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1. Introduction

The class of open sets in the plane

(1.1) Om(R2) := {Ω ⊆ R2 : Ω is open and bounded

and R2 \Ω has at most m connected components}

(where m ≥ 1) proved to be an ideal framework to study the stability of the Laplace equations with
Dirichlet or Neumann boundary conditions under variation of the domain. The case of Dirichlet
conditions was considered in the pioneering paper [22], while the case of Neumann boundary
conditions has been addressed in [10, 11, 13, 15]. The kind of geometric perturbation considered
there is given by the Hausdorff complementary topology Hc on the class of open sets (see Section
2) which allows to deal with nonsmooth domains and to consider singular perturbations of the
domains involved.

The aim of this paper is to show that the class (1.1) is also a natural framework to study the
stability of the Laplace operator under Robin boundary conditions. However, in order to achieve
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this objective, a natural question is to understand what is the meaning of a Robin problem in an
arbitrary open set which does not enjoy any smoothness.

In general, for Ω ⊂ Rd the Robin boundary value problem reads

(1.2)

{
−∆u = f in Ω
∂u
∂ν + βu = 0 on ∂Ω,

where f is a locally square integrable function, β > 0, and ν denotes the exterior normal. If Ω
is sufficiently smooth, the solution u belongs to the Sobolev space H1(Ω) and satisfies the weak
formulation

(1.3) ∀ϕ ∈ H1(Ω) :

∫
Ω

∇u · ∇ϕdx+ β

∫
∂Ω

uϕdHd−1 =

∫
Ω

fϕ dx,

where Hd−1 denotes the (d−1)-dimensional Hausdorff measure, and the integral on the boundary
involves the traces of the functions which are well defined elements in L2(∂Ω). From a variational
point of view, the solution is the unique minimizer of the functional on H1(Ω) given by

(1.4) F (u) :=
1

2

∫
Ω

|∇u|2 dx+
β

2

∫
∂Ω

u2 dHd−1 −
∫
Ω

fu dx.

In order to formulate the problem on the possibly non smooth domains we preliminary need to
specify the exact meaning of the boundary terms in the energy (1.4).

The issue of defining the Robin-Laplace boundary value problem in a non smooth setting has
been addressed in [16], where the functional framework to settle problem (1.2) is identified with
the abstract completion V (Ω) of the space

V0(Ω) := H1(Ω) ∩ C(Ω) ∩ C∞(Ω)

under the norm

‖u‖V0
:= ‖u‖H1(Ω) + ‖u|∂Ω‖L2(∂Ω;Hd−1),

for which a continuous embedding

j0 : V0(Ω)→ L
2d
d−1 (Ω)

is available.
The space V (Ω) provides a Hilbert-space functional setting for a generalization of the boundary

value problem (1.2): the bilinear form appearing on the left hand side of (1.3) can be lifted by
completion to a continuous bilinear form a : V (Ω)×V (Ω)→ R, and also the embedding j0 can be

lifted to an embedding j : V (Ω)→ L
2d
d−1 (Ω), so that the natural generalization of (1.3) proposed

in [16] takes the form

∀ϕ ∈ V (Ω) : a(u, ϕ) =

∫
Ω

fj(ϕ) dx.

The space V (Ω) can be clearly identified with a subspace of pairs (u,w) ∈ H1(Ω)×L2(∂Ω;Hd−1),
the function w being in some sense a sort of weak trace of u, recovered in the completion procedure
through the boundary values of the continuous up to the boundary functions approximating u. As
shown in [3], it may happen that for Ω too irregular, elements of the form (0, v) belong to V (Ω),
so that a function could have several weak traces on ∂Ω. This is due to some measure theoretic
issues concerning ∂Ω, i.e., the presence of a large number of points with density zero with respect
to Ω (see also the considerations at the end Section 3 of [5]): this suggests that a control on the
full topological boundary is somehow excessive.

A further drawback is that the space V (Ω) does not “see” inner cracks: more precisely, if a
regular domain R contains a sufficiently smooth crack Γ , it turns out that V (R \ Γ ) = H1(R),
and this fact produces unnatural instability results. For instance, consider the following sequence
of open sets

Ωn := [(0, 1)× (0, 1)] ∪
[(

1 +
1

n
, 2 +

1

n

)
× (0, 1)

]
−→ [(0, 1)× (0, 1)] ∪ [(1, 2)× (0, 1)] =: Ω.
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The limit set Ω coincides with the rectangle R := (0, 2) × (0, 1) from which we remove the inner
crack Γ := {1} × (0, 1), so that the Robin problem for Ω reduces to the classical one on R: we
immediately see that the solutions on Ωn with a right hand side equal to 1 do not converge. Simple
counterexamples can be constructed involving connected approximating domains.

In Section 3 we provide a new formulation of the Robin-Laplace problem (1.2) on non-smooth
domains in which we deal with the boundary terms relying on the properties of the space of
function of bounded variation BV (Rd) (see Section 2): this is suggested by the simple observation
that for Ω sufficiently regular and u ∈ H1(Ω), the extension u1Ω by zero outside the domain is
such that

u1Ω ∈ BV (Rd)
and the boundary terms in (1.3) and (1.4) are connected with the traces of the BV function u1Ω
on the set ∂Ω, one of them being zero. Equivalently, the boundary terms are described by the
jump part of the derivative of u1Ω . This point of view revealed to be very fruitful, providing a
new way to approach issues of shape optimization under Robin boundary conditions based on the
theory of free discontinuity problems (see e.g. [5, 7, 8]).

More precisely, we consider open bounded sets Ω ⊆ Rd with1

(1.5) Hd−1(∪i∂Ωi) < +∞,
where {Ωi}i∈N denotes the family of connected components of Ω, and choose a Hd−1-countably
rectifiable subset ΓΩ ⊆ ∪i∈N∂Ωi with maximal Hd−1-measure (see Theorem 2.1).

We define the Robin space of Ω as

R(Ω) :=
{
u ∈ H1(Ω) : u1Ω ∈ BV (Rd), γr(u1Ω), γl(u1Ω) ∈ L2(ΓΩ)

}
,

where γr(u1Ω) and γl(u1Ω) are the Hd−1-a.e. well defined traces of the BV function u1Ω on the
suitably oriented rectifiable set ΓΩ .

The weak reformulation of the Robin-Laplace problem we consider is then

∀ϕ ∈ R(Ω) :

∫
Ω

∇u · ∇ϕdx+ β

∫
ΓΩ

[γr(u1Ω)γr(ϕ1Ω) + γl(u1Ω)γl(ϕ1Ω)] dHd−1 =

∫
Ω

fϕ dx

with associated functional

F (u) :=
1

2

∫
Ω

|∇u|2 dx+
β

2

∫
ΓΩ

[|γr(u1Ω)|2 + |γl(u1Ω)|2] dHd−1 −
∫
Ω

fu dx.

It turns out that R(Ω) has a natural Hilbert space structure (see Proposition 3.8), and that the
Robin problem is well posed with a resolvent operator which is compact from L2(Ω) to R(Ω) (see
Theorem 3.10), sharing thus the same features of the extension of [16]: clearly it reduces to the
classical problem when Ω is regular.

In our approach the set ΓΩ replaces the full topological boundary, and the boundary values are
recovered by considering the traces of the global BV function u1Ω , whose jump set is contained
in ΓΩ (see Lemma 3.5). In this generality, “inner” boundaries (like inner cracks) are taken into
account with two possible trace values: this is particularly suited when dealing with sequences of
converging domains, as suggested by the case of a domain with a cavity shrinking to a compactly
contained hypersurface. Finally, the choice of ΓΩ or of its orientation (to distinguish between γr
and γl) are only instrumental, as different sets or orientations lead to the same problem (Remarks
3.2 and 3.11).

In order to address stability issues under domain perturbation, we shall restrict our attention
to the two dimensional setting by considering the family of sets from (1.1) given by

(1.6) Am(R2) := {Ω ∈ Om(R2) : H1(∪i∂Ωi) < +∞},
and show (Proposition 4.3) that this class fits the framework of our generalization of the Robin-
Laplace problems. In this case, we have the precise description of ΓΩ as

ΓΩ = ∪i∂Ωi.

1Of course, if Hd−1(∂Ω) < +∞ then (1.5) is satisfied, while the reciprocal may be false. However, in practice,
hypothesis (1.5) might be relaxed into ∀i,Hd−1(∂Ωi) < +∞.
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In order to have stability of the problems along a Hausdorff converging sequence of domains,
we in general need some conditions on the behaviour of the boundaries, which in a classical setting
amounts to the convergence of the perimeters as shown in [9] (otherwise simple counterexamples
can be constructed). As in our approach some parts of the boundaries “count twice”, we need
an adapted version of the perimeter (Definition 5.1) which we call Robin perimeter and which is
given by

PerR(Ω) :=

∫
ΓΩ

[γr(1Ω) + γl(1Ω)] dH1.

Again this geometric quantity is recovered in the same spirit as the boundary terms appearing in
the Robin problems, that is by using the global BV function 1Ω : for regular domains, it reduces to
the classical perimeter H1(∂Ω). The definition can be extended to general open sets in Rd under
a suitable control on the topological boundary, but the properties which hold in the class Am(R2)
fail in general (see Remark 5.6). Related notions of perimeter have been considered by Cerf in [12]
in the study of the lower semicontinuous envelope of the Hausdorff measure for the approximation
by smooth sets, and by Henrot and Zucco in [21] in relationship with the Minkowski content.

Our main stability result (Theorem 6.1) shows that for a sequence of domains (Ωn)n∈N in
Am(R2) contained in a fix open and bounded set D such that

Ωn
Hc→ Ω and PerR(Ωn)→ PerR(Ω),

then

un1Ωn → u1Ω strongly in L2(D)

and

∇un1Ωn → ∇u1Ω strongly in L2(D;R2),

where un and u are the solutions of the Robin problems associated to f ∈ L2(D) on Ωn and Ω. The
stability is a consequence of some compactness properties of the admissible domains (Theorem 4.8)
and of the associated Robin spaces (Proposition 4.10): the two-dimensional setting is fundamental
as the boundaries of the connected components of the domains are union of connected curves,
whose lengths are lower semicontinuous under Hausdorff convergence thanks to Go la̧b Theorem
(see Theorem 2.4).

The paper is organized as follows. In Section 2 we fix the notation and recall some basic
notions employed throughout the paper. In Section 3 we formulate our weak version of the Robin-
Laplace problem. In Section 4 we collect some basic properties of the class of admissible two
dimensional domains (1.6) which are fundamental to study the stability of the problems. The
Robin perimeter is introduced in Section 5, and its relation with the classical perimeter (or better
to H1(ΓΩ)) is studied in detail (Proposition 5.4 and Proposition 5.8): the stability of the Robin
perimeter along a converging sequence entails continuity information concerning the associated
Robin spaces (Proposition 5.7). The main stability results (Theorem 6.1 and Theorem 6.2) are
finally contained in Section 6.

2. Notation and preliminary results

In this section we introduce the basic notation and recall some notions employed in the rest of
the paper.

Basic notation. If E ⊆ Rd, we will denote with |E| its d-dimensional Lebesgue measure, and
by Hd−1(E) its (d − 1)-dimensional Hausdorff measure: we refer to [19, Chapter 2] for a precise
definition, recalling that for sufficiently regular sets Hd−1 coincides with the usual area measure.
Moreover, we denote by Ec the complementary set of E, and by 1E its characteristic function,
i.e., 1E(x) = 1 if x ∈ E, 1E(x) = 0 otherwise. If u is a function defined on E, we will denote with
u1E the extension of u to Rd which is equal to zero outside E.

If A ⊆ Rd is open and 1 ≤ p ≤ +∞, we denote by Lp(A) the usual space of p-summable
functions on A with norm indicated by ‖ · ‖p. H1(A) will stand for the Sobolev space of functions
in L2(A) whose gradient in the sense of distributions belongs to L2(A,Rd). Finally Mb(A;Rd)
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will denote the space of Rd-valued Radon measures on A, which can be identified with the dual
of Rd-valued continuous functions on A vanishing at the boundary.

Countably rectifiable sets. We say that E ⊆ Rd is Hd−1-countably rectifiable if

E = N ∪
⋃
i∈N

Ei

where Hd−1(N) = 0 and Ei ⊆ Mi, where Mi is a C1-hypersurface of Rd. It is not restrictive to
assume that the sets Ei are mutually disjoint.

We will make use of the following result (see e.g. [17, Theorem 5.7]).

Theorem 2.1. Let E ⊆ Rd be such that Hd−1(E) < +∞. Then there exists a Hd−1-countably
rectifiable set Γ ⊆ E such that

Hd−1(Γ ) = max{Hd−1(R) : R ⊆ E is Hd−1-countably rectifiable}.

Proof. Let m := sup{Hd−1(R) : R ⊆ E is Hd−1-countably rectifiable}. By assumption m ≤
Hd−1(E). Let (Rn)n∈N be a sequence of Hd−1-countably rectifiable subsets of E with

Hd−1(Rn)→ m.

Then setting Γ := ∪nRn, we have easily that Γ ⊆ E is Hd−1-countably rectifiable and Hd−1(Γ ) =
m. �

The following rectifiablity property will be important for our analysis (see [20]).

Theorem 2.2. Let K ⊆ Rd be compact, connected and with H1(K) < +∞. Then K is H1-
countably rectifiable.

Hausdorff convergence. The family K(Rd) of closed sets in Rd can be endowed with the
Hausdorff metric dH defined by

dH(K1,K2) := max

{
sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)

}
with the conventions dist(x, ∅) = +∞ and sup ∅ = 0, so that dH(∅,K) = 0 if K = ∅ and
dH(∅,K) = +∞ if K 6= ∅.

The Hausdorff metric has good compactness properties (see [2, Theorem 4.4.15]).

Proposition 2.3 (Compactness). Let (Kn)n∈N be a sequence of compact sets contained in a
fixed compact set of Rd. Then there exists a compact set K ⊆ Rd such that up to a subsequence

Kn → K in the Hausdorff metric.

Let us set for m ≥ 1

(2.1) Km(Rd) := {K ⊂ Rd : K is compact,

with at most m connected components and H1(K) < +∞}.

For our analysis we will need the following property due to Go la̧b: for the proof we refer the
reader to [20, Theorem 3.18] or [2, Theorem 4.4.17].

Theorem 2.4 (Go la̧b). Let (Kn)n∈N be a sequence in Km(Rd) with

Kn → K in the Hausdorff metric.

Then K ∈ Km(Rd) and

H1(K) ≤ lim inf
n
H1(Kn).
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In order to study the behaviour of Robin problems under general domain variations, we will
use the Hausdorff complementary topology on the family of open sets of Rd which is defined as
follows. Let (Ωn)n∈N be a sequence of open sets in Rd. We say that Ωn converges to the open set
Ω ⊆ Rd in the Hausdorff complementary topology and write

Ωn
Hc→ Ω

if for every closed ball B ⊆ Rd we have

B ∩Ωcn → B ∩Ωc in the Hausdorff metric on K(Rd).

Functions of bounded variation and sets of finite perimeter. We say that u ∈ BV (Rd)
if u ∈ L1(Rd) and its derivative in the sense of distributions is a finite Radon measure on Rd,
i.e., Du ∈ Mb(Rd;Rd). BV (Rd) is called the space of functions of bounded variation on Rd.
BV (Rd) is a Banach space under the norm ‖u‖BV (Rd) := ‖u‖L1(Rd) + ‖Du‖Mb(Rd;Rd). We call

|Du|(Rd) := ‖Du‖Mb(Rd;Rd) the total variation of u. We refer the reader to [1] for an exhaustive
treatment of the space BV .

If u ∈ BV (Rd), then the measure Du can be decomposed canonically (and uniquely) as

Du = Dau+Dju+Dcu.

The measure Dau is the absolutely continuous part (with respect to the Lebesgue measure) of the
derivative: the associated density is denoted by ∇u ∈ L1(Rd;Rd). The measure Dju is the jump
part of the derivative and it turns out that

Dju = (u+ − u−)⊗ νuHd−1bJu.
Here Ju is the jump set of u, νu is the normal to Ju, while u± are the upper and lower approximate
limits at x. It turns out that Ju is a Hd−1-countably rectifiable set: if we choose the orientation
given by a normal vector field νu we have Hd−1-a.e.

u+ = γr(u) and u− = γl(u)

where γr(u) and γl(u) are the right and left traces of u on the rectifiable set Ju. Finally Dcu is
called the Cantor part of the derivative, and it vanishes on sets which are σ-finite with respect to
Hd−1. Clearly Dju+Dcu is the singular part Dsu of Du with respect to Ld.

We will use the following result.

Theorem 2.5. The following items hold true.

(a) Compact embedding. The space BV (Rd) is embedded in Lp(Rd) for every 1 ≤ p ≤ d
d−1 ,

the immersion being locally compact if p < d
d−1 . More precisely for every u ∈ BV (Rd)

(2.2) ‖u‖Ld/d−1(Rd) ≤ Cd|Du|(Rd)
for some Cd > 0.

(b) Lower semicontinuity of the total variation. If (un)n∈N is bounded in BV (Rd) and un → u
strongly in L1

loc(Rd), then

|Du|(Rd) ≤ lim inf
n
|Dun|(Rd).

We will make use also of the sets of finite perimeter. If |E| < +∞, then E has finite perimeter
in Rd if and only if 1E ∈ BV (Rd). The perimeter of E is defined as

Per(E) = |D1E |(Rd).
Inequality (2.2) reduces to the isoperimetric inequality (for |E| < +∞)

|E|
d−1
d ≤ CdPer(E),

and the compact immersion says that sequences of bounded sets with bounded perimeters is
relatively compact in L1(Rd). It turns out that

D1E = νEHd−1b∂∗E, Per(E) = Hd−1(∂∗E),
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where ∂∗E is called the reduced boundary of E, and νE is the associated inner approximate normal
(see [1, Section 3.5]). We have that ∂∗E ⊆ ∂E, but the topological boundary can in in general be
much larger than the reduced one. If Ω ⊆ Rd is open and bounded with Hd−1(∂Ω) < +∞, then
Ω has finite perimeter with Per(Ω) ≤ Hd−1(∂Ω).

Γ -convergence. Let us recall the definition of De Giorgi’s Γ -convergence in metric spaces: we
refer the reader to [14] for an exhaustive treatment of this subject. Let (X, d) be a metric space.
We say that Fn : X → R Γ -converges to F : X → R (as n → +∞) if for all u ∈ X the following
items hold true.

(i) (Γ -liminf inequality) For every sequence (un)n∈N converging to u in X,

lim inf
n

Fn(un) ≥ F (u).

(ii) (Γ -limsup inequality) There exists a sequence (un)n∈N converging to u in X, such that

lim sup
n

Fn(un) ≤ F (u).

The function F is called the Γ -limit of the sequence (Fn)n∈N (with respect to d), and we write
F = Γ− limn Fn. The following result holds true (see [14, Corollary 7.20 and Theorem 8.5])

Theorem 2.6. Let X be a separable and metric space, and let Fn : X → R.

(a) There exist F : X → R and a subsequence (Fnk)k∈N such that

Fnk
Γ−→ F.

(b) If xn ∈ X is a minimizer of Fn such that xn → x ∈ X, then x is a minimizer of F .

3. The Robin-Laplace operator in a non smooth setting

In this section we provide a general framework to deal with the Robin boundary value problem
for the Laplace operator on bounded connected open sets whose topological boundary has finite
area: the boundary can be thus irregular, and in particular may present inner cracks. More
generally, we formulate the problem for open sets whose connected components have topological
boundaries suitably controlled in Hd−1-measure (see (3.1) below): this is because we are interested
in stability issues, where connectedness can be lost very easily along a converging sequence of
domains.

3.1. Functional setting. Let Ω ⊆ Rd be a bounded open set, and let {Ωj}j∈N denote the family
of its connected components. We assume

(3.1) Hd−1

⋃
j∈N

∂Ωj

 < +∞.

According to Theorem 2.1, let us choose

(3.2) ΓΩ ⊆
⋃
j∈N

∂Ωj , Hd−1-countably rectifiable subset with maximal Hd−1-measure.

Note that the set ΓΩ is non trivial: indeed, since every connected component Ωj has finite
perimeter, by maximality we have

Hd−1
(
(∪j∂∗Ωj) \ ΓΩ

)
= 0,

so that ΓΩ contains at least (up to Hd−1-negligible sets) the union of the reduced boundaries of
each connected component. On the other hand, it can be that

Hd−1(ΓΩ \ ∪j∂∗Ωj) > 0,

and this is the case in which for example the connected components present inner cracks (which
are not part of the reduced boundary, as their points have density one).
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We may write

(3.3) ΓΩ = N ∪
∞⋃
i=0

Γi,

where Hd−1(N) = 0, while for every i ∈ N the Borel sets Γi are subsets of a C1 -manifoldMi, and
Γi ∩ Γj = ∅ for i 6= j.

It is not restrictive, up to reducingMi, to assume thatMi is orientable with associated normal
vector filed νi, and that two continuous trace operators from BV (Rd) to L1(Mi), the “left” and
“right” traces, are defined.

For every v ∈ BV (Rd), let us denote by γir(v), γil (v) the “right” and “left” traces of v on Γi,
using the orientation associated to νi. By general theory of BV functions it is known that

(3.4) DvbΓΩ =
∑
i

[γir(v)− γil (v)]νiHd−1bΓi.

We define global “right” and “left” traces on the full ΓΩ by setting

(3.5) γr(v) :=
∑
i

γir(v) and γl(v) :=
∑
i

γil (v).

Definition 3.1 (Robin function space). Let Ω ⊂ Rd be an open bounded set satisfying (3.1)
and (3.2). We set

R(Ω) :=
{
u ∈ H1(Ω) : u1Ω ∈ BV (Rd), γr(u1Ω), γl(u1Ω) ∈ L2(ΓΩ)

}
.

We call R(Ω) the Robin space associated to Ω.

Remark 3.2. Notice that if we choose another maximal rectifiable subset Γ̃Ω of
⋃
j∈N ∂Ω

j , then
we immediately have

Hd−1(ΓΩ∆Γ̃Ω) = 0

where A∆B denotes the symmetric difference. We conclude that the Robin space individuated by
Γ̃Ω is the same as that associated to ΓΩ .

Remark 3.3. Notice that if Ω has a Lipschitz boundary, being a bounded set, then it has a finite
number of connected components, the boundary is Hd−1-countably rectifiable and we may choose
ΓΩ = ∂Ω. Thus R(Ω) reduces to H1(Ω), being Ω an extension domain: choosing the orientation
of ∂Ω given by the exterior normal, we get γr(u1Ω) = 0 while γl(u1Ω) reduces to the classical
trace of Sobolev functions.

Remark 3.4. The distinction between right and left traces depends clearly on the orientation
given to the subsets involved in the decomposition of ΓΩ . They will play a symmetrical role in
the Robin boundary value problem formulated in Section 3.2, showing that the decomposition is
only instrumental for the formulation of the problem.

In the following lemma we collect some basic properties of the extension by zero outside the
domain of functions in the Robin spaces.

Lemma 3.5. Let Ω ⊂ Rd be an open bounded set satisfying (3.1) and (3.2), and let u ∈ R(Ω).
Then the following items hold true.

(a) Concerning the function u1Ω ∈ BV (Rd) we have

Da(u1Ω) = ∇u1Ω ,

Ds(u1Ω) is supported on ΓΩ with

|Ds(u1Ω)| ≤ [|γr(u1Ω)|+ |γl(u1Ω)|] Hd−1bΓΩ ,

and

‖u1Ω‖BV (Rd)| ≤ |Ω|1/2‖u‖H1(Ω) +Hd−1(ΓΩ)1/2[‖γr(u1Ω)‖L2(ΓΩ) + ‖γl(u1Ω)‖L2(ΓΩ)].
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(b) We have u21Ω ∈ BV (Rd) with

(3.6) ‖u21Ω‖BV (Rd) ≤ ‖u‖2H1(Ω) +

∫
ΓΩ

[
|γr(u1Ω)|2 + |γl(u1Ω)|2

]
dHd−1,

and there exists C = C(d, |Ω|) such that

(3.7) ‖u‖2L2(Ω) ≤ C
[
‖∇u‖2L2(Ω;Rd)) +

∫
ΓΩ

[
|γr(u1Ω)|2 + |γl(u1Ω)|2

]
dHd−1

]
.

Proof. Let us start with point (a). It suffices to prove the result for u ≥ 0. By [1, Proposition
4.4], for every n, k ∈ N we have

wkn := (u ∧ n)1∪i≤kΩi = (u1∪i≤kΩi) ∧ n ∈ BV (Rd)
with

∇wkn = ∇u1{u<n}∩∪i≤kΩi and Jwkn ⊆ ∪i≤k∂Ω
i.

Since Jwkn ⊂ ∪i∂Ω
i, by the maximality of ΓΩ we deduce that

Jwkn ⊆ ΓΩ up to Hd−1-negligible sets.

Moreover, concerning the traces on ΓΩ we have

γr(w
k
n) ≤ γr(u1Ω) and γl(w

k
n) ≤ γl(u1Ω)

so that
|Dswkn| ≤ [|γr(u1Ω)|+ |γl(u1Ω)|] Hd−1bΓΩ

as measures on Rd. The result follows noting that for n, k →∞
wkn → u1Ω strongly in L1(Rd)

while

|Dwkn|(Rd) ≤
∫
Ω

|∇u| dx+

∫
ΓΩ

[|γr(u1Ω)|+ |γl(u1Ω)|] dHd−1

≤ |Ω|1/2‖∇u‖L2(Ω;Rd) +Hd−1(ΓΩ)1/2[‖γr(u1Ω)‖L2(ΓΩ) + ‖γl(u1Ω)‖L2(ΓΩ)].

Let us come to point (b), again assuming without loss of generality that u ≥ 0. Proceeding again
by truncation we have by the chain rule in BV (see [1, Theorem 3.96])

vn := (u1Ω ∧ n)2 ∈ BV (Rd)
with ∇vn = 2u∇u1{u<n}∩Ω and Jvn ⊆ ΓΩ up to Hd−1-negligible sets. In particular, concerning
the traces on ΓΩ we have

γr(vn) ≤ [γr(u1Ω)]2 and γl(vn) ≤ [γl(u1Ω)]2.

We conclude that
vn → u21Ω strongly in L1(Rd)

and since from the lower semicontinuity of the total variation

|D(u21Ω)|(Rd) ≤ lim inf
n
|Dvn|(Rd) = lim inf

n

[∫
Rd
|∇vn| dx+ |Dsvn|(Rd)

]
≤ 2

∫
Ω

u|∇u| dx+

∫
ΓΩ

[
|γr(u)|2 + |γl(u)|2

]
dHd−1

we get that u21Ω ∈ BV (Rd), and (3.6) follows estimating the first integral in the last term of the
previous inequality with ‖u‖2H1(Ω).

Finally by Sobolev embedding of BV (Rd) into L
d
d−1 (Rd) we can write for every ε > 0

‖u‖2L2(Ω) ≤ |Ω|
1
d ‖u2‖Ld/d−1(Ω) ≤ Cd|Ω|

1
d |D(u21Ω)|(Rd)

≤ Cd|Ω|
1
d

[
ε‖u‖2L2(Ω) + Cε‖∇u‖2L2(Ω;Rd) +

∫
ΓΩ

[
|γr(u)|2 + |γl(u)|2

]
dHd−1

]
,

where Cε is a suitable constant. Then (3.7) follows by choosing ε small enough. �



10 D. BUCUR, A. GIACOMINI, AND P. TREBESCHI

Remark 3.6. The proof of point (a) shows that if u ∈ H1(Ω) ∩ L∞(Ω), then u ∈ R(Ω). In
particular we always have 1Ω ∈ R(Ω).

Remark 3.7. The best constant in (3.7) is related to the first Robin eigenvalue of the ball B|Ω|

with the same volume of Ω: indeed the previous argument shows that u21Ω belongs to the class
SBV (Rd) of special functions of bounded variation, so that the Faber-Krahn inequality proved in
[5] yields

λ1,1(B|Ω|)‖u‖2L2(Ω) ≤
[
‖∇u‖2L2(Ω) + ‖γr(u)‖2L2(ΓΩ) + ‖γl(u)‖2L2(ΓΩ)

]
,

where λ1,1 is the first Robin eigenvalue associated to the parameter β = 1.

We endow R(Ω) with the following scalar product

(3.8) (u, v)R := (u, v)H1(Ω) + (γr(u1Ω), γr(v1Ω))L2(ΓΩ) + (γl(u1Ω), γl(v1Ω))L2(ΓΩ).

Proposition 3.8. R(Ω) is a Hilbert space with respect to the scalar product (3.8). Moreover the
immersion

R(Ω) ↪→ L2(Ω)

is compact.

Proof. Let us firstly check the completeness of R(Ω). Let (un)n∈N be a Cauchy sequence in R(Ω).
Clearly (un)n∈N, (γr(un1Ω))n∈N and (γl(un1Ω))n∈N are Cauchy sequences in H1(Ω) and L2(ΓΩ),
respectively. Hence there exist u ∈ H1(Ω), wr, wl ∈ L2(ΓΩ) such that

un → u strongly in H1(Ω),

(3.9) γr(un1Ω)→ wr strongly in L2(ΓΩ),

and

(3.10) γl(un1Ω)→ wl strongly in L2(ΓΩ).

According to Lemma 3.5, the measure Ds(un1Ω) is supported on ΓΩ , so that thanks to (3.4)

|Ds(un1Ω)|(Rd) = ‖γr(un1Ω)− γl(un1Ω)‖L1(ΓΩ).

Since Ω is bounded and ΓΩ has finite Hd−1-measure, we may write

‖un1Ω − um1Ω‖BV (Rd) = ‖∇un −∇um‖L1(Ω)

+ ‖γr(un1Ω − um1Ω)− γl(un1Ω − um1Ω)‖L1(ΓΩ) + ‖un − um‖L1(Ω)

≤ C
[
‖un − um‖H1(Ω) + ‖γr(un1Ω)− γr(um1Ω)‖L2(ΓΩ) + ‖γl(un1Ω)− γl(um1Ω)‖L2(ΓΩ)

]
,

for some C > 0 depending on Ω, so that (un1Ω)n∈N is a Cauchy sequence in BV (Rd) with

(3.11) un1Ω → u1Ω strongly in BV (Rd).

Taking into account (3.3), for every i ∈ N we deduce from (3.11) and the continuity of the trace
operators that

γir(un1Ω)→ γir(u1Ω), and γil (un1Ω)→ γil (u1Ω) strongly in L1(Γi).

We conclude from the very definition (3.5) of the global traces on ΓΩ and from (3.9),(3.10) that

wr = γr(u1Ω) and wl = γl(u1Ω).

We conclude that u ∈ R(Ω) and

un → u strongly in R(Ω),

which shows that R(Ω) is a Hilbert space.
Let us come to the compact embedding in L2(Ω). Let (un)n∈N be a bounded sequence in

R(Ω). By Lemma 3.5 we have that un1Ω is bounded in BV (Rd) so that, up to a subsequence,
(un)n∈N converges strongly in L1(Ω). Moreover also u2

n1Ω is bounded in BV (Rd), so that using
the embedding of BV (Rd) into Ld/d−1(Rd), we conclude that (un)n∈N converges strongly also in
L2(Ω). �
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3.2. The Generalized Robin-Laplace operator. We generalize the Robin-Laplacian boundary
value problem to open sets satisfying the structural assumption (3.1) in the following way.

Definition 3.9 (Generalized Robin boundary value problem). Let Ω ⊆ Rd be an open
bounded set satisfying (3.1). Given β > 0 and f ∈ L2(Ω), we say that u ∈ R(Ω) is a solution of{

−∆u = f in Ω
∂u
∂ν + βu = 0 on ∂Ω

if for every test function v ∈ R(Ω) we have

(3.12) Lβ(u, v) = (f, v)L2(Ω),

where
Lβ(u, v) := (∇u,∇v)L2(Ω) + β(γr(u), γr(v))L2(ΓΩ) + β(γl(u), γl(v))L2(ΓΩ),

where ΓΩ is given according to (3.2).

The following existence and uniqueness result holds true.

Theorem 3.10 (Existence and uniqueness of a solution). Problem (3.12) admits a unique
solution u ∈ R(Ω) and the resolvent operator

L2(Ω)→ R(Ω)

is compact, with a norm depending only on d, |Ω| and β. Finally u is the unique minimizer in
R(Ω) of the functional

F (v) :=
1

2

∫
Ω

|∇v|2 dx+
β

2

∫
ΓΩ

[
|γr(u)|2 + |γl(u)|2

]
dHd−1 −

∫
Ω

fu dx.

Proof. Existence, uniqueness and the variational characterization come immediately from the fact
that the bilinear symmetric form Lβ is continuous and coercive on the Hilbert space R(Ω), while

v 7→ (f, v)L2(Ω)

is a linear and continuous functional on R(Ω). Coercivity is a consequence of (3.7).
If uf is the solution associated to f we have

‖uf‖2R(Ω) ≤ CLβ(uf , uf ) = C

∫
Ω

uff dx ≤ C‖uf‖L2(Ω)‖f‖L2(Ω) ≤ C‖uf‖R(Ω)‖f‖L2(Ω)

so that
‖uf‖R(Ω) ≤ C‖f‖L2(Ω).

Here C = C(d, |Ω|, β), so that the operator norm depends only on the dimension, the volume |Ω|,
and the Robin parameter β.

Compactness of the resolvent operator follows by classical arguments. If (fn)n∈N is bounded in
L2(Ω), we may assume that

fn ⇀ f weakly in L2(Ω)

for some f ∈ L2(Ω). Let un be the solution associated to fn. Then (un)n∈N is bounded in R(Ω),
so that up possibly to a further subsequence

un ⇀ u weakly in R(Ω)

for some u ∈ R(Ω). In view of the compact embedding into L2(Ω) given by Proposition 3.8, we
have

un → u strongly in L2(Ω).

Clearly u is the solution associated to f , with

Lβ(un, un) = (fn, un)L2(Ω) → (f, u)L2(Ω) = Lβ(u, u).

Since u 7→
(
Lβ(u, u) + ‖u‖L2(Ω)2

)1/2
is a norm equivalent to that of R(Ω), we conclude that

un → u strongly in R(Ω).

�
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Remark 3.11 (Independence from the choice of ΓΩ and its orientation). Thanks to
Remark 3.2, and since the role of the left and right trace in the formulation (3.12) of the problem
is symmetrical (especially in the formula of the functional F ), we conclude that the general Robin
problem is independent of the choice of the set ΓΩ and of its orientation.

Remark 3.12 (Classical setting). In the case Ω is Lipschitz regular, the formulation (3.12)
reduces clearly to the standard weak formulation of the Robin-Laplacian.

Remark 3.13 (Decomposition in connected components). Note as well that under assump-
tion (3.1) if Ω = ∪iΩi is decomposed in its connected components, than the solution of the Robin
problem on Ω equals on each connected component the solution of the corresponding Robin prob-
lem on the component. As well, the spectrum of the Robin-Laplacian on Ω is the union of the
spectra of each Ωi, as in the classical setting.

4. Admissible domains in dimension two and compactness results.

In this section we study in detail some properties of a class of open sets in dimension two
on which the Robin generalized problem of Section 3 is well posed. In particular, since we are
interested in stability results under the variation of the domains, we look for compactness results
concerning the Robin spaces as the open sets vary.

The class of admissible domains is the following.

Definition 4.1 (The class Am(R2) of admissible domains). Given m ∈ N, m ≥ 1, we denote
with Am(R2) the class of open and bounded sets Ω ⊂ R2 such that Ωc has at most m connected
components and

H1(∪i∂Ωi) < +∞,
where {Ωi}i∈N denotes the family of its connected components. We set

(4.1) ΓΩ = ∪i∂Ωi.
Remark 4.2. In the rest of the paper, we will use the following intuitive fact: if Ω ∈ Am(R2),
and Ωi is one of its connected components, then ∂Ωi has at most m connected components, i.e.,
if Ω is bounded, ∂Ωi ∈ Km(R2). We have not been able to find a simple proof of this fact, nor to
individuate a precise reference.

A non elementary proof of this fact uses the following argument from algebraic topology. It is
not restrictive to prove the result for Ω ∈ Am(R2) connected. For ε > 0, let us consider the open
sets Aε and Bε made up of the points whose distance from Ω and Ωc is less than ε. For ε small
enough, we have that Aε is connected and Bε has at most m connected components. Then we can
use the Mayer-Vietoris exact sequence for the homology to obtain the short exact sequence

0 −→ H0(Aε ∩Bε)
i1−→ H0(Aε)⊕H0(Bε)

i2−→ H0(R2) −→ 0,

as H1(R2) is trivial. From the connectedness assumptions we get dimH0(R2) = 1, dim(H0(Aε)) =
1 and dim(H0(Bε)) ≤ m. From the exactness of the sequence we get that i1 is injective, i2 is
surjective and that Im i1 is isomorphic to Ker i2. We deduce that H0(Aε ∩ Bε) is isomorphic to
Ker i2, which has a dimension at most m, so that Aε ∩Bε has at most m connected components.
Letting ε→ 0, we infer that ∂Ω has at most m connected components.

The generalized Robin problems of Section 3 are well defined, the maximal rectifiable set in-
volved in the definition being given precisely by (4.1) (so that the the notation is well chosen).

Proposition 4.3 (Admissible domains and Robin problems). Let Ω ∈ Am(R2). Then the
generalized Robin-Laplace problem of Definition 3.9 is well posed and the set ΓΩ given in (4.1)
satisfies (3.2).

Proof. Let Ω ∈ Am(R2) and let {Ωi}i∈N denote the family of its connected components. Since Ωi

is connected and (Ωi)c has at most m connected components (see Remark 4.2), we deduce that
∂Ωi ∈ Km(R2) (see (2.1)). Since by Theorem 2.2 elements of Km(R2) are H1-countably rectifiable,
we conclude that

ΓΩ := ∪i∂Ωi

is an admissible choice in (3.2). �
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4.1. A collection of some useful technical results. The results below are not new. However,
as we did not find any reference, for the clearness of the paper we give a proof here.

Proposition 4.4. Let (Ωn)n∈N be a sequence of equibounded open sets in Rd such that

Ωn
Hc→ Ω and ∂Ωn

H→ K.

The following items hold true.

(a) ∂Ω ⊆ K.

(b) Ωn
H−→ Ω ∪K.

(c) If Hd−1(∂Ωn) ≤ C and |K| = 0, then

(4.2) 1Ωn → 1Ω strongly in L1(Rd).

Proof. Let us start with (a). Let x ∈ ∂Ω, and by contradiction suppose that x /∈ K. Hence there
exists ε > 0 such that

B(x, ε) ∩K = ∅.
Hence, for n large enough

B(x, ε) ∩ ∂Ωn = ∅.
We distinguish two cases.

(i) If B(x, ε) ⊆ Ωn, then passing to the limit in view of the convergence of the domains we
have B(x, ε) ⊆ Ω, so that x /∈ ∂Ω, which is a contradiction.

(ii) If B(x, ε) ⊆ Ωcn, then passing to the limit we have B(x, ε) ⊆ Ωc, so that x ∈ int(Ωc),
which is again a contradiction.

Let us pass to the proof of (b). Up to a subsequence we may assume

Ωn
H−→ P.

Notice that Ω ∪ K ⊆ P . Indeed K ⊆ P , while if x ∈ Ω \ K, by point (i) we have that x ∈ Ω,
which yields x ∈ Ωn for n large, and so x ∈ P .

On the other hand let us show that P ⊆ Ω ∪K. Since by point (i) we have Ω ∪K = Ω ∪K, it
suffices to see that

P \Ω ⊆ K.
Let x ∈ P \Ω, and let yn ∈ Ωn be such that

yn → x.

Since x ∈ Ωc, by definition of Hausdorff complementary topology there exists zn ∈ Ωcn such that

zn → x.

As the segment with extremes yn and zn intersects ∂Ωn, we find ξn ∈ ∂Ωn such that

ξn → x,

which yields x ∈ K. We conclude that P = Ω ∪K. Since P is well determined, we do not need
to pass to subsequences, so that point (b) follows.

Finally, let us come to point (c). Assume Ωn ⊆ D with D smooth, open and bounded. Let us
first prove that

(4.3) |Ωn| → |Ω|.

Since Ωn
Hc→ Ω, we easily get

|Ω| ≤ lim inf
n
|Ωn|,

so that it is sufficient to prove that

|Ω| ≥ lim sup
n
|Ωn|.

Since |K| = 0, by point (a) we get in particular |∂Ω| = 0. Clearly we have

|D \ P | ≤ lim inf
n
|D \Ωn|,
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so that

lim sup
n
|Ωn| ≤ |P |.

Hence, since |K| = |∂Ω| = |∂Ωn| = 0

|Ω| = |Ω ∪K| = |P | ≥ lim sup
n
|Ωn| = lim sup

n
|Ωn ∪ ∂Ωn| = lim sup

n
|Ωn|,

which gives yields (4.3).
Let us come to the proof of (4.2). SinceHd−1(∂Ωn) < +∞, we have that Ωn has finite perimeter

in Rd with

Per(Ωn) ≤ Hd−1(∂Ωn).

Since Ωn ⊆ D, by the compactness of sets with finite perimeter, up to a subsequence we may thus
assume that

(4.4) 1Ωn → 1E strongly in L1(Rd)

for some set of finite perimeter E ⊆ D, the convergence being also pointwise almost everywhere.
Notice that Ω ⊆ E. Indeed, for every compact set C ⊆ Ω, by Hausdorff convergence we get

C ⊆ Ωn for n large enough. This yields 1Ωn = 1 on C so that 1E = 1 a.e. on C. Then C ⊆ E up
to negligible sets, and by the arbitrariness of C we deduce Ω ⊆ E up to negligible sets. Taking
into account (4.3) and (4.4) we deduce

|E \Ω| = |E| − |Ω| = |Ω| − |Ω| = 0.

This yields 1Ω = 1E a.e., so that (4.2) follows. �

Remark 4.5. Simple examples show that the inclusion ∂Ω ⊆ K can be strict and that the strong
convergence of the characteristic functions may fail: for example if {qn}n∈N is dense in D open
and bounded, then Ωn := D \ ∪k≤n{qk} Hc-converges to Ω := ∅: in this case K = D̄, while
|Ωn| = |D| and |Ω| = 0.

The following corollary in a two dimensional setting will be useful.

Corollary 4.6. Let (Ωn)n∈N be a sequence of equibounded open sets in R2 such that

Ωn
Hc→ Ω, ∂Ωn has at most m connected components, and lim sup

n
H1(∂Ωn) < +∞.

Then

(4.5) 1Ωn → 1Ω strongly in L1(R2).

Proof. By assumption we have ∂Ωn ∈ Km(R2) (see (2.1)). Up to a subsequence we may assume
that

∂Ωn
H→ K ∈ Km(R2).

In view of Go la̧b Theorem (see Theorem 2.4) we may write

H1(K) ≤ lim inf
n
H1(∂Ωn) < +∞,

so that in particular we get |K| = 0. The conclusion follows by Proposition 4.4. �

In order to establish our main compactness result for sequences of admissible open sets, we will
need the following lemma which holds in general dimension d.

Lemma 4.7. Let Ω ⊂ Rd be an open bounded set, and let us denote by {Ωi}i∈N the family of its
connected components. Assume that

|Ω| ≥ C1 and Hd−1
(
∪i∂Ωi

)
≤ C2

for some C1, C2 > 0. Then there exists a connected component Ω ī such that

|Ω ī| ≥ C3,

where C3 depends only on C1, C2 and d.
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Proof. Notice that

(4.6)
∑
i

Per(Ωi) ≤ 2Hd−1(∪i∂Ωi).

Since in view of the isoperimetric inequality we can write

|Ωi|
d−1
d ≤ CdPer(Ωi),

we infer
C1

m
1
d

Ω

≤ |Ω|

m
1
d

Ω

=
∑
i

|Ωi|

m
1
d

Ω

≤
∑
i

|Ωi|
d−1
d ≤ Cd

∑
i

Per(Ωi) ≤ 2CdC2,

where mΩ := maxi∈N |Ωi|. We thus conclude

mΩ ≥
(

C1

2CdC2

)d
and the result follows.

Inequality (4.6) follows by noticing that the sets ∂∗Ωi ∩ ∂∗Ωj for i 6= j and ∂∗Ωh \ ∪k 6=h∂∗Ωk
haveHd−1-negligible overlapping (as the connected components are disjoint and with finite perime-
ter), so that we get

∑
i

Per(Ωi) =
∑
i

Hd−1(∂∗Ωi) =
∑
i

Hd−1(∂∗Ωi \ ∪j 6=i∂∗Ωj) +
∑
j 6=i

Hd−1(∂∗Ωi ∩ ∂∗Ωj)


=
∑
i

[
Hd−1(∂∗Ωi \ ∪j 6=i∂∗Ωj)

]
+ 2

∑
i6=j

Hd−1(∂∗Ωi ∩ ∂∗Ωj)

≤ 2Hd−1(∪i∂∗Ωi) ≤ 2Hd−1(∪i∂Ωi).
�

4.2. A compactness result in Am(R2). We are now in a position to state our main compactness
result for sequences of open sets in Am(R2).

Theorem 4.8 (Compactness for the admissible domains). Let (Ωn)n∈N be an equibounded
sequence in Am(R2) such that

(4.7) lim sup
n
H1(ΓΩn) < +∞.

Then there exists Ω ∈ Am(R2) such that up to a subsequence Ωn
Hc→ Ω with

(4.8) 1Ωn → 1Ω strongly in L1(R2).

and

(4.9) H1(ΓΩ) ≤ lim inf
n
H1(ΓΩn).

Proof. Up to a subsequence, we have that

Ωn
Hc→ Ω

for some open bounded set Ω ⊆ R2 such that Ωc has at most m connected components. We need
to show that (4.8) and (4.9) hold true, so that in particular Ω ∈ Am(R2).

Step 1. We claim that up to a subsequence we can write for every k ≥ 1

(4.10) Ωn = A1
n ∪ · · · ∪Akn ∪Rkn and Ω = A1 ∪ · · · ∪Ak ∪Rk

such that the following items hold true:

(a) Ai and Rk are union of connected components of Ω;
(b) Ain are connected components of Ωn, while Rkn is union of connected components of Ωn;



16 D. BUCUR, A. GIACOMINI, AND P. TREBESCHI

(c) we have for n→∞

Ain
Hc→ Ai for i = 1, . . . , k, and Rkn

Hc→ Rk,

while for k →∞
Rk
Hc→ ∅ and |Rk| → 0.

Let us denote with {Ωi}i≥1 the family of the connected components of Ω. Then we can write

Ωn = A1
n ∪R1

n,

and up to a subsequence we can assume

A1
n
Hc→ A1 and R1

n
Hc→ R1,

where A1 and R1 are union of connected components of Ω, Ω1 ⊆ A1,

Ω = A1 ∪R1,

and A1
n is a connected component of Ωn.

Let i1 > 1 be the first index such that Ωi1 6⊂ A1, so that Ωj ⊆ A1 for every j < i1. Clearly
Ωi1 ⊆ R1, so that, proceeding as above, we can write

R1
n = A2

n ∪R2
n, R1 = A2 ∪R2, Ωi1 ⊆ A2

with, up to a further subsequence,

A2
n
Hc→ A2, and R2

n
Hc→ R2.

Again A2
n is a connected component of Ωn, while A2 and R2 are union of connected components

of Ω.
In general, iterating the construction and employing a diagonal argument, we can find a strictly

increasing sequence of indices (ik)k≥1 and a unique subsequence such that there exist decomposi-
tions

Ωn = A1
n ∪ · · · ∪Akn ∪Rkn, Ω = A1 ∪ · · · ∪Ak ∪Rk

with Ωj ⊆ A1 ∪ · · · ∪Ak for every j < ik, Ωik ⊆ Rk,

Ahn
Hc→ Ah for h = 1, . . . , k, and Rkn

Hc→ Rk.

Notice that

Rk ⊆ Ω \
⋃
j<ik

Ωj

so that the last relation of point (c) follows.

Step 2. Let us employ the decomposition (4.10) of Step 1. Since the open sets Ahn are connected
components of Ωn, we infer that ∂Ahn ∈ Km(R2) (see (2.1)), as (Ahn)c has at most m connected
components (see Remark 4.2). In particular, thanks to (4.7) we have for every n

H1(∂Ahn) ≤ C.

In view of Corollary 4.6 we deduce that

(4.11) 1Ahn → 1Ah strongly in L1(R2)

for every h ≥ 1.
We claim that

(4.12) lim
n
|Ωn| = |Ω|.

Since it is always true that lim infn |Ωn| ≥ |Ω| in view of the Hausdorff convergence, let us assume
by contradiction that there exists ε > 0 such that for n large

|Ωn| ≥ |Ω|+ ε.
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In view of (4.11) we infer for every k ≥ 1

lim inf
n
|Rkn| = lim inf

n

[
|Ωn| −

k∑
h=1

|Ahn|

]
≥ |Ω|+ ε−

k∑
h=1

|Ah| = |Rk|+ ε.

Let us select nk →∞ such that

(4.13) Rknk
Hc→ ∅.

In view of Lemma 4.7 there exists Ω̃nk connected component of Ωnk contained in Rknk such that

|Ω̃nk | ≥ δ

for some δ > 0 independent of k. Since ∂Ω̃nk has at most m connected components, thanks to
Corollary 4.6 which entails the stability of the measures, we have that, up to a further subse-
quence, the sequence {Ω̃nk} has a nontrivial Hausdorff limit, which is in contradiction with (4.13).
Convergence (4.12) is thus established.

Step 3: Conclusion. Let us prove (4.8) and (4.9). Taking into account the decompositions
(4.10) and the relations (4.11) and (4.12) we have

lim
n
|Rkn| = |Rk|.

We thus infer using again (4.11)

lim sup
n
‖1Ωn − 1Ω‖L1(R2) ≤ 2|Rk| k→∞→ 0,

which yields (4.8).
Up to a further subsequence, we have that

∂Ain
Hc→ Ki

for some Ki ∈ Km(R2) with ∂Ai ⊆ Ki. Using Go la̧b theorem (see Theorem 2.4) we have

H1(∪i≤k∂Ai)) ≤ H1(∪i≤kKi) ≤ lim inf
n
H1(∪i≤k∂Ain) ≤ lim inf

n
H1(ΓΩn)

so that (4.9) follows letting k →∞ since ΓΩ = ∪i∂Ai. �

4.3. Compactness for the Robin spaces. We concentrate now on compactness results for the
Robin spaces R(Ωn) as Ωn varies in the admissible class Am(R2).

It will be useful to talk about traces on elements K of Km(R2) (see (2.1)) using the same
notation employed for the generalized Robin-Laplace operator: for v ∈ BV (R2) we will consider
right and left traces γr(v), γl(v) as done at the beginning of Section 3.1, associated to a suitable
decomposition and orientation of K. It turns out that

(4.14) {v+, v−} = {γr(v), γl(v)} H1-a.e. on K,

where v± are the upper and lower approximate limits.
The following result, which is fundamental for our analysis, is a reformulation in our context of

[6, Lemma 19].

Lemma 4.9. Let D ⊆ R2 be an open and bounded set and m ≥ 1, and let (Kn)n∈N,K ⊂ D be
compact sets in Km(R2) such that

Kn
H→ K and lim sup

n
H1(Kn) < +∞.

Let (vn)n∈N be a sequence in BV (D) ∩H1(D \Kn) with

lim sup
n

[
‖vn‖H1(D\Kn) +

∫
Kn

[
|γr(vn)|2 + |γl(vn)|2

]
dH1

]
< +∞.

Then there exists v ∈ BV (D) ∩H1(D \K) such that

(4.15) vn → v strongly in L2
loc(D)
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(4.16) ∇vn ⇀ ∇v weakly in L2(D;R2),

and

(4.17)

∫
K

[|γr(v)|2 + |γl(v)|2] dH1 ≤ lim inf
n

∫
∂Kn

[|γr(vn)|2 + |γl(vn)|2] dH1.

Proof. Since

‖vn‖BV (D) ≤ ‖∇vn‖L1(D\Kn;R2) + ‖vn‖L1(D\Kn) +

∫
Kn

[|γr(vn)|+ |γl(vn)|] dH1

≤ C
[
‖vn‖H1(D\Kn) +

∫
Kn

[|γr(vn)|2 + |γl(vn)|2] dH1

]
,

we have that (vn)n∈N is bounded in BV (D), with

{v+
n , v

−
n } = {γr(vn), γl(vn)} H1-a.e. on Kn,

where v±n are the upper and lower approximate limits. From [6, Lemma 19], we know that there
exists v ∈ H1(D \K) such that up to a subsequence (4.15) and (4.16) hold true and

(4.18)

∫
K

[(v+)2 + (v−)2] dH1 ≤ lim inf
n

∫
Kn

[(v+
n )2 + (v−n )2] dH1.

From the bounds obtained above, we infer that v ∈ BV (D), and (4.17) is a consequence of (4.18)
in view of (4.14). �

The following result holds true.

Proposition 4.10 (Compactness). Let (Ωn)n∈N be a sequence of equibounded sets in Am(R2)
with

lim sup
n
H1(ΓΩn) < +∞,

and Ωn
Hc→ Ω for some Ω ∈ Am(Ω).

Let un ∈ R(Ωn) be such that

(4.19) lim sup
n

[
||∇un||2L2(Ωn;R2) +

∫
ΓΩn

[
|γr(un1Ωn)|2 + |γl(un1Ωn)|2

]
dH1

]
< +∞.

Then there exists u ∈ R(Ω) such that up to a subsequence

(4.20) un1Ωn → u1Ω strongly in L2(R2),

(4.21) ∇un1Ωn ⇀ ∇u1Ω weakly in L2(R2;R2),

and

(4.22)

∫
ΓΩ

[
|γr(u1Ω)|2 + |γl(u1Ω)|2

]
dH1 ≤ lim inf

n

∫
ΓΩn

[
|γr(un1Ωn)|2 + |γl(un1Ωn)|2

]
dH1.

Proof. Let R > 0 be such that Ωn ⊂ BR(0) for every n ∈ N. Consider vn = un1Ωn and D :=
B2R(0). By Lemma 3.5 and taking into account (4.19), we get that (vn)n∈N and (v2

n)n∈N are
bounded in BV (D), so that up to a subsequence

vn → v strongly in L2(D)

for some v ∈ BV (D) with v2 ∈ BV (D). In view of Theorem 4.8, we also have that

(4.23) 1Ωn → 1Ω strongly in L1(R2),

from which we deduce

v = v1Ω

Setting u := v|Ω , from the Hausdorff convergence of the sets and (4.23) we get easily that u ∈
H1(Ω) and that (4.20) and (4.21) hold true.
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Let {Ωin}i∈N denote the family of connected components of Ωn. Up to a subsequence, we may
assume that for every i ∈ N we have

Ωin
Hc→ Ai

where Ai are union of connected components of Ω with Ω = ∪iAi. Moreover, we may assume

∂Ωin
H→ Ki

for some Ki ∈ Km(R2) (see (2.1)). From Proposition 4.4, we have ∂Ai ⊆ Ki, while from Corollary
4.6 we have

1Ωin → 1Ai strongly in L1(R2).

For every k ≥ 1 let us consider
wkn := un1∪i≤kΩin .

We can interpret wkn as an element of BV (D) ∩H1(D \ ∪i≤k∂Ωin), for which we have

wkn → u1∪i≤kAi strongly in L2(D)

and
∇wkn ⇀ ∇u1∪i≤kAi weakly in L2(D;R2).

By the lower semicontinuity of Lemma 4.9 we get that∫
∪i≤k∂Ai

[
|γr(u1∪i≤kAi)|

2 + |γl(u1∪i≤kAi)|
2
]
dH1 ≤

∫
∪i≤kKi

[
|γr(u1∪i≤kAi)|

2 + |γl(u1∪i≤kAi)|
2
]
dH1

≤ lim inf
n

∫
∪i≤k∂Ωin

[
|γr(wkn)|2 + |γl(wkn)|2

]
dH1

≤ lim inf
n

∫
ΓΩn

[
|γr(un1Ωn)|2 + |γl(un1Ωn)|2

]
dH1,

so that for every h ≤ k∫
∪i≤h∂Ai

[
|γr(u1∪i≤kAi)|

2 + |γl(u1∪i≤kAi)|
2
]
dH1

≤ lim inf
n

∫
ΓΩn

[
|γr(un1Ωn)|2 + |γl(un1Ωn)|2

]
dH1.

Inequality (4.22) follows by letting k → +∞ and then h → +∞ recalling that ΓΩ = ∪i∂Ai. We
thus conclude that u ∈ R(Ω), and the proof is finished. �

5. Robin perimeter

In this section we introduce a notion of perimeter for the open sets in the admissible class
Am(R2) (see Definition 4.1) which is tailored to the study of Robin problems on varying domains.

Definition 5.1 (Robin perimeter). For Ω ∈ Am(R2) let us set

PerR(Ω) :=

∫
ΓΩ

[|γr(1Ω)|+ |γl(1Ω)|] dH1,

where ΓΩ is given by (4.1).

From an intuitive point of view, this notion of perimeter marks a difference between “external”
and “internal” boundaries, assigning to inner cracks a multiplicity equal to two.

The intuitive inequality
H1(ΓΩ) ≤ PerR(Ω)

holds true (see Proposition 5.4), but requires some measure theoretic arguments to take care of
the fact that boundaries involved are possibly irregular.

The Robin perimeter PerR is lower semicontinuous under the Hausdorff complementary topol-
ogy (see Proposition 5.5); moreover it turns out that its convergence is sufficient to guarantee the
continuity of the Robin energies (see Proposition 5.7), which is a key fact to prove stability results
for the associated generalized boundary value problems.
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We start with the following result.

Proposition 5.2. Let Ω ∈ Am(R2) be connected. Then H1-a.e. point of ∂Ω has density either 1
or 1/2 with respect to Ω.

Proof. It suffices to show the result for every connected component K of ∂Ω. We know from
Theorem 2.2 that K is H1-countably rectifiable. Then K admits an approximate tangent line at
H1-a.e. x ∈ K, i.e., as ε→ 0+ we have

(5.1) H1bKx,ε
∗
⇀ H1blx weakly∗ in Mb(R2),

where

Kx,ε :=
1

ε
[K − x] :=

{
y − x
ε

: y ∈ K
}
,

and lx is a line through the origin, the so called approximate tangent line.
Since Ω has finite perimeter (as in this case ΓΩ = ∂Ω and so H1(∂Ω) < +∞), we have that

H1-a.e. point in R2 has either density 1, 1/2 or 0 with respect to Ω. In order to conclude, it
suffices to show that at H1-a.e. point of K where the approximate tangent line exists, the density
cannot be zero.

We divide the proof in several steps.

Step 1: Some geometric properties of K. Let x ∈ K be a point which admits an approximate
tangent line lx. We claim that for every m ∈ N, m ≥ 1

(5.2) Kx,ε ∩Qm(0)→ lx ∩Qm(0) in the Hausdorff metric,

where Qm(0) is the square with center 0 and side m. This property can be found in Step 2 of the
proof of [4, Proposition 2.6], and we report here the argument for completeness.

Up to a translation, we may assume x = 0 and write Kε and l in place of Kx,ε and lx. Given any
sequence εn → 0, by the compactness of Hausdorff convergence and using a diagonal argument,
we can find a subsequence (εnh)h∈N such that for every m ∈ N, m ≥ 1

Kεnh
∩ Q̄m(0)→ Km

0 in the Hausdorff metric.

It is readily checked that for every m ≥ 1

(5.3) Km
0 ⊆ Km+1

0 and Km
0 ∩Qm(0) = Km+1

0 ∩Qm(0).

Let us set K0 :=
⋃∞
m=1K

m
0 . The conclusion follows by showing that

(5.4) K0 = l.

(a) We have K0 ⊆ l. Indeed, assume by contradiction that ξ ∈ K0 \ l with Bη(ξ) ∩ l = ∅.
Using the measure convergence (5.1), we obtain that

(5.5) H1(Kεnh
∩Bη(ξ))→ 0.

But Kεnh
is connected by arcs (see [20, Lemma 3.12]), so that the points ξnh ∈ Kεnh

such

that ξnh → ξ are connected to 0 through an arc contained in Kεnh
, against (5.5).

(b) We have on the contrary l ⊆ K0. Indeed, assume by contradiction that ξ ∈ l \K0. Then
there exists η > 0 such that Kεnh

∩Bη(ξ) = ∅ for h large, against (5.1).

In view of (5.3) and (5.4) we deduce that for ε→ 0 and for every m ≥ 1

Kε ∩ Q̄m(0)→ l ∩ Q̄m(0) in the Hausdorff metric,

i.e., convergence (5.2) holds true.

Step 2: a blow up argument. Let x ∈ K satisfy (5.1) and (5.2). Let us show that the density
of x with respect to Ω cannot be zero.

Up to a rototranslation, we may assume x = 0 and that the approximate tangent line is
horizontal. We write Kε and l in place of Kx,ε and lx. By contradiction, assume that the origin
has density zero for Ω, i.e., for ε→ 0+

(5.6) 1Ωε → 0 strongly in L1
loc(R2),
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where Ωε := 1
εΩ.

From (5.1) we have that

(5.7) H1(Kε ∩Q1(0))→ H1(l ∩Q1(0)) = 1.

For every η > 0, by (5.2) we deduce that for ε small enough

Kε ∩ Q̄1(0) ⊆ Sη := {x ∈ Q̄1(0) : |x2| < η}.

In particular we get that ∂Ωε∩ Q̄1(0) ⊂ Sη, so that in view of (5.6) we get that for ε small enough

(5.8) Ωε ∩Q1(0) ⊂ Sη.

Assume that for every |a| < 1 we have for ε small enough

(5.9) Ωε ∩Q1(0) ∩ {(a, s) : s ∈ R} 6= ∅,

i.e. the intersection of Ωε ∩Q1(0) with the vertical line through (a, 0) in not empty. In particular
thanks to (5.8) we deduce that

Ka
ε := Kε ∩Q1(0) ∩ {(a, s) : s ∈ R}

contains at least two points. Then we get in view of the area formula

(5.10) lim inf
ε→0

H1(Kε ∩Q1(0)) ≥ lim inf
ε→0

∫ 1/2

−1/2

H0(Ka
ε ) da ≥ 2

against (5.7).
If (5.9) is violated for some a0 ∈]− 1, 1[ along a sequence εn → 0, then we have that

Ωεn ∩Q1(0) ∩ {(a, s) : s ∈ R} 6= ∅,

for every a 6= a0: otherwise, if for example a > a0, then Ωεn ∩ Q1(0) ∩ {x ∈ R2 : a0 < x1 < a}
would be separated from the rest of Ωεn , against its connectedness. We can therefore repeat the
argument of (5.10) along the sequence εn and get again a contradiction. �

Remark 5.3. Note that the connectedness assumption for Ω in Proposition 5.2 is essential for
the conclusion. Indeed consider a sequence of points qn in the unit square Q1(0) ⊆ R2 such that
for every k ≥ 1⋃

n≥k

{qn} ⊂
{
x = (x1, x2) ∈ R2 : 1− 1

k
< x1 < 1

}
and l := {1} × [0, 1] ⊆

⋃
n≥k

{qn}.

We can find rn > 0 so small that the disks Brn(qn) are mutually disjoint, and such that setting

Ω :=
⋃
n

Brn(qn),

then the points of l ⊂ ∂Ω are of density zero with respect to Ω.

We are now in a position to compare the Robin perimeter with the length of the boundary.

Proposition 5.4. Let Ω ∈ Am(R2). Then

(5.11) H1(ΓΩ) ≤ PerR(Ω) ≤ 2H1(ΓΩ).

Proof. Let {Ωi}i∈N denote the family of connected components of Ω. By Proposition 5.2 we have
that H1-a.e. x ∈ ∂Ωi has not density zero with respect to Ωi so that we deduce

|γr(1Ω)(x)|+ |γl(1Ω)(x)| ≥ |γr(1Ωi)(x)|+ |γl(1Ωi)(x)| ≥ 1.

Therefore

PerR(Ω) =

∫
ΓΩ

[|γr(1Ω)|+ |γl(1Ω)|] dH1 ≥ H1(ΓΩ).

The second inequality comes from the fact that we have always |γr(1Ω)(x)|+ |γl(1Ω)(x)| ≤ 2. �

The following lower semicontinuity result for the Robin perimeter holds true.
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Proposition 5.5 (Lower semicontinuity of PerR). Let (Ωn)n∈N be a sequence of equibounded

sets in Am(R2) with Ωn
Hc→ Ω for some Ω ∈ Am(Ω). Then

PerR(Ω) ≤ lim inf
n

PerR(Ωn).

Proof. We may assume PerR(Ωn) ≤ C for some C > 0. Thanks to Proposition 5.4, we deduce
that H1(ΓΩn) ≤ C. The result then follows from Proposition 4.10 applied to the functions 1Ωn
which converge to 1Ω thanks to Theorem 4.8. �

Remark 5.6. Notice that the definition of PerR can be naturally extended to general open sets
in Rd satisfying (3.1). However, even in dimension two (outside the class Am(R2)), lower semi-
continuity results with respect to Hc-convergence fail (the case of weaker notions of convergence
is not clear): counterexamples in dimension two involve sequences of inner cracks which violate
Go la̧b lower semicontinuity theorem.

The following lemma deals with the convergence for the Robin energies under the convergence
of the Robin perimeter.

Proposition 5.7 (Continuity of the Robin energy). Let (Ωn)n∈N be an equibounded sequence
in Am(R2) such that

Ωn
Hc→ Ω and PerR(Ωn)→ PerR(Ω)

for some Ω ∈ Am(R2). Let un ∈ R(Ωn) and u ∈ R(Ω) be given according to Proposition 4.10
with

lim sup
n
‖un‖∞ < +∞.

Then

lim
n

∫
ΓΩn

[
|γr(un1Ωn)|2 + |γl(un1Ωn)|2

]
dH1 =

∫
ΓΩ

[
|γr(u1Ω)|2 + |γl(u1Ω)|2

]
dH1.

Proof. In view of (5.11) we get

(5.12) lim sup
n
H1(ΓΩn) ≤ lim sup

n
PerR(Ωn) = PerR(Ω) ≤ 2H1(ΓΩ) < +∞

so that we may apply Proposition 4.10 to get

(5.13)

∫
ΓΩ

[
|γr(u1Ω)|2 + |γl(u1Ω)|2

]
dH1 ≤ lim inf

n

∫
ΓΩn

[
|γr(un1Ωn)|2 + |γl(un1Ωn)|2

]
dH1.

Let us consider
vn :=

√
4M2 − u2

n,

where
M > lim sup

n
‖un‖∞.

Clearly vn ∈ H1(Ωn) with

∇vn = − un∇un√
4M2 − u2

n

.

Moreover we can write
vn1Ωn = Φ((4M2 − u2

n)1Ωn),

where Φ : R → R is a Lipschitz map with Φ(0) = 0 and Φ(s) =
√
s if s ≥ 3M2, so that by the

chain rule in BV [1, Theorem 3.96] we infer vn1Ωn ∈ BV (R2). Moreover we have

γr(vn) =
√

4M2γr(1Ωn)− γr(un)2,

and a similar formula holds for the left traces. We thus conclude vn ∈ R(Ωn).
Similarly

v :=
√

4M2 − u2 ∈ R(Ω)

and
γr(v) =

√
4M2γr(1Ω)− γr(u)2,

with an analogous relation for the left traces.
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In view of (5.12) and thanks to Theorem 4.8 we have that

1Ωn → 1Ω strongly in L2(R2),

so that we infer

vn1Ωn → v1Ω strongly in L2(R2)

and

∇vn1Ωn ⇀ ∇v1Ω weakly in L2(R2;R2).

Moreover

lim sup
n

[
||∇vn||2L2(Ωn;R2) +

∫
ΓΩn

[
|γr(vn)|2 + |γl(vn)|2

]
dH1

]
< +∞.

From Proposition 4.10 we deduce

4M2PerR(Ω)−
∫
ΓΩ

[
|γr(u1Ω)|2 + |γl(u1Ω)|2

]
dH1

≤ lim inf
n

[
4M2PerR(Ωn)−

∫
ΓΩn

[
|γr(un1Ωn)|2 + |γl(un1Ωn)|2

]
dH1

]
which gives∫

ΓΩ

[
|γr(u1Ω)|2 + |γl(u1Ω)|2

]
dH1 ≥ lim sup

n

∫
ΓΩn

[
|γr(un1Ωn)|2 + |γl(un1Ωn)|2

]
dH1,

in view of the assumption PerR(Ωn) → PerR(Ω). The conclusion follows taking into account
(5.13). �

We conclude the section by showing that the convergence of the length of the boundaries entails
that of the Robin perimeter, providing thus a simple geometric property which ensures the stability
of PerR.

Proposition 5.8. Let (Ωn)n∈N be an equibounded sequence in Am(R2) such that

(5.14) Ωn
Hc→ Ω and H1(ΓΩn)→ H1(ΓΩ).

Then

PerR(Ωn)→ PerR(Ω).

Proof. Let R > 0 be such that Ωn ⊂ BR(0) for every n ∈ N, and set D := B2R(0). Thanks to
Theorem 4.8 we have that

1Ωn → 1Ω strongly in L2(D).

In view of Proposition 5.5 we obtain that

(5.15) PerR(Ω) ≤ lim inf
n

PerR(Ωn).

To prove the reverse inequality, we proceed as in the proof of Lemma 4.10. Let {Ωin}i∈N denote
the family of connected components of Ωn. Up to a subsequence, we may assume that for every
i ∈ N we have

Ωin
Hc→ Ai,

where Ai are union of connected components of Ω with Ω = ∪iAi. Moreover, we may assume

∂Ωin
H→ Ki

for some Ki ∈ Km(R2) (see (2.1)). From Proposition 4.4, we have ∂Ai ⊆ Ki, while from Corollary
4.6 we have

1Ωin → 1Ai strongly in L1(R2).

Go la̧b Theorem (see Theorem 2.4) entails that

H1(∪i≤k∂Ai) ≤ lim inf
n
H1(∪i≤k∂Ωin) = lim inf

n

[
H1(ΓΩn)−H1(ΓΩn \ ∪i≤k∂Ωin)

]
.
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Recalling that ΓΩ = ∪i∂Ai, the convergence (5.14) implies

(5.16) lim sup
n
H1(ΓΩn \ ∪i≤k∂Ωin) ≤ ek

where ek → 0. Let us consider

vkn := 1− 1∪i≤kΩin ,

which we can interpret as a function in BV (D) ∩H1(D \ ∪i≤k∂Ωin) for which

vkn → vk := 1− 1∪i≤kAi strongly in L2(D),

and

∇vkn ⇀ 0 weakly in L2(D;R2).

By the lower semicontinuity of Proposition 4.9 we get

(5.17)

∫
∪i≤k∂Ai

[
|γr(vk)|2 + |γl(vk)|2

]
dH1 ≤

∫
∪i≤kKi

[
|γr(vk)|2 + |γl(vk)|2

]
dH1

≤ lim inf
n

∫
∪i≤k∂Ωin

[
|γr(vkn)|2 + |γl(vkn)|2

]
dH1.

Notice that

γr(v
k
n) = 1− γr(1∪i≤kΩin) H1-a.e. on ∪i≤k∂Ωin

with the same relation for the left traces, and that analogous relations hold for vk on ∪i≤k∂Ai.
Since the traces involved are either 0 or 1, we can remove the squares in (5.17) and write in view
convergence (5.14) and inequality (5.16),

H1(∪i≤k∂Ai)−
∫
∪i≤k∂Ai

[
|γr(1∪i≤kAi) + |γl(1∪i≤kAi)|

]
dH1

≤ H1(ΓΩ)− lim sup
n

∫
∪i≤k∂Ωin

[
|γr(1∪i≤kΩin)|+ |γl(1∪i≤kΩin)|

]
dH1

≤ H1(ΓΩ)− lim sup
n

∫
ΓΩn

[|γr(1Ωn)|+ |γl(1Ωn)|] dH1 + 2ek

from which, letting k →∞ we conclude

(5.18) lim sup
n

PerR(Ωn) = lim sup
n

∫
ΓΩn

[|γr(1Ωn)|+ |γl(1Ωn)|] dH1

≤
∫
ΓΩ

[|γr(1Ω)|+ |γl(1Ω)|] dH1 = PerR(Ω).

The conclusion follows gathering (5.15) and (5.18). �

Remark 5.9. Notice that the convergence of the Robin perimeter does not entail in general that
of the length of the boundaries. For example one can consider the case of Ωn := BR(0)\Cn, where
Cn is a cavity shrinking smoothly to the diameter L := [−R/2, R/2] × {0}. In this case we have
for Ω := BR(0) \ L

PerR(Ωn) = H1(∂Ωn)→ 2πR+ 2R = PerR(Ω)

while

H1(∂Ω) = 2πR+R.
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6. Stability results for the generalized Robin-Laplacian

In this section we formulate our main stability result for the Robin-Laplace problems of Defi-
nition (3.9) on open sets varying in the class Am(R2).

Theorem 6.1 (The stability result). Let D ⊂ R2 an open bounded set, and let (Ωn)n∈N be a
sequence in Am(R2) and Ω ∈ Am(R2) such that Ωn, Ω ⊂ D,

Ωn
Hc→ Ω and PerR(Ωn)→ PerR(Ω).

Then for all f ∈ L2(D) we have that

un1Ωn → u1Ω strongly in L2(D),

and
∇un1Ωn → ∇u1Ω strongly in L2(D;R2),

where un ∈ R(Ωn) and u ∈ R(Ω) are the solutions of the Robin problems associated to f on Ωn
and Ω respectively

Proof. For every A ∈ Am(R2) with A ⊂ D, let us consider

FA : L2(D)→ R ∪ {+∞}
such that

FA(v) :=
1

2

∫
A

|∇v|2 dx+
β

2

∫
ΓA

[
|γr(v1A)|2 + |γl(v1A)|2

]
dH1 −

∫
A

fv dx

if v = 0 a.e. on D \A and v|A ∈ R(A), while

FA(v) := +∞
otherwise in L2(D). By Theorem 3.10 we have that v is a minimizer of FA if and only if v = 0
a.e. on D \A and v|A is the solution of the Robin problem relative to f .

We claim that

(6.1) FΩn → FΩ

in the sense of Γ -convergence with respect to the strong topology of L2(D) (see Section 2). As-
suming the claim, the stability result can be proved as follows. Let un be the solution of the Robin
problem on Ωn relative to f . First of all, thanks to Lemma 3.5 we may write

1

2

∫
Ωn

|∇un|2 dx+
β

2

∫
ΓΩn

[
γr(un1Ωn)2 + γl(un1Ωn)2

]
dH1 ≤ ‖f‖L2(D)‖un‖L2(Ωn)

≤ C

[
1

2

∫
Ωn

|∇un|2 dx+
β

2

∫
ΓΩn

[
γr(un1Ωn)2 + γl(un1Ωn)2

]
dH1

] 1
2

,

where C is independent of n (since |Ωn| ≤ |D|), so that

lim sup
n

[
‖∇un‖L2(Ωn;R2) +

∫
ΓΩn

[
|γr(un1Ωn)|2 + |γl(un1Ωn)|2

]
dH1

]
< +∞.

From Proposition 4.10 we get that there exists u ∈ R(Ω) such that, up to subsequence

un1Ωn → u1Ω strongly in L2(D),

(6.2) ∇un1Ωn ⇀ ∇u1Ω weakly in L2(R2;R2),

and ∫
ΓΩ

[
|γr(u1Ω)|2 + |γl(u1Ω)|2

]
dH1 ≤ lim inf

n

∫
ΓΩn

[
|γr(un1Ωn)|2 + |γl(un1Ωn)|2

]
dH1.

By the Γ -convergence result (6.1), we infer that u1Ω is the minimizer of FΩ , so that u is the
solution of the Robin problem on Ω relative to f . Since

FΩn(un)→ FΩ(u).
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the weak convergence of (6.2) is indeed strong. Finally, since there is no need to pass to a
subsequence, the result follows.

In order to conclude the proof, let us prove claim (6.1) by checking the inequalities of Γ -
convergence in two separate steps.

Step 1: Γ -liminf inequality. Let us check that for vn → v strongly in L2(D) we have

(6.3) FΩ(v) ≤ lim inf
n

FΩn(vn).

It is not restrictive to assume, possibly passing to a subsequence, that

FΩn(vn) ≤ C.

We infer that vn = un1Ωn for some un ∈ R(Ωn) with

lim sup
n

[
‖∇un‖2L2(Ωn;R2) +

∫
ΓΩn

[
|γr(un1Ωn)|2 + |γl(un1Ωn)|2

]
dH1

]
< +∞.

From Proposition 4.10 we deduce that there exists u ∈ R(Ω) such that v = u1Ω with

∇un1Ωn ⇀ ∇u1Ω weakly in L2(R2;R2),

and ∫
ΓΩ

[
|γr(u1Ω)|2 + |γl(u1Ω)|2

]
dH1 ≤ lim inf

n

∫
ΓΩn

[
|γr(un1Ωn)|2 + |γl(un1Ωn)|2

]
dH1.

We conclude that (6.3) holds true.

Step 2: Γ -limsup inequality. Given v ∈ L2(D), let us check that there exists vn → v strongly
in L2(D) such that

(6.4) lim sup
n

FΩn(vn) ≤ FΩ(v).

It is not restrictive to assume FΩ(v) < +∞, so that v = u1Ω for some u ∈ R(Ω). Proceeding by
truncation and employing a diagonal argument, we may also assume that ‖u‖∞ ≤M .

From Theorem 4.8 we have

1Ωn → 1Ω strongly in L1(R2).

Then the sequence of domains (Ωn)n∈N fits into the framework of [11, Theorem 4.1, Remark 5.2],
so that we can find un ∈ H1(Ωn) such that

(6.5) un1Ωn → u1Ω strongly in L2(D)

and

(6.6) ∇un1Ωn → ∇u1Ω strongly in L2(D,R2).

By truncation, we may assume that also un is such that ‖un‖∞ ≤ M . As a consequence we get
un ∈ R(Ωn). Thanks to the convergence of the perimeters, in view of Proposition 5.7 we infer

(6.7) lim
n

∫
ΓΩn

[
|γr(un1Ωn)|2 + |γl(un1Ωn)|2

]
dH1 =

∫
ΓΩ

[
|γr(u1Ω)|2 + |γl(u1Ω)|2

]
dH1.

Gathering (6.5), (6.6) and (6.7), we get that the Γ -limsup inequality (6.4) follows. �

The previous stability result is fundamental to obtain the convergence of the resolvent of the
generalized Robin-Laplace operators and of the related spectra. Let us consider the bounded linear
operators on L2(D)

RΩ,β : L2(D)→ L2(D)

such that

RΩ,β(f) := uf1Ω ,

where uf is the solution of the Robin problem on Ω relative to f .
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Theorem 6.2 (Convergence of the resolvent operator and stability of the spectrum).
Under the assumptions of Theorem 6.1 we have

RΩn,β −→ RΩ,β strongly in L(L2(D)).

In particular, for every k ≥ 1 we have

λk,β(Ωn) −→ λk,β(Ω),

where λk,β(A) is the k-th eigenvalue on the domain A with parameter β.

Proof. The convergence in the operator norm is equivalent to the following relation

(6.8) sup
f∈L2(D),‖f‖L2(D)≤1

‖RΩn,β(f)−RΩ,β(f)‖L2(D) → 0.

The convergence of the eigenvalues is then a standard consequence of the convergence of the
resolvents (see e.g. [18, Lemma XI.9.5]).

Let (fn)n∈N be a sequence such that ‖fn‖L2(D) ≤ 1 and

‖RΩn,β(fn)−RΩ,β(fn)‖L2(D) = sup
f∈L2(D),‖f‖L2(D)≤1

‖RΩn,β(f)−RΩ,β(f)‖L2(D).

The existence of fn follows easily from the compactness property of solutions given by Theorem
3.10. Since fn is bounded in L2(D), we may assume that up to a subsequence there exists
f ∈ L2(D), such that

fn ⇀ f weakly in L2(D).

We may write

‖RΩn,β(fn)−RΩ,β(fn)‖L2(D)

≤ ‖RΩn,β(fn)−RΩn,β(f)‖L2(D) + ‖RΩn,β(f)−RΩ,β(f)‖L2(D) + ‖RΩ,β(f)−RΩ,β(fn)‖L2(D)

=: In + IIn + IIIn.

From Theorem 6.1 we get that

IIn = ‖RΩn,β(f)−RΩ,β(f)‖L2(D) → 0.

We observe that IIIn is a particular case of In with Ωn = Ω fixed, hence to conclude it is sufficient
to prove that In → 0. We prove it in two steps.

Step 1. We have

(6.9) RΩn,β(fn) ⇀ RΩn,β(f) weakly in L2(D).

Notice that RΩ,β is self-adjoint for every Ω: indeed from the weak formulation of the problem we
have for every f, g ∈ L2(D)∫

D

RΩ,β(f)g dx = Lβ(RΩ,β(g), RΩ,β(f)) = Lβ(RΩ,β(f), RΩ,β(g)) =

∫
Ω

fRΩ,β(g) dx.

We can then write for every ϕ ∈ L2(D)∫
D

[RΩn,β(fn)−RΩn,β(f)] · ϕdx =

∫
D

RΩn,β(fn − f) · ϕdx =

∫
D

(fn − f) ·RΩn,β(ϕ) dx→ 0,

the last convergence coming from the fact that

RΩn,β(ϕ)→ RΩ,β(ϕ) strongly in L2(D)

thanks to Theorem 6.1. Convergence (6.9) is thus proved.

Step 2. By Theorem 3.10 we have

‖RΩn,β(fn)−RΩn,β(f)‖R(Ωn) = ‖RΩn,β(fn − f)‖R(Ωn) ≤ C(β, |Ωn|)‖fn − f‖L2(D) ≤ C,
where C does not depend on n, as |Ωn| → |Ω|. Then from Proposition 4.10 we infer that up to a
subsequence

RΩn,β(fn)−RΩn,β(f)→ v1Ω strongly in L2(D)
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for some v ∈ R(Ω). But from Step 1 we get that v = 0, so that the conclusion follows. �
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