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Abstract. We study the equivalence between the weighted least gradient problem and the
weighted Beckmann minimal flow problem or equivalently, the optimal transport problem with
Riemannian cost. Thanks to this equivalence, we prove existence and uniqueness of a solution
to the weighted least gradient problem. Then, we show Lp regularity on the transport density
between two singular measures in the corresponding equivalent Riemannian optimal transport
formulation. This will imply W 1,p regularity on the solution of the weighted least gradient
problem.

1. Introduction

In this paper, we study a variant of the least gradient problem. The classical version of the least
gradient problem consists of minimizing the total variation of the vector measure Du among all
BV functions u defined on an open bounded domain Ω with given boundary datum g:

(1.1) inf

{ˆ
Ω

|Du| : u ∈ BV (Ω), u|∂Ω = g

}
,

where u|∂Ω denotes the trace of u on the boundary ∂Ω. It was first considered in this form in
[38], where the authors prove existence and uniqueness of a solution to (1.1) in the case where
Ω is strictly convex and the boundary datum g is continuous. The convexity assumption on the
domain is crucial for the analysis performed in [38], and indeed the authors provide examples of
boundary data for which there exist no solutions if it is violated. In the case when Ω is not strictly
convex, one needs to introduce admissibility conditions on the boundary data to obtain existence
and uniqueness of solutions, see [14, 34]. On the other hand, on strictly convex domains the con-
tinuity assumption on the boundary data can be relaxed; for instance, in [17] the author proved
that in two dimensions Problem (1.1) admits a solution as soon as g ∈ BV (∂Ω) (for generalisations
to higher dimensions, see [19, 32]). This result is sharp in the sense that a counter-example given
in [37] shows that if g /∈ BV (∂Ω), solutions to Problem (1.1) might not exist. Moreover, we lose
uniqueness of the solution to Problem (1.1) if g /∈ C(∂Ω).

In [15, 21], the authors proved that in 2D, the problem (1.1) is closely related to the following
minimal flow formulation (which is called the Beckmann problem; see [4])

(1.2) inf

{ˆ
Ω

|v| : v ∈M(Ω,R2), div v = 0 and v · n = f := ∂τg on ∂Ω

}
,

provided that the domain Ω is convex and g ∈ BV (∂Ω). Here, the finite signed measure ∂τg is
the tangential derivative of g. Moreover, M(Ω,R2) denotes the set of vector measures over Ω
while the divergence constraint is understood in the distributional sense. In fact, the infima in the
two problems coincide, and if Ω is strictly convex there is a one-to-one correspondence between
vector measures Du which are derivatives of solutions to (1.1) and vector measures v which solve
(1.2). This equivalence is formally given by v := Rπ

2
Du on Ω. If Ω is only convex, the one-to-one

correspondence is still true provided that for every optimal flow v of the Beckmann problem, its
total variation |v| gives zero mass to the boundary. As a consequence, regularity estimates for one
problem can be transferred to the other one, in particular the Lp summability of the optimal flow
v yields W 1,p regularity of the solution u to Problem (1.1). We will describe this equivalence in
more detail in Section 2.3.
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On the other hand, the Beckmann problem (1.2) is equivalent to the optimal transport problem
with Euclidean cost (which is called the Monge-Kantorovich problem; see [24,30]) with source and
target measures located on ∂Ω (see [36]):

(1.3) min

{ ˆ
Ω×Ω

|x− y|dΛ : Λ ∈M+(Ω× Ω), (Πx)#Λ = f+ and (Πy)#Λ = f−
}
,

where f+ and f− are the positive and negative parts of f (we note that f+ and f− have the same
total mass since f is the tangential derivative of g on the closed set ∂Ω, so f(∂Ω) = 0). Moreover,
it is well known (see, for instance, [36]) that the Monge-Kantorovich problem (1.3) has a dual
formulation, which is the following:

(1.4) sup

{ˆ
Ω

ψ d(f+ − f−) : ψ ∈ Lip1(Ω)

}
.

From [36], every optimal flow v of Problem (1.2) is of the form v = −|v|∇ψ, where ψ is a Kan-
torovich potential (i.e. a maximizer for the dual problem (1.4)). In addition, one can show that
this nonnegative measure |v| is a transport density between f+ and f−, i.e. there is an optimal
transport plan Λ such that

|v|(A) =

ˆ
Ω×Ω

H1([x, y] ∩A) dΛ(x, y), for all Borel set A ⊂ Ω.

We see that |v|(∂Ω) = 0 as soon as Ω is strictly convex and so, the equivalence between Problems
(1.1) & (1.2) gives existence of a solution u for Problem (1.1). Moreover, classical results imply
that the transport density |v| is unique (i.e., it does not depend on the choice of the optimal trans-
port plan Λ) provided f+ or f− is absolutely continuous with respect to the Lebesgue measure
Ld. The Lp summability of the transport density has been studied in several papers [9–11,35] and
the results can be summarized as follows: for every p ∈ [1,∞], the transport density is in Lp(Ω)
provided that both f+ and f− are in Lp(Ω). However, none of these assumptions is satisfied in
our setting: the source and target measures f+ and f− in Problem (1.3) are concentrated on the
boundary, so it is not clear whether the transport density |v| is unique or not. Nonetheless, the
authors of [15] prove uniqueness of the optimal transport plan Λ (and so, uniqueness of the optimal
flow v) under the assumption that f+ or f− is atomless and Ω is strictly convex. Moreover, they
proved that if the domain is uniformly convex and both f+ and f− are in Lp(∂Ω) with p ≤ 2, then
the transport density between them is in Lp(Ω). Recalling again the equivalence between Prob-
lems (1.1) & (1.2), this implies that on uniformly convex domains the solution u of the problem
(1.1) is unique as soon as g ∈ C(∂Ω) and (for p ≤ 2) it belongs toW 1,p(Ω) as soon as g ∈W 1,p(∂Ω).

In this paper, we are interested in studying the planar weighted least gradient problem (see
[23,31]):

(wLGP) inf

{ˆ
Ω

k(x)|Du| : u ∈ BV (Ω), u|∂Ω = g

}
where k : Ω 7→ R+ is a given smooth function. It is closely connected to the conductivity imaging
problem (see for instance [23]), which is an inverse problem appearing with relation to medical
imaging, and its purpose is to recover the conductivity σ of a given body from a measurement of
the magnitude of the current density |J | inside the body and voltage g on its boundary. Denote
by u the electrical potential corresponding to the voltage g, then u formally satisfies the equation

(1.5)
{

div(σ∇u) = 0 in Ω,
u = g on ∂Ω.

By Ohm’s law, the current density equals J = −σ∇u, so we may formally rewrite the above
problem as the weighted 1-Laplace equation

(1.6)
{
−div(|J | ∇u|∇u| ) = 0 in Ω,

u = g on ∂Ω,

which is the Euler-Lagrange equation of the the weighted least gradient problem with weight k = |J |
(for a precise justification of this passage, see [31]). The conductivity imaging problem is in turn
related to a variant of the Calderón problem, in which one wants to recover the conductivity of
the body Ω solely from the measurement at the boundary and the knowledge of a Dirichlet-to-
Neumann map associated to the weighted 1-Laplace equation (1.6) (or equivalently, to (1.5)). Let
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us note that the Dirichlet-to-Neumann map for the isotropic 1-Laplace operator was studied in
[22].

In [23], the authors showed existence of a solution u for Problem (wLGP) as soon as ∂Ω satisfies a
positivity condition on a sort of generalized mean curvature related to k, and g ∈ C(∂Ω). Moreover,
they proved that if k ∈ C1,1(Ω) is positive and bounded away from zero and if g is continuous
on ∂Ω, then the weighted least gradient problem (wLGP) has at most one minimizer. They also
showed that the condition k ∈ C1,1(Ω) is sharp in the sense that uniqueness may fail if k ∈ C1,α(Ω)
with α < 1. In the present paper, we show existence and uniqueness of a solution u for Problem
(wLGP) via an optimal transport approach. More precisely, we will refine and generalize first the
result of [21] by proving that if Ω ⊂ R2 is contractible and if g ∈ BV (∂Ω), then Problem (wLGP)
is completely equivalent to the weighted Beckmann problem:

(wBP) inf

{ˆ
Ω

k(x)|v| : v ∈M(Ω,R2), div v = 0, v · n = f on ∂Ω

}
,

where f := ∂τg. In particular, we have that u is a solution for Problem (wLGP) if and only if
the corresponding v := Rπ

2
Du is an optimal flow for Problem (wBP) with |v|(∂Ω) = 0. Yet, one

can also show that Problem (wBP) is equivalent to the following optimal transport problem with
Riemannian cost (see also [12,33]):

(1.7) min

{ˆ
Ω×Ω

dk(x, y) dΛ : Λ ∈M+(Ω× Ω), (Πx)#Λ = f+ and (Πy)#Λ = f−
}
,

where dk denotes the distance generated by the conformally Riemannian metric k. In fact, we will
show that if Ω is geodesically convex, then every optimal flow v of Problem (wBP) is of the form
v = k−1vΛ, for some optimal transport plan Λ of Problem (1.7), where

< vΛ, ξ >=

ˆ
Ω×Ω

ˆ 1

0

k(γx,y(t)) ξ(γx,y(t)) · γ′x,y(t) dtdΛ(x, y), for all ξ ∈ C(Ω,R2).

It is not difficult to see that |vΛ|(∂Ω) = 0 as soon as Ω is geodesically strictly convex. Thanks to
this fact, we will show that Problem (wLGP) reaches a minimum provided that g ∈ BV (∂Ω). On
the other hand, we will also show that Problem (1.7) has a unique optimal transport plan Λ as
soon as f+ or f− is atomless and Ω is geodesically strictly convex. This yields to uniqueness of
the solution u of Problem (wBP) provided that g ∈ C(∂Ω).

Moreover, we will study the Lp summability of the transport density |vΛ| (where Λ is the unique
optimal transport plan in Problem (1.7)) between two measures f+ and f− which are located on
the boundary ∂Ω. More precisely, we will extend the Lp estimates of [15] on the transport density
to the case where the transport cost is given by a Riemannian distance dk(x, y), provided that Ω
is geodesically uniformly convex. In fact, proving Lp estimates on this transport density is signif-
icantly more difficult than in [15], since the transport rays are now Riemannian geodesics; they
are not necessarily straight lines like in the Euclidean case, and the key point in the proof would
be to show a geometric result concerning the directions of the transport rays. Together with the
equivalence between problems (wLGP) and (wBP), this yields W 1,p regularity on the solution u of
Problem (wLGP). In short, the main result in the present paper can be stated as follows: if p ≤ 2,
the domain Ω is geodesically uniformly convex and g ∈ W 1,p(∂Ω), the weighted least gradient
problem (wLGP) has a unique solution u ∈W 1,p(Ω).

The paper is organised as follows. In Section 2, we recall the basic definitions concerning
anisotropic BV functions and Anzellotti pairings, as well as the state of the literature concerning
the weighted least gradient problem and the equivalence between the least gradient problem and
the boundary-to-boundary optimal transport problem in the Euclidean case. In Section 3, we
prove the equivalence between the anisotropic least gradient problem and anisotropic Beckmann
problem under minimal assumptions. Then, in Section 4, we consider Riemannian metrics and
show equivalence between the weighted Beckmann problem and the optimal transport problem
with Riemannian cost. Then, in Section 5, we study some consequences of the results in the
previous two Sections for the structure of solutions in the least gradient problem. The main results
in this paper, concerning Lp estimates for the transport density, are in Section 6. Finally, in Section
7, we apply the Lp estimates for the transport density to obtain regularity estimates for solutions
of the weighted least gradient problem.
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2. Preliminaries

In this paper, our main goal is to study regularity of solutions to the weighted least gradient
problem. To this end, we first recall in Section 2.1 the notion of anisotropic BV spaces and some
of their properties. We follow the presentation in [1]. We also recall the notion of Anzellotti
pairings, weak normal traces and a corresponding version of the Gauss-Green formula (see [3, 7]).
Then, in Section 2.2, we recall the precise statement and known results on the weighted least
gradient problem. Finally, in Section 2.3, we present known results on the equivalence between
the two-dimensional least gradient problem and a version of the optimal transport problem in the
Euclidean case. Throughout the whole paper, Ω ⊂ R2 denotes an open bounded set with Lipschitz
boundary.

2.1. Anisotropic BV spaces.

Definition 2.1. A continuous function φ : Ω × R2 → [0,∞) is called a metric integrand if it
satisfies the following conditions:
(1) v 7→ φ(x, v) is a norm for every x,
(2) φ is bounded and uniformly elliptic in Ω, i.e.

∃λ, Λ > 0 s.t. ∀x ∈ Ω, ∀ ξ ∈ R2, λ|ξ| ≤ φ(x, ξ) ≤ Λ|ξ|.

Standard examples of metric integrands which appear with relation to the least gradient problem
are: the Euclidean case (i.e. φ(x, p) = |p|), the l1 norm φ(x, p) = |p1|+ |p2|, and the weighted least
gradient problem φ(x, p) = k(x)|p| with k bounded and bounded away from zero (see [17, 23, 40]).
This last case will be the main focus of our attention in the second half of the paper.

The definition below is specific to the two-dimensional case.

Definition 2.2. Let φ : Ω× R2 → [0,∞) be a metric integrand. We denote its rotation by −π2 in
the second variable by

φ⊥(x, ξ) := φ(x,R−π2 ξ).

It is clear that φ⊥ : Ω× R2 → [0,∞) is also a metric integrand.

Definition 2.3. Let φ : Ω×R2 → [0,∞) be a metric integrand. Its polar function is φ0 : Ω×R2 →
[0,∞) defined as

φ0(x, ξ∗) = sup {〈ξ∗, ξ〉 : ξ ∈ R2, φ(x, ξ) ≤ 1}.

Definition 2.4. Let φ : Ω× R2 → [0,∞) be a metric integrand. For a given function u ∈ L1(Ω),
we define its φ−total variation in Ω by the formula:

ˆ
Ω

|Du|φ = sup

{ ˆ
Ω

udiv(z) dx : φ0(x, z(x)) ≤ 1 a.e., z ∈ C1
c (Ω)

}
.

Another popular notation for the φ−total variation is
´

Ω
φ(x,Du). In fact, one can show that´

Ω
φ(x,Du) =

´
Ω
φ(x, dDud|Du| )d|Du|, where

dDu
d|Du| denotes the Radon-Nikodym derivative. We will

say that u ∈ BVφ(Ω) if its φ−total variation is finite in Ω; furthermore, let us define the φ−perimeter
of a set E as

Pφ(E,Ω) =

ˆ
Ω

|DχE |φ.

If Pφ(E,Ω) <∞, we say that E is a set of bounded φ−perimeter in Ω.

Remark 2.5. Let φ : Ω × R2 → [0,∞) be a metric integrand. Since φ is bounded and uniformly
elliptic, we have

λ

ˆ
Ω

|Du| ≤
ˆ

Ω

|Du|φ ≤ Λ

ˆ
Ω

|Du|.

In particular, BVφ(Ω) = BV (Ω) as sets. They are equipped with different (but equivalent) norms.

Now, we recall the definition and basic properties of Anzellotti pairings introduced in [3]. The
construction below is usually performed under more general assumptions, but for simplicity we
restrict ourselves to the setting we will use in the paper (in Section 5). For p ≥ 1, denote

Xp(Ω) =

{
z ∈ L∞(Ω,R2) : div(z) ∈ Lp(Ω)

}
.
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Given z ∈ Xp(Ω) and w ∈ BV (Ω)∩Lp′(Ω), we define the functional (z, Dw) : C∞c (Ω)→ R by the
formula

〈(z, Dw), ϕ〉 = −
ˆ

Ω

wϕdiv(z) dx−
ˆ

Ω

w z · ∇ϕdx.

The distribution (z, Dw) turns out to be a Radon measure on Ω. It is a generalization of the
pointwise product z · ∇w; namely, for w ∈W 1,1(Ω) ∩ Lp′(Ω), we haveˆ

Ω

(z, Dw)ϕ =

ˆ
Ω

z · ∇wϕdx, ∀ϕ ∈ C∞c (Ω).

The following Proposition summarizes the most important properties of the pairing (z, Du).

Proposition 2.6. Suppose that φ is a metric integrand. Let z ∈ Xp(Ω) and u ∈ BV (Ω)∩Lp′(Ω).
Then, for any Borel set B ⊂ Ω, we have∣∣∣∣ˆ

B

(z, Du)

∣∣∣∣ ≤ ‖φ0(x, z(x))‖L∞(Ω)

ˆ
B

|Du|φ.

In particular, (z, Du)� |Du| as measures in Ω. Moreover, there exists a function [z, n] ∈ L∞(∂Ω)
such that ‖[z, n]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω,R2) and the following Gauss-Green formula holds:

ˆ
Ω

udiv(z) dx+

ˆ
Ω

(z, Du) =

ˆ
∂Ω

[z, n]u dH1.

The function [z, n] has the interpretation of the normal trace of the vector field z at the boundary
and it coincides with the classical normal trace if z is sufficiently smooth.

2.2. Weighted least gradient problem. In this paper, we are interested in the following problem

(2.1) inf

{ ˆ
Ω

k(x)|Du| : u ∈ BV (Ω), u|∂Ω = g

}
,

where k is sufficiently smooth. In the isotropic case, a standard assumption for existence of
solutions is strict convexity of Ω. In the anisotropic case, the standard assumption is called the
barrier condition and is a local property at every point x0 ∈ ∂Ω. In the definition below, denote
φ(x, p) = k(x)|p|. Some of the results below are valid for more general φ, but for the sake of
presentation, we restrict ourselves to the two-dimensional weighted case.

Definition 2.7 (Barrier condition). We say that Ω satisfies the barrier condition if the following
condition holds: for every x0 ∈ ∂Ω, there exists r0 > 0 such that for all r < r0, if V is a minimizer
of

(2.2) inf

{
Pφ(W,R2) : W ⊂ Ω, (Ω\W ) ⊂ B(x0, r)

}
,

then
∂V ∩ ∂Ω ∩B(x0, r) = ∅.

Under this assumption, existence of solutions was proved for continuous boundary data by
Jerrard, Moradifam and Nachman in [23] (actually, the result holds also when the boundary datum
is continuous a.e. with respect to the codimension one Hausdorff measure on ∂Ω, see [32] or
[19]). However, in order to use optimal transport techniques, we will later need a slighly stronger
assumption of strict geodesic convexity of Ω. In the Euclidean case, these two concepts are closely
related: in two dimensions, the barrier condition is equivalent to strict convexity of Ω; in higher
dimensions, the barrier condition is something between convexity and strict convexity of Ω, see
[19]. We will comment on the relationship between these two concepts at the end of Section 4.

The literature regarding regularity of solutions to the weighted least gradient problem is very
thin. In the paper [23], the authors have shown that for sufficiently smooth k, in low dimensions
continuity of boundary data implies continuity of solutions. This result was extended to any
dimension by Zuniga in [40] under the assumption k ∈ C2(Ω). However, if k is not regular enough,
then continuity of solutions may break down: several examples for Lipschitz weights appear in [25]
and an example for C1,α weights with α < 1 appears in [23].

Finally, let us recall another formulation of the least gradient problem, first introduced by
Mazón, Rossi and Segura de León in the isotropic case (see [28]).
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Definition 2.8. We say that u ∈ BV (Ω) is a function of φ-least gradient if for all v ∈ BV (Ω)
such that v|∂Ω = 0, we have ˆ

Ω

|Du|φ ≤
ˆ

Ω

|D(u+ v)|φ.

Using this definition, we may reformulate the weighted least gradient problem as follows: the
goal is to find a φ-least gradient function with prescribed trace. The following characterisation
in terms of Anzellotti pairings was proved in [28] in the isotropic case; in the form below it was
proved by Mazón in [27].

Theorem 2.9. Suppose that u ∈ BV (Ω) is a function of φ-least gradient. Then, there exists a
vector field z ∈ L∞(Ω,R2) such that ‖φ0(x, z(x))‖∞ ≤ 1, div(z) = 0 in the distributional sense
and

(z, Du) = |Du|φ as measures in Ω.

We also recall the celebrated Bombieri-de Giorgi-Giusti theorem. It was first proved in the
Euclidean case in [5] and in the form below it was proved by Mazón in [27].

Theorem 2.10. Suppose that u ∈ BV (Ω) is a φ-least gradient function. Then, for all t ∈ R, the
function χ{u≥t} is also a function of φ−least gradient.

2.3. Equivalence in the Euclidean case. In this Section, we present the relationship between
the least gradient problem, the Beckmann problem and the classical Monge-Kantorovich problem
in the Euclidean case, together with some properties of solutions to these problems. Recall that
throughout the paper Ω ⊂ R2 denotes an open bounded set with Lipschitz boundary. In this
subsection, we assume additionally that Ω is convex. We start with the relationship between the
least gradient problem

(2.3) inf

{ˆ
Ω

|Du| : u ∈ BV (Ω), u|∂Ω = g

}
,

and the Beckmann problem

(2.4) min

{ˆ
Ω

|v| : v ∈M(Ω,R2), div v = f

}
.

Here, g ∈ BV (∂Ω), and the boundary condition in (2.3) is understood in the sense of traces.
The divergence condition in (2.4) is understood in the distributional sense; we have div (v) = 0
in Ω and [v, n] = f on ∂Ω, where [v, n] denotes the weak normal trace of a vector field whose
divergence is integrable (see Section 2.1). Suppose that f ∈ M(∂Ω) satisfies a mass balance
condition

´
∂Ω

df = 0. Then, Problem (2.4) admits a solution (see [36]). Moreover, Problem (2.3)
reaches a minimum as soon as Ω is strictly convex (see [17]). Notice that such f and g are in
a one-to-one correspondence (up to an additive constant in g) via the relation f = ∂τg. It was
observed in [21] that Problems (2.3) and (2.4) are closely related. Namely, if we take an admissible
function u ∈ BV (Ω) in (2.3), then v = Rπ

2
Du is admissible in (2.4). Indeed, in dimension two,

a rotation of a gradient by π
2 is a divergence-free field in Ω and it interchanges the normal and

tangent components at the boundary. In the other direction, given a vector field v ∈ L1(Ω,R2)
admissible in (2.4), we can recover u ∈ W 1,1(Ω) admissible in (2.3). In [15], the authors noticed
that this result may be improved: if v ∈ M(Ω,R2) is such that |v|(∂Ω) = 0, then there exists
u ∈ BV (Ω) such that v = Rπ

2
Du and [v, n] = ∂τ (Tu). In particular, notice that |v| = |Du| as

measures on Ω; hence, the infimal values in (2.3) and (2.4) coincide. We will see later that a
solution v for Problem (2.4) gives zero mass to the boundary as soon as Ω is strictly convex (this
implies existence of a solution for Problem (2.3); see [15]). Let us sum up these considerations as
follows.

Theorem 2.11. Suppose that Ω is convex. Then, the problems (2.3) and (2.4) are equivalent in
the following sense:
(1) Their infimal values coincide, i.e. inf (2.3) = min (2.4).
(2) Given a solution u ∈ BV (Ω) of (2.3), we can construct a solution v ∈ M(Ω,R2) of (2.4);
moreover, v = Rπ

2
Du.

(3) Given a solution v ∈ M(Ω,R2) of (2.4) with |v|(∂Ω) = 0, we can construct a solution u ∈
BV (Ω) of (2.3); moreover, v = Rπ

2
Du.
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Now, we turn to the equivalence between the Beckmann problem (2.4) and the following Monge-
Kantorovich problem:

(2.5) min

{ ˆ
Ω×Ω

|x− y|dΛ : Λ ∈M+(Ω× Ω), (Πx)#Λ = f+ and (Πy)#Λ = f−
}
.

This equivalence is standard in the optimal transport theory (see for instance [36, Chapter 4]),
but we will describe it shortly for completeness. Here, Ω ⊂ R2 is a bounded open convex set,
f ∈ M(Ω) and f = f+ − f− is its decomposition into a positive and negative part. In order for
the problem to be well defined, we assume that the mass balance condition f+(Ω) = f−(Ω) holds.
In particular, this setting covers our case, when the measures are concentrated on ∂Ω.

First, let us recall a few standard results in the optimal transport theory. The fact that

(2.6) sup

{ˆ
Ω

ψ d(f+ − f−) : ψ ∈ Lip1(Ω)

}
is the dual problem to (2.5) is well-known, see for instance [36, 39]. As a corollary of its proof, we
get that there exist solutions to both problems, and that any optimal transport plan Λ and any
Kantorovich potential ψ satisfy the following equality:ˆ

Ω×Ω

(|x− y| − (ψ(x)− ψ(y))) dΛ(x, y) = 0,

which implies that
ψ(x)− ψ(y) = |x− y| on spt(Λ).

If ψ is a Kantorovich potential, we call any maximal segment [x, y] satisfying ψ(x)−ψ(y) = |x−y|
a transport ray. The Kantorovich potential is in general not unique, but frame of transport rays
does not depend on the choice of ψ (at least on the support of Λ). Moreover, an optimal transport
plan Λ has to move the mass along the transport rays.

Now, we turn our attention to the equivalence between the Kantorovich problem (2.5) and the
Beckmann problem (2.4). First, let us see that for any v ∈M(Ω,Rd) admissible in the Beckmann
problem (2.4), we have that for any C1 function φ with |∇φ| ≤ 1,

|v|(Ω) =

ˆ
Ω

1 d|v| ≥
ˆ

Ω

(−∇φ) · dv =

ˆ
Ω

φdf.

Hence, min (2.4) ≥ max (2.6) = min (2.5) (the supremum in (2.6) is taken for Lipschitz functions,
but we may approximate them uniformly by C1 functions). On the other hand, given an optimal
transport plan Λ, we may construct a vector measure vΛ ∈M(Ω,Rd) defined by the formula

〈vΛ, ξ〉 :=

ˆ
Ω×Ω

ˆ 1

0

ξ(ωx,y(t)) · ω′x,y(t) dtdΛ(x, y),

for all ξ ∈ C(Ω,Rd). Here, ωx,y(t) = (1 − t)x + ty is the constant-speed parametrisation of [x, y].
By taking ξ = ∇φ, it is immediate that vΛ satisfies the divergence constraint. The total mass of
vΛ will be estimated using the transport density σΛ ∈M+(Ω), which is defined by the formula

〈σΛ, φ〉 :=

ˆ
Ω×Ω

ˆ 1

0

φ(ωx,y(t))|ω′x,y(t)|dtdΛ(x, y),

for all φ ∈ C(Ω). The vector measure vΛ and the scalar measure σΛ are related in the following
way: if ψ is a Kantorovich potential, we have

ω′x,y(t) = y − x = −|x− y| x− y
|x− y|

= −|x− y|∇ψ(ωx,y(t)),

for all t ∈ (0, 1) and (x, y) ∈ spt(Λ). Thus, 〈vΛ, ξ〉 = 〈σΛ,−ξ ·∇ψ〉, for all ξ ∈ C(Ω,Rd), so we have

vΛ = −∇ψ · σΛ.

Hence, vΛ is absolutely continuous with respect to σΛ and |vΛ| = σΛ. Then, one has

min (2.5) =

ˆ
Ω×Ω

|x− y|dΛ =

ˆ
Ω×Ω

ˆ 1

0

|ω′x,y(t)|dtdΛ(x, y) = σΛ(Ω) = |wΛ|(Ω) ≥ min (2.4).

This implies that min (2.5) = min (2.4) and that from an optimal transport plan Λ we can construct
a solution to the Beckmann problem (2.4). On the other hand, it can be shown that every solution
to (2.4) is of the form v = vΛ for some optimal transport plan Λ, see [36, Theorem 4.13]. We
summarize the above discussion in the following Theorem.
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Theorem 2.12. Suppose that Ω is convex. Then, the problems (2.5) and (2.4) admit solutions,
and are equivalent in the following sense:
(1) Their minimal values coincide, i.e. min (2.5) = min (2.4).
(2) Given an optimal transport plan Λ ∈ M+(Ω × Ω) in (2.5), we can construct a solution vΛ ∈
M(Ω,Rd) to (2.4).
(3) Given a solution v ∈ M(Ω,R2) to (2.4), we can construct an optimal transport plan Λ ∈
M+(Ω× Ω) in (2.5) such that v = vΛ.

The equivalence between the two-dimensional least gradient problem (2.3) and the Monge-
Kantorovich problem (2.5) comes from combining Theorems 2.11 and 2.12. Given a solution to
(2.3), we may construct an optimal transport plan Λ for (2.5) with f± = (∂τg)±; in the other
direction, since |vΛ| = σΛ, we may recover a solution to (2.3) from an optimal transport plan Λ as
soon as the transport density σΛ gives no mass to the boundary, i.e. σΛ(∂Ω) = 0. An important
special case is when Ω is strictly convex. Using the equivalent formula for transport density, i.e.
for every Borel set A ⊂ Ω,

σΛ(A) =

ˆ
Ω×Ω

H1([x, y] ∩A) dΛ(x, y),

we have that if Ω is strictly convex, then for any optimal transport plan Λ we have that σΛ(∂Ω) = 0,
and the correspondence between problems is one-to-one. This link between the two problems was
exploited for the first time in [15]. For a strictly convex domain Ω, the authors studied the
boundary-to-boundary optimal transport problem. If at least one of the measures f± is atomless,
then the optimal transport plan is unique and induced by a map, and proved several variants of
regularity estimates on the transport density. The main application of these results so far is the
W 1,p regularity of solutions to the least gradient problem: the estimates on the transport density
imply that if g ∈ W 1,p(∂Ω) for p ∈ [1, 2], then the unique solution u to (2.3) lies in W 1,p(Ω),
provided that Ω is uniformly convex.

3. Equivalence between the anisotropic least gradient problem and the
anisotropic Beckmann problem

In this Section, we will prove the equivalence between the anisotropic least gradient problem

inf

{ˆ
Ω

φ(x,Du) : u ∈ BV (Ω), u|∂Ω = g

}
,

and the anisotropic Beckmann problem

min

{ˆ
Ω

φ⊥(x, v) : v ∈M(Ω,R2), div v = f

}
.

Recall that throughout the paper Ω ⊂ R2 denotes an open bounded set with Lipschitz boundary.
In this Section, we will additionally require that Ω is contractible (or equivalently, since we study
the planar case, that ∂Ω is connected). This is unlike the results in [21] for the Euclidean case,
which require convexity of the domain. We will generalize the results from [21] in two ways: by
allowing anisotropic settings and a wider class of domains. Relaxing the convexity assumption on
Ω is particularly relevant in the anisotropic case; throughout most of the paper, we will instead
require that the domain Ω is geodesically convex. Hence, we need to prove the equivalence for a
more general class of domains.

Proposition 3.1. Suppose that Ω is contractible. Let v ∈ L1(Ω,R2) be such that div(v) = 0 in
the sense of distributions. Then, there exists u ∈W 1,1(Ω) such that v = Rπ

2
∇u. In particular, for

any metric integrand φ, we haveˆ
Ω

φ⊥(x, v) dx =

ˆ
Ω

φ(x,∇u) dx.

Moreover, if v · n|∂Ω = f and Tu = g, then we have f = ∂τg.

Proof. Step 1. Definition of an approximating sequence uε. Fix any x0 ∈ Ω. Denote
v = (v1, v2). Let ϕε (with ε > 0) be a sequence of mollifiers and set vε to be the mollification of
v, i.e. vε = v ∗ ϕε := (vε1, v

ε
2). Since div(v) = 0, we also have div(vε) = 0. We define a sequence

of mollified differential forms ωε = vε2dx1 − vε1dx2; since div(vε) = 0, we also have dωε = 0. The
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domain is contractible, so the differential form ωε uniquely (up to an additive constant depending
on the choice of x0) defines a function uε ∈ C∞(Ω) via

uε(x) =

ˆ
γx

ωε,

with γx is any smooth oriented curve from x0 to x. In particular, we have ∇uε = R−π2 v
ε.

Step 2. Convergence in L1(Ω). We claim that a modified version of the sequence uε

converges in L1(Ω). Denote by (uε)Ω the mean value of uε on Ω. Set ũε = uε − (uε)Ω and notice
that ∇ũε = ∇uε = R−π2 v

ε. Using the Poincaré inequality, we get the following estimate:

(3.1)
ˆ

Ω

|ũε| dx =

ˆ
Ω

|uε − (uε)Ω| dx ≤ C(Ω)

ˆ
Ω

|∇uε| dx = C(Ω)

ˆ
Ω

|vε| dx.

Yet, the sequence vε is bounded in L1(Ω,R2) with ||vε||L1 ≤ ||v||L1 . Hence, we have

‖ũε‖W 1,1(Ω) ≤ (C(Ω) + 1)‖vε‖L1(Ω) ≤M.

Then, there exists a subsequence ũεn → u in L1(Ω).
Step 3. Convergence in W 1,1(Ω). We recall that ∇ũε = R−π2 v

ε. Since vε is a Cauchy
sequence in L1(Ω,R2), ∇ũεn is also a Cauchy sequence in L1(Ω,R2), because

‖∇ũεn −∇ũεm‖L1(Ω,R2) = ‖R−π2 (vεn − vεm)‖L1(Ω,R2) = ‖vεn − vεm‖L1(Ω,R2).

Hence, ũεn is a Cauchy sequence in W 1,1(Ω), so it converges to u in W 1,1(Ω). In particular, we
have ∇u = R−π2 v and, ˆ

Ω

φ(x,∇u) dx =

ˆ
Ω

φ⊥(x, v) dx.

Step 4. The boundary condition. Finally, we study the relationship between the trace of f
and the normal trace of g; this part is similar to part of the proof in [21], but we write it here for
completeness. If φ ∈ Lip(R2), and ϕ is its restriction on ∂Ω, then

〈f, ϕ〉 = 〈v · n|∂Ω, ϕ〉 =

ˆ
Ω

v · ∇φdx = lim
εn→0

ˆ
Ω

vε · ∇φdx = lim
εn→0

ˆ
Ω

Rπ
2
∇ũεn · ∇φdx

= lim
εn→0

ˆ
∂Ω

Rπ
2
∇ũεn · nϕdH1.

Due to the smoothness of ũεn , we have Rπ
2
∇ũεn · n = ∂τ ũεn . Hence,

〈f, ϕ〉 = lim
εn→0

ˆ
∂Ω

Rπ
2
∇ũεn · nϕdH1 = lim

εn→0

ˆ
∂Ω

∂τ ũεn ϕdH1 = − lim
εn→0

ˆ
∂Ω

T ũεn ∂τϕdH1.

Since ũεn converges to u in W 1,1(Ω), then the traces converge in L1(∂Ω), i.e., T ũεn → Tu. Thus,

〈f, ϕ〉 = −
ˆ
∂Ω

Tu∂τϕ dH1 = −
ˆ
∂Ω

g ∂τϕ dH1 = 〈∂τg, ϕ〉 . �

In a similar way, we may enlarge the class of admissible vector fields v. We will require that
v ∈ M(Ω,R2) is such that |v|(∂Ω) = 0. The outline of this proof will be very similar to the proof
of Proposition 3.1.

Proposition 3.2. Suppose that Ω is contractible. Let v ∈ M(Ω,R2) be such that div(v) = 0 in
the sense of distributions and |v|(∂Ω) = 0. Then, there exists u ∈ BV (Ω) such that v = Rπ

2
Du.

In particular, for any metric integrand φ, we haveˆ
Ω

φ⊥(x, v) dx =

ˆ
Ω

φ(x,Du) dx.

In addition, if v · n|∂Ω = f and Tu = g, then we have f = ∂τg.

Proof. Step 1. Definition of an approximating sequence uε. We proceed exactly as in the
proof of Proposition 3.1; we also keep the same notation.

Step 2. Convergence in L1(Ω). The estimate (3.1) is proved on the level of the approximation
ũε and remains the same when v ∈ M(Ω,R2). When v is a measure, we also have vε is bounded
in L1(Ω,R2) with ||vε||L1(Ω,R2) ≤ ||v||M(Ω,R2). Hence

‖ũε‖W 1,1(Ω) ≤M.
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Then, there exists a subsequence ũεn such that ũεn → u weakly* in BV (Ω), i.e. there is a function
u ∈ BV (Ω) such that ũεn → u in L1(Ω) and ∇ũεn dL2 ⇀ Du weakly* as measures. In particular,
we have v = Rπ

2
Du.

Step 3. Convergence of the anisotropic total variations. Now, recall that |v|(∂Ω) = 0;
then, also |φ⊥(x, v)|(∂Ω) = 0. Hence, one hasˆ

Ω

φ(x,Du) =

ˆ
Ω

φ⊥(x, v).

Moreover, we haveˆ
Ω

|v| = lim
εn→0

ˆ
Ω

|vεn | dx = lim
εn→0

ˆ
Ω

|∇ũεn | dx ≥
ˆ

Ω

|Du| =
ˆ

Ω

|v|,

and so, the inequality is in fact an equality and the subsequence ũεn → u strictly in BV (Ω).
Step 4. The boundary condition. This step is handled analogously to the corresponding

part in the proof of Proposition 3.1. The only difference is that the convergence T ũεn → Tu follows
from strict convergence of the sequence ũεn to u in place of convergence in norm. �

Finally, as a consequence of Step 4 in the proof of Proposition 3.1, we get a converse result to
Proposition 3.1. Actually, the next result is valid without the contractibility assumption on Ω, and
a proof can be found in [14, Proposition 3.1].

Proposition 3.3. Let u ∈ BV (Ω) with trace Tu = g. Then, v = Rπ
2
∇u is a vector-valued measure

such that div(v) = f , where f = ∂τg. In particular, it is an admissible function in (2.4).

Now, we state the main Theorem.

Theorem 3.4. Suppose that Ω is contractible. Then, the problems (2.3) and (2.4) are equivalent
in the following sense:
(1) Their infimal values coincide, i.e. inf (2.3) = min (2.4).
(2) Given a solution u ∈ BV (Ω) of (2.3), we can construct a solution v ∈ M(Ω,R2) of (2.4);
moreover, v = Rπ

2
Du.

(3) Given a solution v ∈ M(Ω,R2) of (2.4) with |v|(∂Ω) = 0, we can construct a solution u ∈
BV (Ω) of (2.3); moreover, v = Rπ

2
Du.

Proof. (1) Suppose that (un)n ⊂ BV (Ω) is a minimizing sequence for the problem (2.3). Then,
taking vn = Rπ

2
Dun, we have by Proposition 3.3 that the functions vn are admissible in Problem

(2.4) and we have

inf (2.3)←
ˆ

Ω

φ(x,Dun) =

ˆ
Ω

φ⊥(x, vn) ≥ min (2.4).

Similarly, suppose that vn ∈M(Ω,R2) is a minimizing sequence for the problem (2.4). Mollifying
this sequence if necessary, we may take another minimizing sequence ṽn ∈ L1(Ω,R2) for this
problem. By Proposition 3.1, there exist functions un ∈W 1,1(Ω) admissible in Problem (2.3) such
that ṽn = Rπ

2
∇un. Hence,

min (2.4)←
ˆ

Ω

φ⊥(x, ṽn) =

ˆ
Ω

φ(x,∇un) ≥ inf (2.3).

We obtained that inf (2.3) = min (2.4).
(2) Let u ∈ BV (Ω) be a minimizer of Problem (2.3). Let v = Rπ

2
∇u; by Proposition 3.3, it is

an admissible vector field in Problem (2.4). We have

inf (2.3) =

ˆ
Ω

φ(x,Du) =

ˆ
Ω

φ⊥(x, v) ≥ min (2.4).

Hence, v is a minimizer for Problem (2.4).
(3) Let v ∈ M(Ω,R2) be a minimizer of Problem (2.4) such that |v|(∂Ω) = 0. By Proposition

3.2, there exists u ∈ BV (Ω) admissible in Problem (2.3) and v = Rπ
2
∇u. Hence, one has

min (2.4) =

ˆ
Ω

φ⊥(x, v) =

ˆ
Ω

φ(x,Du) ≥ inf (2.3).

Consequently, this implies that the function u is in fact a solution for the problem (2.3). �
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This concludes the equivalence between the anisotropic least gradient problem and the anisotropic
Beckmann problem for any contractible domain. Let us note that if the domain is not contractible,
then the results in this section are no longer true even in the Euclidean case (see for instance [14],
where the authors study the least gradient problem on annulus).

4. Optimal transport problem with Riemannian cost

Let k be a smooth (say C1,1) positive function on R2. We denote by dk the Riemannian metric
associated with k:

dk(x, y) := min

{ˆ 1

0

k(γ(t)) |γ′(t)|dt : γ ∈ Lip([0, 1],R2), γ(0) = x and γ(1) = y

}
.

Let Ω be an open and geodesically convex domain in R2 (i.e., for any two points x and y in Ω, there
is a unique geodesic γ contained within Ω that joins x and y). Let f+ and f− be two nonnegative
Borel measures on Ω such that f+(Ω) = f−(Ω). Then, we consider the Kantorovich problem:

(4.1) min

{ ˆ
Ω×Ω

dk(x, y) dΛ(x, y) : Λ ∈M+(Ω× Ω), (Πx)#Λ = f+ and (Πy)#Λ = f−
}
.

In fact, Problem (4.1) is the relaxed version of the Monge problem with Riemannian cost:

(4.2) min

{ˆ
Ω

dk(x, T (x)) df+(x) : T#f
+ = f−

}
.

The authors of [16] prove existence of an optimal transport map T or equivalently, an optimal
transport plan Λ which is concentrated on a map, under the assumption that f+ ∈ L1(Ω). From
[36,39], the problem (4.1) admits a dual formulation

(4.3) sup

{ ˆ
Ω

ψ d(f+ − f−) : |ψ(x)− ψ(y)| ≤ dk(x, y), ∀ x, y ∈ Ω

}
.

Notice that a function ψ is 1−Lipschitz with respect to the geodesic distance dk if and only if
|∇ψ(x)| ≤ k(x) for almost every x. So, the idea in [16] was the following: to obtain an optimal
transport map T in the problem (4.2), it is sufficient to start from a Kantorovich potential ψ (i.e.,
a maximizer of the dual problem (4.3)) and then, construct a transport map T in such a way that
ψ and T satisfy together the following:

ψ(x)− ψ(T (x)) = dk(x, T (x)), for f+ a.e. x ∈ Ω.

Anyway, we see that if Λ is an optimal transport plan in Problem (4.1) and if ψ is a Kantorovich
potential in Problem (4.3), then from the duality min (4.1) = sup (4.3), we infer that

ψ(x)− ψ(y) = dk(x, y), for all (x, y) ∈ spt(Λ).

We call any maximal geodesic γx,y between x and y that satisfies the equality ψ(x)−ψ(y) = dk(x, y)
a transport ray. This means that any optimal transport plan Λ moves the mass along the transport
rays. An important fact is that two different transport rays cannot intersect at an interior point of
one of them; to see that, assume γ+ := γx+,y+ and γ− := γx−,y− are two different transport rays.
Without loss of generality, assume that they intersect at z, an interior point of γ−. The point z
either is an interior point of γ+ or it is one of its endpoints (by symmetry, we assume it to be x+).
We have

ψ(z)− ψ(y+) = dk(z, y+) and ψ(x−)− ψ(z) = dk(x−, z).

Then,
ψ(x−)− ψ(y+) = dk(x−, z) + dk(z, y+).

Yet, ψ is 1−Lipschitz with respect to dk. Hence, z belongs to a geodesic γ from x− to y+, which
is a concatenation of fragments of γ+ and γ−. But, this is a contradiction as there is a unique
minimizing geodesic starting at x− with initial velocity γ′(0) (thanks to the C1,1 regularity of the
Riemannian metric k; see [6, Chapter 8] or [13, Chapter 7]).

In optimal transport theory it is classical to associate with any optimal transport plan Λ a non-
negative measure σΛ on Ω, called the transport density, which represents the amount of transport
taking place in each region of Ω. This measure σΛ is defined as follows

(4.4) < σΛ, φ >:=

ˆ
Ω×Ω

ˆ 1

0

φ(γx,y(t)) k(γx,y(t)) |γ′x,y(t)|dtdΛ(x, y), for all φ ∈ C(Ω),
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where γx,y is the unique geodesic between x and y. We note that the measure σΛ is well defined
thanks to the fact that Ω is geodesically convex. Denote by H1

k the weighted Hausdorff measure,
i.e. H1

k(γ) :=
´ 1

0
k(γ(t)) |γ′(t)|dt for a Lipschitz curve γ. From (4.4), we can see easily that

(4.5) σΛ(A) :=

ˆ
Ω×Ω

H1
k(γx,y ∩A) dΛ(x, y), for all Borel set A ⊂ Ω.

On the other hand, we define a vector measure vΛ, which is the vector version of σΛ, as follows

(4.6) < vΛ, ξ >:=

ˆ
Ω×Ω

ˆ 1

0

ξ(γx,y(t)) · k(γx,y(t)) γ′x,y(t) dtdΛ(x, y), for all ξ ∈ C(Ω,R2).

Let ψ be a Kantorovich potential in the dual problem (4.3). Thanks to [16, Lemma 10], ψ is
differentiable at any interior point of a transport ray γx,y and, we have

γ′x,y(t) = −k−1(γx,y(t)) dk(x, y)
∇ψ(γx,y(t))

|∇ψ(γx,y(t))|
.

This implies that

vΛ = −σΛ
∇ψ
|∇ψ|

.

In particular, we have |vΛ| = σΛ. From (4.4) and the optimality of the transport plan Λ, we infer
that ˆ

Ω

|vΛ| = σΛ(Ω) =

ˆ
Ω×Ω

dk(x, y) dΛ(x, y) = min (4.1).

Fix φ ∈ C1(Ω). Taking ξ = k−1∇φ ∈ C(Ω,R2) as a test function in the definition (4.6) of vΛ,
then we have

< vΛ, k
−1∇φ > =

ˆ
Ω×Ω

ˆ 1

0

∇φ(γx,y(t)) · γ′x,y(t) dtdΛ(x, y)

=

ˆ
Ω×Ω

ˆ 1

0

[
d

dt
φ(γx,y(t))

]
dtdΛ(x, y)

=

ˆ
Ω×Ω

[φ(y)− φ(x)] dΛ(x, y)

=

ˆ
Ω

φ d(f− − f+),

This implies that div[k−1vΛ] = f+ − f−. Now, let us consider the weighted Beckmann problem

(4.7) min

{ˆ
Ω

k|v| : v ∈M(Ω,R2), div v = f

}
.

Similarly to the Euclidean case, on geodesically convex domains we have an equivalence between
the Beckmann problem and the optimal transport problem. By the reasoning above, we infer that

min (4.7) ≤
ˆ

Ω

k|k−1vΛ| =

ˆ
Ω

|vΛ| = min (4.1).

Yet, it is easy to see that the reverse inequality also holds, since for any vector measure v such
that div(v) = f and any smooth function ψ such that |∇ψ| ≤ k, one hasˆ

Ω

ψ d(f+ − f−) = −
ˆ

Ω

∇ψ · dv ≤
ˆ

Ω

k d|v|.

Hence, we get that
min (4.7) = min (4.1).

Moreover, we infer that k−1vΛ solves the Beckmann problem (4.7). In fact, one can prove (see
[15, Proposition 2.3] in the Euclidean case) that every optimal flow v of Problem (4.7) is of the
form v = k−1vΛ, for some optimal transport plan Λ of Problem (4.1). Let us note that in [33] the
author proved the equivalence between the Beckmann problem and the optimal transport problem
in a more general setting, but then the definition of the transport density has to be altered to
allow for splitting of the transport along multiple transport rays. Since in our regularity results
we rely on the uniqueness of the geodesic between any two given points, let us present a sketch of
the proof of an analogue of [15, Proposition 2.3] in the Riemannian case.
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Let C be the set of absolutely continuous curves γ : [0, 1] 7→ Ω. We call a traffic plan any
nonnegative measure η on C such that (e0)#η = f+ and (e1)#η = f−, where for all t ∈ [0, 1] we
denote et(γ) := γ(t). We define the traffic flow vη and the traffic intensity iη as follows:

< vη, ξ >:=

ˆ
C

ˆ 1

0

ξ(γ(t)) · k(γ(t)) γ′(t) dtdη(γ), for all ξ ∈ C(Ω,R2),

and

< iη, φ >:=

ˆ
C

ˆ 1

0

φ(γ(t)) k(γ(t)) |γ′(t)|dtdη(γ), for all φ ∈ C(Ω).

We note that div[k−1 vη] = f+ − f−; in particular, it is admissible in Problem (4.7). Let v be an
optimal flow for Problem (4.7). Similarly to [15, Lemma 2.2], one can show that there is a traffic
plan η such that ˆ

Ω

d|kv − vη|+
ˆ

Ω

diη =

ˆ
Ω

k d|v|.

Note that |vη| ≤ iη. Since k−1vη is admissible in Problem (4.7) while v minimizes Problem (4.7),
then we get

(4.8)
ˆ

Ω

diη ≥
ˆ

Ω

k d|v|.

Moreover, we haveˆ
Ω

k d|v| ≤
ˆ

Ω

d|kv − vη|+
ˆ

Ω

d|vη| ≤
ˆ

Ω

d|kv − vη|+
ˆ

Ω

diη =

ˆ
Ω

k d|v|.

Hence, all the inequalities above are in fact equalities. But then, equation (4.8) implies that

v = k−1vη and |vη| = iη.

Set Λη := (e0, e1)#η. Then, it is clear that Λη is a transport plan between f+ and f−. In addition,
we haveˆ

Ω

d|vη| =
ˆ
C

ˆ 1

0

k(γ(t)) |γ′(t)|dtdη(γ) ≥
ˆ
C
dk(γ(0), γ(1)) dη(γ) =

ˆ
Ω

dk(x, y) dΛη.

Yet, min (4.7) = min (4.1) and k−1vη minimizes Problem (4.7). Hence, the inequality above is an
equality, which implies that for η−a.e. γ ∈ C, dk(γ(0), γ(1)) =

´ 1

0
k(γ(t))|γ′(t)|dt and so, γ is the

unique geodesic between γ(0) and γ(1). Consequently, v = k−1vη = k−1vΛη and Λη is an optimal
transport plan for Problem (4.1).

The Lp summability of the transport density σΛ was already considered in many papers [9–11,
35]. However, in all these works, the authors just consider the Euclidean case (i.e., k ≡ 1). More
precisely, they show that for all p ∈ [1,∞] the transport density σΛ belongs to Lp(Ω) as soon as
f± ∈ Lp(Ω). Moreover, the authors of [15] have already considered the case where the source and
target measures are singular (f± are two measures concentrated on ∂Ω): they show (again, under
the assumption that k ≡ 1) that if f± ∈ Lp(∂Ω), then the transport density σΛ between them
is in Lp(Ω) provided that p ≤ 2 and Ω is uniformly convex. In this paper, we will study the Lp
summability of the transport density σΛ in the case where f± are concentrated on the boundary
∂Ω and k is a positive C1,1 Riemannian metric.

Let us come back to the question of existence and uniqueness of an optimal transport map T for
the Monge problem (4.2). We note that this map T (when it exists) is not necessarily unique and,
the Kantorovich problem (4.1) may have many different solutions as well. Under the assumption
that f+ ∈ L1(Ω), one can pick a special optimal transport plan Λ which will be induced by a
transport map T , and this map turns out to be a solution for the Monge problem (4.2). Yet,
in this paper, we consider the case where f+ and f− are two nonnegative measures which are
concentrated on ∂Ω and so, it is not clear if the Monge problem (4.2) reaches a minimum or not.
Before studying existence and uniqueness of minimizers for Problems (4.1) & (4.2), we need to
introduce the following:

Definition 4.1. We say that Ω is geodesically strictly convex if given any two points in Ω, the
unique minimizing geodesic between them lies in the interior of Ω, possibly except for its endpoints.
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Then, we have the following existence and uniqueness result (the proof is similar to the one given
in [15, Proposition 2.5], but for the sake of completeness we will introduce here its adaptation to
the Riemannian case):

Proposition 4.2. Assume that Ω is geodesically strictly convex. Then, there is a unique optimal
transport plan Λ, between f+ and f−, which will be induced by a transport map T , provided that
f+ is non-atomic. This map T turns out to be the unique optimal transport map in the Monge
problem (4.2).

Proof. Let Λ be an optimal transport plan between f+ and f−. Let us denote by D the set of
points whose belong to different transport rays. Since two transport rays cannot intersect at an
interior point of either of them, we have that D ⊂ ∂Ω. Fix x ∈ D and let γ±x be two different
transport rays starting at x. Let Ex be the region delimited by γ+

x , γ−x and ∂Ω. Then, we easily
see that these sets {Ex}x∈D must be essentially disjoint with L2(Ex) > 0, for every x ∈ D. This
implies that the set D is at most countable. Yet, f+ is non-atomic and so, f+(D) = 0. On the
other hand, we have that for f+−almost every x /∈ D, there is a unique transport ray γx starting at
x and, thanks to the fact that Ω is geodesically strictly convex, this geodesic γx intersects spt(f−)
at exactly one point T (x). This implies that Λ = (Id, T )#f

+. Yet, this is sufficient to infer that Λ
is the unique optimal transport plan in the Kantorovich problem (4.1) since, if Λ′ = (Id, T ′)#f

+ is
another optimal transport plan then Λ′′ = (Λ + Λ′)/2 is also optimal and so, Λ′′ must be induced
by a transport map T ′′. But, this yields to a contradiction as soon as T 6= T ′, since it is not
possible to have the following equality for all ϕ ∈ C(Ω× Ω):ˆ

Ω

ϕ(x, T ′′(x)) df+(x) =
1

2

[ˆ
Ω

ϕ(x, T (x)) df+(x) +

ˆ
Ω

ϕ(x, T ′(x)) df+(x)

]
.

�

Fix τ ∈ [0, 1]. Then, we define the partial transport densities σ+
Λ and σ−Λ as follows:

(4.9) < σ+
Λ , φ >:=

ˆ
Ω×Ω

ˆ τ

0

φ(γx,y(t)) k(γx,y(t)) |γ′x,y(t)|dtdΛ(x, y), for all φ ∈ C(Ω),

and

(4.10) < σ−Λ , φ >:=

ˆ
Ω×Ω

ˆ 1

τ

φ(γx,y(t)) k(γx,y(t)) |γ′x,y(t)|dtdΛ(x, y), for all φ ∈ C(Ω).

It is clear that σΛ = σ+
Λ + σ−Λ . To prove Lp estimates on the transport density σΛ, the idea in the

next sections will be to prove Lp summability on σ±Λ .

In what follows, we will also need the following stability result.

Proposition 4.3. Assume that f± ∈ M+(∂Ω) and let (f−n )n ⊂M+(∂Ω) be such that f−n ⇀ f−.
Let Λn be an optimal transport plan between f+ and f−n . Then, Λn ⇀ Λ, where Λ is an optimal
transport plan between f+ and f−. Moreover, σ±Λn ⇀ σ±Λ . Finally, if Λn := (I, Tn)#f

+ and
Λ := (I, T )#f

+, then (up to taking a subsequence) for f+-a.e. x ∈ ∂Ω, we have Tn(x)→ T (x).

Proof. Let ψn be a Kantorovich potential between f+ and f−n . Then, from the duality min (4.1) =
sup (4.3), we have ˆ

Ω×Ω

dk(x, y) dΛn(x, y) =

ˆ
Ω

ψn d(f+ − f−n ).

Yet, it is clear that, up to a subsequence, ψn → ψ uniformly. So, passing to the limit when n→∞,
we get ˆ

Ω×Ω

dk(x, y) dΛ(x, y) =

ˆ
Ω

ψ d(f+ − f−).

This implies that Λ is an optimal transport plan between f+ and f−, while ψ is a Kantorovich
potential between them. The second statement follows directly from the definitions (4.9) & (4.10)
of σ±Λ . The last statement follows directly from the fact thatˆ

Ω

ξ(x, Tn(x)) df+(x)→
ˆ

Ω

ξ(x, T (x)) df+(x), for all ξ ∈ C(Ω× Ω).

Take ξ(x, y) = ξ+(x) ·y and ξ(x, y) = |y|2 respectively, we infer that Tn ⇀ T in L2 and ||Tn||L2 →
||T ||L2 and so, Tn → T in L2. In particular, it converges f+-a.e. on a subsequence. �
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We will conclude this section by commenting on the relationship between geodesic convexity
of the domain and the barrier condition (see Definition 2.7), which is the assumption used for
existence of solutions in the least gradient problem in [23]. It turns out that the assumption of
geodesic strict convexity of Ω, required to use optimal transport techniques, implies the barrier
condition.

Proposition 4.4. Suppose that Ω is geodesically strictly convex. Then, it satisfies the barrier
condition.

Proof. Let x0 ∈ ∂Ω. Because Ω has Lipschitz boundary, we may choose r > 0 small enough so
that ∂Ω ∩ ∂B(x0, r) consists of two points; we denote them by x1 and x2. Denote by γx1x2

the
geodesic from x1 to x2; because Ω is geodesically strictly convex, we have γx1x2

⊂ Ω.
Now, we consider the problem (2.2) in the definition of the barrier condition. Using the direct

method of the calculus of variations, we easily see that it admits a solution V . The points x1, x2

separate ∂Ω into two arcs: Γ1 is the arc which contains x0 and Γ2 is the arc which does not contain
x0. On the other hand, notice that γx1x2

separates Ω into two regions; let us denote by V ′ the
region whose closure contains Γ2. Hence, we may take V ′′ = V ′ ∪ (Ω\B(x0, r)) as a competitor in
(2.2) and see that V = V ′′; this happens because V ′ minimizes perimeter in a larger class, namely
it is a solution of

(4.11) inf

{
Pφ(W,R2) : W ⊂ Ω, TχW ≥ χΓ2

}
,

so as V is admissible in (2.2), then it is also admissible in (4.11); in particular, Pφ(V ′,R2) ≤
Pφ(V,R2). This inequality still holds after taking a union with Ω\B(x0, r), see for instance [26]
(or simply notice that ∂V ′′ is a Lipschitz curve which arises from replacing a part of ∂V ′ in case
when it leaves B(x0, r) with a part of ∂B(x0, r)). In particular, ∂V consists of parts of γx1,x2 and
parts of ∂B(x0, r), so ∂V ∩ ∂Ω ∩B(x0, r) = ∅ and the barrier condition is satisfied. �

On the other hand, the barrier condition is only a local property near ∂Ω and does not imply
geodesic convexity of Ω, because the geodesic between any two given points may fail to be unique.
This can be seen by considering the examples in [25] (in this regard, they may be modified for
a smooth weight). However, the barrier condition means that the boundary is not locally area-
minimizing with respect to internal variations, so once we know that the geodesic between any two
given points in Ω is unique, it means that the domain is strictly geodesically convex.

5. Structure of solutions

In this section, we extend the relationship between the weighted least gradient problem (wLGP)
and the Kantorovich problem with Riemannian cost (4.1) to their respective dual problems.
Namely, we study the relationship between the maximization problem (see [32])

(5.1) sup

{ˆ
∂Ω

[z, n] g dH1 : z ∈ Z
}
,

where g ∈ BV (∂Ω) and

Z =

{
z ∈ L∞(Ω,R2), div z = 0, |z(x)| ≤ k(x) for a.e. x ∈ Ω

}
,

with the maximization problem (4.3)

sup

{ ˆ
Ω

ψ d(f+ − f−) : |ψ(x)− ψ(y)| ≤ dk(x, y), ∀ x, y ∈ Ω

}
.

Here, the normal trace [z, n] is understood in the weak sense (see Section 2.1). Using a standard
reasoning in duality theory, one can see that both problems admit solutions; see [32] for problem
(5.1) and [36, 39] for problem (4.3). Since the infimal values in the primal problems are equal,
the supremal values in the dual problems also coincide. We now show that these problems are
equivalent in the sense that from a solution of one problem we may recover a solution of the other
problem. In the Euclidean case, such a result was shown in [20]. We use a similar technique in the
weighted case; the main differences are that instead of uniform bounds on z we now have pointwise
bounds and the domain is no longer convex, so we need to rely on Proposition 3.1 (valid for any
contractible domain) to recover the Kantorovich potential.
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Theorem 5.1. Suppose that Ω is geodesically convex. Then, the problems (4.3) and (5.1) are
equivalent in the following sense:
(1) Their supremal values coincide, i.e. sup (4.3) = sup (5.1).
(2) Given a maximizer ψ ∈ Lip(Ω) of (4.3), we can construct a maximizer z ∈ L∞(Ω,R2) of (5.1);
moveover, z = R−π2∇ψ in Ω.
(3) Given a maximizer z ∈ L∞(Ω,R2) of (5.1), we may construct a maximizer ψ ∈ Lip(Ω) of
(4.3)and, we have z = R−π2∇ψ in Ω.

Notice that the direction of the rotation is opposite to the direction of rotation in Theorem
2.11. We need geodesic convexity of Ω, because in the computation of supremal values we need to
pass through the primal problems, and the equivalence for primal problems holds on geodesically
convex domains.

Proof. (1) This follows immediately from the equivalence between the weighted least gradient
problem, weighted Beckmann problem, and the Monge-Kantorovich problem. We have

sup (5.1) = inf (wLGP) = inf (4.1) = sup (4.3).

(2) Suppose that ψ ∈ Lip(Ω) is a maximizer in Problem (4.3). Take z = R−π2∇ψ ∈ L
∞(Ω,R2).

Then, z is admissible in (5.1), since div(z) = 0 as distributions and |z(x)| = |∇ψ(x)| ≤ k(x) a.e.
in Ω. Since ψ is Lipschitz and g ∈ BV (∂Ω), we have ψg ∈ BV (∂Ω) and a mass balance condition
holds:

(5.2) 0 =

ˆ
∂Ω

d[∂τ (ψg)] =

ˆ
∂Ω

ψ d(∂τg) +

ˆ
∂Ω

(∂τψ) g dH1.

Now, z = R−π2∇ψ = −Rπ
2
∇ψ, so by Proposition 3.1 we have [z, n] = −∂τψ. By (5.2),

sup (5.1) = sup (4.3) =

ˆ
∂Ω

ψ df =

ˆ
∂Ω

ψ d(∂τg) =

ˆ
∂Ω

(−∂τψ) g dH1 =

ˆ
∂Ω

[z, n] g dH1.

Hence, z is a maximizer for Problem (5.1).

(3) Suppose that z ∈ L∞(Ω,R2) is a maximizer in (5.1). By Proposition 3.1 there exists
ψ ∈ W 1,1(Ω) such that z = Rπ

2
∇ψ. Since z ∈ L∞(Ω,R2) with |z(x)| ≤ k(x) a.e. in Ω, we also

have ∇ψ ∈ L∞(Ω,R2) with |∇ψ(x)| ≤ k(x) a.e. in Ω. Hence, ψ is 1-Lipschitz with respect to the
geodesic distance dk, so it is admissible in Problem (4.3). Moreover, Proposition 3.1 implies that
[z, n] = ∂τψ. Again using equation (5.2), we get

sup (4.3) = sup (5.1) =

ˆ
∂Ω

[z, n] g dH1 =

ˆ
∂Ω

(∂τψ) g dH1 = −
ˆ
∂Ω

ψ d(∂τg) =

ˆ
∂Ω

(−ψ) df.

Hence, ψ = −ψ is a maximizer for Problem (4.3). In particular, z = Rπ
2
∇ψ = R−π2∇ψ. �

Hence, we may express the solution to the dual of the weighted least gradient problem (5.1)
via a Kantorovich potential of the corresponding optimal transport problem and vice versa. In
general, we cannot expect solutions to any of these problems to be unique. However, since the
Kantorovich potentials are differentiable in the interiors of the transport rays and their gradient
is uniquely defined, their structure is somewhat prescribed by the boundary data. We will now
study some consequences of this result for the structure of solutions to the weighted least gradient
problem. For the remainder of this section, for u ∈ BV (Ω), we denote Et := {u ≥ t}.

Corollary 5.2. Suppose that Ω is geodesically convex. Let u be a solution to the weighted least
gradient problem with boundary data g ∈ BV (∂Ω). Then, for all t ∈ R, every connected component
of ∂Et is a transport ray.

This result is a precise statement of the informal observation that boundaries of superlevel sets
of a solution to the least gradient problem are transport rays, which was made in the Euclidean
case in [15].

Proof. By Theorem 2.10, characteristic functions of superlevel sets χEt are functions of least gra-
dient, for all t ∈ R. By Theorem 2.9, there exists a vector field z ∈ L∞(Ω,R2) with |z| ≤ k and
zero divergence such that (z, Du) = k|Du|; in particular, z maximizes (5.1) since u is a solution
for Problem (wLGP). Notice that by the co-area formula (see [3, Proposition 2.7] ) the vector field
z satisfies (z, DχEt) = k|DχEt |; technically, after the application of the co-area formula this result
holds for almost all t, but since the vector field z is fixed we may approximate χEt with χEtn in L1
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norm and obtain the result for all t. Now, since the distributional derivative of χEt is concentrated
on its jump set (|DχEt | = H1

|∂Et), then by [8, Theorem 3.3], we have [z, nEt ] = k H1-a.e. on ∂Et;
if we understand by z its precise representative, it means that z = k · nEt H1-a.e. on ∂Et. Hence,
by Theorem 5.1, there is a Kantorovich potential ψ such that ∇ψ = k (nEt)⊥ H1-a.e. on ∂Et, so
every connected component of ∂Et is in fact a transport ray. �

For the remainder of this section, let us introduce the following notation. We will work under
the assumption that Ω is geodesically convex. For two points x, y ∈ Ω, denote by γx,y the unique
geodesic between these two points. Given g ∈ BV (∂Ω), we denote by D the set of discontinuity
points of g, which is at most a countable set. We also denote by D the union of all geodesics
between points in D. Since there is exactly one geodesic between two given points in D, the set D
is a union of at most countably many geodesics and it has Hausdorff dimension one (possibly with
infinite measure).

The following several lemmas are steps in the proof of Theorem 5.6, but are also of independent
interest as results on the boundary behaviour and the jump set of a solution. Let us note that under
the stronger assumption that Ω is geodesically strictly convex, it satisfies the barrier condition,
and the first two results follow from the analysis in [19,32].

Lemma 5.3. Suppose that Ω is geodesically convex. Let u be a solution to the weighted least
gradient problem with boundary data g ∈ BV (∂Ω). Then, for all t ∈ R and every x ∈ ∂Ω, there is
at most one connected component Rx of ∂Et such that x ∈ Rx.

The proof is similar to the one given in [17, Proposition 3.5] in the Euclidean case, but we will
present here its adaptation to the Riemannian case in order to highlight the main differences and
difficulties. Before we proceed, let us note that since k ∈ C1,1(Ω), geodesic convexity of Ω implies
that its boundary cannot have corners with angle larger than π: the geodesics between any two
points in a small neighbourhood on ∂Ω of a corner point x0 are uniformly C1,1 and contained in
Ω.

Proof. Suppose that there are multiple connected components of ∂Et ending at x. Since all of them
are transport rays, they cannot intersect in Ω. Therefore, any connected component R of ∂Et splits
Ω into two open sets, and any other connected component R′ of ∂Et lies entirely in one of these
sets. Let R1 and R2 be two adjacent connected components (if it is not possible to find adjacent
connected components of ∂Et, because between any given two there are infinitely many, then the
perimeter of Et is infinite, which contradicts Theorem 2.10). Take any x1 ∈ R1∩Ω and x2 ∈ R2∩Ω.
Consider the curvilinear triangle ∆x

x1,x2
with sides γx,x1

, γx,x2
and γx1,x2

. It does not reduce to
a one-dimensional structure: by geodesic convexity of Ω and uniqueness of geodesic from x with
given initial velocity, R1 and R2 make a positive angle with each other and with the boundary
∂Ω at x. Therefore, the angle between R1 and R2 is smaller than π, so the concatenation of γx,x1

and γx,x2 cannot be a minimizing curve from x1 to x2; otherwise, this contradicts the regularity of
Riemannian geodesics. But then, we can modify the set Et by adding to it (or removing from it,
depending on the position of R1 and R2 with respect to Et) the curvilinear triangle ∆x

x1,x2
, without

changing the trace of χEt and reducing the perimeter of Et. This again contradicts Theorem 2.10,
so there can be only one connected component Rx of ∂Et such that x ∈ Rx. �

Lemma 5.4. Suppose that Ω is geodesically convex. Let u be a solution to the weighted least
gradient problem with boundary data g ∈ BV (∂Ω). Then, for all t ∈ R, we have ∂Et ∩ ∂Ω ⊂
g−1(t) ∪D.

Proof. Suppose that x ∈ ∂Et ∩ (∂Ω\D). Denote by Rx the unique (due to Lemma 5.3) connected
component of ∂Et passing through x. Then, by geodesic convexity of Ω and uniqueness of geodesic
from x with given initial velocity, Rx makes a positive angle with ∂Ω at x. Yet, g is continuous
at x and so, we may proceed in the same way as in the proof of Lemma [21, Lemma 3.8] (see also
[31, Lemma 3.4]) to obtain that g(x) = t. �

Lemma 5.5. Suppose that Ω is geodesically convex. Let u be a precise representative of a solution
to the weighted least gradient problem with boundary data g ∈ BV (∂Ω). Then, u is continuous at
every point in Ω\D.

Proof. Suppose that u is not continuous at x ∈ Ω. Then, there exist t, s ∈ R such that t < s
and x ∈ ∂Et ∩ ∂Es. However, there is at most one transport ray Rx passing through x. Since
the connected components of ∂Et and ∂Es are transport rays, these sets coincide on the whole
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connected component passing through x and are equal to Rx. By Lemma 5.4, this is only possible
if this transport ray has both ends in the discontinuity set D, so x ∈ Rx ⊂ D. �

The following result is the main result in this section. It is a generalisation of [18, Theorem 1.1]
to the weighted least gradient problem. Notice that due to the fact that we use optimal transport
methods, our proof is significantly shorter and simpler.

Theorem 5.6. Suppose that Ω is geodesically convex. Let u, v be two solutions to the weighted
least gradient problem with boundary data g. Then, u = v on Ω\(C ∪ D), where both u and v are
locally constant on C.

Proof. Consider any point x ∈ Ω\D. By Lemma 5.5, both functions u and v are continuous at x.
Recall that Et = {u ≥ t} and set Ft = {v ≥ t}. There are four possibilities:

1. We have x ∈ ∂Et ∩ ∂Ft. Then, since u and v are continuous at x, we have u(x) = v(x) = t.

2. We have x ∈ ∂Et ∩ ∂Fs, where t 6= s. We argue similarly as in the proof of Lemma 5.5. There
is at most one transport ray Rx passing through x, and because the connected components of
∂Et and ∂Fs are transport rays, they need to coincide on the whole connected component passing
through x and so, they are equal to Rx. But, by Lemma 5.4, this is only possible if the transport
ray has both ends in the discontinuity set D, in which case by uniqueness of the geodesic between
any two given points we have Rx ⊂ D, so x ∈ N , a contradiction.

3. We have x ∈ ∂Et, but x /∈ ∂Fs for any s ∈ R. Then, v is constant in a ball B(x, r) with value
s ∈ R. If t = s, the claim is proved; suppose otherwise. Since u is continuous at x with x ∈ ∂Et,
there exists an interval Iε = [t − ε, t + ε] such that for all τ ∈ Iε a connected component Γτ of
∂Eτ intersects the ball B(x, r). Denote by xτ and yτ the endpoints of Γτ and denote by Cs the
connected component of {v ≡ s} containing B(x, r). Since transport rays cannot intersect inside
Ω, we have Γτ ∩ ∂Cs = ∅ for all τ ∈ Iε; then, by checking the trace of v, we see that on the arc
(xt−ε, xt+ε) on ∂Ω we have g ≡ s. On the other hand, since x /∈ D, we may assume that g is
continuous at xt and by Lemma 5.4 we have that g(xt) = t, a contradiction.

4. We have x /∈ ∂Et for any t ∈ R and x /∈ ∂Fs for any s ∈ R. Then, both u and v are constant in
a ball B(x, r) (possibly with different constants), so x ∈ C. �

6. Lp estimates on the transport density

In this section, we study the Lp summability of the transport density σ between f+ and f−.
Assume that Ω is geodesically strictly convex. From Proposition 4.2, we recall that there is a
unique optimal transport plan Λ and so, the transport density σ is unique, provided that f+ or
f− is non-atomic. To prove Lp estimates on σ, the strategy will be the following: we decompose σ
into two parts σ+ and σ−, then we approach the target (resp. source) measure f− (resp. f+) with
atomic measures, and under some geometric assumptions on Ω, we prove that σ+ (resp. σ−) is in
Lp(Ω) as soon as f+ (resp. f−) belongs to Lp(∂Ω) with p ≤ 2 (in order to obtain Lp estimates on
σ with p > 2, we need to assume more regularity on f±). We note that this Lp summability of the
transport density between two measures f+ and f− which are in Lp(∂Ω) was already proved in the
Euclidean case (i.e., k ≡ 1) in [15]; more precisely, the authors of [15] proved that if f± ∈ Lp(∂Ω)
then σ ∈ Lp(Ω) provided that p ≤ 2 and Ω is uniformly convex.

First, we are going to introduce a geometric lemma that will be the key point in the proof of the
Lp estimates on the transport density σ. So, let the manifold R2 be equipped with the conformal
metric dk. Fix x0 ∈ ∂Ω and let α(s), s ∈ [−ε, ε], be an arc in ∂Ω. For each s ∈ [−ε, ε], we denote
by γs the geodesic between α(s) and x0. Let ν(s) be the initial unit tangent vector to γs and τ(s)
be the (weighted) length of γs.

Lemma 6.1. Assume that Ω is a bounded and geodesically convex domain, and k ∈ C1,1(Ω)
with 0 < kmin ≤ k ≤ kmax < ∞. Then, there exists a constant C < ∞ depending only on
diam(Ω), kmin, kmax, ||∇k||∞ and ||D2k||∞ such that, for a.e. s ∈ ∂Ω, we have

(6.1) det(D(s,t)γs(t)) ≥ (1− t)C k−1(s) τ(s)[ν(s) · n(s)], for all t ∈ [0, 1].

Proof. For s ∈ [−ε, ε], let (e1, e2) be a basis such that e1 = α′(s) and e2 = ν(s). Let us parallel-
transport along the geodesic γs to define a new family of basis (e1(t), e2(t)). Let [·, ·] be the Lie
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bracket and ∇ be the Levi-Civita connection. Let us denote by exp the Riemannian exponential
map. For all s ∈ [−ε, ε] and t ∈ [0, 1], set

Ψ(s, t) := γs(t) = expα(s)[t τ(s) ν(s)].

Now, we define the vector fields J1 and J2 as follows:

J1(s, t) =
d

dδ |δ=0
Ψ(s+ δ, t) and J2(s, t) =

d

dδ |δ=0
Ψ(s, t+ δ).

Set
J(s, t) = (J1(s, t), J2(s, t)) = DΨ(s, t) and J (s, t) = det[J(s, t)].

Thanks to [39, Theorem 11.3], one can show that this Jacobian J cannot vanish, except possibly
at the endpoints of the geodesic γs. So, we have

J ′(s, t) = tr[J ′(s, t) J(s, t)−1]J (s, t).

Let us denote by dΨ the differential map of Ψ. The fact that [∂e1 , ∂e2 ] = 0 implies that J1 and J2

commute, since
[J1, J2] = [dΨ(∂e1),dΨ(∂e2)] = dΨ[∂e1 , ∂e2 ] = 0.

Then, we have
∇J1J2 = ∇J2J1.

Yet,
J1(s, t) = J11(s, t)e1(t) + J21(s, t)e2(t).

Hence,

∇J2J1 = ∇γ′sJ1 = J ′11(s, t)e1(t) + J11(s, t)e′1(t) + J ′21(s, t)e2(t) + J21(s, t)e′2(t).

But, e′2(t) = ∇γ′s γ
′
s = 0 since γ′s is a geodesic. In addition, we have∇γ′s e1(t) = Γ1

21e1(t)+Γ2
21e2(t),

where Γ1
21 and Γ2

21 denote the Christoffel symbols. Then, we get

(6.2) ∇J2J1 = (J ′11(s, t) + J11(s, t)Γ1
21)e1(t) + (J ′21(s, t) + J11(s, t)Γ2

21)e2(t).

On the other hand, we have

∇J1J2 = J11(s, t)∇e1(t)J2 + J21(s, t)∇e2(t)J2.

Let A(t) be the matrix, in the basis {e1(t), e2(t)}, associated with the endomorphism X 7→ ∇XJ2.
Then, one has

J11(s, t)∇e1(t)J2 + J21(s, t)∇e2(t)J2

= J11(s, t)[A11(t)e1(t) +A21(t)e2(t)] + J21(s, t)[A12(t)e1(t) +A22(t)e2(t)]

= [J11(s, t)A11(t) + J21(s, t)A12(t)]e1(t) + [J11(s, t)A21(t) + J21(s, t)A22(t)]e2(t).

From (6.2), we get

(J ′11(s, t) + J11(s, t)Γ1
21)e1(t) + (J ′21(s, t) + J11(s, t)Γ2

21)e2(t)

= [J11(s, t)A11(t) + J21(s, t)A12(t)]e1(t) + [J11(s, t)A21(t) + J21(s, t)A22(t)]e2(t).

Hence,
J ′ = [A−B]J,

where

B =

(
Γ1

21 0
Γ2

21 0

)
.

This implies that
J ′(s, t) = tr[A−B]J (s, t).

A direct computation shows that

Γ1
21 = ∂e2 log[

√
1− (k(γs(t))2 e1(t) · e2(t))2] = 0,

so tr[B] = 0. Moreover, we have J2(s, t) = γ′s(t) = −k−1(γs(t)) τ(s) ∇dk(γs(t),x0)
|∇dk(γs(t),x0)| . Now, it

is well known that the distance function dk(·, x0) to x0 is locally semiconcave in R2\{x0} with
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D2[dk(x, x0)] ≤ C
dk(x,x0)I for some constant C depending on diam(Ω), kmin, kmax, ||∇k||∞ and

||D2k||∞ (see, for instance, [6]). This yields that

tr[A] ≥ −C
(1− t)

.

Hence,

J ′(s, t) ≥ −C
(1− t)

J (s, t).

We infer that
log[J (s, t)]− log[J (s, 0)] ≥ C log(1− t).

Finally, we get
J (s, t) ≥ J (s, 0) (1− t)C .

Yet, J1(s, 0) = α′(s) and J2(s, 0) = k−1(s) τ(s) ν(s). Hence, J (s, 0) = k−1(s) τ(s)[ν(s) · n(s)].
Consequently, we get the following estimate:

J (s, t) ≥ (1− t)C k−1(s) τ(s)[ν(s) · n(s)]. �

In order to prove Lp summability on the transport density σ, we need also to introduce a
definition that generalizes the notion of uniform convexity in the Riemannian case. Let us assume
that for all x, y ∈ Ω, there is a unique geodesic γx,y from x to y. For x ∈ ∂Ω, let us denote by γx
a geodesic starting at x with initial unit tangent vector ν(x) such that the endpoint γx(1) ∈ ∂Ω
and by τ(x) the weighted length of this geodesic γx. It is not difficult to see that a domain Ω
is geodesically convex (resp. geodesically strictly convex) if and only if ν(x) · n(x) ≥ 0 (resp.
ν(x) ·n(x) > 0), for all x ∈ ∂Ω and all geodesics γx, where −n(x) is any unit vector in the exterior
normal cone to Ω at x. Now, we define the uniform geodesic convexity as follows:

Definition 6.2. We say that Ω is geodesically uniformly convex if there is a constant c > 0 such
that, for any x ∈ ∂Ω and all geodesics γx, ν(x) · n(x) ≥ c τ(x).

Our main result in this section is the following theorem.

Theorem 6.3. Suppose that Ω is strictly geodesically convex. Then, if f+ ∈ L1(∂Ω), the transport
density σ belongs to L1(Ω). Moreover, for all p ∈ [1, 2], we have σ ∈ Lp(Ω) as soon as f+ and f−
are both in Lp(∂Ω) and Ω is uniformly geodesically convex.

Proof. We will use a similar strategy as in the proof of [15, Proposition 3.1]. First, assume that
the target measure f− is atomic with n atoms {xi : 1 ≤ i ≤ n}. Let Γi be the set of points x on
spt(f+) which are transported to the atom xi and, let us denote by Ωi the set of points on the
geodesics between Γi and xi. As Ω is geodesically convex, then all these sets Ωi are subsets of Ω.
Moreover, thanks to the fact that the transport rays cannot intersect at an interior point of either
of them, the sets Ωi are essentially disjoint. Let us decompose the transport density σ into two
parts σ = σ+ + σ−, where σ+ and σ− are defined as follows: for a fixed τ ∈ [0, 1], we set

< σ+, φ >:=

ˆ
Ω×Ω

ˆ τ

0

φ(γx,y(t)) dk(x, y) dtdΛ(x, y), for all φ ∈ C(Ω),

and

< σ−, φ >:=

ˆ
Ω×Ω

ˆ 1

τ

φ(γx,y(t)) dk(x, y) dtdΛ(x, y), for all φ ∈ C(Ω).

First, we will show Lp estimates on σ+. Recalling Proposition 4.2, there is a unique optimal
transport map T from f+ to f−. Then, we have

< σ+, φ >=

ˆ
∂Ω

ˆ τ

0

φ(γx,T (x)(t)) dk(x, T (x)) dtdf+(x), for all φ ∈ C(Ω).

For every x ∈ Γi, we have T (x) = xi. Hence, we find that

< σ+, φ >=

n∑
i=1

ˆ
Γi

ˆ τ

0

φ(γx,xi(t)) dk(x, xi) dtdf+(x), for all φ ∈ C(Ω).
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Fix i ∈ {1, ..., n} and consider σ+
i the restriction of σ+ to Ωi. Let α(s), where s ∈ [−ε, ε], be a

parameterization of Γi. Then, we have

< σ+
i , φ >=

ˆ ε

−ε

ˆ τ

0

φ(γs(t)) dk(α(s), xi) f
+(α(s)) |α′(s)|dtds, for all φ ∈ C(Ω),

where γs denotes the geodesic from the point α(s) to the atom xi. Set y = γs(t), for every
s ∈ [−ε, ε] and t ∈ [0, τ ]. Then, one has

< σ+
i , φ >=

ˆ
Ωi

φ(y) dk(α(s), xi) f
+(α(s)) |α′(s)| J (s, t)

−1
dy, for all φ ∈ C(Ω),

where
J (s, t) := det[D(s,t)γs(t)].

Hence,

σ+
i (y) =

|α′(s)| dk(α(s), xi) f
+(α(s))

J (s, t)
, for a.e. y ∈ Ωi.

Set τ(s) = dk(α(s), xi). Then,
||σ+

i ||
p
Lp(Ωi)

(6.3) =

ˆ
Ωi

|α′(s)|pτ(s)p f+(α(s))
p

J (s, t)
p dy =

ˆ ε

−ε

ˆ τ

0

|α′(s)|pτ(s)p f+(α(s))
p

J (s, t)
p−1 dtds.

For p = 1, this gives us the following estimate:

||σ+
i ||L1(Ωi) ≤ C||f

+||L1(Γi).

Hence, after taking a sum with respect to i and τ = 1, we infer that σ = σ+ is in L1(Ω) and we
have

||σ||L1(Ω) ≤ C||f+||L1(∂Ω).

Now, let ν(s) be the initial tangent vector to γs. From Lemma 6.1, there is a constant C < ∞
such that the following estimate holds

(6.4) J (s, t) ≥ C−1 (1− t)Cτ(s) [ν(s) · n(s)].

If Ω is additionally uniformly geodesically convex (see Definition 6.2), then there is a constant
c > 0 such that ν(s) · n(s) ≥ cτ(s). So, we get that

J (s, t) ≥ C−1 (1− t)Cτ(s)2.

Thus, we continue the computation in (6.3) and we choose τ < 1. Then, we get that

||σ+
i ||

p
Lp(Ωi)

≤ Cp−1

ˆ τ

0

1

(1− t)C(p−1)
dt

ˆ ε

−ε
τ(s)2−p |α′(s)| f+(α(s))

p
ds

(6.5) ≤ C
ˆ

Γi

dk(x, xi)
2−pf+(x)

p
dH1(x).

For all p ∈ [1, 2], this implies that

||σ+
i ||Lp(Ωi) ≤ C||f

+||Lp(Γi).

Hence,
||σ+||Lp(Ω) ≤ C||f+||Lp(∂Ω).

Now, assume that f− ∈ M+(∂Ω) and let (f−n )n be a sequence of atomic measures such that
f−n ⇀ f−. Let σn be the transport density between f+ and f−n . We have

(6.6) ||σ+
n ||Lp(Ω) ≤ C||f+||Lp(∂Ω).

Thanks to Proposition 4.3, passing to the limit in (6.6) when the number of atoms n→∞, we infer
that the positive measure σ+ between f+ and f− is in Lp(Ω) as soon as f+ ∈ Lp(∂Ω). Moreover,
σ+ satisfies the following estimate:

||σ+||Lp(Ω) ≤ C||f+||Lp(∂Ω).
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But now, thanks to the uniqueness of the optimal transport plan Λ between f+ and f−, it is not
difficult to see that if f− ∈ Lp(∂Ω), then by approximating the source measure f+ with atomic
measures, one can obtain Lp estimates on σ−. And, we get that

||σ−||Lp(Ω) ≤ C||f−||Lp(∂Ω).

Finally, we infer that

||σ||Lp(Ω) ≤ C||f ||Lp(∂Ω), for every p ∈ [1, 2]. �

In addition, under the assumption that the source and target measures f± are smooth enough,
one we can prove Lp estimates on the transport density σ for large p. More precisely, we have the
following

Proposition 6.4. Suppose that Ω is uniformly geodesically convex. Assume that f± ∈ C0,α(∂Ω)
with 0 < α ≤ 1. Then, the transport density σ between f+ and f− belongs to Lp(Ω) with p = 2

1−α .

Proof. Let T+ be the optimal transport map from f+ to f− and set T− := [T+]−1. From (6.5)
and thanks to Proposition 4.2, we have the following estimate:

||σ||pLp(Ω) ≤ C
[ˆ

Γ

dk(x, T+(x))2−pf+(x)
p

dH1(x) +

ˆ
Γ

dk(T−(y), y)2−pf−(y)
p

dH1(y)

]
.

As f± ∈ C0,α(Ω), then we get that

f±(x) = f±(x)− f±(T±(x)) ≤ C|x− T±(x)|α ≤ Cdk(x, T±(x))α.

Hence,

||σ||pLp(Ω) ≤ C
p

ˆ
Γ

dk(x, T+(x))2−p+pα dH1(x) <∞

as soon as p ≤ 2/(1− α). �

On the other hand, it is possible to prove Lp estimates on the transport density σ for large p
(i.e., p > 2) if f± ∈ Lp(∂Ω) but under the assumption that spt(f+) and spt(f−) do not intersect.

Proposition 6.5. Suppose that Ω is strictly geodesically convex. Let f± ∈ Lp(∂Ω) be such that
spt(f+) ∩ spt(f−) = ∅. Then, the transport density σ belongs to Lp(Ω), for all p ∈ [1,∞].

Proof. The proof follows directly from the previous estimates in Theorem 6.3. From (6.3), we have

||σ+||pLp(Ω) ≤
ˆ ε

−ε

ˆ τ

0

|α′(s)|p τ(s)p f+(α(s))
p

J (s, t)
p−1 dtds.

From (6.4) and thanks to the strict geodesic convexity of Ω, we infer that there is a uniform
constant C <∞ depending only on the geometry of the domain Ω such that the following estimate
holds

J (s, t) ≥ C−1(1− t)C .

For τ < 1, this implies that

||σ+||Lp(Ω) ≤ C||f+||Lp(∂Ω).

In the same way, we prove that

||σ−||Lp(Ω) ≤ C||f−||Lp(∂Ω).

Consequently, we get that the transport density σ between f+ and f− is in Lp(Ω). Moreover, we
have the following estimate:

||σ||Lp(Ω) ≤ C||f ||Lp(∂Ω). �
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7. Applications to the weighted least gradient problem

Thanks to the results in the previous sections, we prove existence and uniqueness of a solution
u to the weighted least gradient problem. Moreover, we show W 1,p regularity on this solution u
from the Lp estimates on the transport density σ. First, we have the following

Theorem 7.1. Assume that Ω is strictly geodesically convex. Then, for any boundary datum
g ∈ BV (∂Ω), the weighted least gradient problem (wLGP) admits a solution.

Proof. Set f = ∂τg. Let Λ be an optimal transport plan between f+ and f−. Let σΛ be the
transport density associated with Λ and let vΛ be the vector version of σΛ (see (4.6)). Then,

σΛ(∂Ω) =

ˆ
∂Ω×∂Ω

H1
k(γx,y ∩ ∂Ω) dΛ(x, y),

where H1
k(γ) :=

´ 1

0
k(γ(t))|γ′(t)|dt. Since Ω is strictly geodesically convex, for any two points

x, y ∈ ∂Ω, the geodesic γx,y lies in the interior of Ω except for its endpoints, so H1
k(γx,y ∩∂Ω) = 0.

This implies that σΛ(∂Ω) = 0. From Theorem 3.4, we infer that there is a function u ∈ BV (Ω)
such that vΛ = Rπ

2
Du and it is a solution for Problem (wLGP). �

Theorem 7.2. Assume that Ω is strictly geodesically convex and g ∈ BV (∂Ω) ∩ C(∂Ω). Then,
the weighted least gradient problem (wLGP) has a unique solution.

Proof. Since g ∈ BV (∂Ω) ∩ C(∂Ω), its tangential derivative is a non-atomic measure and so, by
Proposition 4.2, the problem (4.1) has a unique optimal transport plan Λ. From the equivalence
between Problems (4.1) and (4.7), we infer that vΛ is the unique minimizer of Problem (4.7).
Thanks to Theorem 3.4, if u is any solution for Problem (wLGP) then the measure v := Rπ

2
Du

solves Problem (wBP). This implies that also the solution to Problem (wLGP) is unique. �

The main results in this paper are the following W 1,p regularity estimates on the solution u of
Problem (wLGP):

Theorem 7.3. Suppose that Ω is strictly geodesically convex and g ∈ W 1,1(∂Ω). Then, the
solution u of Problem (wLGP) belongs to W 1,1(Ω).

Proof. If g ∈ W 1,1(∂Ω), then f = ∂τg ∈ L1(∂Ω). From Theorem 6.3, we infer that the transport
density σ between f+ and f− is in L1(Ω). But, thanks to Theorem 3.4, we have |Du| = σ, so u
belongs to W 1,1(Ω). �

Theorem 7.4. Suppose that Ω is uniformly geodesically convex and g ∈W 1,p(∂Ω) with p ∈ [1, 2].
Then, the solution u of Problem (wLGP) is in W 1,p(Ω).

Proof. If g ∈ W 1,p(∂Ω), then f = ∂τg ∈ Lp(∂Ω). From Theorem 6.3, we infer that the transport
density σ between f+ and f− is in Lp(Ω). So, using Theorem 3.4, we have |Du| = σ and we get
u ∈W 1,p(Ω). �

Theorem 7.5. Assume that Ω is uniformly geodesically convex and g ∈ C1,α(∂Ω) with α ∈ (0, 1].
Then, the solution u of Problem (wLGP) is in W 1,p(Ω) with p = 2/(1− α).

Proof. If g ∈ C1,α(∂Ω), then f = ∂τg ∈ C0,α(∂Ω). Then, the result follows immediately from
Proposition 6.4. �

Theorem 7.6. Suppose that Ω is strictly geodesically convex. Assume that g ∈ W 1,p(∂Ω) and
g has flat parts separating those with positive and negative derivatives. Then, the solution u of
Problem (wLGP) belongs to W 1,p(Ω), for all p ∈ [1,∞].

Proof. Notice that spt(f+) ∩ spt(f−) = ∅. If g ∈ W 1,p(∂Ω), then f = ∂τg ∈ Lp(∂Ω), so the proof
follows immediately from Proposition 6.5 and the fact that |Du| = σ. �

We conclude with a generalisation of [20, Theorem 4.1] from the Euclidean case. Let us note
that in this case the solution is not necessarily unique, but the result is valid for all the solutions.

Theorem 7.7. Suppose that Ω ⊂ R2 is strictly geodesically convex. Let g ∈ SBV (∂Ω). If
u ∈ BV (Ω) is a solution to Problem (2.3) with boundary data g, then u ∈ SBV (Ω).
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Proof. The proof of this result in the Euclidean case in [20] can shortly be described as follows.
Since g ∈ SBV (∂Ω), the measure f = ∂τg has no Cantor part, so f± is a union of an absolutely
continuous part f±ac and an atomic part f±at. We split the transport density into four parts, cor-
responding to the transport between each of the f±ac and f±at. The transport density between the
atomic parts is concentrated on a set of Hausdorff dimension one. The other parts are absolutely
continuous, because we need absolute continuity of only one of the source and target measures
in order to get L1 estimates for the transport density. Therefore, one can also apply the same
reasoning in the case of the weighted least gradient problem; we use the same decomposition of
f± into atomic and absolutely continuous parts and the fact that in Theorem 6.3 one only needs
absolute continuity of the source (or the target) measure. �
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