk

))
= ∆⊥g ~Hk − 2| ~Hk|2 ~H + A ( ~Hk) + 8 Re

(
〈R(~ez, ~ez)~ez, ~Hk〉~ez

)
.

Therefore:

Im (∇z ~Yk) = Im
(
−2i∇z

(
∇⊥z ~Hk + 〈 ~Hk, ~Hk,0〉∂z~Φk

))
= −2 Re

(
∇z
(
∇⊥z ~Hk + 〈 ~Hk, ~Hk,0〉∂z~Φk

))
= −1

2e
2λk
(

∆⊥gk ~Hk − 2| ~Hk|2 ~H + A ( ~Hk)
)
− 4e2λk Re

(
〈R(~ez, ~ez)~ez, ~Hk〉~ez

)
.

Using that ~Φk is Willmore and using (1.1), we deduce that

Im (∇z ~Yk) = 1
2e

2λk
(
R⊥1 ( ~Hk)− 2 K̃h

~Hk + 2 R2(d~Φk) + (DR)(d~Φk)− 8 Re
(
〈R(~ez, ~ez)~ez, ~Hk〉~ez

))
.

(3.55)
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Therefore, by (3.26) and Hölder’s inequality, we get:

|Im (∇z ~Yk)| ≤ Ce2λk(z)
(

1 + | ~Hk|
)
∈

⋂
p< 1

1−ε

Lp(B(0, Rk)). (3.56)

However, from (3.37) we have ∣∣∣fk(~Yk)
∣∣∣ ≤ Ceλk |~Yk| ≤ C ′ δ(|z|)|z| ≤ C ′′

|z|2
,

which does not suffice as one cannot obtain elliptic estimates from a L1,∞ bound on the Laplacian. In
order to circumvent this problem, we will argue differently. Recall that for any vector-field ~X, we defined

∇z ~X = ∂z ~X + fk( ~X) = ∂z ~X +
(

m∑
l=1

γlj,k ~Xl

)
1≤j≤m

,

where

γlj,k =
m∑
q=1

Γlj,q∂z~Φ
q
k.

Recalling that ~Yk = i
(
∇z ~Hk − 3∇⊥z ~Hk − i ?h

(
∇z~nk ∧ ~Hk

))
, we get

~Yk = i
(
∂z ~Hk − 3π~nk(∂z ~Hk)− 2fk( ~Hk)− i ?h (∂z~nk ∧ ~Hk)− i ?h

(
Gk(~nk) ∧ ~Hk

))
= i
(
−2 ∂z ~Hk + 3 (∂zπ~nk) ~Hk − 2fk( ~Hk)− i ?h (∂z~nk ∧ ~Hk)− i ?h

(
Gk(~nk) ∧ ~Hk

))
.

Since eλk , and eλk ~Hk and |∇~nk| are bounded in L2(B(0, Rk)) by hypothesis, we deduce that there exists
a constant C > 0 such that:∣∣∣fk(~Yk + 2i ∂z ~Hk)

∣∣∣ ≤ C (|∇~nk|eλk | ~Hk|+ eλk | ~Hk|+ |∇~nk|eλk | ~Hk|+ e2λk | ~Hk|
)
∈ L1(B(0, Rk)). (3.57)

It follows that

Im
(
fk(−2i ∂z ~Hk)

)
j

= Im
(
−2i

m∑
q=1

Γlj,q∂z~Φ
q
k∂z

~Hk,l

)
= −2

m∑
q=1

Γlj,qRe
(
∂z~Φqk∂z ~Hk,l

)
= −1

2

m∑
q=1

Γlj,q〈∇~Φ
q
k,∇ ~Hk,l〉

= −1
2 div

(
m∑
q=1

Γlj,q∇~Φ
q
k
~Hk,l

)
+ 1

2

m∑
q=1
〈∇Γlj,q,∇~Φ

q
k〉 ~Hk,l + 1

2

m∑
q=1

Γlj,q∆~Φ
q
k
~Hk,l

= −1
2 div

(
m∑
q=1

Γlj,q∇~Φ
q
k
~Hk,l

)
+ 1

2

m∑
q=1
〈∇Γlj,q,∇~Φ

q
k〉 ~Hk,l +

m∑
q=1

Γlj,qe2λk ~Hk,q
~Hk,l.

Since eλk ~Hk ∈ L2(B(0, Rk)), we deduce that

Im
(
fk(−2i ∂z ~Hk)

)
∈ H−1 + L1(B(0, Rk)). (3.58)

Therefore, by (3.56), (3.57) and (3.58), we finally deduce that

∆Im ( ~Vk) ∈ H−1 + L1(C).

Standard elliptic estimates imply that Im (~Vk) ∈ W1,(2,∞)(C). Indeed, by the preceding estimates, we
have a decomposition

∆Im (~Vk) = div( ~Xk) + ~Zk,
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where ~Xk ∈ L2(C) and ~Zk ∈ L1(C). Therefore, making the decomposition Im (~Vk) = ~uk + ~vk, where

∆~uk = div( ~Xk) and ∆~vk = ~Zk,

we obtain:

~vk(z) = 1
2π

∫
C

∆~vk(ζ) log |z − ζ| |dζ|2 = 1
2π

∫
C
~Zk(ζ) log |z − ζ| |dζ|2.

Clearly, it holds

∂z~vk(z) = 1
4π

∫
C

~Zk(ζ)
z − ζ

|dζ|2,

which, by Young inequality, yields:

‖∇~vk‖L2,∞(C) ≤ CY
∥∥∥∥1
z

∥∥∥∥
L2,∞(C)

∥∥∥~Zk∥∥∥
L1(C)

≤ C.

Likewise, we have in the distributional sense

∂z~uk(z) = 1
4π

∫
C

div( ~Xk)(ζ)
z − ζ

|ζ|2.

Now, since the Fourier transform of 1
z
is c0

ξ
for some constant c0 ∈ C, we have

F (∂xj ~X)(ξ) = −iξjF ( ~X)(ξ) , for all j ∈ {1, 2}.

Therefore, by the Parseval identity, we have∫
C
|∇~uk|2dx = 4

∫
C
|∂z~uk|2 |dz|2 = 1

4π2

∫
C

∣∣∣∣1z ∗ div( ~Xk)
∣∣∣∣2 |dz|2 = c20

16π4

∫
C

1
|ξ|2

∣∣∣−iξ1 ~Xk,1 − iξ2 ~Xk,2

∣∣∣2 |dξ|2
≤ c20

8π4

∫
C
| ~Xk|2dx.

Finally, we deduce that∇Im (~Vk) ∈ L2,∞(C) which shows in particular that Im (~Vk) ∈W1,(2,∞)(B(0, Rk)).
Furthermore, by the Sobolev embedding, we have

Im (~Vk) ∈
⋂
p<∞

Lp(B(0, Rk)),

which concludes the proof of the lemma.

The next step will be to remove the log |z| term in the estimate (3.54).

3.3 Removal of the logarithmic singularity in the estimate of ~Vk

Removing the log |z| term in the inequality (3.54) is the most technical part of the proof of Theorem
3.2. To this aim, we will introduce and use some (apparently new) Lorentz-type functional space. Let
us stress out that this difficulty is due to the curved ambient space and therefore was not present in the
proof of the energy quantization for Willmore surfaces in Euclidean spaces [4].

Let us first make the decomposition Im (~Vk) = ~uk + ~vk + ~wk, where∆~uk = 4 Im
(
∇z ~Yk

)
in B(0, Rk/2)

~uk = 0 on ∂B(0, Rk/2) ,
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∆~vk = −4 Im
(
fk(~Yk)

)
in B(0, Rk/2)

~vk = 0 on ∂B(0, Rk/2) ,

and {
∆~wk = 0 in B(0, Rk/2)

~wk = Im (~Vk) on ∂B(0, Rk/2).

By the bound (3.56), we have ∆~uk ∈ Lp(C) for all p <
1

1− ε which implies by Calderón-Zygmund

estimates that ~uk ∈W2,p(B(0, Rk/2)) for all p < 1
1− ε . By standard elliptic regularity ([14], Chapter 3,

3.3), we also get ~wk ∈W1,(2,∞)(B(0, Rk/2)). Regarding ~vk, it holds

∂z

(
z2∂z~vk −

1
π

∫
C

ζ2Im (fk(~Yk)(ζ))
ζ − z

|dζ|2
)

= 0,

and ~vk ∈ L2,∞(C), which implies that there exists a holomorphic function hk such that

∂z~vk = hk(z)
z2 + 1

πz2

∫
C

ζ2Im (fk(~Yk)(ζ)
ζ − z

|dζ|2.

By the estimates in the proof of Lemmas 3.8 and 3.9 , we deduce that there exists a constant C > 0 such
that ∣∣∣∣∣ 1

πz2

∫
C

ζ2Im (fk(~Yk)(ζ)
ζ − z

|dζ|2 − a0,k

z2

∣∣∣∣∣ ≤ C log
(
Rk
|z|

)
|z|

. (3.59)

Taking the expansion hk(z) = b0,k +O(|z|), from ∇~vk ∈ L2,∞(C) we deduce that

b0,k = −a0,k, (3.60)

and that
ψk(z) = hk(z)− b0,k

z2 ∈ Lploc(C) , for all p < 2. (3.61)

More precisely, the estimate (3.59) shows that there exists a function ψ1,k and a constant Ck > 0 such
that

|ψk(z)− ψ1,k(z)| ∈ L2,∞
(
B

(
0, Rk2

))
(3.62)

and

|ψ1,k(z)| ≤ Ck
|z|

log
(
Rk
|z|

)
. (3.63)

Therefore, we deduce that ψk admits the Laurent expansion

ψk(z) =
∞∑

n≥−1
ak,nz

n. (3.64)

Next, we will show that
ψk ∈ L2,1(B(0, αRk)) . (3.65)

The proof is quite involved and will make use of some (apparently new) Lorentz-type function spaces.
For a more systematic discussion of generalised Lorentz spaces, the reader is refereed to the Appendix 7.
First, write for simplicity R = Rk

2 , and for all α > 0, let ϕα : (0, R)→ R be defined by

ϕα(t) = t

logα
(
R
t

) .
22



Let W : R+ → R+ be the Lambert function, which satisfies for all x ≥ 0

W (x)eW (x) = x (3.66)

One easily checks that

ψα(t) = Re
−αW

(
1
α (Rt )

1
α

)

is the inverse of ϕα. Notice that for α = 1, the identiy (3.66) gives

ψ1(t) = tW

(
R

t

)
.

Explicit computations give

ϕ′α(t) = 1
logα

(
R
t

) + α

logα+1 (R
t

) > 0 , ϕ′′α(t) = α

t logα+1 (R
t

) + α(α+ 1)
t logα+2(t)

> 0 ,

which show that ϕα is convex and strictly increasing. We deduce that for all t > 0, it holds

L 2

B(0, R) ∩

x :
logα

(
R
|x|

)
|x|

> t


 = L 2

(
B(0, R) ∩

{
x : ϕα(|x|) < 1

t

})

= L 2
(
B(0, R) ∩

{
x : |x| < ψα

(
1
t

)})
= πmin

{
R2, ψ2

α

(
1
t

)}
= πmin

{
R2, R2e

−2αW
(
α−1(Rt)

1
α

)}
= πR2e

−2αW
(
α−1(Rt)

1
α

)
.

The following asymptotic expansions hold:{
W (t) = t+O(t2) when t→ 0
W (t) = log(t)− log log(t) + o(1) when t→∞ .

Therefore, when t→ 0, we deduce that

e
−2αW

(
α−1(Rt)

1
α

)
= e−2(Rt)

1
α+O(t

2
α ) −→

t→0
1 ,

so that

lim
t→0+

t2L 2
(
B(0, R) ∩

{
x : logα |x|

|x|
> t

})
= 0 .

However, when t→∞, we have

e
−2αW

(
α−1(Rt)

1
α

)
= e
−2α

(
log
(
α−1(Rt)

1
α

)
−log log

(
α−1(Rt)

1
α

)
+o(1)

)

= e2(α log(α)−log(R))+o(1)

t2
log2α

(
α−1 (Rt)

1
α

)
= eA+o(1)

t2
(
log2α(t) +O(1)

)
.

for some A ∈ R. This implies that

t2L 2
(
B(0, R) ∩

{
x : logα |x|

|x|
> t

})
= eA+o(1)

t2
(
log2α(t) +O(1)

)
−→
t→∞

∞.

Note that

lim
t→∞

(
t

logα(t)

)2
L 2

(
R2 ∩

{
x : logα |x|

|x|
> t

})
≤ C <∞.
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This suggests that u = uα = 1/ϕα(| · |) belongs to a Lorentz space. To determine its weight, we first
compute the function u∗ : R+ → R+ defined by

u∗(t) = inf
{
s > 0 : L 2 (B(0, R) ∩ {x : |u(x)| > s}) ≤ t

}
.

For t ≤ πR2, it holds

L 2 (B(0, R) ∩ {x : |u(x)| > s}) = πψ2
(

1
s

)
≤ t⇐⇒ 1

s
≤ ϕ

(√
t

π

)
⇐⇒ s ≥ u

(√
t

π

)

while u∗(t) = 0, for t ≥ πR2. Therefore,

u∗(t) = u

(√
t

π

)
=
√
π

t
logα

(
R

√
π

t

)
, for t ≤ πR2

and

u∗(t) =


√
π

t
logα

(
R

√
π

t

)
for t < πR2

0 for t ≥ πR2

so that ∫ t

0
u∗(s)ds =

√
π

[
2
√
s logα

(
R

√
π

s

)]t
0

+ 2παR
∫ t

0

logα−1 (R√π
s

)
√
s

ds

= 2
√
πt logα

(
R

√
π

t

)
+ 2παR

∫ t

0
logα−1

(
R

√
π

s

)
ds√
s
,

which, for α = 1, shows that ∫ t

0
u∗(s)ds = 2

√
πt log

(
R

√
π

t

)
+ 4πR

√
t.

First assume that α ∈ N and notice that, for s = πR2v, it holds:∫ t

0
u∗(s)ds = πR2

∫ t
πR2

0

1
R
√
v

logα
(

1
v

)
du = πR

∫ t
πR2

0

1√
v

logα
(

1
v

)
dv.

We introduce the integrals I(α, r) for r ≤ 1 defined by

I(α, r) =
∫ r

0
logα

(
1
t

)
dt√
t
.

It holds

I(α, r) = 2
√
r logα

(
1
r

)
+ 2α

∫ r

0
logα

(
1
t

)
dt√
t

= 2
√
r logα

(
1
r

)
+ 2α I(α− 1, r)

= 2
√
r logα

(
1
r

)
+ 4α

√
r logα−1

(
1
r

)
+ 4α(α− 1)I(α− 2, r).

Therefore, we deduce that provided that α = n+ β with n ∈ N and 0 ≤ β < 1, we have

I(α, r) =
n−1∑
k=0

2k+1
k−1∏
l=0

(n− l + β)
√
r logn−l+β

(
1
r

)
+ 2n

n∏
k=0

(n− k + β)
∫ r

0
logβ

(
1
t

)
dt√
t
.

Now, we will estimate the last integral by the method of stationary phase. A change of variable x =
logβ

( 1
t

)
shows that, for p = 1

β > 1, it holds∫ r

0
logβ

(
1
t

)
dt√
t

=
∫ ∞

logβ( 1
r )
pxpe−

xp

2 dx =
[
−2x e− x

p

2

]∞
logβ( 1

r )
+ 2

∫ ∞
logβ( 1

r )
e−

xp

2 dx
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= 2
√
r logβ

(
1
r

)
+ 2 logβ

(
1
r

)∫ ∞
1

e− log( 1
r ) xp2 dx,

where we performed a linear change of variable in the last integral. Now, if F : (0,∞)→ R is defined by

F (t) =
∫ ∞

1
e−t

xp

2 dx, (3.67)

then we can directly apply the method of stationary phase since p > 1 (it will be clear that it fails for
p = 1 since in this case, we have F (t) = 2/t). Indeed, if ϕ : [1,∞)→ R is defined by ϕ(x) = −x

p

2 , then
ϕ is strictly decreasing and ϕ′′(1) = −p(p−1)

2 < 0, so the method of stationary phase (or rather Laplace’s
method) implies that

F (t) ∼
t→∞

√
2π

−ϕ′′(1)
e−

t
2
√
t

= 4π
p(p− 1)

e−
t
2
√
t
.

Applying it to t = log
( 1
r

)
, we deduce that

2 logβ
(

1
r

)∫ ∞
1

e− log( 1
r ) xp2 dx ∼

r→0
2β logβ

(
1
r

)√
4π

1− β

√
r

log
( 1
r

) = 2β
√

4π
1− β

√
r logβ−

1
2

(
1
r

)
.

Therefore, we deduce that for α > 0, we have

I(α, r) = 2
√
r logα

(
1
r

)1 + 1√
log
( 1
r

)
 .

In particular, choosing the function

Λα(t) =
√
t

(
1 + logα+

(
R

√
π

t

))
, (3.68)

we deduce that uα ∈M(Λα) = L2,∞
logα(B(0, R)), where

M(Λα) = L1
loc(B(0, R)) ∩

{
f : ‖f‖M(Λα) = sup

t>0

(
1

Λα(t)

∫ t

0
f∗(s)ds

)
<∞

}
.

Likewise, we define the space N(Λα) = L2,1
logα(B(0, R)) by

N(Λα) = L1
loc(B(0, R)) ∩

{
f : ‖f‖N(Λα) =

∫ ∞
0

Λα
(
L 2 (B(0, R) ∩ {x : |f(x)| > t})

)
dt <∞

}
.

Furthermore, notice that Λβ : (0,∞) → (0,∞) is non-zero, concave (for β ≤ 1), and that Λβ extends
continuously to 0 and that Λβ(0) = 0. Therefore, we can apply the classical results of Steigerwalt
and White to deduce ([55, Theorem 4.1 and Theorem 4.4], see also Theorem 7.4 in the appendix) that
N(Λβ)∗ = M(Λβ), and that for all (f, g) ∈ N(Λβ)×M(Λβ), the product fg ∈ L1(B(0, R)) with∣∣∣∣∣

∫
B(0,R)

fg dL 2

∣∣∣∣∣ ≤ ‖f‖N(Λβ)‖g‖M(Λβ).

To see that Λβ is concave, we can assume that t ≤ πR2 without loss of generality, so that up to a scaling
Λβ is concave if and only if

ψ(t) =
√
t logβ

(
1
t

)
is concave on (0, 1). We compute

ψ′(t) = 1
2
√
t

logβ
(

1
t

)
− β√

t
logβ−1

(
1
t

)
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ψ′′(t) = − 1
4t 3

2
logβ

(
1
t

)
− β

2t 3
2

logβ−1
(

1
t

)
+ β

2t 3
2

logβ−1
(

1
t

)
+ β(β − 1)

t
3
2

logβ−2
(

1
t

)
= − 1

4t 3
2

logβ
(

1
t

)
− β(1− β)

t
3
2

logβ−2
(

1
t

)
< 0

for all 0 < t < 1 and 0 ≤ β ≤ 1. Now, fix 0 < β ≤ 1, let x ∈ B(0, R2 ) and 0 < r < R
4 . By the co-area

formula, we have∫
B2r\Br(x)

|u(x)|dx =
∫ 2r

r

(
ρ

∫
∂Bρ(x)

|u|dH 1

)
dρ

ρ
≤ log(2) inf

r<ρ<2r

(
ρ

∫
∂Bρ(x)

|u|dH 1

)
.

Therefore, there exists ρ ∈ (r, 2r) such that

ρ

∫
∂Bρ(x)

|u|dH 1 ≤ 1
log(2)

∫
B2r\Br(x)

|u(x)|dx.

Now, we will show that if u is a holomorphic function on B(0, R), then a L2,∞
logβ control implies a W1,1

control on B(0, αR) for all α < 1. Since it seems not standard to us, we give a full proof of this claim (in
fact, we are not aware of a previous study of such spaces in the past literature). Using the L2,1

logβ/L
2,∞
logβ

duality (see Theorem 7.4 in the appendix, or [55, Theorem 4.4]), we get∫
B2r\Br(x)

|u(x)|dx ≤ ‖1‖L2,1
logβ

(B2r\Br(0))‖u‖L2,∞
logβ

(B2r\Br(0)).

Notice that

λ1(t) = L 2 (B2r \Br(x) ∩ {x : 1 > t}
)

=
{

3πr2 if t < 1
0 if t ≥ 1.

We have by definition

‖1‖L2,1
log(B2r\Br(x)) =

∫ ∞
0

(λ1(t))
1
2

(
1 + logβ+

(
R

√
π

λ1(t)

))
dt =

√
3πr

(
1 + logβ+

(
1√
3
R

r

))
.

Finally, we deduce that

ρ

∫
∂Bρ(x)

|u|dH 1 ≤
√

3π
log(2)r

(
1 + logβ+

(
1√
3
R

r

))
‖u‖L2,∞

logβ
(B2r\Br(x)) ,

and that, a fortiori, for all x ∈ B(0, R2 ) and 0 < r ≤ R
2 such that B(x, 2r) ⊂ B(0, R), there exists

ρ ∈ [r, 2r] such that∫
∂Bρ(x)

|u|dH 1 ≤ 2
√

3π
log(2)

(
1 + logβ+

(
1√
3
R

r

))
‖u‖L2,∞

logβ
(B2r\Br(x)) . (3.69)

Thanks to this result, we will now be able to show a variant of a lemma appearing in [26].

Lemma 3.10. Let u : B(0, R) → C be a holomorphic function and fix some 0 ≤ α < 1, 0 ≤ β ≤ 1.
Assume that u ∈ L2,∞

logβ (B(0, R)). Then u ∈ L2(B(0, αR)) and there exists a universal constant Γ0

(independent of α and β) such that

‖u‖L2(B(0,αR)) ≤ Γ0
α

(1− α)

(
1 + logβ

(
1

1− α

))
‖u‖L2,∞

logβ
(B(0,R)) .

Proof. Write

u(z) =
∞∑
n=0

anz
n.
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Notice that u = ∂zv, where

v(z) =
∞∑
n=1

bnz
n =

∞∑
n=1

an−1

n
zn. (3.70)

First, using the estimate (3.69) applied to ∇v at a point z ∈ ∂B(0, αR) with r = 1
2 (1− α)R, we deduce

by the mean-value formula that for some ρ ∈ [ 1
2 (1− α)R, (1− α)R], we have

|∇v(z)| = |2 ∂zv(z)| =

∣∣∣∣∣ 1
πρ

∫
∂B(z,ρ)

∂ζv(ζ)dζ

∣∣∣∣∣
≤ 4

log(2)

√
3
π

1
(1− α)R

(
1 + logβ

(
2√
3

1
1− α

))
‖∇v‖L2,∞

logβ
(B(0,R))

= 8
log(2)

√
3
π

1
(1− α)R

(
1 + logβ

(
2√
3

1
1− α

))
‖u‖L2,∞

logβ
(B(0,R)) , (3.71)

where we used |∇v|2 = 4|∂zv|2 by the holomorphy of v. Therefore, via integration by parts and using
that both u and u are harmonic, we deduce that∫

B(0,αR)
|u(z)|2|dz|2 ≤ 1

2

∫
B(0,αR)

|∇v|2dx = 1
2

∫
B(0,αR)

div (v∇v) = 1
2

∫
∂B(0,αR)

v ∂νv dH
1

= 1
2

∫
∂B(0,αR)

(v − vαR)∂νv dH 1, (3.72)

where for all 0 < ρ < R, we set

vρ = −
∫
∂Bρ(0)

v dH 1.

Thanks to the L∞ bound (3.71) and the Sobolev embedding H 1
2 (S1) ↪→ L1(B(0, 1)), there exists a

uniform constant C0 > 0 such that

‖∇v‖2L2(B(0,αR)) =
∣∣∣∣∫
αR

(v − v∂BαR)∂νv dH 1
∣∣∣∣ ≤ ‖v − vαR‖L1(∂BαR(0)) ‖∇v‖L∞(∂BαR(0))

≤ C0αR ‖v‖H 1
2 (∂BαR(0))

× 8
log(2)

√
3
π

1
(1− α)R

(
1 + logβ

(
2√
3

1
1− α

))
‖u‖L2,∞

logβ
(B(0,R))

≤ 8C0

log(2)

√
3
π

α

(1− α)

(
1 + logβ

(
2√
3

1
1− α

))
‖∇v‖L2(B(0,αR)) ‖u‖L2,∞

logβ
(B(0,R)) .

Therefore, we get

‖u‖L2(B(0,αR)) ≤
4C0

log(2)

√
3
π

α

(1− α)

(
1 + logβ

(
2√
3

1
1− α

))
‖u‖L2,∞

logβ
(B(0,R))

which concludes the proof of the lemma.

We will also need the following lemma.

Lemma 3.11. Let R > 0 and u : B(0, R) → C by a holomorphic function such that u ∈ L2(B(0, R)).
Then, for all 0 < α < 1, the following estimates hold:

‖u‖L2,1(B(0,αR)) ≤
4α

1− α2 ‖u‖L2(B(0,R))

‖∇u‖L1(B(0,αR)) ≤ 4
√
π

α2

(1− α2) 3
2
‖u‖L2(B(0,R)) .

27



Proof. Let {an}n∈N be such that

u(z) =
∞∑
n=0

anz
n.

Taking complex coordinates, we deduce that∫
B(0,R)

|u(z)|2|dz|2 = 2π
∞∑
n=0

∫ R

0
|an|2ρ2n+1dρ = π

∞∑
n=0

|an|2

n+ 1R
2(n+1).

A direct computation shows that for all n ≥ 0, we have

‖|z|n‖L2,1(B(0,R)) = 4
√
πRn+1.

Therefore, we deduce by the triangle inequality and the Cauchy-Schwarz inequality that

‖u‖L2,1(B(0,αR)) ≤ 4
√
π

∞∑
n=0
|an|(αR)n+1 ≤ 4

√
π

( ∞∑
n=0

(n+ 1)α2(n+1)

) 1
2
( ∞∑
n=0

|an|2

n+ 1R
2(n+1)

) 1
2

= 4α
1− α2 ‖u‖L2(B(0,R)) .

Then, we compute

∂zu(z) =
∞∑
n=1

nanz
n−1 =

∞∑
n=0

(n+ 1)an+1z
n.

Using that

‖|z|n‖L1(B(0,R)) = 2π
n+ 2R

n+2, for all n ≥ 0 , (3.73)

we deduce that

1
2 ‖∇u‖L1(B(0,αR)) = ‖∂zu‖L1(B(0,αR)) ≤ 2π

∞∑
n=0

(n+ 1)
(n+ 2) |an+1|(αR)n+2

≤ 2π
( ∞∑
n=0

(n+ 1)2

n+ 2 α2(n+2)

) 1
2
( ∞∑
n=0

|an+1|2

n+ 2 R2(n+2)

)
≤ 2
√
π

α2

(1− α2) 3
2
‖u‖L2(B(0,R))

where we used the following identities valid for |a| < 1
∞∑
n=0

(n+ 1)2

n+ 2 an =
∞∑
n=0

(n+ 1)an −
∞∑
n=0

n+ 1
n+ 2a

n =
∞∑
n=0

(n+ 1)an −
∞∑
n=0

an +
∞∑
n=0

an

n+ 2

= 1
(1− a2) −

1
1− a +

∞∑
n=0

an

n+ 2 ,

and
∞∑
n=0

an

n+ 2 = 1
a2

∞∑
n=0

an+2

n+ 2 = 1
a2

( ∞∑
n=0

an+1

n+ 1 − a
)

= 1
a2 (− log(1− a)− a)

which shows that
∞∑
n=0

(n+ 1)2

n+ 2 an+2 = a3

(1− a)2 − log(1− a)− a ≤ a3

(1− a)2 + a2

2(1− a) = a2 + a3

2(1− a)3 .
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Back to estimating ψk defined in (3.61)

Thanks to Lemmas 3.10 and 3.11, recalling the estimates (3.62), (3.63) and (3.64), we deduce that
ψk ∈ L2,∞

log (B(0, Rk)). Since ψk has a pole of order at most 1 at zero, this implies that

ψk(z)− a−1,k

z
∈W1,1 ∩ L2,1 (B(0, Rk/4)) .

Notice that a−1,k is bounded for k ≥ N . Indeed, Ψk(z) = zψk(z) is holomorphic, so the mean-value
formula and (3.69) applied to r = Rk

2 , yield that there exists ρ ∈ [R2 , R] such that

|a−1,k| = |u(0)| = 1
2πρ

∣∣∣∣∣
∫
∂Bρ(0)

Ψk(z)dz

∣∣∣∣∣ ≤ 1
2π

∫
∂Bρ(0)

|ψk|dH 1

≤ 1
2π

2
√

3π
log(2)

(
1 + log

(
4√
3

))
‖ψk‖L2,∞

log (B(0,Rk)) .

A pointwise estimate on ~Vk

Using variants of Lemmas 3.10 and 3.11 for harmonic functions (see [26] and [33] for more details), we
also deduce that ~wk ∈W1,1 ∩ L2,1(B(0, Rk/4)). We obtain a decomposition on B(0, Rk/4)

∇Im
(
~Vk

)
= h1,k(z) + h2,k(z), (3.74)

where

|h1,k(z)| ≤ C
log
(
Rk
|z|

)
|z|

and h2,k ∈ W1,1 ∩ L2,1(B(0, Rk/4)). More precisely, there exists a constant C0 > 0 independent of k
such that for all k ≥ N ,

‖h2,k‖L2,1(B(0,Rk/4)) + ‖∇h2,k‖L1(B(0,Rk/4)) ≤ C0.

Now, identifying C with R2, we can rewrite the equation for ∂z ~Vk as
∂xRe (~Vk) + ∂yIm (~Vk) = 2 Re

(
~Yk

)
−∂yRe (~Vk) + ∂xIm (~Vk) = 2 Im

(
~Yk

)
,

(3.75)

or, equivalently,

∇Re (~Vk)−∇⊥Im ( ~Vk) = 2 ~Yk.

Therefore, we have
∂xRe

(
~Vk

)
= ∂y ~Hk − 3

n−2∑
j=1
〈∂y ~Hk, ~nk,j〉~nk,j + ?h

(
∂y~nk ∧ ~Hk

)
− ∂yIm (~Vk)

∂yRe ( ~Lk) = −∂x ~Hk + 3
n−2∑
j=1
〈∂x ~Hk, ~nk,j〉~nk,j − ?h

(
∂x~nk ∧ ~Hk

)
+ ∂xIm (~Vk).

(3.76)

The identity (3.76) implies that

∂rRe (~Vk) = cos(θ)∂xRe (~Vk) + sin(θ)∂yRe (~Vk) =
(

cos(θ)∂y ~Hk − sin(θ)∂x ~Hk

)
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− 3
n−2∑
j=1
〈cos(θ)∂y ~Hk − sin(θ)∂x ~Hk, ~nk,j〉~nk,j + ?h

(
(cos(θ)∂y~nk − sin(θ)∂x~nk) ∧ ~Hk

)
− cos(θ)∂yIm (~Vk) + sin(θ)Re (~Vk)

= 1
r
∂θ ~Hk − 3π~nk

(
1
r
∂θ ~Hk

)
+ ?h

(
1
r
∂θ~nk ∧ ~Hk

)
− 1
r
∂θIm

(
~Vk

)
, (3.77)

since for any smooth function u : B(0, 1)→ Rn, and a, b ∈ C we have

1
r
∂θu = − sin(θ)∂xu+ cos(θ)∂yu .

Now, recall the notation

Re (~Vk)ρ = −
∫
∂B(0,ρ)

Re
(
~Vk

)
dH 1 = 1

2πρ

∫
∂B(0,ρ)

Re
(
~Vk

)
dH 1 , for all α−1

0 rk ≤ ρ ≤ α0Rk.

Since π~nk( ~Hk) = ~Hk, we have

π~nk

(
∂θ ~Hk

)
= ∂θ

(
π~nk( ~Hk)

)
− (∂θπ~nk) ( ~Hk) = ∂θ ~Hk −

(
∂θ(π~nk)( ~Hk)

)
. (3.78)

Therefore, by (3.76), (3.77) and (3.78), we deduce that

d

dρ
Re (~Vk)ρ = 1

2π

∫ 2π

0
∂ρ~Vk(ρ, θ)dθ = 1

2π

∫ 2π

0

(
3
ρ

(∂θπ~nk)
(
~Hk

)
+ ?h

(
1
ρ
∂θ~nk ∧ ~Hk

))
dθ. (3.79)

Arguing as in the proof of [4, Lemma VI.1] using the ε-regularity Theorem 4.9 (adapted from Rivière’s
original result [48]), we deduce that there exists ε4(n), C4(n) > 0 such that the following holds: if

sup
rk<s<Rk

∫
B2s\Bs(0)

|∇~nk|2dx ≤ ε4(n)

then

|∇~nk(z)|2 ≤ C2
4 (n) 1

|z|2

∫
B2|z|\B |z|

2

|∇~nk|2dx ≤
C2

4 (n)ε3(n)
|z|2

, for all 2rk ≤ |z| ≤
Rk
2 . (3.80)

This motivates us to introduce the function δk : (0, Rk)→ R defined as

δk(ρ) =
(

1
ρ2

∫
B2ρ\B ρ

2
(0)
|∇~nk|2dx

) 1
2

=
√

15π
2

(
−
∫
B2ρ\B ρ

2
(0)
|∇~nk|2dx

) 1
2

.

We have in particular

ρ δk(ρ) ≤
(∫

Ωk(1)
|∇~nk|2dx

) 1
2

≤
√

Λ(h). (3.81)

Using Fubini’s theorem, we deduce that, for all 0 < r < R < Rk
2 , it holds∫ R

r

δ2(ρ) ρ dρ =
∫ R

r

(∫
B2R\B r

2
(0)
|∇~nk|21{ ρ2<|x|<2ρ}dx

)
dρ

ρ
=
∫
B2R\B r

2
(0)
|∇~nk|2

(∫ 2|x|

|x|
2

dρ

ρ

)
dx

= log(4)
∫
B2R\B r

2
(0)
|∇~nk|2dx. (3.82)

This implies by the Cauchy-Schwarz inequality that∫ R

r

δk(ρ) ρ dρ ≤
(∫ R

r

ρ dρ

) 1
2
(∫ R

r

δ2(ρ) ρ dρ
) 1

2

≤ Rk

(∫
BR\B r

2
(0)
|∇~nk|2dx

) 1
2

. (3.83)
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Furthermore, since ~Hk satisfies the Euler-Lagrange equation

Lgk
~Hk = 1

2∇
∗
gk

(
∇gk ~Hk − 3∇⊥gk ~Hk + ?h

(
(∗∇gk~nk) ∧ ~Hk

))
= −R⊥1 ( ~Hk) + 2 K̃h

~Hk − 2 R2(d~Φk)− (DR)(d~Φk)−R⊥3 ( ~Hk),

which is uniformly elliptic in all dyadic annuli in Ωk(1) thanks to the hypothesis and the Harnack equation
on the conformal parameter (Lemma 3.3, (3.9)), we deduce by standard elliptic regularity ([12], Theorem
3.9) that there exists a constant Γ0(n) such that

r
∥∥∥∇ ~Hk

∥∥∥
L∞(∂B(0,r))

≤ Γ0(n)
(∥∥∥ ~Hk

∥∥∥
L∞(B 4

3 r
\B 3

4 r
(0))

+ r2
∥∥∥Lg

~Hk

∥∥∥
L∞(B 4

3 r
\B 3

4 r
(0))

)
. (3.84)

Remark 3.12. In fact, one rather applies elliptic regularity to the operator L~n introduced below in
(4.4), and to the equation (4.3). One checks that using this equation yields the same estimate for ∇ ~Hk.

With the ε-regularity Theorem 4.9 inspired from Rivière’s one ([48]), we deduce that∥∥∥eλk ~Hk

∥∥∥
L∞(B 4

3 r
\B 3

4 r
(0))
≤ Γ1(n)

∥∥∥eλk ~Hk

∥∥∥
L2(B2r\B r

2
(0))

. (3.85)

Now, since

e−A|z|dk ≤ eλk(z) ≤ eA|z|dk ,

we deduce that for all 0 < β < 1 and rk ≤ βr < β−1r < Rk, we have for all βr ≤ |z| ≤ β−1r

e−Aα|dk|rdk ≤ eλk(z) ≤ eAα−|dk|rdk .

And since dk −→
k→∞

d, we deduce that there exists B ∈ R independent of k such that

sup
z∈B2r\B r

2
(0)
eλk(z) ≤ eB inf

z∈B2r\B r
2

(0)
eλk(z) , for all 2rk < r <

Rk
2 . (3.86)

The combination of (3.85) and (3.86) gives∥∥∥ ~Hk

∥∥∥
L∞(B 4

3 r
\B 3r

4
(0))
≤ eBe−λk(r)Γ1(n)

∥∥∥eλk ~Hk

∥∥∥
L2(B2r\B r

2
(0))
≤ eBe−λk(r)Γ1(n)δ(r). (3.87)

Likewise, we have∥∥∥Lg
~Hk

∥∥∥
L∞(B 4

3 r
\B 3

4 r
(0))
≤ C(h)

(
1 +

∥∥∥ ~Hk

∥∥∥
L∞(B 4

3 r
\B 3r

4
(0))

)
≤ C(h)

(
1 + eBe−λk(r)Γ1(n)δ(r)

)
. (3.88)

Since rδ(r) ≤
√

Λ(h), we finally deduce by (3.84), (3.87) and (3.88) that
eλk(|z|)| ~Hk(z)| ≤ |∇~nk(z)| ≤ C4(n)δ(|z|) for all z ∈ Ωk

(
1
2

)
eλk(|z|)|∇ ~Hk(z)| ≤ C5(n, h)δ(|z|)

|z|
for all z ∈ Ωk

(
1
2

)
.

(3.89)

Therefore, ∣∣∣∣ ddρRe (~Vk)ρ
∣∣∣∣ ≤ Ce−λk(ρ)δ2(ρ).

This estimate implies that∫ Rk
2

2rk
eλk(ρ)

∣∣∣∣ ddρRe (~Vk)ρ
∣∣∣∣ ρ dρ ≤ C ∫

Ωk(1)
|∇~nk|2dx. (3.90)
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Define the function

a : (0, Rk/2)→ R+ , a(t) =
∣∣∣Re

(
~Vk

)
t

∣∣∣ .
As |a′(t)| =

∣∣∣ ddtRe
(
~Vk

)
t

∣∣∣ , the combination of (3.21) and (3.90) gives that∫ R

r

t1+dk |a′(t)|dt ≤ C.

Since dk −→
k→∞

d > −1, from the identity∫ R

r

t1+dka′(t)dt = R1+dka(R)− r1+dka(r)− (1 + dk)
∫ R

r

tdka(t)dt , (3.91)

we deduce that

r1+dka(r) ≤
(
Rk
2

)1+dk
a

(
Rk
2

)
+ C.

The estimate

|Vk(z)| ≤ C2
log
(
Rk
|z|

)
|z|

implies that (
Rk
2

)1+dk
a

(
Rk
2

)
≤ C2R

dk
k |log(Rk)| ,

which is bounded independently of k ≥ N since dk −→
k→∞

d > −1 and Rk −→
k→∞

R > 0. Finally, we deduce

that for all 2rk < |z| < Rk
2 , it holds

|z|dk
∣∣∣Re (~Vk)|z|

∣∣∣ ≤ C

|z|
. (3.92)

Lemma 3.13. For all r > 0 and u ∈W1,1(∂B(0, r),Rn), it holds

‖u− ur‖L∞(∂B(0,r)) ≤ n
∫
∂B(0,r)

|∇u|dH 1. (3.93)

Proof. By scaling invariance, we can assume that r = 1, which permits to see u as a 2π-periodic function
u = (u1, · · · , un) : [0, 2π] → Rn. By the intermediate values theorem, for all 1 ≤ i ≤ n, there exists
ai ∈ [0, 2π] such that

ui(ai) = −
∫ 2π

0
ui dL

1 = 1
2π

∫ 2π

0
ui(θ)dθ.

Therefore, we have for all 1 ≤ i ≤ n and for all θ ∈ [0, 2π]∣∣∣∣ui(θ)−−∫ 2π

0
ui dL

1
∣∣∣∣ = |ui(θ)− ui(ai)| =

∣∣∣∣∣
∫ θ

ai

u′i(t)dt

∣∣∣∣∣ ≤
∫ 2π

0
|u′i(t)|dt,

Therefore, by the triangle inequality, we have∣∣∣∣u(θ)−−
∫ 2π

0
u dL 1

∣∣∣∣ ≤ n∑
i=1

∣∣∣∣ui(θ)−−∫ 2π

0
u′idL

1
∣∣∣∣ ≤ n∑

i=1

∫ 2π

0
|u′i(t)|dt ≤ n

∫ 2π

0
|u′(t)|dt, for all θ ∈ [0, 2π].

Coming back to the initial inequality, we deduce that

‖u− ur‖L∞(∂B(0,r)) ≤ n
∫
∂B(0,r)

∣∣∣∣1r ∂θu
∣∣∣∣ dH 1 ≤ n

∫
∂B(0,r)

|∇u|dH 1

which concludes the proof of the lemma.
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Using the estimates |~Yk| ≤
Ce−λk(|z|)

|z|2
, |∇Im (~Vk)| ≤ C

|z|
and (3.75), we deduce that for all z ∈ Ωk( 1

4 ),

we have∣∣∣∣Re
(
~Vk(z)

)
− Re

(
~Vk

)
|z|

∣∣∣∣ ≤ n ∫
∂B(0,|z|)

|∇Re (~Vk)|dH 1 = n

∫
∂B(0,|z|)

∣∣∣2~Yk +∇⊥Im (~Vk)
∣∣∣ dH 1

≤ n
∫
∂B(0,|z|)

(
2|~Yk|+ |∇Im (~Vk)|

)
dH 1 ≤ 4πnC

|z|1+dk
+ 2πnC5 log

(
Rk
|z|

)
+ n

∫
∂B(0,|z|)

|h2|dH 1,

where h2 is bounded in W1,1∩L2,1(B(0, Rk/4)). In particular, by trace theory, we have h2 ∈ L1(∂B(0, |z|))
and for some universal constant independent of |z|, we have by the Cauchy-Schwarz inequality

‖h2‖L1(∂B(0,|z|)) ≤ Γ2

(
1
Rk
‖h2‖L1(B(0,Rk/4)) + ‖∇h2‖L1(B(0,Rk/4))

)
≤ Γ2

(√
π

4 ‖h2‖L2(B(0,Rk/4)) + ‖∇h2‖L1(B(0,Rk/4))

)
.

Therefore, we obtain the estimate∣∣∣∣Re (~Vk(z))− Re
(
~Vk

)
|z|

∣∣∣∣ ≤ 4πnC
|z|1+dk

+ 2πnC5 log
(
Rk
|z|

)
+ C.

Finally, using that dk > −1 + ε and recalling the Harnack inequality (3.21), we deduce that

eλk(z)|Re (~Vk)(z)| ≤ C

|z|
+ 2πnC5|z|−1+ε log

(
Rk
|z|

)
+ C|z|−1+ε ≤ C

|z|
. (3.94)

The previous estimate on Im (~Vk) (see (3.74)) coupled with the same argument on averages implies that

eλk(z)|~Vk(z)| ≤ C

|z|
, for all z ∈ Ωk(1/4), (3.95)

which, recalling the Harnack inequality (3.21) for the conformal parameters, in turn gives,

|z|dk |~Vk(z)| ≤ C

|z|
, for all z ∈ Ωk(1/4). (3.96)

Analysis of the other cases

Now, assume that dk > 0. We will distinguish the case dk −→
k→∞

0 and dk −→
k→∞

d > 0.

Case 2: dk −→
k→∞

0. Define as above

~Uk(z) = 1
z2

(
− 1
πζ

?
(
ζ

2~Yk(ζ)
))

= − 1
πz2

∫
C

ζ
2~Yk(ζ)
z − ζ

|dζ|2.

Notice that ∂z ~Uk = ~Yk. Fix some z ∈ B(0, R), where we recall that r = 2rk and R = Rk
2 .

For 0 < 2|z| ≤ r, it holds

~Uk(z) = − 1
πz2

∫
B(0,R)\B(0,2|z|)

ζ
2~Yk(ζ)
ζ − z

|dζ|2 =
∞∑
l=0

(
1
π

∫
B(0,R)\B(0,2|z|)

ζ
2~Yk(ζ)
ζl+1

|dζ|2
)
zl =

∞∑
l=0

ak,lz
l.

Likewise, we have

|ak,0| ≤ 2πC0R .
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Then, we estimate for l = 1∣∣∣∣∣
∫
B(0,R)\B(0,2|z|)

ζ
2~Yk(ζ)
ζ
l+1 |dζ|2

∣∣∣∣∣ ≤ C0

∫
B(0,R)\B(0,2|z|)

|dζ|2

|ζ|2+dk
= 2πC0

dk

(
1

(2|z|)dk −
1
Rdk

)
.

For l ≥ 2, we have∣∣∣∣∣
∫
B(0,R)\B(0,2|z|)

ζ
2~Yk(ζ)
ζ
l+1 |dζ|2

∣∣∣∣∣ ≤ C0

∫
B(0,R)\B(0,2|z|)

|dζ|2

|ζ|l+1+dk
= 2πC0

l − 1 + dk

(
1

(2|z|)l−1 −
1

Rl−1+dk

)
.

Therefore, it holds ∣∣∣∣∣
∞∑
l=2

ak,lz
l

∣∣∣∣∣ ≤ 2C0|z|.

We deduce that ∣∣∣~Uk(z)− ak,0

z2

∣∣∣ ≤ 2C0

|z|
1
dk

(
1

(2|z|)dk −
1
Rdk

)
+ 2C0

|z|
.

Recalling the definition (3.53) of ~Vk(z) = ~Uk(z)− ak,0
z2 , we deduce that for all |z| ≤ r

2 ≤
R

4 , it holds

|~Vk(z)| ≤ 2C0R
−dk

|z|
1
dk

((
R

2|z|

)dk
− 1
)

+ 2C0

|z|
≤ 4C0

|z|

(
1 + 1

dk

((
R

2|z|

)dk
− 1
))

(3.97)

for k large enough. Notice that for all z 6= 0 we have

1
dk

((
R

2|z|

)dk
− 1
)

= 1
dk

(
edk log( R

2|z| ) − 1
)

= log
(
R

2|z|

)
+O(dk) −→

k→∞
log
(
R

|z|

)
,

which suggest at the light of the previous discussion that the function above in the right-hand side of
(3.97) belongs to a Lorentz space. Although one can effectively prove such an estimate by introducing
a sequence of Lorentz spaces “converging” towards L2,∞

log (B(0, R)) and generalise Lemma 3.10 (see the
Appendix 7.2), we will not need of this fact.

Assume that 2|z| > r. It holds

z2~Uk(z) = 1
2πi

∫
B(0,2|z|)\B(0,r)

ζ
2~Yk(ζ)
ζ − z

dζ ∧ dζ + 1
2πi

∫
B(0,R)\B(0,2|z|)

ζ
2~Yk(ζ)
ζ − z

dζ ∧ dζ.

We first estimate directly∣∣∣∣∣ 1
2πi

∫
B(0,2|z|)\B(0,r)

ζ
2~Yk(ζ)
ζ − z

dζ ∧ dζ

∣∣∣∣∣ ≤ C0

π

∫
B(0,2|z|)

dζ|2

|ζ|dk |z − ζ|

= C0

π

∫
B(0, |z|2 )

|dζ|2

|ζ|dk |z − ζ|
+ C0

π

∫
B(0,2|z|)\B(0, |z|2 )

|dζ|2

|ζ|dk |z − ζ|
.

(3.98)

For all ζ ∈ B(0, |z|2 ), we have by the triangle inequality

|z − ζ| ≤ |z| − |ζ| ≥ |z|2 ,

which implies that∫
B(0, 2

|z| )

|dζ|2

|ζ|dk |z − ζ|
≤ 2
|z|

∫
B(0, |z|2 )

|dζ|2

|z|dk
= 4π
|z|

∫ |z|
2

0
r1−dkdr = 4π

2− dk
|z|1−dk , (3.99)
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while ∫
B(0,2|z|)\B(0, |z|2 )

|dζ|2

|ζ|dk |z − ζ|
≤ 2dk
|z|dk

∫
B(0,2|z|)\B(0, |z|2 )

|dζ
|z − ζ|

≤ 2dk
|z|dk

∫
B(z,3|z|)

|dζ|2

|z − ζ|
= 2dk+1 · 3π|z|1−dk . (3.100)

Since dk < 1, the combination of (3.98), (3.99), (3.100) and (3.101) gives that∣∣∣∣∣ 1
2πi

∫
B(0,2|z|)\B(0,r)

ζ
2~Yk(ζ)
ζ − z

dζ ∧ dζ

∣∣∣∣∣ ≤ 16C0|z|1−dk . (3.101)

The previous argument shows that (for the same constant ak,0)∣∣∣∣∣− 1
πz2

∫
B(0,R)\B(0,2|z|)

ζ
2~Yk(ζ)
ζ − z

|dζ|2 − ak,0

z2

∣∣∣∣∣ ≤ 4C0

|z|

(
1 + 1

dk

((
R

2|z|

)dk
− 1
))

,

and ∣∣∣~Uk(z)− ak,0

z2

∣∣∣ ≤ 4C0

|z|

(
1 + 1

dk

((
R

2|z|

)dk
− 1
))

+ 16C0

|z|1+dk
.

Finally, we get that for all z ∈ B(0, R2 ) the following estimate holds:

|~Vk(z)| ≤ 4C0

|z|

(
1 + 1

dk

((
R

2|z|

)dk
− 1
))

+ 16C0

|z|1+dk
. (3.102)

Case 3: 0 < dk ≤ 1 and dk −→
k→∞

d ∈ (0, 1). The estimate (3.102) gives that

|z|dk |~Vk(z)| ≤ 4C0

|z|

(
|z|dk + 1

dk

((
Rdk − 1

)))
+ 16C0

|z|
≤ C

|z|

which shows that our needed estimate holds uniformly in k ∈ N.
Case 4: dk −→

k→∞
d ≥ 1. By the previous cases, we can also assume that dk ≥ 1 for all k ∈ N too.

Let a ∈ N such that a ≤ dk < a+ 1, and define

~Uk(z) = 1
za+2

(
− 1
πζ
∗
(
ζ
a+2~Yk(ζ)

))
= − 1

πza+2

∫
C

ζ
a+2~Yk(ζ)
z − ζ

|dζ|2.

Observe that ∂z ~Uk = ~Yk. Fix some z ∈ B(0, R), where we recall that r = 2rk and R = Rk
2 .

For 0 < 2|z| ≤ r, it holds

~Uk(z) = − 1
πza+2

∫
B(0,R)\B(0,2|z|)

ζ
a+2~Yk(ζ)
ζ − z

|dζ|2 = 1
za+2

∞∑
l=0

(
1
π

∫
B(0,R)\B(0,2|z|)

ζ
a−l+1~Yk(ζ)|dζ|2

)
zl

=
∞∑
l=0

ak,lz
l−a−2.

First, we have

|ak,0| ≤
C0

π

∫
B(0,R)\B(0,2|z|)

|ζ|a−dk−1|dζ|2 = C0

a+ 1− dk
(
Ra+1−dk − (2|z|)a+1−dk

)
.

Then, for l = 1:∣∣∣∣∣ 1π
∫
B(0,R)\B(0,2|z|)

ζ
a−l+1~Yk(ζ)|dζ|2

∣∣∣∣∣ ≤ C0

π

∫
B(0,R)\B(0,2|z|)

|dζ|2

|ζ|2+dk−a
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=


2C0 log

(
R

2|z|

)
if dk = a

2C0

dk − a

(
1

(2|z|)dk−a −
1

Rdk−a

)
if dk > a.

For l ≥ 2, we have:∣∣∣∣∣ 1π
∫
B(0,R)\B(0,2|z|)

ζa−l+1~Yk(ζ)|dζ|2
∣∣∣∣∣ ≤ C0

π

∫
B(0,R)\B(0,2|z|)

|dζ|2

|ζ|dk+l+1−a

= 2C0

dk + l − a− 1

(
1

(2|z|)dk+l−a−1 −
1

Rdk+l−a−1

)
≤ 2C0

l − 1
1

(2|z|)dk−a−1
1

(2|z|)l .

Therefore∣∣∣∣∣
∞∑
l=2

ak,lz
l

∣∣∣∣∣ ≤ 2C0(2|z|)a+1−dk
∞∑
l=2

1
l − 1

1
2l = C0(2|z|)a+1−dk

∞∑
l=0

1
l + 1

1
2l+1 = log(2)C0(2|z|)a+1−dk .

We deduce that for dk = a, it holds∣∣∣~Uk(z)− ak,0

za+2

∣∣∣ ≤ 4C0

|z|dk+1 + 2C0
1

|z|dk+1 log
(
R

2|z|

)
, (3.103)

while for dk > a, ∣∣∣~Uk(z)− ak,0

za+2

∣∣∣ ≤ 4C0

|z|1+dk
+ 2C0

dk − a
1

|z|a+1

(
1

|z|dk−a
−
(

2
R

)dk−a)
. (3.104)

Now, if 2|z| > r, we can make the same decomposition

za+2~Uk(z) = 1
2πi

∫
B(0,2|z|)\B(0,r)

ζ
a+2~Yk(ζ)
ζ − z

dζ ∧ dζ + 1
2πi

∫
B(0,R)\B(0,2|z|)

ζ
a+2~Yk(ζ)
ζ − z

dζ ∧ dζ.

The second integral is estimated as above and we get∣∣∣∣∣ 1
2πi

∫
B(0,R)\B(0,2|z|)

ζ
2~Yk(ζ)
ζ − z

dζ ∧ dζ − ak,0

za+2

∣∣∣∣∣ ≤ 4C0

|z|1+dk
+ 2C0

dk − a
1

|z|a+1

(
1

|z|dk−a
−
(

2
R

)dk−a)
.

(3.105)

Then, we have∣∣∣∣∣ 1
2πi

∫
B(0,2|z|)\B(0,r)

ζ
a+2~Yk(ζ)
ζ − z

|dζ|2
∣∣∣∣∣ ≤ C0

π

∫
B(0,2|z|)\B(0,r)

|dζ|2

|ζ|dk−a|ζ − z|
≤ 16C0|z|a+1−dk

using the same proof given the estimate (3.101). Finally, we deduce that

|~Vk(z)| ≤ 4C0

|z|

(
1 + 1

dk

((
R

2|z|

)dk
− 1
))

+ 16C0

|z|1+dk
. (3.106)

Sub-case 1: dk −→
k→∞

d with a < d ≤ a + 1. Then the estimate (3.106) immediately implies the
bound

|z|dk |~Vk(z)| ≤ C

|z|
, for all z ∈ Ωk

(
1
2

)
.

Sub-case 2: dk = a. Then we can apply the same argument on averages as in the case a = −1 and
the rest of the proof is unchanged (notice that the proof of the estimate on Im (~Vk) is independent of the
multiplicity dk).
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Sub-case 3: dk −→
k→∞

a and dk > a for all k ∈ N (notice that it covers all cases by the previous case).
Then we apply the same averaging argument as before the statement of Lemma 3.13 and find

r1+dka(r) ≤
(
Rk
2

)1+dk
a

(
Rk
2

)
+ C,

which shows by (3.104) that

r1+dka(r) ≤ 4C0 + C.

Notice that if the estimate had been replaced by an estimate on Ωk(α0) for all 0 < α0 <
1
2 , we would

have had instead

r1+dka(r) ≤ 4C0 + 2C0

dk − a
1

(α0Rk)a+1

(
1

(α0Rk)dk−a −
(

2
Rk

)dk−a)
.

Since dk −→
k→∞

a and Rk −→
k→∞

R ∈ (0,∞), we deduce that

1
(α0Rk)dk−a = e−(dk−a) log(α0Rk) = 1− (dk − a) log(α0Rk) +O

(
(dk − a)2)

which gives that

1
dk − a

(
1

(α0Rk)dk−a −
(

2
Rk

)dk−a)
−→
k→∞

log
(

1
2α0

)
,

showing that

lim sup
k∈→∞

(
4C0 + 2C0

dk − a
1

(α0Rk)a+1

(
1

(α0Rk)dk−a −
(

2
Rk

)dk−a))
= 4C0 + 2C0

(α0R)a+1 log
(

1
2α0

)
<∞.

In the next proposition, we summarise the point-wise estimates on ~Vk proved in this section.

Proposition 3.14. Under the hypothesis of Theorem 3.2, there exists C = C(m,h,Λ) > 0 and α0 > 0
such that ~Vk defined in (3.53) satisfies the pointwise estimates

eλk(z)|~Vk(z)| ≤ C

|z|
, for all z ∈ Ωk(α0) ,

|z|dk |~Vk(z)| ≤ C

|z|
, for all z ∈ Ωk(α0) .

(3.107)

Estimates on ~Wk and ~Lk

First, will construct a function ~Uk on B(0, α0Rk), for α0 > 0, such that

∇z ~Uk = ∂z ~Uk + ~fk(~Uk) = ∂z ~Vk , on Ωk(α0). (3.108)

Note this is equivalent to

~Uk = ~Vk −
1
πz
∗ fk(~Uk) , on Ωk(α0).

This will be achieved by a fixed point argument similar to the one of [38, Lemma A.1].

First, extend by 0 the restriction of ~Vk to B(0, α0Rk), and using a smooth non-negative cut-off η such
that η = 1 on B(0, α0Rk) and supp (η) ⊂ B(0, 2α0Rk), we can assume that supp (γlj) ⊂ B(0, 2α0Rk) for
all 1 ≤ j, l ≤ m. Then, define λ̃k : C→ R such that

λ̃k(z) = λk(z)η(z)− (1− η(z)) log(1 + |z|2).
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Consider the normed space

L2,∞
λ̃k

(C) = L1
loc(C) ∩

{
u : eλ̃ku ∈ L2,∞(C)

}
, for all k ∈ N,

equipped with the norm

‖u‖L2,∞
λ̃k

(C) =
∥∥∥eλ̃ku∥∥∥

L2,∞(C)
.

One checks immediately that L2,∞
λ̃k

(C) is a Banach space (for example, by the series criterion using that

L2,∞(C) is a Banach space). Now, by the previous estimate (3.107), we deduce that ~Vk ∈ L(2,∞)
λ̃k

(C).

We introduce the operator T : L2,∞
λ̃k

(C)→ L(2,∞)
λ̃k

(C), defined by

T (~U) = ~Vk −
1
πz
∗ fk(~U).

Using the Young inequality for convolution, for all 2 < p <∞, if q < 2 is such that

1
p

= 1
2 + 1

q
− 1,

using the support assumption on γlj and that |fk(~Uk)| ≤ C0e
λk |~Uk|, we deduce that∥∥∥∥ 1

πz
∗ fk(~U)

∥∥∥∥
Lp,∞(C)

≤ C(p)
∥∥∥∥ 1
πz

∥∥∥∥
L2,∞(C)

∥∥∥fk(~Uk)
∥∥∥

L
2p
p+2 ,∞(C)

= 2
√
πC(p)

∥∥∥fk(~Uk)
∥∥∥

L
2p
p+2 (B(0,2α0Rk))

≤ 2
√
πC(p) ‖1‖

L
p+2
p (B(0,2α0Rk))

∥∥∥fk(~Uk)
∥∥∥

L2,∞(B(0,2α0Rk))

≤ 2
√
πC0C(p)π

p
p+2 (2α0Rk)

2p
p+2

∥∥∥~U∥∥∥
L2,∞
λ̃k

(C)
. (3.109)

Since eλk ∈ Lp(B(0, Rk)) for all p < 2
1− ε , using Hölder’s inequality we deduce that for all 2 < p <

2
1− ε

it holds∥∥∥T (~U)− ~Vk

∥∥∥
L2,∞
λ̃k

(C)
=
∥∥∥eλ̃k (T (~U)− ~Vk

)∥∥∥
L2,∞(C)

≤ C(p)
∥∥∥eλ̃k∥∥∥

Lp,∞(C)

∥∥∥T (~U)− ~Vk

∥∥∥
L

p
p−2 ,∞(C)

≤ C(p)
(
Cα0

∥∥∥rdkk ∥∥∥Lp(B(0,α−1
0 rk))

+ eA
∥∥|z|dk∥∥Lp(B(0,2α0Rk)) +

∥∥∥∥ 1
1 + |z|2

∥∥∥∥
L2(C)

)∥∥∥∥ 1
πz
∗ fk(~U)

∥∥∥∥
L

p
p−2 ,∞(C)

≤ C(p)
(
Cα0(2π)

1
p r

2
p+dk
k + (2π)

1
p

(2α0Rk)
2
p+dk

(2 + pdk)
1
p

+
√
π

)

× 2
√
πC0C

(
p

p− 2

)
π
p−2

3p−4 (2α0Rk)
2p−4
3p−4

∥∥∥~U∥∥∥
L2,∞
λ̃k

(C)
.

In particular, choosing p = 2 + ε < 2
1−ε , we obtain that there exists a constant C(ε) > 0 such that∥∥∥T (~U)− ~Vk

∥∥∥
L2,∞
λ̃k

(C)
≤ C(ε)α

ε
4
0

∥∥∥~U∥∥∥
L2,∞
λ̃k

(C)
.

Therefore, taking α0 =
(

1
2C(ε)

) 4
ε , we get that∥∥∥T (~U)− ~Vk

∥∥∥
L2,∞
λ̃k

(C)
≤ 1

2

∥∥∥~U∥∥∥
L2,∞
λ̃k

(C)
.

Since ~Vk ∈ L2,∞
λ̃k

(C), we conclude that T : L2,∞
λ̃k

(C)→ L2,∞
λ̃k

(C) is a contraction which implies in particular
that T admits a unique fixed point ~Uk.
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The function ~Uk ∈ L2,∞
λ̃k

(C) satisfies

~Uk = ~Vk −
1
πz
∗ fk(~Uk). (3.110)

Since fk(~Uk) ∈ L2,∞(B(0, α0Rk)), the previous estimate (3.109) shows that

1
πz
∗ fk(~Uk) ∈

⋂
p<∞

Lp(C).

Since eλk ∈ Lp(B(0, α0Rk)) for all p < 2
1− ε , we deduce by Hölder’s inequality that

eλk
(

1
πz
∗ fk(~Uk)

)
∈

⋂
p< 2

1−ε

Lp(B(0, α0Rk)).

Now, recalling the pointwise estimate (3.107), we deduce that there exists f ∈ Lp(B(0, α0Rk)) for all
p < 2

1−ε such that

eλk |~Uk| ≤
C

|z|
+ f(z) for all z ∈ Ωk(α0).

Then, using an estimate presented in the proof of [38, Lemma A.2], we deduce that∥∥∥∥∇( 1
πz
∗ fk(~Uk)

)∥∥∥∥
L2,∞(C)

≤ C
∥∥∥fk(~Uk)

∥∥∥
L2,∞(C)

≤ C.

Since ∇Im (~Vk) ∈ L2,∞(C), by (3.110) we conclude that

∇Im (~Uk) = ∇Im (~Vk)− Im
(
∇
(

1
πz
∗ fk(~Uk)

))
∈ L2,∞(C).

Now, we can apply the exact same proof as Lemma A.1 (see also Lemma 3.15 for more details) to
obtain by a similar contraction argument as above the existence of ~Wk ∈W1,(2,∞)(C) such that{

∇z ~Wk = 0 in B(0, α0Rk)

Im ( ~Wk) = Im (~Uk) on ∂B(0, α0Rk).

Finally, defining ~Lk = ~Uk − ~Wk : B(0, α0Rk)→ Cn, we deduce that{
eλk~Lk ∈ L2,∞(B(0, α0Rk))

Im (~Lk) ∈W1,(2,∞)(B(0, α0Rk))

and 
∇z~Lk = ~Yk in B(0, α0Rk)

∆Im
(
~Lk

)
= 4 Im

(
∇z ~Yk

)
− 4 Im

(
fk(~Yk)

)
− 4 Im

(
∂z

(
fk(~Uk)

))
in B(0, α0Rk)

Im (~Lk) = 0 on ∂B(0, α0Rk).

Furthermore, there exists lk bounded in Lp(B(0, α0Rk)) for all p < 2
1− ε such that

eλk(z)|~Lk(z)| ≤ C

|z|
lk(z), on Ωk(α0) . (3.111)

Now, we introduce a refinement of [38, Lemma A.2].
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Lemma 3.15. Let 2 < p < ∞ and 1 < q < ∞ be fixed real numbers. There exists constants
ε3(n, p, q), C3(n, p, q) > 0 with the following property. For all j, k ∈ {1, · · · , n}, let γkj ∈ Lp(C) ∩
W1,(2,∞)(C) be such that supp (γkj ) ⊂ B(0, 2) and

∥∥γkj ∥∥L2,1(C) ≤ ε0. For all ~U ∈ L1
loc(C), define

(
∇z ~U

)
j

= ∂z ~Uj +
n∑
k=1

γkj ~Uk in D ′(C), where 1 ≤ j ≤ n.

Then for all ~Y ∈
(
L1 ∩ L2,∞) (C), if

∥∥γkj ∥∥Lp(B(0,2)) ≤ ε3 there exists a unique ~U ∈ W1,(2,∞)(B(0, 1))
such that Im (~U) ∈W2,q(B(0, 1)) satisfying{

∇z ~U = ~Y in D ′(B(0, 1))

Im (~U) = 0 on ∂B(0, 1).

Furthermore, we have the estimate∥∥∥~U∥∥∥
W1,(2,∞)(B(0,1))

≤ C3

(∥∥∥~Y ∥∥∥
L1(C)

+
∥∥∥~Y ∥∥∥

L2,∞(C)

)
.

Proof. As in the proof of Lemma 3.6, the same argument shows that if T is defined analogously, we have
for all ~U ∈ L2,∞(C) the estimate ∥∥∥T (~U)

∥∥∥
L2,∞(C)

≤ C
∥∥∥~Y ∥∥∥

L1(C)

and that for all ~U1, ~U2 ∈ L2,∞(C) if ε3 ≤ δ0 is small enough, we have∥∥∥T (~U1)− T (~U2)
∥∥∥

L2,∞(C)
≤ 1

4

∥∥∥~U1 − ~U2

∥∥∥
L2,∞(C)

.

By the same argument as [38], we deduce that∥∥∥∇T (~U)j
∥∥∥

L2,∞(C)
≤ Γ2

∥∥∥∥∥~Yj −
n∑
k=1

γkk ~Uk

∥∥∥∥∥
L2,∞(C)

≤ Γ2

∥∥∥~Yj∥∥∥
L2,∞(C)

+
n∑
j=1

Γ2

∥∥∥γkj ~Uk∥∥∥L2(B(0,2))

≤ Γ2

∥∥∥~Y ∥∥∥
L2,∞(C)

+
n∑
j=1

Γ2
∥∥γkj ∥∥Lp(B(0,2))

∥∥∥~Uk∥∥∥
L

2p
p−2 (B(0,2))

.

By the Sobolev embedding if q < 2, we have W1,q(B(0, 2)) ↪−→ Lq∗(B(0, 2)), where

1
q∗

= 1
q
− 1

2 = 2− q
2q .

Since we want to impose q∗ = 2p
p− 2 where p > 2, this implies that q = p′ = p

p−1 Therefore, we deduce
that there exits a universal constant Γ4 such that∥∥∥~Uk∥∥∥

L
2p
p−2 (B(0,2))

≤ Γ4

(∥∥∥~Uk∥∥∥
L

p
p−1 (B(0,2))

+
∥∥∥∇~Uk∥∥∥

L
p
p−1 (B(0,2))

)
.

Now, let r > 1 such that rp′ = 2, i.e. r = 2
p′

= 2(p− 1)
p

. By the L
2(p−1)
p−2 ,1/L

2(p−1)
p ,∞ duality, we deduce

that∥∥∥~Uk∥∥∥
L

p
p−1 (B(0,2))

≤ ‖1‖
L

2(p−1)
p

,1(B(0,2))

∥∥∥~Uk∥∥∥
L2,∞(B(0,2))

= 2
3p−4
p−1

(p− 1)2

p(p− 2)π
p−2

2(p−1)

∥∥∥~Uk∥∥∥
L2,∞(B(0,2))

,

and likewise ∥∥∥∇~Uk∥∥∥
L

p
p−1 (B(0,2))

≤ 2
3p−4
p−1

(p− 1)2

p(p− 2)π
p−2

2(p−1)π
p

2(p−2)

∥∥∥∇~Uk∥∥∥
L2,∞(B(0,2))

.
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Therefore, we get∥∥∥∇T (~U)
∥∥∥

L2,∞(C)
≤ Γ2n

∥∥∥~Y ∥∥∥
L2,∞(C)

+ Γ2n
22

3p−4
p−1

(p− 1)2

p(p− 2)π
p−2

2(p−1) ε4

(∥∥∥~Uk∥∥∥
L2,∞(B(0,2))

+
∥∥∥∇~Uk∥∥∥

L2,∞(B(0,2))

)
,

and for all ~U1, ~U2 ∈W1,(2,∞)(C), the estimate∥∥∥∇T (~U1)−∇T (~U2)
∥∥∥

L2,∞(C)
≤ Γ2n

22
3p−4
p−1

(p− 1)2

p(p− 2)π
p−2

2(p−1)π
p

2(p−2) ε4

∥∥∥~U1 − ~U2

∥∥∥
W1,(2,∞)(C)

.

Therefore, taking

ε4 = min
{
δ0,

1
4

(
Γ2n

22
3p−4
p−1

(p− 1)2

p(p− 2)π
p−2

2(p−1)

)−1}
,

we deduce that ∥∥∥T (~U1)− T (~U2)
∥∥∥

W1,(2,∞)(C)
≤ 1

2

∥∥∥~U1 − ~U2

∥∥∥
W1,(2,∞)(C)

.

Therefore, T has a unique fixed point that we denote ~U0. Define by f : Cn → Cn the linear map such
that for all ~X ∈ C∞(C,Cn), we have

∇z ~X = ∂z ~X + f( ~X).

Now, to get the boundary condition, define the operator S : W1,(2,∞)(B(0, 1),Cn)→W1,(2,∞)(B(0, 1),Cn)
such that for all ~U ∈W1,(2,∞)(B(0, 1),Cn), ~V = S(~U) is the unique solution of the equation{

∂z ~V = −f(~U) in B(0, 1)

Im (~V ) = Im (~U0) on ∂B(0, 1).
(3.112)

Since we only prescribe the imaginary part of ~V , this system admits a unique solution. First, by the
Cauchy formula, if

~V0(z) = 1
2πi

∫
B(0,1)

f(~U)
ζ − z

dζ ∧ dζ,

then we have ∂z ~V0 = −f(~U) and ~V0 = 0 on ∂B(0, 1). Furthermore, by the previous convolution estimates,
we have ∥∥∥~V0

∥∥∥
W1,(2,∞)(B(0,1))

≤ 1
2

∥∥∥~U∥∥∥
W1,(2,∞)(B(0,1))

. (3.113)

Now, first solve in W1,(2,∞)(B(0, 1),Rn) the equation{
∆~V1 = 0 in B(0, 1)
~V1 = Im (~U0) on ∂B(0, 1).

Then we have by Calderón-Zygmund estimate ~V1 ∈W1,(2,∞)(B(0, 1)). If ~V2 is the harmonic conjugate of
~V1, then by interpolation theory, we also deduce that ~V2 ∈W1,(2,∞)(B(0, 1)) and that for some universal
constant C, we have∥∥∥~V1

∥∥∥
W1,(2,∞)(B(0,1))

+
∥∥∥~V2

∥∥∥
W1,(2,∞)(B(0,1))

≤ C
∥∥∥Im (~U0)

∥∥∥
W1,(2,∞)(B(0,1))

.

By construction, the function ~V3 = ~V1 + i~V2 = i(~V2− i~V1) is holomorphic, which implies that ~V4 = i~V3 =
~V2+i~V1 is anti-holomorphic, i.e. ∂z ~V4 = 0. Furthermore, we have by construction Im (~V4) = ~V1 = Im (~U0)
on ∂B(0, 1). Therefore, the function ~V0+~V4 is the unique solution to the system (3.112). Furthermore, by
the estimate (3.113), S is a contraction, so we get a unique fixed point ~U1 of S, which satisfies ∇z ~U1 = 0
and Im (~U1) = Im

(
~U0

)
on ∂B(0, 1). Therefore, the function ~U = ~U0 − ~U1 is the unique solution to the

system of the theorem.
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Recall the expansion

~Lk = ~Vk − ~Wk −
1
πz
∗ fk(~Uk),

where fk(~Uk) ∈ L2,∞
λ̃k

(C), ~Wk ∈W1,(2,∞)(B(0, α0Rk)). Moreover,

eλk(z)|~Vk(z)| ≤ C

|z|
, for all z ∈ Ωk(α0) .

From [38, Lemma A.1], we deduce that

1
πz
∗ fk(~Uk) ∈W1,(2,∞)(C),

which finally implies that

~Lk = ~Vk + ~̃W k, with ~̃W k ∈W1,(2,∞)(B(0, α0Rk)) .

For simplicity, we shall rename ~̃W k as ~Wk. Summarising, we proved the following:

Theorem 3.16. Under the hypothesis of Theorem 3.2, there exists C1(m,h,Λ), α0 > 0 and a measurable
function ~Lk : B(0, α0Rk)→ Cm satisfying the equation

∇z~Lk = ~Yk on Ωk(α0).

Moreover, the following decomposition holds: ~Lk = ~Vk + ~Wk, where

eλk(z)|~Vk(z)| ≤ C1

|z|
, for all z ∈ Ωk(α0),

and

Im (~Lk) and ~Wk are bounded in W1,(2,∞)(B(0, α0Rk)) uniformly in k ∈ N.

3.4 Conclusion of the proof of Theorem 3.2

By Lemma 3.15, we deduce that there exists Sk ∈W1,(2,∞)(B(0, α0Rk),C) such that ∂zSk =
〈
∂z~Φk, ~Lk

〉
in B(0, α0Rk)

Im (Sk) = 0 on ∂B(0, α0Rk)
(3.114)

Furthermore, by [38, (6.7)] we have

Im
(
∂z

(
〈∂z~Φk, ~Lk〉

))
= −1

2e
2λk
〈
~Hk, Im

(
~Lk

)〉
.

Since Im (~Lk) ∈ Lq(B(0, α0Rk)) for all q < ∞, eλk ~Hk ∈ L2(B(0, α0Rk)) and eλk ∈ Lp(Ωk(α0)) for all
p < 2

1−ε , we deduce that

e2λk
〈
~Hk, Im

(
~Lk

)〉
is bounded in Lp(B(0, α0Rk)) for all q < 2

2− ε .

Therefore, since ∆Im (Sk) = 4 Im
(
∂z

(
〈∂z~Φk, ~Lk〉

))
on B(0, α0Rk)

Im (Sk) = 0 on ∂B(0, α0Rk),
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the classical Calderón-Zygmund estimates give that

Im (Sk) is bounded in W2,q(B(0, α0Rk)) for all q < 2
2− ε .

By Sobolev embedding, we deduce that

∇Im (Sk) is bounded in Lp(B(0, α0Rk)) for all p < 2
1− ε .

Therefore, for all z ∈ Ωk(α0) it holds

|∇Re (Sk)| = 2|∂zRe (Sk)| = 2
∣∣∣−∂zIm (Sk) + 〈∂z~Φk, ~Lk〉

∣∣∣
≤ |∇Im (Sk)|+ 2eλk |~Lk| ≤

C

|z|
+ eλk |gk(z)|, (3.115)

where gk ∈W1,(2,∞)(B(0, α0Rk)).

Now, using Lemma 3.15, we deduce that there exists ~Rk ∈W1,(2,∞)(B(0, α0Rk),Λ2Cm) such that{
∇z ~Rk = ∂z~Φk ∧ ~Lk − 2i ∂z~Φk ∧ ~Hk in B(0, αRk)

Im (~Rk) = 0 on ∂B(0, αRk).
(3.116)

Furthermore, by [38, (6.8)] we have

Im
(
∇z
(
∂z~Φk ∧ ~Lk − 2i∂z~Φk ∧ ~Hk

))
= −1

2e
2λk ~Hk ∧ Im (~Lk) ∈ Lq(Ωk(α0)) for all q < 2

2− ε .

This give in turn

∆Im (~Rk) = 4 ∂z∂z ~Rk = 4 Im
(
∂z

(
∂z~Φk ∧ ~Lk − 2i ∂z~Φk ∧ ~Hk

))
− 4 Im

(
∂z

(
Fk(~Rk)

))
= 4 Im

(
∇z
(
∂z~Φk ∧ ~Lk − 2i ∂z~Φk ∧ ~Hk

))
− 4 Im

(
Fk

(
∂z~Φk ∧ Im (~Lk)− 2i ∂z~Φk ∧ ~Hk

))
− 4 Im

(
∂z

(
Fk(~Rk)

))
.

Notice that∣∣∣F k (∂z~Φk ∧ Im (~Lk)− 2i ∂z~Φk ∧ ~Hk

)∣∣∣ ≤ Ce2λk
(
|~Lk|+ | ~Hk|

)
∈ Lq(B(0, α0Rk)) for all q < 2

2− ε .

Recalling the Sobolev embedding

W1,(2,∞)(B(0, 1)) ↪−→
⋂
q<∞

Lq(B(0, 1)),

we have ~Rk ∈ Lq for all q < ∞. Since eλk ∈ Lp(Ωk(α0)) for all p < 2
1−ε , we deduce that a fortiori it

holds

|Fk(~Rk)| ≤ Ceλk |~Rk| ∈
⋂

p< 2
1−ε

Lp(Ωk(α0)) .

Thus ∆Im (~Rk) ∈W−1,p(B(0, α0Rk)) for all p < 2
1− ε and, by Calderón-Zgymund estimates, we obtain

that Im (~Rk) ∈W1,p(B(0, α0Rk)) for all p < 2
1− ε .

Next, we sharpen the last estimate. To this aim, we first prove a pointwise bound for Re (~Rk).
Writing

~Rk = ~R1
k ∧ ~R2

k ,
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we deduce that

∇z ~Rk = ∂z ~Rk + fk(~R1
k) ∧ ~R2

k + ~R1
k ∧ fk(~R2

k)

= ∂z ~Rk +
n∑

i,j,l=1
ci,j,l∂z~Φk,l ~Rk,i,j ei ∧ ej ,

where (~e1, · · · , ~em) is a basis of Rm, and ci,j,l ∈ R are finite linear combinations of Christoffel symbols
with integer weights. We compute:

∂zFk(~Rk) =
m∑

i,j,l=1

(
∂zci,j,l∂z~Φk,l ~Rk,i,j + 1

2ci,j,le
λk ~Hk · eλk ~Rk,i,j + ci,j,l∂z~Φk,l∂z ~Rk,i,j

)
ei ∧ ej

=
n∑

i,j,l=1

(
1
4 (∂xci,j,l + i ∂yci,j,l)

(
∂x~Φk,l − i ∂y~Φk,l

)(
Re
(
~Rk,i,j

)
+ i Im

(
~Rk,i,j

))
+ 1

2ci,j,le
λk ~Hk ·

(
Re
(
~Rk,i,j

)
+ i Im

(
~Rk,i,j

))
+ 1

4ci,j,l
(
∂x~Φk,l − i ∂y~Φk,l

)
(∂x + i ∂y)

(
Re
(
~Rk,i,j

)
+ i Im

(
~Rk,i,j

)))
ei ∧ ej

=
m∑

i,j,l=1

(
1
4

(
〈∇ci,j,l,∇~Φk,l〉+ i 〈∇ci,j,l,∇⊥~Φk,l〉

)(
Re
(
~Rk,i,j

)
+ i Im

(
~Rk,i,j

))
+ 1

2ci,j,le
λk ~Hk ·

(
Re
(
~Rk,i,j

)
+ i Im

(
~Rk,i,j

))
+ 1

4ci,j,l
(
∂x~Φk,l − i ∂y~Φk,l

)(
∂xRe

(
~Rk,i,j

)
− ∂yIm

(
~Rk,i,j

)
+i
(
∂yRe

(
~Rk,i,j

)
+ ∂xIm

(
~Rk,i,j

))))
ei ∧ ej

=
m∑

i,j,l=1

(
1
4

(
〈∇ci,j,l,∇~Φk,l〉Re

(
~Rk,i,j

)
− 〈∇ci,j,l,∇⊥~Φk,l〉Im

(
~Rk,i,j

))
+ i

4

(
〈∇ci,j,l,∇⊥~Φk,l〉Re

(
~Rk,i,j

)
+ 〈∇ci,j,l,∇~Φk,l〉Im

(
~Rk,i,j

))
+ 1

2ci,j,le
λk ~Hk · eλk

(
Re
(
~Rk,i,j

)
+ i Im

(
~Rk,i,j

))
+ 1

4ci,j,l
(
〈∇~Φk,∇Re

(
~Rk,i,j

)
〉+ 〈∇~Φk,∇⊥Im

(
~Rk,i,j

)
〉
)

+ i

4ci,j,l
(
−〈∇~Φk,l,∇⊥Re

(
~Rk,i,j

)
〉+ 〈∇~Φk,l,∇Im

(
~Rk,i,j

)
〉
))

ei ∧ ej .

Therefore, we have

Im
(
∂zFk(~Rk)

)
= 1

4

n∑
i,j,l=1

(
〈∇ci,j,l,∇⊥~Φk,l〉Re

(
~Rk,i,j

)
+ 〈∇ci,j,l,∇~Φk,l〉Im

(
~Rk,i,j

)
+ 2 eλk ~Hk · eλkIm

(
~Rk,i,j

)
+ ci,j,l

(
−
〈
∇~Φk,l,∇⊥Re

(
~Rk,i,j

)〉
+
〈
∇~Φk,l,∇Im

(
~Rk,i,j

)〉))
ei ∧ ej .

Since ~Rk ∈ Lp(B(0, α0Rk)) for all p <∞, we deduce that for all i, j, l ∈ {1, · · · ,m}

〈∇ci,j,l,∇⊥~Φk,l〉Re
(
~Rk,i,j

)
+ 〈∇ci,j,l,∇~Φk,l〉Im

(
~Rk,i,j

)
∈

⋂
p< 1

1−ε

Lp(B(0, α0Rk)),

Indeed, since for some cα,β,γi,j,l ∈ N, we have

ci,j,l(x) =
∑
α,β,γ

cα,β,γi,j,l Γγα,β(~Φk(x)), ,
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we deduce that

|∇ci,j,l| ≤ C0e
λk ,

so that 〈∇ci,j,l,∇⊥~Φk,l〉 ∈
⋂
p< 1

1−ε
(B(0, α0Rk)). From Im (~Rk) ∈ C0(B(0, α0Rk)), we deduce that∣∣∣eλk ~Hk · eλkIm

(
~Rk,i,j

)∣∣∣ ≤ C|z|dkδ(|z|) ≤ C|z|dk−1 .

Since ∇λk ∈ L2,∞ and ∇~Rk ∈ L2,∞, using the previous Lp bound on eλk (see (3.26)), we get that

∂zFk(~Rk) ∈ Lq(B(0, α0Rk)) for all q < 2
2− ε .

Therefore, we have Im (~Rk) ∈ W2,q(B(0, α0Rk)) for all q < 2
2− ε , and by Sobolev embedding, we get

∇Im (~Rk) ∈ Lp(B(0, α0Rk)) for all p < 2
1−ε , which shows in particular that ∇Im (~Rk) ∈ L2,1(B(0, α0Rk))

and Im (~Rk) ∈ C0(B(0, α0Rk)), which suffices to our purpose. Indeed, by the pointwise bounds (3.89)
and (3.111), we deduce that

|∇Re (~Rk)| = 2|∂zRe (~Rk)| ≤ eλk |~Lk|+ 2eλk | ~Hk|+ 2|Fk(~Rk)|

≤ C

|z|
+ fk(z) + Cδ(|z|) + Ceλk |~Rk| ≤

C

|z|
+ hk(z), (3.117)

where hk is bounded in Lp(B(0, α0Rk)) for all p < 2
1− ε .

Furthermore, ~Rk and Sk solve the system∇z ~Rk = i
(

(−1)n+1 ?h

(
~nk ∇z ~Rk

)
+ (∂zSk) ?h ~nk

)
in B(0, αRk)

∂zSk = −i〈∇z ~Rk, ?h~nk〉 in B(0, αRk).
(3.118)

Therefore, there exists a linear map Fk : Λ2Rn → Λ2Rn such that

∇z ~Rk = ∂z ~Rk + Fk(~Rk),

where

|Fk(~Rk)| ≤ Ceλk |~Rk|. (3.119)

Thus, we can rewrite the system (3.118) as∂z ~Rk = i
(

(−1)n+1 ?
(
~nk ∂z ~Rk

)
+ (∂zSk) ?h ~nk + i Fk(~Rk) + (−1)n+1 ?h

(
~nk Fk(~Rk)

))
∂zSk = −i〈∂z ~Rk, ?h~nk〉 − i〈Fk(~Rk), ?h ~nk〉 .

(3.120)

Since ~Rk and Sk are bounded in W1,(2,∞)(B(0, αRk)), we deduce by the Sobolev embedding that for all
1 < p <∞, there exists Cp <∞ such that∥∥∥~Rk∥∥∥

Lp(B(0,αRk))
+ ‖Sk‖Lp(B(0,αRk)) ≤ Cp <∞, for all 0 < α < α0 and k ≥ N . (3.121)

In order to make the notations easier to read, we prove the following lemma (see [4]). Denote:

ur = −
∫
∂B(0,r)

u dH 1 = 1
2πr

∫
∂B(0,r)

u dH 1.
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Lemma 3.17. Let k,m ∈ N, u ∈ W1,1(B(0, 1),C), f ∈ L2(B(0, 1),C), ~v ∈ W1,(2,∞)(B(0, 1),ΛkCm),
~w ∈W1,2 ∩ L∞(B(0, 1),ΛkRm) such that

∂zu = −i (〈∂z~v, ~w〉+ f) . (3.122)

Let 0 < r < R <∞ and set Ω = BR \Br(0). Assume that Im (~v) ∈W1,2(Ω) and that

|∇Re (~v)(z)| ≤ C0

|z|
, for all r ≤ |z| ≤ R. (3.123)

Then(∫ R

r

∣∣∣∣ ddρRe (u)ρ
∣∣∣∣2 ρ dρ

) 1
2

≤
√

2π
(
n

k

)
C0 ‖∇~w‖L2(Ω) + 1√

2π
‖~w‖L∞(Ω) ‖∇Im (~v)‖L2(Ω) + 1√

2π
‖f‖L2(Ω) .

(3.124)

Proof. Rewriting the equation (3.122) as

∂z Re (u) = −i (〈∂z~v, ~w〉+ ∂zIm (u) + f) ,

and recalling that ∂z = 1
2 (∂x − i ∂y), we deduce that{

∂xRe (u) = 2 Re (−i (〈∂z~v, ~w〉+ ∂zIm (u) + f)) = 2 Im (〈∂z~v, ~w〉+ ∂zIm (u) + f)
∂yRe (u) = −2 Im (−i (〈∂z~v, ~w〉+ ∂zIm (u) + f)) = 2 Re (〈∂z~v, ~w〉+ ∂zIm (u) + f) .

Recalling that

∂rRe (u) = cos(θ) ∂xu+ sin(θ) ∂yu
1
r
∂θRe (u) = − sin(θ) ∂xu + cos(θ) ∂yu,

we get

∂rRe (u) = 2 cos(θ)Im (〈∂z~v, ~w〉+ ∂zIm (u) + f) + 2 sin(θ)Re (〈∂z~v, ~w〉+ ∂zIm (u) + f)

= 2
|z|

Im (〈z∂z~v, ~w〉+ z∂zIm (u) + zf(z)) . (3.125)

Now, notice that

2
|z|

Im (〈z ∂z~v, ~w〉) = Im (〈(cos(θ) + i sin(θ)) (∂x − i ∂y) Re (~v), ~w〉)

+ Im (i 〈(cos(θ) + i sin(θ)) (∂x − i ∂y) Im (~w), ~w〉)
= 〈sin(θ)∂x Re (~v)− cos(θ)∂yRe (~v), ~w〉+ 〈cos(θ)∂xIm (~v) + sin(θ)∂yIm (~v), ~w〉

= −1
r
〈∂θRe (~v), ~w〉+ 〈∂rIm (~v), ~w〉.

Using (3.125), the same computation for z∂zIm (u) yields

∂r Re (u) = −1
r
〈∂θRe (~v), ~w〉+ 1

r
∂θIm (u) + 〈∂rIm (~v), ~w〉+ 2 Im

(
z

|z|
f(z)

)
. (3.126)

Therefore, we deduce that

d

dr
Re (u)r = 1

2π

∫ 2π

0
∂rRe (u)(r, θ)dθ = − 1

2π

∫ 2π

0

〈
1
r
∂θRe (~v), ~w

〉
dθ + 1

2πr

∫
∂B(0,t)

∂θIm (u)dθ

+ 1
2π

∫ 2π

0
〈∂rIm (~v), ~w〉+ 1

2π

∫ 2π

0
Im
(
z

|z|
f(z)

)
dθ
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= − 1
2π

∫ 2π

0

〈
1
r
∂θRe (~v), ~w − ~wt

〉
dθ + 1

2π

∫ 2π

0
〈∂rIm (~v), ~w〉dθ + 1

2π

∫ 2π

0
Im
(
z

|z|
f(z)

)
dθ.

Notice that by the Cauchy-Schwarz inequality, we have for all ϕ ∈ L2(Ω,C)∫ R

r

∣∣∣∣∫ 2π

0
ϕ
dθ

2π

∣∣∣∣2 ρ dρ ≤ 1
2π

∫ R

r

∫ 2π

0
|ϕ|2ρ dρdθ = 1

2π

∫
Ω
|ϕ|2|dz|2.

Therefore, by the Minkowski inequality and (3.123) we have(∫ R

r

∣∣∣∣ ddρRe (u)ρ
∣∣∣∣2 ρ dρ

) 1
2

≤ C0√
2π

(∫
Ω

∣∣~w − ~w|z|
∣∣2 |dz|2
|z|2

) 1
2

+ 1√
2π

(∫
Ω
|〈∂rIm (~v), ~w〉|2|dz|2

) 1
2

+ 1√
2π

(∫
Ω

∣∣∣∣Im (
z

|z|
f(z)

)∣∣∣∣2 |dz|2
) 1

2

≤ C0√
2π

(∫
Ω
|~w − ~w|z||2

|dz|2

|z|2

) 1
2

+ 1√
2π
‖~w‖L∞(Ω) ‖∇Im (~v)‖L2(Ω) + 1√

2π
‖f‖L2(Ω) .

Now, by (3.93), we infer∥∥~w − ~w|z|
∥∥

L∞(∂B(0,|z|)) ≤
(
n

k

)∫
∂B(0,|z|)

|∇~w|dH 1, for all z ∈ B(0, 1).

Using the Cauchy-Schwarz inequality and the co-area formula twice, we deduce that∫
BR\Br(0)

|~w − ~w|z||2
|dz|2

|z|2
≤
(
n

k

)2 ∫
BR\Br(0)

(∫
∂B(0,|z|)

|∇~w|dH 1

)2
|dz|2

|z|2

≤ 2π
(
n

k

)2 ∫
BR\Br(0)

∫
∂B(0,|z|)

|∇~w|2 |dz|
2

|z|
= (2π)2

(
n

k

)2 ∫ R

r

(∫
∂B(0,t)

|∇~w|2dH 1

)
dt

= (2π)2
(
n

k

)2 ∫
BR\Br(0)

|∇~w|2|dz|2.

We conclude that(∫ R

r

∣∣∣∣ ddρRe (u)ρ
∣∣∣∣2 ρ dρ

) 1
2

≤
√

2π
(
n

k

)
C0 ‖∇~w‖L2(Ω) + 1√

2π
‖~w‖L∞(Ω) ‖∇Im (~v)‖L2(Ω) + 1√

2π
‖f‖L2(Ω) ,

which concludes the proof of the lemma.

Applying Lemma 3.17 to Sk in the equation (3.120), we deduce that(∫ αRk

α−1
0 rk

∣∣∣∣ ddρRe (Sk,ρ)
∣∣∣∣2 ρ dρ

) 1
2

≤ n(n− 1)
√
π

2C3(n,Λ) ‖∇~nk‖L2(Ωk(α)) + 1√
2π

∥∥∥∇Im (~Rk)
∥∥∥

L2(Ωk(α))

+ 1√
2π

∥∥∥~Rk∥∥∥
L2(Ωk(α))

.

Applying Lemma 3.17 to each of the m(m−1)
2 components of ~Rk, we get by the Minkowski inequality that(∫ α0Rk

α−1
0 rk

∣∣∣∣ ddρRe (~Rk,ρ)
∣∣∣∣2 ρ dρ

) 1
2

≤ n(n− 1)Γ1(n)C3(nΛ) ‖∇~nk‖L2(Ωk(α))

+ n(n− 1)
2
√

2π

(
‖∇Im (Sk)‖L2(Ωk(α)) +

∥∥∥∇Im (~Rk)
∥∥∥

L2(Ωk(α))

)
+ n(n− 1)

√
2
π

∥∥∥~Rk∥∥∥
L2(Ωk(α))

.

Recall now the following generalization (see [33]) of [4, Lemma VI.2] proved in [25] (see also [26]).
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Lemma 3.18. There exists a universal constant R0 > 0 with the following property. Let 0 < 4r < R <
R0, Ω = B(0, R) \ B(0, r) → R, a, b : Ω → R such that ∇a ∈ L2,∞(Ω) and ∇b ∈ L2(Ω), and ϕ : Ω → R
be a solution of

∆ϕ = ∇a · ∇⊥b in Ω.

For r ≤ ρ ≤ R, define

ϕr = −
∫
∂Bρ(0)

ϕdH 1 = 1
2πρ

∫
∂Bρ(0)

ϕdH 1.

Then ∇ϕ ∈ L2(Ω), and there exists a positive constant C0 > 0 independent of 0 < 4r < R such that for

all
( r
R

) 1
2
< α <

1
2 it holds:

‖∇ϕ‖L2(BαR\Bα−1r) ≤ C0 ‖∇a‖L2,∞(Ω) ‖∇b‖L2(Ω) + C0 ‖∇ϕρ‖L2(Ω) + C0 ‖∇ϕ‖L2,∞(Ω) .

From (3.121) we know that

‖Sk‖L2(Ωk(α0/2)) +
∥∥∥~Rk∥∥∥

L2(Ωk(α0/2))
≤ C.

Lemma 3.18, the system (3.120) and the Cauchy-Schwarz inequality imply that∫ α0Rk
2

2α−1
0 rk

(∣∣∣∣ ddρRe (~Rk,ρ)
∣∣∣∣+
∣∣∣∣ ddρRe (Sk,ρ)

∣∣∣∣) dρ ≤ C ∫ α0Rk
2

2α−1
0 rk

δ(ρ)
(∫

∂B(0,ρ)

(
|∇Sk|+ |∇~Rk|

)
dH 1

)
dρ

≤ C

(∫ α0Rk
2

2α−1
0 rk

δ2(ρ)ρ dρ
) 1

2 (
‖Sk‖L2(Ωk(α0/2)) +

∥∥∥~Rk∥∥∥
L2(Ωk(α0/2))

)
≤ C.

Furthermore, by the inequality (3.69), there exists r0 ∈ (α0Rk
4 , α0Rk

2 ) such that if r = α0Rk
2 , we have∫

∂Br0 (0)

(
|Sk|+ |~Rk|

)
dH 1 ≤ 2

√
3π

log(2)

(
‖Sk‖L2,∞(B2r\Br(0)) +

∥∥∥~Rk∥∥∥
L2,∞(B2r\Br(0))

)

≤ 2π1− 1
2p (2r)1− 1

p

log(2)

(
‖Sk‖Lp(B2r\Br(0)) +

∥∥∥~Rk∥∥∥
Lp(B2r\Br(0))

)
. (3.127)

Therefore, it holds∣∣∣Re (~Rk,r − Re (~Rk,r0)
∣∣∣+ |Re (Sk,r − Re (Sk,r0)| ≤ Cn

∫ r0

2α−1
0 rk

(∣∣∣∣ ddρRe (~Rk,ρ)
∣∣∣∣+
∣∣∣∣ ddρRe (Sk,ρ)

∣∣∣∣) dρ ≤ C
and

|Re (~Rk,r)|+ |Re (Sk,r)| ≤ C + C

(α0Rk)
1
p

(∥∥∥~Rk∥∥∥
Lp(Ωk(α0/2))

+ ‖Sk‖Lp(Ωk(α0/2))

)
.

In particular, we get that Re (~Rk)ρ,Re (Sk)ρ ∈ L∞([4α−1
0 Rk,

α0Rk
4 ]). We deduce that∣∣∣∣Re

(
~Rk

)
(z)− Re

(
~Rk

)
|z|

∣∣∣∣ ≤ n∫
∂B(0,|z|)

|∇Re
(
~Rk

)
|dH 1 ≤ n

∫
∂B(0,|z|)

|∇Im (~Rk)|dH 1

+ 2n
∫
∂B(0,|z|)

eλk
(
|~Lk|+ | ~Hk|

)
dH 1 + C|z|dk

∫
∂B(0,|z|)

∣∣∣Re (~Rk)
∣∣∣ dH 1 + C|z|dk

∫
∂B(0,|z|)

|Im (~Rk)|dH 1

≤ C + |z|dk
∫
∂B(0,|z|)

|W̃k|dH 1 + C|z|dk
∫
∂B(0,|z|)

|Re (~Rk)|dH 1 .
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By the L2,1/L2,∞ duality in dimension 1 and trace theory, since W̃k ∈W1,(2,∞), we deduce that∫
∂B(0,|z|)

|W̃k|dH 1 ≤ ‖1‖L2,1(∂B(0,|z|))

∥∥∥W̃k

∥∥∥
L2,∞(∂B(0,|z|))

≤ C|z|
∥∥∥W̃k

∥∥∥
W1,(2,∞)(Ωk(α0))

≤ C|z| .

Since dk > −1 + ε, we deduce by the L∞ estimate for the means of Re (~Rk) that

|Re (~Rk)(z)| ≤ C + C|z|dk
∫
∂B(0,|z|)

|Re (~Rk)|dH 1 .

Integrating this identity and using dk > −1 + ε, we deduce that∫
∂B(0,|z|)

|Re (~Rk)|dH 1 ≤ 2πC|z|+ 2πC|z|1+dk
∫
∂B(0,|z|)

|Re (~Rk)|dH 1

≤ C|z|+ C(α0Rk)ε
∫
∂B(0,|z|)

|Re (~Rk)|dH 1,

which shows that for α0 > 0 small enough, we have∫
∂B(0,|z|)

|Re (~Rk)|dH 1 ≤ C|z|, .

We conclude that Re (~Rk) ∈ L∞(B(0, α0Rk)). A similar argument (easier since we have a ∂z equation
and not a ∇z one) finally yields that

‖Sk‖L∞(Ωk(α0/4)) +
∥∥∥~Rk∥∥∥

L∞(Ωk(α0/4))
≤ C.

To complete the proof, recall from [38] that in B(0, α0Rk) it holds:∆
(

Re (~Rk)
)

= (−1)n ?h
(
∇~nk ∇⊥Re (~Rk)

)
− ?h

(
∇~nk ∇⊥(Re (Sk))

)
+ ~G1,k

∆ (Re (Sk)) = 〈∇(?h~nk),∇⊥Re (~Rk)〉+G2,k

for some ~G1,k and G2,k which are bounded in Lp(B(0, α0Rk)), for all 1 ≤ p < 2.
Recall also the following slight variant (see [33]) from a Lemma of [25].

Lemma 3.19. Let R0 > 0 be the constant of Lemma 3.18. Let 0 < 16r < R < R0, Ω = B(0, R) \
B(0, r)→ R, a, b : Ω→ R such that ∇a ∈ L2(Ω) and ∇b ∈ L2(Ω), and ϕ : Ω→ R be a solution of

∆ϕ = ∇a · ∇⊥b in Ω.

Assume that ‖ϕ‖L∞(∂Ω) <∞. Then there exists a constant C1 > 0 such that for all
( r
R

) 1
2
< α <

1
4 ,

‖ϕ‖L∞(Ω) + ‖∇ϕ‖L2,1(BαR\Bα−1r(0)) +
∥∥∇2ϕ

∥∥
L1(BαR\Bα−1r(0)) ≤ C1

(
‖∇a‖L2(Ω) ‖∇b‖L2(Ω) + ‖ϕ‖L∞(∂Ω)

)
.

From Lemma 3.19, we deduce that

‖∇Sk‖L2,1(Ωk(α0/2)) +
∥∥∥∇~Rk∥∥∥

L2,1(Ωk(α0/2))
+
∥∥∇2Sk

∥∥
L1(Ωk(α0/2)) +

∥∥∥∇2 ~Rk

∥∥∥
L1(Ωk(α0/2))

≤ C.

Since Im (~Lk) ∈W1,(2,∞)(B(0, α0Rk)) we deduce that eλkIm (~Lk) ∈ L2+ε(B(0, α0Rk)). Using the iden-
tity

eλk ~Hk = −Im
(
∇z ~Rk e−λk∂z~Φk

)
− 1

2e
λkIm (~Lk)

− Re
(
ie−λk∂z~Φk ∂zSk

)
+ Re

(
〈∂z~Φk, Im (~Lk)〉e−λ∂z~Φk

)
,

we finally get ∥∥∥eλk ~Hk

∥∥∥
L2,1(Ωk(α0/4))

≤ C

which concludes the proof of Theorem 3.2. �
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4 Weak ε-regularity for Willmore immersions with values into
manifolds

By [38, Lemma 3.2 and Theorem 3.1], the following identities are satisfied for any smooth immersion
~Φ : Σ→ (Mm, h)

~Y = i
(
∇z ~H − 3∇⊥z ~H − i ?h (∇z~n ∧ ~H)

)
= −2i

(
∇⊥z ~H + 〈 ~H, ~H0〉∂z~Φ

)
4e−2λRe

(
∇z
(
∇⊥z ~H + 〈 ~H, ~H0〉∂z~Φ

))
= ∆⊥g ~H − 2| ~H|2 ~H + A ( ~H) + 8 Re

(
〈R(~ez, ~ez)~ez, ~H〉~ez

)
.

We deduce that

Im (∇z ~Y ) = Im
(
−2i∇z

(
∇⊥z ~H + 〈 ~H, ~H0〉∂z~Φ

))
= −2 Re

(
∇z
(
∇⊥z ~H + 〈 ~H, ~H0〉∂z~Φ

))
= −1

2e
2λ
(

∆⊥g ~H − 2| ~H|2 ~H + A ( ~H)
)
− 4e2λ Re

(
〈R(~ez, ~ez)~ez, ~H〉~ez

)
.

Assuming that ~Φ is a Willmore immersion, from (1.1) we deduce that

Im (∇z ~Y ) = 1
2e

2λ
(
R⊥1 ( ~H)− 2 K̃h

~H + 2 R2(d~Φ) + (DR)(d~Φ)− 8 Re
(
〈R(~ez, ~ez)~ez, ~H〉~ez

))
. (4.1)

As before, let f : Cm → Cm be the linear map such that for all X ∈ C∞(B(0, 1),Cm), it holds

∇z ~X = ∂z ~X + f( ~X) = ∂z ~X +
(

m∑
l=1

γjl
~X l

)
1≤j≤m

,

where γjl =
∑m
q=1 Γjl,q∂z~Φq and Γjl,q are the Christoffel symbols of the ambient space (Mm, h).

Likewise, there exists linear maps F : Λ2Cm → Λ2Cm and G : Λm−2Cm → Λm−2Cm (notice that G = f

is m = 3) such that for all ~Y ∈ C∞(B(0, 1),Λ2Cm) and ~Z ∈ C∞(B(0, 1),Λm−2Cm) it holds:

∇z ~Y = ∂z ~Y + F (~Y ) and ∇z ~Z = ∂z ~Z +G(~Z) .

Notice that

Im (∇z ~Y ) = Im (∂z ~Y + fk(~Y )),

that

~Y = i
(
∂z ~H − 3π~n

(
∂z ~H

)
− i ?h

(
∂z~n ∧ ~H

)
− 2fk( ~H)− i ?h

(
G(~n) ∧ ~H

))
.

and that

Im
(
∂z

(
~Y
))

= −Re
(
∂z

(
∂z ~H − 3π~n(∂z ~H)− i ?h (∂z~n ∧ ~H)

))
+ Re

(
∂z

(
f( ~H)− i ?h

(
G(~n) ∧ ~H

)))
.

We immediately get

Re
(
∂z

(
∂z ~H − 3π~n

(
∂z ~H

)))
= 1

4 div
(
∇ ~H − 3π~n(∇ ~H)

)
and

Re
(
∂z

(
−i ?h

(
∂z~n ∧ ~H

)))
= Re

(
− i4 ?h

(
∆~n ∧ ~H

)
+ Re

(
−i ?h

(
∂z~n ∧ ∂z ~H

)))
= 1

4 ?h
(
∇⊥~n ∧∇ ~H

)
= 1

4 div
(
?h

(
∇⊥~n ∧ ~H

))
.

Finally, we get

Im
(
∂z

(
~Y
))

= −1
4 div

(
∇ ~H − 3π~n(∇ ~H) + ?h

(
∇⊥~n ∧ ~H

))
+ Re

(
∂z

(
f( ~H)− i ∗h

(
G(~n) ∧ ~H

)))
.
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Now, we have

~Y = i
(
∂z ~H − 3π~n(∂z ~H)− 2fk( ~H)− i ? (∂z~n ∧ ~H)− i ?h

(
G(~n) ∧ ~H

))
= i
(
−2 ∂z ~H + 3 (∂zπ~n) ~H − 2f( ~H)− i ? (∂z~n ∧ ~H)− i ?h

(
G(~n) ∧ ~H

))
.

We compute

Im
(
f
(

(∂zπ~n) ~H
))

j
= 1

4

n∑
l=1

n∑
q=1

Γlj,q〈∇~Φq,∇π~n〉 ~Hj = 1
4

(
~A2(~n) · ~H

)
j

Im
(
−i f

(
f( ~H)

))
j

= Re
(

n∑
l=1

n∑
q=1

Γlj,q∂z~Φqf( ~H)l

)
= Re

 n∑
l=1

n∑
q=1

n∑
l′=1

n∑
q′=1

Γlj,qΓl
′

l,q′∂z
~Φq∂z~Φq′ ~Hl′


= 1

4

n∑
l=1

n∑
q=1

n∑
l′=1

n∑
q′=1

Γlj,qΓl
′

l,q′〈∇~Φq,∇~Φq′〉 ~Hl′ = 1
4

(
~A3 · ~H

)
j

Im
(
f
(
?h

(
∂z~n ∧ ~H

)))
j

= 1
4

n∑
l=1

n∑
q=1

Γlj,q
〈
∇~Φq, ?h

(
∇⊥~n ∧ ~H

)
l

〉
= 1

4

(
~A4 · ?h

(
∇⊥~n ∧ ~H

))
j

Im
(
f
(
?h

(
G(~n) ∧ ~H

)))
= 1

4
~A4 · ( ~W ∧ ~H).

Likewise, we have for all 1 ≤ j ≤ n

Im
(
f(−2i ∂z ~H)

)
j

= Im
(
−2i

n∑
q=1

Γlj,q∂z~Φq∂z ~Hl

)
= −2

n∑
l=1

n∑
q=1

Γlj,qRe
(
∂z~Φq∂z ~Hl

)
= −

n∑
l=1

1
2

n∑
q=1

Γlj,q〈∇~Φq,∇ ~Hl〉

= −1
2 div

(
n∑
l=1

n∑
q=1

Γlj,q∇~Φq ~Hl

)
+ 1

2

n∑
l=1

n∑
q=1
〈∇Γlj,q,∇~Φq〉 ~Hl + 1

2

n∑
l=1

n∑
q=1

Γlj,q∆~Φq ~Hl

= −1
2 div

(
n∑
l=1

n∑
q=1

Γlj,q∇~Φq ~Hl

)
+ 1

2

n∑
l=1

n∑
q=1
〈∇Γlj,q,∇~Φq〉 ~Hl +

n∑
l=1

n∑
q=1

Γlj,qe2λ ~Hq
~Hl

= −1
2 div

(
~A0 · ~H

)
+ 1

4
~A1 · ~H + 1

4B( ~H, ~H),

where ~A0, ~A1 ∈Mn(R)⊗R2 and B is a bilinear map, such that for some universal constant C2 = C2(n, h),
have

| ~A0|+ | ~A1|+
√
‖B‖ ≤ C2e

λ.

Then, we have

Re
(
∂zf( ~H)

)
= 1

4 div
(

n∑
l=1

n∑
q=1

Γlj,q∇~Φq ~Hl

)
1≤j≤n

= 1
4 div

(
~A0 · ~H

)
,

and

Re
(
∂z

(
−i ?h

(
G(~n) ∧ ~H

)))
= 1

4 div
(
?h

(
n−2∑
k=1

n∑
l=1

n∑
q=1

Γj,q
(
~n1 ∧ · · · ∧ ~nk−1 ∧∇⊥~Φq~nk,l

)
∧ ~nk+1 ∧ · · · ∧ ~nn−2

)
∧ ~H

)
1≤j≤n

= −1
4 div

(
?h

(
~V ∧ ~H

))
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where ~V ∈ Λn−2Rn. Finally, we deduce that
| ~A0|+ | ~A1|+ | ~A4|+

√
‖B‖+ |~V |+ | ~W | ≤ Ceλ

| ~A2(~n)| ≤ Ceλ|∇~n|

| ~A3| ≤ Ce2λ ,

(4.2)

for some C = C(m,h) > 0. We deduce that

div
(
∇ ~H − 3π~n(∇ ~H) + ?h

(
∇⊥~n ∧ ~H

)
+ ~A0 · ~H + ?h(~V ∧ ~H)

)
= −4Im (∇z ~Y )

= −2e2λ
(
R⊥1 ( ~H)− 2 K̃h

~H + 2 R2(d~Φ) + (DR)(d~Φ)− 8 Re
(
〈R(~ez, ~ez)~ez, ~H〉~ez

))
− ~A1 · ~H − 3 ~A2(~n) · ~H − 2 ~A3 · ~H − ~A4 · ?h

(
∇⊥~n ∧ ~H

)
− ~A5 · ?h

(
~W ∧ ~H

)
−B( ~H, ~H). (4.3)

The bounds (4.2) give∣∣∣∣− 2e2λ
(
R⊥1 ( ~H)− 2 K̃h

~H + 2 R2(d~Φ) + (DR)(d~Φ)− 8 Re
(
〈R(~ez, ~ez)~ez, ~H〉~ez

))
− ~A1 · ~H − 3 ~A2(~n) · ~H − 2 ~A3 · ~H − ~A4 · ?h

(
∇⊥~n ∧ ~H

)
− ~A5 · ?h

(
~W ∧ ~H

)
−B( ~H, ~H)

∣∣∣∣
≤ C3

(
eλ + e2λ + eλ| ~H|+ e2λ| ~H|+ |∇~n|eλ| ~H|+ e2λ| ~H|2

)
∈ L1(B(0, 1)).

Following the strategy of [48], we next study the linear operator L~n defined for all vector-fields ~u :
B(0, 1)→ TMm by

L~n~u = ∆~u+ div
(
−3π~n(∇~u) + ?h

(
∇⊥~n ∧ ~u

)
+ ~A0 · ~u+ ?h(~V ∧ ~u)

)
. (4.4)

Compared to [48], L~n only differs by lower-order terms that are in L2 (if λ ∈ L∞(B(0, 1)) and ~u ∈
L2(B(0, 1))), and one checks that it is an elliptic operator for vector-fields with values into Mm. It will
be convenient to use Nash embedding to isometrically embed all the objects in Rn. By (2.1), calling
~̃n : Σ→ Λn−2Rn the induced unit normal of the immersion ι ◦ ~Φ : B(0, 1)→ Rn, we have

πñ(∇ ~H) = π~n(∇ ~H).

Furthermore, using the function ~V0 : B(0, 1)→ Λn−mRn defined by

~V0 = ?Rn (~e1 ∧ ~e2 ∧ ~n) = ~nι ◦ ~Φ,

where ~nι : Mm → Λn−mRn is the unit normal of the inclusion ι : Mm → Rn, we deduce that there exist
~A1 ∈ L∞(B(0, 1),Mn(R)⊗ R2) and ~V1 ∈ L∞(B(0, 1),Λn−2Rn) such that the operator L defined for all
~u ∈ C∞(B(0, 1),Rn) by

L1~u = ∆~u+ div
(
−3π

~̃n
(∇~u) + ?Rn

(
∇⊥~n ∧ ~V0 ∧ ~u

)
+ ~A1 · ~u+ ?Rn

(
~V1 ∧ ~u

))
,

satisfies for all ~u ∈ Γ(TMm) the identity

L1(~u) = L~n(~u).

However, we need to have the critical part of L1 self-adjoint, so we replace it by

L ~u = ∆~u+ div
(
−3π

~̃n
(∇~u) + ?Rn

(
∇⊥~n ∧ ~V0 ∧ ~u

)
+ ~A1 · ~u+ ?Rn

(
~V1 ∧ ~u

))
+ ?Rn

(
∇⊥~n ∧ ~V2 ∧ ~u

)
for some ~V2 to be determined later. The critical part of L is defined by

L0~u = ∆~u− 3 div (πñ(∇~u)) + div
(
?Rn

(
∇⊥~n ∧ ~V0 ∧ ~u

))
+ ?Rn

(
∇⊥~n ∧ ~V2 ∧ ~u

)
.
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Making the same computation as in the proof of of [48, Lemma A.1] (see (A.28)), we deduce that for all
~v ∈ C∞c (B(0, 1),Rn), it holds∫
B(0,1)

〈L0~u,~v〉dx =
∫
B(0,1)

(
〈~u,∆~v〉 − 3

〈
~u,div

(
π
~̃n

(∇~u)
)〉
−
〈
?Rn

(
∇⊥~n ∧ ~V0 ∧ ~u

)
,∇~v

〉
+
〈
?Rn

(
∇⊥~n ∧ ~V2 ∧ ~u

)
, ~v
〉)

dx

=
∫
B(0,1)

(
〈~u,∆~v〉 − 3

〈
~u,div

(
π
~̃n

(∇~u)
)〉

+
〈
~u, ?Rn

(
∇⊥~n ∧ ~V0 ∧ ~v

)〉
−
〈
~u, ?Rn

(
∇⊥~n ∧ ~V2 ∧ ~v

)〉)
dx

=
∫
B(0,1)

(〈
~u,∆~v − 3 div

(
π
~̃n

(∇~u)
)

+ div
(
?Rn

(
∇⊥~n ∧ ~V0 ∧∇~v

)
− ?Rn

(
∇⊥~n ∧ (∇~V0 + ~V2) ∧ ~v

))〉)
dx

=
∫
B(0,1)

〈~u,L0~v〉dx (4.5)

if and only if

~V2 = −1
2∇

~V0 .

Notice that ~nι ∈ C∞(B(0, 1),Λn−mRn), since (Mm, h) is smooth. Assuming without loss of generality
that ~Φ ∈W1,∞(B(0, 1),Mm), this implies that ∇~V0 ∈ L∞(B(0, 1)) and that L and L0 are well-defined
in the distributional sense for all ~u ∈ L2(B(0, 1),Rn) since

∇⊥~n ∧∇~V0 ∧ ~u ∈ L1(B(0, 1)).

Next, we will study the properties of the operator L . Applying [48, Lemma A.2 and Lemma A.4] directly
to the self-adjoint operator L0, one easily checks that the arguments [48, Lemma A.1 and Lemma A.3]
can be adapted to L . The point is that L is not self-adjoint, however L −1 : H−1(B(0, 1),Rn) →
W1,2

0 (B(0, 1),Rn) is still a compact operator on L2 and this is the key to make the strategy work.
Moreover, using that L0 is indeed self-adjoint, one can adapt [48, Lemma A.8].

Lemma 4.1. For all 0 < C1 < ∞, there exists ε0 = ε0(n) > 0 and C0 = C0(n) with the following
property. Let 2 ≤ m ≤ n. For all ~n1 ∈W1,2(B(0, 1),Λm−2Rn) and ~n2 ∈W1,∞(B(0, 1),Λn−mRn) letting
~n = ~n1 ∧ ~n2 ∈W1,2(B(0, 1),Λn−2Rn), assume that∫

B(0,1)
|∇~n1|2dx+

∫
B(0,1)

|∇~n2|2dx ≤ ε0,∫
B(0,1)

|∇~n2|4dx ≤ C1 . (4.6)

Then, for all ~f ∈ H−1(B(0, 1),Rn), there exists a unique map ~u ∈W1,(2,∞)
0 (B(0, 1),Rn) such that∆~u− 3 div (π~n(∇~u)) + div

(
?(∇⊥~n1 ∧ ~n2 ∧ ~u)

)
− 1

2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~u

)
= ~f in B(0, 1)

~u = 0 on ∂B(0, 1)
(4.7)

and

‖∇~u‖L2,∞(B(0,1)) ≤ C0

∥∥∥~f ∥∥∥
H−1(B(0,1))

. (4.8)

Furthermore, the operator L −1
0 : ~f → ~u is a self-adjoint and compact operator from L2(B(0, 1),Rn) into

itself.

Proof. First define

L̃0~u = ∆~u− 3 div (π~n(∇~u)) + div
(
?(∇⊥~n1 ∧ ~n2 ∧ ~u)

)
.
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Under the assumption (4.6), by the proofs of [48, Lemma A.1 and Lemma A.2], we deduce that there
exists a unique ~u0 ∈W1,2

0 (B(0, 1),Rn) such that L̃0~u0 = ~f and

‖∇~u0‖L2(B(0,1)) ≤ C0

∥∥∥~f∥∥∥
H−1(B(0,1))

.

Furthermore, by the proofs of [48, Lemma A.3 and Lemma A.4], there exists a unique ~v ∈W1,(2,∞)
0 (B(0, 1),Rn)

such that L̃0~v = ~g and

‖∇~v‖L2,∞(B(0,1)) ≤ C0 ‖~g‖L1(B(0,1)) .

Now, we will use a fixed point argument to conclude. We want to construct a function ~u such that

L0~u = L̃0~u0

or, equivalently, such that

L̃0(~u− ~u0) = 1
2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~u

)
.

By induction on k ≥ 1, we define ~uk to be the unique W1,(2,∞)
0 (B(0, 1),Rn) function such that

L0~uk = 1
2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~uk−1

)
.

Using that W1,(2,∞)(B(0, 1)) ↪→
⋂
p<∞

Lp(B(0, 1)), by the Sobolev inequality and interpolation, we have

‖∇~uk‖L2,∞(B(0,1)) ≤ C0
∥∥∇⊥~n1 ∧∇~n2 ∧ ~uk−1

∥∥
L1(B(0,1))

≤ C0 ‖∇~n2‖L4(B(0,1)) ‖∇~n1‖L2(B(0,1)) ‖~uk−1‖L4(B(0,1)) ≤ C0C1CSε0 ‖∇~uk−1‖L2,∞(B(0,1)) ,

which implies that choosing ε0 = min
{
ε1,

1
2C0C1CS

}
, the series

∑n
k=0 ~uk converges to some limit

~u =
∞∑
k=0

~uk

which satisfies

L̃0~u = L̃0~u0 +
∞∑
k=1

1
2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~uk−1

)
= ~f + 1

2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~u

)
,

so that

L0~u = ~f.

Furthermore, we have

‖∇~u‖L2,∞(B(0,1)) ≤ 2 ‖∇~u0‖L2,∞(B(0,1)) ≤ 2C0

∥∥∥~f∥∥∥
H−1(B(0,1))

which implies the needed estimate up to replacing C0 by 2C0 in the statement of the theorem. Finally,
the self-adjointness follows from the above computations in (4.5).

Remark 4.2. Notice that in fact
1
2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~u

)
∈
⋂
p<2

Lp(B(0, 1))

so we could also do the argument using Calderón-Zgymund estimates and get a W1,2
0 solution to the

original equation, but a W1,(2,∞) regularity suffices to our purposes.
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Now, we easily obtain the following extension of Lemma 4.1.

Lemma 4.3. For all 0 < C1 < ∞ and 2 < p < ∞, there exists ε1 = ε1(p, n) > 0 and C1 =
C1(n) with the following property. Let 2 ≤ m ≤ n. For all ~n1 ∈ W1,2(B(0, 1),Λm−2Rn) ~n2 ∈
W1,∞(B(0, 1),Λn−mRn), ~A1 ∈ L∞(B(0, 1),Mn(R) ⊗ R2) and ~V1 ∈ L∞(B(0, 1),Λn−2Rn ⊗ R2) letting
~n = ~n1 ∧ ~n2 ∈W1,2(B(0, 1),Λn−2Rn), assume that

∫
B(0,1)

|∇~n1|2dx+
∫
B(0,1)

|∇~n2|2dx+
∫
B(0,1)

(
| ~A1|p + |~V1|p

)
dx ≤ ε1,∫

B(0,1)
|∇~n2|4dx ≤ C1 .

(4.9)

Then, for all ~f ∈ H−1(B(0, 1),Rn), there exists a unique map ~u ∈W1,(2,∞)
0 (B(0, 1),Rn) such that

∆~u− 3 div (π~n(∇~u)) + div
(
?(∇⊥~n1 ∧ ~n2 ∧ ~u)

)
−1

2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~u

)
+ div

(
~A1 · ~u+ ?

(
~V1 ∧ ~u

))
= ~f in B(0, 1)

~u = 0 on ∂B(0, 1)

(4.10)

and

‖∇~u‖L2,∞(B(0,1)) ≤ C1

∥∥∥~f ∥∥∥
H−1(B(0,1))

. (4.11)

Proof. By Lemma 4.1, we deduce that there exists ~u0 ∈ W1,(2,∞)
0 (B(0, 1)) such that L0~u0 = ~f . Then

notice that by Hölder’s inequality and the Sobolev inequality, we have for all ~u ∈W1,(2,∞)
0 (B(0, 1),Rn)∥∥∥div

(
~A1 · ~u

)∥∥∥
H−1(B(0,1))

≤ C1

∥∥∥ ~A1 · ~u
∥∥∥

L2(B(0,1))
≤ C1

∥∥∥ ~A1

∥∥∥
Lp(B(0,1))

‖~u‖
L

2p
p−2 (B(0,1))

≤ CCp
∥∥∥ ~A1

∥∥∥
Lp(B(0,1))

‖∇~u‖L2,∞(B(0,1)) ≤ C1Cpε
1
p

1 ‖∇~u‖L2,∞(B(0,1)) .

Likewise, we have ∥∥∥div
(
?
(
~V1 ∧ ~u

))∥∥∥
H−1(B(0,1))

≤ C1Cpε
1
p

1 ‖∇~u‖L2,∞(B(0,1)) .

Therefore, we deduce that for ε1 = min
{
ε0,

1
(4C1Cp)p

}
, we can use the same argument as in the proof of

Lemma 4.1 to deduce that there exists ~u such that

L ~u = L0~u0 = ~f

and the estimate follows as above.

Adapting mutadis mutandis the above results and the proof of [48, Lemma A.3], we deduce the
following two lemmas.

Lemma 4.4. For all 0 < C1 < ∞, there exists ε0 = ε0(n) > 0 and C0 = C0(n) with the following
property. Let 2 ≤ m ≤ n. For all ~n1 ∈W1,2(B(0, 1),Λm−2Rn) and ~n2 ∈W1,∞(B(0, 1),Λn−mRn) letting
~n = ~n1 ∧ ~n2 ∈W1,2(B(0, 1),Λn−2Rn), assume that∫

B(0,1)
|∇~n1|2dx+

∫
B(0,1)

|∇~n2|2dx ≤ ε0,∫
B(0,1)

|∇~n2|4dx ≤ C1 . (4.12)

Then for all ~f ∈ L1(B(0, 1),Rn), there exists a unique map ~u ∈W1,(2,∞)
0 (B(0, 1),Rn) such that∆~u− 3 div (π~n(∇~u)) + div

(
?(∇⊥~n1 ∧ ~n2 ∧ ~u)

)
− 1

2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~u

)
= ~f in B(0, 1)

~u = 0 on ∂B(0, 1)
(4.13)

55



and

‖∇~u‖L2,∞(B(0,1)) ≤ C0

∥∥∥~f ∥∥∥
L1(B(0,1))

. (4.14)

Lemma 4.5. For all 0 < C1 < ∞ and 2 < p < ∞, there exists ε1 = ε1(p, n) > 0 and C1 =
C1(n) with the following property. Let 2 ≤ m ≤ n. For all ~n1 ∈ W1,2(B(0, 1),Λm−2Rn) ~n2 ∈
W1,∞(B(0, 1),Λn−mRn), ~A1 ∈ L∞(B(0, 1),Mn(R) ⊗ R2) and ~V1 ∈ L∞(B(0, 1),Λn−2Rn ⊗ R2) letting
~n = ~n1 ∧ ~n2 ∈W1,2(B(0, 1),Λn−2Rn), assume that

∫
B(0,1)

|∇~n1|2dx+
∫
B(0,1)

|∇~n2|2dx+
∫
B(0,1)

(
| ~A1|p + |~V1|p

)
dx ≤ ε1,∫

B(0,1)
|∇~n2|4dx ≤ C1 .

(4.15)

Then, for all ~f ∈ L1(B(0, 1),Rn), there exists a unique map ~u ∈W1,(2,∞)
0 (B(0, 1),Rn) such that

∆~u− 3 div (π~n(∇~u)) + div
(
?(∇⊥~n1 ∧ ~n2 ∧ ~u)

)
−1

2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~u

)
+ div

(
~A1 · ~u+ ?

(
~V1 ∧ ~u

))
= ~f in B(0, 1)

~u = 0 on ∂B(0, 1)

(4.16)

and

‖∇~u‖L2,∞(B(0,1)) ≤ C1

∥∥∥~f ∥∥∥
L1(B(0,1))

. (4.17)

Now, we can show in a similar way the improved regularity for eigenvectors of L0.

Lemma 4.6. For all 0 < C1 < ∞, there exists ε0 = ε0(n) > 0 and C0 = C0(n) with the following
property. Let 2 ≤ m ≤ n. For all ~n1 ∈ W1,(2,1)(B(0, 1),Λm−2Rn) and ~n2 ∈ W1,∞(B(0, 1),Λn−mRn)
letting ~n = ~n1 ∧ ~n2 ∈W1,2(B(0, 1),Λn−2Rn), assume that∫

B(0,1)
|∇~n1|2dx+

∫
B(0,1)

|∇~n2|2dx ≤ ε0,

‖∇~n2‖L∞(B(0,1)) ≤ C1. (4.18)

Assume that ~ϕ ∈W1,(2,∞)
0 (B(0, 1),Rn) is an eigen-vector of L0 i.e. that there exists λ ∈ R such that∆~ϕ− 3 div (π~n(∇~ϕ)) + div

(
?(∇⊥~n1 ∧ ~n2 ∧ ~ϕ)

)
− 1

2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~ϕ

)
= λ ~ϕ in B(0, 1)

~ϕ = 0 on ∂B(0, 1) .
(4.19)

Then ∥∥∇2~ϕ
∥∥

L2,1(B(0,1)) ≤ C0 ‖∇~ϕ ‖L2,∞(B(0,1)) . (4.20)

Proof. The first part of the proof goes as in [48] and we deduce by the Sobolev embedding

W1,2
0 (B(0, 1)) ↪→

⋂
p<∞

Lp(B(0, 1))

that

~ϕ ∈
⋂
p<∞

W1,p
0 (B(0, 1)).
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Now, as in [48], let x0 ∈ B(0, 1). Since ∇~n ∈ L2,1(B(0, 1)) and ∇~n2 ∈ L4(B(0, 1)), for all ε > 0, there
exists ρ > 0, there exists ρ > 0 such that

‖∇~n1‖L2,1(B(x0,ρ)) + ‖∇~n2‖L2,1(B(x0,ρ)) ≤ ε.

We now define ~u : B(0, 1)→ Rn by

~u(x) = ~ϕ(x0 + ρ x)η(x) = ~ψ(x) η(x),

where η is a smooth cut-off function such that η = 1 on B(0, 1
2 ). Then we compute (without changing

notations for the rescaled versions of ~n)

L0~u = λ~u+ 2∇~ψ · ∇η + ~ψ∆η − 3 div
(
π~n(~ψ)∇η + ηπ~n(∇~ψ)

)
+ 3 η div

(
π~n(∇~ψ)

)
+ ?

(
∇⊥~n1 ∧∇~n2 ∧ ~ψ

)
· ∇η + ?

(
∇⊥~n1 ∧ ~n2 ∧ ~ψ

)
∆η

= λ~u+ 2∇~ψ · ∇η + ~ψ∆η − 3∇π~n(~ψ) · ∇η − 6 div(π~n(∇~ψ)) · ∇η − 3π~n(~ψ)∆η

+ ?
(
∇⊥~n1 ∧∇~n2 ∧ ~ψ

)
· ∇η + ?

(
∇⊥~n1 ∧ ~n2 ∧ ~ψ

)
∆η

= ~f.

Since ∇~n1 ∈ L2,1(B(0, 1)), ∇~n2 ∈ L∞(B(0, 1)) while ~ψ ∈W1,p
0 (B(0, 1)) for all p < ∞ (which implies in

particular that ~ψ ∈ C0(B(0, 1))), we deduce that ~f ∈ L2,1(B(0, 1)). Therefore, ~u ∈ W1,p
0 (B(0, 1),Rn)

(for all p <∞) solves the system {
L0~u = ~f in B(0, 1)

~u = 0 on ∂B(0, 1).
(4.21)

Following [48], introduce the Hodge decomposition

∇~u− 3π~n(∇~u) = ∇ ~A+∇⊥ ~B,

where ~A = 0 and ∂ν ~B = 0 on ∂B(0, 1). Then we directly have

∆ ~A = ∆~u− 3 div (π~n(∇~u)) = −div
(
?
(
∇⊥~n1 ∧ ~n2 ∧ ~u

))
+ 1

2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~u

)
+ ~f

so that ∆ ~A = −div
(
?
(
∇⊥~n1 ∧ ~n2 ∧ ~u

))
+ 1

2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~u

)
+ ~f in B(0, 1)

~A = 0 on ∂B(0, 1).

Likewise, we directly obtain {
∆ ~B = 3 div

(
π~n(∇⊥~u)

)
in B(0, 1)

~B = 0 on ∂B(0, 1).

By Calderón-Zygmund estimates, interpolation, and the Sobolev embedding W1,(2,1)
0 (B(0, 1)) ↪→ C0(B(0, 1)),

we deduce that∥∥∥∇ ~A ∥∥∥
L∞(B(0,1))

+
∥∥∥∇2 ~A

∥∥∥
L2,1(B(0,1))

≤ C
∥∥∥∆ ~A

∥∥∥
L2,1(B(0,1))

≤ C
(
‖∇~n1‖L2,1(B(0,1))

(
‖∇~n2‖L∞(B(0,1)) ‖~u‖L∞(B(0,1)) + ‖∇~u‖L∞(B(0,1))

)
+
∥∥∥~f ∥∥∥

L2,1(B(0,1))

)
∥∥∥∇ ~B ∥∥∥

L∞(B(0,1))
+
∥∥∥∇2 ~B

∥∥∥
L2,1(B(0,1))

≤ C
∥∥∥∆ ~B

∥∥∥
L2,1(B(0,1))

≤ C ‖∇~n‖L2,1(B(0,1)) ‖∇~u‖L∞(B(0,1))

From this point we can follow verbatim the proof of [48, Lemma A.7] to conclude.
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Finally, we deduce the counterpart of [48, Lemma A.8] for the operator L0.

Lemma 4.7. For all 0 < C1 < ∞, there exists ε0 = ε0(n) > 0 and C0 = C0(n) with the following
property. Let 2 ≤ m ≤ n. For all ~n1 ∈ W1,(2,1)(B(0, 1),Λm−2Rn) and ~n2 ∈ W1,∞(B(0, 1),Λn−mRn)
letting ~n = ~n1 ∧ ~n2 ∈W1,2(B(0, 1),Λn−2Rn), assume that∫

B(0,1)
|∇~n1|2dx+

∫
B(0,1)

|∇~n2|2dx ≤ ε0,

‖∇~n2‖L∞(B(0,1)) ≤ C1. (4.22)

Assume that ~u ∈ L2(B(0, 1),Rn) and that ∇~u is the sum of a compactly supported distribution in B(0, 1)
and of a function in L2,∞(B(0, 1)). Suppose that ~u satisfies the following equation in the distributional
sense∆~u− 3 div (π~n(∇~u)) + div

(
?(∇⊥~n1 ∧ ~n2 ∧ ~u)

)
− 1

2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~u

)
= 0 in B(0, 1)

~u = 0 on ∂B(0, 1).
(4.23)

Then ~u = 0 on B(0, 1).

Proof. We can follow verbatim the proof of [48, Lemma A.8] since only the self-adjointness of the operator
and the regularity result of Lemma 4.6 are used.

Finally, we deduce that Lemma 4.7 holds with L0 replaced by L .

Lemma 4.8. For all 0 < C1 < ∞, there exists ε0 = ε0(n) > 0 and C0 = C0(n) with the following
property. Let 2 ≤ m ≤ n. For all ~n1 ∈ W1,(2,1)(B(0, 1),Λm−2Rn) and ~n2 ∈ W1,∞(B(0, 1),Λn−mRn)
letting ~n = ~n1 ∧ ~n2 ∈W1,2(B(0, 1),Λn−2Rn), assume that∫

B(0,1)
|∇~n1|2dx+

∫
B(0,1)

|∇~n2|2dx ≤ ε0,

‖∇~n2‖L∞(B(0,1)) ≤ C1. (4.24)

Assume that ~u ∈ L2(B(0, 1),Rn) and that ∇~u is the sum of a compactly supported distribution in B(0, 1)
and of a function in L2,∞(B(0, 1)). Suppose that ~u satisfies the following equation in the distributional
sense 

∆~u− 3 div (π~n(∇~u)) + div
(
?(∇⊥~n1 ∧ ~n2 ∧ ~u)

)
−1

2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~u

)
+ div

(
~A1 · ~u+ ?

(
~V1 ∧ ~u

))
= 0 in B(0, 1)

~u = 0 on ∂B(0, 1)

(4.25)

Then ~u = 0 on B(0, 1).

Proof. Since ~u ∈ L2(B(0, 1)) and ~A1, ~V1 ∈ L∞(B(0, 1)), we deduce that

~f = div
(
~A1 · ~u+ ?

(
~V1 ∧ ~u

))
∈ H−1(B(0, 1)).

Using Lemma 4.1, we deduce that there exists a unique ~v ∈W1,2
0 (B(0, 1)) such that

L0~v = ~f.

Therefore, we get that ~w = ~u− ~v satisfies∆~w − 3 div (π~n(∇~w)) + div
(
?(∇⊥~n1 ∧ ~n2 ∧ ~w)

)
− 1

2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~w

)
= 0 in B(0, 1)

~w = 0 on ∂B(0, 1).
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Since ~v ∈ L2,∞(B(0, 1)), we deduce that ∇~w is also the sum of a compactly supported distribution and of
a L2,∞(B(0, 1)) function. Therefore, by Lemma 4.7, we obtain that ~w = 0, i.e. ~u = ~v ∈W1,(2,∞)

0 (B(0, 1)).
Using the uniqueness of the weak solution in W1,(2,∞)

0 (B(0, 1)) of the Dirichlet problem associated to L
(see Lemma 4.3 and Lemma 4.5), we conclude that ~u = 0.

Finally, we can prove the ε-regularity result (see [48, Theorem I.5] for Willmore immersions in the
Euclidean space).

Theorem 4.9. Let (Mm, h) be a smooth closed Riemannian manifold that we assume isometrically
embedded in Rn.. There exists constants ε0 > 0 and {Ck}k∈N ⊂ (0,∞) with the following property. Let
~Φ : B(0, 1)→ (Mm, h) be a conformal, Lipschitz ; denote with ~n : B(0, 1)→ Λm−2TMm the Gauss map
associated to ~Φ and assume that∫

B(0,1)
|∇~n|2dx+ Area(~Φ(B(0, 1))) ≤ ε0 . (4.26)

Then, for all k ∈ N, it holds ∥∥∇k~n∥∥2
L∞(B(0, 1

2 )) ≤ Ck
∫
B(0,1)

|∇~n|2dx.

Proof. Step 1. Proof that ~Φ ∈W2,(2,1)
loc (B(0, 1)).

Using [38, Lemma 6.1 and 6.2], we deduce that there exists ~L ∈ L2,∞(B(0, 1),Cn) such that ∇Im (~L) ∈
W1,(2,∞)(B(0, 1)) and ∇z~L = ~Y = i

(
∇z ~H − 3∇⊥z ~H − i ?h (∇z~n ∧ ~H)

)
in B(0, 1)

Im (~L) = 0 on ∂B(0, 1).

Likewise, there exists S ∈ W1,(2,∞)(B(0, 1),C) such that Im (S) ∈ W2,q(B(0, 1),R) for all q < 2 such
that {

∂zS = 〈∂z~Φ, ~L〉 in B(0, 1)
Im (S) = 0 on ∂B(0, 1)

and ~R ∈W1,(2,∞)(B(0, 1),Λ2Cn) such that Im (~R) ∈W2,q(B(0, 1),Λ2Rn) for all q < 2 and{
∇z ~R = ∂z~Φ ∧ ~L− 2i ∂z~Φ ∧ ~H in B(0, 1)

~R = 0 on ∂B(0, 1).

Furthermore, using [38, Proposition 6.1], we deduce that∆Re (S) = 〈∇(?h~n),∇⊥ ~R〉+ F in B(0, 1)

∆Re (~R) = (−1)m ?h

(
∇~n ∇⊥Re (~R)

)
− ?h〈∇~n,∇⊥Re (S)〉+ ~G in B(0, 1),

where F ∈ Lp(B(0, 1)) for all p < 2 and ~G ∈ Lp(B(0, 1),Λ2Rn) for all p < 2. Therefore, we can perform
a decomposition Re (S) = u+ v + w, where{

∆u = 〈∇ (?h~n) ,∇⊥ ~R〉 in B(0, 1)
u = 0 on ∂B(0, 1)

and
{

∆v = F in B(0, 1)
v = 0 on ∂B(0, 1).

Since ~S, ~R ∈ W1,(2,∞)(B(0, 1)) and ~n ∈ W1,2(B(0, 1)), by the L2-L2,∞ Wente estimate ([14, Théorème
3.4.5]), we deduce that ∇u ∈ L2(B(0, 1)) and that there exists a universal constant C1 > 0 such that

‖∇u‖L2(B(0,1)) ≤ C1

∥∥∥∇~R∥∥∥
L2,∞(B(0,1))

‖∇~n‖L2(B(0,1)) .
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By Calderón-Zygmund estimates, we get that v ∈W2,q(B(0, 1)) for all q < 2. Also, since w is harmonic,
we obtain (see [4] and [26], or [33, Lemma 2.2 and 2.3]) that for all r < 1 there exists Cr <∞ such that

‖∇w‖L2,1(B(0,r)) +
∥∥∇2w

∥∥
L1(B(0,r)) ≤ Cr ‖∇w‖L2,∞(B(0,1)) .

We deduce that Re (S) ∈W1,2(B(0, r)) for all r < 1, and a similar decomposition also yields that Re (~R) ∈
W1,2(B(0, r)) for all r < 1. Using the Coifman-Lions-Meyer-Semmes compensation compactness result
[8], we deduce that ~R, ~S ∈W2,1(B(0, r)) for all r < 1 which implies in particular that ~R, ~S ∈W1,(2,1) ∩
C0(B(0, r)) for all r < 1.

By [38, Identity (6.52)], we have

e2λ ~H = −Im
(
∇z ~R ∂z~Φ

)
− 1

2e
2λIm (~L)− Re

(
i∂z~Φ ∂zS

)
+ Re

(
〈∂z~Φ, Im (~L)〉∂z~Φ

)
. (4.27)

Using that Im (~L) ∈ Lp(B(0, 1)) for all p <∞, we deduce that

eλ ~H ∈ L2,1(B(0, r)) for all r < 1.

Recalling that ∆~Φ = e2λ ~H and using that λ ∈ L∞(B(0, 1)), by Calderón-Zygmund estimates we deduce
that ~Φ ∈W2,(2,1)(B(0, r)) for all r < 1, which implies in particular that ∇~n ∈ L2,1(B(0, 1)).

Step 2. Proof that ~H ∈W1,(2,∞)(B(0, 1
2 )).

To simplify notations, write ~n = ~n1 and ~n = ~n1 ∧~n2, where ~n2 = ~nι ◦ ~Φ. Since Mm is a smooth compact
submanifold of Rn, we have that ~nι ∈ C∞(Mm, TRn) which implies that ~n2 ∈W1,∞(B(0, 1),Λn−mRn),
since ~Φ is Lipschitz. Next we will apply the lemmas above, exploiting the assumption (4.26).
By (4.2), we easily check that the assumptions on ~A1 and ~V1 are satisfided in Lemmas 4.3, 4.5 and 4.8
for some p > 2 small enough. Indeed, we have | ~A1|+ |~V1| ≤ C2e

λ, which implies that∫
B(0,1)

(
| ~A1|p + |~V1|p

)
dx ≤ 2pCp2e

(p−2)‖λ‖L∞(B(0,1))

∫
B(0,1)

e2λdx = Cp2e
(p−2)‖λ‖L∞(B(0,1))Area(~Φ(B(0, 1)))

≤ 4C2
2 (1 + C2)ε0

for p > 2 small enough. However, that would make ε0 and Ck depend also on ‖λ‖L∞(B(0,1)). To
circumvent that, in the argument below we will instead use the Lemmas 4.1, 4.4 and 4.7. By (4.3), we
have

div
(
∇ ~H − 3π~n(∇ ~H) + ?h

(
∇⊥~n ∧ ~H

)
+ ~A0 · ~H + ?h(~V ∧ ~H)

)
= −2e2λ

(
R⊥1 ( ~H)− 2 K̃h

~H + 2 R2(d~Φ) + (DR)(d~Φ)− 8 Re
(
〈R(~ez, ~ez)~ez, ~H〉~ez

))
− ~A1 · ~H − 3 ~A2(~n) · ~H − 2 ~A3 · ~H − ~A4 · ?h

(
∇⊥~n ∧ ~H

)
− ~A5 · ?h

(
~W ∧ ~H

)
−B( ~H, ~H),

which can be rewritten as

L ( ~H) = ∆ ~H + div
(
−3π~n(∇ ~H) + ?

(
∇⊥~n1 ∧ ~n2 ∧ ~H

)
+ ~A1 · ~H + ?

(
~V1 ∧ ~H

))
− 1

2 ?
(
∇⊥~n1 ∧∇~n2 ∧ ~H

)
= −2e2λ

(
R⊥1 ( ~H)− 2 K̃h

~H + 2 R2(d~Φ) + (DR)(d~Φ)− 8 Re
(
〈R(~ez, ~ez)~ez, ~H〉~ez

))
− ~A1 · ~H − 3 ~A2(~n1) · ~H − 2 ~A3 · ~H − ~A4 · ?

(
∇⊥~n1 ∧ ~n2 ∧ ~H

)
− ~A5 · ?

(
~̃W ∧ ~H

)
−B( ~H, ~H)

− 1
2

(
∇⊥~n1 ∧∇~n2 ∧ ~H

)
= ~f.

Notice that by hypothesis, we have ~f ∈ L1(B(0, 1)).
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Since L ( ~H) = ~f , if η is a smooth cut-off function supported on B(0, 1) such that η = 1 on B(0, 1
2 ),

we deduce that the following identity holds in the distributional sense

div
(
π~n

(
∇
(
η ~H
)))

= div
(
ηπ~n(∇ ~H) +∇η ~H

)
= η div

(
π~n(∇ ~H)

)
+∇η · π~n(∇ ~H) + div

(
∇η ~H

)
= η div

(
π~n(∇ ~H)

)
+ 2 div

(
∇η ~H

)
−∆ η ~H −∇η · ∇π~n( ~H),

thus

∆(η ~H) = η∆ ~H + 2〈∇η,∇ ~H〉+ ∆η ~H = η∆ ~H + 2 div
(
∇η ~H

)
−∆η ~H .

Therefore, we have

L (η ~H) = η ~f1 + 2 div
(
∇η ~H

)
−∆η ~H − 3

(
2 div

(
∇η ~H

)
−∆η ~H −∇η · ∇π~n( ~H)

)
+ 〈∇η, ?(∇⊥~n1 ∧ ~n2 ∧ ~H)〉+ 〈∇η, ~A1 · ~H〉+ 〈∇η, ?(~V1 ∧ ~H)〉

= η ~f + 2 ∆η ~H + 3∇η · ∇π~n( ~H) + 〈∇η, ?(∇⊥~n1 ∧ ~n2 ∧ ~H)〉+ 〈∇η, ~A1 · ~H〉+ 〈∇η, ?(~V1 ∧ ~H)〉

− 4 div
(
∇η ~H

)
.

Finally, we have

L0(η ~H) = L ( ~H)− div
(
η
(
~A1 · ~H + ?(~V1 ∧ ~H)

))
= η ~f + 2 ∆η ~H + 3∇η · ∇π~n( ~H) + 〈∇η, ?(∇⊥~n1 ∧ ~n2 ∧ ~H)〉+ 〈∇η, ~A1 · ~H〉+ 〈∇η, ?(~V1 ∧ ~H)〉

− 4 div
(
∇η ~H

)
− div

(
η
(
~A1 · ~H + ?(~V1 ∧ ~H)

))
.

Note that

~f1 = η ~f + 2 ∆η ~H + 3∇η · ∇π~n( ~H) + 〈∇η, ?(∇⊥~n1 ∧ ~n2 ∧ ~H)〉+ 〈∇η, ~A1 · ~H〉+ 〈∇η, ?(~V1 ∧ ~H)〉

satisfies ~f1 ∈ L1(B(0, 1)) with the estimate∥∥∥~f1

∥∥∥
L1(B(0,1))

≤ C2
3

∫
B(0,1)

|∇~n|| ~H|dx . (4.28)

Analogously,

~f2 = −4 div
(
∇η ~H

)
− div

(
η
(
~A1 · ~H + ?(~V1 ∧ ~H)

))
∈ H−1(B(0, 1))

can be estimated by

∥∥∥~f2

∥∥∥
H−1(B(0,1))

≤ C3

(∫
B(0,1)

| ~H|2
) 1

2

. (4.29)

Applying Lemma 4.1 and 4.4 (respectively with ~f = ~f1 and ~f = ~f2), we obtain that there exist ~u1, ~u2 ∈
W1,(2,∞)

0 (B(0, 1)) such that L ~u1 = ~f1 and L ~u2 = ~f2 on B(0, 1) and satisfying the estimates (thanks to
(4.28) and (4.29))

‖∇~u1‖L2,∞(B(0,1)) + ‖∇~u2‖L2,∞(B(0,1)) ≤ C0C3

∫
B(0,1)

|∇~n|| ~H|dx+
(∫

B(0,1)
| ~H|2

) 1
2


≤ C0C3(1 + ε0)
(∫

B(0,1)
| ~H|2

) 1
2

.
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Invoking the uniqueness result of Lemma 4.7, we deduce that η ~H = ~u1 + ~u2 ∈ W1,(2,∞)
0 (B(0, 1)) and

that

∥∥∥∇(η ~H)
∥∥∥

L2,∞(B(0,1))
≤ C

(∫
B(0,1)

| ~H|2dx

) 1
2

.

We conclude that ~H ∈ W1,(2,∞)(B(0, 1
2 )). Now, one can complete the proof by following verbatim the

arguments in the Euclidean ε-regularity theorem [48].

5 L2,∞ quantization of energy

The goal of this section is to prove the following result, establishing the L2,∞ quantization of energy.

Theorem 5.1. Let (Mm, h) be a closed m-dimensional Riemannian manifold. There exists ε0 > 0 with
the following property. Let {rk}k∈N , {Rk}k∈N ⊂ (0,∞) be such that lim supk→∞Rk ∈ (0,∞), rk −→

k→∞
0

and set Ωk(α) = BαRk \Bα−1rk(0) for all 0 < α ≤ 1. Let
{
~Φk
}
k∈N

: B(0, Rk)→ (Mm, h) be a sequence
of Willmore immersions such that

Λ = sup
k∈N

(
‖∇λk‖L2,∞(B(0,Rk)) +

∫
B(0,Rk)

|∇~nk|2dx+ Area(~Φk(B(0, Rk)))
)
<∞ ,

and

sup
rk<s<

Rk
2

∫
B2s\Bs(0)

|∇~nk|2dx ≤ ε0.

Then

lim sup
α→0

lim sup
k→∞

‖|x|∇~nk(x)‖L∞(Ωk(α)) = 0.

In particular, it holds

lim sup
α→0

lim sup
k→∞

‖∇~nk‖L2,∞(Ωk(α)) = 0.

Proof. By the ε-regularity Theorem 4.9, we deduce that

|∇~nk(z)|2 ≤ C1

|z|2

∫
B2|z|\B |z|

2

|∇~nk|2dx ≤
2C1ε0

|z|2
.

In particular, we have

‖∇~nk‖L2,∞(Ωk( 1
2 )) ≤ 4

√
πC1ε0.

Now, assume by contradiction that there exists ε1 > 0, a sequence {~Φk}k∈N ⊂ C∞(B(0, Rk),Mm) of
smooth Willmore immersions and a sequence {zk}k∈N ∈ Ωk( 1

2 ) such that

log
∣∣∣∣ |zk|rk

∣∣∣∣ −→k→∞∞ and log
∣∣∣∣ Rk|zk|

∣∣∣∣ −→k→∞∞ ,

and

|zk||∇~nk(zk)| ≥ ε1 > 0 . (5.1)
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Notice that, in particular, zk −→
k→∞

0 ∈ C. Therefore, applying again the ε-regularity Theorem 4.9, we
deduce ∫

B2|zk|\B |zk|
2

|∇~nk|2dx ≥ C−1
0 |zk|2|∇~nk(zk)|2 ≥ C−1

0 ε2
1 . (5.2)

Using the previous result (Theorem 3.16 and the end of Section 3.16) and that lim sup
k→∞

Rk < ∞, we

get that there exist α0 > 0, ~Lk ∈ L2,∞
λk

(B(0, α0Rk),Cn), Sk ∈ W1,(2,∞)(B(0, α0Rk),C) and ~Rk ∈
W1,(2,∞)(B(0, α0Rk),Λ2Cn) such that

∇z~Lk = i
(
∇z ~Hk − 3π~nk(∇z ~Hk)− i ?h

(
∇z~nk ∧ ~Hk

))
in Ωk(α0)

∂zSk = 〈∂z~Φk, ~Lk〉 in Ωk(α0)

∇z ~Rk = ∂z~Φk ∧ ~Lk − 2i ∂z~Φk ∧ ~Hk in Ωk(α0)

(5.3)

and satisfying the bounds:∥∥∥eλk~Lk∥∥∥
L2,∞(Ωk(α0))

+ ‖∇Sk‖L2,1(Ωk(α0)) +
∥∥∥∇~Rk∥∥∥

L2,1(Ωk(α0))
≤ C∥∥∥Im (~Lk)

∥∥∥
W1,(2,∞)(Ωk(α0))

+ ‖Im (Sk)‖W2,q(B(0,α0Rk)) +
∥∥∥Im (~Rk)

∥∥∥
W2,q(B(0,α0Rk))

≤ Cq, for all q < 2
2− ε .

Furthermore, Im (Sk) and Im (~Rk) solve the equations
∆Im (Sk) = −2e2λk〈 ~Hk, Im (~Lk)〉 in Ωk(α0)

∆Im (~Rk) = 4 Im
(
∇z
(
∂z~Φk ∧ ~Lk − 2i ∂z~Φk ∧ ~Hk

))
− 4 Im

(
∂z

(
Fk(~Rk)

))
− 4 Im

(
Fk

(
∂z~Φk ∧ Im (~Lk)− 2i ∂z~Φk ∧ ~Hk

))
in Ωk(α0).

(5.4)

Define the function ~Ψk : Ωk(α0|zk|−1)→ Rn by

~Ψk(w) = e−λk(zk)−log |zk|
(
~Φk(|zk|w)− ~Φk(zk)

)
.

A direct computation shows that

∂w~Ψk(w) = |zk|e−λk(zk)−log |zk|∂z~Φk(|zk|w) = e−λk(zk)∂z~Φk(|zk|w). (5.5)

Therefore, the conformal parameter µk of ~Ψk satisfies

µk(w) = λk(|zk|w)− λk(zk) .

By the uniform Harnack inequality on the conformal parameters (see Theorem 3.3), there exists C > 0
independent of k ≥ N such that

‖∇ (λk − dk log |z|)‖L2,1(Ωk(α0)) + ‖λk − dk log |z|‖L∞(Ωk(α0)) ≤ C,

where dk → d ∈ (−1,∞), as k →∞. In particular, it holds

|µk(w)| ≤ |λk(|zk|w)− dk log |zkw||+ |dk log |zk| − λk(zk)|+ |dk log |w|| ≤ (|d|+ 1)| log |w||+ 2C,

which is uniformly bounded on any compact subset K ⊂ C \ {0}. Now, by (5.5), we deduce that

~̃nk(w) = ~n~Ψk(w) = ~nk(|zk|w). (5.6)

Then, we compute

∂2
w~w

~Ψ(w) = |zk|e−λk(zk)∂2
zz
~Φk(|zk|w) = |zk|e−λk(zk) × 2e2λk(|zk|w) ~Hk(|zk|w) = 2|zk|e2λk(|zk|w)−λk(zk) ~Hk(|zk|w),
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which implies that

~̃Hk(w) = 1
2e
−2µk(w)∂2

w~w
~Ψk(w) = |zk|eλk(zk) ~Hk(|zk|w). (5.7)

We deduce that

eµk ~̃Hk(w) = |zk|eλk(zk) ~Hk(|zk|w) ,

which shows that, after the linear change of variable z = |zk|w, it holds∫
Ωk(α0|zk|−1)

e2µk(w)| ~̃Hk(w)|2|dw|2 =
∫

Ωk(α0|zk|−1)
|zk|2e2λk(|zk|w)| ~Hk(|zk|w)|2|dw|2

=
∫

Ωk(α0)
e2λk(z)| ~Hk(z)|2|dz|2 =

∫
Ωk(α0)

| ~Hk|2dvolg.

We deduce that

∂w ~̃Hk(w) = |zk|2eλk(zk)∂z ~Hk(|zk|w) (5.8)

and that

|zk|2eλk(zk)Γjl,q(~Φk(|zk|w))∂z~Φk(|zk|w)q ~Hk(|zk|w)l = Γjl,q(~Φk(|zk|w))|zk|∂z~Φk(|zk|w)q ~̃Hk(w)l. (5.9)

Since {µk}k∈N is uniformly bounded in L∞loc(C \ {0}), we deduce by the ε-regularity that
{
~̃Hk

}
k∈N

is

bounded in L∞loc(C \ {0}). Furthermore, by the Harnack inequality (3.21), we deduce that

e−A|zk|dk+1|w|dk ≤ |zk||∂z~Φk,q(|zk|w)| ≤ eA|zk|dk+1|w|dk .

Since dk −→
k→∞

d > −1, and zk −→
k→∞

0, while Γjl,q are bounded, we conclude that for all compact subset
K ⊂ C \ {0}, it holds

lim
k→∞

∥∥∥|zk|2eλk(zk)Γjl,q(~Φk(|zk|w))∂z~Φk(|zk|w)q ~Hk(|zk|w)l
∥∥∥

L∞(K)
= 0. (5.10)

Now, the previous scaling considerations prompt us to introduce ~̃Lk : Ωk(α0|zk|−1)→ Cn defined by

~̃Lk(w) = |zk|eλk(zk)~Lk(|zk|w).

It is immediate to check that

eµk ~̃Lk(w) = |zk|eλk(|zk|w)~Lk(|zk|w) = |zk|eλk(|zk|w)~Vk(|zk|w) + |zk|eλk(|zk|w) ~Wk(|zk|w),

where ~Wk ∈W1,(2,∞)(B(0, α0Rk)) and ~Vk satisfy for all z ∈ Ωk(α0) the estimate

eλk(z)|~Vk(z)| ≤ C

|z|

for some constant C > 0 independent of k. We deduce that

|zk|eλk(|zk|w)
∣∣∣~Vk(|zk|w)

∣∣∣ ≤ |zk| × C

||zk|w|
= C

|w|
.

Also, by defining ~̃W k : B(0, α0|zk|−1Rk)→ Cn as

~̃W k(w) = ~Wk(|zk|w) ,
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we have ∥∥∥∥∇ ~̃W k

∥∥∥∥
L2,∞(B(0,α0|zk|−1Rk))

=
∥∥∥∇ ~Wk

∥∥∥
L2,∞(B(0,α0Rk))

≤ C ,

giving that ~Wk is bounded in W1,(2,∞)(B(0, α0|zk|−1Rk)). Furthermore, by the Harnack inequality
(3.21), we deduce that

|zk|eλk(|zk|w) ≤ eA|zk|dk+1|w|dk −→
k→∞

0 in L∞loc(C \ {0}).

Therefore, we get that ∥∥∥|zk|eλk(|zk| · )W̃k

∥∥∥
L2,∞(Ωk(α0|zk|−1))

−→
k→∞

0

|zk|eλk(|zk| · )W̃k −→
k→∞

0 in Lploc(C \ {0}) for all p <∞.

Then, we have

∇Im (~̃Lk)(w) = |zk|2eλk(zk)∇~Lk(|zk|w)

which implies that∥∥∥∥∇Im (~̃Lk)
∥∥∥∥

L2,∞(Ωk(α0))
= |zk|eλk(zk)

∥∥∥∇Im (~Lk)
∥∥∥

L2,∞(Ωk(α0))

≤ eA|zk|dk+1
∥∥∥∇Im (~Lk)

∥∥∥
L2,∞(Ωk(α0))

−→
k→∞

0,

where we used |zk| −→
k→∞

0 and dk + 1 −→
k→∞

d+ 1 > 0. Finally, we can manipulate the equation (5.3) by
using (5.8) and (5.9) to obtain:

∂w ~̃Lk − i
(
∂w ~̃Hk − 3π

~̃nk
(∂w ~Hk)− i ?h

(
∂z~̃nk ∧ ~̃Hk

))
= ~Zk (5.11)

where (
~Zk

)
j

=
n∑

l,q=1
|zk|2eλk(zk)Γlj,q(~Φk(|zk|w))∂z~Φk,q(|zk|w)

(
~Lk,l(|zk|w)

− i ~Hk,l(|zk|w) + 3i π~nk(|zk|w)( ~Hk(|zk|w))l − ?h
(
~nk(|zk|w) ∧ ~Hk(|zk|w)

)
l

)
=

n∑
l,q=1

Γlj,q(~Φk(|zk|w))|zk|∂z~Φk,q(|zk|w)
(
~̃Lk,l(w)− i H̃k,l(w) + 3i πñk(w)( ~̃Hk(w))l

− ?
(
~̃nk(w) ∧ ~̃Hk(w)

)
l

)
.

By the ε-regularity Theorem 4.9, as in (5.10), we get that for any compact subset K ⊂ C \ {0}, it holds∥∥∥∥∥Γjl,q(~Φk(|zk|w))|zk|∂z~Φk(|zk|w)q
(
− i H̃k(w)l + 3i πñk(w)( ~̃Hk(w))l − ?

(
~̃nk(w) ∧ ~̃Hk(w)

)l)∥∥∥∥∥
L∞(K)

= 0.

Furthermore,

|~Lk(w)| ≤ C

|w|dk+1 + fk(w) ,

where fk is bounded in W1,(2,∞) and in particular in Lp for all p <∞. Therefore, we have

|zk| |∂z~Φk(|zk|w)| |~Lk(w)| ≤ |zk|
dk+1

|w|
+ |zk|dk+1|w|dkfk(w)
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which implies that for any compact subset K ⊂ C \ {0} and any p <∞, it holds∥∥∥∥Γjl,q(~Φk(|zk|w))|zk|∂z~Φk(|zk|w)q ~̃Lk(w)l
∥∥∥∥

Lp(K)
−→
k→∞

0.

Now define S̃k : Ωk(α0|zk|−1)→ C and ~̃Rk : Ωk(α0|zk|−1)→ Λ2Cn by

S̃k(w) = Sk(|zk|w), ~̃Rk(w) = ~Rk(|zk|w).

By scaling invariance, we have∫
Ωk(α0|zk|−1)

|∇~n~Ψk |
2dx =

∫
Ωk(α0)

|∇~nk|2dx ≤ C∥∥∥∇S̃k∥∥∥
L2,1(Ωk(α0|zk|−1))

= ‖∇Sk‖L2,1(Ωk(α0)) ≤ C∥∥∥∥∇ ~̃Rk∥∥∥∥
L2,1(Ωk(α0|zk|−1))

=
∥∥∥∇~Rk∥∥∥

L2,1(Ωk(α0))
≤ C.

Therefore, by the ε-regularity of Theorem 4.9 to deduce that for any compact subset K ⊂ C \ {0}, and
for any l ∈ N, there exists Cl(K) <∞ such that∥∥∥∇l~n~Ψk∥∥∥L∞(K)

≤ Cl(K).

Therefore, up to a subsequence, ~Ψk −→
k→∞

~Ψ∞ in Clloc(C\{0}) and by lower semi-continuity and conformal
invariance of the Dirichlet energy (or L2,1 norm of the gradient), we deduce that∥∥∥∥eµ∞ ~̃L∞∥∥∥∥

L2,∞(C)
+
∥∥∥∇S̃∞∥∥∥

L2,1(C)
+
∥∥∥∥∇ ~̃R∞∥∥∥∥

L2,1(C)
≤ C.

Furthermore, recalling that Im (Sk), Im (~Rk) ∈ W2,q(B(0, α0Rk)) for all q < 2
2−ε , and using that

Im (S̃k)(w) = Im (S̃k)(|z|kw), we deduce that for all q < 2
1−ε∫

B(0,α0|zk|−1Rk)

(
|∇2Im (S̃k)|q + |∇2Im ( ~̃Rk)|q

)
dx

= |zk|2(q−1)
∫
B(0,α0Rk)

(
|∇2Im (Sk)|q + |∇2Im (Rk)|q

)
dx ≤ 2(Cq)q|zk|2(q−1) −→

k→∞
0,

It follows that ∇2Im (S̃∞) = 0 and ∇2Im ( ~̃R∞) = 0 and, since ∇Im (S̃∞) ∈ L2,1(C) and ∇Im ( ~̃R∞) ∈
L2,1(C), this implies that Im (S̃∞) and Im ( ~̃R∞) are constant. Recalling that (5.3) can be rewritten (see
[38, Lemma 6.2]) as ∇z ~Rk = (−1)m+1 ?h

(
~nk i∇z ~R

)
+ i ∂zSk ?h ~nk

∂z ~Sk = −i〈∇z ~Rk, ?h~nk〉,

an expansion similar to the one made in (5.11) shows that the system passes to the limit and yields
∂z ~̃R∞ = (−1)m+1 ?h

(
~̃n∞ i ∂z ~̃R∞

)
+ i ∂zS̃∞ ?h ~nk

∂zS̃∞ = −i〈∂z ~̃R∞, ?h~̃n∞〉 .

Since both ~̃R∞ and S̃∞ are real, this system can be rewritten as
∇ ~̃R∞ = (−1)m ?h

(
~̃n∞ ∇⊥ ~̃R∞

)
−∇⊥S̃∞ ?h ~̃n∞

∇S̃∞ = 〈∇⊥ ~̃R∞, ?h~̃n∞〉.
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We deduce that the following Jacobian system holds:
∆ ~̃R∞ = (−1)m ?h

(
∇~̃n∞ ∇⊥ ~̃R∞

)
−∇⊥S̃∞ · ∇

(
?~̃n∞

)
∆S̃∞ = 〈∇⊥ ~̃R∞,∇

(
?h~̃n∞

)
〉.

Using an improved Wente estimate as in [4], we deduce that∥∥∥∥∇ ~̃R∞∥∥∥∥
L2,1(C)

+
∥∥∥∇S̃∞∥∥∥

L2,1(C)
≤ C

(∥∥∥∥∇ ~̃R∞∥∥∥∥
L2,1(C)

+
∥∥∥∇S̃∞∥∥∥

L2,1(C)

)
‖∇ñ∞‖L2,∞(C)

≤ Cε0

(∥∥∥∥∇ ~̃R∞∥∥∥∥
L2,1(C)

+
∥∥∥∇S̃∞∥∥∥

L2,1(C)

)
.

Therefore, taking ε0 = 1
2C , we get that ~̃R∞ and S̃∞ are constant. Since Im (~L∞) = 0, we have the

identity

e2µ∞ ~̃H∞ = −Im
(
∂z ~̃R∞ ∂z~Ψ∞

)
− Re

(
∂zS̃∞(i ∂z~Ψ∞)

)
+ Re

(
〈∂z~Ψ∞, Im (L̃∞)〉∂z~Ψ∞

)
= 0.

We deduce that ~̃H∞ = 0 which, by the exact same proof as in [4], yields that ∇~̃n∞ = 0, contradicting
the estimate ∫

B2\B1(0)
|∇ñ∞|2dx ≥ C−1

0 ε2
1

that passed to the limit thanks to the strong convergence on C \ {0}.

6 Proof of the main Theorem A

We are finally in position to prove the main result of the paper (Theorem A), namely the quantization
of the Willmore energy for Willmore spheres in Riemannian manifolds. The proof will combine all the
main technical results proved in the paper: the L2,1 uniform bounds on the Willmore integrand in neck
regions (Theorem 3.2), the ε-regularity Theorem 4.9, and the L2,∞ quantization of energy (Theorem
5.1).

Proof of Theorem A. Let us first consider the case when inf
k∈N

Area(~Φk(S2)) > 0.

Thanks to the pre-compactness Theorem 2.1, we know that there exist a sequence of Lipschitz diffeo-
morphisms {fk} of S2 and a weak immersion ~ξ∞ of (S2 \{a1, · · · , aN}), possibly branched at the finitely
many points a1, · · · , aN , into (Mm, h) such that

~ξk = ~Φk ◦ fk ⇀ ~ξ∞ weakly in W2,2
loc(S2 \ {a1, · · · , aN}) , (6.1)

Thanks to the ε-regularity Theorem 4.9, we can improve the weak W2,2
loc convergence to local smooth

convergence:

~ξk −→
k→∞

~ξ∞ in Clloc(S2 \ {a1, · · · , aN}) for all l ∈ N. (6.2)

Following verbatim the arguments at [4, pp.129–130], one can extend the map ~ξ∞ to the whole S2, so
that the extension ~ξ∞ : S2 → (Mm, h) realises a Willmore immersion of S2 into (Mm, h), possibly
branched at the points a1, · · · , aN .
Now, in a neck-region conformally equivalent to Ωk(α) = BαRk \ Bα−1rk(0), we can apply Theorem 3.2
and Theorem 5.1 to deduce that there exists α0 > 0 and C > 0 independent of k such that∥∥∥eλk ~Hk

∥∥∥
L2,1(Ωk(α0))

≤ C and lim
α→0

lim sup
k→∞

‖∇~nk‖L2,∞(Ωk(α)) = 0 .
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By the L2,1/L2,∞ duality, we deduce that for all 0 < α < α0∫
Ωk(α)

e2λk | ~Hk|2dx ≤
∥∥∥eλk ~Hk

∥∥∥
L2,1(Ωk(α))

∥∥∥eλk ~Hk

∥∥∥
L2,∞(Ωk(α))

≤ C ‖∇~nk‖L2,∞(Ωk(α)) ,

which implies that

lim
α→0

lim sup
k→∞

∫
Ωk(α)

| ~Hk|2dvolgk = 0 . (6.3)

By [4, Lemma V.1] (which does not use the Willmore equation and is valid for any weak immersion), we
also have

lim
α→0

lim sup
k→∞

∣∣∣∣∣
∫

Ωk(α)
Kgkdvolgk

∣∣∣∣∣ = 0. (6.4)

Moreover, by the proof of Theorem 3.2 (see (3.20)), it holds

lim
α→0

lim sup
k→∞

Area(~ξk(Ωk(α))) = 0 . (6.5)

Using the point-wise identity

|∇~nk|2 = 4| ~Hk|2 − 2Kgk + 2K(~ξk,∗(TS2)) ,

together with (6.3), (6.4) and (6.5), we deduce that

lim
α→0

lim sup
k→∞

∫
Ωk(α)

|∇~nk|2dx = 0 . (6.6)

This is the no-neck energy which will give below the desired quantization result.
Using that (Mm, h) is isometrically embedded into Rn and the conformal invariance of the Willmore

energy to obtain a suitable convergence result for the energy of bubbles. Indeed, seeing ~Φk : Σ →
(Mm, h) ⊂ Rn as an immersion of Rn, since by assumption h = ι∗gRn , where ι : Mm ↪−→ Rn is the
inclusion map, we deduce that for any open subset Ω ⊂ Σ it holds∫

Ω

(
| ~Hk|2 +K(~Φk,∗(TΣ))

)
dvolgk = W(Mm,h)(~Φk|Ω) = WRn(ι ◦ ~Φk|Ω) =

∫
Ω
| ~Hι◦~Φk |

2dvolgk ,

Let
B(i, j, α, k) = Bα−1ρi,jk

(xi,jk ) \
⋃

j′∈Ii,j
Bαρi,jk

(xi,j
′

k )

be a bubble domain (for more details, see [4] or the discussion after (3.16)). Recall that ρi,jk → 0 as
k → ∞ and that the indices i, j vary within a finite set. The Harnack inequality (3.17) (proved in [4,
Display (VIII.10)]) gives that for all 0 < α < 1, there exists Aα = A(i, j, α) ≥ 0 such that

sup
z∈B(i,j,α,k)

eλk(z) ≤ eAα inf
z∈B(i,j,α,k)

eλk(z). (6.7)

Choose an arbitrary point zi,jk ∈ B(i, j, α, k) and set λ(i, j, α, k) = λk(zi,jk ). The uniform area bound
implies that

lim sup
k→∞

e2λ(i,j,α,k)(ρi,jk )2 <∞ , for all α ∈ (0, 1). (6.8)

Thus we have two cases.
Case 1. lim supk→∞ e2λ(i,j,α,k)(ρi,jk )2 > 0 , for some α ∈ (0, 1).

This case corresponds to a macroscopic bubbles forming in the region B(i, j, α, k). By performing a good
gauge extraction procedure along the lines of [38, Lemma 4.1], we can find positive Möbius transforma-
tions f̃k of S2 such that the reparametrised immersions (up to a subsequence)

~̃ξk = ξk ◦ f̃k : S2 → (Mm, h)
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converge weakly in W2,2 (and then smoothly, by the ε-regularity Theorem) outside finitely many points
{ai,j1 , . . . , ai,jNi,j} to a Willmore immersion ~Ψi,j : S2 \

{
ai,j1 , · · · , ai,jNi,j

}
→ (Mm, h):

~̃ξk −→
k→∞

~Ψi,j in Clloc(S2 \
{
ai,j1 , · · · , ai,jNi,j

}
) for all l ∈ N . (6.9)

Following verbatim the arguments at [4, pp. 129–130], one can extend the map to the whole S2, so that
the extension ~Ψi,j : S2 → (Mm, h) realises a Willmore immersion of S2 into (Mm, h), possibly branched
at the finitely many points ai,j1 , · · · , ai,jNi,j . Moreover, the no neck energy identity (6.6) ensures that

lim
α→0

lim
k→∞

W(M,h)

(
~ξk|B(i, j, k, α)

)
= W(M,h)(~Ψi,j). (6.10)

Such a branched Willmore immersion corresponds to a Riemannian bubble ~Ψj , j = 1, . . . , u ∈ N in the
statement of Theorem A.

Case 2. limk→∞ e2λ(i,j,α,k)(ρi,jk )2 = 0 , for all α ∈ (0, 1).
In this case, there exists a point xi,j ∈M such that (again, up to a subsequence in k)

~ξk(B(i, j, α, k))→ xi,j in Hausdorff distance sense, as k →∞, for all α ∈ (0, 1).

Let Expxi,j : BRm
ε (0)→ M denote the exponential map of (M,h) based at the point xi,j . Consider the

rescaled immersions (with values in TpM ' Rm)

~ξi,jk (w) = e−λ(i,j,α,k)−log ρi,jk Exp−1
xi,j

(
~ξk(ρi,jk w + zi,jk )− ~ξk(zi,jk )

)
, ∀w ∈ (ρi,jk )−1(B(i, j, α, k)− zki,j

)
⊂ C .

It is easily seen that (6.7) implies

e−Aα−1 ≤ |∂w~ξi,jk | ≤ e
Aα+1 , for k ∈ N sufficiently large,

and that the assumption of case 2 yields e−λ(i,j,α,k)−log ρi,jk → +∞.
Notice that ~ξi,jk are Willmore immersions in (Rm, g(k, i, j)), where the Riemannian metrics g(k, i, j)
converge to the Euclidean metric as k →∞, in Clloc(Rm) topology, for every l ∈ N. Moreover, the scaling
invariance of the Willmore functional implies that

W(M,h)

(
~ξk|B(i, j, k, α)

)
= W(Rm,g(k,i,j))

(
~ξi,jk |(ρ

i,j
k )−1(B(i, j, α, k)− zki,j

))
. (6.11)

Using the aforementioned Clloc(Rm) convergence of the ambient Riemannian metrics, one can imme-
diately adapt the proof of the ε-regularity Theorem 4.9 to deduce that there exists a finite set of points{
ai,j1 , · · · , ai,jNi,j

}
⊂ C with Ni,j ∈ N such that

~ξi,jk −→
k→∞

~ξi,j∞ in Clloc

(
C \

{
ai,j1 , · · · , ai,jNi,j

})
, for all l ∈ N,

where ~ξi,j∞ is a smooth Willmore immersion of C \
{
ai,j1 , · · · , ai,jNi,j

}
in the Euclidean space Rm.

We can now follow verbatim the arguments in [4, pp. 130–132] and deduce that:

(1) In case
∫
C |∇~ξ

i,j
∞ |2dx <∞, using the stereographic projection of S2 to C, the limit map ~ξi,j∞ extends

to a smooth Willmore immersion of S2 into Rm, possibly branched at
{
ai,j1 , · · · , ai,jNi,j

}
. Moreover

(see also (6.11)):

lim
α→0

lim
k→∞

W(M,h)

(
~ξk|B(i, j, k, α)

)
= lim
α→0

lim
k→∞

∫
(ρi,jk )−1

(
B(i,j,α,k)−zki,j

) | ~H~ξi,jk
|2e

2λ~ξi,j
k dx

= WRm(~ξi,j∞ ). (6.12)

Such a branched Willmore immersion corresponds to a Euclidean bubble ~ηs, s = 1, . . . , p ∈ N in
the statement of Theorem A.
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(2) In case
∫
C |∇~ξ

i,j
∞ |2dx =∞, one finds suitable inversions Ik,i,j , I∞,i,j in Rm such that

Ik,i,j ◦ ~ξi,jk → I∞,i,j ◦ ~ξ
i,j
∞ , in Clloc

(
C \

{
ai,j1 , · · · , ai,jNi,j

})
, for all l ∈ N.

Furthermore, one obtains that (pre-composing with the stereographic projection) I∞,i,j ◦ ~ξi,j∞ ex-
tends to a smooth Willmore immersion of S2 into Rm, possibly branched at

{
ai,j1 , · · · , ai,jNi,j

}
.

Moreover,

lim
α→0

lim
k→∞

W(M,h)

(
~ξk|B(i, j, k, α)

)
= lim
α→0

lim
k→∞

∫
(ρi,jk )−1

(
B(i,j,α,k)−zki,j

) | ~H~ξi,jk
|2e

2λ~ξi,j
k dx

= WRm(I∞,i,j ◦ ~ξi,j∞ )− 4πθi,j , (6.13)

where θi,j is the integer density of I∞,i,j ◦ ~ξi,j∞ at the image point 0 ∈ Rm.
Such an inverted (compact) branched Willmore immersion of S2 corresponds to a Euclidean bubble
~ζt, t = 1, . . . , q ∈ N in the statement of Theorem A.

The combination of (6.9), (6.10), (6.12) and (6.13) gives the desired energy identity (up to a subsequence
in k):

lim
k→∞

W(Mm,h)(~Φk) = W(Mm,h)(~ξ∞) +
u∑
j=1

W(Mm,h)(~Ψj) +
p∑
s=1

WRm(~ηs) +
q∑
t=1

(
WRm(~ζt)− 4πθ0,t

)
.

Arguing along the lines of the proof of Theorem A, one can prove the following quantization result
for surfaces of arbitrary genus, under the assumption of weak convergence to a limit surface and a bound
on the conformal structures.

Theorem 6.1. Let Σ be a closed Riemann surface, (Mm, h) be a smooth compact Riemannian mani-
fold of dimension m ≥ 3, and let {~Φk}k∈N ⊂ Imm(Σ,Mm) be a sequence of conformally parametrised
Willmore immersions. Assume that the conformal classes of

{
~Φ∗kh

}
k∈N

remain within a compact region

of the moduli space of Σ and that there exists a weak, possibly branched, immersion ~Φ∞ : Σ→ (Mm, h)
such that

~Φk −→
k→∞

~Φ∞ weakly in W2,2
loc(Σ \ {a1, · · · , aN}) and weakly∗ in W1,∞

loc (Σ \ {a1, · · · , aN}) (6.14)

where {a1, · · · , aN} ⊂ Σ is a finite set. Then the following identity holds:

lim
k→∞

W(Mm,h)(~Φk) = W(Mm,h)(~Φ∞) +
u∑
j=1

W(Mm,h)(~Ψj) +
p∑
s=1

WRm(~ηs) +
q∑
t=1

(
WRm(~ζt)− 4πθ0,t

)
,

where:

(1) The map ~Φ∞ is a smooth, possibly branched, Willmore immersion of Σ into (Mm, h) and

~Φk −→
k→∞

~Φ∞ in Clloc(Σ \ {a1, · · · , aN}), ∀l ∈ N.

Furthermore, it holds

lim
k→∞

W(Mm,h)(~Φk) = W(Mm,h)(~Φ∞) ⇐⇒ ~Φk −→
k→∞

~Φ∞ in Cl(Σ), ∀l ∈ N.

(2) The maps ~Ψj : S2 → (Mm, h) are smooth, possibly branched, Willmore immersions.

(3) The maps ~ηs : S2 → Rm and ~ζt : S2 → Rm are smooth, possibly branched, Willmore immersions
and θ0,t = θ0(~ζt, xt) ∈ N is the multiplicity of ~ζt at some some point xt ∈ Rm.
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(4) The Riemannian Willmore bubbles ~Ψj : S2 → Mm are obtained as follows: there exist a sequence
of unit area and constant curvature metrics hk on Σ conformally equivalent to ~ξ∗kh and strongly
converging in Cl(Σ) such that for any j ∈ {1, . . . , u}, there exists a sequence of points xuk ∈ Σ
converging to one of {a1, · · · , aN}, a sequence of radii ρjk converging to zero such that (in converging
hk conformal coordinates ϕk around the given point in {a1, · · · , aN}):

~ξk ◦ ϕk(ρjky + ϕ−1
k (xjk)) −→

k→∞
~Ψj ◦ π−1(y) in Clloc(C \

{
aj1, · · · , a

j
Nj

}
), ∀l ∈ N,

where π denotes the stereographic projection from S2 into C, and
{
aj1, · · · , a

j
Nj

}
is a finite set of

points in the complex plane.

(5) The Euclidean Willmore bubbles ~ηs, ~ζt : S2 → Rm are obtained by the following blow up procedure:
there exist a sequence of unit area and constant curvature metrics hk on Σ conformally equivalent to
~ξ∗kh and strongly converging in Cl(Σ) such that for any s ∈ {1, . . . , p} (resp. for any t ∈ {1, . . . , q}),
there exists a point xs ∈M (resp. xt ∈M), there exists a sequence of points xsk ∈ Σ (resp. xtk ∈ Σ)
converging to one of {a1, · · · , aN}, a sequence of radii ρsk (resp. ρtk) converging to zero, a sequence
of rescalings λsk → ∞ (resp. λtk → ∞) and inversions Ξtk of Rm such that (in converging hk
conformal coordinates ϕk around the given point in {a1, · · · , aN}):

λsk · Exp−1
xs ◦ ~ξk ◦ ϕk(ρsky + ϕ−1

k (xsk)) −→
k→∞

~ηs ◦ π−1(y) in Clloc(C \
{
as1, · · · , asNs

}
), ∀l ∈ N,

and, respectively,

Ξtk ◦ λtk · Exp−1
xt ◦ ~ξk ◦ ϕk(ρtky + ϕ−1

k (xtk)) −→
k→∞

~ζt ◦ π−1(y) in Clloc(C \
{
at1, · · · , atNt

}
), ∀l ∈ N,

where π denotes the stereographic projection from S2 into C, and
{
as1, · · · , asNs

}
,
{
at1, · · · , atNt

}
are

finite sets of points in the complex plane.

7 Appendix: Generalised Lorentz Spaces

7.1 General discussion and first example

Let (X,µ) be a measured space. For any µ-measurable function f : X → Rn, we have∫
X

|f |pdµ = p

∫ ∞
0

tp−1λf (t)dt ,

where, for all t > 0, we denote

λf (t) = µ (X ∩ {x : |f(x)| > t}) .

Define the decreasing rearrangement f∗ : R+ → R+ ∪ {∞} of f by

f∗(t) = inf (R+ ∩ {s : λf (s) ≤ t}) .

It is clear from the definitions that for all t > 0

L 1 (R+ ∩ {s : f∗(s) > t}) = λf (t) , for all t > 0 .

Applying twice the slicing formula, we deduce that∫
X

|f |pdµ = p

∫ ∞
0

tp−1λf (t)dt = p

∫ ∞
0

tp−1L 1 (R+ ∩ {s : f∗(s) > t}) dt =
∫ ∞

0
fp∗ (s)ds.

More generally, for all real-valued differentiable functions ϕ,ψ : R+ → R+, we have the integration by
parts formula ∫ ∞

0
ϕ(λf (t))ψ′(t)dt =

∫ ∞
0

ϕ′(t)ψ (f∗(t)) dt. (7.1)
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Since this formula is not completely standard, we give a proof of it. Let f be a non-negative step function,
then there exists 0 < a1 < a2 < · · · < an < ∞ and pair-wise disjoint measurable sets A1, · · · , An such
that

f =
n∑
i=1

ai1Ai .

Following [55], defining Bi =
n⋃
j=i

Aj , we have

f =
n∑
i=1

(ai − ai−1)1Bi ,

where a0 = 0. Then it holds

λf =
n∑
i=1

µ(Bi)1[ai−1,ai] and f∗ =
n∑
i=1

ai1[µ(Bi+1),µ(Bi)].

Thanks to a discrete integration by parts with Bn+1 = ∅, we deduce that∫ ∞
0

ϕ(λf (t))ψ′(t)dt =
n∑
i=1

∫ ai

ai−1

ϕ(µ(Bi))ψ′(t) =
n∑
i=1

ϕ(µ(Bi)) (ψ(ai)− ψ(ai−1))

=
n∑
i=1

ψ(ai) (ϕ(µ(Bi))− ϕ(µ(Bi + 1))) =
n∑
i=1

ψ(ai)
∫ µ(Bi)

µ(Bi+1)
ϕ′(t)dt =

n∑
i=1

∫ µ(Bi)

µ(Bi+1)
ϕ′(t)ψ(f∗(t))dt

=
∫ ∞

0
ϕ′(t)ψ(f∗(t))dt.

The rest of the proof is the same as [55] if ϕ is unbounded or if (X,µ) is σ-finite, and given in [54] in the
general case. Notice that the proof would hold unchanged only assuming that ϕ and ψ are absolutely
continuous.

We will now define a class of Lorentz spaces (which can also be seen as generalisation of Orlicz spaces
[43]) of interest in this paper (see [55] and [54]). Let C be the set of non-negative concave functions
ϕ : R+ → R+ such that ϕ is continuous at 0,

ϕ(0) = lim
t→0

ϕ(t) = 0

and ϕ(t) > 0 for all t > 0. For all measurable f : X → Rn (of f : X → R ∪ {±∞}), define the norm

‖f‖N(ϕ) =
∫ ∞

0
ϕ(λf (t))dt.

Now fix some integer n ≥ 1 and let M (X) be the class of measurable Rn-valued function on X. Define

N(ϕ) = M (X) ∩
{
f : ‖f‖N(ϕ) <∞

}
.

Then we have the following result:

Theorem 7.1 (Steigerwalt-White [55], Steigerwalt [54]). The functional ‖ · ‖N(ϕ) is a norm and N(ϕ)
and (N(ϕ), ‖ · ‖N(ϕ)) is a Banach space.

By the integration by parts formula (7.1), we deduce that

‖f‖N(ϕ) =
∫ ∞

0
ϕ′(t)f∗(t) dt .
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Now let 1 < p <∞ and 1 ≤ q <∞. Define for all t > 0

f∗∗(t) = −
∫ t

0
f∗(s)ds = 1

t

∫ t

0
f∗(s)ds.

Then, the Lorentz space Lp,q(X) is defined by

Lp,q(X) ∩
{
f : ‖f‖Lp,q(X) <∞

}
, where ‖f‖Lp,q(X) =

(∫ ∞
0

t
q
p−1fq∗∗(t)dt

) 1
q

.

It is a Banach space and the following semi-norm | · |Lp,q(X)

|f |Lp,q(X) =
(∫ ∞

0
t
q
p−1fq∗ (t)dt

) 1
q

is equivalent to ‖ · ‖Lp,q(X). In the case q = 1, we have by Fubini’s theorem

‖f‖Lp,1(X) = p

p− 1 |f |L
p,1(X).

Using the integration by parts formula (7.1), with ϕ(t) = p
q t

p
q and ψ(t) = tq we deduce that∫ ∞

0
t
p
q−1fq∗ (t)dt =

∫ ∞
0

qtq−1 p

q
λf (t)

q
p dt = p

∫ ∞
0

tq−1λf (t)
q
p dt.

This gives the well known fact that Lp,p(X) = Lp(X) with equivalent norms. Taking instead ϕ(t) = t
1
p ,

we get that

‖f‖Lp,1(X) = p

p− 1 |f |L
p,1(X) = p

p− 1

∫ ∞
0

t
1
p−1f∗(t)dt = p2

p− 1 ‖f‖N(ϕ) .

Therefore, the spaces N(ϕ) are generalisations of Lp,1 spaces, but Lp,q spaces with 1 < q < ∞ are not
N(ϕ)-spaces.

Now, we will define generalisations of the weak Lp spaces or Marcinkiewicz spaces. Fix a σ-algebra
A ⊂ X(µ) and assume the following property: for all A ∈ A , if µ(A) = ∞, there exists B ⊂ A such
that 0 < µ(B) <∞. For ϕ ∈ C , set

‖f‖M(ϕ) = sup
t>0

{
1
ϕ(t)

∫ t

0
f∗(s)ds

}
, for all f ∈M (X). (7.2)

If 1 ≤ p < ∞, define Lp,∞(X) = M(t1−
1
p ). It is known that Lp,∞(X) is a Banach space equipped with

this norm for 1 < p <∞ (and such a norm is denoted by ‖ · ‖Lp,∞(X)). Furthermore, the following result
holds.
Theorem 7.2 (Steigerwalt-White [55], Steigerwalt [54]). Assume that ϕ(t) = o(t) as t → ∞. Then
M(ϕ) is a norm and (M(ϕ), ‖ · ‖) is a Banach space.
Remark 7.3. In [55], the authors first define the norm

‖f‖M(ϕ) = sup
{

1
ϕ(µ(A))

∫
A

|f |dµ : A ∈ A1

}
(7.3)

where

A1 = A ∩ {A : 0 < µ(A) <∞} .

Then Theorem 7.2 holds with this norm without any restrictions on ϕ, and the authors show (Theorem
3.3) that (7.2) and (7.3) coincide if either (X,A , µ) is σ-finite or if ϕ(t) = o(t) as t → ∞. Then they
quote Mary Steingerwalt’s PhD thesis [54] where the result is proven without any hypothesis on X or ϕ.
Notice that this result does not contradict the fact that L1,∞ is not a Banach space (even with X = R
and µ = L 1). Indeed, since Lp,∞(X) = M(t1−

1
p ), we would have L1,∞(X) = M(1) but the function

ϕ(t) = 1 is not admissible (does not belong to C ) since it does not satisfy ϕ(0) = 0. However, taking
p = ∞, we formally get L∞,∞(X) = M(t) = N(t)∗ = L1(X)∗ = L∞(X), so there is no new Lorentz
space corresponding to p = q =∞.
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Now, it is known that for all 1 < p <∞ and 1 ≤ q ≤ ∞, the dual space of Lp,q(X) is Lp′,q′(X) with

1
p

+ 1
p′

= 1 , 1
q

+ 1
q′

= 1 .

Moreover, for all measurable f, g : X → R ∪ {±∞} such that f ∈ Lp,q(X) and g ∈ Lp′,q′(X), it holds∣∣∣∣∫
X

fg dµ

∣∣∣∣ ≤ ‖f‖Lp,q(X) ‖g‖Lp′,q′ (X) .

For the generalised Lorentz space N(ϕ), we have the following duality result.

Theorem 7.4 (Steigerwalt-White [55], Steigerwalt [54]). For all (f, g) ∈ N(ϕ) ×M(ϕ), it holds fg ∈
L1(X,µ) and ∣∣∣∣∫

X

fg dµ

∣∣∣∣ ≤ ‖f‖N(ϕ) ‖g‖M(ϕ) .

In particular, N(ϕ)∗ = M(ϕ).

Notice that those results are consistent with the Lp,1 − Lp′,∞ duality: indeed Lq,∞(X) = M(t
1
q ), so

that Lp,1(X)∗ = N(t
1
p )∗ = M(t

1
p ) = Lp′,∞(X).

Finally, generalising both the Lorentz spaces and the Orlicz spaces, one can add a positive weight in
the definition of N(ϕ) which gives a new norm N(ϕ,ψ) defined by

‖f‖N(ϕ,ψ) =
∫ ∞

0
ϕ(λf (t))ψ(t) dt =

∫ ∞
0

ϕ′(t)Ψ(f∗(t)) dt , where Ψ(t) =
∫ t

0
ψ(s) ds .

where the second identity follows from (7.1). Here, to make sure that f is a normal, we must assume
that ψ(t) > 0 for all t > 0 and ϕ ∈ C . However, even this generalisation does not permit to recover the
Lorentz spaces Lp,q(X) for 1 < q <∞.

7.2 Another Generalised Lorentz Space

This appendix is linked to the content of the paper but not strictly needed; we include it for future
reference. Let d > 0, and define the function f = fd : B(0, R)→ R+ by

f(r) = 1
r

(
1 + 1

d

((
R

r

)d
− 1
))

.

We want to study a Lorentz space based on this function and obtain estimates reminiscent of Lemma
3.10 and uniform as d→ 0. Notice that when d→ 0, we have

fd(r) = 1
r

(
1 + 1

d

(
exp

(
d log

(
R

r

))
− 1
))
−→
d→0

1
r

(
1 + log

(
R

r

))
,

which will correspond to the standard function in M(Λ1), where Λ1 is defined in (3.68). We have

f ′(r) = − 1
r2

(
1 + 1

d

((
R

r

)d
− 1
))
− 1
r2

(
R

r

)d
< 0 ,

which shows that f is strictly decreasing. Therefore, we have for all t > 0

L 2 (B(0, R) ∩ {x : f(|x|)} > t) = L 2 (B(0, R) ∩
{
x : |x| < f−1(t)

})
= π

(
f−1(t)

)2
.

If u = ud = fd(| · |), we deduce that

L 2(B(0, R) ∩ {x : |u(x)| > s}) ≤ t⇐⇒ π(f−1(s))2 ≤ t⇐⇒ f−1(s) ≤
√
t

π
⇐⇒ s ≥ f

(√
t

π

)
.
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For t ≤ πR2, we infer that

u∗(t) = ud,∗ = f

(√
t

π

)
=
√
π

t

(
1 + 1

d

((
πR2

t

) d
2

− 1
))

,

while u∗(t) = 0 for t ≥ πR2. Therefore, we have for all t ≤ πR2

∫ t

0
u∗(s)ds =

[
2
√
πs

(
1 + 1

d

((
πR2

s

) d
2

− 1
))]t

0

+
∫ t

0

√
π

s

(
πR2

s

) d
2

ds

= 2
√
πt

(
1 + 1

β

((
πR2

t

) d
2

− 1
))

+ 2
1− d

√
π(πR2) d2 t

1−d
2 , (7.4)

while for all t ≥ πR2 we have ∫ t

0
u∗(s)ds = 2πR+ 2πR

1− d −→d→0
4πR <∞ . (7.5)

Now, let α < 1
2 and define ϕ : [0, 1]→ R+ by

ϕ(t) =
√
t

(
1
tα
− 1
)

= t
1
2−α − t 1

2 .

Then we have

ϕ′′(t) =
(
−1

4 + α2
)
t−

3
2−α + 1

4 t
− 3

2 < 0⇐⇒ tα < (1− (2α)2)⇐⇒ t <
(
1− (2α)2) 1

α ,

which shows that ϕ is concave in [0, (1− (2α)2) 1
α ]. Notice that as α→ 0, we have

(1− (2α)2) 1
α = e

1
α log(1−(2α)2) = e−4α+O(α2) −→

α→0
1.

Therefore, for all 0 < β <
1
4 , define the concave function Kβ : R+ → R+ by

Kβ(t) =
√
t

(
1 + 1

2β

((
πR2

t

)β
− 1
)

1
[0,(1−(2β)2)

1
β πR2]

(t)
)

+ (πR2t) 1
2−β

1− 2β .

It is continuous at 0, satisfies Kβ(0) = 0, and Kβ(t) > 0 for all t > 0. It is continuous everywhere except
in (1− (2β)2)

1
β πR2, but the function used in the definition of Lorentz spaces only needs to be continuous

at 0. Furthermore, the function Kβ could be replaced by its continuous counter-part

K∗β(t) =
√
t

(
1 + 1

2β

((
πR2

t

)β
− 1
)

1
[0,(1−(2β)2)

1
β πR2]

(t) + 1
2β

((
1

1− (2β)2 − 1
)

1{
t>(1−(2β)2)

1
β

}
))

+ (πR2t) 1
2−β

1− 2β

=
√
t

(
1 + 1

2β

((
πR2

t

)β
− 1
)

1
[0,(1−(2β)2)

1
β πR2]

(t) +
(

2β
1− (2β)2 1{

t>(1−(2β)2)
1
β πR2

}
))

+ (πR2t) 1
2−β

1− 2β

and the results stated below would be unchanged. Furthermore, by (7.4), we deduce that for all 0 < t ≤
(1− d2) 2

dπR2

1
K d

2
(t)

∫ t

0
u∗(s)ds = 2

√
π,
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and for all (1− d2) 2
dπR2 < t ≤ πR2, we have

1
K d

2
(t)

∫ t

0
u∗(s)ds = 1

√
t+ (πR2t)

1−d
2

1−d

(
2
√
πt

(
1 + 1

d

((
πR2

t

) d
2

− 1
))

+ 2
√
π

1− d (πR2) d2 t
1−d

2

)

≤ 1
(1− d2) 1

d
√
πR+ (πR2)1−d

(1−d)2(1+d) (1− d2) 1
d

(
2πR

(
1 + 1

d

(
1

(1− d2) − 1
))

+ 2πR
1− d

)
.

We have

1
d

(
1

(1− d2) − 1
)

= d+O(d3) −→
d→0

0 .

As above we have

(1− d2)d = ed log(1−d2) = 1− d3 +O(d5) −→
d→0

1,

which implies that

1
(1− d2) 1

d
√
πR+ (πR2)1−d

(1−d)2(1+d) (1− d2) 1
d

(
2πR

(
1 + 1

d

(
1

(1− d2) − 1
))

+ 2πR
1− d

)
−→
d→0

4πR√
πR+ πR2

= 4
√
π

1 +
√
πR

<∞.

Thus, for all t > πR2, we have

1
K d

2
(t)

∫ t

0
u∗(s)ds = 2πR

√
t+ (πR2t)

1−d
2

1−d

2πR
(

1 + 1
1− d

)

≤ 2πR
√
πR+ (πR2)1−d

1−d

(
1 + 1

1− d

)
−→
d→0

4πR√
πR+ πR2 = 4

√
π

1 +
√
πR

<∞.

Thanks to (7.5), we have

lim
t→∞

1
K d

2
(t)

∫ t

0
u∗(s)ds = 0.

We deduce that

lim sup
d→0

sup
t>0

1
K d

2
(t)

∫ t

0
u∗(s)ds ≤ 4

√
π <∞,

showing that u = ud is uniformly bounded in the Lorentz spaceM(K d
2
) as d→ 0, where for all 0 < β < 1

4 ,
we have

M(Kβ) = L1
loc(B(0, R)) ∩

{
f : ‖f‖M(Kβ) = sup

t>0

(
1

Kβ(t)

∫ t

0
f∗(s)ds

)
<∞

}
.

Notice that when β → 0, for all t > 0, we have

Kβ(t) =
√
t

(
1 + 1

2β

(
e
β log

(
πR2
t

)
− 1
)

1
[0,(1−(2β)2)

1
β πR2]

(t)
)

+ (πR2t) 1
2−β

1− 2β

=
√
t

(
1 + 1

2 log
(
πR2

t

)
1

[0,(1−(2β)2)
1
β πR2]

(t) +O

(
β log2

(
πR2

t

)))
+ (πR2t) 1

2−β

1− 2β

−→
β→0

√
t

(
1 +
√
πR+ 1

2 log
(
πR2

t

)
+

)
=
√
t

(
1 + log+

(
R

√
π

t

))
+
√
πR
√
t = Λ1(t) +

√
πR
√
t,
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showing that M(K0) = M(Λ1), where Λ1 is defined in (3.68). Therefore, we introduce the notation

L2,∞
log,β(B(0, R)) = M(Kβ).

Likewise, we define the space L2,1
log,β(B(0, R)) = N(Kβ) by

N(Kβ) = L1
loc(B(0, R)) ∩

{
f : ‖f‖N(Kβ) =

∫ ∞
0

Kβ

(
L 2 (B(0, R) ∩ {x : |f(x)| > t})

)
dt <∞

}
.

Now, we will show a result similar to Lemma 3.10 (with a uniform estimate as β → 0). Fix 0 < β <
1
4 ,

let x ∈ B(0, R2 ) and 0 < r < R
4 . By the co-area formula, we have∫

B2r\Br(x)
|u(x)|dx =

∫ 2r

r

(
ρ

∫
∂Bρ(x)

|u|dH 1

)
dρ

ρ
≤ log(2) inf

r<ρ<2r

(
ρ

∫
∂Bρ(x)

|u|dH 1

)
.

Therefore, there exists ρ ∈ (r, 2r) such that

ρ

∫
∂Bρ(x)

|u|dH 1 ≤ 1
log(2)

∫
B2r\Br(x)

|u(x)|dx.

We will show that if u is a holomorphic function on B(0, R), then a L2,∞
logβ control implies a W1,1 control

on B(0, αR) for all α < 1. Since it seems not standard to us, we give a full proof of this claim (in fact,
we know not whether such spaces where ever used in the past).

Using the L2,1
log,β/L

2,∞
log,β duality (Theorem 4.4 [55]), we deduce that∫
B2r\Br(x)

|u(x)|dx ≤ ‖1‖L2,1
log,β(B2r\Br(0))‖u‖L2,∞

log,β(B2r\Br(0)).

Notice that we have

λ1(t) = L 2 (B2r \Br(x) ∩ {x : 1 > t}
)

=
{

3πr2 if t < 1
0 if t ≥ 1.

We have by definition

‖1‖L2,1
log(B2r\Br(x)) =

∫ ∞
0

(
(λ1(t)) 1

2

(
1 + 1

2β

((
πR2

λ1(t)

)β
− 1
)

1
[0,(1−(2β)2)

1
β πR2]

(λ1(t))
)

+(πR2λ1(t)) 1
2−β

1− 2β

)
dt

=
√

3πr
(

1 + 1
2β

((
1√
3
R

r

)2β
)
− 1
)

1{√
3r<(1−(2β)2)

1
2β R

} + π(
√

3rR)1−2β

1− 2β .

Finally, we deduce that

ρ

∫
∂Bρ(x)

|u|dH 1 ≤
( √

3π
log(2)r

(
1 + 1

2β

((
1√
3
R

r

)2β
− 1
)

1{√
3r<(1−(2β)2)

1
2β R

}
)

+ π

log(2)
(
√

3rR)1−2β

1− 2β

)
‖u‖L2,∞

log,β(B2r\Br(x)) ,

and a fortiori that for all x ∈ B(0, R2 ) and 0 < r ≤ R
2 such that B(x, 2r) ⊂ B(0, R), there exists ρ ∈ [r, 2r]

such that ∫
∂Bρ(x)

|u|dH 1 ≤
( √

3π
log(2)

(
1 + 1

2β

((
1√
3
R

r

)2β
− 1
)

1{√
3r<(1−(2β)2)

1
2β R

}
)

+ π

log(2)
1
r2β

(
√

3R)1−2β

1− 2β

)
‖u‖L2,∞

log,β(B2r\Br(x)) . (7.6)

Thanks to this result, we will now be able to show a variant of a lemma presented first in [26].
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Lemma 7.5. Let u : B(0, R) → C be a holomorphic function and fix some 0 ≤ α < 1 and 0 ≤ β <
1
4 .

Assume that u ∈ L2,∞
log,β(B(0, R)). Then u ∈ L2(B(0, αR)) and there exists a universal constant Γ0

(independent of α and β) such that

‖u‖L2(B(0,αR)) ≤ Γ1
α

(1− α)1+2β

(
1 +R1−4β + 1

2β

((
2√
3

1
1− α

)2β
− 1
))
‖u‖L2,∞

log,β(B(0,R)) .

Proof. Write

u(z) =
∞∑
n=0

anz
n.

Notice that u = ∂zv, where

v(z) =
∞∑
n=1

bnz
n =

∞∑
n=1

an−1

n
zn. (7.7)

First, using the estimate (3.127) applied to ∇v at a point z ∈ ∂B(0, αR) with r = 1
2 (1−α)R, we deduce

by the mean-value formula that for some ρ ∈ [ 1
2 (1− α)R, (1− α)R], we have

|∇v(z)| = |2 ∂zv(z)| =

∣∣∣∣∣ 1
πρ

∫
∂B(z,ρ)

∂ζv(ζ)dζ

∣∣∣∣∣
≤

(
1

log(2)

√
3
π

1
ρ

(
1 + 1

2β

((
2√
3

1
1− α

)2β
− 1
))

+ 1
log(2)

1
ρ r2β

(
√

3R)1−2β

1− 2β

)
‖∇v‖L2,∞

log,β(B2r\Br(x))

≤ 8
log(2)

(√
3
π

1
(1− α)R

(
1 + 1

2β

((
2√
3

1
1− α

)2β
− 1
))

+ 1
((1− α)R)1+2β

(
√

3R)1−2β

1− 2β

)
‖u‖L2,∞

log,β(B2r\Br(x)) ,

(7.8)

where we used |∇v|2 = 4|∂zv|2 by the holomorphy of v. Therefore, by integrating by parts, we deduce
since u and u are harmonic that∫

B(0,αR)
|u(z)|2|dz|2 ≤ 1

2

∫
B(0,αR)

|∇v|2dx = 1
2

∫
B(0,αR)

div (v∇v) = 1
2

∫
∂B(0,αR)

v ∂νv dH
1

= 1
2

∫
∂B(0,αR)

(v − vαR)∂νv dH 1, (7.9)

where for all 0 < ρ < R, we have

vρ = −
∫
∂Bρ(0)

v dH 1.

Thanks to the L∞ bound (3.71) and the Sobolev embedding H 1
2 (S1) ↪→ L1(B(0, 1)), there exists a

uniform constant C0 > 0 such that

‖∇v‖2L2(B(0,αR)) =
∣∣∣∣∫
αR

(v − v∂BαR)∂νv dH 1
∣∣∣∣ ≤ ‖v − vαR‖L1(∂BαR(0)) ‖∇v‖L∞(∂BαR(0))

≤ C0αR ‖v‖H 1
2 (∂BαR(0))

× 8
log(2)

(√
3
π

1
(1− α)R

(
1 + 1

2β

((
2√
3

1
1− α

)2β
− 1
))

+ 1
((1− α)R)1+2β

(
√

3R)1−2β

1− 2β

)
‖∇v‖L2,∞

log,β(B2r\Br(x))

≤ 8C0

log(2)

(√
3
π

α

(1− α)

(
1 + 1

2β

((
2√
3

1
1− α

)2β
− 1
))

+ α

(1− α)1+2β
3 1

2−βR1−4β

1− 2β

)
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× ‖∇v‖L2(B(0,αR)) ‖∇v‖L2,∞
log,β(B2r\Br(x)) .

Therefore, we get

‖u‖L2(B(0,αR)) ≤
8C0

log(2)

(√
3
π

α

(1− α)

(
1 + 1

2β

((
2√
3

1
1− α

)2β
− 1
))

+ α

(1− α)1+2β
3 1

2−βR1−4β

1− 2β

)
‖∇v‖L2,∞

log,β(B2r\Br(x))

which concludes the proof of the lemma since β < 1
4 .

Corollary 7.6. Let {βk}k∈N ⊂ (0, 1
4 ) such that βk −→

k→∞
0. Assume that {uk}k∈N : B(0, R) → C is a

sequence of holomorphic functions bounded in L2,∞
log,βk(B(0, R)), i.e. such that

Λ = lim sup
k∈N

‖uk‖L2,∞
log,βk

(B(0,R)) <∞.

Then {uk}k∈N is bounded in L2(B(0, αR)) for all 0 < α < 1 and for all 0 < α < 1, we have

lim sup
k→∞

‖uk‖L2(B(0,αR)) ≤ Γ1
α

1− α

(
1 + log(2) +R+ log

(
1

1− α

))
Λ <∞. (7.10)

Proof. For all fixed 0 < α < 1, as β → 0, we have

1
2β

((
2√
3

1
1− α

)2β
− 1
)

= 1
2β

(
e

2β log
(

2√
3

1
1−α

)
− 1
)
−→
β→0

log
(

2√
3

1
1− α

)
≤ log(2) + log

(
1

1− α

)
which concludes the proof using Lemma 7.5.
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