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Abstract. We consider a classical Heisenberg system of S2 spins on a square lattice

of spacing ε . We introduce a magnetic anisotropy by constraining the out-of-plane
component of each spin to take only finitely many values. Computing the Γ-limit of

the energy functional as ε → 0 we prove that, in the continuum description, the system

concentrates energy at the boundary of sets in which the out-of-plane component of the
spin is constant and that, in each of such phases the energy can further concentrate on

finitely many points corresponding to vortex-like singularities of the in-plane components
of the spins.
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1. Introduction

The classical Heisenberg model is a lattice spin model that associates to a configuration
u : Z2 → S2 of S2 -spins the energy

H(u) := −1

2

∑
|i−j|=1

u(i) · u(j) . (1.1)

While, as for all ferromagnetic models, the ground states of this model are constant spin
configurations, the analysis of its low energy states, i.e., spin configurations whose energy
deviates from the energy of the ground states by a small (in terms of energy per spin) energy,
is quite delicate. In fact, due to the SO(3) symmetry of the model, low energy Heisenberg
spins can form complicated topological excitations, known as skyrmions. They are the
topological charges of this model and can be roughly considered as an higher dimensional
analog of the vortex structures formed in planar rotator models (also known as classical XY
models) in which the spins take values in S1 and the model has only SO(2) symmetry. The
variational analysis of the planar rotator model (and of some of its variants) has been the
object of many recent studies [4, 6, 5, 7, 10, 11, 15, 28] and the behavior of its topological
excited states, the vortices, has been well understood at several energy scalings thanks to
the equivalence between the discrete XY spin model and the continuum Ginzburg-Landau
model for S1 valued Sobolev maps, whose variational analysis has been developed in the last
30 years [1, 25, 26] (see also the monographs [12, 30]). In contrast, the variational analysis of
Ginzburg-Landau type theories for S2 -valued Sobolev maps has a more recent history [23, 27]
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and the variational equivalence of Heisenberg lattice models with a continuum theory has
not yet been investigated.

This paper can be thought of as a first attempt to understand some of the analogies
between the classical Heisenberg model and the classical XY model when, due to the pres-
ence of a discrete spin anisotropy, the symmetry group of the Heisenberg model is reduced
to SO(2) × ZN and skyrmions cannot appear. We point out that the spin anisotropy in
our classical model has microscopic (on scales much smaller than ε) quantum mechanical
origins, it is induced by the presence of an external magnetic field, and can be controlled by
an electric field. All these effects are neglected in our model in which we only focus on the
geometric constraint induced by the anisotropy.

In what follows we describe in more details the main results of this paper.

Figure 1. The codomain S 2
N of an admissible spin field in the case N = 7.

Our analysis starts by localizing and scaling the energy (1.1) as follows. Given a regular
open bounded set Ω ⊂ R2 and a parameter ε > 0, to every spin configuration u : εZ2 → S2

we associate the energy per spin in Ω given by

Hε(u,Ω) = −1

2

∑
εi,εj∈εZ2∩Ω
|i−j|=1

u(εi) · u(εj).

To enforce the anisotropic constraint in the Heisenberg model, we set Hε(u,Ω) = +∞
unless the vertical component of the spin is constrained to a discrete set. To introduce such
a class of admissible spins we assume u to be different from the north and the south poles
and we collect its components (u1, u2, u3) as

(
cos(ϕ(u))ũ, sin(ϕ(u))

)
, where ũ = u′/|u′| ,

u′ = (u1, u2) and ϕ(u) = arcsin(u3) ∈ (−π2 ,
π
2 ) is the latitude of u . The admissible

spin configurations u are then defined to be those such that u ∈ S 2
N , where S 2

N is the
stratification of the unit sphere in N circles defined by

S 2
N :=

{
y =

(
y′, sin(ϕ(y))

)
∈ S2 : ϕ(y) = −π2 + kθN , k = 1, . . . , N

}
,

where θN := π
N+1 (see Figure 1). We refer the energy Hε(u,Ω) to its minimum by removing

from each interaction energy between neighboring spins −u(εi) ·u(εj) the energy −1 of two
neighboring spins in a ground state configuration. We then divide by the number of lattice
points in Ω which is of order 1/ε2 and we obtain a new energy per particle that we denote
by Eε(u,Ω) which is finite only on those spins valued in S 2

N on which it takes the form

Eε(u,Ω) :=
1

2

∑
εi,εj∈εZ2∩Ω
|i−j|=1

ε2|u(εi)− u(εj)|2 . (1.2)

The ground states u of this system have both discrete and continuous symmetries. They
can be classified according to their latitude ϕ(u), which can take the N admissible values
−π2 +kθN , k = 1, . . . , N and to the value of their normalized horizontal component ũ which

belongs to S1 . The energy needed to break such symmetries is of different orders.
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The discrete symmetry of the vertical component of the admissible spins induces the exis-
tence of an energy regime, that we prove to be of order ε , at which phase separations can take
place. In other words, as ε→ 0 spin configurations uε such that Eε(uε) ≤ Cε are compact
in BV (Ω,SN ), hence they take finitely many values according to which Ω is partitioned in
a finite union of sets of finite perimeter usually known as magnetic domains. On each of such
sets, the limit spins have constant latitude ϕ̄ ∈ LN :=

{
`k := −π2 + kθN , k = 1, . . . , N

}
which jumps at the boundary of the partition. In this energetic regime, the horizontal com-
ponents of uε are only weakly∗ compact in L∞ , hence in a set on which the latitude of a
spin u takes the constant value ϕ̄ the limit of its horizontal component can take any value
in the disc of equation |u′| ≤ cos(ϕ̄). In Theorem 2.6 we prove that the Γ-limit of the scaled
functional Eε(u)/ε , carried out with respect to the L1 convergence of the vertical compo-
nents and the weak∗ convergence of the horizontal components of the spin, is proportional
to the anisotropic perimeter of the boundaries (the interfaces of the magnetic domains, also
known as magnetic domain walls) of the sets of the partition. The phenomenon of phase
separation described above is similar to that happening in other systems with discrete sym-
metry as for instance in those Ising-like spin systems considered in [2, 10, 14, 16, 19].

The SO(2) symmetry of the horizontal component of the spins in our model plays
an important role at a lower energetic regime, i.e. , when Eε(uε,Ω) ≤ Cε2| log ε| . As
ε2| log ε| � ε , at the ε2| log ε| regime the spin system cannot overcome the energetic barrier
(of order ε) of the anisotropy transition explained above (the transition associated to the
jump of the out-of-plane component of the spin field) (see Remark 2.5), hence the latitudes
ϕ(uε) converge strongly in L1 to a constant latitude ϕ̄ ∈ LN (here we are assuming that
Ω is connected, otherwise the argument applies to each connected component of Ω). The
normalized in-plane components ũε of the spin field uε are associated to the relevant order
parameter of the system, the discrete vorticity measures µũε (see (2.6) for the definition)
which keep track of a concentration phenomena already observed in the logarithmic scaling
of the classical XY spin model. More precisely, in Theorem 2.10, we prove that, as ε→ 0,

the vorticity measures µũε converge to µ =
∑M
k=1 dkδxk , (M ∈ N) with dk ∈ Z , xk ∈ Ω and

that the limit energy is proportional to cos2(ϕ̄)|µ|(Ω). The concentration of the vorticity
measure µũε on finitely many points can be read as the continuum description of the forma-
tion of finitely many singularities of a discrete spin whose out-of-plane component becomes
constant and equal to ϕ̄ ∈ LN while its in-plane component, constrained to be of length
cos(ϕ̄), winds dk times around the points xk in clockwise (if dk < 0) or counter-clockwise
(if dk > 0) direction.

2. The model and main results

2.1. Basic notation. We let Rd be the d -dimensional Euclidean space with norm | · | . The
unit sphere in Rd is Sd−1 := {y ∈ Rd : |y| = 1} . We let e1, . . . , ed denote the vectors of
the standard basis of Rd . We write Br(x) for the open ball centered at x with radius r
and we set Ar,R(x) := BR(x) \Br(x).

For every x = (x1, x2) ∈ R2 we define |x|1 := |x1|+|x2| . Given two unit vectors y, z ∈ S2 ,
we write dS2(y, z) for the geodesic distance on S2 .

We let ι denote the imaginary unit. It will be used to identify unit vectors in R2 with
complex numbers of the form exp(ιθ), θ ∈ R .

2.2. BV-functions. In this section we recall basic facts about functions of bounded varia-
tion. For more details we refer to the monograph [9].

Let A ⊂ Rd be an open set. A function v ∈ L1(A;Rn) is a function of bounded variation
if its distributional derivative Dv is given by a finite matrix-valued Radon measure on A .
We write v ∈ BV (A;Rn).

The space BVloc(A;Rn) is defined as usual. The space BV (A;Rn) is a Banach space
when endowed with the norm ‖v‖BV (A) = ‖v‖L1(A) + |Dv|(A), where |Dv| is the total
variation measure of Dv . The total variation of v : A → R with respect to the anisotropic
norm | · |1 is denoted by |Dv|1 . For any Borel set B ⊂ A the latter total variation can
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be written as |Dv|1(B) =
∫
B

∣∣∣ dDv
d|Dv|

∣∣∣
1

d|Dv| . If A is a bounded, open set with Lipschitz

boundary, then BV (A;Rn) is compactly embedded in L1(A;Rn). We say that a sequence

vn converges weakly∗ in BV (A;Rn) to v if vn → v in L1(A;Rn) and Dvn
∗
⇀ Dv in the

sense of measures.

2.3. Discrete spin fields. We consider the square lattice εZ2 with lattice spacing ε > 0.
Given a non-empty set S , we will tacitly interpret maps u : εZ2 → S as piecewise constant
functions. More precisely, we let

PCε(S) := {u : εZ2 → S : u(x) = u(εi) if x ∈ εi+ [−ε/2, ε/2)2 for some i ∈ εZ2} , (2.1)

and maps u : εZ2 → S are in bijection with elements of PCε(S).
Given a vector y = (y1, y2, y3) ∈ S2 we let ϕ(y) ∈ [−π2 ,

π
2 ] denote its latitude, i.e.,

ϕ(y) = arcsin(y3) .

We collect the components of y as follows:

y =
(
y′, y3

)
=
(
y′, sin(ϕ(y))

)
, where y′ := (y1, y2) .

If y ∈ S2 is such that ϕ(y) 6= ±π2 , then we can define the unit vector

ỹ :=
y′

|y′|
.

Note that |y′|2+sin2(ϕ(y)) = 1, hence |y′| = cos(ϕ(y)). We will often collect the components
of y as follows:

y =
(
|y′|ỹ, y3

)
=
(

cos(ϕ(y))ỹ, sin(ϕ(y))
)
.

We consider the stratification of the unit sphere in N circles given by

S 2
N :=

{
y =

(
y′, sin(ϕ(y))

)
∈ S2 : ϕ(y) = −π2 + kθN , k = 1, . . . , N

}
,

where θN := π
N+1 . We stress that the north and south poles of S2 are excluded from the

set S 2
N . For future purposes, it is convenient to define the set of possible latitudes:

LN :=
{
`k := −π2 + kθN , k = 1, . . . , N

}
.

The following elementary lemma will be useful for our analysis.

Lemma 2.1. Let y, z ∈ S 2
N . Then

|z − y|2 ≥ 4
sin2

(
θN
2

)
θN

|ϕ(z)− ϕ(y)| .

Proof. Given y ∈ S2 , we let y =
(

cos(ϕ(y))ỹ, sin(ϕ(y))
)

. Observe that for every z =(
cos(ϕ(z))z̃, sin(ϕ(z))

)
∈ S 2

N

|z − y|2 =
∣∣ cos(ϕ(z))z̃ − cos(ϕ(y))ỹ

∣∣2 +
∣∣ sin(ϕ(z))− sin(ϕ(y))

∣∣2
and S1 3 z̃ 7→

∣∣ cos(ϕ(z))z̃ − cos(ϕ(y))ỹ
∣∣2 is minimized for z̃ = ỹ . Hence,

|z − y| ≥
∣∣∣( cos(ϕ(z))ỹ, sin(ϕ(z))

)
−
(

cos(ϕ(y))ỹ, sin(ϕ(y))
)∣∣∣ (2.2)

Observe that (2.2) and the identity |a− b| = 2 sin
(

1
2dS2(a, b)

)
imply

|z − y|2 ≥
∣∣∣( cos(ϕ(z))ỹ, sin(ϕ(z))

)
−
(

cos(ϕ(y))ỹ, sin(ϕ(y))
)∣∣∣2

= 4 sin2
(1

2
dS2

((
cos(ϕ(z))ỹ, sin(ϕ(z))

)
,
(

cos(ϕ(y))ỹ, sin(ϕ(y))
)))

= 4 sin2
(1

2
|ϕ(z)− ϕ(y)|

)
.

Since ϕ(y), ϕ(z) ∈ LN , we have that |ϕ(z)− ϕ(y)| = kθN for some k ∈ N , hence

4 sin2
(1

2
|ϕ(z)− ϕ(y)|

)
= 4 sin2

(kθN
2

)
≥ 4k sin2

(θN
2

)
,
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where we used [18, Lemma 3.1]. We conclude that

|y − z|2 ≥ 4
sin2

(
θN
2

)
θN

|ϕ(z)− ϕ(y)| .

�

Given an S2 -valued spin field u = (u1, u2, u3) : εZ2 → S2 , we collect its components as
u =

(
u′, sin(ϕ(u))

)
, where ϕ(u) is its latitude. To a spin field u =

(
u′, sin(ϕ(u))

)
: εZ2 →

S 2
N we associate the auxiliary S1 -valued spin field ũ : εZ2 → S1 given by

ũ :=
u′

|u′|
,

(Note that ũ is well-defined, since u differs from the north and south poles, hence |u′| > 0.)
Thus we write

u =
(

cos(ϕ(u))ũ, sin(ϕ(u))
)
.

We shall use the spin field ũ to define the vorticity measure µũ associated to u that is
relevant for the problem.

2.4. Description of the model. Let Ω ⊂ R2 be a bounded, open set with Lipschitz
boundary. For every u : εZ2 → S2 we set

Eε(u,Ω) :=
1

2

∑
εi,εj∈εZ2∩Ω
|i−j|=1

ε2|u(εi)− u(εj)|2 (2.3)

if u : εZ2 → S 2
N and Eε(u,Ω) := +∞ otherwise. We will consider the energy as a func-

tional Eε(·,Ω): L1(Ω;R3)→ [0,+∞] by interpreting spin fields u : εZ2 → S 2
N as piecewise

constant functions in PCε(S 2
N ).

2.5. Vortices and the XY model. We recall here some basic facts about discrete vor-
ticity. Following [6], in order to define it, we introduce the projection Q : R→ 2πZ defined
by

Q(t) := argmin{|t− s| : s ∈ 2πZ} , (2.4)

with the convention that, if the argmin is not unique, then we choose the one with minimal
modulus. Then for every t ∈ R we define Ψ(t) := t−Q(t) ∈ [−π, π] .

Let v : εZ2 → S1 and let ϕ : εZ2 → [0, 2π) be the phase of v defined by the relation
v = exp(ιϕ). For every εi ∈ εZ2 , the discrete vorticity of v in the square εi + [0, ε]2 is
defined by

dv(εi) :=
1

2π

[
Ψ
(
ϕ(εi+ εe1)− ϕ(εi)

)
+ Ψ

(
ϕ(εi+ εe1 + εe2)− ϕ(εi+ εe1)

)
+ Ψ

(
ϕ(εi+ εe2)− ϕ(εi+ εe1 + εe2)

)
+ Ψ

(
ϕ(εi)− ϕ(εi+ εe2)

)]
.

(2.5)

As already noted in [6], it holds that dv ∈ {−1, 0, 1} , i.e., only vortices of degree ±1 can be
present in the discrete setting. The discrete vorticity measure associated to v is given by

µv :=
∑
εi∈εZ2

dv(εi)δεi+( ε2 ,
ε
2 ) . (2.6)

Definition 2.2 (Flat convergence). Let A ⊂ R2 be an open set. A sequence of finite Radon
measures µj ∈Mb(A) converges flat to µ ∈Mb(A) if

sup
ψ∈C∞c (A)

‖ψ‖L∞≤1 , ‖∇ψ‖L∞≤1

∣∣∣ ∫
A

ψ d(µj − µ)
∣∣∣→ 0 .

In that case, we denote the convergence by µj
f→ µ .
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Given a bounded, open set with Lipschitz boundary Ω ⊂ R2 and an S1 -valued spin field
v : εZ2 → S1 , its XY energy is defined by

XYε(v,Ω) :=
1

2

∑
εi,εj∈εZ2∩Ω
|i−j|=1

ε2|v(εi)− v(εj)|2.

We work with spin fields vε : εZ2 → S1 defined on the whole lattice εZ2 . We can always
assume that XYε(vε; Ω

ε
) ≤ CXYε(vε; Ω), where Ω

ε
is the union of the squares εi + [0, ε]2

that intersect Ω. (If not, thanks to the Lipschitz regularity of Ω, we modify vε outside Ω
in such a way that the energy estimate is satisfied, see [4, Remark 2].)

Remark 2.3. We recall that there is a strong relation between the number of discrete vortices
and the XY -energy of a spin field. More precisely, under the assumption made above
XYε(vε; Ω

ε
) ≤ CXYε(vε; Ω), there exists an universal constant C ′ > 0 such that for every

vε : εZ2 → S1 we have

|µvε |(Ω) ≤ C ′

ε2
XYε(vε,Ω) .

The reason is that a cell of εZ2 with non-zero vorticity has non-aligned spins on the corners
with a minimal distance for at least one couple of neighboring points, and thus carries an
XY -energy larger than a strictly positive constant. For more details of the same estimate
on the triangular lattice, see, e.g., [11, Remark 3.1].

We recall the following compactness and lower bound for the XY model, see, e.g., [4,
Theorem 3] or [7, Theorem 3.1].

Proposition 2.4. Let vε : εZ2 → S1 and assume that XYε(vε,Ω) ≤ Cε2| log ε| . Then there

exists M ∈ N and a measure µ =
∑M
k=1 dkδxk with dk ∈ Z and xk ∈ Ω such that, up to a

non relabeled subsequence, µvε
f→ µ in Ω . Moreover

2π|µ|(Ω) ≤ lim inf
ε→0

1

ε2| log ε|
XYε(vε,Ω) .

2.6. Surface scaling. To present the results, we start by deducing some bounds provided
by the energy.

Remark 2.5 (BV bound for ϕ(u)). We observe that the energy induces a bound on the total
variation of the latitude ϕ(u). Let A ⊂⊂ Ω. By Lemma 2.1, given u =

(
u′, sin(ϕ(u))

)
, for

ε small enough we have that

Eε(u,Ω) =
1

2

∑
εi,εj∈εZ2∩Ω
|i−j|=1

ε2|u(εi)− u(εj)|2 ≥ 2
sin2

(
θN
2

)
θN

∑
εi,εj∈εZ2∩Ω
|i−j|=1

ε2|ϕ(u(εi))− ϕ(u(εj))|

≥ 4
sin2

(
θN
2

)
θN

ε|Dϕ(u)|1(A) ,

where we used that the discrete energy counts each interaction twice. The previous inequality
implies that sequences of spin fields uε : εZ2 → S 2

N satisfy

|Dϕ(uε)|(A) .
1

ε
Eε(uε,Ω) .

In the limit of the surface scaling, the domain Ω is partitioned in a finite union of sets
of finite perimeter (Ωϕ̄)ϕ̄∈LN

such that ϕ = ϕ̄ a.e. in Ωϕ̄ . This can be interpreted as
follows: as ε → 0, the spin field uε lies on the circle on S2 with latitude ϕ̄ in most of
the region Ωϕ̄ . The limit energy is concentrated on the interfaces between the sets of the
partition. The behavior of the first two components of the unit-vector field u is less rigid
and we can control only the norm from above and a relaxation effect takes place. The precise
statement is contained in the following theorem, for which we use the following notation:
given ϕ ∈ BV (Ω;R), define

L∞(Ω;ϕ) = {v : Ω→ R2 : |v| ≤ cos(ϕ) a.e. in Ω} .
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Theorem 2.6. We have the following Γ-convergence result:

(i) (Compactness) Let uε : εZ2 → S 2
N and assume that Eε(uε,Ω) ≤ Cε . Then there

exists a function ϕ ∈ BV (Ω; LN ) and u′ ∈ L∞(Ω;ϕ) such that, up to a non-

relabeled subsequence, ϕ(uε)→ ϕ strongly in L1(Ω;R) and u′ε
∗
⇀ u′ in L∞(Ω;R2) .

(ii) (liminf inequality) Let uε : εZ2 → S 2
N , let ϕ ∈ BV (Ω; LN ) , and let u′ ∈ L∞(Ω;ϕ) .

Assume that ϕ(uε)→ ϕ strongly in L1(Ω;R) and u′ε
∗
⇀ u′ in L∞(Ω;R2) . Then

lim inf
ε→0

1

ε
Eε(uε,Ω) ≥

4 sin2
(
θN
2

)
θN

|Dϕ|1(Ω) .

(iii) (limsup inequality) Let ϕ ∈ BV (Ω; LN ) and u′ ∈ L∞(Ω;ϕ) . Then there exists a
sequence of spin fields uε : εZ2 → S 2

N such that ϕ(uε) → ϕ strongly in L1(Ω;R) ,

u′ε
∗
⇀ u′ in L∞(Ω;R2) , and

lim sup
ε→0

1

ε
Eε(uε,Ω) ≤

4 sin2
(
θN
2

)
θN

|Dϕ|1(Ω) .

Remark 2.7 (Limit as N → +∞). Let E0,N denote the Γ-limit of 1
εEε(·,Ω) defined on

L∞(Ω;B1(0)) × BV (Ω; LN ). Then one can prove that, as N → +∞ , the sequence of
functionals 1

θN
E0,N Γ-converges with respect to weak∗ -convergence of u′ and strong L1 -

convergence of ϕ to the functional

E0,∞(u′, ϕ) =

{
|Dϕ|1(Ω) if ϕ ∈ BV (Ω; [−π/2, π/2]) and u′ ∈ L∞(Ω;ϕ) ,

+∞ otherwise.

Let us briefly sketch the argument: compactness of energy-bounded sequences follows from
the compact embedding of BV in L1 . In order to prove the lower bound, it suffices to note
that the anisotropic total variation is L1(Ω)-lower semicontinuous and that the condition
u′n ∈ L∞(Ω;ϕn) is stable when u′n converges weakly∗ and ϕn converges strongly in L1(Ω;R)
(cf. the compactness proof of Theorem 2.6). The proof of the upper bound is slightly
more technical. First one shows that one can approximate every piecewise constant map
ϕ ∈ BV (Ω; [−π/2, π/2]) with respect to strict convergence with piecewise constant maps
ϕN ∈ BV (Ω; LN ) using that the set LN becomes dense in [−π/2, π/2] as N → +∞ . The
approximating sequence u′N ∈ L∞(Ω;ϕN ) is defined by

u′N (x) :=

{
u′(x) if |u′(x)| ≤ cos(ϕN (x)) ,
u′(x)
|u′(x)| cos(ϕN (x)) otherwise,

The L1 -convergence ϕN → ϕ implies that u′N → u′ even strongly in L1(Ω;R2). This shows
the upper bound for piecewise constant functions ϕ and u′ ∈ L∞(Ω;ϕ). Then one uses the
general fact that piecewise constant functions are dense in BV (Ω; [−π/2, π/2]) with respect
to strict convergence1 and the same approximation of the component u′ as above.

2.7. Vortex scaling. We carry out a finer analysis assuming that ϕ attains only one value
ϕ̄ ∈ LN , i.e., Ω = Ωϕ̄ . As no interface occurs, the scaled energy 1

εEε(uε,Ω) vanishes as ε→
0, and thus it is reasonable to assume a stricter assumption on the energy scaling that seeks
for a finer description of low-energy sequences. We study the scaled energy 1

ε2| log ε|Eε(uε,Ω)

under the assumption Eε(uε,Ω) ≤ Cε2| log ε| . On the one hand, by Remark 2.5 we get
that |Dϕ(uε)|(A) . ε| log ε| → 0 for every A ⊂⊂ Ω. This is indeed compatible with the
assumption that ϕ(uε) converges to the constant function ϕ̄ . In the next remark we show
that we have compactness for the discrete vorticity measures µũε .

1To be more precise, this result is well-known for BV (Ω;R) , but the case considered here follows by

truncation.
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Remark 2.8 (XY energy bound for ũ). Let u = (cos(ϕ(u)ũ, sin(ϕ(u))) : εZ2 → S 2
N . We

deduce a bound on the XY energy of ũ : εZ2 → S1 . By Lemma 2.9 below, we have that

Eε(u,Ω) ≥
∑

εi,εj∈εZ2∩Ω
|i−j|=1

ε2|u′(εi)− u′(εj)|2 =
∑

εi,εj∈εZ2∩Ω
|i−j|=1

ε2
∣∣|u′(εi)|ũ(εi)− |u′(εj)|ũ(εj)

∣∣2
≥

∑
εi,εj∈εZ2∩Ω
|i−j|=1

ε2 min{|u′(εi)|2, |u′(εi)|2}|ũ(εi)− ũ(εj)|2

≥ %2
N

∑
εi,εj∈εZ2∩Ω
|i−j|=1

ε2|ũ(εi)− ũ(εj)|2 = %2
NXYε(ũ,Ω) ,

where we set

%2
N := inf

(y′,sin(ϕ(y)))∈S 2
N

|y′|2 = sin2(θN ) .

Thanks to Proposition 2.4, we deduce that a bound Eε(uε,Ω) ≤ Cε2| log ε| gives compact-
ness for the discrete vorticity measures µũε with respect to flat convergence.

Lemma 2.9. Let a, b, c, d ∈ Rd . Assume that |c| = |d| . Then∣∣|a|c− |b|d∣∣2 ≥ min{|a|2, |b|2}|c− d|2.

Proof. Without loss of generality we assume that |a| = min{|a|, |b|} , otherwise we exchange
the role of |a|c and |b|d . Then∣∣|a|c−|b|d∣∣2 =

∣∣|a|(c−d)+(|a|−|b|)d
∣∣2 = |a|2|c−d|2 +

∣∣|a|−|b|∣∣2|d|2 +2|a|
(
|a|−|b|

)
(c−d) ·d .

Observing that |a| − |b| ≤ 0 and (c− d) · d = c · d− |d|2 ≤ 0, we have that∣∣|a|c− |b|d∣∣2 ≥ |a|2|c− d|2 .
This concludes the proof. �

The precise behavior of the energy in the present scaling regime is contained in the
following theorem.

Theorem 2.10. Assume that Ω is connected2. Then we have the following:

(i) (Compactness) Let uε : εZ2 → S 2
N and assume that Eε(uε,Ω) ≤ Cε2| log ε| . Then

there exist a constant ϕ̄ ∈ LN and a measure µ =
∑M
k=1 dkδxk (M ∈ N) with

dk ∈ Z , xk ∈ Ω such that, up to a non-relabeled subsequence, ϕ(uε) → ϕ̄ strongly

in L1(Ω;R) and µũε
f→ µ in Ω .

(ii) (liminf inequality) Let uε : εZ2 → S 2
N , let ϕ̄ ∈ LN , and let µ =

∑M
k=1 dkδxk with

M ∈ N , dk ∈ Z , xk ∈ Ω . Assume that ϕ(uε) → ϕ̄ strongly in L1(Ω;R) and that

µũε
f→ µ in Ω . Then

lim inf
ε→0

1

ε2| log ε|
Eε(uε,Ω) ≥ 2π cos2(ϕ̄)|µ|(Ω) .

(iii) (limsup inequality) Let ϕ̄ ∈ LN and let µ =
∑M
k=1 dkδxk with M ∈ N, dk ∈ Z ,

xk ∈ Ω . Then there exists a sequence of spin fields uε : εZ2 → S 2
N such that

ϕ(uε)→ ϕ̄ ∈ LN strongly in L1(Ω;R) , µũε
f→ µ in Ω , and

lim sup
ε→0

1

ε2| log ε|
Eε(uε,Ω) ≤ 2π cos2(ϕ̄)|µ|(Ω) .

2If Ω is not connected, a similar result can be proved on each connected component. Due to the Lipschitz
regularity and the boundedness of Ω there exist finitely many connected components and the boundary of

each connected component is itself Lipschitz. These properties follow from the fact that the subgraph of a

Lipschitz function is connected and a covering argument using the compactness of Ω.
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2.8. Gradient scaling. To prove Theorem 2.10, we first need to prove the following result
about the gradient scaling. Given w : εZ2 → R , we let A[w] : R2 → R denote its piecewise
affine interpolation defined as the unique continuous function such that A[w](εi) = w(εi)
for all i ∈ Z2 and that is affine on all triangles of the form εi + co(0, εe1, εe2) and εi +
co(0,−εe1,−εe2) with i ∈ Z .

Theorem 2.11. Assume that Ω is connected.3 Then we have the following:

i) (Compactness) Let uε : εZ2 → S 2
N be such that Eε(uε,Ω) ≤ Cε2 . Then there exist

a constant ϕ̄ ∈ LN and a map u = (cos(ϕ̄)ũ, sin(ϕ̄)) ∈ H1(Ω; S 2
N ) such that, up

to a non-relabeled subsequence, A[uε] → u strongly in L2(Ω;R3) , and A[uε] ⇀ u
weakly in H1

loc(Ω;R3) . Moreover, ϕ(uε) → ϕ̄ strongly in L1(Ω;R) , A[ũε] → ũ
strongly in L2(Ω;R2) , and A[ũε] ⇀ ũ in H1

loc(Ω;R2) .
ii) (liminf inequality) Let uε : εZ2 → S 2

N , let ϕ̄ ∈ LN , and let u = (cos(ϕ̄)ũ, sin(ϕ̄)) ∈
H1(Ω; S 2

N ) be such that ϕ(uε) → ϕ̄ strongly in L1(Ω;R) and A[uε] → u strongly
in L2(Ω;R3) . Then

lim inf
ε→0

1

ε2
Eε(uε,Ω) ≥

∫
Ω

|∇u|2 dx = cos2(ϕ̄)

∫
Ω

|∇ũ|2 dx .

iii) (limsup inequality) Let ϕ̄ ∈ LN and let u = (cos(ϕ̄)ũ, sin(ϕ̄)) ∈ H1(Ω; S 2
N ) . Then

there exist uε : εZ2 → S 2
N such that ϕ(uε) → ϕ̄ strongly in L1(Ω;R) , A[uε] → u

strongly in L2(Ω;R3) , and

lim sup
ε→0

1

ε2
Eε(uε,Ω) ≤

∫
Ω

|∇u|2 dx = cos2(ϕ̄)

∫
Ω

|∇ũ|2 dx .

Remark 2.12. It will be clear from the proof that the sole information A[uε] → u ∈
H1(Ω; S 2

N ) in L2(Ω;R3) implies the lower bound

lim inf
ε→0

1

ε2
Eε(uε,Ω) ≥

∫
Ω

|∇u|2 dx .

We will use this inequality in the proof of Theorem 2.10.

3. Proofs of the main results

3.1. The surface scaling regime.

Proof of Theorem 2.6. We prove the statements (i)-(iii) in separate steps.
Proof of (i) (compactness).

Due to Remark 2.5, the sequence ϕ(uε) is bounded in BV (A;R) for every A ⊂⊂ Ω. Since
it is also bounded in L∞(Ω;R), the equi-integrability and a diagonal argument show that
(up to a subsequence) ϕ(uε) → ϕ in L1(Ω;R) for some ϕ ∈ BV (Ω; LN ). Moreover, u′ε
is bounded in L∞(Ω;R2), so that (up to a further subsequence) it converges weakly∗ to
some function u′ ∈ L∞(Ω;R2). It remains to show that u′ ∈ L∞(Ω;ϕ). Fix x ∈ Ω. Since
ϕ(uε) → ϕ in L1(Ω) as ε → 0, from the weak∗ -lower semicontinuity of the L1 -norm we
infer that for any r > 0

−
∫
Br(x)

|u′|dy ≤ lim inf
ε→0

−
∫
Br(x)

|u′ε|dy = lim inf
ε→0

−
∫
Br(x)

cos(ϕ(uε)) dy = −
∫
Br(x)

cos(ϕ) dy ,

where we used the Dominated Convergence Theorem in the last step. Sending r → 0,
Lebesgue’s differentiation theorem implies that |u′(x)| ≤ cos(ϕ(x)) for a.e. x ∈ Ω, i.e.,
u′ ∈ L∞(Ω;ϕ).

Proof of (ii) (liminf inequality).
Fix A ⊂⊂ Ω. Then due to Remark 2.5, for ε small enough we have that

1

ε
Eε(uε,Ω) ≥

4 sin2
(
θN
2

)
θN

|Dϕ(uε)|1(A) .

3see Footnote 2
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The anisotropic total variation on A is lower semicontinuous with respect to strong conver-
gence in L1(A;R). Hence we conclude that

lim inf
ε→0

1

ε
Eε(uε,Ω) ≥

4 sin2
(
θN
2

)
θN

|Dϕ|1(A) .

The arbitrariness of A ⊂⊂ Ω and the fact that B 7→ |Dϕ|1(B) is a Borel-measure yield the
claim.

Proof of (iii) (limsup inequality).
We argue by gradual approximation. In a first step we assume that ϕ ∈ BV (Ω; LN ) is given
by the restriction to Ω of a function ϕ ∈ PCδ(LN ) (cf. (2.1)) for some δ > 0. In particular,
there exists a partition of R2 into half-open cubes of the form x0 + [−δ/2, δ/2)2 such that
ϕ is constant on each cube. Moreover, we assume that u′ ∈ L∞(Ω;ϕ) is such that for each
cube x0 + [−δ/2, δ/2)2 of the partition associated to ϕ we have |u′| = cos(ϕ(x0)) and that
there exists a further partition into smaller half-open cubes of the form y0 + [−η/2, η/2)2

such that u′ is constant on each of these cubes. In what follows we shall always assume that
η � δ and to reduce notation we let Qη(u′) be the partition of Rd consisting of half-open
cubes on which u′ (and hence also ϕ) is constant. (We refer to the first picture in Figure 2.)

We construct the approximating sequence uε : εZ2 → S 2
N locally on each cube Q ∈

Qη(u′) (see the second picture in Figure 2). First, we fix a projection Π: R2 → R2 such
that for x ∈ Q it holds that Π(x) ∈ ∂Q with |Π(x) − x| = dist(x, ∂Q) (such a function is
unique except on the diagonal lines connecting the corners of a cube Q). Then we define
the latitude of uε on εZ2 ∩Q by setting (see below an explanation of the formula)

ϕ(uε)(εi) := ϕ(Π(εi)) + min
{θN |dε−1dist(εi, ∂Q)e − 1|

|ϕ|Q − ϕ(Π(εi))|
, 1
}(
ϕ|Q − ϕ(Π(εi))

)
, (3.1)

where d·e denotes the ceiling function and with a slight abuse of notation we set min{x/0, 1}·
0 = 0 for all x ≥ 0. Note that the function ϕ is defined pointwise on ∂Q since the cubes of
the partition are half-open. In particular, on the top and right sides of ∂Q , the function ϕ
takes the value of the cubes adjacent to Q (except in the top-right corner, but in Q there
is no point that is projected by Π onto this corner). Moreover, note that ϕ(uε) ∈ LN . The
third component is then defined by

u3
ε(εi) = sin

(
ϕ(uε)(εi)

)
.

Let us briefly explain the formula in (3.1) more in detail (see also the third picture
in Figure 2): if εi is closest to a side of ∂Q that belongs to the half-open cube, then
ϕ(Π(εi)) = ϕ|Q . If εi is close to a side of ∂Q that does not belong to the half-open
cube, then ϕ(Π(εi)) corresponds to the value of ϕ on a neighboring cube and ϕ(uε) is an
interpolation between the values ϕ|Q and ϕ(Π(εi)) towards the boundary with a step-wise
increment of ±θN . Close to the corners of the cube Q , the projection Π is not continuous,
but as we will see the interactions close to the corners are negligible due to the surface scaling
of the energy. In fact, close to the corners the value of ϕ(uε) could be chosen arbitrarily,
see the third picture in Figure 2.
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δ

η
Ω

η Q

Q′

∼
(N

+
1)
ε

Figure 2. In the first picture: partition into cubes of size δ and of size η with η � δ . In
the second picture: the interpolation formula (3.1) occurs in the grey regions. In the third
picture: the vectors represent the direction determined by the latitude ϕ(uε) on a great circle

of S2 passing through the poles; the change in each angle is ±θN ; the value of the latitude
close to the corner is not relevant as there the energy is negligible at the surface scaling.

Next, we define the component u′ε on εZ2 ∩ Q . Since the condition uε(εi) ∈ S 2
N must

be satisfied for all points εi ∈ εZ2 , we first construct a S1 -valued function ũε and then set
u′ε :=

√
(1− |u3

ε|2)ũε . To define ũε , let θ ∈ [0, 2π) be such that u′|Q = cos(ϕ|Q) exp(ιθ)
and consider the piecewise affine function

θε(t) =


0 if 0 ≤ t < 2Nε ,

ε−
1
2 (t− 2Nε)θ if 2Nε ≤ t ≤ 2Nε+ ε

1
2 ,

θ if t > 2Nε+ ε
1
2 .

For εi ∈ εZ2 ∩Q define then

ũε(εi) := exp
(
ιθε(dist(εi, ∂Q))

)
.

Let us identify the L1 -limit of uε on Q . First, let us consider the latitude ϕ(uε). Note
that |ϕ|Q − ϕ(Π(εi))| ≤ NθN , so that

ϕ(uε(εi)) = ϕ|Q if dε−1dist(εi, ∂Q)e ≥ N + 1 . (3.2)

In particular, ϕ(uε(εi)) = ϕ|Q if dist(εi, ∂Q) ≥ (N + 1)ε , which together with uniform
boundedness implies that ϕ(uε) → ϕ|Q in L1(Q;R). Next, consider the function ũε . If

dist(εi, ∂Q) ≥ 2Nε + ε
1
2 , then ũε(εi) = exp(ιθ), so that due to uniform boundedness we

have that ũε → exp(ιθ) in L1(Q;R2). We conclude that

u′ε = cos(ϕ(uε))ũε → cos(ϕ|Q) exp(ιθ) = u′|Q in L1(Q;R2) .

Globally, we deduce that ϕ(uε) → ϕ in L1(Ω;R) and u′ε → u′ in L1(Ω;R2) and due to
uniform boundedness also weakly∗ in L∞(Ω;R2). Hence uε is an admissible candidate for
a recovery sequence.

In the final step, we estimate the energy of uε .
Step 1: Interactions between different cubes.

Consider εi ∈ εZ2∩Q and εj ∈ εZ2∩Q′ with Q 6= Q′ and assume without loss of generality
that i− j = e2 (the case −e2 follows upon exchanging the roles of i and j , while the case
±e1 can be treated by similar arguments). Note that Q′ is positioned below Q .

Let us first consider the case where Π(εj) does not belong to the top side of Q′ . Since
|εi − εj| = ε , the projection Π(εj) must belong either to the right or the left side of Q′ .
Then the projection of Π(εj) onto the top side of Q′ is a corner point z of Q′ at distance
at most 2ε from εj . This implies that εj and εi are in the ball B3ε(z), where z is a corner
point of Q′ . Note that the number of lattice points of εZ2 in the ball B3ε(z) is uniformly
bounded with respect to ε and Q′ . Hence, for these interactions we pay an energy

1

ε
Eε(uε, B3ε(z)) ≤ Cε .

With an argument analogous to the previous one we treat the case where Π(εi) does not
belong to the the bottom side of Q (which coincides with top side of Q′ ). Also in this case
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εj and εi are in the ball B3ε(z), where z is a corner point of Q′ . The energy paid for these
interactions is Cε .

If instead Π(εi) and Π(εj) both belong to the top side of Q′ , then necessarily Π(εi) =
Π(εj) and therefore ϕ(Π(εi)) = ϕ(Π(εj)) = ϕ|Q . For εi ∈ Q this implies that ϕ(uε)(εi) =
ϕ|Q . For εj ∈ Q′ we use that 0 < dist(εj, ∂Q′) ≤ ε , so that dε−1dist(εj, ∂Q′)e − 1 = 0
and therefore also ϕ(uε)(εj) = ϕ|Q . Moreover, the definition of the function θε implies
that u′ε(εi) = cos(ϕ|Q)e1 = u′ε(εj), so that uε(εi) = uε(εj) and these interactions do not
contribute to the energy.

To sum up, we can estimate the total energy by

1

ε
Eε(uε,Ω) ≤

∑
Q∈Qη(u′)
Q∩Ω6=Ø

1

ε
Eε(uε, Q) + Cε#{Q ∈ Qη(u′) : Q ∩ Ω 6= Ø}. (3.3)

The second term vanishes when ε→ 0 and therefore it suffices to estimate the energy on a
single cube Q . This will be the next part of the analysis.

Step 2: Interactions in a single cube.
Fix εi, εj ∈ εZ2 ∩Q . We distinguish the following two cases:

i) min{dist(εi, ∂Q),dist(εj, ∂Q)} ≥ (N + 1)ε ;
ii) min{dist(εi, ∂Q),dist(εj, ∂Q)} < (N + 1)ε .

We split the energy

1

ε
Eε(uε, Q) ≤ 1

2

∑
εi,εj∈εZ2∩Q
|i−j|=1
i) holds

ε|uε(εi)− uε(εj)|2 +
1

2

∑
εi,εj∈εZ2∩Q
|i−j|=1
ii) holds

ε|uε(εi)− uε(εj)|2. (3.4)

In case i), by (3.2) we have that u3
ε(εi) = u3

ε(εj) = sin(ϕ|Q) and therefore

|uε(εi)− uε(εj)|2 = |u′ε(εi)− u′ε(εj)|2 = cos2(ϕ|Q)|ũε(εi)− ũε(εj)|2

≤ 2 cos2(ϕ|Q)ε−1θ2|dist(εi, ∂Q)− dist(εj, ∂Q)|2 ≤ 2 cos2(ϕ|Q)εθ2,
(3.5)

where we used the 1-Lipschitz continuity of the distance function. This estimate can be

improved when min{dist(εi, ∂Q),dist(εj, ∂Q)} ≥ 2Nε + ε
1
2 , because in this case ũε(εi) =

ũε(εj) and hence the difference is zero. For ε small enough we have that 2Nε ≤ ε
1
2 . Let

us add the third condition, stronger that i),

i’) min{dist(εi, ∂Q),dist(εj, ∂Q)} ≥ ε 1
2 .

Then, by (3.5), we have that∑
εi,εj∈εZ2∩Q
|i−j|=1
i) holds

ε|uε(εi)− uε(εj)|2 ≤
∑

εi,εj∈εZ2∩Q
|i−j|=1
i’) holds

ε|uε(εi)− uε(εj)|2 +
∑

εi,εj∈εZ2∩Q
|i−j|=1

i) holds, i’) does not

ε|uε(εi)− uε(εj)|2

≤ C#{εi ∈ Q : dist(x, ∂Q) ≤ 2ε
1
2 }ε2.

(3.6)

Hence the first term in the right-hand side of (3.4) vanishes as ε → 0, so we focus on the
second term. From now on we assume that εi, εj satisfy ii). We distinguish two cases:

Case 1: First assume that Π(εi) and Π(εj) belong to different sides of Q and let Πi

and Πj denote the projection onto the sides that contain the points Π(εi) and Π(εj),
respectively. Due to ii) and the fact that |εi − εj| = ε , the points Π(εi) = Πi(εi) and
Π(εj) = Πj(εj) cannot belong to opposite sides, so that the point Πi(Πj(εi)) is a corner
point of Q . From the 1-Lipschitz continuity of the projections Πi and Πj , and from ii) we
infer that

|εi−Πi(Πj(εi))| ≤ |εi−Πi(εi)|+ |Πi(εi)−Πi(Πj(εi))| ≤ (N + 2)ε+ |εi−Πj(εi)|
≤ (N + 2)ε+ |εi− εj|+ |εj −Πj(εj)|+ |Πj(εj)−Πj(εi)| ≤ (2N + 6)ε .
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The same argument applies to εj and the corner point Πj(Πi(εj)) and therefore the points
εi, εj belong to a ball of radius CNε centered at a corner point of Q . Clearly those inter-
actions are negligible as ε→ 0.

Case 2: In the second part of the analysis on Q , we assume that Π(εi) and Π(εj) belong
to the same side S0 of Q . In particular, we can assume that they belong to the relative
interior of S0 since otherwise the behavior is already covered by the above analysis. This
additional assumption guarantees that ϕ(Π(εi)) = ϕ(Π(εj)) =: ϕ0 . Inserting this equality
in the definition of ϕ(uε) we obtain that

ϕ(uε(εi))− ϕ(uε(εj)) = (ϕ|Q − ϕ0)

×
(

min

{
θN |dε−1dist(εi, ∂Q)e − 1|

|ϕ|Q − ϕ0|
, 1

}
−min

{
θN |dε−1dist(εj, ∂Q)e − 1|

|ϕ|Q − ϕ0|
, 1

})
. (3.7)

If ϕ|Q = ϕ0 , then the above difference vanishes. The same holds if εi− εj is parallel to S0 ,
since then dist(εi, ∂Q) = dist(εj, ∂Q). In both cases we obtain u3

ε(εi) = u3
ε(εj) . Moreover,

since 2N ≥ N + 2 for N ≥ 2, property ii) implies that ũε(εi) = ũε(εj) = e1 and hence
uε(εi) = uε(εj). We conclude that such interactions do not contribute to the energy.

Thus in case 2 we may assume that ϕ|Q 6= ϕ0 and that εi−εj is orthogonal to S0 . Then
dist(εi, ∂Q)− dist(εj, ∂Q) = ±ε . Since ϕ takes values in the set LN , we can write

|ϕ|Q − ϕ0| = kθN

for some k ∈ N\{0} . In particular, by (3.7) the difference ϕ(uε(εi))−ϕ(uε(εj)) is non zero
only if there exists n with 0 ≤ n ≤ k − 1 such that

|dε−1dist(εi, ∂Q)e − 1| = n and |dε−1dist(εj, ∂Q)e − 1| = n+ 1 or

|dε−1dist(εi, ∂Q)e − 1| = n+ 1 and |dε−1dist(εj, ∂Q)e − 1| = n .

Since we assume that ϕ|Q 6= ϕ0 , we know that S0 cannot be contained in the half-open
cube Q . In particular, dist(εi, ∂Q) > 0 and therefore dε−1dist(εi, ∂Q)e− 1 ≥ 0 and we can
omit the modulus in the above inclusion, that is, there exists n with 1 ≤ n ≤ k

dε−1dist(εi, ∂Q)e = n and dε−1dist(εi, ∂Q)e = n+ 1 or (3.8)

dε−1dist(εi, ∂Q)e = n+ 1 and dε−1dist(εi, ∂Q)e = n . (3.9)

In this case, the linearity of x 7→ min{x, 1} on [0, 1] implies that

|ϕ(uε(εi))− ϕ(uε(εj))| = θN | dε−1dist(εi, ∂Q)e − dε−1dist(εj, ∂Q)e︸ ︷︷ ︸
=±1

| = θN . (3.10)

Now we are in the position to evaluate the full difference |uε(εi)− uε(εj)|2 . Inspecting the
proof of the second estimate in Lemma 2.1, we see that due to (3.10) and since ũε(εi) =
ũε(εj) = e1 , all inequalities in that proof are in fact equalities and therefore we have that

|uε(εi)− uε(εj)|2 = 4
sin2

(
θN
2

)
θN

|ϕ(uε(εi))− ϕ(uε(εj))| = 4 sin2
(
θN
2

)
.

Taking once more into account that dist(εi, ∂Q) − dist(εj, ∂Q) = ±ε , the number of pairs
(εi, εj) satisfying (3.8) is given by 2k times the number of possible orthogonal lattice layers
that are projected onto S0 . Hence the energetic contribution of all pairs (εi, εj) such that
Π(εi) = Π(εj) ∈ S0 can be bounded by

1

2

1

ε
(2k)
H1(S0) + 2ε

ε
ε24 sin2

(
θN
2

)
= 4

sin2
(
θN
2

)
θN

|ϕ|Q − ϕ0|(H1(S0) + 2ε) . (3.11)

Note that |ϕ|Q − ϕ0| equals the jump amplitude of ϕ along the side S0 and since S0 is
parallel to one of the coordinate axes, we have that

|ϕ|Q − ϕ0|H1(S0) =

∫
S0

|ϕ+ − ϕ−||νϕ|1 dH1.

Moreover, the closure of any cube Q ∈ Qη(u′) such that Q ∩ Ω 6= Ø is contained in
Ω+B2η(0). Hence, starting from (3.3) and taking into account (3.4), (3.6),x and that (3.11)
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can be non-zero only if S0 is either the top or the right side of Q (so that the corresponding
side is not taken into account by the energy on another cube), we deduce that

lim sup
ε→0

1

ε
Eε(uε,Ω) ≤ 4

sin2
(
θN
2

)
θN

∫
Ω+B2η(0)

|ϕ+ − ϕ−||νϕ|1 dH1.

Finally, fixing the piecewise constant functions u′ and ϕ , we can refine the cube size η
and repeat the above construction to obtain a diagonal sequence uε : εZ2 → S 2

N such that

ϕ(uε)→ ϕ in L1(Ω;R), u′ε
∗
⇀ u′ in L∞(Ω;R2) and

lim sup
ε→0

1

ε
Eε(uε,Ω) ≤ 4

sin2
(
θN
2

)
θN

∫
Ω

|ϕ+ − ϕ−||νϕ|1 dH1 =: 4
sin2

(
θN
2

)
θN

|Dϕ|1(Ω).

Using the abstract lower semicontinuity of the Γ-limsup and standard approximation results
in the weak∗ -topology, we deduce that for ϕ as above and an arbitrary function u′ ∈
L∞(Ω;ϕ) it holds that

Γ- lim sup
ε→0

1

ε
Eε(·,Ω)(u′, ϕ) ≤ 4

sin2
(
θN
2

)
θN

|Dϕ|1(Ω).

Finally, given an arbitrary function ϕ ∈ BV (Ω; LN ) and u′ ∈ L∞(Ω;ϕ), we consider a
sequence ϕn ∈ PCδn(LN ) such that ϕn → ϕ in L1(Ω;R) and |Dϕn|1(Ω)→ |Dϕ|1(Ω) (see
Proposition A.1) and define u′n ∈ L∞(Ω;ϕn) by

u′n =

{
u′ on {ϕn = ϕ′},
0 otherwise.

Since LN is a finite set, the convergence ϕn → ϕ in L1(Ω;R) implies that |{ϕn 6= ϕ}| → 0
as n → +∞ . Therefore we deduce that u′n → u′ in L1(Ω;R2) and by boundedness also
weakly∗ in L∞(Ω;R2), so that once again by the lower semicontinuity of the Γ-limsup we
find that

Γ- lim sup
ε→0

1

ε
Eε(·,Ω)(u′, ϕ) ≤ lim inf

n→+∞
Γ- lim sup

ε→0

1

ε
Eε(·,Ω)(u′n, ϕn)

≤ lim inf
n→+∞

4
sin2

(
θN
2

)
θN

|Dϕn|1(Ω) = 4
sin2

(
θN
2

)
θN

|Dϕ|1(Ω).

By the definition of the Γ-limsup this yields the property (iii) in Theorem 2.6 and we
conclude the proof. �

3.2. The gradient scaling regime.

Proof of Theorem 2.11. We prove each part separately.
Proof of (i) (Compactness).

By assumption we know that limε→0
1
εEε(uε,Ω) = 0. Hence from Theorem 2.6 it follows

that (up to a subsequence) there exists ϕ ∈ BV (Ω;R) such that ϕ(uε)→ ϕ in L1(Ω;R) and
|Dϕ|1(Ω) = 0. Since Ω is connected, we deduce that ϕ = ϕ̄ ∈ LN is constant. Moreover,
note that the definition of the piecewise affine interpolation implies that for any Ω′ ⊂⊂ Ω
and ε small enough it holds that

C ≥ 1

ε2
Eε(uε,Ω) ≥

∫
Ω′
|∇A[uε](x)|2 dx ,

where we used that A[uε] is affine on triangles with volume ε2/2. In particular, since
the norms of uε and A[uε] are uniformly bounded by 1, it follows that up to a further
subsequence there exists u ∈ H1(Ω′; S 2

N ) such that A[uε] ⇀ u in H1(Ω′;R3) and strongly
in L2(Ω′;R3). Since uε is equi-integrable, we can use the arbitrariness of Ω′ ⊂⊂ Ω and a
diagonal argument to show that u ∈ H1(Ω; S 2

N ) and in addition A[uε] → u in L2(Ω;R3)
and weakly in H1

loc(Ω;R3). Clearly we can write u = (cos(ϕ̄)ũ, sin(ϕ̄)) with ũ ∈ H1(Ω; S1).
To control the behavior of the piecewise affine interpolation of ũε , we recall that, due to

Remark 2.8, also A[ũε] is bounded in H1(Ω′;R2) for every Ω′ ⊂⊂ Ω. Repeating the argu-
ments used above, it thus suffices to identify the L1 -limit along the subsequence chosen for
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A[uε] . Due to [8, Proposition A.1 & Remark A.2] we know that the L1(Ω;R2)-convergence
of A[ũε] implies the L1(Ω;R2) convergence of ũε to the same limit. Hence it suffices to
prove that ũε → ũ in L1(Ω;R2). By definition, it holds that

ũε =
1

cos(ϕ(uε))
u′ε .

Since the set LN does not contain the values ±π/2, it follows that 1
cos(ϕ(uε))

→ 1
cos(ϕ̄) in

L1(Ω;R) and the convergence A[uε] → u in L1(Ω;R3) implies the convergence uε → u in
L1(Ω;R3). In particular, from uniform boundedness it follows that ũε → 1

cos(ϕ̄)u
′ = ũ in

L1(Ω;R2).
Proof of (ii) (liminf inequality).

Without loss of generality we assume that the liminf is finite and, up to a subsequence, it is
a limit. Fix Ω′ ⊂⊂ Ω. Then as in Step 1, for ε small enough we have that

1

ε2
Eε(uε,Ω) ≥

∫
Ω′
|∇A[uε](x)|2 dx .

The weak lower semicontinuity of the right-hand side functional with respect to L2(Ω;R3)-
convergence yields that

lim inf
ε→0

Eε(uε,Ω) ≥
∫

Ω′
|∇u(x)|2 dx = cos2(ϕ̄)

∫
Ω′
|∇ũ(x)|2 dx.

Letting Ω′ ↑ Ω yields the claim.
Proof of (iii) (limsup inequality).

Fix u = (cos(ϕ̄)ũ, sin(ϕ̄)) ∈ H1(Ω; S 2
N ). Then ũ ∈ H1(Ω; S1). Using a local reflection

argument (cf. the proof of [18, Lemma 3.4] for the details) we can assume that ũ ∈ H1(Ω′;S1)
for some open, connected set Ω′ ⊃⊃ Ω with smooth boundary. The density of smooth
functions C∞(Ω′;S1) in H1(Ω′;S1) allows us to reduce the proof of the limsup inequality
to the case ũ ∈ C∞(Ω′;S1). The recovery sequence is then given by

uε(εi) = (cos(ϕ̄)ũ(εi), sin(ϕ̄)).

A standard computation (that we leave to the reader) yields that for any Ω ⊂⊂ Ω′′ ⊂⊂ Ω′

lim sup
ε→0

1

ε2
Eε(uε,Ω) = cos2(ϕ̄) lim sup

ε→0

1

ε
XYε(ũ,Ω) ≤ cos2(ϕ̄)

∫
Ω′′
|∇ũ(x)|2 dx.

Letting Ω′′ ↓ Ω we conclude the proof of the limsup inequality, keeping in mind that
|∂Ω| = 0. �

3.3. The vortex scaling regime. We prove a result that will be fundamental for the proof
of the theorem in the vortex scaling. It is based on the fact that 1

εEε(uε) behaves like an
interface energy.

Lemma 3.1. Let A′ ⊂⊂ A ⊂ R2 be bounded open sets with Lipschitz boundary. There
exists a constant C(A′, N) > 0 depending on A′ and N such that for every uε : εZ2 → S 2

N

and ϕ̄ ∈ LN with ϕ(uε)→ ϕ̄ strongly in L1(A;R) , for ε small enough we have that∫
A′
|ϕ(uε(x))− ϕ̄|dx ≤ C(A′, N)

(1

ε
Eε(uε, A)

)2
.

Moreover, if A′ is a ball A′ = Bη , then the constant C(A′, N) = C(N) only depends on N .

Proof. We start by observing that∫
A′
|ϕ(uε(x))− ϕ̄|dx =

∫
{ϕ(uε)6=ϕ̄}∩A′

|ϕ(uε(x))− ϕ̄|dx ≤ πL2({ϕ(uε) 6= ϕ̄} ∩A′) . (3.12)

By the relative isoperimetric inequality (see [9, Remark 3.50]) we have that

min{L2({ϕ(uε) 6= ϕ̄} ∩A′),L2(A′ \ {ϕ(uε) 6= ϕ̄})} ≤ C(A′)
(
H1(∂∗{ϕ(uε) 6= ϕ̄} ∩A′)

)2
,

(3.13)
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where ∂∗ is the reduced boundary and C(A′) is constant depending on A′ . The constant
C(A′) is independent of A′ if is a ball, A′ = Bη . By the assumptions, we have that

L2({ϕ(uε) 6= ϕ̄} ∩A′) ≤ 1

θN

∫
A

|ϕ(uε)− ϕ̄|dx→ 0 ,

thus the minimum in (3.13) is attained at L2({ϕ(uε) 6= ϕ̄} ∩A′). This yields

L2({ϕ(uε) 6= ϕ̄} ∩A′) ≤ C(A′)
(
H1(∂∗{ϕ(uε) 6= ϕ̄} ∩A′)

)2
. (3.14)

To estimate H1(∂∗{ϕ(uε) 6= ϕ̄} ∩A′) we observe that Remark 2.5 gives

H1(∂∗{ϕ(uε) 6= ϕ̄} ∩A′) ≤
∫
∂∗{ϕ(uε)6=ϕ̄}∩A′

|νϕ(uε)|1 dH1

≤ 1

θN

∫
Jϕ(uε)∩A′

|ϕ(u+
ε )− ϕ(u−ε )||νuε |1 dH1

≤ 1

θN
|Dϕ(uε)|1(A′) ≤ 1

4 sin2
(
θN
2

) 1

ε
Eε(uε, A) .

The thesis follows by combining the previous inequality with (3.13) and (3.12). �

The next proof of Theorem 2.10 is based on the well-known ball construction [29, 24].
For the reader’s convenience, in Appendix B we present a variant of this tool as presented
in [11, Lemma 5.1]. We would like to stress that in what follows when we generically refer
to “the ball construction” we mean the full geometric process contained in the proof of the
Lemma B.1 and not only those properties that we have single out in its statement.

Proof of Theorem 2.10. Proof of (i) (Compactness).
Since ε2| log ε| � ε as ε → 0, we deduce from Theorem 2.6-i) that, up to a subsequence,
ϕ(uε) → ϕ in L1(Ω;R) for some ϕ ∈ BV (Ω; LN ). Theorem 2.6-ii) then implies that
|Dϕ|1(Ω) = 0. Hence, due to the connectedness of Ω, there exists ϕ̄ ∈ LN such that
ϕ ≡ ϕ̄ on Ω. The compactness of the discrete vorticity measures µũε is a consequence of
Remark 2.8 and the corresponding result for the XY model (see Proposition 2.4).

Proof of (ii) (liminf inequality).
To obtain the liminf inequality, we need to improve the lower bound given by Remark 2.8

lim inf
ε→0

1

ε2| log ε|
Eε(uε,Ω) ≥ 2π%2

N |µ|(Ω) ,

which is sharp only in the case where %(ϕ̄) = %N , i.e., ϕ̄ = −π2 + θN or ϕ̄ = −π2 + NθN .
To improve the lower bound, we will combine the ball construction with the result at the
gradient scaling (Theorem 2.11) adapting a technique already proven to be useful in different
contexts, see [21, 3, 11, 5].

Hereafter, we shall assume that

lim inf
ε→0

1

ε2| log ε|
Eε(uε,Ω) < +∞ , (3.15)

otherwise any lower bound is trivial. Moreover, up to extracting a subsequence we can
assume that the liminf is a limit, and thus

Eε(uε,Ω) ≤ Cε2| log ε| . (3.16)

Step 1: (localization) By arguing locally in Ω close to each point of supp(µ) and by the
superadditivity of the liminf, we can assume without loss of generality that 0 ∈ Ω and

µũε
f→ dδ0 , (3.17)

with d ∈ Z . We fix open sets with Lipschitz boundary Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω with 0 ∈ Ω′ .
Step 2: (setting up the ball construction) The plan is to apply the ball construction to

the discrete vorticity measures µũε . We define here the initial family of balls Bε and the
increasing set function E .
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We consider the family of balls

Bε := {Bε/2(x) : x ∈ supp(µũε) ∩ Ω} .

Notice that each of these balls is contained in a square of the lattice εZ2 .
We define now the increasing set function required for the ball construction. For every

0 < r < R and for every x ∈ R2 such that the annulus Ar,R(x) = BR(x) \ Br(x) satisfies
Ar,R(x) ∩

⋃
B∈Bε B = Ø, we set

E(Bε, µũε , Ar,R(x)) := |µũε(Br(x))| log
R

r
,

and we extend E to every A ∈ A(R2) by

E(Bε, µũε , A) := sup
{ N∑
j=1

E(Bε, µũε , Aj) : N ∈ N , Aj = Arj ,Rj (xj) , A
j ∩

⋃
B∈Bε

B = Ø ,

Aj ∩Ak = Ø for j 6= k , Aj ⊂ A for all j
}
.

(3.18)

The set function E has the following property. Given A′ ⊂⊂ A it holds that

E(Bε, µũε , A′) ≤
C

ε2
XYε(ũε, A) , (3.19)

for
√

2ε < dist(A′, ∂A). The proof of the previous estimate can be found in [11, proof of
Lemma 6.2]. It is based on the observation that the XY energy behaves like the squared
L2 norm of the gradient of the spin field and thus carries at least an energy proportional to
|µũε(Br(x))| log R

r = E(Bε, µũε , Ar,R(x)) in annuli Ar,R(x) that do not contain vortices.
Step 3: (applying the ball construction) We apply the ball construction (Lemma B.1)

to B = Bε , µ = µũε , and E defined in (3.18), which satisfy the assumptions (B1) and (B2).
We let {Bε(t)}t≥0 denote the family of balls satisfying (1)–(6) of Lemma B.1 with the choice

σ = σε = 2
√

2ε . (3.20)

For future use, it is convenient to count the number of balls in Bε . By Remark 2.3, Re-
mark (2.8), and (3.16), we have that

#Bε = #supp(µũε) ∩ Ω = |µũε |(Ω) ≤ C

ε2
XYε(ũε,Ω) ≤ C

ε2
Eε(uε,Ω) ≤ C| log ε| . (3.21)

Thanks to (3.21), we estimate the sum of the radii of the balls in Bε by

R(Bε) ≤ Cε| log ε| . (3.22)

By property (5) in Lemma B.1, by (3.20), and by (3.22), we have that

R(Bε(t)) ≤ (1 + t)(R(Bε) + #Bεσε) ≤ C(1 + t)ε| log ε| . (3.23)

Moreover, by the ball construction, and thanks to property (6) in Lemma B.1,

r(B) ≥ (1 + t)
ε

2
for every B ∈ Bε(t) . (3.24)

Finally, it is useful to define the set of merging times

Tmerg
ε := {t ∈ [0,+∞) : #Bε(t+) < #Bε(t−) for every t−, t+ such that t− < t < t+}

and to observe that there exists K > 0 such that, by the ball construction,

#Tmerg
ε ≤ K| log ε| . (3.25)

In the following we let

Uε(t) :=
⋃

B∈Bε(t)

B . (3.26)

We observe that by (3.19), by Remark 2.8, and by (3.16), the increasing set function E
satisfies

E(Bε, µũε ,Ω′′ \ Uε(0)) ≤ C

ε2
XYε(ũε,Ω) ≤ C

ε2
Eε(uε,Ω) ≤ C| log ε| . (3.27)
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Step 4: (choice of time for the ball construction) Let us fix p ∈ (0, 1). (At the very end
of the proof we will let p→ 1.)

For k = 0, . . . , b2K| log ε|c we set

βp := exp
(√p(1−√p)

2K

)
, tkε,p := (βp)

kε
√
p−1 − 1 , (3.28)

and

Kε :=
{
k ∈ {1, . . . , b2K| log ε|c} : (tk−1

ε,p , t
k
ε,p] ∩ Tmerg

ε = Ø
}
. (3.29)

We observe that (3.25) implies that

#Kε ≥ b2K| log ε|c −#Tmerg
ε ≥ K| log ε| − 1 ≥ K

2
| log ε| , (3.30)

for ε ≤ e−2/K . We choose kε ∈ Kε such that (recall that Uε(t) is defined in (3.26))

Eε(uε,Ω ∩ Uε(tkεε,p) \ Uε(tkε−1
ε,p )) ≤ Eε(uε,Ω ∩ Uε(tkε,p) \ Uε(tk−1

ε,p )) for every k ∈ Kε .

We set

tε,p := tkεε,p . (3.31)

We will also use the notation tkεε,p when we want to stress the choice of the index kε . This
choice yields, thanks to property (1) in Lemma B.1, (3.16), and (3.30)

Eε(uε,Ω ∩ Uε(tkεε,p) \ Uε(tkε−1
ε,p )) ≤ 1

#Kε

∑
k∈Kε

Eε(uε,Ω ∩ Uε(tkε,p) \ Uε(tk−1
ε,p ))

≤ 1

#Kε
Eε(uε,Ω) ≤ Cε2.

(3.32)

Step 5: (auxiliary measures) We set

µε,p :=
∑

B∈Bε(tε,p)

µũε(B)δxB , (3.33)

where we let xB denote the center of the ball B . We claim that the following bound and
convergence statement hold true:

|µε,p|(Ω′) ≤ Cp and µũε − µε,p
f→ 0 in Ω′ , (3.34)

for some constant Cp > 0 depending on p .4 By (3.17) we then have that

µε,p
f→ dδ0 . (3.35)

We now prove the claim (3.34). By (3.27) and by property (3) in Lemma B.1, we have that
for ε small enough

C| log ε| ≥ E(Bε, µũε ,Ω′′ \ Uε(0)) ≥ E(Bε, µũε ,Ω′ ∩ Uε(tkεε,p) \ Uε(0))

≥
∑

B∈Bε(tkεε,p)

xB∈Ω′

|µũε(B)| log(1 + tkεε,p) ≥ |µε,p|(Ω′) | log(1 + t0ε,p)| ≥ |µε,p|(Ω′)(1−
√
p)| log ε| .

To prove the convergence in (3.34), we estimate the flat distance between µε,p and µũε
with a standard argument (see, e.g., [22, Lemma 2.2]). We let ψ ∈ C0,1

c (Ω′) be such that

4As a side note, (3.34) are the key estimates that yield compactness in the flat norm for the discrete

vorticity measures.
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‖ψ‖L∞(Ω′) ≤ 1, ‖∇ψ‖L∞(Ω′) ≤ 1. Since the balls in Bε(tkεε,p) are pairwise disjoint and
contain the support of µũε and µε,p ,

〈µũε − µε,p, ψ〉 =
∑

B∈Bε(tkεε,p)

xB∈Ω′

∫
B

ψ d(µũε − µε,p) +
∑

B∈Bε(tkεε,p)

xB /∈Ω′

∫
B∩supp(ψ)

ψ dµũε

≤
∑

B∈Bε(tkεε,p)

xB∈Ω′

oscB(ψ)
(
|µũε |+ |µε,p|

)
(Ω′) +

∑
B∈Bε(tkεε,p)

xB /∈Ω′

oscB(ψ)|µũε |(Ω′)

≤ 4R(Bε(tkεε,p))
(
|µũε |+ |µε,p|

)
(Ω′) ,

where we used that for xB /∈ Ω′ we can insert ψ(xB) = 0 in the integral to estimate ψ via
its oscillation on the ball B . Observe that by (3.23)

R(Bε(tε,p)) ≤ (1 + tkεε,p)Cε| log ε| ≤ (βp)
2K| log ε|ε

√
p−1Cε| log ε| = Cεp| log ε| . (3.36)

(In particular, this implies that all radii in our construction will be small.) Taking the
supremum over ψ in the above inequality, by (3.36), (3.21), and the bound in (3.34), we get
that

‖µũε − µε,p‖flat,Ω′ ≤ CR(Bε(tkεε,p))
(
|µũε |+ |µε,p|

)
(Ω′) ≤ Cεp| log ε|2 → 0 ,

whence also the convergence statement in (3.34).
Step 6: (modification in balls with zero net vorticity) We classify the balls of the family

Bε(tε,p) into two subclasses

B=0
ε := {B ∈ Bε(tε,p) : µũε(B) = 0 , xB ∈ Ω′} ,

B 6=0
ε := {B ∈ Bε(tε,p) : µũε(B) 6= 0 , xB ∈ Ω′} .

(3.37)

In what follows we modify the S 2
N -valued spin field uε in the balls of B=0

ε with an S 2
N -

valued spin field wε such that w̃ε has no discrete vorticity in the balls of B=0
ε and whose en-

ergy does not increase (asymptotically). More precisely, we prove that there exist a constant
cp ∈ (0, 1) and a sequence wε : εZ2 → S 2

N such that wε = uε on Ω \
⋃
BR(x)∈B=0

ε
BcpR(x),

|µw̃ε |(B) = 0 for all B ∈ B=0
ε , and

lim inf
ε→0

1

ε2| log ε|
Eε(wε,Ω

′) ≤ lim inf
ε→0

1

ε2| log ε|
Eε(uε,Ω) .

We remark that the proof of the previous result is divided in two parts. In the first part we
modify only the horizontal components ũε : εZ2 → S1 and we define w̃ε : εZ2 → S1 with
zero discrete vorticity in the balls of B=0

ε and whose XY energy does not increase with
respect to ũε . In the second part of the proof we need to define the third component (or,
equivalently, the latitude) of wε . This is done by modifying the third component of uε ,
setting it equal to the constant value ϕ̄ inside balls contained in those belonging to B=0

ε

and chosen via a De Giorgi averaging argument.

We now prove what is stated above with the constant cp :=
βp+1
2βp

. Let us construct

the spin field wε . Let BRε(xε) ∈ B=0
ε . Since kε ∈ Kε , by (3.29) no merging occurs

in the interval (tkε−1
ε,p , tkεε,p] and therefore, according to the ball construction, there exists

Brε(xε) ∈ Bε(tkε−1
ε,p ) (i.e., a ball with the same center in the family Bε(tkε−1

ε,p )). Note that,
by (3.24) and by (3.28),

ε

rε
≤ C

1 + tkε−1
ε,p

=
Cε1−√p

(βp)kε−1
≤ Cε1−√p → 0 . (3.38)

Let r′ε be the radius of the ball centred in xε at the last merging time T ≤ tkε−1
ε,p (in the case

no merging occurred before tkε−1
ε,p , let T = 0). By construction, recalling (B.4) and (3.28),

we deduce that
rε
r′ε

=
1 + tkε−1

ε,p

1 + T
,

Rε
r′ε

=
1 + tkεε,p
1 + T

=⇒ Rε
rε

= βp . (3.39)
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Note that, according to the ball construction, µũε(Brε(xε)) = 0 and, by property (4) in

Lemma B.1 and due to the choice σ = 2
√

2ε , |µũε |(Arε−2
√

2ε,Rε+2
√

2ε(xε)) = 0. The latter

condition ensures that |µũε |(εi+[0, ε]2) = 0 for i ∈ Z2 such that (εi+[0, ε]2)∩Arε,Rε(xε) 6=
Ø. Furthermore, thanks to Remark 2.8 and (3.32), again appealing to the ball construction,
we have that

XYε(ũε, Arε,Rε(xε)) ≤ CEε(uε, Arε,Rε(xε)) ≤ Cε2 . (3.40)

Therefore, we are in a position to apply the following extension result for discrete spin fields
proven in [11, Lemma 3.5], see also [11, Remark 3.6].

Lemma 3.2. [11, Lemma 3.5] There exists a universal constant C0 > 0 such that the
following holds true. Let ε > 0 , x0 ∈ R2 , and R > r > ε , let C1 > 1 and vε : εZ2 → S1

with XYε(vε, Ar,R(x0)) ≤ C1ε
2 , µvε(Br(x0)) = 0 , and |µvε |(εi + [0, ε]2) = 0 for every

i ∈ Z2 such that (εi+ [0, ε]2)∩Ar,R(x0) 6= 0 . Then there exists vε : εZ2 → S1 such that for

ε < R−r
C0C1

:

• vε = vε on εZ2 \B r+R
2

(x0) ;

• |µvε |(BR(x0)) = 0 ;
• XYε(vε, BR(x0)) ≤ C(r,R)XYε(vε, Ar,R(x0)) , where C(r,R) = C0

R
R−r .

Applying the previous extension result to ũε , we obtain w̃ε : εZ2 → S1 such that w̃ε = ũε
on εZ2 ∩AcpRε,Rε(xε) (observe that rε+Rε

2 = cpRε ), |µw̃ε |(BRε(xε)) = 0, and

XYε(w̃ε, BRε(xε)) ≤ C(rε, Rε)XYε(ũε, Arε,Rε(xε)) (3.41)

for ε small enough (i.e., such that ε
rε

<
βp−1
C0C1

, cf. (3.38) and (3.39)). Note that (3.39)
implies that

C(rε, Rε) = C0
Rε

Rε − rε
= C0

βprε
βprε − rε

= C0
βp

βp − 1
= C(βp) ,

i.e., it is independent of ε .
We need to define the latitude ϕ(wε) ∈ LN . Once ϕ(wε) is defined, we set

wε :=
(

cos(ϕ(wε))w̃ε, sin(ϕ(wε))
)
. (3.42)

We define the latitude ϕ(wε) by setting ϕ(wε) := ϕ̄ inside a suitable ball contained in
BcpRε and ϕ(wε) := ϕ(uε) outside the same ball. The selection of the ball is done via a De
Giorgi averaging argument that we explain in detail here. It is convenient to introduce the
auxiliary energy pertaining the third component of the spin fields

Fε(ϕ,A) :=
1

2

∑
εi,εj∈εZ2∩A
|i−j|=1

ε2| sin(ϕ(εi))− sin(ϕ(εj))|2. (3.43)

We let
√
p < p̄ < 1 and

Hε :=
⌊ 1

ε1−p̄

⌋
. (3.44)

Note that, by (3.38) for ε small enough we have that

2εHε ≤
2ε

ε1−p̄ = 2εp̄ � rε .

We consider Hε equispaced circles in the annulus Arε,cpRε(xε), i.e., ∂Brhε (xε) for h =
1, . . . ,Hε with

rhε := rε + h
cpRε − rε
Hε + 1

.

Moreover, we consider the strips

Shε := ∂Brhε (xε) +B3ε for h = 1, . . . ,Hε .

Note that, for ε small enough,

Shε ∩ Sh
′

ε = Ø for h 6= h′ (3.45)
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since, by (3.39) and (3.38),

dist(Shε , S
h′

ε ) =
cpRε − rε
Hε + 1

− 6ε =
βp − 1

2(Hε + 1)
rε − 6ε ≥ C

εp̄−1
ε
√
p − 6ε =

C

εp̄−
√
p
ε− 6ε > 0 .

For h = 1, . . . ,Hε and for εi ∈ Z2 ∩BRε(xε) we let

ϕhε (εi) :=

{
ϕ̄ if εi ∈ Brhε (xε) ,

ϕ(uε(εi)) if εi ∈ BRε(xε) \Brhε (xε) .

We let hε ∈ {1, . . . ,Hε} be such that∫
Shεε

|ϕ(uε))− ϕ̄|dx ≤
∫
Shε

|ϕ(uε))− ϕ̄|dx for h = 1, . . . ,Hε .

We claim that the latitude ϕ(wε) := ϕhεε satisfies the following inequality

Fε(ϕ(wε), BRε(xε)) ≤ Fε(ϕ(uε), Arε,Rε(xε)) +
C

Hε

∫
BRε (xε)

|ϕ(uε)− ϕ̄| dx . (3.46)

Indeed, since every point in Z2 has at most 4 neighbors, by definition of ϕhεε we get that

Fε(ϕ(wε), BRε(xε)) ≤ Fε(ϕ(uε), BRε(xε) \Brhεε (xε)) + Fε(ϕ̄, Brhεε (xε))

+ 2
∑
εi∈εZ2

rhεε ≤|εi−xε|≤r
hε
ε +ε

ε2| sin(ϕ(uε(εi)))− sin(ϕ̄)|2

≤ Fε(ϕ(uε), Arε,Rε(xε)) + 2

∫
Shεε

| sin(ϕ(uε))− sin(ϕ̄)|2 dx .

(3.47)

Note that | sin(ϕ(uε))− sin(ϕ̄)|2 ≤ π|ϕ(uε)− ϕ̄| . Due to the choice of hε we find that

Fε(ϕ(wε), BRε(xε)) ≤ Fε(ϕ(uε), Arε,Rε(xε)) +
2π

Hε

Hε∑
h=1

∫
Shε

|ϕ(uε)− ϕ̄|dx

≤ Fε(ϕ(uε), Arε,Rε(xε)) +
2π

Hε

∫
BRε (xε)

|ϕ(uε)− ϕ̄|dx,

where we used that the strips (Shε )Hεh=1 are pairwise disjoint. This concludes the proof
of (3.46).

We are in a position to estimate the energy of wε in the ball BRε . We exploit the
inequality ∣∣αc− βd∣∣2 ≤ 2

(
β2|c− d|2 + |α− β|2|c|2

)
for α, β > 0 and c, d ∈ R2

to obtain that (recall the definition of Fε in (3.43))

Eε(wε, BRε(xε)) =
1

2

∑
εi,εj∈εZ2∩BRε (xε)

|i−j|=1

ε2|wε(εi)− wε(εj)|2

=
1

2

∑
εi,εj∈εZ2∩BRε (xε)

|i−j|=1

ε2| cos(ϕ(wε(εi)))w̃ε(εi)− cos(ϕ(wε(εj)))w̃ε(εj)|2 + Fε(ϕ(wε), BRε(xε))

≤ 2XYε(w̃ε, BRε(xε)) +
∑

εi,εj∈εZ2∩BRε (xε)
|i−j|=1

ε2
∣∣ cos(ϕ(wε(εi)))− cos(ϕ(wε(εj)))

∣∣2
+ Fε(ϕ(wε), BRε(xε)) .

(3.48)

We observe that cos(ϕ(wε)) =
√

1− sin2(ϕ(wε)) with ϕ(wε) ∈ LN . Note that LN ⊂
[−π2 + θN ,

π
2 − θN ] and thus sin(LN ) ⊂ [− arcsin

(
π
2 − θN

)
, arcsin

(
π
2 − θN

)
] ⊂⊂ (−1, 1).
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The function s 7→
√

1− s2 is Lipschitz (with a Lipschitz constant depending on N ) on
[− arcsin

(
π
2 − θN

)
, arcsin

(
π
2 − θN

)
] , hence∣∣ cos(ϕ(wε(εi)))− cos(ϕ(wε(εj)))

∣∣2 ≤ C∣∣ sin(ϕ(wε(εi)))− sin(ϕ(wε(εj)))
∣∣2.

Therefore (3.48) reads

Eε(wε, BRε(xε)) ≤ CXY (w̃ε, BRε(xε)) + CFε(ϕ(wε), BRε(xε)) .

By (3.41) and (3.46) we have that

Eε(wε, BRε(xε))

≤ CXYε(ũε, Arε,Rε(xε)) + CFε(ϕ(uε), Arε,Rε(xε)) +
C

Hε

∫
BRε (xε)

|ϕ(uε)− ϕ̄| dx ,

which in turn implies, by Remark 2.8 and the definition of Fε in (3.43),

Eε(wε, BRε(xε)) ≤ CEε(uε, Arε,Rε(xε)) +
C

Hε

∫
BRε (xε)

|ϕ(uε)− ϕ̄| dx .

We apply the previous construction in every ball BRε(xε) ∈ B=0
ε in order to obtain

wε such that wε = uε on Ω \
⋃
{xε:BRε (xε)∈B=0

ε }
BcpRε(xε), |µw̃ε |(BRε(xε)) = 0 for all

BRε(xε) ∈ B=0
ε and (we recall that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω). By the ball construction it holds

that

Eε

(
wε,

⋃
{xε:BRε (xε)∈B=0

ε }

BRε(xε)
)

≤ CEε(uε,Ω ∩ Uε(tkεε,p) \ Uε(tkε−1
ε,p )) +

C

Hε

∫
Ω′′
|ϕ(uε)− ϕ̄| dx .

(3.49)

We estimate the last integral by applying Lemma 3.1, by the definition of Hε in (3.44), and
by the energy bound (3.16):

1

Hε

∫
Ω′′
|ϕ(uε)− ϕ̄| dx ≤ 1

1
ε1−p̄ − 1

C(Ω′′, N)
(1

ε
Eε(uε,Ω)

)2
≤ C(Ω′′, N)

ε1−p̄

1− ε1−p̄ ε
2| log ε|2 .

Thanks to the previous inequality and to (3.32), for ε small enough (3.49) reads

Eε

(
wε,

⋃
{xε:BRε (xε)∈B=0

ε }

BRε(xε)
)
≤ Cε2 + C(Ω′′, N)ε1−p̄ε2| log ε|2 .

We conclude that

lim inf
ε→0

1

ε2| log ε|
Eε(wε,Ω

′) ≤ lim inf
ε→0

1

ε2| log ε|

(
Eε(uε,Ω) + Eε

(
wε,

⋃
{xε:BRε (xε)∈B=0

ε }

BRε(xε)
))

≤ lim inf
ε→0

1

ε2| log ε|
Eε(uε,Ω) + lim sup

ε→0

( C

| log ε|
+ Cε1−p̄| log ε|

)
= lim inf

ε→0

1

ε2| log ε|
Eε(uε,Ω) .

This concludes the construction of wε .
Step 7: (limit of balls in B 6=0

ε ) In view of (3.34), we have that #B 6=0
ε ≤ Cp and therefore

we can assume that (up to a subsequence) #B 6=0
ε = L for all ε > 0 for some L ∈ N . Let

B 6=0
ε = {Br`ε(x

`
ε)}L`=1 . By definition (3.33), we have that {x1

ε, . . . , x
L
ε } is the support of

the measure µε,p . The points x`ε converge (up to a subsequence) to points belonging to a

finite set {0 = ξ1, . . . , ξL
′} contained in Ω

′
with L′ ≤ L . Fix ρ > 0 such that Bρ ⊂⊂ Ω′

and Bρ(ξ
h) ∩ Bρ = Ø for all h = 2, . . . , L′ . For ε > 0 small enough we have that either

Br`ε(x
`
ε) ∩ Bρ = Ø or Br`ε(x

`
ε) ⊂⊂ Bρ . Furthermore, by (3.33), (3.35), and the fact that

|µ|(∂Bρ) = 0, for ε small enough we have that∑
x`ε∈Bρ

µũε(Br`ε(x
`
ε)) = d . (3.50)
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We will prove that

lim inf
ε→0

1

ε2| log ε|
Eε(uε, Bρ) ≥ 2π cos2(ϕ̄)|d| .

Since our estimate is local, we can assume, without loss of generality, that |µũε |(R2\Bρ) = 0,
which implies that x`ε ∈ Bρ , i.e., Br`ε(x

`
ε) ⊂⊂ Bρ , for ` = 1, . . . , L and ε small enough.

Step 8: (lower bound with energy on annuli) We follow now an argument used, e.g.,
in [21, 3, 11, 5] aimed at separating the scales of the radii of the balls charged by µũε .

Fix 0 < p′ < p′′ < p such that R(Bε(tkεε,p)) ≤ εp
′′

(this is possible due to (3.36)).
We consider the function gε : [p′, p′′] → {1, . . . , L} such that gε(q) gives the number of

connected components of
⋃L
`=1Bεq (x

`
ε). For each ε > 0, the function gε is monotoni-

cally non-decreasing so that it can have at most L̂ ≤ L − 1 discontinuity points. We let
{qε1, . . . , qεL̂} denote these discontinuity points with

p′ ≤ qε1 < . . . < qε
L̂
≤ p′′.

Up to a subsequence we may assume that L̂ is independent of ε . Moreover, there exists
a finite set D = {q0, . . . , qL̃+1} with p′ = q0 < q1 < . . . < qL̃+1 = p′′ such that (qεj )ε

converges to some point in D as ε → 0, for j = 1, . . . , L̂ . Note that we can always choose

the set D such that L̃ ≤ L̂ . Let us fix λ > 0 with 4λ < minh(qh+1 − qh). For ε > 0 small

enough (that is, such that for h′ = 1, . . . , L̂ one has |qεh′ − qh| < λ for some qh ∈ D) the
function gε is constant in the interval [qh + λ, qh+1 − λ] with constant value Mε

h , where

Mε
h ≤ L . Up to extracting a subsequence, we assume that Mε

h = Mh . For h = 0, . . . , L̃ we
construct a family of annuli as in [11, Lemma 6.7]. More precisely, we set

αh := qh + λ , βh := qh+1 − λ .

The family of disjoint annuli {Ah,mε }Mh
m=1 with Ah,mε := Bεαh (zh,mε ) \ Bεβh (zh,mε ) satisfies

that the sets in the family {
⋃Mh

m=1A
h,m
ε }L̃h=0 are pairwise disjoint and

L⋃
`=1

Br`ε(x
`
ε) ⊂

Mh⋃
m=1

Bεβh (zh,mε ) (3.51)

for h = 0, . . . , L̃ . Moreover, the points zh,mε are suitably chosen in εZ2 ∩
⋃L
`=1Bε(x

`
ε).

The rest of the proof shows that the relevant energy of uε is concentrated on the annuli
Ah,mε . Hence we estimate the energy from below by:

1

ε2| log ε|
Eε(uε,Ω

′) ≥
L̃∑
h=0

Mh∑
m=1

1

ε2| log ε|
Eε(uε, A

m,h
ε )

and exploit the annuli Ah,mε to prove the lower bound.

Note that, for ε small enough Ah,mε ⊂⊂ Bρ ⊂ Ω′ for h = 0, . . . , L̃ and m = 1, . . . ,Mh .
Moreover, let us show that |µũε(Bεβh (zh,mε ))| ≤ C . Indeed, let Bε(xε) ∈ Bε be such that
xε ∈ Bεβh (zh,mε ) (the measure µũε only charges points as xε inside the set Bεβh (zh,mε )).
By the ball construction, we have that Bε(xε) is contained in a ball Br`ε(x

`
ε) for some

` = 1, . . . , L (recall that B=0
ε = Ø). By (3.51), there exists m′ = 1, . . . ,Mh such that

Br`ε(x
`
ε) ⊂ Bεβh (zh,m

′

ε ). A fortiori, we have that m = m′ , i.e., Bε(xε) ⊂ Br`ε(x
`
ε) ⊂

Bεβh (zh,mε ) (otherwise we would have Bε(xε) ∩ Bεβh (zh,mε ) = Ø, in contradiction with the
fact that xε belongs to this intersection). From the previous argument and by (3.33), we
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deduce that

µũε(Bεβh (zh,mε )) = µũε

( ⋃
B∈Bε

B⊂B
εβh

(zh,mε )

B
)

=
∑
B∈Bε

B⊂B
εβh

(zh,mε )

µũε(B)

=
∑

B
r`ε

(x`ε)∈B
6=0
ε

B
r`ε

(x`ε)⊂Bεβh (zh,mε )

∑
B∈Bε

B⊂B
r`ε

(x`ε)

µũε(B) =
∑

B
r`ε

(x`ε)∈B
6=0
ε

B
r`ε

(x`ε)⊂Bεβh (zh,mε )

µũε(Br`ε(x
`
ε))

= µε,p(Bεβh (zh,mε )) .

In view of (3.34), we have that |µũε(Bεβh (zh,mε ))| ≤ C for h = 0, . . . , L̃ and m = 1, . . . ,Mh .
Therefore, up to extracting a further subsequence and thanks to (3.50), we have that

µũε(Bεβh (zh,mε )) = dh,m ∈ Z \ {0} and

Mh∑
m=1

dh,m = d , (3.52)

with Mh and dh,m independent of ε .

Step 9: (blow-up of the annuli) We fix h ∈ {0, . . . , L̃} and m ∈ {1, . . . ,Mh} . In this
and in the next two steps we will show that

lim inf
ε→0

1

ε2| log ε|
Eε(uε, A

h,m
ε ) ≥ (βh − αh)2π cos2(ϕ̄)|dh,m| . (3.53)

We fix R > 1 and, to simplify the notation, we write α := αh , β := βh and z = zh,mε .

We set Nε,R := b(β − α) | log ε|
logR c and for n = 1, . . . , Nε,R define An,ε := BRnεβ (z) \

BRn−1εβ (z). We remark that
⋃Nε,R
n=1 An,ε ⊂ Bεα(z) \Bεβ (z) = Ah,mε . Let n = nε,R be such

that

Eε(uε, A
n,ε) ≤ Eε(uε, An,ε) for n = 1, . . . , Nε,R .

We let δε := ε
Rn−1εβ

and observe that

εβ ≤ ε

δε
≤ ε

δε
R ≤ εα . (3.54)

Then, defining the rescaled spin fields as vδε(δεi) := uε(εi− zh,mε ), i ∈ Z2 , we have

1

ε2| log ε|
Eε(uε, A

h,m
ε ) ≥ 1

| log ε|

Nε,R∑
n=1

1

ε2
Eε(uε, A

n,ε) ≥ 1

| log ε|
Nε,R
ε2

Eε(uε, A
n,ε)

=
1

| log ε|
Nε,R
δ2
ε

Eδε(vδε , BR \B1) .

Since Nε,R ≥ (β − α) | log ε|
logR − 1, from the previous inequality we get that

lim inf
ε→0

1

ε2| log ε|
Eε(uε, A

h,m
ε ) ≥ lim inf

ε→0

1

| log ε|
(β − α) | log ε|

logR − 1

δ2
ε

Eδε(vδε , BR \B1)

= lim inf
ε→0

( (β − α)

logR
− 1

| log ε|

) 1

δ2
ε

Eδε(vδε , BR \B1)

≥ (β − α)

logR
lim inf
ε→0

1

δ2
ε

Eδε(vδε , BR \B1) .

(3.55)

Step 10: (limit of rescaled variable and lower bound at gradient scaling) We identify the
limit in L2(BR \B1;R3) of the rescaled spin fields vδε . First of all, we observe that (3.15)
and (3.55) imply that

lim inf
ε→0

1

δ2
ε

Eδε(vδε , BR \B1) < +∞ .

Up to the extraction of a subsequence (that we do not relabel), the above liminf is a limit,
and thus Eδε(vδε , BR \ B1) ≤ Cδ2

ε . Let us write vδε =
(

cos(ϕ(vδε))ṽδε , sin(ϕ(vδε))
)

. We

apply Theorem 2.11-i) to get a (non-relabeled) subsequence and a map v ∈ H1(BR\B1; S 2
N )
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such that A[vδε ] → v strongly in L2(BR \ B1;R3) and weakly in H1
loc(BR \ B1;R3). By

Theorem 2.11-ii) (see also Remark 2.12) we have that

lim inf
ε→0

1

δ2
ε

Eδε(vδε , BR \B1) ≥
∫
BR\B1

|∇v|2 dx . (3.56)

Let us prove that ϕ(vδε)→ ϕ̄ strongly in L1(BR\B1;R) and thus ϕ(v) = ϕ̄ . We provide
the details here as the specific model studied in the paper plays a role. By interpreting vδε
and uε as piecewise constant functions, we have that for every y ∈ BR \B1

ϕ(vδε)(y) = ϕ
(
vδε(y)

)
= ϕ

(
vδε(δε

y
δε

)
)

= ϕ
(
uε(ε

y
δε
y − zh,mε )

)
.

Changing variables x = ε
δε
y − zh,mε and recalling (3.54), for ε small enough we obtain that∫

BR\B1

|ϕ(vδε)(y)− ϕ̄|dy =

∫
BR\B1

|ϕ
(
uε(

ε
δε
y − zh,mε )

)
− ϕ̄|dy

≤
(δε
ε

)2 ∫
Bεα (zh,mε )\B

εβ
(zh,mε )

|ϕ(uε(x))− ϕ̄|dx

≤ ε−2β

∫
Bη

|ϕ(uε(x))− ϕ̄|dx ,

(3.57)

where Bη ⊂⊂ Ω is such that Bεα(zh,mε ) ⊂⊂ Bη for ε small enough. By Lemma 3.1
and (3.16) we have that∫

Bη

|ϕ(uε(x))− ϕ̄|dx ≤ C
(1

ε
Eε(uε,Ω)

)2
≤ Cε2| log ε|2.

We can conclude the estimate in (3.57):∫
BR\B1

|ϕ(vδε)(y)− ϕ̄|dy ≤ Cε−2βε2| log ε|2 = Cε2(1−β)| log ε|2 → 0 .

where we recall that β < 1.
Since ϕ(u) = ϕ̄ , the lower bound (3.56) reads (cf. also Theorem 2.11-ii) )

lim inf
ε→0

1

δ2
ε

Eδε(vδε , BR \B1) ≥ cos2(ϕ̄)

∫
BR\B1

|∇ṽ|2 dx ,

which together with (3.55) implies that

lim inf
ε→0

1

ε2| log ε|
Eε(uε, A

h,m
ε ) ≥ (β − α)

logR
cos2(ϕ̄)

∫
BR\B1

|∇ṽ|2 dx . (3.58)

Step 11: (degree of limit in the gradient scaling) We are now in a position to con-
clude the proof of (3.53). We observe that thanks to the ball construction we have that
|µũε |(Bεα(zh,mε ) \ Bεβ (zh,mε )) = 0. The latter equality, together with (3.54), and (3.52),
yield

|µṽδε |(BR \B1) = |µũε |(BR ε
δε

(zh,mε ) \B ε
δε

(zh,mε )) = |µũε |(Bεα(zh,mε ) \Bεβ (zh,mε )) = 0 ,

µṽδε (B1) = µũε(B ε
δε

(zh,mε )) = µũε(Bεβ (zh,mε )) = dh,m .

These conditions and the convergence A[ṽδε ] ⇀ ṽ weakly in H1
loc(BR\B1;R2) imply by stan-

dard arguments (see, e.g., [11, proof of Proposition 4.3] for more details) that deg(ṽ, ∂Br) =
dh,m for a.e. r ∈ [1, R] . Minimizing among all ṽ ∈ H1(Ω;S1) with deg(ṽ, ∂Br) = dh,m , we
conclude that (see also [11, proof of Proposition 4.3])

cos2(ϕ̄)

∫
BR\B1

|∇ṽ|2 dx ≥ 2π cos2(ϕ̄)|dh,m| logR .

Putting together the last inequality and (3.58), we get (3.53), since

lim inf
ε→0

1

ε2| log ε|
Eε(uε, A

h,m
ε ) ≥ (β − α)

logR
2π cos2(ϕ̄)|dh,m| logR = (β − α)2π cos2(ϕ̄)|dh,m| .
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Step 12: (conclusion) Summing (3.53) over h and m and using (3.52), yields

lim inf
ε→0

1

ε2| log ε|
Eε(uε,Ω

′) ≥
L̃∑
h=0

Mh∑
m=1

(βh − αh)2π cos2(ϕ̄)|dh,m|

≥
L̃∑
h=0

(βh − αh)2π cos2(ϕ̄)|d|

= (p′′ − p′ − 2(L̃+ 1)λ)2π cos2(ϕ̄)|d|

= (p′′ − p′ − 2(L̃+ 1)λ)2π cos2(ϕ̄)|µ|(Ω) .

Letting λ → 0, p′ → 0, p′′ → p , and p → 1 in the previous inequality, we conclude the
proof.

Proof of (iii) (limsup inequality).
Combining [4, Theorem 2 & Remark 3] and [6, Proposition 5.2], the Lipschitz-regularity of

Ω implies that there exists a sequence ũε : εZ2 → S1 such that µũε
f→ µ in Ω and

lim
ε→0

1

ε2| log ε|
XYε(ũε,Ω) = 2π|µ|(Ω).

We define uε : εZ2 → S 2
N by uε(εi) = (cos(ϕ̄)ũε(εi), sin(ϕ̄)). Then ϕ(uε(εi)) = ϕ̄ for all

εi ∈ εZ2 and therefore ϕ(uε)→ ϕ̄ in L1(Ω;R). In order to estimate the energy of uε , note
that

|uε(εi)− uε(εj)|2 = cos(ϕ̄)2|ũε(εi)− ũε(εj)|2,
which implies that

lim
ε→0

1

ε2| log ε|
Eε(uε,Ω) = cos2(ϕ̄) lim

ε→0

1

ε2| log ε|
XYε(ũε,Ω) = 2π cos2(ϕ̄)|µ|(Ω).

This proves the limsup inequality in Theorem 2.10 and therefore we conclude the proof. �

Appendix A. An anisotropic density result for partitions

Similar to this paper, in many discrete-to-continuum approximations of interfacial prob-
lems the anisotropy of the lattice Z2 (or Zd ) plays a fundamental role. Here we provide an
approximation result for partitions that fits well the structure of the lattice Zd .

Proposition A.1. Let T ⊂ Rm be a finite set and u ∈ BV (Ω;T ) . Then there exists a
sequence un ∈ BVloc(Rd;T ) such that

un ∈ PCδn :=
{
un(x) = un(i) for all x ∈ i+ [−δn2/2, δn/2)

d
, i ∈ δnZd

}
.

such that un → u in L1(Ω;Rm) and |Dun|1(Ω)→ |Du|1(Ω) .

Proof. Fix a cube of the form Q = (−k, k)d with k ∈ N such that Q ⊃ Ω and set δn =
2k/(2n+ 1) for n ∈ N . Define then the functional

Fn(u,Q) =

{∫
Q∩Su |u

+ − u−||νu|1 dHd−1 if u ∈ BV (Q;T ) ∩ PCδn ,
+∞ otherwise on L1(Q;T ) .

Note that for u ∈ PCδn we can rewrite the functional Fn(u,Q) as

Fn(u,Q) =
1

2

∑
i,j∈δnZd∩Q
|i−j|=1

δd−1
n |u(i)− u(j)| ,

where we used that |ei|1 = 1 for all canonical basis vectors ei ∈ Rd and that (up to
boundary facets) Q can be written as the union of cubes of the form i+ [−δn/2, δn/2)d . In
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[16, Theorem 5.8] it is proven that the Γ-limit in L1(Q) of such discrete functionals admits
an integral representation of the form

F0(u,Q) =


∫
Q∩Su

ϕ(u+, u−, νu) dHd−1 if u ∈ BV (Q;T ) ,

+∞ otherwise on L1(Ω;T ) .

In the present periodic setting with finite range of interactions, the integrand ϕ can be
obtained through the following multi-cell formula:

ϕ(a, b, ν) = lim
t→+∞

1

td−1
inf{F1(u, tQν) : u ∈ PC1, u(i) = ua,bν (i) if dist(i, ∂(tQν)) ≤ 2} ;

cf. [16, Remarks 4.2 i) and 5.9]. Here, for a, b ∈ T and ν ∈ Sd−1 , the function ua,bν is
defined by

ua,bν =

{
a if 〈x, ν〉 ≥ 0 ,

b if 〈x, ν〉 < 0 .

Since Fn(u,Q) = |Du|1(Q) for all u ∈ BV (Q;T ) ∩ PCδn , it follows by comparison and the
L1(Q)-lower semicontinuity of u 7→ |Du|1(Q) that

ϕ(a, b, ν) ≥ |a− b||ν|1 for all a, b ∈ T, ν ∈ Sd−1.

In order to show equality, we just have to provide a candidate for the minimization problem
defining ϕ(a, b, ν) that has asymptotically an energy less or equal than |a−b||ν|1 as t→ +∞ .
To this end, we define ut ∈ PC1 by its values on Zd setting ut(i) = ua,bν (i). Then clearly
|ut(i)− ut(j)| ∈ {0, |a− b|} and therefore

F1(ut, tQν) = |a− b|#
{

(i, j) ∈ (Zd ∩ tQν)2 : |i− j| = 1, 〈i, ν〉 ≥ 0, 〈j, ν〉 < 0
}︸ ︷︷ ︸

=:Itν

.

Arguing as in the proof of [19, Proposition 3.4] one can show that lim supt→+∞#Itν ≤ |ν|1 ,
which then implies that ϕ(a, b, ν) = |a− b||ν|1 .

Summarizing, we proved that the Γ-limit of u 7→ Fn(u,Q) is given on BV (Q;T ) by

F0(u,Q) =

∫
Q∩Su

|u+ − u−||νu|1 dHd−1 = |Du|1(Q).

Now given u ∈ BV (Ω;T ), we can use a local reflection argument (cf. the proof of [18,
Lemma 3.4] for details) to extend u to a function u ∈ BV (Q;T ) such that |Du|(∂Ω) =
0. Applying the Γ-convergence result to the extended function, we find a recovery se-
quence un ∈ PCδn such that un → u in L1(Q;R3) (and thus in L1(Ω;R3)) and moreover
|Dun|1(Q)→ |Du|(Q). Since |Du|(∂Ω) = 0 (which implies |Du|1(∂Ω) = 0), this also implies
that |Dun|1(Ω)→ |Du|1(Ω) = |Du|1(Ω) as claimed. �

Appendix B. The ball construction

For the reader’s convenience we include in this appendix the ball construction as presented
in [11, Lemma 5.1] which is a variant of the construction introduced in [29, 24].

Let A(R2) be the collection of open subsets of R2 . Let B = {Brk(xk)}Mk=1 be a finite

family of pairwise disjoint open balls. Let µ =
∑M
k=1 dkδxk , dk ∈ Z \ {0} , xk ∈ R2 , and let

E(B, µ, ·) : A(R2)→ [0,+∞] be an increasing set function satisfying the following properties:

(B1) E(B, µ, U ∪V ) ≥ E(B, µ, U) +E(B, µ, V ) for every U, V ∈ A(R2) such that U ∩V =
Ø.

(B2) for every annulus Ar,R(x) = BR(x) \ Br(x), with 0 < r < R and Ar,R(x) ∩⋃M
k=1Brk(xk) = Ø, it holds

E(B, µ,Ar,R(x)) ≥ |µ(Br(x))| log
R

r
. (B.1)

Given a ball B , we let r(B) denote its radius. For a family of balls B , we let R(B) :=∑
B∈B r(B).
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Lemma B.1 (Ball construction). Let B , µ , and E be as above. Let σ > 0 . Then there
exists a one-parameter family {B(t)}t≥0 of balls such that

(1) the following inclusions hold:⋃
B∈B

B ⊂
⋃

B∈B(t1)

B ⊂
⋃

B∈B(t2)

B , for every 0 ≤ t1 ≤ t2 ;

(2) B ∩B′ = Ø for every B,B′ ∈ B(t) , B 6= B′ , and t ≥ 0 ;
(3) for every 0 ≤ t1 ≤ t2 and every U ∈ A(R2) we have that

E
(
B, µ, U ∩

( ⋃
B∈B(t2)

B \
⋃

B∈B(t1)

B
))
≥

∑
B∈B(t2)

B⊂U

|µ(B)| log
1 + t2
1 + t1

;

(4) |µ|(Br+σ(x) \Br−σ(x)) = 0 for every B = Br(x) ∈ B(t) and for every t ≥ 0 ;
(5) for every t ≥ 0 we have that R(B(t)) ≤ (1 + t) (R(B) +Nσ) ;
(6) for every t ≥ 0 , B ∈ B , and B′ ∈ B(t) with B ⊂ B′ we have that r(B′) ≥

(1 + t)r(B) .

Proof. In order to construct the family B(t), we closely follow the strategy of the ball
construction due to Sandier [29] and Jerrard [24]. We adapt the argument in order to
be sure that condition (4) holds true, i.e., that the measure µ is supported far from the
boundaries of the balls of the constructed family.

The ball construction consists in letting the balls alternatively expand and merge into
each other. We let T0 := 0 and we define the family B(T0) by distinguishing the following
two cases: If Bri+σ(xi)∩Brj+σ(xj) 6= Ø for some of the starting balls with i, j ∈ {1, . . . , N} ,
i 6= j , then the construction starts with a merging phase and T0 = 0 is the first merging
time. This phase consists in identifying a suitable partition {S0

j }j=1,...,N0
of the family

{Bri+σ(xi)}Ni=1 which satisfies the following: for each j ∈ {1, . . . , N0} there exists a ball
Br0

j
(x0
j ) which contains all the balls in S0

j and such that

i ) Br0
j
(x0
j ) ∩Br0

`
(x0
`) = Ø for every j, ` ∈ {1, . . . , N0} , j 6= ` ,

ii ) r0
j ≤

∑
B∈S0

j
r(B) .

We then define

B(T0) := {Br0
j
(x0
j ) : j = 1 , . . . , N0} . (B.2)

If, instead, Bri+σ(xi) ∩ Brj+σ(xj) = Ø for every i, j ∈ {1, . . . , N} , i 6= j , then we let

N0 := N , Br0
j
(x0
j ) := Brj+σ(xj) for j = 1, . . . , N in (B.2), and we start with an expansion

phase. During this first expansion phase, we let the balls expand without changing their
centres, in such a way that the new radius r0

j (t) of the ball centred in x0
j satisfies

r0
j (t)

r0
j

=
1 + t

1 + T0
= 1 + t ,

for every t ≥ T0 = 0 and every j ∈ {1, . . . , N0} . We continue the first expansion phase as
a long as

Br0
j (t)(xj) ∩Br0

` (t)(x`) = Ø for every j, ` ∈ {1, . . . , N0} , j 6= ` , (B.3)

and we let T1 denote the smallest t ≥ T0 = 0 such that (B.3) is violated. (Note that T1 > 0.)
At time T1 , following the same procedure described above, a merging phase starting from
the balls {Br0

j (T1)(x
0
j )}

N0
j=1 begins, and it defines a new family of balls {Br1

j
(x1
j )}

N1
j=1 .

We iterate this procedure by alternating merging and expansion phases to obtain the
following: a discrete set of times {T0, . . . , TK} , K ≤ N ; for each k ∈ {1, . . . ,K} , a partition

{Skj }
Nk
j=1 of {Brk−1

j (Tk)(x
k−1
j )}Nk−1

j=1 ; for each subclass Skj , a ball Brkj (xkj ), which contains

the balls in Skj and such that the following properties are satisfied:

i ) Brkj (xkj ) ∩Brk` (xk` ) = Ø for every j, ` ∈ {1, . . . , Nk} , j 6= ` ,

ii ) rkj ≤
∑
B∈Skj

r(B).
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For t ≥ 0, the family B(t) is given by {Brkj (t)(x
k
j )}Nkj=1 for t ∈ [Tk, Tk+1) and k = 0, . . . ,K ,

where we set TK+1 := +∞ (in other words, it consists of a single expanding ball for t ≥ TK ).
For every t ∈ [Tk, Tk+1) and for j = 1, . . . , Nk , the radii satisfy

rkj (t)

rkj
=

1 + t

1 + Tk
. (B.4)

Note that

R(B(T0)) =

N0∑
j=1

r0
j ≤ R(B) +Nσ . (B.5)

It remains to check that conditions (1)–(5) hold true. By construction, it is clear that (1)
and (2) are satisfied.

Let us prove (3). We note that, by (1),∑
B∈B(τ1)

B⊂U

|µ(B)| ≥
∑

B∈B(τ2)

B⊂U

|µ(B)| for every 0 < τ1 < τ2 . (B.6)

Let t1 < t < t2 . In view of (B.6), since E is an increasing sub-additive set-function, if
we show that (3) holds true for the pairs (t1, t) and (t, t2), then (3) also follows for t1
and t2 . Therefore we can assume, without loss of generality, that Tk /∈ (t1, t2) for every
k = 1, . . . ,K . Let t1 < τ < t2 and let B ∈ B(τ). Then, there exists a unique ball B′ ∈ B(t1)
such that B′ ⊂ B . By construction µ(B) = µ(B′) and, by (B.1), we have that

E(B, µ,B \B′) ≥ |µ(B′)| log
1 + τ

1 + t1
= |µ(B)| log

1 + τ

1 + t1
.

Summing up over all B ∈ B(τ) with B ⊂ U and using (B.6) yields

E
(
B, µ, U ∩

( ⋃
B∈B(t2)

B \
⋃

B∈B(t1)

B
))
≥

∑
B∈B(τ)

B⊂U

|µ(B)| log
1 + τ

1 + t1
≥

∑
B∈B(t2)

B⊂U

|µ(B)| log
1 + τ

1 + t1
.

Property (3) follows by letting τ → t2 .
Let us prove (4). Let t ≥ 0 and let B = Br(x) ∈ B(t). Let us fix an initial ball Bri(xi).

By construction, Bri+σ(xi) is contained in some ball Br′(y) ∈ B(t), i.e.Bri(xi) ⊂ Br′−σ(y).
Then Bri(xi)∩Br+σ(x) ⊂ Br−σ(x), since condition (2) implies that Br′−σ(y)∩Br+σ(x) = Ø
whenever y 6= x . This yields

Br+σ(x) ∩
N⋃
i=1

Bri(xi) ⊂ Br−σ(x) =⇒ Br+σ(x) \Br−σ(x) ⊂ Br+σ(x) \
N⋃
i=1

Bri(xi) .

Therefore

|µ|(Br+σ(x) \Br−σ(x)) ≤ |µ|
(
R2 \

N⋃
i=1

Bri(xi)
)

= 0 ,

where we used the fact that µ is supported on {x1, . . . , xN} . This proves (4).
To prove (5), we start by observing that, by (B.4),

R(B(t)) =

Nk∑
j=1

rkj (t) =

Nk∑
j=1

1 + t

1 + Tk
rkj =

1 + t

1 + Tk
R(B(Tk))

for every t ∈ [Tk, Tk+1) and every k ∈ {0 , . . . ,K} . It thus suffices to show that R(B(Tk)) ≤
(1 + Tk)(R(B) +Nσ) for every k ∈ {0 , . . . ,K} . For k = 0 this is a consequence of (B.5).
For k ≥ 1, it follows inductively by applying (5) for t ∈ [Tk−1, Tk) and observing that

R(B(Tk)) =

Nk∑
j=1

rkj ≤
Nk∑
j=1

∑
B∈Skj

r(B) =

Nk−1∑
j=1

rk−1
j (Tk)

= lim sup
t↗Tk

R(B(t)) ≤ (1 + Tk) (R(B) +Nσ) ,
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which follows from ii ).
Finally, property (6) holds true by construction. �

Acknowledgments. The work of M. Cicalese was supported by the DFG Collaborative
Research Center TRR 109, “Discretization in Geometry and Dynamics”. G. Orlando has
been supported by “Research for Innovation” (REFIN) - POR Puglia FESR FSE 2014-2020,
Codice CUP: D94I20001410008. G. Orlando is member of Gruppo Nazionale per l’Analisi
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