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INTRODUCTION

In this thesis we study some homogenization processes that may model macro-
scopic properties of media whose microscopic behaviour takes lower-dimensional,
multi-dimensional or multi-scale structures into account. In mathematical terms,
this study can be traslated into the asymptotic behaviour via Γ-convergence of
integral functionals (see Chapter 1) which may model energies of these struc-
tures. In addition we face also the problem of the choice of the natural domains
in which the energies before homogenization and the limit problems are set since
it is not always the usual Sobolev space.

In Chapter 2 we deal with the asymptotic behaviour of integral functionals
which may model energies concentrated on multi-dimensional structures. The
model example we have in mind is that of composite elastic bodies composed
of n-dimensional elastic grains interacting through contact forces depending on
the relative displacements of their common boundaries (see Example 2.3). In a
general setting, following the approach of Ambrosio, Buttazzo and Fonseca [2],
we consider integrals of the form

Fε(u) =
∫

Ω

f
(x

ε
,
dDu

dµε

)
dµε,

defined on the space W 1,p
µε

(Ω;Rm) of Sobolev functions with respect to the mea-
sure µε, which is the set of Lp-functions of Ω whose distributional derivative is
a measure absolutely continuous with respect to µε with p-summable densities.
We study the limit as ε → 0 of such functionals under the hypotheses that f
is a Borel function 1-periodic in the first variable satisfying a standard growth
condition of order p, and

µε(B) = εnµ
(1

ε
B

)

where µ is a fixed 1-periodic Radon measure. In the model example the measure
µ, up to normalization, is the sum of the n-dimensional Lebesgue measure and
(n − 1)-dimensional Hausdorff measure concentrated on a 1-periodic closed set
E of σ-finite n− 1-dimensional Hausdorff measure and such that [0, 1]n \E has
a finite number of connected component, each one with a Lipschitz boundary.
We show (Theorem 2.7) that under suitable reasonably general requirements on
the measure µ (we will say that µ is ‘p-homogenizable’, see Definition 2.4), the
family (Fε) Γ-converges as ε → 0 to a functional of the form

Fhom(u) =
∫

Ω

fhom(Du) dx

on W 1,p(Ω;Rm), where the function fhom is described by the asymptotic formula
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fhom(A) = lim
k→+∞

inf
{ 1

kn

∫

[0,k)n

f
(
x,

dDu

dµ

)
dµ :

u ∈ W 1,p
µ,loc(R

n;Rm), u−Ax k-periodic
}

.

This formula generalizes the usual one, corresponding to the case when µ is
the Lebesgue measure (see Braides [23] and Müller [65]). Hence, in this case we
deal with energies defined on multi-dimensional structures whose homogeniza-
tion gives rise to integral functionals defined on full-dimensional domains. This
problem had been previously studied in the case when µ is the restriction of the
Lebesgue measure to a periodic set whose complement is composed by well sep-
arated bounded sets by Braides and Garroni [30] (media with stiff inclusions).
Another meaningful case is when µ is the (n−1)-dimensional Hausdorff measure
restricted to the union of the boundaries of a periodic partition of Rn. In this
case the functions in W 1,p

µ (Ω;Rm) are piecewise constant and the functionals
Fε can be interpreted as a finite-difference approximation of the homogenized
functional (Section 2.4, see also Kozlov [58], Pankov [67] and Davini [39]).

The approach described above is somehow complementary to the “smooth
approach” where the functionals Fε are defined as

Fε(u) =
∫

Ω

f
(x

ε
,∇u

)
dµε

on C∞(Ω;Rm), whose homogenization is studied by Zhikov [75] (see also Braides
and Chiadò Piat [24] for the case µ = χE with E periodic, Bouchitté and Fragalà
[20] and Bouchitté, Buttazzo and Seppecher [19] for relaxation results in the case
of general µ).

In the context of linear elasticity or perfect plasticity, in place of considering
energies depending on the deformation gradient Du, it is customary to consider
energy functionals depending explicitly on the linearized strain tensor Eu. Hence,
in Chapter 3 we study the asymptotic behaviour of functionals of the type

Fε(u, Ω) =
∫

Ω

f
(x

ε
,
dEu

dµε

)
dµε

defined in a particular class of functions with bounded deformation denoted by
LDp

µε
(Ω) (introduced in Section 3.1). More precisely, LDp

µε
(Ω) is the space of

functions u ∈ Lp(Ω;Rn), whose deformation tensor Eu is a measure absolutely
continuous with respect to µε with p-summable density dEu/dµε. Using both
classical and fine properties of functions with bounded deformation and the same
assumptions as in Chapter 2, we prove a homogenization theorem (Theorem 3.9).
Precisely, we show the existence of the Γ-limit of the functionals Fε with respect
to Lp-convergence in the Sobolev space W 1,p(Ω;Rn), and with respect to L1-
convergence in BD(Ω) (the space of functions with bounded deformation in Ω;
that is, the space of functions u ∈ L1(Ω;Rn) whose deformation tensor Eu is a
Radon measure with finite total variation in Ω, see [3]). We show that the Γ-limit
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admits an integral representation

Fhom(u,Ω) =
∫

Ω

fhom(Eu) dx

in W 1,p(Ω;Rn); moreover, if f is convex then

Fhom(u, Ω) =
∫

Ω

fhom(Eu) dx +
∫

Ω

f∞hom

( dEsu

d|Esu|
)
d|Esu|

in BD(Ω), where Eu is the density of the absolutely continuous part and Esu is
the singular part of Eu with respect to the Lebesgue measure; fhom is described
by an asymptotic formula and f∞hom denotes the recession function of fhom (see
(1.1) and [15] for relaxation of functionals defined on BD(Ω)).

Finally, we show that when the scaling argument leading to the functionals Fε

does not apply, non local effects can arise. More precisely, we consider functionals
of the type

F γ
ε (u, Ω) = εγ

∫

Ω

f
(x

ε
,
dEu

dµε

)
dµε ,

which in the previous approach tend to the null functional when γ > 0, and we
construct an explicit example showing that, with a suitable choice of γ, µε and of
the convergence with respect to which the Γ-limit is computed, we have a limit
functional of a non local nature (in the same spirit of Bellieud and Bouchitté
[18]).

In Chapter 4 we prove a general Homogenization Theorem for sets with os-
cillating boundaries and in Chapter 5 we apply this result to the description
of nonlinearly elastic thin films with a fast-oscillating profile. The behaviour of
such films is governed by an elastic energy, where two parameters intervene: a
first parameter ε represents the thickness of the thin film and a second one δ the
scale of the oscillations. The analytic description of the elastic energy is given
by a functional of the form

Eε,δ(u) =
∫

Ω(ε,δ)

W (Du) dx, (0.1)

where the set Ω(ε, δ) is of the form

Ω(ε, δ) =
{

x ∈ R3 : |x3| < ε f
(x1

δ
,
x2

δ

)
, (x1, x2) ∈ ω

}
, (0.2)

with f is a bounded 1-periodic function which parameterizes the boundary of
the thin film, which then has periodicity δ.

It is convenient to scale these energies by a change of variables and consider
the functionals

Eδ
ε (u) =

∫

Ω(δ)

W
(
D1u,D2u,

1
ε
D3u

)
dx, (0.3)
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where now

Ω(δ) =
{

x ∈ R3 : |x3| < f
(x1

δ
,
x2

δ

)
, (x1, x2) ∈ ω

}
. (0.4)

In this way we separate the effects of the two parameters ε and δ.

Fig. 0.1. fast oscillating boundaries

In a recent paper by Braides, Fonseca and Francfort [29] a general com-
pactness result for functional of thin-film type has been proven which comprises
energies of the form (0.3), showing that, with fixed δ = δ(ε), upon possibly ex-
tracting a subsequence, the family E

δ(ε)
ε Γ-converges as ε → 0 to a 2-dimensional

energy, which, if δ(ε) → 0 as ε → 0, can be identified with a 2d-functional of the
form

E(u) =
∫

ω

W̃ (D1u,D2u) dx. (0.5)

In many cases it is possible to describe W̃ explicitly in terms of W and f , and
as a consequence to prove that no passage to a subsequence is necessary. When
f = C is constant (i.e., the profile of the thin film is flat, and hence there
is no real dependence on δ) the description of the energy density W̃ has been
given by Le Dret and Raoult [59] who proved that W̃ = 2C Q2W ; here Q2

denotes the operation of 2d-quasiconvexification, and W is obtained from W by
minimizing in the third component. An equivalent formula, of ‘homogenization
type’, is given in [29] (see also Section 1.9 Theorem 1.46). If W 6= Q2W (i.e., W
is not quasiconvex). Both formulas underline the formation of microstructures
generated by the passage to the limit. When f is not constant, then the function
W̃ depends on the behaviour of δ with respect to ε. The case when δ = ε (or
more in general when δ/ε converges to a constant) has been treated in [29],
where it is shown that a homogenization-type formula for W̃ can be given. The
same method can be used when δ >> ε; in this case the recipe to obtain W̃ is
the following: first, keep δ fixed and apply the Le Dret and Raoult procedure,
considering the thickness of the thin film as a parameter. The output of this
procedure is a 2-dimensional energy of the form
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Eδ(u) =
∫

ω

2f
(x1

δ
,
x2

δ

)
Q2W (D1u, D2u) dx. (0.6)

We can then let δ tend to 0, and apply well-known homogenization procedures
of Braides and Müller (see Section 1.9) obtaining a limit functional, which turns
out to be the desired one. In the case δ << ε it is possible to make an ansatz in
the same spirit, arguing that the limit E can be obtained in the following two
steps:

(1) (Homogenization of sets with oscillating boundaries) First consider ε as
fixed, and let δ → 0, to obtain a limit functional of the form

Eε(u) =
∫

ω×(−1,1)

Whom

(
x3, D1u,D2u,

1
ε
D3u

)
dx

(we consider the normalized case sup f = 1).
Note that in this case an additional dependence on x3 is introduced, which

may underline a loss of coerciveness of the function Whom for certain values of
x3. The form of Whom will depend on W and on the sublevel sets of f ;

(2) (Thin film limit) Let ε → 0 and apply a suitable generalization of the
method of [29] to non-coercive functionals. In this way we obtain a limit energy
density

W hom(F ) = inf
k∈N

inf
{ 1

k2

∫

(0,k)2×(0,1)

Whom(x3, Du + (F , 0)) dx :

u ∈ W 1,p
loc ((0, 1)3;R3), u k-periodic in (x1, x2)

}
.

Note that the dependence on x3 implies that the simpler method of [59] cannot
be applied to this situation.

A partial result in this case has been obtained by Kohn and Vogelius [57]
who dealt with linear operators.

In Chapter 4 we give a general theory for the homogenization of non-convex
energies defined on sets with oscillating boundaries by generalizing the appli-
cation of the direct methods of Γ-convergence to homogenization as described
in Sections 1.7 and 1.9. We clarify and prove statement (1) above, by show-
ing that the functionals Eε are defined on a ‘degenerate Sobolev Space’ that
can be described by proving an auxiliary convex-homogenization result. The
formula for Whom can be obtained by solving a possibly degenerate localized 3d-
homogenization problem. In the case of convex W the determination of Whom(t, F )
for fixed t ∈ (−1, 1) essentially amount to solving a 2d-homogenization problem
with an energy which is coercive only on the set Et = {(x1, x2) ∈ R2 : f(x1, x2) >
|t|}, while in the general non-convex case the problem defining Whom(t, F ) is
genuinely three dimensional. We state and prove these results in a general n-
dimensional setting (for some related problems in the convex setting see e.g.
[31]).

In Chapter 5 we prove that by following steps (1) and (2) above we indeed
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obtain the description of W̃ . Even though this is an intrinsically vectorial prob-
lem, and hence the ‘natural’ structural condition on W is quasiconvexity, we
have been able to prove this result only with the additional hypothesis that W
is convex. The technical point where this assumption is needed is the separation
of scales argument, which assures that, essentially, homogenization comes first,
followed by the thin film 3d–2d limit. In general problems where only quasicon-
vexity is assumed this point is usually proved by a compactness argument which
uses some equi-integrability properties of gradients of optimal sequences for the
homogenization derived from the growth conditions on the energy density (see
Section 1.8.1; for the use of this argument in the framework of iterated homoge-
nization see [26] Chapter 22; for an application to heterogeneous thin films with
flat profile see Shu [68]). In the case of thin films with fast-oscillating profiles,
this technique cannot be used since we have a control on the gradients of optimal
sequences only on varying wildly oscillating domains. In the convex case though,
optimal sequences for the homogenization can be obtained simply by scaling
one single periodic function, and hence their gradients automatically enjoy equi-
integrability properties. Note that this difficulty is similar to those encountered
when dealing with higher-order theories of thin films. In that case the neces-
sary compactness properties can be obtained by adding a small perturbation
with higher-order derivatives (as in the paper by Bhattacharya and James [17]).
We do not follow this type of argument since even a singular perturbation by
higher-order gradients might interact with the homogenization process, as shown
by Francfort and Müller [50]. More applications of Γ-convergence arguments to
thin films theory can be found in [16, 28].

In Chapter 6 and 7 we deal with the asymptotic behaviour of Dirichlet prob-
lems in perforated domains. A well-known result shows the appearance of a
‘strange’ extra term as the period of the perforation tends to 0. In a paper by Cio-
ranescu and Murat [38] (see also e.g. earlier work by Marchenko and Khrushlov
[62]) the following result (among others) is proved. Let Ω be a bounded open set
in Rn, n ≥ 3 and for all δ > 0 let Ωδ be the periodically perforated domain

Ωδ = Ω \
⋃

i∈Zn

Bδ
i ,

where Bδ
i denotes the open ball of centre xδ

i = iδ and radius δn/(n−2). Let
φ ∈ H−1(Ω) be fixed, and let uδ ∈ H1

0 (Ω) be the solution of the problem

{−∆u = φ
u ∈ H1

0 (Ωδ),

extended to 0 outside Ωδ. Then, as δ → 0, the sequence uδ converges weakly in
H1

0 (Ω) to the function u which solves the problem

{−∆u + Cu = φ
u ∈ H1

0 (Ω),
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where C denotes the capacity of the unit ball in Rn:

C = cap(B1) = inf
{∫

Rn

|Dζ|2dx : ζ ∈ H1(Rn), ζ = 1 on B1(0)
}

.

This result can be easily translated in a equivalent variational form and set in the
framework of Γ-convergence, since uδ is the solution of the minimum problem

min
{∫

Ω

|Dv|2 dx− 2〈φ, v〉 : v ∈ H1
0 (Ω), v = 0 on Ω \ Ωδ

}
,

and the limit function u solves

min
{∫

Ω

(|Dv|2 + C|v|2) dx− 2〈φ, v〉 : v ∈ H1
0 (Ω)

}
.

In Chapter 6 we give a direct proof of the non-linear vector-valued version of
this variational problem under minimal assumptions. More precisely, let Ω be a
bounded open set in Rn and let m ≥ 1. Let 1 < p < n and for all δ > 0 let Ωδ

be the periodically perforated domain defined as above, where now Bδ
i denotes

the open ball of centre xδ
i = iδ and radius δn/(n−p) (for notational simplicity we

do not treat the case n = p, which can be dealt with similarly; for the necessary
changes in the statements see [38]). Note that this is the only meaningful scaling
for the radii of the perforation, since other choices give trivial convergence results.
Let f : Mm×n → [0, +∞) be a Borel function satisfying a growth condition of
order p, and let (δj) be a sequence of strictly positive numbers converging to 0
such that there exists the limit

g(z) = lim
j

δ
np

n−p

j Qf
(
δ
− n

n−p

j z
)

for all z ∈ Rm, where Qf denotes the quasiconvexification of f . Note that this
condition is not restrictive upon passing to a subsequence and is trivially satisfied
if f is positively homogeneous of degree p. Then, if φ ∈ W−1,p′(Ω;Rm) is fixed,
the minimum values

mj = inf
{∫

Ωδj

f(Du) dx + 〈φ, u〉 : u ∈ W 1,p
0 (Ωδj ;R

m)
}

converge to the minimum value

m = min
{∫

Ω

(
Qf(Du) + ϕ(u)

)
dx + 〈φ, u〉 : u ∈ W 1,p

0 (Ω;Rm)
}
,

where ϕ is given by the nonlinear capacitary formula

ϕ(z) = inf
{∫

Rn

g(Dζ)dx : ζ − z ∈ W 1,p(Rn;Rm), ζ = 0 on B1(0)
}

,
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which agrees with those obtained in convex cases (see e.g. [13], [42], [69], [34]).
Moreover, if uj ∈ W 1,p

0 (Ωδj ;R
m) is such that

∫
Ωδj

f(Duj) dx+〈φ, uj〉 = mj+o(1)

as j → +∞, then, upon extending uj to 0 outside Ωδj , (uj) admits a subsequence
weakly converging in W 1,p

0 (Ω;Rm) to a solution of the problem defining m.
Note that we do not assume any structure or regularity condition on f . In

the case of convex and differentiable f we may recover the corresponding result
for systems contained in the paper by Casado Diaz and Garroni [34], where more
arbitrary geometries are also considered. Note moreover that ϕ may depend on
the subsequence (δj), and as a consequence the values mj may not converge.
Furthermore, the function ϕ may not be positively homogeneous of degree p, as
already observed by Casado Diaz and Garroni [35].

The proof of the result is based only on a new simple and direct Γ-convergence
approach. The fundamental tool is a ‘joining lemma for perforated domains’
(Lemma 6.6), which, loosely speaking, allows us to restrict our attention to
families of functions (uδ), converging to a function u, which equal the constant
u(xδ

i ) on suitable annuli surrounding Bδ
i . The contribution of these functions

on such annuli easily leads to the formula defining ϕ. This method seems of
interest also since it can be easily applied to sequences of integral functionals
by considering minimum problems mj where we replace f(Du) by fj(x,Du). In
Chapter 7 we examine the case fj(x,Du) = f(x/εj , Du). In order to highlight the
effects of homogenization we only treat the case when f is positively homogeneous
of degree 2 in the second variable and n ≥ 3; the same method with minor
changes applies for n = 2 or to p-homogeneous f and 1 < p ≤ n (for changes in
the statements see e.g. [38], [34]).

Since these problems are usually expressed in terms of G-convergence of oper-
ators (see [12]) we describe our results with that terminology. Consider problems
of the general form {−div aε(x,Du) = φ

u = 0 on ∂Ωδ,
(0.7)

(for the sake of clarity in the exposition we consider only the case of aε linear and
symmetric). A recent compactness result by Dal Maso and Murat [43] ensures
that, for a fixed choice of δ = δ(ε), upon possibly extracting a subsequence, the
solutions uε converge to that of a limit problem of the form

{
−div

(
a0(x,Du)

)
+ ϕu = φ

u = 0 on ∂Ω,
(0.8)

where the operator A0 = −div a0(x, Du) is the G-limit of the sequence of opera-
tors −div aε(x,Du) (see e.g. [71], [66], [1], [76], [37], [67]). The G-limit operator
is well defined by a compactness argument; in particular, if aε(x, z) = a(x/ε, z)
then the G-limit (homogenized) operator Ahom = −div ahom(Du) is indepen-
dent from the subsequence and does not depend on x. The determination of
the function ϕ ∈ L∞ is a subtler problem and involves a complex capacitary
computation.
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In Chapter 7 we address the problem of the effective computation of ϕ in
(0.8) when aε(x, z) = a(x/ε, z) in (0.7) with a 1-periodic. We highlight various
regimes, at which the oscillating Dirichlet boundary problems of the form




−div a

(x

ε
,Du

)
= φ

u = 0 on ∂Ωδ,

(0.9)

behave differently (again, for the sake of simplicity here we describe the results
in the case when the function a is linear, continuous and symmetric, and n ≥ 3
only):

(i) (separation of scales) if ε << δn/(n−2) or ε >> δ then the whole family of
solutions uε,δ of (0.9) converges to the solution u of a problem of the form

{
−div

(
ahom(Du)

)
+ Cu = φ

u = 0 on ∂Ω;
(0.10)

i.e., ϕ = C. In the case ε << δn/(n−2) the constant C is given by the homogenized
capacitary problem

C = caphom(B1) = inf
{∫

Rn

〈ahom(Du), Du〉 dx : u ∈ H1(Rn), u = 1 on B1(0)
}

.

(0.11)
In a sense, we may first let ε → 0 and then δ → 0. In the case ε >> δ, conversely,
we may let first act ε as a parameter. As a consequence the dependence on x/ε
in (0.9) can be ‘frozen’ and we are led to consider the parameterized capacitary
problems

capy(B1) = inf
{∫

Rn

〈a(y, Du), Du〉 dx : u ∈ H1(Rn), u = 1 on B1(0)
}

. (0.12)

The overall effect of letting ε → 0 is then obtained by averaging, and we get

C =
∫

(0,1)n

capy(B1) dy. (0.13)

(ii) (almost-periodic effects) in the remaining cases, the two periods ε and δ
present in (0.9) interact. As a consequence in general the family of solutions uε,δ

does not converge. The problems satisfied by converging subsequences may be of
the form (0.10) with C described by a single problem (periodic behaviour) of the
form

cap0(B1) = inf
{∫

Rn

〈b(x,Du), Du〉 dx : u ∈ H1(Rn), u = 1 on B1(0)
}

, (0.14)

with b a suitable scaled operator (in some cases independent of x), or by a
formula of the type (0.13) (almost-periodic behaviour) with capy substituted by
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a suitable scaled and localized problem, but may even give rise to a problem of
the form (0.8) with non-constant ϕ (finely-tuned interplay between δ and ε).

All the results above may be easily derived from the corresponding description
of the Γ-limits (see [45], [41], [26], [22]) of the functionals Fε,δ of the form

Fε,δ(u) =





∫

Ω

f
(x

ε
,Du

)
dx if u = 0 on

⋃
i∈Zn Bδ

i

+∞ otherwise

(0.15)

for f(x, z) = 〈a(x, z), z〉 (a linear) (see Remark 7.1(ii)). We show that the Γ-
limits of converging subsequences of these functionals as ε → 0 and δ → 0 are of
the form

F (u) =
∫

Ω

fhom(Du) dx +
∫

Ω

ϕ|u|2 dx, (0.16)

where fhom is the homogenized energy density of f (see Section 1.9 Theorem
1.46) and ϕ is described above. Note that in the cases ε << δn/(n−2) and δ << ε
then ϕ is constant and does not depend on the subsequence. Also in this case
we propose a direct proof of all these results based on the use of the ‘joining
lemma on varying domains’ (Lemma 7.2, see Lemma 6.6 in a general context).
This technique is explained in a general framework in Section 7.2. Note that we
do not make use of integral representation techniques such as those in [40].

In order to make the presentation more self-contained we introduce in Chap-
ter 1 the necessary background on measure theory, Γ-convergence and relaxation
and functions of bounded variation and deformation. Moreover we state the clas-
sical homogenization results that are used in the sequel.

Chapter 2 is the paper [8], with a modified definition of ‘p-homogenizable’
measure, done in collaboration with A. Braides and V. Chiadò Piat, Chapter 3
is the paper [9] in collaboration with F. B. Ebobisse, Chapters 4, 5, 6 and 7 are
papers [5], [7] and [6] in collaboration with A. Braides.



1

PRELIMINARIES

We introduce the notation and the classical definitions and results that we will
use in the next chapters.

1.1 Notation

Let Ω be a bounded open subset of Rn, B(Ω) denotes the family of Borel subsets
of Ω and Bc(Ω) the family of Borel subsets with compact closure in Ω. We denote
by A(Ω) the family of all open subsets of Ω. In the sequel, n,m ∈ N with n ≥ 2,
m ≥ 1. If x ∈ Rn then xα = (x1, . . . , xn−1) ∈ Rn−1 is the vector of the first n−1
components of x, and Dα =

(
∂

∂x1
, . . . , ∂

∂xn−1

)
. The notation Mm×n stands for

the space of m×n real matrices and Mn×n
sym for the space of n×n real symmetric

matrices.
Given a matrix F ∈ Mm×n, and following the notation introduced in [59],

we write F = (F |Fn), where Fi denotes the i-th column of F , 1 ≤ i ≤ n, and
F = (F1, . . . , Fn−1) ∈ Mm×n−1 is the matrix of the first n− 1 columns of F . F
denotes also (F , 0) when no confusion arises.

Ck(Ω;Rm) is the space of k-times continuously differentiable functions u :
Ω → Rm, Ck

c (Ω;Rm) are functions in Ck(Ω;Rm) with compact support. We
will use standard notation for the Sobolev and Lebesgue spaces W 1,p(Ω;Rm)
and Lp(Ω;Rm), W 1,p

0 (Ω;Rm) is the closure of C∞c (Ω;Rm) in W 1,p(Ω;Rm) and
W−1,p′(Ω;Rm) is the dual space of W 1,p

0 (Ω;Rm) where p′ denotes the dual
exponent of p ≥ 1; when p = 2 and m = 1 we use the notation H1(Ω),
H1

0 (Ω) and H−1(Ω) respectively. The letter c will denote a strictly positive con-
stant independent of the parameters under consideration, whose value may vary
from line to line and ω a generic fixed modulus of continuity; i .e., a function
ω : [0, +∞) → [0,+∞) continuous in 0 and with ω(0) = 0. The Hausdorff
k-dimensional measure and the n-dimensional Lebesgue measure in Rn are des-
ignated as Hk and Ln respectively. If E ⊂ Rn is a Lebesgue-measurable set
then |E| or Ln(E) is its Lebesgue measure. If E is a subset of Rn then χE is
its characteristic function. Bρ(x) is the open ball of center x and radius ρ. The
symbols 〈·, ·〉 and | · | stand for the Euclidean scalar product and the Euclidean
norm. For any two vectors a and b in Rn, the symmetric tensor product a¯ b is
the symmetric n×n matrix defined by a¯ b = 1

2 (a⊗ b+ b⊗ a), being the tensor
product a ⊗ b the matrix whose entries are aibj . We denote [t] the integer part
of t.

Let f : RN → [0,+∞] be convex. We define the recession function f∞ of f
as
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f∞(x) = lim
t→∞

f(tx)
t

for every x ∈ RN . (1.1)

Note that from the convexity of f it is possible to prove that the limit of f(tx)/t
as t tends to +∞ exists so that f∞ is well defined. It is well-known that f∞ is
convex and positively homogeneous of degree one.

1.2 Basic notions of measure theory

Definition 1.1 A function µ : B(Ω) → Mm×n is a matrix-valued measure (or
a Mm×n-valued measure) on Ω if it is countably additive; i .e.,

B =
⋃

i∈N

Bi, Bi ∩Bj = ∅ if i 6= j ⇒ µ(B) =
∑

i∈N

µ(Bi).

The set of such measures will be denoted by M(Ω;Mm×n). If no confusion may
arise, we denote by µij, i = 1, . . . , n and j = 1, . . . ,m the entries of µ.

We say that a matrix-valued measure is a vector measure if m = 1 and that
it is a measure if n,m = 1. We say that a measure is a positive measure if it
takes its values in [0, +∞].

The set of vector measures, measures and of positive measures on Ω will be
denoted by M(Ω;Rn), M(Ω) and M+(Ω), respectively.

A function µ : Bc(Ω) → Mm×n is a matrix-valued Radon measure on Ω if
µ|B(Ω′) is a measure for all Ω′ ⊂⊂ Ω. As above, we will speak of vector Radon
measures, Radon measures and of positive Radon measures.

We define the restriction µ B of µ to B ⊂ Ω by

µ B(A) = µ(B ∩A)

for all A ∈ B(Ω).

Definition 1.2 If µ ∈ M(Ω;Mm×n) for all B ∈ B(Ω) we define the total vari-
ation of µ on B by

|µ|(B) = sup
{∑

i∈N

|µ(Bi)| : B =
⋃

i∈N

Bi

}
.

The set function |µ| is a positive measure on Ω.

We say that µ ∈ M(Ω;Mm×n) is bounded or finite if it has finite total
variation in Ω; i .e., |µ|(Ω) < +∞.

Definition 1.3 Let µ ∈M+(Ω) and λ ∈M(Ω;Mm×n). We say that λ is abso-
lutely continuous with respect to µ (and we write λ << µ) if λ(B) = 0 for every
B ∈ B(Ω) with µ(B) = 0. We say that λ is singular with respect to µ if there
exists a set E ∈ B(Ω) such that µ(E) = 0 and λ(B) = 0 for all B ∈ B(Ω) with
B ∩ E = ∅.
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Definition 1.4 If µ ∈ M(Ω) we adopt the usual notation Lp
µ(Ω;Mm×n) to

indicate the space of Mm×n-valued p-summable functions with respect to |µ| on
Ω. We omit µ if it is the Lebesgue measure, and we omit Mm×n if n,m = 1.

Remark 1.5 If f ∈ L1
µ(Ω;Mm×n) and µ ∈ M(Ω) then we define the measure

fµ ∈M(Ω;Mm×n) by

fµ(B) =
∫

B

f dµ .

Definition 1.6. (Locally weak∗ convergence) Let µ and the sequence (µh)
be matrix-valued Radon measures; we say that (µh) locally weakly∗ converges to
µ if

lim
h→+∞

∫

Ω

φ dµh =
∫

Ω

φdµ

for every φ ∈ Cc(Ω;Mm×n).

Theorem 1.7. (Radon-Nikodym) If λ ∈ M(Ω;Mm×n), and µ ∈ M+(Ω),
then there exists a function f ∈ L1

µ(Ω;Mm×n) and a measure λs, singular with
respect to µ, such that

λ = fµ + λs .

This will be called the Radon-Nikodym decomposition of λ with respect to µ.

Theorem 1.8. (Besicovitch Derivation Theorem) Let µ, λ and f be as in
Theorem 1.7. Then for µ-almost all x ∈ sptµ there exists the limit

dλ

dµ
(x) = lim

ρ→0+

λ(Bρ(x))
µ(Bρ(x))

,

and f(x) = dλ
dµ (x) for µ-almost all x ∈ spt µ.

1.3 Lower semicontinuity and relaxation

Let (X, d) be a metric space.

Definition 1.9 A function F : X → [−∞, +∞] will be said to be (sequentially)
lower semicontinuous (l.s.c. for short) at u ∈ X, if for every sequence (uj)
converging to u we have

F (x) ≤ lim inf
j

F (uj), (1.2)

or in other words

F (u) = min{lim inf
j

F (uj) : uj → u}. (1.3)

We will say that F is lower semicontinuous (on X) if it is l.s.c. at all u ∈ X.
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Definition 1.10 Let F : X → [−∞, +∞] be a function. Its lower semicontin-
uous envelope F is the greatest lower semicontinuous function not greater than
F , i.e. for every u ∈ X

F (u) = sup{G(u) : G l.s.c., G ≤ F}. (1.4)

F is called also relaxation of F or relaxed function.

Remark 1.11 Notice that the function F can be described as follows: for every
u ∈ X

F (u) = inf{lim inf
j

F (uj) : uj → u}. (1.5)

The reason for introducing this notion can be found in the following well-know
theorem (see e.g. [26] Theorem 1.9).

Theorem 1.12. (Weierstrass) Let F : X → [−∞, +∞] be such that there
exists a compact set K ⊂ X with infX F (u) = infK F (u). Then there exists the
minimum value minX F (u) and it is equals the infimum infX F (u). Moreover,
the minimum points for F are exactly all the limits of converging sequences uj

such that limj F (uj) = infX F .

Let f : Ω × RN → [0,+∞] be a given function, we consider functionals
defined on the space Mb(Ω;RN ) of bounded vector measures of the form

F (λ,B) =





∫

B

f(x, v) dµ if λ = vµ with v ∈ L1(Ω;RN )

+∞ otherwise,

(1.6)

for every λ ∈Mb(Ω;RN ) amd B ∈ B(Ω). The following theorem prove that the
relaxed functional F with respect to the locally weak∗-convergence in the sense
of measures can be written as an integral

F (λ,B) =
∫

B

ϕ
(
x,

dλ

dµ

)
dµ +

∫

B

ϕ∞
(
x,

dλs

d|λs|
)
d|λs| (1.7)

for a suitable convex integrand ϕ depending on f , where ϕ∞ is the recession
function of ϕ and λ is split into the sum

λ =
dλ

dµ
µ + λs

by using the Radon-Nikodym Theorem 1.7 and the Besicovitch Derivation The-
orem 1.8 (see [32] Theorem 3.3.1).

Theorem 1.13 Assume the functional F (·,Ω) defined in (1.6) is finite in at least
one v0 ∈ L1(Ω;RN ). Then, there exists a Borel function ϕ : Ω×RN → [0,+∞]
such that
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(i) for µ-a.e. x ∈ Ω the function ϕ(x, ·) is convex and l.s.c. on RN ;
(ii) formula (1.7) holds for every λ ∈Mb(Ω;RN ) and every B ∈ B(Ω);
(iii) the recession function ϕ∞(x, s) is l.s.c. in (x, s).

1.4 Quasiconvexity and rank-one-convexity
Definition 1.14 We say that f : Mm×n → R is quasiconvex if f is continuous,
and for all A ∈ Mm×n and for every bounded open set E of Rn

|E|f(A) ≤
∫

E

f(A + Dϕ) dx

for every ϕ ∈ C∞c (E;Rm).

Definition 1.15 A function f : Mm×n → [−∞,+∞] is rank-1-convex if and
only if for all A,B ∈ Mm×n such that rank (A−B) ≤ 1

f(tA + (1− t)B) ≤ tf(A) + (1− t)f(B) (1.8)

for all t ∈ (0, 1) for which the right-hand side makes sense.

Remark 1.16 (i) If f is rank-1-convex, and 0 ≤ f(A) ≤ c(1 + |A|p), then f
satisfies a local Lipschitz condition

|f(A)− f(B)| ≤ c(1 + |A|p−1 + |B|p−1)|A−B| (1.9)

for all A,B ∈ Mm×n;
(ii) if m = 1 or n = 1 then rank-1-convexity is the same as convexity;
(iii) if 1 ≤ p < ∞ and f quasiconvex satisfies the growth condition from

above 0 ≤ f(A) ≤ c(1 + |A|p) for all A ∈ Mm×n, then f is rank-one-convex.

Theorem 1.17 Let 1 ≤ p < ∞ and f : Mm×n → [0, +∞) satisfying

0 ≤ f(A) ≤ c(1 + |A|p) for all A ∈ Mm×n.

The functional

F(u) =
∫

Ω

f(Du) dx

is (sequentially) weakly l.s.c. on W 1,p(Ω;Rm) if and only if f is a quasiconvex
function.

(See e.g. [26] Remark 5.15, Theorem 5.16 and Proposition 4.3).

Definition 1.18 Let h : Mm×n → [0,+∞) be a Borel function.
The W 1,p-quasiconvexification of h is given by the formula

Qh(A) = inf
{∫

(0,1)n

h(A + Du) dx : u ∈ W 1,p
0 ((0, 1)n;Rm)

}
(1.10)

for A ∈ Mm×n. We say that h is W 1,p-quasiconvex if Qh = h.
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Proposition 1.19 If f : Mm×n → R is a locally bounded Borel function, then
Qf is quasiconvex.

(See e.g. [26] Proposition 6.7).

Remark 1.20 If f : Mm×n → R is a locally bounded Borel function, then

Qf = sup{g : Mm×n → R : g quasiconvex, g ≤ f}; (1.11)

that is, Qf is the quasiconvex envelope of f . In fact, if we denote by h the right-
hand side of (1.11), then Qf ≤ h since Qf is quasiconvex and Qf ≤ f . On the
other hand, if g is quasiconvex and g ≤ f , then g = Qg ≤ Qf , so that h ≤ Qf .

Remark 1.21 If h is a Borel function as above, and there exist constants
c1, c2 > 0 such that c1(|A|p − 1) ≤ h(A) ≤ c2(|A|p + 1), then the function
Qh is quasiconvex (see Proposition 1.19) and the functional

H(u) =
∫

Ω

Qh(Du) dx

is the lower-semicontinuous envelope of the functional

H(u) =
∫

Ω

h(Du) dx

on W 1,p(Ω;Rm) with respect to the Lp(Ω;Rm) convergence. In fact, by Theorem
1.46 and Remark 1.24 (v) the lower-semicontinuous envelope H of H can be
written in an integral form H(u) =

∫
Ω

ψ(Du) dx, with ψ quasiconvex. Since
ψ ≤ h then by Remark 1.20 ψ = Qψ ≤ Qh and H ≤ H. On the other hand Qh
is quasiconvex; hence, H is lower semicontinuous with respect to the Lp(Ω;Rm)
convergence (see Theorem 1.17), so that H ≤ H (see Definition 1.10).

1.5 Γ-convergence

We introduce the definition of De Giorgi’s Γ-convergence. Let (X, d) be a metric
space. We say that a sequence of functions Fj : X → [−∞,+∞] Γ-converge to
F : X → [−∞, +∞] (as j → +∞) if for all u ∈ X we have:

(i) (liminf inequality) for every sequence (uj) converging to u

F (u) ≤ lim inf
j

Fj(uj); (1.12)

(ii) (limsup inequality) for all η > 0 there exists a sequence (uj) converging
to u such that

F (u) ≥ lim sup
j

Fj(uj)− η . (1.13)
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If (i) and (ii) hold we write F (u) = Γ- limj Fj(u) and F is the Γ-limit of Fj .
We also introduce the notation

F ′(u) = Γ- lim inf
j

Fj(u) = inf
{

lim inf
j

Fj(uj) : uj → u
}

,

F ′′(u) = Γ- lim sup
j

Fj(u) = inf
{

lim sup
j

Fj(uj) : uj → u
}

,

so that the equality F ′ = F ′′ is equivalent to the existence of the Γ-limj Fj(u).
We will say that a family (Fε) Γ-converges to F if for all sequences (εj) of

positive numbers converging to 0 (i) and (ii) above are satisfied with Fεj
in place

of Fj .
Very important properties of Γ-convergence are the compactness and the

convergence of the minimum values of a sequence Fj to the minimum value of F ,
as the following theorems show (see e.g. [26] Theorem 7.2 and Proposition 7.9):

Theorem 1.22. (Compactness) Let (X, d) be a separable metric space, and
for all j ∈ N let Fj : X → [−∞, +∞] be a function. Then there is an increasing
sequence of integers (jk) such that the Γ-limk Fjk

(u) exists for all u ∈ X.

Theorem 1.23. (Convergence of minimum problems) Let Fj Γ-converge
to F. Let there exist a compact set K ⊂ X such that infX Fj = infK Fj for all
j ∈ N. Then

∃min
X

F = lim
j

inf
X

Fj .

Moreover, if (jk) is an increasing sequence of integers and (uk) is a converging
sequence such that limk Fjk

(uk) = limj infX Fj then its limit is a minimum point
for F .

From the definition of Γ-convergence we immediately obtain the following
properties.

Remark 1.24 (i) F ′ and F ′′ are lower semicontinuous functions on X;

(ii) If G is a continuous function and F = Γ- limj Fj then F+G = Γ- limj(Fj+
G);

(iii) If each function Fj is positively homogeneous of degree p, then F ′ and
F ′′ are positively homogeneous of degree p;

(iv) If each function Fj is convex then F ′′ is convex but in general F ′ is not
convex;

(v) If Fj = F for all j ∈ N, then Γ- limj Fj = F .

(vi) Γ- lim infj F j = Γ- lim infj Fj and Γ- lim supj F j = Γ- lim supj Fj .
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1.6 Increasing set functions
Definition 1.25 A set function α : A(Ω) → [0, +∞] is called an increasing set
function if α(∅) = 0 and α(V ) ≤ α(U) if V ⊂ U . An increasing set function is
said to be subadditive if

α(U ∪ V ) ≤ α(U) + α(V ) (1.14)

for all U, V ∈ A(Ω); α is said to be superadditive if

α(U ∪ V ) ≥ α(U) + α(V ) (1.15)

for all U, V ∈ A(Ω) with U ∩ V = ∅; α is said to be inner regular if

α(U) = sup{α(V ) : V ∈ A(Ω), V ⊂⊂ U} (1.16)

for all U ∈ A(Ω).

It will be useful to characterize measures as increasing set functions enjoying
special properties which are often satisfied by Γ-limits. The following criterion is
due to De Giorgi and Letta (see e.g. [26] Theorem 10.2).

Theorem 1.26 (Measure property criterion) Let α : A(Ω) → [0,+∞] be an
increasing set function. The following statements are equivalent:

(i) α is the restriction to A(Ω) of a Borel measure on Ω;
(ii) α is subadditive, superadditive and inner regular;
(iii) the set function

β(E) = inf{α(U) : U ∈ A(Ω), E ⊆ U} (1.17)

defines a Borel measure on Ω.

The properties of increasing set functions will be used to obtain the compact-
ness of Γ-limits as in the following theorem (see e.g. [26] Theorem 10.3).

Theorem 1.27. (Compactness) Let (Fε) : Lp(Ω;Rm)×A(Ω) → [0, +∞] (ε >
0) be a family of functionals. Suppose that for every sequence (εk) of positive real
numbers converging to 0 and for every u ∈ W 1,p(Ω;Rm)

α′(U) = Γ- lim inf
k

Fεk
(u,U)

α′′(U) = Γ- lim sup
k

Fεk
(u,U)

(the Γ-limits are performed with respect to the Lp(U ;Rm) convergence) define
inner regular increasing set functions. Then for every sequence (εj) of positive
real numbers converging to 0 there exists a subsequence (εjk

) such that the Γ-limit

F (u,U) = Γ- lim
k

Fεjk
(u,U)

exists for all U ∈ A(Ω) and u ∈ W 1,p(Ω;Rm).
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Remark 1.28 Note that fixed a sequence (εj) converging to 0 by Theorem 1.22
and a diagonal procedure we can extract a subsequence (not relabeled) such that
Fε(·, U) Γ-converges to a functional F (·, U) for all U in a dense family of open
sets R.

1.7 The direct method of Γ-convergence

The direct methods of Γ-convergence for the integral functionals consist in prov-
ing general abstract compactness results that assure the existence of Γ-converging
sequences, and then in recovering enough information on the structure of the Γ-
limits as to obtain a representation in a suitable form.

This method in the version which follows is explained in detail in the book
by Braides and Defranceschi [26] (see also Dal Maso [41] and Buttazzo [32]).

1.7.1 Compactness and measure property of the Γ-limit

Definition 1.29 Let Fε : Lp(Ω;Rm) × A(Ω) → [0, +∞] be a family of func-
tionals. We say that (Fε) satisfies the Lp-fundamental estimate as ε → 0 if for
all U,U ′, V ∈ A(Ω) with U ′ ⊂⊂ U , and for all σ > 0, there exists Mσ > 0
and εσ > 0 such that for all u, v ∈ Lp(Ω;Rm) and ε < εσ there exists a cut-off
function ϕ ∈ C∞c (U ; [0, 1]), ϕ = 1 in U ′, such that

Fε(ϕu + (1− ϕ)v, U ′ ∪ V ) ≤ (1 + σ)(Fε(u,U) + Fε(v, V ))

+Mσ

∫

(U∩V )\U ′
|u− v|p dx + σ . (1.18)

The definition of fundamental estimate extends to sequences (Fj) and to func-
tionals F with obvious changes.

We show, giving an example, how we usually proceed to prove that some
functionals satisfy the fundamental estimate.

Example 1.30 Consider the functional F : Lp(Ω;Rm) × A(Ω) → [0, +∞] de-
fined by

F (u,U) =





∫

U

f(x,Du(x))dx if u ∈ W 1,1(Ω;Rm)

+∞ otherwise,

(1.19)

where f : Ω × Mm×n → [0, +∞) is a Borel function, convex in the second
variable, such that there exists C > 0 such that

0 ≤ f(x,A) ≤ C(1 + |A|p), f(x, 2A) ≤ C(1 + f(x,A)) (1.20)

for all x ∈ Ω and A ∈ Mm×n. In order to prove (1.18) it suffices to consider u, v ∈
W 1,1(Ω;Rm), and fix U,U ′, V ∈ A(Ω) with U ′ ⊂⊂ U . We set δ = dist (U ′, ∂U),
and we fix N ∈ N, N > 0. With fixed k ∈ {1, . . . , N} let ϕ be a cut-off function
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between {x ∈ U : Ndist (x,U ′) < δ(k − 1)} and {x ∈ U : Ndist (x, U ′) < δk}
with |Dϕ|δ ≤ 2N . We define for all k = 1, . . . , N

Ck = {x ∈ U : δ(k − 1) ≤ Ndist (x,U ′) < δk}.

We then have

F (ϕu + (1− ϕ)v, U ′ ∪ V ) ≤ F (u,U) + F (v, V )

+
∫

Ck∩V

f(x, ϕDu + (1− ϕ)Dv + (u− v)Dϕ) dx

= F (u,U) + F (v, V )

+
∫

Ck∩V

f
(
x, 2

(1
2
(ϕDu + (1− ϕ)Dv) +

1
2
(u− v)Dϕ

))
dx

≤ F (u,U) + F (v, V )

+C

∫

Ck∩V

(
1 + f

(
x,

1
2
(ϕDu + (1− ϕ)Dv) +

1
2
(u− v)Dϕ

))
dx

≤ F (u,U) + F (v, V )

+C

∫

Ck∩V

(
1 +

1
2
f(x, ϕDu + (1− ϕ)Dv) +

1
2
f(x, (u− v)Dϕ)

)
dx

≤ F (u,U) + F (v, V )

+C

∫

Ck∩V

(
1 +

1
2
ϕf(x,Du) +

1
2
(1− ϕ)f(x,Dv) +

1
2
f(x, (u− v)Dϕ)

)
dx

≤ F (u,U) + F (v, V )

+C

∫

Ck∩V

(
1 + f(x,Du) + f(x,Dv) + C(1 + |Dϕ|p|u− v|p)) dx.

Since

N∑

k=1

∫

Ck∩V

(1 + C + f(x,Du) + f(x, Dv)) dx

≤
∫

(U∩V )\U ′
(1 + C + f(x, Du) + f(x,Dv)) dx

≤ (1 + C)|U ∩ V |+ F (u,U) + F (v, V )

we can choose k such that
∫

Ck∩V

(1+C+f(x,Du)+f(x,Dv)) dx ≤ 1
N

(
(1+C)|U∩V |+F (u,U)+F (v, V )

)
.

We then have

F (ϕu + (1− ϕ)v, U ′ ∪ V ) ≤ (1 +
C

N
)(F (u,U) + F (v, V ))
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+
C

N
(1 + C)|U ∩ V |+ C2

(2N

δ

)p
∫

Ck∩V

|u− v|p dx

≤ (1 +
C

N
)(F (u,U) + F (v, V ))

+
C

N
(1 + C)|U ∩ V |+ C2

(2N

δ

)p
∫

(U∩V )\U ′
|u− v|p dx.

If we choose
N = Nσ =

[
max

{C

σ
,
C

σ
(1 + C)|U ∩ V |

}]
+ 1,

([t] denotes the integer part of t) and

Mσ = C2
(2N

δ

)p

,

then (1.18) is satisfied.

From the fundamental estimate we can derive some inequalities for the Γ-
limits (see e.g. [26] Proposition 11.5).

Proposition 1.31 Let (Fε) be a family of functionals defined on Lp(Ω;Rm) ×
A(Ω) with values in [0,+∞] satisfying the Lp-fundamental estimate as ε → 0,
and let (εj) be a sequence of positive real numbers converging to 0. If for every
u ∈ Lp(Ω;Rm) and U ∈ A(Ω) we denote

F ′(u,U) = Γ- lim inf
j

Fεj (u,U) (1.21)

F ′′(u,U) = Γ- lim sup
j

Fεj (u,U), (1.22)

then we have
F ′(u,U ′ ∪ V ) ≤ F ′(u,U) + F ′′(u, V ) (1.23)

F ′′(u,U ′ ∪ V ) ≤ F ′′(u, U) + F ′′(u, V ) (1.24)

for all u ∈ Lp(Ω;Rm) and U,U ′, V ∈ A(Ω) with U ′ ⊂⊂ U .

From the previous proposition we obtain some inner regularity results, pro-
vided that a growth estimate is satisfied (see e.g. [26] Proposition 11.6).

Proposition 1.32 Let (Fε) be as in Proposition 1.31, and let F ′ and F ′′ be
defined by (1.21) and (1.22), respectively. Let q ≥ 1, and let u ∈ W 1,q(Ω;Rm) ∩
Lp(Ω;Rm); if F ′(u, ·) and F ′′(u, ·) are increasing set functions and

F ′′(u, U) ≤ c

∫

U

(1 + |Du|q) dx (1.25)

for all U ∈ A(Ω), then F ′(u, ·) and F ′′(u, ·) are inner regular increasing set
functions. Moreover, F ′′(u, ·) is subadditive.
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Hence, if we have a family of functionals which satisfy the Lp-fundamental
estimate as ε → 0 (1.18) and growth condition (1.25), by Proposition 1.32 we
can apply Theorem 1.27 and we get existence of the Γ-limit F (u,U) for every
U ∈ A(Ω) and u ∈ W 1,p(Ω;Rm). Moreover by Proposition 1.32 we also have the
subadditivity and inner regularity of the set function F (u, ·), while the superad-
ditivity is obvious. Hence, by the Measure property criterion (Theorem 1.26) we
get that F (u, ·) is the restriction of a Borel measure to A(Ω).

1.7.2 Γ-limits and boundary values

If we assume that estimates of the form (1.25) are satisfied uniformly by Lp-
fundamental estimate as ε → 0, and we consider some boundary conditions then
we get another property of the Γ-limits (see e.g. [26] Proposition 11.7).

Proposition 1.33 Let (Fε) be a family of functionals defined on W 1,p(Ω;Rm)×
A(Ω) with values in [0, +∞] satisfying the Lp-fundamental estimate as ε → 0
(we regard these functionals as extended to +∞ on Lp(Ω;Rm) \W 1,p(Ω;Rm)),
and let (εj) be a sequence of positive real numbers converging to 0. Let

Fεj (u,U) ≤ c

∫

U

(1 + |Du|p) dx (1.26)

hold for all U ∈ A(Ω) and u ∈ W 1,p(Ω;Rm). If we take φ ∈ W 1,p(Ω;Rm), and
we define Gφ

εj
: Lp(Ω;Rm) → [0, +∞]

Gφ
εj

(u) =





Fεj (u, Ω) if u− φ ∈ W 1,p
0 (Ω;Rm)

+∞ otherwise,

then we have

F ′(u, Ω) = Γ- lim inf
j

Fεj (u, Ω) = Γ- lim inf
j

Gφ
εj

(u) (1.27)

F ′′(u, Ω) = Γ- lim sup
j

Fεj (u, Ω) = Γ- lim sup
j

Gφ
εj

(u) (1.28)

for all u ∈ W 1,p(Ω;Rm) such that u− φ ∈ W 1,p
0 (Ω;Rm).

Remark 1.34 The previous proposition is equivalent to say that if (1.26) holds,
together with the Lp-fundamental estimate as ε → 0, the minimizing sequences
for the Γ-limits can be taken with the same boundary values as their limit.

1.7.3 Integral representation on Sobolev spaces

The last step of the direct methods is the integral representation of the Γ-limit;
for this purpose it is important to consider the Γ-limit as a functional defined
both on functions and sets and single out the properties which assure that it can
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be written in an integral form. Hence we introduce the “localization method”
which consists in considering functionals of the form

F (u,U) =
∫

U

f(x, Du(x)) dx,

with u ∈ W 1,p(Ω;Rm) and U ∈ A(Ω), and we give the Integral Representation
Theorem also with its proof since it will be useful in the next chapters.

Theorem 1.35 Let Ω be a bounded open subset of Rn, and let 1 ≤ p < ∞.
Let F : W 1,p(Ω;Rm)×A(Ω) → [0, +∞) be a functional satisfying the following
conditions:

(i) (locality) F is local, i.e. F (u,U) = F (v, U) if u = v a.e. on U ∈ A(Ω);
(ii) (measure property) for all u ∈ W 1,p(Ω;Rm) the set function F (u, ·) is

the restriction of a Borel measure to A(Ω);
(iii) (growth condition) there exists c > 0 and a ∈ L1(Ω) such that

F (u, U) ≤ c

∫

U

(a(x) + |Du|p) dx

for all u ∈ W 1,p(Ω;Rm) and U ∈ A(Ω);
(iv) (translation invariance in u) F (u + z, U) = F (u,U) for all z ∈ Rm,

u ∈ W 1,p(Ω;Rm) and U ∈ A(Ω);
(v) (lower semicontinuity) for all U ∈ A(Ω) F (·, U) is sequentially lower

semicontinuous with respect to the weak convergence in W 1,p(Ω;Rm).
Then there exists a Carathéodory function f : Ω ×Mm×n → [0,+∞) satisfying
the growth condition

0 ≤ f(x, A) ≤ c(a(x) + |A|p) (1.29)

for all x ∈ Ω and A ∈ Mm×n, such that

F (u,U) =
∫

U

f(x,Du(x)) dx (1.30)

for all u ∈ W 1,p(Ω;Rm) and U ∈ A(Ω).

Proof. Step 1: definition of f .
Fix A ∈ Mm×n; by (ii) F (Ax, ·) can be extended to a Borel measure on Ω

which, by (iii), is absolutely continuous with respect to the Lebesgue measure.
Hence there exists a density function gA ∈ L1(Ω) such that

F (Ax,U) =
∫

U

gA(x) dx

for all U ∈ A(Ω). We set
f(x,A) = gA(x)
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for all x ∈ Ω and A ∈ Mm×n. Note that by condition (iii), with fixed A ∈ Mm×n

0 ≤ f(x, A) ≤ c(a(x) + |A|p)
for a.e. x ∈ Ω.

Step 2: integral representation on piecewise affine functions.
Let U ∈ A(Ω) and let u ∈ W 1,p(Ω;Rm) be piecewise affine on U , i.e. we can

write

u|U =
N∑

j=1

χUj
(Ajx + zj),

where the sets Uj are disjoint open sets with |U \ ⋃N
j=1 Uj | = 0, Aj ∈ Mm×n,

zj ∈ Rm for j = 1, . . . , N . By (i), (ii), (iv) and Step 1

F (u,U) =
N∑

j=1

F (u,Uj) =
N∑

j=1

F (Ajx + zj , Uj)

=
N∑

j=1

F (Ajx, Uj) =
N∑

j=1

∫

Uj

f(x,Aj) dx

=
N∑

j=1

∫

Uj

f(x, Du) dx =
∫

U

f(x, Du) dx;

that is, the representation (1.30).

Step 3: rank-1-convexity of f .
We want to show that, with fixed A, B ∈ Mm×n such that rank(B−A) = 1,

and t ∈ (0, 1)

f(y, tB + (1− t)A) ≤ tf(y,B) + (1− t)f(y, A)

for all y ∈ Ω. By definition we can take

f(y, A) = lim sup
ρ→0+

F (Ax,B(y, ρ))
|B(y, ρ)|

for all y ∈ Ω and A ∈ Mm×n. Hence it will suffice to show that if B(y, ρ) ⊂ Ω
then

F ((tB + (1− t)A)x, B(y, ρ)) ≤ tF (Bx,B(y, ρ)) + (1− t)F (Ax,B(y, ρ)). (1.31)

Let a ∈ Rm, b ∈ Rn be vectors such that B −A = a⊗ b. Consider the function
v ∈ W 1,∞

loc (Rn;Rm) defined by

v(x) =





Ax + 〈b, x〉a− (1− t)ja if j ∈ Z, j ≤ 〈b, x〉 < j + t

Ax + (1 + j)ta if j ∈ Z, j + t ≤ 〈b, x〉 < j + 1.
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We also define the sets

EA = {x ∈ Rn : ∃j ∈ Z : j + t ≤ 〈b, x〉 < j + 1},
EB = {x ∈ Rn : ∃j ∈ Z : j ≤ 〈b, x〉 < j + t}.

If we set uj(x) = 1
j v(jx), we have

uj ⇀∗ (tB + (1− t)A)x weakly∗ in W 1,∞(Ω;Rm)
χ 1

j EA
⇀∗ 1− t weakly∗ in L∞(Ω)

χ 1
j EB

⇀∗ t weakly∗ in L∞(Ω);

moreover, Duj = A on 1
j EA and Duj = B on 1

j EB . Hence by (v) and (iv) we
obtain

F ((tB + (1− t)A)x,B(y, ρ))
≤ lim inf

j
F (uj , B(y, ρ))

= lim inf
j

(
F (Ax,

1
j
EA ∩B(y, ρ)) + F (Bx,

1
j
EB ∩B(y, ρ))

)

= lim inf
j

(∫

B(y,ρ)

χ 1
j EA

gA(x) dx +
∫

B(y,ρ)

χ 1
j EB

gB(x) dx
)

= t

∫

B(y,ρ)

gB(x) dx + (1− t)
∫

B(y,ρ)

gA(x) dx

= tF (Bx,B(y, ρ)) + (1− t)F (Ax,B(y, ρ)),

proving (1.31), and finally the rank-1-convexity of f(y, ·), taking the lim sup as
ρ → 0+. By Remark 1.16(i) we have that f(y, ·) is locally Lipschitz, and hence
f is a Carathéodory function.

Step 4: an inequality by continuity.
As a consequence of Step 3 and (1.29) the functional u 7→ ∫

U
f(x, Du) dx is

continuous with respect to the strong convergence of W 1,p(U ;Rm). If U ⊂⊂ Ω we
can find a sequence uj ∈ W 1,p(Ω;Rm) converging strongly to u in W 1,p(Ω;Rm),
and such that their restrictions to U are piecewise affine. Then

F (u,U) ≤ lim inf
j

F (uj , U)

= lim
j

∫

U

f(x,Duj) dx =
∫

U

f(x,Du) dx

by (v) and Step 3.

Step 5: equality by translation.
Let u ∈ W 1,p(Ω;Rm); we consider the functional G : W 1,p(Ω;Rm)×A(Ω) →

[0, +∞) defined by
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G(v, U) = F (u + v, U)

that satisfies all hypotheses (i)–(v) of Theorem 1.35 (with different c and a in
condition (iii)). Hence, by Steps 1–4 above, there exists a Carathéodory function
ψ : Ω×Mm×n → [0, +∞) such that

G(v, U) ≤
∫

U

ψ(x,Dv) dx

for all v ∈ W 1,p(Ω;Rm) and for all U ⊂⊂ Ω open sets, with equality for v
piecewise affine on U . Let us take an open set U ⊂⊂ Ω, and uj piecewise affine
on U converging strongly to u in W 1,p(Ω;Rm) as in Step 4. We have

∫

U

ψ(x, 0) dx = G(0, U) = F (u,U)

≤
∫

U

f(x,Du) dx = lim
j

∫

U

f(x,Duj) dx

= lim
j

F (uj , U) = lim
j

G(uj − u,U)

≤ lim
j

∫

U

ψ(x,Duj −Du) dx =
∫

U

ψ(x, 0) dx;

hence all inequalities are in fact equalities, and in particular

F (u,U) =
∫

U

f(x,Du) dx

for all U ⊂⊂ Ω.

Step 6: integral representation.
By (ii) the integral representation obtained in Step 5 holds for all open subsets

U of Ω.

The following result characterizes a class of integral functionals with inte-
grand independent of the space variable (see e.g. [26] Proposition 9.2).

Corollary 1.36 Let F : W 1,p(Ω;Rm)×A(Ω) → [0, +∞). There exists a quasi-
convex f : Mm×n → [0,+∞) satisfying

0 ≤ f(A) ≤ c(1 + |A|p) ∀A ∈ Mm×n (1.32)

such that the functional F can be represented by

F (u,U) =
∫

U

f(Du) dx (1.33)

if and only if conditions (i)–(v) of Theorem 1.35 hold and in addition
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(vi)(translation invariance in x)

F (Ax,B(y, ρ)) = F (Ax,B(z, ρ))

for all A ∈ Mm×n, y, z ∈ Ω, and ρ > 0 such that B(y, ρ) ∪B(z, ρ) ⊂ Ω.

1.8 Application of the direct methods to integral functionals with
standard growth conditions

Let Ω be a bounded subset of Rn, let p ≥ 1 and let Fε : Lp(Ω;Rm) × A(Ω) →
[0, +∞] be a family of functionals of the form

Fε(u, U) =





∫

U

fε(x,Du) dx if u ∈ W 1,p(Ω;Rm)

+∞ otherwise,

(1.34)

where fε : Rn ×Mm×n → [0, +∞) is a Borel function satisfying the standard
growth condition of order p

α|A|p ≤ fε(x, A) ≤ β(1 + |A|p) (1.35)

for all x ∈ Ω and A ∈ Mm×n.

Proposition 1.37 Let (Fε) be a family of functionals defined in (1.34) which
satisfies the growth condition (1.35). Then (Fε) satisfies the Lp-fundamental es-
timate as ε → 0.

(See e.g. [26] Proposition 12.2). Hence by Section 1.7.1 we obtain the following
proposition.

Proposition 1.38 Let (Fε) be a family of functionals defined in (1.34). Then
for every sequence (εj) of positive real numbers converging to 0 there exists a
further subsequence (εjk

) such that the Γ-limit

F (u,U) = Γ- lim
k

Fεjk
(u,U)

exists for all u ∈ W 1,p(Ω;Rm) and U ∈ A(Ω), and F (u, ·) is the restriction of a
Borel measure to A(Ω).

Remark 1.39 The same conclusions of Proposition 1.38 follow if we suppose in
the place of (1.35) that

g(x,A) ≤ fε(x,A) ≤ c(1 + g(x,A)),

with g(x, ·) convex, g(x, 2A) ≤ c(1 + g(x,A)), and g(x, A) ≤ c(1 + |A|p) for all
x ∈ Ω and A ∈ Mm×n, taking into account Example 1.19.

By Proposition 1.38 and the Integral Representation Theorem 1.35 we get
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Theorem 1.40 Let (fε) be a family of Borel functions with fε : Ω×Mm×n →
[0, +∞) satisfying the estimate

α|A|p ≤ fε(x, A) ≤ β(1 + |A|p)

for all x ∈ Ω and A ∈ Mm×n, and let

Fε(u,U) =
∫

U

fε(x,Du) dx (1.36)

if u ∈ W 1,p(Ω;Rm). Then, for every sequence (εj) of positive real numbers
converging to 0 there exists a subsequence (εjk

) and a Carathéodory function
ϕ : Ω ×Mm×n → [0, +∞) satisfying the same growth estimate as fε such that,
if we define

F (u,U) =
∫

U

ϕ(x,Du) dx (1.37)

for u ∈ W 1,p(Ω;Rm), we have

F (u,U) = Γ- lim
k

Fεjk
(u,U) (1.38)

for all u ∈ W 1,p(Ω;Rm) and U ∈ A(Ω).

In the case of functionals with integrands independent of the space variable
Γ-convergence reduces to a pointwise convergence (see e.g. [26] Proposition 12.8).

Proposition 1.41 Let p > 1, and let (fε) be a family of continuous functions
with fε : Mm×n → [0, +∞) satisfying the estimate

α|A|p ≤ fε(A) ≤ β(1 + |A|p)

for all A ∈ Mm×n. Let, for every bounded open set U of Rn,

Fε(u,U) =
∫

U

fε(Du) dx (1.39)

if u ∈ W 1,p(U ;Rm), and let (εj) be a sequence of positive real numbers converging
to 0. We have that Fεj (u,U) Γ-converges to F (u,U) for all U bounded open sets
of Rn and u ∈ W 1,p(U ;Rm) if and only if Qfεj → f pointwise and

F (u,U) =
∫

U

f(Du) dx (1.40)

for all U bounded open sets of Rn and u ∈ W 1,p(U ;Rm).

1.8.1 Higher integrability of gradients
The following lemma (see [49]) allows to pass from bounded sequences to se-
quences with equi-integrable p-th power of the gradient. This result can be
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sometimes helpful since it allows us to assume that the optimal sequences for
the Γ-limit can be taken with equi-integrable p-th power gradient.

Lemma 1.42 For every bounded sequence (uj) in W 1,p(Ω;Rm) there exists a
subsequence (not relabelled) and a sequence (vj) in W 1,p(Ω;Rm) such that

lim
j
|{uj 6= vj} ∪ {Duj 6= Dvj}| = 0

and (|Dvj |p) is equi-integrable.

Remark 1.43 Let fj : Rn×Mm×n → [0,+∞) be a Borel function satisfying the
standard growth condition of order p (1.35) and let (uj) be a bounded sequence
in W 1,p(Ω;Rm) with uj → u in Lp(Ω;Rm). Then there exist a subsequence,
still denoted by (uj), and a sequence (vj) in W 1,p(Ω;Rm) such that vj → u in
Lp(Ω;Rm), (|Dvj |p) is equi-integrable and

lim sup
j

∫

Ω

fj(x,Dvj) dx ≤ lim sup
j

∫

Ω

fj(x,Duj) dx.

To check this, choose (vj) as in Lemma 1.42, so that vj → u and

lim sup
j

∫

Ω

fj(x,Duj) dx ≥ lim sup
j

∫

{uj=vj}∩{Duj=Dvj}
fj(x,Duj) dx

= lim sup
j

∫

Ω

fj(x,Dvj) dx

the last equality following from the equi-integrability of (|Dvj |p), and the growth
conditions on fj .

1.9 Periodic homogenization

In this section we use the direct methods of Γ-convergence to obtain a homoge-
nization theorem.

1.9.1 Coercive homogenization

Let us consider
Fε(u) =

∫

Ω

f
(x

ε
,Du(x)

)
dx,

where u ∈ W 1,p(Ω;Rm) and the function f : Rn ×Mm×n → [0,+∞) is a Borel
function satisfying the following conditions:

(i) (periodicity) f is 1-periodic in the first variable;
(ii) (standard growth condition of order p) there exist 0 < α ≤ β such that

α|A|p ≤ f(x,A) ≤ β(1 + |A|p)

for all x ∈ Rn and A ∈ Mm×n.
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By Theorem 1.40 we have also for this class of integral functionals a com-
pactness and integral representation result; we still denote ϕ the homogenized
integrand of the Γ-limit, which could depend on the sequence (εjk

).
In order to show that the whole family (Fε) Γ-converges, we prove the fol-

lowing Propositions.

Proposition 1.44 The function ϕ can be chosen independent of the first vari-
able.

Proof. By Corollary 1.36 it is sufficient to prove that if A ∈ Mm×n, y, z ∈
Rn and ρ > 0 then

Γ- lim
k

Fεjk
(Ax,Bρ(y)) = Γ- lim

k
Fεjk

(Ax,Bρ(z)).

By Proposition 1.33 there exists a sequence (uk) ⊂ W 1,p
0 (Bρ(y);Rm) such that

uk → 0 in Lp(Bρ(y);Rm) and

lim
k

Fεjk
(Ax + uk, Bρ(y)) = Γ- lim

k
Fεjk

(Ax,Bρ(y)).

We extend uk to Rn by 0 outside Bρ(y). Let r > 1, let τk ∈ Rn be given by

(τk)i = εjk

[zi − yi

εjk

]

and let vk(x) = uk(x − τk). Note that τk → z − y and τk is a period for x 7→
f(x/εjk

, A) for all A, so that

Fεjk
(Ax + vk, τk + Bρ(y)) = Fεjk

(Ax + uk, Bρ(y)).

Moreover, vk = 0 outside τk +Bρ(y). We have vk → 0 in Lp(Brρ(z);Rm); hence,

Γ- lim
k

Fεjk
(Ax, Bρ(z))

≤ Γ- lim
k

Fεjk
(Ax, Brρ(z))

≤ lim inf
k

Fεjk
(Ax + vk, Brρ(z))

≤ lim inf
k

Fεjk
(Ax + uk, Bρ(y)) + |Brρ \Bρ|β(1 + |A|p)

= Γ- lim
k

Fεjk
(Ax, Bρ(y)) + |Brρ \Bρ|β(1 + |A|p).

Letting r → 1 we obtain the inequality

Γ- lim
k

Fεjk
(Ax,Bρ(z)) ≤ Γ- lim

k
Fεjk

(Ax, Bρ(y));

the opposite inequality is obtained by a symmetry argument.

The following proposition is crucial in proving that the Γ-limit does not
depend on the subsequence (εj).
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Proposition 1.45 Let f : Rn×Mm×n → [0,+∞) be a Borel function satisfying
the periodicity condition and such that sup{f(x, A) : x ∈ Rn} is finite for all
A ∈ Mm×n; then the limit

lim
t→+∞

1
tn

inf
{∫

(0,t)n

f(x,A + Du(x)) dx : u ∈ W 1,p
0 ((0, t)n;Rm)

}
(1.41)

exists for all A ∈ Mm×n.

(See e.g. [26] Proposition 14.4).
By applying the previous results we have the following Homogenization The-

orem (see e.g. [26] Theorems 14.5 and 14.7) which shows that ϕ can be expressed
by an asymptotic formula which does not depend on (εjk

).

Theorem 1.46. (Homogenization Theorem) Let f : Rn×Mm×n → [0, +∞)
be a Borel function satisfying the periodicity assumption and the standard growth
condition of order p ≥ 1. If Ω is a bounded open set of Rn and we set for all
ε > 0

Fε(u) =
∫

Ω

f
(x

ε
,Du(x)

)
dx (1.42)

for all u ∈ W 1,p(Ω;Rm), then we have

Γ- lim
ε→0

Fε(u) =
∫

Ω

fhom(Du(x)) dx,

for all u ∈ W 1,p(Ω;Rm), where fhom : Mm×n → [0, +∞) is a quasiconvex
function satisfying the asymptotic homogenization formula

fhom(A) = lim
t→+∞

1
tn

inf
{∫

(0,t)n

f(x, A + Du(x)) dx : u ∈ W 1,p
0 ((0, t)n;Rm)

}

(1.43)
for all A ∈ Mm×n.

If in addition f(x, ·) is convex for all x ∈ Rn then fhom is given by the
cell-problem formula

fhom(A) = inf
{∫

(0,1)n

f(y, A + Du(y)) dy : u ∈ W 1,p
# ((0, 1)n;Rm)

}
(1.44)

for all A ∈ Mm×n, where W 1,p
# ((0, 1)n;Rm) = {u ∈ W 1,p

loc (Rn;Rm) : u 1-periodic}.
For the proof of the last statement see [61].

1.9.2 Non-coercive convex homogenization

Theorem 1.47. (Homogenization for Non-coercive Functionals) Let Ω be
a bounded open subset of Rn with Lipschitz boundary. Let g be a convex function
satisfying the periodicity assumption and such that there exists C > 0 such that
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0 ≤ g(x,A) ≤ C(1 + |A|p), g(x, 2A) ≤ C(1 + g(x,A)) .

Then we have

Γ- lim
ε→0

Gε(u) =
∫

Ω

ψ(Du(x)) dx,

for all u ∈ W 1,1(Ω;Rm), where ψ : Mm×n → [0, +∞) is the convex function
given by the cell-problem formula (1.44). Moreover, if ψ satisfies

lim
|A|→+∞

ψ(A)
|A| = +∞, (1.45)

then the Γ-limit exists on the whole Lp(Ω;Rm), and it takes the value +∞ on
Lp(Ω;Rm) \W 1,1(Ω;Rm).

Proof. By Example 1.30 the conclusions of Theorem 1.46 still hold. It re-
mains to extend the representation of the Γ-limit G outside W 1,p(Ω;Rm).

In the course of the proof (ρj) denotes a sequence of mollifiers with spt ρj ⊂
B(0, 1/j), and ρj ∗ v is the convolution between ρj and v. Note that since Ω
has Lipschitz boundary, by the standard reflection technique near ∂Ω (see for
instance Adams [1] Theorems 4.26, 4.28 and Section 4.29 for details) all functions
can be extended to some Ω′ ⊃⊃ Ω, so that we can suppose that each ρj ∗ v is
defined on the whole Ω′. Such an extension will not influence the validity of our
arguments.

For every u ∈ Lp(Ω;Rm), let Gε(u,U) denote the localization of the func-
tionals Gε to the set U ∈ A(Ω).

Step 1: G′(u,U) ≥ ∫
U

ψ(Du) dx for all U ∈ A(Ω) and u ∈ W 1,1(Ω;Rm).
Note that the Γ-limit G exists for all u ∈ Lp(Ω;Rm) and for all R in a dense

family of open sets R (see Remark 1.28), hence G(·, R) is convex for all R ∈ R.
G′(u, ·) is an increasing set function for all u, and from the definition of Γ-liminf,
it can be immediately checked by a translation argument that for all U, V ∈ A(Ω),
v ∈ Lp(Ω;Rm), and y ∈ Rn, if V ⊂⊂ y + U then G′(vy, V ) ≤ G′(v, U), where
vy(x) = v(x− y).

For all U,U ′ ∈ A(Ω) such that U ′ ⊂⊂ U there exists R ∈ R such that
U ′ ⊂⊂ R ⊂⊂ U . We can choose j large enough as to have R ⊂⊂ y + U for all
y ∈ B(0, 1/j), hence using Jensen’s inequality and the properties of G′ recalled
above, we get

G(ρj ∗ u,R) ≤
∫

B(0,1/j)

ρj(y)G(uy, R) dy

≤
∫

B(0,1/j)

ρj(y)G′(u,U) dy = G′(u,U)

and
G(ρj ∗ u,U ′) ≤ G′(u,U).
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On the other hand, by the representation of G on W 1,p(Ω;Rm), we have

G(ρj ∗ u, U ′) =
∫

U ′
ψ(D(ρj ∗ u)) dx.

Since the functional v 7→ ∫
U ′ ψ(Dv) dx is lower semicontinuous with respect to

the Lp-convergence, and ρj ∗ u → u in Lp(U ′,Rm), we get by the previous
formulae

∫

U ′
ψ(Du) dx ≤ lim inf

j

∫

U ′
ψ(D(ρj ∗ u)) dx ≤ G′(u,U).

By the arbitrariness of U ′ ⊂⊂ U the step is concluded.

Step 2: if ψ satisfies (1.45) then G′(u, Ω) = +∞ for all u ∈ Lp(Ω;Rm) \
W 1,1(Ω;Rm).

We proceed exactly as in the previous step, noting that (1.45) implies that

lim inf
j

∫

U ′
ψ(D(ρj ∗ u)) dx = +∞.

Step 3: G′′(u,U) ≤ ∫
U

ψ(Du) dx for all U ∈ A(Ω) and u ∈ W 1,1(Ω;Rm).
We have, using the lower semicontinuity of G′′ and Jensen’s inequality,

G′′(u,U) ≤ lim inf
j

G′′(ρj ∗ u,U) = lim inf
j

G(ρj ∗ u, U)

= lim inf
j

∫

U

ψ(D(ρj ∗ u)) dx

≤ lim inf
j

∫

U

∫

B(0,1/j)

ρj(y)ψ(D(u(x− y))) dy dx

= lim inf
j

∫

B(0,1/j)

ρj(y)
∫

U+y

ψ(Du) dx dy

≤ lim inf
j

∫

B(0,1/j)

ρj(y)
∫

U ′
ψ(Du) dx dy =

∫

U ′
ψ(Du) dx,

for all U ′ ⊃⊃ U . By the arbitrariness of U ′ the proof is achieved.

1.10 Extensions of the direct methods

Convexity is crucial in establishing Theorem 1.47. In some cases though it is
possible to extend that result to non-convex integrands.

From Theorem 1.47 follows that we can define

W 1,ψ(Ω;Rm) =
{

u ∈ W 1,1(Ω;Rm) :
∫

Ω

ψ(Du) dx < +∞
}
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and

W 1,p(Ω;Rm) ⊂ W 1,ψ(Ω;Rm) ⊂ W 1,1(Ω;Rm) .

Let Fε : Lp(Ω;Rm)×A(Ω) → [0, +∞] be defined as follow

Fε(u) =





∫

Ω

f
(x

ε
, Du(x)

)
dx if u ∈ W 1,p(Ω;Rm)

+∞ otherwise,

(1.46)

where f : Rn ×Mm×n → [0, +∞) is a Borel function which satisfies the period-
icity assumption and the following conditions:

g(x,A) ≤ f(x,A) ≤ c(1 + g(x,A)), (1.47)

with g : Rn ×Mm×n → [0, +∞) Borel function, 1-periodic in the first variable
and convex in the second one, such that

0 ≤ g(x,A) ≤ c(1 + |A|p) g(x, 2A) ≤ c(1 + g(x,A)) (1.48)

for all x ∈ Ω and A ∈ Mm×n.
As already noted in Remark 1.39, we get compactness and integral repre-

sentation on W 1,p(Ω;Rm) also under these assumptions. In general we can not
extend the Γ-limit on W 1,ψ(Ω;Rm) but we can just conclude by Theorem 1.47
that the Γ-limit is +∞ on W 1,1(Ω;Rm) \W 1,ψ(Ω;Rm); however similar results
hold in some particular cases as the following Sections 1.10.1 and 1.10.2 show.

1.10.1 Homogenization with non-standard growth conditions

Let Ω be a bounded subset of Rn, let p ≤ q < p∗ and let Fε : Lp(Ω;Rm)×A(Ω) →
[0, +∞] be defined as follow

Fε(u, U) =





∫

U

fε(x,Du) dx if u ∈ W 1,p(Ω;Rm)

+∞ otherwise,

where fε : Rn×Mm×n → [0,+∞) is a Borel function satisfying the non-standard
growth condition

α|A|p ≤ fε(x,A) ≤ β(1 + |A|q) (1.49)

for all x ∈ Ω and A ∈ Mm×n.
We assume that Ω has a Lipschitz boundary and by Rellich’s Theorem and

a generalization of the direct methods of Γ-convergence, we prove compactness
and integral representation theorems on W 1,q(Ω;Rm), which are the analogue
of Proposition 1.38 and Theorem 1.40.
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We restrict our attention to the case of homogenization and we study the
convex case thanks to which we will then deal with the non-convex case; hence
we consider

Gε(u) =
∫

Ω

g
(x

ε
,Du

)
dx

where u ∈ W 1,q(Ω;Rm) and g : Rn × Mm×n → [0,+∞) is a Borel function,
1-periodic in the first variable and convex in the second one, such that it satisfies
the non-standard growth conditions (1.49).

Repeating the proof of Theorem 1.47 we extend the Γ-limit

G(u,U) =
∫

U

ψ(Du(x)) dx,

for all U ∈ A(Ω) and u ∈ W 1,p(Ω;Rm), where ψ satisfies the homogenization
formula (1.44). Hence if we define

W 1,ψ(U ;Rm) =
{

u ∈ W 1,p(U ;Rm) :
∫

U

ψ(Du) dx < +∞
}

for every bounded open subset U of Rn, then

W 1,q(U ;Rm) ⊂ W 1,ψ(U ;Rm) ⊂ W 1,p(U ;Rm)

and the Γ-limit G is finite only in W 1,ψ(Ω;Rm).
Now we consider

Fε(u) =
∫

Ω

f
(x

ε
,Du(x)

)
dx

where u ∈ W 1,p(Ω;Rm) and f : Rn × Mm×n → [0, +∞) is a Borel function
1-periodic in the first variable and which satisfies (1.47), with g : Rn×Mm×n →
[0, +∞) Borel function, 1-periodic in the first variable and convex in the second
one, which satisfies (1.49) and g(x, 2A) ≤ c(1 + g(x,A)) for all x ∈ Ω and
A ∈ Mm×n.

Using the results of convex homogenization, we get existence and integral
representation of the Γ-limit of Fε

F (u,U) =
∫

U

γ(x,Du) dx

for all U ∈ A(Ω) and u ∈ W 1,p(Ω;Rm), with F finite only in W 1,ψ(Ω;Rm).
It is possible to prove that γ can be chosen independent of the first variable

and it satisfies the homogenization formula (1.43).
For more details on this argument see Chapter 21 of [26].

1.10.2 Oscillating boundaries
Another case is the homogenization of non-convex functionals defined on sets
with oscillating boundaries. In Chapter 4 we study this problems proving the
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existence of the Γ-limit on the whole Lp(Ω;Rm) and we show that the integral
representation holds on the whole domain of the Γ-limit that will be a ‘degenerate
Sobolev Space’. Also in this case the ‘degenerate Sobolev Space’ will be defined
as domain of the Γ-limit of the convex case.

1.11 The spaces BV and BD
We summarize some definitions and basic results on functions of bounded vari-
ations and on functions with bounded deformation which will be useful in the
sequel. For a general exposition of the theory of functions of bounded variation
we refer to [47], [46], [51], [77] and [4]. For a general exposition of the theory of
functions with bounded deformation we refer to [71], [72], [56], [63], [11], [74],
[73], [3].

Given a function u ∈ L1(Ω;Rm), we say that x ∈ Ω is a Lebesgue points of
u if and only if there exists z ∈ Rn such that

lim
ρ→0+

1
ρn

∫

Bρ(x)

|u(y)− z| dx = 0 . (1.50)

We denote Ωu the set of Lebesgue points of u in Ω. If z exists then it is unique
and we define ũ(x) = z; we call ũ precise representative of u.

We denote by Su the set of points which are not Lebesgue points and we
call it discontinuity set of u; the set Su is Lebesgue-negligible and the function
ũ : Ωu → Rm coincides with u Ln-almost everywhere in Ωu = Ω \ Su.

Definition 1.48 We say that x ∈ Ω belongs to Ju, the jump set of u, if and
only if there exist a unit normal ν ∈ Sn−1 and two vectors a and b in Rn (a 6= b)
such that

lim
ρ→0+

1
ρn

∫

B+
ρ (x,ν)

|u(y)− a| dy = 0

lim
ρ→0+

1
ρn

∫

B−ρ (x,ν)

|u(y)− b| dy = 0

where B±
ρ (x, ν) = {y ∈ Bρ(x) : 〈y − x,±ν〉 > 0}.

The triplet (a, b, ν) is uniquely determined up to a change of sign of ν and
a permutation of (a, b). For every x ∈ Ju we define u+(x) = a, u−(x) = b and
νu(x) = ν.

It is easy to prove that Ju and Su are Borel sets (Ju ⊂ Su) and that u+, u−

and ũ are Borel functions.

Definition 1.49 Given a Borel set J ⊂ RN , we say that J is countably (HN−1, N−
1)-rectifiable (rectifiable for short) if

J = R ∪
⋃

i≥1

Ki

where HN−1(R) = 0 and each Ki is a compact subset of a C1 (N−1)-dimensional
manifold.
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Thus, for every rectifiable set J it is possible to define HN−1 a.e. a unitary
normal vector field ν.

Now we have set all the tools to describe the structure of BV and BD func-
tions.

Definition 1.50 Let u ∈ L1(Ω;Rm). We say that u is a function of bounded
variation, and we write u ∈ BV (Ω;Rm), if all its distributional first derivatives
Diuj are Radon measure with finite total variation in Ω; i .e.,

∫

Ω

ujDiφdx = −
∫

Ω

φdDiuj

for all φ ∈ C1
c (Ω), i = 1, . . . , n and j = 1, . . . , m.

We denote by Du the Mm×n-valued measure whose entries are Diuj.

Definition 1.51 For every u ∈ BV (Ω;Rm) we consider the Radon-Nikodym
decomposition Du = Dau + Dsu of Du, where Dau is absolutely continuous
and Dsu is singular with respect to the Lebesgue measure Ln. We may further
decompose the singular part Dsu as Dsu = Dju + Dcu where Dju = Du Su is
the jump part of Du, and Dcu = Dsu (Ω \ Su) is the Cantor part of Du. We
can then write

Du = Dau + Dju + Dcu .

Theorem 1.52 If u ∈ BV (Ω;Rm) then
(1) for Ln-almost every x ∈ Ω there exists the approximate gradient of u,

∇u; i .e.,

lim
ρ→0

1
ρn

∫

Bρ(x)

|u(y)− u(x)− 〈∇u(x), y − x〉|
|y − x| dy = 0,

and it is the density of the absolutely continuous part of Du; i .e., Dau = ∇uLn;

(2) Su is rectifiable, Hn−1(Su \ Ju) = 0 and we have

Dju = (u+ − u−)⊗ νuHn−1 Su,

where νu is defined by Du = νu|Du| |Du|-a.e. and coincides with that of Defini-
tion 1.48 on Ju Hn−1-a.e. on Su;

(3) for any Borel set B with Hn−1(B) < +∞, we have that |Dcu|(B) = 0.

For a complete proof of points (1), (2) and (3) see [4] Theorem 3.81, [21] Theorems
1.63 and 1.66, respectively.

Theorem 1.53. (Chain rule in BV) Let u ∈ BV (Ω;Rm) and f ∈ C1(Rm;Rk)
be a Lipschitz. Then v = f ◦ u belongs to BV (Ω;Rk) and

Dv = ∇f(ũ)(∇uLn + Dcu) + (f(u+)− f(u−))⊗ νuHn−1 Su .
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(See [4] Theorem 3.93 and [21] Section 1.8.2).
For any y, ξ ∈ Rn, ξ 6= 0, and any Ω ⊂ Rn we define

πξ := {y ∈ Rn : 〈y, ξ〉 = 0},
Ωξ

y := {t ∈ R : y + tξ ∈ Ω},
Ωξ := {y ∈ πξ : Ωξ

y 6= ∅}, (1.51)

and given u : Ω 7→ Rm the function uy,ξ : Ωξ
y 7→ R is defined by uy,ξ(t) = u(y+tξ)

for every t ∈ Ωξ
y; it is well know that the space BV (Ω;Rm) can be characterized

by means of one-dimensional sections:

Theorem 1.54 Let u ∈ BV (Ω;Rm) and let ξ ∈ Sn−1 = {ζ ∈ Rn : |ζ| = 1}.
Then we have uy,ξ ∈ BV (Ωξ

y;Rm) for Hn−1-almost every y ∈ Ωξ and

〈Dσu, ξ〉 =
∫

Ωξ

Dσuy,ξ dHn−1 for σ = a, j, c .

Conversely, let u ∈ L1(Ω;Rm). If for every direction ξ ∈ Sn−1 we have uy,ξ ∈
BV (Ωξ

y;Rm) for Hn−1-almost every y ∈ Ωξ and

∫

Ωξ

|Duy,ξ|(Ωξ
y) dHn−1(y) < +∞

then u ∈ BV (Ω;Rm).

(See [4] Theorems 3.99 and 3.100).
Definition 1.55 Let u ∈ L1(Ω;Rn), and let Eu be the symmetric part of the
distributional gradient of u; i .e.,

(Eu)ij := (Eiju), Eiju :=
1
2
(Diuj + Djui).

The space LD(Ω) is defined as the set of all functions u ∈ L1(Ω;Rn) such that
Eiju ∈ L1(Ω) for any i, j = 1, ..., n.

We say that u ∈ L1(Ω;Rn) is a function with bounded deformation, and we
write u ∈ BD(Ω), if Eiju is a Radon measure with finite total variation in Ω for
any i, j = 1, ..., n.

We denote by Eu the Mn×n-valued measure whose entries are Eiju.
Note that the closed subspace LD(Ω) of BD(Ω) plays the same role in BD(Ω) as
the one of W 1,1(Ω;Rm) in BV (Ω;Rm). One can easily see that W 1,1(Ω;Rn) ⊂
LD(Ω) with strict inclusion.

For every ξ ∈ Rn, let Dξ be the distributional derivative in the direction
ξ defined by Dξu = 〈Du, ξ〉. For every function u : Ω → Rn let us define the
function uξ : Ω → R by uξ(x) = 〈u(x), ξ〉.
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Theorem 1.56 If u ∈ BD(Ω) then Dξu
ξ is a bounded Radon measure on Ω for

every ξ ∈ Rn and
Dξu

ξ = 〈Euξ, ξ〉 .
Conversely, let ξ1, . . . , ξn be a basis of Rn and let u ∈ L1(Ω;Rn); then u ∈
BD(Ω) if Dξu

ξ is a bounded Radon measure on Ω for every ξ of the form ξi +ξj,
i, j = 1, . . . , n.

(See [73] Chapter 2 Section 2.2).
Definition 1.57 For every u ∈ BD(Ω) we consider the Radon-Nikodym decom-
position Eu = Eau + Esu of Eu, where Eau is absolutely continuous and Esu
is singular with respect to the Lebesgue measure Ln. We may further decompose
the singular part Esu as Esu = Eju + Ecu where Eju = Eu Ju is the jump
part of Eu, and Ecu = Esu (Ω \ Ju) is the Cantor part of Eu. We can then
write

Eu = Eau + Eju + Ecu .

Theorem 1.58 If u ∈ BD(Ω) then
(1) for Ln-almost every x ∈ Ω there exists the approximate symmetric differ-

ential of u, Eu; i .e.,

lim
ρ→0

1
ρn

∫

Bρ(x)

|〈u(y)− u(x)− Eu(y − x) , y − x〉|
|y − x|2 dy = 0,

and it is the density of Eau with respect to Ln ; i .e., Eau = EuLn;
(2) Ju is rectifiable and we have

Eju = (u+ − u−)¯ νuHn−1 Ju; (1.52)

(3) for any Borel set B with Hn−1(B) < +∞, we have that |Ecu|(B) = 0.

For a complete proof of points (1), (2) and (3) see [3] Theorem 4.3, [3] Proposition
3.5 and [73] Chapter 2, [3] Proposition 4.4, respectively.

Note that it is not known whether Hn−1(Su \ Ju) = 0 or not.
Now we shall see that the space BD(Ω) can be characterized using suitable

one-dimensional sections. We use the notation introduced in (1.51).
Given u : Ω 7→ Rn for every y, ξ ∈ Rn, ξ 6= 0, the function uξ

y : Ωξ
y 7→ R is

defined by
uξ

y(t) = uξ(y + tξ) = 〈u(y + tξ), ξ〉 ∀t ∈ Ωξ
y.

If u ∈ L1(Ω;Rn), then for every ξ ∈ Rn, ξ 6= 0, and every y ∈ Ωξ the one-
dimensional section ũξ

y of the function ũ introduced in (1.50) is defined for every
t ∈ (Ωu)ξ

y.

Proposition 1.59 Let u ∈ BD(Ω) and let ξ ∈ Rn with ξ 6= 0. Then the
following two conditions hold for Hn−1-almost every y ∈ Ωξ:
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(i) ũξ
y is defined and coincides with uξ

y L1-almost everywhere in Ωξ
y;

(ii) uξ
y ∈ BV (Ωξ

y).
Moreover,

〈Euξ, ξ〉 =
∫

Ωξ

Duξ
y dHn−1(y), |〈Euξ, ξ〉| =

∫

Ωξ

|Duξ
y| dHn−1(y)

as measures in Ω. Conversely, let u ∈ L1(Ω;Rn) and let ξ1, . . . , ξn be a basis of
Rn. Assume that for every ξ of the form ξi + ξj,

uξ
y ∈ BV (Ωξ

y) for Hn−1 − a.e. y ∈ Ωξ,

∫

Ωξ

|Duξ
y|(Ωξ

y) dHn−1(y) < +∞.

Then u ∈ BD(Ω).

(See [3] Proposition 3.2).
Remark 1.60 By Proposition 1.59 we obtain that |〈Euξ, ξ〉|(B) = 0 for every
Borel set B with Hn−1(B) = 0. Since for any basis ξ1, . . . , ξn there exists a
constant c, depending on the basis, such that

|Eu| ≤ c

n∑

i,j=1

|〈Eu(ξi + ξj), ξi + ξj〉|

we conclude that
Hn−1(B) = 0 ⇒ |Eu|(B) = 0

for every Borel set B.
Let R be the class of the rigid motions in Rn; i .e., affine maps of the form

Ax + d with A a skew symmetric n × n matrix and d ∈ Rn, or equivalently
u ∈ BD(Ω) such that Eu = 0. The following “Poincaré-type” inequality for BD
functions follows from Proposition 2.2 and Remark 1.1 of Chapter 2 of [73]. For
a complete proof see [56] Part II, Proposition 3.11.

Theorem 1.61. (Poincaré-type inequality) Let Ω be a bounded connected
open set with Lipschitz boundary and let R : BD(Ω) → R be a continuous linear
map which leaves the elements of R fixed. Then there exists a constant c(Ω, R)
such that ∫

Ω

|u−R(u)|dx ≤ c(Ω, R)|Eu|(Ω)

for all u ∈ BD(Ω).

Definition 1.62 We call intermediate topology on BD(Ω) that defined by the
distance

‖u− v‖L1(Ω;Rn) + ||Eu|(Ω)− |Ev|(Ω)|. (1.53)
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Theorem 1.63 C∞(Ω) is dense in the space BD(Ω) endowed with the interme-
diate topology.

(See [73] Chapter 2 Theorem 3.2).

Proposition 1.64. (Korn’s inequality) For any p satisfying 1 < p < +∞ we
define the space

{u ∈ L1(Ω;Rn) : Eiju ∈ Lp(Ω) i, j = 1, ..., n} . (1.54)

If Ω has a locally Lipschitz boundary, then for all 1 < p < +∞ we have

n∑

i,j=1

∫

Ω

|Diuj(x)|p dx ≤ c

∫

Ω

(
|u(x)|p + |Eu(x)|p

)
dx . (1.55)

for all u in the space (1.54).

The Korn’s inequality implies that (1.54) is none other than W 1,p(Ω;Rn) (see
[73] Chapter 1 Section 1, [52] and [53]).



2

HOMOGENIZATION OF PERIODIC MULTI-DIMENSIONAL
STRUCTURES

2.1 Sobolev spaces with respect to a measure

The following notion of Sobolev space with respect to a measure has been intro-
duced by Ambrosio, Buttazzo and Fonseca [2].

Definition 2.1 Let λ be a finite Borel positive measure on the open set Ω ⊂ Rn,
and let 1 ≤ p ≤ +∞. The Sobolev space with respect to λ, W 1,p

λ (Ω;Rm), is
defined as

W 1,p
λ (Ω;Rm) =

{
u ∈ Lp(Ω;Rm) : u ∈ BV (Ω;Rm), Du << λ,

dDu

dλ
∈ Lp

λ(Ω;Mm×n)
}

,

where Lp
λ(Ω;RN ) stands for the usual Lebesgue space of p-summable RN -valued

functions with respect to λ.

Remark 2.2 By definition, functions in W 1,p
λ (Ω;Rm) are functions of bounded

variation. From the embedding of BV (Ω;Rm) in Ln/(n−1)(Ω;Rm) and the chain
rule Theorem 1.53 the following two facts can be easily deduced, that are used
in the sequel.

(a) W 1,p
λ (Ω;Rm) is embedded in Ln/(n−1)(Ω;Rm).

(b) If u ∈ W 1,p
λ (Ω;Rm) and v ∈ W 1,∞

λ (Ω) then uv ∈ W 1,p
λ (Ω;Rm), and

dD(uv)
dλ

= ṽ
dDu

dλ
+ ũ⊗ dDv

dλ
. (2.1)

Note that in (2.1) it is necessary to consider the precise representatives, since
the measure λ may take into account also sets of zero Lebesgue measure.

If u ∈ W 1,p
λ (Ω;Rm) then Du(B) = 0 if B is a set of zero (n − 1)-Hausdorff

measure. Hence, W 1,p
λ (Ω;Rm) = W 1,p

λ′ (Ω;Rm) if λ− λ′ is concentrated on a set
of Hausdorff dimension lower than n− 1; e.g., points in R3.

Properties of lower semicontinuity and relaxation for functionals defined on
Sobolev spaces with respect to a measure have been studied in [2].

2.2 Statement of the main result

Let µ be a non-zero positive Radon measure on Rn which is 1-periodic; i. e.,
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µ(B + ei) = µ(B)

for all Borel subsets B of Rn and for all i = 1, . . . , n. The measure µ will be
fixed throughout the chapter. We will assume the normalization

µ([0, 1)n) = 1 . (2.2)

For all ε > 0 we define the ε-periodic positive Radon measure µε by

µε(B) = εn µ
(1

ε
B

)
(2.3)

for all Borel sets B. Note that by (2.2) the family (µε) converges locally weakly∗

in the sense of measures to the Lebesgue measure as ε → 0.
In the sequel f : Rn ×Mm×n → [0, +∞) will be a fixed Borel function 1-

periodic in the first variable and satisfying the growth condition of order p ≥ 1:
there exist 0 < α ≤ β such that

α|A|p ≤ f(x,A) ≤ β(1 + |A|p) (2.4)

for all x ∈ Rn and A ∈ Mm×n.
For every bounded open set Ω, we define the functionals at scale ε > 0 as

Fε(u, Ω) =





∫

Ω

f
(x

ε
,
dDu

dµε

)
dµε if u ∈ W 1,p

µε
(Ω;Rm)

+∞ otherwise.

(2.5)

Example 2.3 (a) (Perfectly-rigid bodies connected with springs) We take

E = {y ∈ Rn : ∃i ∈ {1, . . . , n} such that yi ∈ Z},

that is, the union of all the boundaries of cubes Qi = i + (0, 1)n with i ∈ Zn. E
is an (n− 1)-dimensional set in Rn. We take

µ(B) =
1
n
Hn−1(B ∩ E)

for all Borel sets B. For every ε > 0 we have

µε(B) =
1
n

εHn−1(B ∩ εE) .

In this case W 1,p
µε

consists of functions which are constant on every connected
component of each εQi ∩ Ω, since we must have Du = 0 on these sets. In the
case that u is constant on each εQi ∩ Ω, e.g. if Ω is convex, we have

dDu

dµε
=

n

ε

dDu

dHn−1
=

n

ε
(ui − uj)⊗ (i− j) on ∂(εQi) ∩ ∂(εQj) ∩ Ω ,
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where ui is the value of u on εQi. In this case the functionals Fε take the form

ε

∫

Ω∩εE

g
(x

ε
,
1
ε

dDu

dHn−1

)
dHn−1.

Note that if Ω is bounded then W 1,p
µε

(Ω;Rm) = W 1,∞
µε

(Ω;Rm) for all p if the
number of connected components of each Ω ∩ εQi is finite.

(b) (Elastic media connected with springs) Let E be as above and let

µ(B) =
1

n + 1

(
|B|+Hn−1(E ∩B)

)

µε(B) =
1

n + 1

(
|B|+ εHn−1((εE) ∩B)

)
.

In this case the functions in W 1,p
µε

(Ω;Rm) are functions whose restriction to each
εQi∩Ω belongs to W 1,p(εQi∩Ω;Rm), and such that the difference of the traces
on both sides of ∂(εQi) ∩ ∂(εQj) ∩ Ω is p-summable for every i, j ∈ Zn. The
functionals Fε take the form

1
n + 1

∫

Ω

f
(x

ε
,
dDu

dx

)
dx + ε

∫

Ω∩εE

g
(x

ε
,
1
ε

dDu

dHn−1

)
dHn−1.

In order to obtain a meaningful limit of the functionals Fε as ε → 0, some
requirements have to be made so that the limit functionals admit an integral
representation on W 1,p(Ω;Rm).

Definition 2.4 A 1-periodic positive Radon measure µ on Rn will be called p-
homogenizable if the following properties hold:

(i) (existence of cut-off functions) there exist K > 0 and δ > 0 such that
for all ε > 0, for all pairs U, V of open subsets of Rn with U ⊂⊂ V , and
dist (U, ∂V ) ≥ δε, and for all u ∈ W 1,p

µε
(V ) there exists φ ∈ W 1,∞

µε
(V ) with

0 ≤ φ ≤ 1, φ = 1 on U , φ = 0 in a neighbourhood of ∂V , such that
∫

V

∣∣∣dDφ

dµε
ũ
∣∣∣
p

dµε ≤ K(
dist (U, ∂V )

)p

∫

V \U
|u|p dx . (2.6)

Such a φ will be called a cut-off function between U and V ;
(ii) (existence of periodic test-functions) for all i = 1, . . . , n, there exists

zi ∈ W 1,p
µ,loc(R

n) such that x 7→ zi(x)− xi is 1-periodic.

Remark 2.5 Note that the Lebesgue measure satisfies trivially all the proper-
ties of Definition 2.4. Property (i) depends on µ and p.

Example 2.6 (a) The measure µ in Example 2.3(a) is p-homogenizable for all
p ≥ 1. In fact, to prove (i) let δ = 5

√
n. Fixed ε > 0, set Uε =

⋃{εQi : εQi∩U 6=
∅}. Note that Uε ⊂⊂ V . Choose (we use the notation [t] for the integer part of
t)
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φ(x) = 1−
( 1

C

[1
ε

inf{|x− y|∞ : y ∈ Uε}
]
∧ 1

)
,

where |x− y|∞ = max1≤i≤n |xi − yi|, and

C =
[1
ε

inf
{
|x− y|∞ : x ∈ Uε, y ∈ ∂V

}]
− 2 .

Note that |dDφ/dµε| ≤ n/(Cε) ≤ c/dist (U, ∂V ) for some constant c independent
of U and V . Moreover, if u ∈ W 1,p

µε
(V ) then u is equal to a constant ui on each

cube εQi such that Dφ 6= 0 on ∂(εQi). Hence, for two such cubes

ε

∫

∂εQi∩∂εQj

|ũ|p dHn−1 ≤ ε

∫

∂εQi∩∂εQj

(|ui|p + |uj |p) dHn−1 =
∫

εQi∪εQj

|u|p dx

so that
∫

V

∣∣∣dDφ

dµε
ũ
∣∣∣
p

dµε ≤ cpε

dist (U, ∂V )p

∫

(V \U)∩εE∩sptDφ

|ũ|p dHn−1

≤ 2n
cp

dist (U, ∂V )p

∫

V \U
|u|p dx .

The proof of (i) is then complete. To verify (ii) take simply zi(x) = [xi].
(b) The measure µ in Example 2.3(b) is p-homogenizable for all p ≥ 1. In

fact, the proof of (i) and (ii) is trivial since the Lebesgue measure is absolutely
continuous with respect to µ.

The homogenization theorem for functionals in (2.5) takes the following form.

Theorem 2.7 Let µ be a p-homogenizable measure, and for every bounded open
subset Ω of Rn let Fε(·, Ω) be defined on Lp(Ω;Rm) by (2.5). Then the Γ-limit
with respect to the Lp(Ω;Rm)-convergence

Fhom(u, Ω) = Γ- lim
ε→0

Fε(u, Ω) (2.7)

exists for all bounded open subsets Ω with Lipschitz boundary and for all u ∈
W 1,p(Ω;Rm), and it can be represented as

Fhom(u, Ω) =
∫

Ω

fhom(Du) dx , (2.8)

where the homogenized integrand satisfies the asymptotic formula

fhom(A) = lim
k→+∞

inf
{ 1

kn

∫

[0,k)n

f
(
x,

dDu

dµ

)
dµ : (2.9)

u ∈ W 1,p
µ,loc(R

n;Rm), u−Ax k-periodic
}

.
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If p > 1 then Fhom(u, Ω) = +∞ if u ∈ Lp(Ω;Rm) \W 1,p(Ω;Rm). Furthermore,
if f is convex then the cell-problem formula holds

fhom(A) = inf
{∫

[0,1)n

f
(
x,

dDu

dµ

)
dµ : (2.10)

u ∈ W 1,p
µ,loc(R

n;Rm), u−Ax 1-periodic
}

for all A ∈ Mm×n.

Remark 2.8 In formulas (2.9) and (2.10) we cannot replace the sets [0, k)n and
[0, 1)n by the sets (0, k)n and (0, 1)n, respectively, if µ charges [0, 1)n \ (0, 1)n.

Remark 2.9 If µ is not a p-homogenizable measure then fhom may be equal to
+∞ for all non-zero matrices A. As an example, take

µ(B) =
∑

i∈Zn

λ(i + B) , (2.11)

where λ is any probability measure with spt λ contained in (0, 1)n. Then test-
functions u in (2.9) must be constant on a periodic connected component of Rn,
and hence we get that fhom(A) = +∞ if A 6= 0.

Remark 2.10 Contrary to the usual homogenization results in the framework
of ordinary Sobolev spaces, the hypothesis that Ω has a Lipschitz boundary
(which will be used in an essential way in Step 3 of Proposition 2.13) cannot be
removed from Theorem 2.7. To check this, take simply n = 2 and

Ω =
( ∞⋃

i=1

(qi− 2−i−3, qi +2−i−3)× (0, 1)
)
∪

( ∞⋃

i=1

(0, 1)× (qi− 2−i−3, qi +2−i−3)
)
,

where (qi) is a numbering of Q∩ (0, 1). Take as µ the measure of Example 2.3(a)
and any f in Theorem 2.7. Note that, as Ω ∩ 1

kQi is connected for all sub-cubes
1
kQi of (0, 1)2, each function u ∈ W 1,p

µ1/k
(Ω∩ (0, 1)2;Rm) is constant on each such

Ω ∩ 1
kQi. Hence, the two spaces W 1,p

µ1/k
(Ω ∩ (0, 1)2;Rm) and W 1,p

µ1/k
((0, 1)2;Rm)

are equivalent, and, as 1
kE ∩ (0, 1)2 ⊂ Ω ∩ (0, 1)2,

F1/k(u, Ω ∩ (0, 1)2) = F1/k(u, (0, 1)2).

If the thesis of Theorem 2.7 were true, then we would easily conclude that for
all v ∈ W 1,p(Ω ∩ (0, 1)2;Rm) with Fhom(u, Ω ∩ (0, 1)2) < +∞ there exists u ∈
W 1,p((0, 1)2;Rm) with u = v on Ω ∩ (0, 1)2 and

Fhom(v, Ω ∩ (0, 1)2) = Fhom(u, (0, 1)2),

which is not possible for example if f ≥ 1 since |Ω ∩ (0, 1)2| 6= |(0, 1)2|.
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2.3 Proof of the homogenization theorem

The proof of Theorem 2.7 will be obtained at the end of the section, as a conse-
quence of the following propositions, which adapt to this case the usual methods
for the homogenization by Γ-convergence. While the usual compactness and in-
tegral representation results in Section 1.7 hold with minor modification also in
this case, a more complex proof for the so-called fundamental estimate, for the
growth condition from above and for the homogenization formula is necessary.

From now on, Ω will be a fixed bounded open subset of Rn with Lipschitz
boundary.

Proposition 2.11. (Fundamental Estimate) For every σ > 0 there exists
εσ and M > 0 such that for all U,U ′, V open subsets of Ω with U ′ ⊂ U and
dist (U ′, V \ U) > 0, for all ε < εσdist (U ′, V \ U) and for all u ∈ W 1,p

µε
(Ω;Rm),

v ∈ W 1,p
µε

(Ω;Rm) there exists a cut-off function between U ′ and U , φ ∈ W 1,∞
µε

(U∪
V ), such that

Fε(φu + (1− φ)v, U ′ ∪ V ) ≤ (1 + σ)(Fε(u,U) + Fε(v, V )) (2.12)

+
M(

dist (U ′, V \ U)
)p

∫

(U∩V )\U ′
|u− v|pdx + σµε((U ∩ V ) \ U ′).

Proof. Let K > 0 and δ > 0 be the constants given by Definition 2.4(i), let
N ∈ N be such that Nδε ≤ dist (U ′, V \U), and let Uk = {x ∈ U : Ndist (x,U ′) <
k dist (U ′, V \ U)}, U0 = U ′. For each k = 1, . . . , N let φk be a cut-off function
between Uk−1 and Uk, satisfying (2.6), which exists since dist (Uk−1, ∂Uk) ≥ δε.
We have, using Remark 2.2(b), (2.4) and (2.6)

Fε(φku + (1− φk)v, U ′ ∪ V )

=
∫

U ′∪V

f
(x

ε
, φ̃k

dDu

dµε
+ (1− φ̃k)

dDv

dµε
+ (ũ− ṽ)⊗ dDφk

dµε

)
dµε

≤
∫

U

f
(x

ε
,
dDu

dµε

)
dµε +

∫

V

f
(x

ε
,
dDv

dµε

)
dµε

+4pβ

∫

(Uk\Uk−1)∩V

(
1 +

∣∣∣dDu

dµε

∣∣∣
p

+
∣∣∣dDv

dµε

∣∣∣
p)

dµε

+4pβ

∫

(Uk\Uk−1)∩V

∣∣∣(ũ− ṽ)⊗ dDφk

dµε

∣∣∣
p

dµε

≤ Fε(u,U) + Fε(v, V )

+4pβ

∫

(Uk\Uk−1)∩V

(
1 +

∣∣∣dDu

dµε

∣∣∣
p

+
∣∣∣dDv

dµε

∣∣∣
p)

dµε

+4pβ
KNp

(
dist (U ′, V \ U)

)p

∫

(Uk\Uk−1)∩V

|u− v|p dx

where K is the constant appearing in (2.6).
Choose k such that
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∫

(Uk\Uk−1)∩V

(
1 +

∣∣∣dDu

dµε

∣∣∣
p

+
∣∣∣dDv

dµε

∣∣∣
p)

dµε

+
KNp

(
dist (U ′, V \ U)

)p

∫

(Uk\Uk−1)∩V

|u− v|p dx

≤ 1
N

(∫

(U∩V )\U ′

(
1 +

∣∣∣dDu

dµε

∣∣∣
p

+
∣∣∣dDv

dµε

∣∣∣
p)

dµε

+
KNp

(
dist (U ′, V \ U)

)p

∫

(U∩V )\U ′
|u− v|p dx

)
.

Then, taking into account also (2.4),

Fε(φku + (1− φk)v, U ′ ∪ V )
≤ Fε(u,U) + Fε(v, V )

+
4pβ

Nα

(∫

(U∩V )\U ′
f
(x

ε
,
dDu

dµε

)
dµε +

∫

(U∩V )\U ′
f
(x

ε
,
dDv

dµε

)
dµε

)

+4pβ
KNp−1

(
dist (U ′, V \ U)

)p

∫

(U∩V )\U ′
|u− v|pdx +

4pβ

N
µε((U ∩ V ) \ U ′)

≤
(
1 +

4pβ

Nα

)(
Fε(u,U) + Fε(v, V )

)

+4pβ
KNp−1

(
dist (U ′, V \ U)

)p

∫

(U∩V )\U ′
|u− v|pdx +

4pβ

N
µε((U ∩ V ) \ U ′) .

We can choose εσ satisfying

4pβ

σ min{1, α} + 1 =
1

δεσ
,

so that we can find N , depending only on σ and on the constants of the problem,
in such a way that (2.12) holds, with M = 4pKβNp−1.

Proposition 2.12 For every A ∈ Mm×n there exists zA ∈ W 1,p
µ,loc(R

n;Rm)
such that zA −Ax is 1-periodic and satisfies

∫

[0,1)n

∣∣∣dDzA

dµ

∣∣∣
p

dµ ≤ c|A|p. (2.13)

Proof. Define zA =
∑m

i=1

∑n
j=1 Aijzjei, where zi are as in Definition 2.4(ii).

Inequality (2.13) is trivial.

We fix an infinitesimal sequence (εj). We define

F ′(u,U) = Γ- lim inf
j→+∞

Fεj (u,U)
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F ′′(u,U) = Γ- lim sup
j→+∞

Fεj
(u,U)

for all u ∈ Lp(Ω;Rm) and for all open subsets U of Ω. By Remark 1.24(i) the Γ-
upper and lower limits, F ′′(·, U) and F ′(·, U) defined above, are Lp(Ω;Rm)-lower
semicontinuous functionals.

Proposition 2.13. (Growth Condition) We have

F ′′(u,U) ≤ c

∫

U

(1 + |Du|p)dx

for all u ∈ W 1,p(Ω;Rm) and for all open subsets U of Ω with |∂U | = 0.

Proof. Step 1: we have F ′′(Ax,U) ≤ c|U |(1 + |A|p) for all A ∈ Mm×n and
for all U ∈ A(Ω).

Let zA be given by Proposition 2.12. We may assume that zj − xj has mean
value 0 in the periodicity cell, so that the functions zε

A(x) = εzA(x/ε) converge
in Lp

loc(R
n;Rm) to Ax, and

F ′′(Ax,U) ≤ lim sup
ε→0+

∫

U

f
(x

ε
,
dDzε

A

dµε

)
dµε

≤ β lim sup
ε→0+

∫

U

(
1 +

∣∣∣dDzε
A

dµε

∣∣∣
p)

dµε ≤ c|U | (1 + |A|p).

Step 2: we have F ′′(u, U) ≤ c
∫

U
(1+|Du|p)dx for all piecewise affine function

u ∈ W 1,p(Ω;Rm) and for all open subsets U ⊆ Ω with |∂U | = 0.
We write u =

∑N
i=1 χUiui, where U1, . . . , UN are disjoint open subsets of

U such that |U \ ⋃
i Ui| = 0 and |U i| = |Ui|, and ui(x) = Aix + ci for some

Ai ∈ Mm×n and ci ∈ Rm. For each i we set uε
i (x) = zε

Ai
(x) + ci, as from Step 1.

We will prove Step 2 by finite induction. First, we give an estimate on U1∪U2.
For all ε sufficiently small, we can apply Proposition 2.11 choosing the sets

Uη
2 = {x ∈ U : dist (x,U2) < η},

U2 and U1 as the sets U,U ′ and V in its statement, respectively, where η = ηε > 0
will be determined later, and taking σ = 1, u = uε

2 and v = uε
1. We obtain then

a cut-off function φ = φε between U2 and Uη
2 such that

Fε(φεu
ε
2 + (1− φε)uε

1, U1 ∪ U2) ≤ 2(Fε(uε
1, U1) + Fε(uε

2, U
η
2 ))

+
M

ηp

∫

U1∩Uη
2

|uε
2 − uε

1|p dx + µε(U1 ∩ Uη
2 ) .

The constant M is the one given by Proposition 2.11 with σ = 1. We can choose
now η = ηε, tending to 0 as ε → 0, in such a way that
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lim
ε→0

1
ηp

ε

∫

U1∩Uηε
2

|uε
2 − uε

1|p dx = 0 ,

taking into account that

lim
ε→0

∫

U1∩Uη
2

|uε
2 − uε

1|p dx =
∫

U1∩Uη
2

|u2 − u1|p dx ≤ c‖Du‖p
∞ηp+1

since ui are affine and u2 = u1 on ∂U1∩∂U2. If we define wε
1 = φεu

ε
2 +(1−φε)uε

1,
we have wε

1 → u in Lp(U1 ∪ U2;Rm) and

lim sup
ε→0

Fε(wε
1, U1 ∪ U2) ≤ c

∫

U1∪U2

(1 + |Du|p) dx

as in the proof of Step 1.
We can proceed now by induction, repeating at each step the previous argu-

ment replacing U1 by U1 ∪ . . .∪Uj , U2 by Uj+1, uε
1 by the wε

j constructed in the
preceding step, and uε

2 by uε
j+1.

Step 3: conclusion.
To conclude the proof it suffices to recall that F ′′(·, U) is weakly lower semi-

continuous and piecewise affine functions are dense in W 1,p(Ω;Rm).

Proposition 2.14 There exists a subsequence of (εj) (not relabeled) such that
for all open subsets U of Ω there exists the Γ-limit

Γ- lim
j→+∞

Fεj (u, U) = F (u,U) ,

and there exists a function ϕ : Mm×n → R such that

F (u,U) =
∫

U

ϕ(Du)dx

for all u ∈ W 1,p(Ω;Rm) and U ⊂ Ω with |∂U | = 0.

Proof. The proof of this proposition can be obtained using the methods of
Γ-convergence, Section 1.7, outlining the necessary modifications.

Using the compactness of Γ-convergence (see Theorem 1.22) and a diagonal
procedure, we extract a subsequence (not relabeled) such that the Γ-limit

Γ- lim
j→+∞

Fεj (u,U) = F (u, U)

exists for all u ∈ Lp(Ω;Rm) and for all sets U in the countable family R of all
finite unions of open rectangles of Ω with rational vertices.

Now, observe that for all open subsets U ⊆ Ω with |∂U | = 0 we have
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F ′′(u, U) = sup{F ′′(u, V ) : V ⊂⊂ U, V open},

F ′(u, U) = sup{F ′(u, V ) : V ⊂⊂ U, V open}.
This can be shown modifying the proof of Proposition 1.32 for functionals that
satisfy the conclusions of Proposition 2.11 and Proposition 2.13.

Next, we note that the Γ-limit F (u,U) = Γ- limj→+∞ Fεj
(u,U) exists for all

U ∈ A(Ω) with |∂U | = 0, and for all u ∈ W 1,p(Ω;Rm) the function F (u, ·) is
the restriction to the family these open sets of a Borel measure on Ω. This result
can be obtained by Theorem 1.27 and by the De Giorgi-Letta measure criterion
Theorem 1.26, noting that the proof of Proposition 1.31 can be repeated using
Proposition 2.11.

Eventually, the existence of ϕ : Mm×n → R such that

F (u,U) =
∫

U

ϕ(Du)dx

for all u ∈ W 1,p(Ω;Rm) and for all U ∈ A(Ω) with |∂U | = 0 follows from the
integral representation Corollary 1.36, observing that translation invariance in x
can be obtained as in Proposition 1.44.

Proposition 2.15. (Homogenization Formula) For all A ∈ Mm×n there
exists the limit in (2.9) and we have ϕ(A) = fhom(A).

Proof. In order to simplify the proof of formula (2.9), we can suppose that
µ([0, 1)n \ (0, 1)n) = 0, which holds up to a translation. For all A ∈ Mm×n and
k ∈ N we define

gk(A) = inf
{ 1

kn

∫

(0,k)n

f
(
x,

dDu

dµ

)
dµ : u ∈ W 1,p

µ,loc(R
n;Rm), u−Ax k-periodic

}
.

Fixed A ∈ Mm×n let u ∈ W 1,p
µ,loc(R

n;Rm) with u − Ax k-periodic and with
mean value 0 on (0, k)n. Define the sequence uj(x) = εj u(x/εj), and note that
uj → Ax in Lp

loc(R
n;Rm). We have then

ϕ(A) = F (Ax, (0, 1)n) ≤ lim inf
j→+∞

Fεj (uj , (0, 1)n) =
1
kn

∫

(0,k)n

f
(
x,

dDu

dµ

)
dµ.

Hence, ϕ(A) ≤ gk(A), so that

ϕ(A) ≤ lim inf
k→+∞

gk(A). (2.14)

Conversely, let wj → Ax be such that

ϕ(A) = F (Ax, (0, 1)n) = lim
j→+∞

Fεj (wj , (0, 1)n).



52 Homogenization of periodic multi-dimensional structures

Let σ > 0. Let Tj = 1/εj and let uj(x) = Tjwj(x/Tj). We use the notation
Kj = [Tj ] + 1.

If j is large enough and N > 4, we can use Proposition 2.11 with ε = 1,
U = (0, Tj)n, V = (0,Kj)n\(2Tj/N, Tj−2(Tj/N))n, U ′ = (Tj/N, Tj−(Tj/N))n,
u = uj , and v = zA. We get then

F1(φu + (1− φ)v, (0,Kj)n) (2.15)
= F1(φu + (1− φ)v, U ′ ∪ V )
≤ (1 + σ)(F1(u,U) + F1(v, V ))

+MNpT−p
j

∫

(U∩V )\U ′
|u− v|pdx + σµ((U ∩ V ) \ U ′).

Since φu + (1− φ)v −Ax is Kj-periodic, we obtain

Kn
j gKj

(A)
≤ (1 + σ)(F1(uj , (0, Tj)n) + F1(zA, V ))

+MNpT−p
j

∫

(0,Tj)n\(Tj/N,Tj−(Tj/N))n

|uj − zA|pdx + σµ((U ∩ V ) \ U ′)

≤ (1 + σ)(Tn
j Fεj (wj , (0, 1)n) + c

Kn
j

N
(1 + |A|p)

+MNpTn
j

∫

(0,1)n

|wj − zj |pdx + σcKn
j ,

where zj(x) = T−1
j zA(Tjx). Note that zj → Ax in Lp((0, 1)n;Rm); hence

lim
j→+∞

∫

(0,1)n

|wj − zj |pdx = 0 .

Dividing the estimate above by Kn
j , and letting first j → +∞ and then σ → 0

and N → +∞, we get
lim sup
j→+∞

gKj (A) ≤ ϕ(A). (2.16)

By (2.14) and (2.16) we obtain then

ϕ(A) = lim inf
k→+∞

gk(A) = lim
j→+∞

gKj (A).

The first equality shows that ϕ is independent of the sequence (εj). Repeating
the reasoning then with a sequence (εj) such that

lim
j→+∞

gKj (A) = lim sup
k→+∞

gk(A)

the proof is complete.
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Proof of Theorem 2.7. The previous propositions show that the limit
in (2.7) exists and (2.8) holds with fhom given by (2.9). Formula (2.10) in the
convex case follows as in Theorem 1.46.

It remains to check that Fhom(u, Ω) = +∞ if u ∈ Lp(Ω;Rm) \W 1,p(Ω;Rm)
when p > 1. Clearly, it suffices to prove this for f(A) = |A|p. In this case, Fhom

is convex, hence it is determined by its behaviour on W 1,p(Ω;Rm) (see [41]
Chapter 23). It will be enough then to prove that fhom(A) ≥ c|A|p. Since fhom

is positively homogeneous of degree p, it is sufficient to check that fhom(A) 6= 0
if A 6= 0. To this aim, let uε → Ax be such that Fε(uε, (0, 1)n) → fhom(A).
If fhom(A) = 0 then by the Poincaré inequality for BV -functions, by Hölder’s
inequality and a scaling argument we obtain that u 1

k
tends to a constant, and a

contradiction.

2.4 Limits of a class of difference schemes

In this section we show how some energies depending on finite differences can be
seen as a particular case of functionals defined on Sobolev spaces with respect to
the measures introduced in Example 2.3(a). For the sake of illustration we deal
only with the case of integrands independent of x. We remark that in the case of
quadratic functionals (i.e., ψk(ξ) = ckξ2 below), our result can be framed in the
theory of difference operators elaborated by Kozlov [58], where a compactness
and representation theorem is given for a general class of operators.

Let Ω ⊆ Rn be an open set with Lipschitz boundary, and let

Iε = {i ∈ Zn : εi + [0, ε]n ⊆ Ω} .

Let ψ1....ψn be convex functions such that

|ξ|p ≤ ψk(ξ) ≤ c(1 + |ξ|p)

for all ξ ∈ Mm×n and k = 1, . . . , n. We define Aε the set of functions

u : (Zn ∩ 1
ε
Ω) → Rm

and for all u ∈ Aε

Ψε(u) =
n∑

k=1

∑

i∈Iε

εnψk

(
u(i + ek)− u(i)

ε

)
.

If u ∈ Aε then we can associate to u the piecewise constant function vu : Ω −→
Rm defined by

vu(x) =

{
u(i) x ∈ εi + [0, ε)n εi ∈ Ω ∩ εZn

0 otherwise
.
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Definition 2.16 Let uj ∈ Aεj
. We say that uj converges to u ∈ Lp(Ω) if and

only if vuj converges to u in Lp(Ω).

Theorem 2.17 The functionals Ψε Γ-converge as ε → 0 to

Ψ(u) =





n∑

k=1

∫

Ω

ψk

( ∂u

∂xk

)
dx u ∈ W 1,p(Ω;Rm)

+∞ u ∈ Lp(Ω;Rm) \W 1,p(Ω;Rm)

with respect to the convergence in Lp(Ω) as in Definition 2.16.

Proof. Let f : Mm×n −→ [0, +∞) be defined by

f(ξ) = n

n∑

k=1

ψk

(ξk

n

)

where ξk = ξek. If we consider µ as in Example 2.3(a), since f is convex, by
formula (2.10) it follows that

fhom(ξ) =
1
n

f(nξ) =
n∑

k=1

ψk(ξk).

In fact, the computation of (2.10) is trivial, since u(x) =
∑n

k=1 ξk[xk] is the
unique function u ∈ W 1,p

µ,loc(R
n;Rm), up to translations, such that u − ξx is

1-periodic. By formula (2.8)

Fhom(u, Ω) =





∫

Ω

n∑

k=1

ψk

( ∂u

∂xk

)
dx u ∈ W 1,p(Ω;Rm)

+∞ u ∈ Lp(Ω;Rm) \W 1,p(Ω;Rm)

and Fhom(u, Ω) = Ψ(u).
For all U ⊂⊂ Ω open set with |∂U | = 0 and ε > 0, let

Fε(u,U) =
∫

U

f
(dDu

dµε

)
dµε ,

and let uj ∈ Aεj converge to u ∈ Lp(Ω). Then

lim inf
j→+∞

Ψεj (uj) = lim inf
j→+∞

εn
j

n∑

k=1

∑

i∈Iεj

ψk

(
uj(i + ek)− uj(i)

εj

)

≥ lim inf
j→+∞

n∑

k=1

εj

∫

U

ψk

( 1
n

dDvuj

dµεj

)
dHn−1
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= lim inf
j→+∞

∫

U

f
(dDvuj

dµεj

)
dµεj

= lim inf
j→+∞

Fεj (vuj , U)

≥ Fhom(u,U)

by formula (2.7) and the definition of Γ-convergence, so that

lim inf
j→+∞

Ψεj (uj) ≥ sup
U⊂⊂Ω

Fhom(u,U) = Ψ(u) .

By the arbitrariness of uj

Γ- lim inf
ε→0

Ψε(u) ≥ Ψ(u).

Conversely, suppose that vj ∈ W 1,p
µεj

(Ω;Rm) converges to u in Lp(Ω) and define

uj(i) = lim sup
ρ→0+

−
∫

B(0,ρ)∩[0,εj)n

vj(x− εji) dx (2.17)

for all i ∈ Zn ∩ 1
εΩ. Note that if i ∈ Iε or i− ek ∈ Iε for some k then the average

in (2.17) is constant for ρ small enough.
By definition, uj converges to u ∈ Lp(Ω) and

lim sup
j→+∞

Ψεj (uj) ≤ lim sup
j→+∞

Fεj (vj , Ω);

there follows that

Γ- lim sup
ε→0

Ψε(u) ≤ Γ- lim sup
ε→0

Fε(u, Ω) = Ψ(u) ,

so that
Γ- lim

ε→0
Ψε(u) = Ψ(u) ,

and the proof is concluded.

2.5 Appendix: Sobolev inequalities in W 1,p
µ

In this appendix we include some results about Sobolev inequalities in the spaces
W 1,p

µ . In particular, we will prove that the measures in Example 2.3 satisfy the
Poincaré inequality.

Proposition 2.18 Let µ be the measure in Example 2.3(b). Then for all 1 ≤
q ≤ n(np−2p+1)/(n−p)(n−1) (for any q ≥ 1 if p ≥ n) and for all k ∈ N there
exists a constant C(k) such that for all u ∈ W 1,p

µ ((0, k)n) with
∫
(0,k)n u dx = 0

we have (∫

(0,k)n

|u|q dx
)1/q

≤ C(k)
(∫

(0,k)n

∣∣∣dDu

dµ

∣∣∣
p

dµ
)1/p

. (2.18)

Moreover, if q = p then we can take C(k) = c k with c a fixed constant.
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Proof. If n = 1 then (2.18) follows from the Sobolev inequality for BV
functions (see Remark 2.21). We will deal only with the case p < n and q > p,
which again is not a restriction. The other cases can be derived from this by
applying Hölder’s inequality.

We set U = (0, k)n. We start by considering an inequality involving the
median of a function rather than the mean. We recall that the set of the medians
of u (in U), med(u), is the set of real numbers t such that

|U ∩ {u > t}| ≤ 1
2
|U | and |U ∩ {u < t}| ≤ 1

2
|U |.

Let u ∈ W 1,p
µ (U). By the Poincaré inequality for BV functions, there exists a

constant c = c(U) such that for u ∈ BV (U) and t ∈ med(u)

‖u− t‖Ln/(n−1)(U) ≤ c|Du|(U) (2.19)

(see [77] Theorem 5.12.10). By a scaling argument it can be easily checked that c
may be chosen independent of k. From now on, we denote c any constant which
satisfies this property.

Let first q ≥ np/(n− 1), and set v = u|u|r−1 with r > 1. If 0 ∈ med(u) then
0 ∈ med(v); hence, by (2.19),

‖v‖Ln/(n−1)(U) ≤ c|Dv|(U).

We then get, by Hölder’s and Minkowski’s inequalities,

(∫

U

|u|rn/(n−1) dx

)(n−1)/n

≤ c

∫

U

|u|r−1|∇u| dx

+c

∫

U∩E

|u+ − u−|(|u+|r−1 + |u−|r−1) dHn−1

≤ c‖∇u‖p

(∫

U

|u|p′(r−1) dx

)1/p′

+c

(∫

U∩E

|u+ − u−|p dHn−1

)1/p

×
((∫

U∩E

|u+|p′(r−1) dHn−1

)1/p′

+
(∫

U∩E

|u−|p′(r−1) dHn−1

)1/p′
)

.

Let q = rn/(n−1) and α = p′(r−1); then we can rewrite the estimate above
as

(∫

U

|u|q dx

)r/q

≤ c‖∇u‖p

(∫

U

|u|α dx

)(r−1)/α

+c

(∫

U∩E

|u+ − u−|p dHn−1

)1/p
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×
((∫

U∩E

|u+|α dHn−1

)(r−1)/α

+
(∫

U∩E

|u−|α dHn−1

)(r−1)/α
)

.

Interpreting u± as traces of Sobolev functions defined on each cube of U \E, we
have (∫

U∩E

|u±|α dHn−1

)1/α

≤ c‖u‖W 1,p(U\E) (2.20)

for p ≤ α ≤ p(n− 1)/(n− p) (see [1] Theorem 7.58). Hence,

‖u‖r
q ≤ c‖∇u‖p‖u‖r−1

α

+c

(∫

U∩E

|u+ − u−|p dHn−1

)1/p (‖u‖r−1
p + ‖∇u‖r−1

p

)
.

Note that α < q ≤ n(np− 2p + 1)/(n− 1)(n− p). By Hölder’s inequality

‖u‖r−1
α ≤ ‖u‖r−1

q |U |(r−1)( 1
α− 1

q ) and ‖u‖r−1
p ≤ ‖u‖r−1

q |U |(r−1)( 1
p− 1

q ).

If we denote c1 = |U |(r−1)( 1
α− 1

q ) and c2 = |U |(r−1)( 1
p− 1

q ), we get

‖u‖r
q ≤ c1c

(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)1/p

‖u‖r−1
q + c

(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)1/p

×
(

c2‖u‖r−1
q +

(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)(r−1)/p

)
(2.21)

≤ (c1 + c2)c
(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)1/p

‖u‖r−1
q + c

(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)r/p

.

By Young’s inequality

(c1 + c2)c
(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)1/p

‖u‖r−1
q

≤ 1
r

((
2(r − 1)

r

)(r−1)/r

(c1 + c2)c
(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)1/p

)r

+
r − 1

r

(
‖u‖r−1

q

(
r

2(r − 1)

)(r−1)/r
)r/(r−1)

=
(

2(r − 1)
r

)r−1 ((c1 + c2)c)r

r

(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)r/p

+
1
2
‖u‖r

q ,

so that, by (2.21),

‖u‖q ≤ c4c

(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ

)1/p

,
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where c4 = 1+c1+c2. In particular, we have that, for a general u and t ∈ med(u),

‖u− t‖q ≤ c4c
(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)1/p

. (2.22)

By Minkowski’s inequality and (2.22)

‖u‖q ≤ ‖u− t‖q + |t||U |1/q (2.23)

≤ c4c
(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)1/p

+ |t||U |1/q .

Suppose in addition that
∫

U
u dx = 0. We then can estimate

|t| = | −
∫

U

u dx− t| ≤ −
∫

U

|u− t| dx ≤
(
−
∫

U

|u− t|n/(n−1) dx

)(n−1)/n

≤ c

|U |(n−1)/n

∫

U

∣∣∣dDu

dµ

∣∣∣ dµ ≤ c
|U |1/p′

|U |(n−1)/n

(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)1/p

= c|U |(p−n)/np
(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)1/p

,

by (2.19) and Jensen’s and Hölder’s inequalities. Finally, by (2.23),

(∫

U

|u|q dx
)1/q

≤ c
(
c4 + |U |1/q+(p−n)/np

)(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)1/p

.

To conclude the proof set

C(k) = c
(
c4 + |U |1/q+(p−n)/np

)
(2.24)

= c
(
1 + kn(r−1)( 1

α− 1
q ) + kn(r−1)( 1

p− 1
q ) + kn/q+(p−n)/p

)
.

In particular if q = np/(n− 1) we have α = r = p and C(k) = c(1 + 3k(p−1)/p).
If q < np/(n − 1) an application of Hölder’s inequality yields that we can take
C(k) = ck((p−n)/p+(n/q)). We obtain the last statement of the proposition when
p = q.

Remark 2.19 The previous proposition proves the Sobolev inequalities for the
measures µ in Example 2.3, in particular the last statement proves the Poincaré
inequality. In fact, the Sobolev inequalities, and hence also the Poincaré inequal-
ity, for the measures in Example 2.3(a) are a particular case of those for the
measures in Example 2.3(b).

Remark 2.20 Proposition 2.18 can be proved for measures of the more general
form
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µ(B) =
1

1 +Hn−1(E ∩ [0, 1)n)
(|B|+Hn−1(B ∩ E)),

provided that E is a 1-periodic closed set of σ-finite n−1-dimensional Hausdorff
measure and that [0, 1]n \ E has a finite number of connected component, each
one with a Lipschitz boundary. The proof follows the same line, remarking that
the particular form of E was used only in (2.20).

Remark 2.21 The validity of a Sobolev inequality for a general µ depends on
the measure µ itself and p. In particular it always holds if n = 1 for all p and
q, or if p < n/(n− 1) with q = n/(n− 1). In fact, in this case, by the Sobolev
inequality for BV -functions and Hölder’s inequality

(∫

U

|u|n/(n−1) dx
)(n−1)/n

≤ c|Du|(U) = c

∫

U

∣∣∣dDu

dµ

∣∣∣ dµ

≤ c
(∫

U

∣∣∣dDu

dµ

∣∣∣
p

dµ
)1/p

µ(U)(p−1)/p.

Conversely, if q > p ≥ n/(n− 1), take a 1-periodic function u ∈ (BVloc(Rn) ∩
Lp((0, 1)n) \ Lq((0, 1)n)), and set µ = |Du|. Clearly |dDu/dµ| = 1, so that
u ∈ W 1,p

µ (U) for all subsets U of Rn, but we have
∫

U
|u|q dx = +∞ for each U

sufficiently large.
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HOMOGENIZATION OF PERIODIC MULTI-DIMENSIONAL
STRUCTURES: THE LINEARLY ELASTIC/PERFECTLY

PLASTIC CASE

3.1 The space LDp
λ(Ω)

In this section we define the analog of W 1,p
λ (Ω;Rn) (see Definition 2.1) when the

gradient is replaced by the linearized strain tensor.
Definition 3.1 Let λ be a finite Borel positive measure on the open set Ω ⊂ Rn,
and let 1 ≤ p ≤ +∞. We define the space

LDp
λ(Ω) =

{
u ∈ Lp(Ω;Rn) : u ∈ BD(Ω), Eu << λ,

dEu

dλ
∈ Lp

λ(Ω;Mn×n
sym )

}
.

We will use the notation LDλ(Ω) instead of LD1
λ(Ω).

Proposition 3.2 (i) The spaces LDp
λ(Ω) and LDp

µ(Ω) coincide whenever |λ −
µ|(Ω \B) = 0 for some Hn−1-negligible Borel subset B of Ω.
(ii) The measure λ in Definition 3.1 can always be assumed concentrated on a
Borel set where its (n− 1)-dimensional upper density is finite.

Proof. Point (i) easily follows from the fact that BD functions do not charge
Hn−1-negligible sets (see Remark 1.60). Point (ii) follows from (i) since if we
consider

E =
{

x ∈ Ω : lim sup
ρ→0

λ(Bρ(x))
ρn−1

= +∞
}

from covering theorems (see e.g. [77]) we have Hn−1(E) = 0; hence if we set

µ = λ Ω \ E

by (i) we have LDp
λ(Ω) = LDp

µ(Ω).

In the following proposition we prove a Leibniz-type formula for the densities
with respect to a measure λ. This formula will be used in the proof of the
fundamental estimate, Proposition 3.11.

Proposition 3.3 If u ∈ LDp
λ(Ω), v ∈ W 1,∞

λ (Ω) and ũ ¯ dDv
dλ ∈ L1

λ(Ω;Mn×n)
then uv ∈ LDp

λ(Ω), and

dE(uv)
dλ

= ṽ
dEu

dλ
+ ũ¯ dDv

dλ
. (3.1)
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Proof. By definition, functions in LDp
λ have bounded deformation. Using the

characterization of the spaces BV (Ω) and BD(Ω) by means of one-dimensional
sections (see Theorem 1.54 and Proposition 1.59) we have

uξ
y ∈ BV (Ωξ

y), vy,ξ ∈ BV (Ωξ
y) Hn−1-a.e. y ∈ Ωξ

where

uξ
y(t) = uξ(y + tξ) = (u(y + tξ), ξ), vy,ξ(t) = v(y + tξ) ∀t ∈ Ωξ

y.

Hence by the chain rule formula for BV functions (see Theorem 1.53) we have

(uv)ξ
y = uξ

y vy,ξ ∈ BV (Ωξ
y)

and
D(uξ

yvy,ξ) = ṽy,ξDuξ
y + ũξ

yDvy,ξ Hn−1 − a.e. y ∈ Ωξ.

By Theorem 1.54 and Proposition 1.59, we can prove that uv ∈ BD(Ω) and

(Euvξ, ξ) = (ṽEuξ, ξ) + (ũ¯Dvξ, ξ) ∀ξ ∈ Rn.

By choosing ξ = ξi + ξj , where ξ1, . . . , ξn is a basis of Rn, we get

E(uv) = ṽEu + ũ¯Dv. (3.2)

Since the measures in the left hand-side of (3.2) are absolutely continuous with
respect to λ with densities in Lp

λ(Ω;Mn×n
sym ), we finally get uv ∈ LDp

λ(Ω) and
(3.1) is proved.

Remark 3.4 Note that in (3.1) it is necessary to consider the precise represen-
tatives of u and v, since the measure λ may take into account also sets of zero
Lebesgue measure.

3.2 Choice of the measure and some examples
Let µ be a non-zero positive Radon measure on Rn which is 1-periodic; i.e.,

µ(B + ei) = µ(B)

for all Borel subsets B of Rn and for all i = 1, . . . , n. We will assume the
normalization

µ([0, 1)n) = 1 . (3.3)

For all ε > 0 we define the ε-periodic positive Radon measure µε by

µε(B) = εn µ
(1

ε
B

)
(3.4)

for all Borel sets B. Note that by (3.3) the family (µε) converges locally weakly∗

in the sense of measures to the Lebesgue measure as ε → 0.
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In the sequel f : Rn × Mn×n → [0,+∞) will be a fixed Borel function 1-
periodic in the first variable and satisfying the growth condition of order p ≥ 1:
there exist 0 < α ≤ β such that

α|A|p ≤ f(x,A) ≤ β(1 + |A|p) (3.5)

for all x ∈ Rn and A ∈ Mn×n.
For every bounded open set Ω, we define the functionals at scale ε > 0 as

Fε(u, Ω) =





∫

Ω

f
(x

ε
,
dEu

dµε

)
dµε if u ∈ LDp

µε
(Ω)

+∞ otherwise.

(3.6)

Now we consider some additional assumptions on the measure µ, in order to
prove the existence and the integral representation of the Γ-limit of the func-
tionals Fε as ε → 0. In the sequel we will point out that these conditions are
necessary and sufficient.

We assume:
(i) (existence of cut-off functions) there exist K > 0 and δ > 0 such that

for all ε > 0, for all pairs U, V of open subsets of Rn with U ⊂⊂ V , and
dist (U, ∂V ) ≥ δε, and for all u ∈ LDp

µε
(V ) there exists φ ∈ W 1,∞

µε
(V ) with

0 ≤ φ ≤ 1, φ = 1 on U , φ = 0 in a neighbourhood of ∂V , such that
∫

V

∣∣∣dDφ

dµε
¯ ũ

∣∣∣
p

dµε ≤ K(
dist (U, ∂V )

)p

∫

V \U
|u|p dx . (3.7)

Such a φ will be called a cut-off function between U and V ;
(ii) (existence of periodic test-functions) for all i, j = 1, . . . , n, there exists

zij ∈ LDp
µ,loc(R

n) such that x 7→ zij(x)− xjei is 1-periodic.

Remark 3.5 Note that if µ is p-homogenizable in the sense of Definition 2.4;
i.e., if there exists zi ∈ W 1,p

µ,loc(R
n) such that x 7→ zi(x)− xi is 1-periodic, then

the functions zij = zjei trivially satisfy the condition (ii) above but the converse
is not true.

Remark 3.6 Note that the Lebesgue measure trivially satisfies properties (i),
(ii). Note that property (i) depends on µ and p.

We consider in our context the measure µ of Examples 2.3(a) and (b).

Example 3.7 (Perfectly-rigid bodies connected by springs.)
We consider

E = {y ∈ Rn : ∃i ∈ {1, . . . , n} such that yi ∈ Z},

that is, the union of all the boundaries of cubes Qi = i + (0, 1)n with i ∈ Zn. E
is an (n− 1)-dimensional set in Rn. We set



Choice of the measure and some examples 63

µ(B) =
1
n
Hn−1(B ∩ E)

for all Borel sets B. For every ε > 0 we have

µε(B) =
1
n

εHn−1(B ∩ εE) .

If u ∈ LDp
µε

(Ω) then Eu = 0 on every connected component of each εQi ∩ Ω,
so in this case LDp

µε
(Ω) consists of functions which are rigid displacements on

these sets; i.e., ui = Rix + ci on each εQi ∩ Ω with Ri a n× n skew symmetric
matrix, and ci ∈ Rn. Hence by Theorem 1.58(2), we have

dEu

dµε
=

n

ε

dEu

dHn−1
=

n

ε
(ui − uj)¯ (i− j) on ∂(εQi) ∩ ∂(εQj) ∩ Ω .

In this case the functionals Fε take the form

ε

∫

Ω∩εE

g
(x

ε
,
1
ε

dEu

dHn−1

)
dHn−1.

Note that if Ω is bounded then LDp
µε

(Ω) = LD∞µε
(Ω) for all p if the number of

connected components of each Ω ∩ εQi is finite.
Comparing with Example 2.3(a), we get that W 1,p

µε
(Ω;Rn) ⊂ LDp

µε
(Ω).

The measure µ satisfies the conditions (i) and (ii) for all p ≥ 1. In fact, to
prove (i) we consider the same cut-off function in Example 2.6(a)

φ(x) = 1−
( 1

C

[1
ε

inf{|x− y|∞ : y ∈ Uε}
]
∧ 1

)
,

where fixed ε > 0, Uε =
⋃{εQi : εQi ∩ U 6= ∅}, |x− y|∞ = max1≤i≤n |xi − yi|,

and

C =
[1
ε

inf
{
|x− y|∞ : x ∈ Uε, y ∈ ∂V

}]
− 2 .

Note that |dDφ/dµε| ≤ n/(Cε) ≤ c/dist (U, ∂V ) for some constant c independent
of U and V .

Interpreting u± as traces of Sobolev functions defined on each cube Qi, we
have

(∫

∂Qi

|u±|pdHn−1

)1/p

≤ c‖u‖W 1,p(Qi),

hence by a scaling argument and by Korn’s inequality (1.55)

(
ε

∫

∂εQi

|u±|pdHn−1

)1/p

≤ c

(∫

εQi

|u|p dx

)1/p

+ ε

(∫

εQi

|Eu|p dx

)1/p



64 The linearly elastic/perfectly plastic case

= c

(∫

εQi

|u|p dx

)1/p

where c depends only on the cube. If p = 1 we can apply the trace inequality in
LD(Qi) ∫

∂Qi

|u±|dHn−1 ≤ c

∫

Qi

|u| dx + |Eu|(Qi) ,

so we get

ε

∫

∂εQi

|u±|dHn−1 ≤ c

∫

εQi

|u| dx.

Hence for all p ≥ 1

ε

∫

∂εQi

|u±|p dHn−1 ≤ c

∫

εQi

|u|p dx.

For two cubes

ε

∫

∂εQi∩∂εQj

|ũ|p dHn−1 ≤ ε

∫

∂εQi∩∂εQj

(|ui|p + |uj |p) dHn−1 ≤ c

∫

εQi∪εQj

|u|p dx

so that
∫

V

∣∣∣dDφ

dµε
¯ ũ

∣∣∣
p

dµε ≤ cpε

dist (U, ∂V )p

∫

(V \U)∩εE∩sptDφ

|ũ|p dHn−1

≤ 2n
cp

dist (U, ∂V )p

∫

V \U
|u|p dx .

The proof of (i) is then complete. To verify (ii) we apply Remark 3.5 to Example
2.6(a) and take simply zij(x) = [xj ]ei.

Example 3.8 (Elastic media connected by springs).
Let E be as in the previous example and let

µ(B) =
1

n + 1

(
|B|+Hn−1(E ∩B)

)

µε(B) =
1

n + 1

(
|B|+ εHn−1((εE) ∩B)

)
.

In this case the functions in LDp
µε

(Ω) are functions whose restriction to each εQi∩
Ω belongs to W 1,p(εQi ∩Ω;Rn) when p > 1 by the Korn’s inequality (1.55) (we
suppose that εQi∩Ω has a locally Lipschitz boundary) and to LD(εQi∩Ω) when
p = 1, while the difference of the traces on both sides of ∂(εQi)∩∂(εQj)∩Ω is p-
summable for every i, j ∈ Zn. Hence if we compare our case with Example 2.3(b),
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we can conclude that W 1,p
µε

(Ω;Rn) = LDp
µε

(Ω) if p > 1 and W 1,1
µε

(Ω;Rn) ⊂
LDµε(Ω) if p = 1. The functionals Fε take the form

1
n + 1

∫

Ω

f
(x

ε
,
dEu

dx

)
dx + ε

∫

Ω∩εE

g
(x

ε
,
1
ε

dEu

dHn−1

)
dHn−1.

The measure µ satisfies conditions (i) and (ii) for all p ≥ 1 by Example 2.6(b).

3.3 The homogenization theorem

The homogenization theorem for the functionals in (3.6) takes the following form.

Theorem 3.9 Let µ be a measure which satisfies conditions (i) and (ii) in Sec-
tion 3.2, and for every bounded open subset Ω of Rn let Fε(·, Ω) be defined on
Lp(Ω;Rn) by (3.6). Then the Γ-limit with respect to the Lp(Ω;Rn)-convergence

Fhom(u, Ω) = Γ- lim
ε→0

Fε(u, Ω) (3.8)

exists for all bounded open subsets Ω with Lipschitz boundary and for all u ∈
Lp(Ω;Rn); it can be represented on W 1,p(Ω;Rn) for p ≥ 1 as

Fhom(u, Ω) =
∫

Ω

fhom(Eu) dx , (3.9)

where the homogenized integrand satisfies the asymptotic formula

fhom(A) = lim
k→+∞

inf
{ 1

kn

∫

[0,k)n

f
(
x,

dEu

dµ

)
dµ : (3.10)

u ∈ LDp
µ,loc(R

n), u−Ax k-periodic
}

for all A ∈ Mn×n
sym .

Moreover, Fhom(u, Ω) = +∞ if p > 1 and u ∈ Lp(Ω;Rn) \W 1,p(Ω;Rn), or
if u ∈ L1(Ω;Rn) \BD(Ω) when p = 1.

Furthermore, if f is convex then the Γ-limit can be represented as

Fhom(u, Ω) =
∫

Ω

fhom(Eu) dx +
∫

Ω

f∞hom

( dEus

d|Eus|
)
d|Eus|

for all u ∈ BD(Ω) when p = 1.

Remark 3.10 Note that we cannot replace the sets [0, k)n by the sets (0, k)n if
µ([0, k)n \ (0, k)n) 6= 0, see Remark 2.8.

Same examples and considerations of Remarks 2.9 and 2.10, applied to our
case, show that condition (ii) for the measure µ and the assumption that Ω has
a Lipschitz boundary are necessary to get a homogenization theorem. In fact,
if condition (ii) fails then fhom(A) = +∞ if A 6= 0; while if Ω does not have
Lipschitz boundary then the equality (3.9) may not hold.
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The following proposition is a usual tool to prove the existence of the Γ-limit
and its integral representation (see Section 1.7).
Proposition 3.11. (Fundamental Estimate) For every σ > 0 there exists
εσ and M > 0 such that for all U,U ′, V open subsets of Ω with U ′ ⊂ U and
dist (U ′, V \ U) > 0, for all ε < εσdist (U ′, V \ U) and for all u ∈ LDp

µε
(Ω),

v ∈ LDp
µε

(Ω) there exists a cut-off function between U ′ and U , φ ∈ W 1,∞
µε

(U∪V ),
such that

Fε(φu + (1− φ)v, U ′ ∪ V ) ≤ (1 + σ)(Fε(u,U) + Fε(v, V )) (3.11)

+
M(

dist (U ′, V \ U)
)p

∫

(U∩V )\U ′
|u− v|p dx + σµε((U ∩ V ) \ U ′).

Proof. By taking (3.1) and condition (i) into account, the proof follows
exactly that of Proposition 2.11.

Proposition 3.12 For every A ∈ Mn×n
sym there exists zA ∈ LDp

µ,loc(R
n) such

that zA −Ax is 1-periodic and satisfies
∫

[0,1)n

∣∣∣dEzA

dµ

∣∣∣
p

dµ ≤ c|A|p. (3.12)

Proof. Define zA =
∑n

i,j=1 Aijzij , where zij are as in condition (ii). In-
equality (3.12) is then trivial.

We fix (εj) which goes to zero. We define

F ′(u,U) = Γ- lim inf
j→+∞

Fεj (u,U)

F ′′(u,U) = Γ- lim sup
j→+∞

Fεj (u,U)

for all u ∈ Lp(Ω;Rn) and for all open subsets U of Ω.

Proposition 3.13. (Growth Condition) We have for all open subsets U of
Ω with |∂U | = 0

F ′′(u,U) ≤ c

∫

U

(1 + |Eu|p) dx

for all u ∈ W 1,p(Ω;Rn) if p > 1 and

F ′′(u,U) ≤ c(|U |+ |Eu|(U))

for all u ∈ BD(Ω) if p = 1.

Proof. This Growth Conditions can be obtained modifying the proof of
Proposition 2.13. In particular in Step 2 therein now we have to consider the
affine functions ui(x) = Aix+ ci for some Ai ∈ Mn×n

sym and ci ∈ Rn, in Step 3 we
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just have to note that piecewise affine functions are dense in BD endowed with
the intermediate topology (1.53) (see Theorem 1.63).

Proposition 3.14 There exists a subsequence of (εj) (not relabeled) such that
for all open subsets U of Ω with |∂U | = 0 there exists the Γ-limit

Γ- lim
j→+∞

Fεj (u, U) = F (u,U) ,

for all u ∈ W 1,p(Ω;Rn) if p > 1 and for all u ∈ BD(Ω) if p = 1. There exists a
function ϕ : Mn×n → R such that

F (u,U) =
∫

U

ϕ(Eu) dx

for all u ∈ W 1,p(Ω;Rn) if p ≥ 1; moreover if f is convex

F (u,U) =
∫

U

ϕ
(
Eu

)
dx +

∫

U

ϕ∞
( dEsu

d|Esu|
)

d|Esu|

for all u ∈ BD(Ω) if p = 1.

Proof. To prove the existence of the Γ-limit on W 1,p(Ω;Rn) for p > 1 and
BD(Ω) for p = 1, and the integral representation of the Γ-limit

F (u,U) =
∫

U

ϕ(Du) dx

on W 1,p(Ω;Rn) when p ≥ 1, we repeat the proof of Proposition 2.14 using
Propositions 3.11 and 3.13. Moreover, we can prove that ϕ(Du) = ϕ(Eu). In
fact, let wj → Ax be such that

F (Ax, Ω) = lim
j→+∞

Fεj (wj ,Ω)

and let Rx + c be a rigid displacement, then

F (Ax + Rx + c,Ω) ≤ lim inf
j→+∞

Fεj (wj + Rx + c, Ω)

= lim
j→+∞

Fεj (wj , Ω) = F (Ax, Ω)

so that ϕ(A + R) ≤ ϕ(A). The reverse inequality follows similarly, therefore for
all R (n× n) skew-symmetric matrix

ϕ(A + R) = ϕ(A)

which implies ϕ(B) = ϕ(B+BT

2 ) for any B ∈ Mn×n.



68 The linearly elastic/perfectly plastic case

Let us prove the integral representation of the Γ-limit F (u, Ω) on BD(Ω)
whenever f is convex. We consider the functional defined on L1(Ω;Rn)

G(u,Ω) =





∫

Ω

ϕ(Eu) dx if u ∈ W 1,1(Ω;Rn)

+∞ otherwise;

note that G(u, Ω) = F (u, Ω) on W 1,1(Ω;Rn) and that ϕ is convex and α|A| ≤
ϕ(A) ≤ β(1 + |A|) for every A ∈ Mn×n

sym . We introduce

G(u,U) = inf
{

lim inf
h→+∞

G(uh, U) : uh → u in L1(Ω;Rn)
}

the relaxed functional of G (see (1.4) and (1.5)).
For every u ∈ BD(Ω), by Definition 1.55, Eu is a bounded Mn×n-valued

Radon measure; hence if we define

ϕEu(U) =
∫

U

ϕ(Eu) dx +
∫

U

ϕ∞
( dEsu

d|Esu|
)
d|Esu| (3.13)

then Eu 7→ ϕEu takes its values in M+(Ω) and it is l.s.c. with respect to the
locally weak∗-convergence of measures (see [54] Theorem 3 and Section 3).

By the growth condition from below of ϕ and the lower semicontinuity of
ϕEu we get, for fixed Ω, that u 7→ ϕEu(Ω) is L1(Ω;Rn)-l.s.c. on BD(Ω). Hence
if we define

Φ(u, Ω) =





ϕEu(Ω) if u ∈ BD(Ω)

+∞ otherwise,

for all u ∈ L1(Ω;Rn), we have that Φ(u, Ω) ≤ G(u, Ω) on L1(Ω;Rn) which
implies, by (1.4), that Φ(u, Ω) ≤ G(u,Ω) and

ϕEu(Ω) ≤ G(u, Ω) (3.14)

for all u ∈ BD(Ω).
To prove the other inequality we use the approximation property of ϕEu by

convolution (see [54] Theorem 4 and Theroem 4’); i .e., we consider Ωk = {x ∈
Ω : d(x, ∂Ω) > 1

k}, ρk with spt ρk ⊂ B(0, 1
k ) and uk = u ∗ ρk then

ϕEu(Ω) = lim
k→+∞

∫

Ωk

ϕ(Euk) dx . (3.15)

Fix Ω′ ⊂⊂ Ω, for k large enough Ω′ ⊂ Ωk hence by (3.15) and (1.5)

ϕEu(Ω) ≥ lim inf
k→+∞

∫

Ω′
ϕ(Euk) dx



The homogenization theorem 69

≥ G(u, Ω′)

for all Ω′ ⊂⊂ Ω; hence by convexity and growth condition of ϕ we get

ϕEu(Ω) ≥ G(u, Ω) (3.16)

for every u ∈ BD(Ω). By (3.13), (3.14) and (3.16) we obtain

G(u,U) =
∫

U

ϕ(Eu) dx +
∫

U

ϕ∞
( dEsu

d|Esu|
)
d|Esu| (3.17)

for every u ∈ BD(Ω).
Since F (·, U) ≤ G(·, U) in BD(Ω), by the L1(Ω;Rn)-lower semicontinuity of

the Γ-limit, (1.4) and (3.17) we obtain

F (u, U) ≤
∫

U

ϕ(Eu) dx +
∫

U

ϕ∞
( dEsu

d|Esu|
)
d|Esu| (3.18)

for all u ∈ BD(Ω). The reverse inequality is obtained by a convolution argument.
In fact we define as above Uk, ρk and uk. For y ∈ B(0, 1

k ) and k large enough we
have that Uk ⊂ y + U .
Since F (·, U) is convex on BD(Ω) for all U ∈ A(Ω) and F (uy, Uk) ≤ F (u,U)
with uy(x) = u(x− y), by Jensen’s inequality

F (u ∗ ρk, Uk) ≤ F (u,U) (3.19)

for every u ∈ BD(Ω) (see proof of Theorem 1.47 Step 1).
On the other hand, by (3.15) and (3.13) we have that

lim
k→+∞

F (uk, Uk) =
∫

U

ϕ(Eu) dx +
∫

U

ϕ∞
( dEsu

d|Esu|
)
d|Esu|

hence by (3.19) we have
∫

U

ϕ(Eu) dx +
∫

U

ϕ∞
( dEsu

d|Esu|
)
d|Esu| ≤ F (u,U) (3.20)

for all u ∈ BD(Ω).
By (3.18) and (3.20) we can conclude that

F (u, U) =
∫

U

ϕ(Eu) dx +
∫

U

ϕ∞
( dEsu

d|Esu|
)
d|Esu|

as desired.

Proposition 3.15. (Homogenization Formula) For all A ∈ Mn×n
sym there ex-

ists the limit in (3.10) and we have ϕ(A) = fhom(A).
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Proof. It can be obtain repeating the proof of the Proposition 2.15 but
defining

gk(A) = inf
{ 1

kn

∫

(0,k)n

f(x,
dEu

dµ
)dµ : u ∈ LDp

µ,loc(R
n), u−Ax k-periodic

}

for all A ∈ Mn×n
sym and k ∈ N.

Proof of Theorem 3.9. It remains to check the coercivity of the Γ-limit.
By the growth condition on f and a comparison argument, it is enough to prove
this for f(A) = |A|p. We know that the Γ-limit Fhom exists for all u ∈ Lp(Ω;Rn)
and for all sets R in the countable family R of all finite unions of open rectangles
of Ω with rational vertices, in this case Fhom is also convex. For all U ′, U ∈ A(Ω)
such that U ′ ⊂⊂ U there exists R ∈ R such that U ′ ⊂⊂ R ⊂⊂ U . Reasoning
as in the proof of Theorem 1.47 Step 1 , for y ∈ B(0, 1

k ) and k large enough we
have that R ⊂ y + U hence

Fhom(uk, R) ≤ F ′(u, U)

and
lim inf
k→+∞

Fhom(uk, U ′) ≤ F ′(u,U) (3.21)

with uk = u ∗ ρk.
It will be enough then to prove that fhom(A) ≥ c|A|p. In fact for any u ∈

Lp(Ω;Rn) \W 1,p(Ω;Rn) when p > 1 by (3.21)

F ′(u,U) ≥ c lim inf
k→+∞

∫

U ′
|Duk|p dx

by the arbitrarity of U ′, we get Fhom(u,U) = +∞. Similarly, if p = 1 for all
u ∈ L1(Ω;Rn) \ BD(Ω) we have |Eu|(Ω) = +∞, let Ω′ ⊂⊂ Ω we get by (3.21)
that

F ′(u, Ω) ≥ c lim inf
k→+∞

|Euk|(Ω′)

by arbitrarity of Ω′ we obtain Fhom(u, Ω) = +∞.
Since fhom is positively homogeneous of degree p, to prove that fhom(A) ≥

c|A|p, it is sufficient to check that fhom(A) 6= 0 if A 6= 0. To this aim, let
uε → Ax be such that Fε(uε, (0, 1)n) → fhom(A). If fhom(A) = 0 then by a
“Poincaré-type” inequality for BD functions (see Theorem 1.61), by Hölder’s
inequality and a scaling argument we obtain that

0 = fhom(A) = lim
ε→0

∫

(0,1)n

∣∣∣dEuε

dµε

∣∣∣
p

dµε

≥ lim
ε→0

c
(∫

(0,1)n

|uε −Ruε| dx
)p
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where the constant c depends only on Ω and R, and Ruε is a rigid displacement.
Hence Ruε → Ax in L1, and we get a contradiction because A is a symmetric
matrix.

3.4 Non local effects
Theorem 3.9 shows the Γ-convergence of the functionals Fε to Fhom in W 1,p(Ω;Rn)
and that the Γ-limit is local; in fact we have represented Fhom as the integration
over Ω of a local density of energy of the form fhom(Eu).

Now, if we consider

F γ
ε (u, Ω) = εγ

∫

Ω

f
(dEu

dµε

)
dµε

then Γ(Lp)- limε→0 F γ
ε (u, Ω) = 0 on W 1,p(Ω;Rn), when γ > 0. In this case, how-

ever, no coerciveness result may hold for sequences (uε) with supε>0 F γ
ε (uε, Ω) <

+∞ in any norm.
We will show with an example that a more complex notion of convergence

may have to be introduced and that the Γ-limit functionals may be of a non-local
nature.

Let Ω = ω × (0, 1) be a ‘cylindrical’ domain where ω is a connected open
subset of R2.

We define εDi to be a two dimensional disk centered at xi = (εi1 + ε
2 , εi2 + ε

2 )
of radius ε/4

εEi
2 = εDi × (0, 1) εE2 =

⋃

i∈Iε

εEi
2

where i = (i1, i2) ∈ Iε = {i ∈ Z2 : εEi
2 ⊂ Ω},

εE1 = Ω \ εE2.

We call E = D0 × (0, 1).
We consider the measures

µε(B) = εH2(B ∩ ∂εE2)

and the functionals
F γ

ε (u,Ω) = εγ

∫

Ω

∣∣∣dEu

dµε

∣∣∣
2

dµε .

Note that, up to normalization, µε is the same measure of Example 3.7.
In this case LD2

µε
(Ω) consists of functions which are rigid displacements on

the sets εE1 and εE2; i.e., u ∈ LD2
µε

(Ω) if and only if there exist ai, bi, c, d ∈ R3

such that

u = c ∧ x + d on εE1

u = ai ∧ x + bi on εEi
2

for each i ∈ Iε. We use the notation x = (xα, x3) ∈ R3, xα = (x1, x2).
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Hence

dEu

dµε
=

1
ε

dEu

dH2
=

1
ε
(c ∧ x + d− ai ∧ x− bi)¯ ν on ∂(εE2

i ) .

Definition 3.16 Let uε ∈ LD2
µε

(Ω). We say that uε converges to (u1, u2) ∈
L2(Ω;R3)× L2(Ω;R3) if and only if

lim
ε→0

∫

εE1
|uε − u1|2 dx = 0 (3.22)

lim
ε→0

∫

εE2
|uε − u2|2 dx = 0 . (3.23)

We will study the Γ-limit F of F γ
ε with respect to the convergence intro-

duced in Definition 3.16 (see Theorem 3.19). The domain of F will be the set
of pairs (u1, u2) such that u1 is a rigid displacement and u2 is in the space U
of functions whose ‘vertical sections are rigid displacements’, introduced in the
following proposition.

Let us define, for all η > 0, T k
η = Qk

η × (0, 1) where Qk
η = k + (0, η)2 with

k = (k1, k2) ∈ J = {k ∈ Z2 : T k
η ∩ Ω 6= ∅}.

Proposition 3.17 Let uε ∈ LD2
µε

(Ω) and u2 ∈ L2(Ω;R3).

lim
ε→0

∫

εE2
|uε − u2|2 dx = 0

if and only if u2 ∈ U where

U =
{

v ∈ L2(Ω;R3) : ∀η > 0 ∃J ⊂ Z2 and ∃Ak ∧ x + Bk on T k
η ∀k ∈ J

such that
⋃

k∈J

T k
η ∩ Ω = Ω

∑

k∈J

∫

T k
η ∩Ω

|v(x)−Ak ∧ x−Bk|2 dx ≤ o(η)
}

.

Proof. Let uε ∈ LD2
µε

(Ω), by definition uε = aε,i ∧ x + bε,i on εE2
i . Let

h ∈ N and η > 0 such that η = hε, we extend aε,i ∧ x + bε,i to T k
η for each

i ∈ Ik = {i ∈ Z2 : εE2
i ⊂ T k

η }, hence we can construct a rigid displacement on
T k

η

Ak
ε ∧ x + Bk

ε =
1
h2

∑

i∈Ik

aε,i ∧ x + bε,i .

Let us suppose that uε satisfies condition (3.23),
∫

T k
η ∩εE2

∣∣∣u2(x)−Ak
ε ∧ x−Bk

ε

∣∣∣
2

dx (3.24)
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≤ c
(∑

j∈Ik

∫

εE2
j

∣∣∣u2(x)− aε,j ∧ x− bε,j

∣∣∣
2

dx

+
∑

j∈Ik

∫

εE2
j

∣∣∣aε,j ∧ x + bε,j − 1
h2

∑

i∈Ik

aε,i ∧ x + bε,i

∣∣∣
2

dx
)

.

Let us estimate the last term in (3.24)

∑

j∈Ik

∫

εE2
j

∣∣∣aε,j ∧ x + bε,j − 1
h2

∑

i∈Ik

aε,i ∧ x + bε,i

∣∣∣
2

dx

≤ c
(∑

j∈Ik

∫

εE2
j

∣∣∣aε,j ∧ x + bε,j − u2(x)
∣∣∣
2

dx

+
∑

j∈Ik

∫

εE2
j

∣∣∣ 1
h2

∑

i∈Ik

aε,i ∧ x + bε,i − u2(x + xi − xj)
∣∣∣
2

dx

+
∑

j∈Ik

∫

εE2
j

∣∣∣ 1
h2

∑

i∈Ik

u2(x)− u2(x + xi − xj)
∣∣∣
2

dx
)

.

For each x ∈ εE2
j we have that x + xi − xj ∈ εE2

i , hence with a change of
coordinates we get

∑

j∈Ik

∫

εE2
j

∣∣∣aε,j ∧ x + bε,j − 1
h2

∑

i∈Ik

aε,i ∧ x + bε,i

∣∣∣
2

dx

≤ c
(∑

j∈Ik

∫

εE2
j

∣∣∣aε,j ∧ x + bε,j − u2(x)
∣∣∣
2

dx

+
∑

i,j∈Ik

1
h2

∫

εE2
i

∣∣∣aε,i ∧ (x + xj − xi) + bε,i − u2(x)
∣∣∣
2

dx

+
∑

i,j∈Ik

1
h2

∫

εE2
j

∣∣∣u2(x)− u2(x + xi − xj)
∣∣∣
2

dx
)

≤ c
(∑

i∈Ik

∫

εE2
i

∣∣∣aε,i ∧ x + bε,i − u2

∣∣∣
2

dx (3.25)

+
∑

i,j∈Ik

1
h2

∫

εE2
i

∣∣∣aε,i ∧ (xj − xi)
∣∣∣
2

dx

+
∑

i,j∈Ik

1
h2

∫

εE2
j

∣∣∣u2(x)− u2(x + xi − xj)
∣∣∣
2

dx
)

.

Now if we denote Λ the set of all translations of the type xi−xj with i, j ∈ Ik

we get that
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∑

i,j∈Ik

1
h2

∫

εE2
j

∣∣∣u2(x)− u2(x + xi − xj)
∣∣∣
2

dx (3.26)

≤
∑

τ∈Λ

1
h2

∑

r∈C(k)

∫

T r
η

|u2(x)− u2(x + τ)|2 dx

where C(k) = {(k1, k2), (k1 ± 1, k2), (k1, k2 ± 1), (k1 ± 1, k2 ± 1)}.
Since |Λ| = c h2, by (3.26) we have

∑

k∈J

∑

i,j∈Ik

1
h2

∫

εE2
j

∣∣∣u2(x)− u2(x + xi − xj)
∣∣∣
2

dx

≤ c
∑

τ∈Λ

1
h2
‖u2(·)− u2(·+ τ)‖2L2(Ω;R3)

≤ c sup
|τ |≤√2η

‖u2(·)− u2(·+ τ)‖2L2(Ω;R3) . (3.27)

Let us consider the cubes Qj
ε,i = (εi + (0, 1)2) × (εj + (0, ε)) for i ∈ Iε, and

j ∈ Jε = {j ∈ Z : Qj
ε,i ∩ εE2

i 6= ∅}. Since u2 ∈ L2(Ω;R3), we can assume that
there exists a sequence (uε,2) which is constant on each Qj

ε,i such that

lim
ε→0

∫

Ω

|u2 − uε,2|2 dx = lim
ε→0

∑

i∈Iε

∑

j∈Jε

∫

Qj
ε,i
∩Ω

|u2 − uε,2,i,j |2 dx = 0 (3.28)

where uε,2,i,j is the value of (uε,2) on Qj
ε,i.

So by (3.23) ) we get

lim
ε→0

∑

i∈Iε

∑

j∈Jε

∫

Qj
ε,i
∩εE2

i

|uε − uε,2,i,j |2 dx = 0 . (3.29)

Note that the L2-norm on the set R of rigid displacements is equivalent to
the norm on R

‖a ∧ x + b‖R = (|a|2 + |b|2)1/2 ,

hence by (3.29)

lim
ε→0

∑

i∈Iε

∑

j∈Jε

ε3|aε,i|2 + ε3|bε,i − uε,2,i,j |2 = 0

which implies that

lim
ε→0

∑

i∈Iε

ε2|aε,i|2 = 0 (3.30)

and



Non local effects 75

∑

i∈Iε

ε2|bε,i|2 ≤ c (3.31)

for each ε > 0 small enough.
Since |xj − xi| ≤ η, by the equivalence of the norms we have

∑

i,j∈Ik

1
h2

∫

εE2
i

∣∣∣aε,i ∧ (xj − xi)
∣∣∣
2

dx ≤ c
∑

i,j∈Ik

ε2

h2
η2|aε,i|2

= cη2
∑

i∈Ik

ε2|aε,i|2 . (3.32)

Note that
∑

k∈J

∑
i∈Ik

=
∑

i∈Iε
.

Now we insert (3.32) into (3.25) and, summing up all the corresponding
estimates obtained for different indices k ∈ J , by (3.27) we get

∑

k∈J

∑

j∈Ik

∫

εE2
j

∣∣∣aε,j ∧ x + bε,j − 1
h2

∑

i∈Ik

aε,i ∧ x + bε,i

∣∣∣
2

dx (3.33)

≤ c
(∑

i∈Iε

∫

εE2
i

∣∣∣aε,i ∧ x + bε,i − u2(x)
∣∣∣
2

dx + η2
∑

i∈Iε

ε2|aε,i|2

+ sup
|τ |≤√2η

‖u2(·)− u2(·+ τ)‖2L2(Ω;R3)

)
.

Finally, we sum up the estimates (3.24) for k ∈ J and insert (3.33); by (3.23)
and (3.30) we get

lim
ε→0

∑

k∈J

∫

T k
η ∩εE2

∣∣∣u2 −Ak
ε ∧ x−Bk

ε

∣∣∣
2

dx (3.34)

≤ c sup
|τ |≤√2η

‖u2(·)− u2(·+ τ)‖2L2(Ω;R3) .

On the other hand it is easy to see by (3.30) and (3.31) that there exists Ak ∧
x + Bk such that

lim
ε→0

∫

T k
η

∣∣∣Ak
ε ∧ x + Bk

ε −Ak ∧ x−Bk
∣∣∣
2

dx = 0

for each k ∈ J , hence by (3.34) we can conclude that u2 ∈ U .
Conversely, if u2 ∈ U then εE2 = ∪k∈JT k

η ∩ εE2 and we have rigid displace-
ments Ak ∧ x + Bk on each T k

η .
We define

aε,i ∧ x + bε,i = (Ak ∧ x + Bk)|εE2
i

for each i ∈ Ik. Hence
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∑

i∈Iε

∫

εE2
i

∣∣∣aε,i ∧ x + bε,i − u2(x)
∣∣∣
2

dx =
∑

k∈J

∫

T k
η ∩εE2

∣∣∣Ak ∧ x + Bk − u2(x)
∣∣∣
2

dx

and by definition of U

lim
ε→0

∑

k∈J

∫

T k
η ∩εE2

∣∣∣Ak ∧ x + Bk − u2(x)
∣∣∣
2

dx (3.35)

=
∑

k∈J

|E|
∫

T k
η ∩Ω

∣∣∣Ak ∧ x + Bk − u2(x)
∣∣∣
2

dx ≤ o(η) .

By (3.35), passing to the limit as η → 0, we get

lim
ε→0

∑

i∈Iε

∫

εE2
i

∣∣∣aε,i ∧ x + bε,i − u2(x)
∣∣∣
2

dx = 0 .

Remark 3.18 Note that, since uε are rigid displacements, by (3.22) it is easy
to see that u1 is a rigid displacement.

For simplicity, we will denote

F (u1, u2; Ω) = Γ- lim
ε→0

F γ
ε (u1, u2; Ω)

for (u1, u2) ∈ R× U . We will continue to write F γ
ε (u, Ω) for u ∈ LD2

µε
(Ω).

Theorem 3.19 For γ = 2 the functionals F γ
ε Γ-converge as ε → 0 to

F (u1, u2; Ω) = c1

∫

Ω

|(u1)α − (u2)α|2 dx + c2

∫

Ω

|(u1)3 − (u2)3|2 dx

on R × U with respect to the convergence introduced in Definition 3.16, where
c1 = 3

8π, c2 = π
4 .

Proof. By the invariance of the functionals with respect to translations of rigid
displacements and by Remark 3.18 we can always assume without loss of gener-
ality that uε = u1 on εE1.

Let us call
αε,i ∧ x + βε,i = u1 − aε,i ∧ x− bε,i

hence
F γ

ε (uε, Ω) = εγ−1
∑

i∈Iε

∫

∂εE2
i

∣∣∣(αε,i ∧ x + βε,i)¯ ν
∣∣∣
2

dH2 .

Fix x3 ∈ (0, 1), we can find the following equality

4ε

∫

∂εDi

∣∣∣(αε,i ∧ x + βε,i)¯ ν
∣∣∣
2

dH1 − 16
∫

εDi

∣∣∣αε,i ∧ x + βε,i

∣∣∣
2

dxα
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=
π

2
ε2

(∣∣∣(−
∫

εDi

αε,i ∧ x + βε,i dxα)1
∣∣∣
2

+
∣∣∣(−
∫

εDi

αε,i ∧ x + βε,i dxα)2
∣∣∣
2)

+
π

64
ε4((αε,i)21 + (αε,i)22 + 2(αε,i)23) .

Hence, if we integrate also in x3, we get

4ε

∫

∂εE2
i

∣∣∣(αε,i ∧ x + βε,i)¯ ν
∣∣∣
2

dH2 − 16
∫

εE2
i

∣∣∣αε,i ∧ x + βε,i

∣∣∣
2

dx

=
∫ 1

0

π

2
ε2

(∣∣∣(−
∫

εDi

αε,i ∧ x + βε,i dxα)1
∣∣∣
2

+
∣∣∣(−
∫

εDi

αε,i ∧ x + βε,i dxα)2
∣∣∣
2)

dx3

+
π

64
ε4((αε,i)21 + (αε,i)22 + 2(αε,i)23) . (3.36)

But

lim
ε→0

∑

i∈Iε

∫

εE2
i

∣∣∣(−
∫

εDi

αε,i∧x+βε,i dxα)h

∣∣∣
2

dx = lim
ε→0

∑

i∈Iε

∫

εE2
i

∣∣∣(αε,i∧x+βε,i)h

∣∣∣
2

dx

for each h = 1, 2, 3, and

π

2
ε2

∣∣∣(−
∫

εDi

αε,i ∧ x + βε,i dxα)h

∣∣∣
2

= 8
∫

εDi

∣∣∣(−
∫

εDi

αε,i ∧ x + βε,i dxα)h

∣∣∣
2

dxα ;

hence,

lim
ε→0

∑

i∈Iε

∫ 1

0

π

2
ε2

∣∣∣(−
∫

εDi

αε,i ∧ x + βε,i dxα)h

∣∣∣
2

dx3

= 8 lim
ε→0

∑

i∈Iε

∫

εE2
i

∣∣∣(αε,i ∧ x + βε,i)h

∣∣∣
2

dx . (3.37)

If we pass to the limit in (3.36), by (3.37) we obtain

lim inf
ε→0

∑

i∈Iε

ε

∫

∂εE2
i

∣∣∣(αε,i ∧ x + βε,i)¯ ν
∣∣∣
2

dH2

≥ 6 lim
ε→0

∑

i∈Iε

∫

εE2
i

∣∣∣(αε,i ∧ x + βε,i)1
∣∣∣
2

+
∣∣∣(αε,i ∧ x + βε,i)2

∣∣∣
2

dx

+4 lim
ε→0

∑

i∈Iε

∫

εE2
i

∣∣∣(αε,i ∧ x + βε,i)3
∣∣∣
2

dx

+ lim
ε→0

π

64

∑

i∈Iε

ε4((αε,i)21 + (αε,i)22 + 2(αε,i)23) . (3.38)

For every sequence uε converging to (u1, u2) in the sense of Definition 3.16,
by (3.30) we have that
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lim
ε→0

π

64

∑

i∈Iε

ε4((αε,i)21 + (αε,i)22 + 2(αε,i)23) = 0 (3.39)

so we insert (3.39) into (3.38) to find that

lim inf
ε→0

ε2

∫

Ω

∣∣∣dEuε

dµε

∣∣∣
2

dµε ≥ 6|E|
∫

Ω

|(u1)α − (u2)α|2 dx (3.40)

+4|E|
∫

Ω

|(u1)3 − (u2)3|2 dx .

By the arbitrarity of uε, choosing γ = 2

Γ- lim inf
ε→0

Fε
2(u1, u2; Ω) ≥ F (u1, u2; Ω) . (3.41)

Now we consider

uε = (c ∧ x + d) χεE1 + (a ∧ x + b) χεE2

obviously it converges to (c∧ x + d, a∧ x + b), and we call α ∧ x + β = (a− c)∧
x + (b− d).

In this case

8
∫

εE2
i

∣∣∣(α ∧ x + β)h

∣∣∣
2

dx =
∫ 1

0

π

2
ε2

∣∣∣(−
∫

εDi

α ∧ x + β dxα)h

∣∣∣
2

dx3 +
π

128
ε4α2

3

for h = 1, 2, hence by (3.36)

lim sup
ε→0

∑

i∈Iε

ε

∫

∂εE2
i

∣∣∣(α ∧ x + β)¯ ν
∣∣∣
2

dH2

≤ 6 lim
ε→0

∑

i∈Iε

∫

εE2
i

∣∣∣(α ∧ x + β)1
∣∣∣
2

+
∣∣∣(α ∧ x + β)2

∣∣∣
2

dx

+4 lim
ε→0

∑

i∈Iε

∫

εE2
i

∣∣∣(α ∧ x + β)3
∣∣∣
2

dx + c lim
ε→0

ε2|α|2

= 6|E|
∫

Ω

∣∣∣(α ∧ x + β)α

∣∣∣
2

dx + 4|E|
∫

Ω

∣∣∣(α ∧ x + β)3
∣∣∣
2

dx . (3.42)

By (3.40) and (3.42) we get

lim
ε→0

ε2

∫

Ω

∣∣∣dEuε

dµε

∣∣∣
2

dµε = 6|E|
∫

Ω

∣∣∣(α ∧ x + β)α

∣∣∣
2

dx (3.43)

+4|E|
∫

Ω

∣∣∣(α ∧ x + β)3
∣∣∣
2

dx .
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Now we fix η > 0 and consider u1 ∈ R and vη
2 such that vη

2 |T k
η

= Ak ∧ x + Bk

with k ∈ J . By (3.43) we get

lim sup
ε→0

F 2
ε (u1 χεE1 + vη

2 χεE2 , Ω)

≤
∑

k∈J

lim sup
ε→0

F 2
ε (u1 χεE1 + (Ak ∧ x + Bk)χεE2 , T k

η ∩ Ω)

=
∑

k∈J

6|E|
∫

T k
η ∩Ω

∣∣∣(u1(x)−Ak ∧ x−Bk)α

∣∣∣
2

dx

+
∑

k∈J

4|E|
∫

T k
η ∩Ω

∣∣∣(u1(x)−Ak ∧ x−Bk)3
∣∣∣
2

dx

= 6|E|
∫

Ω

∣∣∣(u1(x)− vη
2 (x))α

∣∣∣
2

dx + 4|E|
∫

Ω

∣∣∣(u1(x)− vη
2 (x))3

∣∣∣
2

dx (3.44)

If u2 ∈ U then for all η > 0 there exists vη
2 as above such that ‖u2−vη

2‖L2(Ω;R3) ≤
o(η), since the Γ-upper limit is L2-lower semicontinuous if we denote

F ′′2 (u1, u2; Ω) = Γ- lim sup
ε→0

Fε
2(u1, u2; Ω)

by (3.44) we get

F ′′2 (u1, u2; Ω) ≤ lim inf
η→0

F ′′2 (u1, v
η
2 ; Ω)

≤ lim inf
η→0

6|E|
∫

Ω

∣∣∣(u1(x)− vη
2 (x))α

∣∣∣
2

dx

+4|E|
∫

Ω

∣∣∣(u1(x)− vη
2 (x))3

∣∣∣
2

dx

= 6|E|
∫

Ω

∣∣∣(u1(x)− u2(x))α

∣∣∣
2

dx + 4|E|
∫

Ω

∣∣∣(u1(x)− u2(x))3
∣∣∣
2

dx .

It follows that given (u1, u2) ∈ R× U

Γ- lim sup
ε→0

Fε
2(u1, u2; Ω) ≤ F (u1, u2; Ω)

so that by (3.41)
Γ- lim

ε→0
Fε

2(u1, u2; Ω) = F (u1, u2; Ω)

as desired.

If uε converges to (u1, u2) in the sense of Definition 3.16 then uε converges
weakly in L2(Ω;R3) to (1− c)u1 + cu2 where c = |E|. If we define the energy

F (u, Ω) := inf
u=(1−c)u1+cu2
(u1,u2)∈R×U

F (u1, u2; Ω)
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by Theorem 3.19

F (u, Ω) = inf
r∈R

(
c̃1

∫

Ω

|rα − uα|2 dx + c̃2

∫

Ω

|r3 − u3|2 dx
)

where c̃1 = c1/c2 and c̃2 = c2/c2, which explains the non local nature of our
limit.

Remark 3.20 Let us consider, up to normalization, the same measure of Ex-
ample 3.8

µ̃ε(B) =
(
|B|+ εH2(B ∩ ∂εE2)

)

and the functionals
F̃ 2

ε (u,Ω) = ε2

∫

Ω

∣∣∣dEuε

dµ̃ε

∣∣∣
2

dµ̃ε .

In this case by Theorem 3.19 we can deduce that the Γ- lim supε→0 F̃ 2
ε (u1, u2; Ω)

is finite for (u1, u2) ∈ R× U .
In fact, since LD2

µε
(Ω;R3) ⊂ LD2

µ̃ε
(Ω;R3), given (u1, u2) ∈ R× U we have

Γ- lim sup
ε→0

F̃ 2
ε (u1, u2; Ω) ≤ Γ- lim sup

ε→0
F 2

ε (u1, u2; Ω) .



4

HOMOGENIZATION OF OSCILLATING BOUNDARIES

4.1 Scheme of the direct method

In the sequel we will repeatedly apply some variants of the so-called direct
method of Γ-convergence to homogenization problems, which consists in com-
bining localization and integral representation procedures to obtain compactness
theorem for classes of integral functional.

The Γ-limits will be performed with respect to the Lp(Ω;Rm)-convergence.
Let Ω be a bounded subset of Rn, let p > 1 and let Fε : Lp(Ω;Rm)×A(Ω) →

[0, +∞] be a family of functionals of the form

Fε(u,U) =





∫

U

fε(x, Du) dx if u ∈ Xε(U)

+∞ otherwise,

(4.1)

for suitable function spaces Xε(U) and fε : Rn × Mm×n → [0, +∞) Borel
functions. Suppose that there exist Borel functions gε : Rn × R → [0, +∞),
convex and even in the second variable, with

gε(x, |F |) ≤ fε(x, F ) ≤ C(1 + gε(x, |F |)) ≤ C(1 + |F |p), (4.2)
gε(x, 2t) ≤ C(1 + gε(x, t)) (4.3)

for all F ∈ Mm×n, x ∈ Ω and t ∈ R. Growth conditions (4.2) and (4.3) are
designed to include functions of the type aε(x)|F |p with the only assumption
aε ≥ 0, thus allowing for zones where aε = 0. In the next section aε will be
the characteristic function of a set with fast-oscillating boundary. Note that a
general theory for functions satisfying

0 ≤ fε(x, F ) ≤ C(1 + |F |p)

only has not be developed yet. The aim of the direct method of Γ-convergence
is to prove a compactness result for the family (Fε), giving a representation of
the limit, and, possibly, complete the description in terms of ‘homogenization
formulas’.

Step 1 With fixed (εj) extract a subsequence (not relabeled) such that
Fε(·, U) Γ-converges to a functional F0(·, U) for all U in a dense family of open
sets R (see Proposition 1.22);

Step 2 Thanks to (4.2) and (4.3), prove that F0(u, ·) is the restriction of a
finite Borel measure to R for all u ∈ W 1,p(Ω;Rm), so that by inner regularity we
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indeed have that Fε(·, U) Γ-converges to a functional F0(·, U) on W 1,p(Ω;Rm)
for all U ∈ A(Ω). In this step is crucial the so-called fundamental Lp-estimate:
for all U, Y, Z ∈ A(Ω) with Y ⊂⊂ U , and for all σ > 0, there exists M > 0 such
that for all u, v ∈ W 1,p(Ω;Rm) one may find a cut-off function ϕ ∈ C∞c (U ; [0, 1]),
ϕ = 1 in Y , such that

Fε(ϕu + (1− ϕ)v, Y ∪ Z) ≤ (1 + σ)(Fε(u,U) + Fε(v, Z))

+M

∫

(U∩Z)\Y
|u− v|p dx + σ . (4.4)

Moreover, by again using the fundamental Lp-estimate it can be proven that
if u ∈ W 1,p(Ω;Rm) ∩ Xε(U) for all ε and F0(u,U) < +∞ then there exist a
sequence uε ∈ Xε(U) such that

lim
ε→0

Fε(uε, U) = F0(u, U)

and uε = u on a neighbourhood of ∂U (see Sections 1.6 and 1.7.1, Remark 1.39
and Section 1.7.2);

Step 3 By the locality and semicontinuity properties of Γ-limits and by Step
2 we can find a function ϕ : Ω × Mm×n → [0, +∞) such that 0 ≤ ϕ(x, F ) ≤
C(1 + |F |p) and F0(u,U) = Fϕ(u, U) for all u ∈ W 1,p(Ω;Rm) and U ∈ A(Ω),
where

Fϕ(u) =
∫

Ω

ϕ(x,Du) dx.

In the proof of this step a crucial point is the passage from the identity F0(u) =
Fϕ(u) when u is piecewise affine to a general u by the continuity of Fϕ with
respect to a convergence in which piecewise-affine functions are dense (e.g. the
strong W 1,p-convergence) (see Theorem 1.35);

Step 4 If fε(x, F ) = f(x
ε , F ) with f 1-periodic in the first variable then by

the periodicity of f we deduce that ϕ = ϕ(F ) (see Proposition 1.44);
Step 5 If gε(x, F ) = g(x

ε , F ) with g 1-periodic in the first variable then we
consider the auxiliary functionals

Gε(u,U) =





∫

U

gε(x,Du) dx if u ∈ Xε(Ω)

+∞ otherwise.

(4.5)

By Step 1–4 we can assume that a function ψ exists such that Gε(·, U) Γ-
converges to the functional Fψ(·, U) on W 1,p(Ω;Rm) for all U ∈ A(Ω);

Step 6 Note that ψ is convex. By an argument of approximation by convo-
lution prove that indeed the functional Gε(·, U) Γ-converges to the functional
Fψ(·, U) on W 1,1(Ω;Rm) for all U ∈ A(Ω). Define the ‘domain’ of Fψ(·,Ω):
W1,ψ(Ω;Rm) = {u ∈ W 1,1(Ω;Rm) : Fψ(u, Ω) < +∞} (see Theorem 1.47);



Homogenization of media with oscillating profile 83

Step 7 Repeat Step 2 and 3 substituting the space W 1,p(Ω;Rm) by the space
W1,ψ(Ω;Rm) thus obtaining the representation F0 = Fϕ on W 1,1(Ω;Rm). It is
usually proved by using some additional assumptions on ψ;

Step 8 Deduce that ϕ and ψ do not depend on (εj) by proving a homoge-
nization formula;

Step 9 Finally, the representation of F0 on the whole Lp(Ω;Rm), and not
only on W 1,1(Ω;Rm), can be obtained in some cases by a more accurate study
of the properties of ϕ (as for example in Theorem 1.47).

We will have to modify Steps 1–9 above as to cover the case when the domain
of the limit is a ‘degenerate Sobolev Space’. In particular, since the function ψ
obtained as in Step 5 will be degenerate, a suitable weighted Sobolev Space
will have to be defined, which takes the place of W 1,1(Ω;Rm) in Step 6 above.
Moreover, we will have to deal with the fact that our functions fε, gε may be
periodic only in some variables, so that Step 8 will be harder to verify. We will
include all the details of the reasonings which do not fall directly in this scheme,
while we will feel free to refer to Chapter 1 for those procedures which have
become customary.

It is worth mentioning that in some cases the arguments outlined above can
be simplified by using some techniques (as blow-up arguments or the theory of
Young measures) that avoid to use the complex localization procedure. As our
problem is concerned those methods seem harder to apply since the energies we
consider are coercive only on wildly oscillating sets.

4.2 Homogenization of media with oscillating profile
Let f : Rn−1 7→ [0, 1] be a 1-periodic lower semicontinuous function and 0 ≤
min f ≤ sup f = 1, let W : Rn−1 × Mm×n 7→ [0, +∞) be a Borel function
1-periodic in the first variable satisfying

γ|F |p ≤ W (xα, F ) ≤ β(1 + |F |p) (4.6)

for all xα ∈ Rn−1 and F ∈ Mm×n, for some 1 < p < +∞, 0 < γ ≤ β. The
set ω will be a fixed bounded open subset of Rn−1 with Lipschitz boundary and
Ω = ω × (−1, 1).

Fig. 4.1. the graph of a typical f in the unit cell

In this section we compute the Γ-limit of functionals of the form
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Jε(u) =





∫

Ωε

W
(xα

ε
,Du

)
dx if u|Ωε

∈ W 1,p(Ωε;Rm)

+∞ otherwise,

(4.7)

where
Ωε = {x ∈ Ω : |xn| < f(xα/ε)}. (4.8)

Fig. 4.2. the upper profile of Ωε with f as in Figure 4.1

The Γ-limit theorem will be stated and proved at the end of the chapter after
some preliminary results, which are needed to define the domain of the Γ-limit
and to explain the homogenization formula.

In orded to apply the method described in the previous section we introduce
the localized version of the functionals Jε: for all U open subset of Ω we define

Jε(u,U) =





∫

Ωε∩U

W
(xα

ε
,Du

)
dx if u|Ωε∩U ∈ W 1,p(Ωε ∩ U ;Rm)

+∞ otherwise,

(4.9)

so that Jε(u) = Jε(u, Ω).

The first proposition contains the analog of Steps 1–4 of the direct method
of Γ-convergence as outlined in the previous section.

Proposition 4.1 From every sequence (εj) of positive numbers converging to 0
we can extract a subsequence (not relabeled) such that the Γ-limit

J0(u,U) = Γ- lim
j→+∞

Jεj (u,U)

exists for all u ∈ W 1,p(Ω;Rm) and U open subsets of Ω. Moreover, there exists
a Carathéodory function ϕ : (−1, 1)×Mm×n → [0, +∞) such that

J0(u,U) =
∫

U

ϕ(xn, Du) dx
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for all u ∈ W 1,p(Ω;Rm).

Proof. The functional Jε can be rewritten on Xε(U) = {u ∈ Lp(Ω;Rm) :
u|Ωε∩U ∈ W 1,p(Ωε ∩ U ;Rm)} as

Jε(u,U) =
∫

U

χΩε(x)W
(xα

ε
,Du

)
dx .

We can then apply Steps 1-3 of Section 4.1 (see Example 1.30 for the proof of
the Lp-fundamental estimate). Finally, a translation argument in the xα-plane
(completely analogous, e.g., to the one in the proof of Proposition 1.44) shows
that ∫

Bρ(xα)×(z−η,z+η)

ϕ(y, F ) dy =
∫

Bρ(x′α)×(z−η,z+η)

ϕ(y, F ) dy

for all ρ, η > 0, xα, x′α, z such that

(
Bρ(xα)× (z − η, z + η)

)
∪

(
Bρ(x′α)× (z − η, z + η)

)
⊂ Ω .

We then easily deduce that ϕ(x, F ) = ϕ(xn, F ).

We will complete the proof of the homogenization theorem by characteriz-
ing the function ϕ above (showing in particular that it does not depend on the
sequence (εj)), proving the existence of the Γ-limit J0 on the whole Lp(Ω;Rm)
and showing that the integral representation in the previous proposition holds
on the whole domain of J0. In order to get to this result, we will have to define
a number of auxiliary energies; we then streamline the organization of the rest
of the chapter. First, in Section 4.3 we consider the case when W (F ) = ‖F‖p.
We will denote by ψ the function given by Proposition 4.1 corresponding to this
particular choice of W . For fixed t the function ψ(t, ·) is easily characterized by
solving a (n− 1)-dimensional (possibly, non coercive) homogenization problem.
It is possible then to define the ‘degenerate Sobolev space’ W 1,p

ψ (Ω;Rm) of func-
tions such that

∫
Ω

ψ(xn, Du) dx < +∞, which turns out to be the domain of
the Γ-limit when W (F ) = ‖F‖p, and hence also in the general case by (4.6). In
Section 4.4, in order to describe the function ϕ in the general case, with fixed
t we consider the case when we replace the function f with the characteristic
function of Et = {xα : f(xα) > |t|} (i.e., we deal with cylindrical domains).
The function ϕ(t, ·) will eventually be given by the energy density of the cor-
responding Γ-limit. Finally, in Section 4.5 we are able to consider general W
and f and obtain the oscillating-boundary homogenization Theorem 4.15 as the
consequence of the previous sections.

4.3 An auxiliary problem. Definition of the limit domain

In general, the limit functional J0 exists and is finite also outside W 1,p(Ω;Rm).
We first deal with the case of J0 corresponding to
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W (x, F ) = ‖F‖p, where ‖F‖p =
n∑

j=1

|Fj |p. (4.10)

By a careful description of the domain of the corresponding Γ-limit we will
identify the domain of J0 as a suitable ‘degenerate Sobolev Space’ (see Definition
4.5) which, in view of the growth condition (4.6), will also be the domain of J0

corresponding to energy densities other than (4.10).
We recall a preliminary result.

Theorem 4.2 Let E be a 1-periodic set in RN ; i.e., such that χE is a 1-periodic
function, and let

JE
ε (v, U) =





∫

U∩εE

‖Dv‖p dx if v|U∩εE ∈ W 1,p(U ∩ εE;Rm)

+∞ otherwise.

(4.11)

Then the Γ-limit
JE

hom(v, U) = Γ- lim
ε→0

JE
ε (v, U)

exists for all U bounded open subsets of RN and v ∈ W 1,p(U ;Rm). Moreover,
we have

JE
hom(v, U) =

∫

U

ϕE
hom(Dv) dx

for all u ∈ W 1,p(U ;Rm), where ϕE
hom is a positively homogeneous function of

degree p, satisfying the formula

ϕE
hom(F ) = inf

{∫

E∩(0,1)N

‖Dv + F‖p dx : v ∈ W 1,p
loc (E;Rm), 1-periodic

}
.

proof. This theorem is a particular case of Theorem 1.47, the positive ho-
mogeneity of ϕE

hom easily following from its definition.

For all t ∈ (−1, 1) we define

ϕ#(t, F ) = ϕEt

hom(F ) ,

the latter function being that given by the previous theorem, with N = n − 1
and E = Et = {xα : f(xα) > |t|}. We define also

ψ(t, F ) = ϕ#(t, F ) + Ln−1(Et ∩ (0, 1)n−1)|Fn|p. (4.12)

Theorem 4.3 If W = ‖F‖p and ϕ is given by Proposition 4.1 then we have

ϕ(t, F ) = ψ(t, F ) .

In particular ϕ does not depend on (εj).
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Proof. Let (x, F ) be such that xn is a Lebesgue point for ϕ(·, F ). Then

ϕ(xn, F ) = lim
ρ→0+

−
∫

Bρ(xα)×(xn−ρ,xn)

ϕ(yn, F ) dy (4.13)

= lim
ρ→0+

J0(Fy, Bρ(xα)× (xn − ρ, xn))
|Bρ(xα)× (xn − ρ, xn)| .

We consider the case xn > 0 only, the case xn < 0 being dealt with using a
symmetric argument. Note that for 0 < t < s < 1 we have Es ⊆ Et. Let uj → 0
with uj ∈ W 1,p

0 (Bρ(xα)× (xn − ρ, xn) ∩ Ωεj ) be such that

J0(Fy, Bρ(xα)× (xn − ρ, xn)) = lim
j→+∞

Jεj
(Fy + uj , Bρ(xα)× (xn − ρ, xn)) .

Then,

Jεj (Fy + uj , Bρ(xα)× (xn − ρ, xn))

=
∫ xn

xn−ρ

∫

Bρ(xα)

χEyn

(yα

εj

)
‖F + Dαuj‖pdyα dyn

+
∫

Bρ(xα)

∫ xn

xn−ρ

χEyn

(yα

εj

)
|Fn + Dnuj |pdyn dyα

≥
∫ xn

xn−ρ

∫

Bρ(xα)

χExn

(yα

εj

)
‖F + Dαuj‖pdyα dyn

+ρ

∫

Bρ(xα)

χExn

(yα

εj

)
|Fn|p dyα

by Jensen’s inequality. By using the lower limit inequality for the Γ-convergence
in Theorem 4.2 with E = Exn , and by an application of Fatou’s Lemma, we get

J0(Fy, Bρ(xα)× (xn − ρ, xn)) ≥ ρ

∫

Bρ(xα)

ϕ#(xn, F )dyα

+ρLn−1(Bρ(xα))|Fn|pLn−1(Exn ∩ (0, 1)n−1) .

Letting ρ → 0+ we obtain then by (4.13)

ϕ(xn, F ) ≥ ϕ#(xn, F ) + Ln−1(Exn ∩ (0, 1)n−1)|Fn|p.

Vice versa, let vj → 0 be such that Fyα + vj(yα) is a recovery sequence for
J

Exn

hom (Fyα, Bρ(xα)) along the sequence (εj), and set

uj(y) = Fy + (vj(yα), 0) = (Fyα + vj(yα), Fnyn) .

We then have
∫

Bρ(xα)×(xn,xn+ρ)

ϕ(yn, A) dy
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≤ lim inf
j→+∞

Jεj
(uj , Bρ(xα)× (xn, xn + ρ))

≤ lim inf
j→+∞

∫

Bρ(xα)×(xn,xn+ρ)

χExn

(yα

εj

)
‖Duj‖p dy

= lim
j→+∞

ρ

∫

Bρ(xα)

χExn

(yα

εj

)
(‖F + Dαvj‖p + |Fn|p)dyα

= ρ

∫

Bρ(xα)

ϕ#(xn, F )dyα

+ρLn−1(Bρ(xα))|Fn|pLn−1(Exn ∩ (0, 1)n−1 ,

which gives the missing inequality by (4.13).

Remark 4.4 With fixed t, we define the ‘kernel’ of ϕ#(t, ·) as

Kerϕ# = {ϕ#(t, ·) = 0}.
Then Ker ϕ# is a linear space and its dimension is a multiple integer of m; i.e.,

dimKer ϕ# = km for some k = 0, . . . , n− 1

and there exist ξk+1, . . . , ξn−1 ∈ Rn−1 such that

F =




F 1

...
Fm


 ∈ Kerϕ# ⇔ Fξi = 0

for each i = k +1, . . . , n− 1. (Note that k depends on t fixed and F i denotes the
i-th row of F , 1 ≤ i ≤ m).

In fact, since F 7→ ϕ#(t, F ) is positively homogeneous of degree p, convex and
even, Ker ϕ# is a linear space and satisfies the following properties: if F ∈ Kerϕ#

then
(i) for each (s1, . . . , sm) ∈ Rm




s1F
1

...
smFm


 ∈ Kerϕ#;

(ii) PF ∈ Ker ϕ# for each permutation matrix P ∈ Mm×m.
Properties (i) and (ii) imply that if we fix F 1 we can construct m matrices

linearly independent



F 1

0
...
0


 ,




0
F 1

...
0


 , · · · ,




0
0
...

F 1


 ∈ Kerϕ#
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which span a subspace 〈F 1〉 of Ker ϕ# of dimension m.
Now, if 〈F 1〉 6= Ker ϕ#, we can single out a non-zero matrix in Ker ϕ# or-

thogonal to 〈F 1〉, and, by using the same argument as above taking its first
row vector, find other m matrices which, together with the matrices constructed
before, form a linearly independent family.

By proceeding in this way, we end up with η1, . . . , ηk ∈ Rn−1 such that for
all A ∈ Kerϕ#

Ai =
k∑

j=1

sijηj i = 1, . . . , m

with sij ∈ R, which means that the dimKer ϕ# = km for some k ∈ {1, . . . , n−1}.
The orthogonal subspace to 〈η1, . . . , ηk〉 is a vector subspace of Rm(n−1)

〈ξk+1, . . . , ξn−1〉 and the vectors of the two basis satisfy, by definition, the con-
ditions

ηiξj = 0 i = 1, . . . , k j = k + 1, . . . , n− 1.

Hence, we can conclude that there exist vectors ξk+1, . . . , ξn−1 ∈ Rn−1 such that
F ∈ Ker ϕ# if and only if Fξi = 0 for each i = k + 1, . . . , n− 1.

Since t 7→ ϕ#(t, F ) is decreasing on (0, 1) and it is coercive on (0, min f), there
exist 0 ≤ min f ≤ t1 ≤ . . . ≤ tk ≤ tk+1 ≤ . . . ≤ tn−1 ≤ 1 and ξk+1, . . . , ξn−1 ∈
Rn−1 such that

(i) ϕ#(t, F ) is coercive on (0, t1);
(ii) for each k = 1, . . . , n − 2 ϕ#(t, F ) = 0 if and only if Fξi = 0
for i = k + 1, . . . , n− 1 on (tk, tk+1);
(iii) ϕ#(t, F ) = 0 on (tn−1, 1).

Definition 4.5 We define the ‘degenerate weighted Sobolev Space’ W 1,p
ψ (Ω;Rm)

as the space of functions u ∈ Lp(Ω;Rm) such that
(i) Dnu ∈ Lp

loc(Ω;Rm);
(ii) D(ξi,0)u ∈ Lp

loc(ω × (−ti, ti);Rm) for i = 1, . . . , n− 1;
(iii) if Φ : Ω → Mm×(n−1) is any measurable function such that
Φξi = D(ξi,0)u ∈ Lp

loc(ω × (−ti, ti);Rm) for i = 1, . . . , n− 1, then

∫

Ω

ψ(xn, Φ|Dnu) dx < +∞ .

Clearly, the last integral is independent of the choice of Φ; hence, it will be
denoted by ∫

Ω

ψ(xn, Du) dx ,

with a slight abuse of notation.

Remark 4.6 Note that in dimension 3 (i.e., n = 3) the representation of the
space W 1,p

ψ (Ω;Rm) is particularly simple as, up to a rotation, we can assume
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that ξ = e2. In this case, W 1,p
ψ (Ω;Rm) is the space of functions u ∈ Lp(Ω;Rm)

such that
(i) D3u ∈ Lp

loc(Ω;Rm);
(ii) D2u ∈ Lp

loc(ω × (−t2, t2);Rm);
(iii) D1u ∈ Lp

loc(ω × (−t1, t1);Rm);
(iv) if Φ : Ω → Mm×2, Φ = (Φ1, Φ2) is any measurable function such that
Φ2 = D2u in ω × (−t2, t2) and Φ1 = D1u in ω × (−t1, t1), then

∫

Ω

ψ(x3, Φ|D3u) dx < +∞ .

Example 4.7 If n = 3 and

f(x1, x2) =
1
2

+
1
2

sin2(x1) sin2(x2) ,

then ϕ#(t, F ) = ‖F‖p if |t| < 1/2 and 0 otherwise, so that t1 = t2 = 1/2, and ξ
is any vector. If instead

f(x1, x2) =
1
2

+
1
2

sin2(x1) ,

then t1 = 1/2, t2 = 1 and ξ = (0, 1).

Fig. 4.3. the oscillating profiles in Example 4.7

By using a convolution argument, we can improve Proposition 4.1 to give a
characterization of the Γ-limit on the whole W 1,p

ψ (Ω;Rm) and independent of
the sequence (εj). This result corresponds to Step 6 in Section 4.1, and its proof
uses the convexity of F 7→ ‖F‖p in an essential way.

Proposition 4.8 Let W = ‖F‖p, and let U be a open subset of Ω. Then
(i) if u ∈ Lp(U ;Rm) \W 1,p

ψ (U ;Rm) then there exists the Γ-limit

J0(u, U) = Γ- lim
ε→0

Jε(u,U) = +∞;
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(ii) if u ∈ W 1,p
ψ (Ω;Rm) then there exists the Γ-limit

J0(u,U) = Γ- lim
ε→0

Jε(u, U) =
∫

U

ψ(xn, Du) dx.

Proof. We only outline the proof, as it closely follows that of Theorem 1.47,
and details can be found therein.

Fix u ∈ Lp(Ω;Rm) and U an open subset of Ω. In order to compute J0(u,U)
it is sufficient to show that from every sequence (εj) we can extract a subse-
quence (εjk

) such that the Γ-limit along (εjk
) exists and is independent of the

subsequence.
We fix a sequence (εj). By Theorem 4.3 the thesis of Proposition 4.1 holds

with ψ in the place of ϕ. Upon possibly extracting a further subsequence, we
may also assume that there exists the limit

J0(u,U) = Γ- lim
j→+∞

Jεj
(u,U).

Let (ρj) be a sequence of mollifiers with sptρj ⊂ B(0, 1
j ) ⊂ Rn−1, and define

uj(x) =
∫

B(0, 1
j )

ρj(y)u(xα − y, xn) dy.

By the convexity of J0 and its translation-invariance properties, we have
J0(uj , U

′) ≤ J0(u,U) for all U ′ ⊂⊂ U such that U ′ ⊂ (y, 0)+U for all y ∈ sptρj .
By the convexity of ψ the functional v 7→ ∫

U ′ ψ(xn, Dv) dx (if v ∈ Lp(U ′;Rm) \
W 1,p

ψ (U ′;Rm) this integral is set equal to +∞) is lower semicontinuous with
respect to the Lp(U ′;Rm) convergence. Hence, we have

∫

U ′
ψ(xn, Du) dx ≤ lim inf

j→+∞

∫

U ′
ψ(xn, Duj) dx ≤ J0(u,U).

By the arbitrariness of U ′ we get
∫

U

ψ(xn, Du) dx ≤ J0(u,U), (4.14)

and in particular that J0(u,U) = +∞ if u ∈ Lp(U ;Rm) \W 1,p
ψ (U ;Rm), so that

(i) is proved.
Let now u ∈ W 1,p

ψ (Ω;Rm). We first assume that U ⊂⊂ U ′ ⊂⊂ Ω. By using
the lower semicontinuity of J0 and Jensen’s inequality, we have

J0(u,U) ≤ lim inf
j→+∞

J0(uj , U) = lim inf
j→+∞

∫

U

ψ(xn, Duj) dx

≤ lim inf
j→+∞

∫

U

∫

B(0, 1
j )

ρj(y)ψ(xn, Du(x− (y, 0))) dx dy
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= lim inf
j→+∞

∫

B(0, 1
j )

ρj(y)
∫

U+(y,0)

ψ(xn, Du) dx dy

≤ lim inf
j→+∞

∫

B(0, 1
j )

ρj(y) dy

∫

U ′
ψ(xn, Du) dx =

∫

U ′
ψ(xn, Du) dx.

By the arbitrariness of U ′ we then get

J0(u,U) ≤
∫

U

ψ(xn, Du) dx, (4.15)

so that (ii) follows by taking (4.14) into account.
Finally, for arbitrary U , note that if u ∈ W 1,p

ψ (Ω;Rm) then it can be approxi-
mated by a sequence (vj) of functions in W 1,p(Ω;Rm) such that

∫
Ω

ψ(xn, Dvj) dx
are equi-bounded (we may use e.g. the argument in the proof of [46] Section 4.2
Theorem 3); hence, by the lower semicontinuity of J ′′ = Γ-lim supj Jεj , we have
J ′′(u) < +∞. This fact implies (as in Propositions 1.31 and 1.32) that J ′′ is
inner-regular; i.e.,

J ′′(u,U) = sup
{

J ′′(u, V ) : V ⊂⊂ U
}

.

Since (ii) holds with V in the place of U we easily get the thesis.

The following proposition clarifies the structure of W 1,p
ψ , and implies that

the restrictions of functions u ∈ W 1,p
ψ (Ω;Rm) to relatively compact subsets of

ω × (tk, tk+1) are characterized as those functions having directional derivatives
Dk+1, . . . , Dn p-summable.

Proposition 4.9 Let k = 1, . . . , n−2 and s ∈ (tk, tk+1). There exist two positive
constants αk(s) and βk such that

αk(s)
( n−1∑

i=k+1

|Fξi|p + |Fn|p
)
≤ ψ(t, F ) ≤ βk

( n−1∑

i=k+1

|Fξi|p + |Fn|p
)

(4.16)

for all F ∈ Mm×n and t ∈ (tk, s] .

Proof. Since F 7→ ϕ#(t, F ) is positively homogeneous of degree p and con-
vex, if t ∈ (tk, tk+1) we easily deduce that

ϕ#(t, F ) ≤ c

n−1∑

i=k+1

ϕ#(t,Ξi)|Fξi|p

where
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Ξi =




ξi

0
...
0


 .

If we denote
β′k = max

i=k+1,...,n−1
sup

t∈[0,1)

c ϕ#(t, Ξi)

then

ϕ#(t, F ) ≤ β′k

n−1∑

i=k+1

|Fξi|p. (4.17)

On the other hand we have that

ϕ#(t, F )∑n−1
i=k+1 |Fξi|p

≥ c
ϕ#(t, (Fξk+1, . . . , F ξn−1))
‖(Fξk+1, . . . , F ξn−1)‖p

≥ c inf{ϕ#(t, G) : G ∈ Sn−1 ∩Kerϕ#
⊥}

by p-homogeneity. Note that t 7→ c inf{ϕ#(t, G) : G ∈ Sn−1 ∩Kerϕ#
⊥} = c(t)

is decreasing on (0, 1) and

inf
t∈(tk,s]

c(t) = α′k(s) > 0,

so that we get

ϕ#(t, F ) ≥ α′k(s)
n−1∑

i=k+1

|Fξi|p. (4.18)

Let
αk(s) = min{α′k(s), inf

t∈(tk,s]
Ln−1(Et ∩ (0, 1)n−1)}

and
βk = max{β′k, 1},

then (4.16) follows by Theorem 4.3, (4.17) and (4.18).

Proposition 4.10 Fix t ∈ (tk, tk+1), for k = 0, . . . , n− 1 (t0 = 0, tn = 1). If ψ
is given by (4.12) then

ψ(t, F ) = min
{∫

(0,1)n∩(Et×(0,1))

‖Dw‖p dx :

w ∈ W 1,p
loc (Et × (0, 1);Rm), w − Fx 1-periodic

}
.
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Proof. Let w be a test function for the minimum problem above, then
∫

(0,1)n∩(Et×(0,1))

‖Dw‖p dx

=
∫

(0,1)n∩(Et×(0,1))

‖Dαw‖p dx +
∫

(0,1)n∩(Et×(0,1))

|Dnw|p dx

≥
∫ 1

0

min
{∫

Et∩(0,1)n−1
‖Dv‖p dxα :

v ∈ W 1,p
loc (Et;Rm), v − Fxα 1-periodic

}
dxn

+
∫

Et∩(0,1)n−1

(∫ 1

0

|Dnw|p dxn

)
dxα

≥ ϕ#(t, F ) + Ln−1(Et ∩ (0, 1)n−1)|Fn|p = ψ(t, F )

by Jensen’s inequality and the description of ϕ# (see Theorem 4.2); hence,

ψ(t, F ) ≤ min
{∫

(0,1)n∩Et×(0,1)

‖Dw‖p dx :

w ∈ W 1,p
loc (Et × (0, 1);Rm), w − Fx 1-periodic

}

by Theorem 4.3.
Conversely, given a function v such that v − Fxα is 1-periodic, we can con-

struct a test function w, such that w − Fx 1-periodic, as

w(x) = v(xα)− Fnxn .

We then have
∫

(0,1)n∩(Et×(0,1))

‖Dw‖p dx

=
∫

(0,1)n∩(Et×(0,1))

(‖Dαv‖p + |Fn|p) dx

=
∫

Et∩(0,1)n−1
‖Dαv‖p dxα + Ln−1(Et ∩ (0, 1)n−1)|Fn|p

≥ min
{∫

(0,1)n∩(Et×(0,1))

‖Dw‖p dx :

w ∈ W 1,p
loc (Et × (0, 1);Rm), w − Fx 1-periodic

}

and hence the converse inequality

ψ(t, F ) = min
{∫

Et∩(0,1)n−1
‖Dv‖p dxα :
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v ∈ W 1,p
loc (Et;Rm), v − Fxα 1-periodic

}

+Ln−1(Et ∩ (0, 1)n−1)|Fn|p

≥ min
{∫

(0,1)n∩(Et×(0,1))

‖Dw‖p dx :

w ∈ W 1,p
loc (Et × (0, 1);Rm), w − Fx 1-periodic

}

is obtained as desired.

Now we can turn our attention to the case with a general W . Now that a
natural domain for the limit functional is defined, we can easily state and prove
a compactness result that partly improves Proposition 4.1.

Theorem 4.11 Let Jε be given by (4.9). Then for every sequence (εj) of positive
numbers converging to 0 there exists a subsequence (not relabeled) such that the
Γ-limit

J0(u,U) = Γ- lim
j→+∞

Jεj
(u,U)

exists for all u ∈ W 1,p
ψ (Ω;Rm) and U open subsets of Ω. Moreover J0(u, ·) is the

restriction of a Borel measure to A(Ω).

Proof. By (4.6) and Proposition 4.8 we deduce the condition

Γ- lim sup
ε→0

Jε(u,U) ≤ β

∫

U

(1 + ψ(xn, Du)) dx (4.19)

if u ∈ W 1,p
ψ (U ;Rm) and U is an open subset of Ω. Then, we can follow the

Steps 1–3 in Section 4.1 to prove the compactness of (Jε) and that J0(u, ·) is the
restriction of a Borel measure to A(Ω).

4.4 Homogenization of cylindrical domains
It remains now to extend the integral representation of Proposition 4.1 and
characterize its integrand. We first deal with the case of ‘cylindrical’ domains;
i.e., we consider χE in place of f , with E a 1-periodic open subset of Rn−1.

Let t1, . . . , tn−1 be the points in (0, 1) introduced to characterize the ‘degen-
erate weighted Sobolev Space’ in Definition 4.5. Since in the following we will
choose E = Et (Et defined as {xα : f(xα) > |t|}) we introduce the following
notation: with fixed t ∈ (0, 1), t 6= tk for k = 1, . . . , n − 1, consider the set Et

and the functional

J t
ε(u,U) =





∫

Ωε∩Uε

W
(xα

ε
,Du

)
dx if u ∈ W 1,p(Ωε ∩ Uε;Rm)

+∞ otherwise,

(4.20)

where Uε = U ∩ (εEt × (−1, 1)). Note that the integrand of J t
ε satisfies the

following growth conditions
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γg(x,A) ≤ χEt×(−1,1)W (xα, A) ≤ β(1 + g(x,A)) (4.21)

where g(x,A) = χEt×(−1,1)(x)‖A‖p is obviously 1-periodic in x, convex in A and
satisfying

0 ≤ g(x,A) ≤ 1 + ‖A‖p and g(x, 2A) ≤ c(1 + g(x,A))

for all A ∈ Mm×n.

Fig. 4.4. cylindrical domains Et × (−1, 1) related to the function f in Figure
4.1 for different values of t

Remark 4.12 Note that if we fix t ∈ (tk−1, tk) and consider χEt in place of f
then W 1,p

ψ (Ω;Rm) turns out to be the space

W 1,p
k (Ω;Rm) = {u ∈ Lp(Ω;Rm) : Dnu ∈ Lp(Ω;Rm), D(ξi,0)u ∈ Lp(Ω;Rm)

i = k, . . . , n− 1}

if k = 1, . . . , n− 1, and

W 1,p
n (Ω;Rm) = {u ∈ Lp(Ω;Rm) : Dnu ∈ Lp(Ω;Rm)}.

if k = n.
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Theorem 4.13 Let t ∈ (tk−1, tk) and let J t
ε(·, U) be defined by (4.20). Then the

Γ-limit with respect to the Lp(Ω;Rm)-convergence

J t
0(u,U) =

∫

U

W t
hom(Du) dx

exists for each u ∈ W 1,p
k (Ω;Rm) and U open subset of Ω, where W t

hom is given
by

W t
hom(A) = lim

T→+∞
inf

{ 1
Tn

∫

(0,T )n

χEt
(xα)W (xα, A + Du(x)) dx :

u ∈ W 1,p
0 ((0, T )n;Rm)

}

for all A ∈ Mm×n.

Proof. By taking Theorem 4.11 into account with χEt
in the place of f , and

repeating word for word the proof of the integral representation Theorem 1.35,
replacing W 1,p(Ω;Rm) by W 1,p

k (Ω;Rm), we obtain an integral representation on
the whole W 1,p

k (Ω;Rm). The integrand of this representation must coincide with
the function ϕ = ϕ(xn, F ) provided by Proposition 4.1 with χEt in the place of
f . Since the functionals are clearly invariant by translations in the direction xn

we have indeed ϕ = ϕ(F ). It remains to prove the asymptotic formula.
Let us fix A ∈ Mm×n and for T > 0 set

hT (A) = inf
{ 1

Tn

∫

(0,T )n

χEt(xα)W (xα, A + Du(x)) dx :

u ∈ W 1,p
0 ((0, T )n;Rm)

}
(4.22)

We will prove the formula by showing first that ϕ(A) ≤ lim infT→+∞ hT (A) and
then that lim supT→+∞ hT (A) ≤ ϕ(A).

For the first part, let uT ∈ W1,p
0 ((0, T )n;Rm) be such that

1
Tn

∫

(0,T )n

χEt(xα)W (xα, A + Du(x)) dx ≤ hT (A) +
1
T

; (4.23)

extend uT trivially to (0, [T + 1])n, then to all of Rn by periodicity and set
uT

k (x) = εjk
uT (x/εjk

). Note that uT
k → 0 in Lp

loc(R
n;Rm) as k → +∞.

Taking into account that the number of squares of side [T + 1] intersecting
the square of side 1/εjk

is

sn =
([ (εjk

)−1

[T + 1]

]
+ 1

)n

≤
( 1

εjk
T

+ 1
)n

,

by periodicity of uT and W (·, F ), we have



98 Homogenization of oscillating boundaries

∫

(0,1)n

ϕ(A) dx ≤ lim inf
k

∫

(0,1)n

χEt

( xα

εjk

)
W

( xα

εjk

, A + DuT
k (x)

)
dx

= lim inf
k

εn
jk

∫

(0,1/εjk
)n

χEt
(xα)W (xα, A + DuT (x)) dx

≤ lim inf
k

εn
jk

∫

(0,s[T+1])n

χEt
(xα)W (xα, A + DuT (x)) dx

= lim inf
k

snεn
jk

∫

(0,[T+1])n

χEt
(xα)W (xα, A + DuT (x)) dx

≤ lim inf
k

εn
jk

( 1
εjk

T
+ 1

)n
∫

(0,T )n

χEt
(xα)W (xα, A + DuT (x)) dx

+ c([T + 1]n − Tn)
( 1

T
+ εjk

)n

(1 + |A|p)

=
1

Tn

∫

(0,T )n

χEt(xα)W (xα, A + DuT (x)) dx

+ c
1

Tn
([T + 1]n − Tn)(1 + |A|p).

Hence, by (4.23) and taking the limit as T → +∞, we get

ϕ(A) ≤ lim inf
T→+∞

hT (A). (4.24)

For the second part, we need to use the Lp-fundamental estimate (see (1.18)).
Let (uk) be a sequence in W 1,p((0, 1)n;Rm) such that uk → 0 in Lp((0, 1)n;Rm)
and

ϕ(A) = lim
k

∫

(0,1)n

χEt

( xα

εjk

)
W

( xα

εjk

, A + Duk

)
dx. (4.25)

Fix U ′ ⊂⊂ U ⊂⊂ Q with Q = (0, 1)n and let V = Q \ U ′. Then for every
σ > 0, there exists Mσ and, with fixed k, for the functions uk and v = 0 there
exists wk = ϕkuk (where ϕk is a cut-off function between U ′ and U , so that
wk ∈ W1,p

0 (Q;Rm)) such that
∫

Q

χEt

( xα

εjk

)
W

( xα

εjk

, A + Dwk

)
dx ≤ (1 + σ)

(∫

V

χEt

( xα

εjk

)
W

( xα

εjk

, A
)

dx

+
∫

U

χEt

( xα

εjk

)
W

( xα

εjk

, A + Duk

)
dx

)

+ Mσ

∫

U\U ′
|uk|p dx + σ. (4.26)

By a change of variable
∫

Q

χEt

( xα

εjk

)
W

( xα

εjk

, A + Dwk

)
dx = εn

jk

∫

(0,1/εjk
)n

χEt(xα)W (xα, A + Dvk) dx

(4.27)
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where vk(x) = 1/εjk
wk(εjk

x) ∈ W 1,p
0 ((0, 1/εjk

)n;Rm), since wk ∈ W 1,p
0 (Q;Rm).

Thus, by (4.22), (4.27) and (4.26) we get

1
1 + σ

h(1/εjk
)(A) ≤ c |Q \ U ′| (1 + |A|p) +

∫

Q

χEt

( xα

εjk

)
W (

xα

εk
, A + Duk) dx

+
Mσ

1 + σ

∫

Q\U ′
|uk|q dx +

σ

1 + σ
.

Taking limits on both sides and using the fact that uk → 0 in Lp((0, 1)n;Rm),
by (4.25) we obtain

1
1 + σ

lim sup
k

h(1/εk)(A) ≤ c |Q \ U ′| (1 + |A|p) + ϕ(A) +
σ

1 + σ
, (4.28)

for all σ > 0 and U ′ ⊂⊂ Q. Let σ → 0 and U ′ → Q; summing up (4.28) and
(4.24) we get

lim sup
k→+∞

h(1/εjk
)(A) ≤ ϕ(A) ≤ lim inf

T→+∞
hT (A) ≤ lim inf

k→+∞
h(1/εjk

)(A),

and then
ϕ(A) = lim

k→+∞
h(1/εjk

)(A) = lim inf
T→+∞

hT (A).

This equality proves that ϕ is independent of (εjk
), and that limT→+∞ hT (A)

exists since we can choose a sequence εjk
such that

lim sup
T→+∞

hT (A) = lim
k→+∞

h(1/εjk
)(A).

4.5 The general case

We can eventually proceed to dealing with the general case.

Proposition 4.14 Let Jε be given by (4.9). Then the Γ-limit

J0(u,U) = Γ- lim
ε→0

Jε(u,U)

exists for all u ∈ W 1,p
ψ (Ω;Rm) and U open subsets of Ω. Moreover, for such u

we have
J0(u,U) =

∫

U

ϕ(xn, Du) dx,

where ϕ is given by Proposition 4.1.

Proof. We have to extend the representation of J0 given by Proposition 4.1
to W 1,p

ψ (Ω;Rm). Note that ϕ is a Carathéodory function (see Theorem 1.35, Step
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3). As explained in Step 3 of Section 4.1, a crucial argument used to obtain an
integral representation result is the continuity in W 1,p

ψ (Ω;Rm) of the functional

u 7→
∫

U

ϕ(xn, Du) dx

along some strongly converging sequences of piecewise-affine functions. We only
prove this property, as the rest of the proof follows exactly that of Theorem 1.35
(Steps 1–3, 5 and 6; the proof below replaces Step 4).

Let U =
⋃n−1

k=0 Uk where Uk ⊂⊂ ω × (tk, tk+1), (t0 = 0, tn = 1); we can
find functions uj ∈ W 1,p

ψ (Ω;Rm) such that their restrictions to U are piecewise
affine and uj , Dnuj converge strongly to u,Dnu in Lp(U ;Rm), respectively, while
D(ξi,0)uj converge strongly to D(ξi,0)u in Lp(Ui;Rm).

We will use some estimates deriving from the inequality ϕ(t, F ) ≤ β(1 +
ψ(t, F )), which follows trivially from (4.6). By Proposition 4.9 we have that

ψ(xn, Du) ≤ βk

( n−1∑

i=k+1

|D(ξi,0)u|p + |Dnu|p
)

ψ(xn, Duj) ≤ βk

( n−1∑

i=k+1

|D(ξi,0)uj |p + |Dnuj |p
)

on ω × (tk, tk+1). Note that by (4.19)

∫

U

ϕ(xn, Duj) dx ≤
n−2∑

k=0

∫

Uk∩ω×(tk,tk+1)

β
(
1 +

N∑

i=k+1

βk|D(ξi,0)uj |p
)

dx

+β

∫

U

βk|Dnuj |p dx.

If we use the continuity of ϕ in the second variable and apply Fatou’s lemma to
the sequences

β

∫

U

βk|Dnuj |p dx +
n−2∑

k=0

∫

Uk∩ω×(tk,tk+1)

β
(
1 +

n−1∑

i=k+1

βk|D(ξi,0)uj |p
)

dx

±
∫

U

ϕ(xn, Duj) dx

we get that ∫

U

ϕ(xn, Du) dx = lim
j→+∞

∫

U

ϕ(x, Duj) dx.

Hence, we have proved the integral representation for sets of the type U =⋃n−1
k=0 Uk where Uk ⊂⊂ ω× (tk, tk+1). A symmetric argument applies to the case
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where U =
⋃n−1

k=0 Uk, with Uk ⊂⊂ ω × (−tk+1,−tk). Since J0(u, ·) is a measure
absolutely continuous with respect to Lebesgue measure, we conclude that the
integral representation holds for all open subsets U of Ω.

Finally, the oscillating-boundary homogenization theorem reads as follows.

Theorem 4.15 Let Jε be given by (4.7). Then the Γ-limit with respect to the
Lp(Ω;Rm)-convergence

J0(u) = Γ- lim
ε→0

Jε(u)

exists for all u ∈ Lp(Ω;Rm), and we have

J0(u) =





∫

Ω

Whom(|xn|, Du) dx if u ∈ W 1,p
ψ (Ω;Rm)

+∞ otherwise,

where Whom(t, A) = W t
hom(A) for a.e. t ∈ (0, 1), and W t

hom is given by Theorem
4.13. Moreover, if u ∈ W 1,p(Ω;Rm) there exists a family (uε) converging to u in
Lp(Ω;Rm), such that u−uε has compact support in Ω and J0(u) = limε→0 Jε(uε).

Proof. It is sufficient to compute the Γ-limit for u ∈ W 1,p
ψ (Ω;Rm), since

by comparison with Proposition 4.8(i) we immediately have J0(u) = +∞ if
u 6∈ W 1,p

ψ (Ω;Rm). Let ϕ be given by Proposition 4.1; it remains to prove that ϕ
satisfies an asymptotic formula.

Let xn > 0, let 0 < ρ < xn and consider the functionals (4.20) with t = xn−ρ
and t = xn so that

Jxn−ρ
ε (Ax, (0, 1)n−1 × (xn − ρ, xn))

≥
∫

(0,1)n−1×(xn−ρ,xn)

χEyn

(yα

ε

)
W

(xα

ε
, A

)
dy

≥ Jxn
ε (Ax, (0, 1)n−1 × (xn − ρ, xn)) .

By Theorem 4.13

ρW xn−ρ
hom (A) ≥ Γ- lim

ε→0
Jε(Ax, (0, 1)n−1 × (xn − ρ, xn))

≥ ρW xn

hom(A).

Taking into account that

Γ- lim
ε→0

Jε(Ax, (0, 1)n−1 × (xn − ρ, xn)) =
∫

(0,1)n−1×(xn−ρ,xn)

ϕ(yn, A) dy

we get

W xn−ρ
hom (A) ≤ 1

ρ

∫

(xn−ρ,xn)

ϕ(yn, A) dyn ≤ W xn

hom(A).
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Since t 7→ W t
hom(A) and t 7→ ϕ(t, A) are decreasing functions on (0, 1), there

exists a subset M of (0, 1), |M | = 0, such that they are continuous on (0, 1) \M ;
hence, by passing to the limit as ρ → 0 we get

ϕ(xn, A) = W xn

hom(A)

for every xn ∈ (0, 1) \M . For xn < 0 it suffices to apply a symmetric argument.
The last statement follows by a well-known argument of stability of Γ-con-

vergence by compatible boundary data due to De Giorgi (see Proposition 1.33)



5

THIN FILMS WITH FAST-OSCILLATING PROFILE

In this chapter we prove that the Γ-limit with respect to the Lp-convergence
of functionals

Eε,δ(u) =
∫

Ω(ε,δ)

W (Du) dx,

where the set Ω(ε, δ) is of the form

Ω(ε, δ) =
{

x ∈ Rn : |xn| < ε f
(xα

δ

)
, xα ∈ ω

}
, (5.1)

when ε → 0 and δ << ε, is given by first applying the theory constructed in
Chapter 4 with ε as a parameter and letting δ → 0, and subsequently letting
ε → 0. The final result can be summarized as follows, in a n-dimensional setting.
Theorem 5.1 Let f : Rn−1 → [0, 1] be a 1-periodic lower semicontinuous func-
tion with 0 < min f ≤ sup f = 1, let W : Mm×n → [0, +∞) be a convex function
satisfying

γ|F |p ≤ W (F ) ≤ β(1 + |F |p)
for all F ∈ Mm×n and for some 1 < p < +∞, 0 < γ ≤ β. Let δ : (0, +∞) →
(0,+∞) be such that

lim
ε→0

δ(ε)
ε

= 0.

Let ω be a bounded open subset of Rn−1 and let Ωε ⊂ ω × (−1, 1) be defined by

Ωε =
{

x ∈ Rn : |xn| < f
( xα

δ(ε)

)
, xα ∈ ω

}
. (5.2)

Define Eε : Lp(ω × (−1, 1);Rm) → [0, +∞] by

Eε(u) =





∫

Ωε

W
(
Dαu,

1
ε
Dnu

)
dx if u∣∣Ωε

∈ W 1,p(Ωε;Rm)

+∞ otherwise.

(5.3)

Then the Γ-limit with respect to the Lp-convergence as ε → 0 of Eε is given by

E(u) =





∫

ω×(−1,1)

W hom(Dαu) dx if u ∈ W 1,p(ω × (−1, 1);Rm) and Dnu = 0

+∞ otherwise,
(5.4)
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where W hom : Mm×(n−1) → [0,+∞) is given by

W hom(F ) =
∫ 1

0

inf
Fn

Whom(t, F |Fn) dt, (5.5)

and Whom by

Whom(t, F ) = inf
{∫

(0,1)n

χEt
(xα)W (F + Du(x)) dx :

u ∈ W 1,p
loc (Rn;Rm) 1-periodic

}
(5.6)

for all t ∈ (0, 1) and F ∈ Mm×n, where Et = {f > t}.

5.1 Proof of the result

In order to simplify the proof without loosing sight of the main intricacies of the
argument, we deal only with the case where ε = 1/j and δ = ε2. The general
case can be dealt with similarly, by introducing some error terms. We define,
with a slight abuse of notation,

Ωk = {x ∈ Ω : |xn| < f(kxα)}

and for k = j2, j ∈ N

Ej(u,U) =
∫

Ωj2∩U

W (Dαu|jDnu) dx

for all u|Ωj2∩U ∈ W 1,p(Ωj2 ∩ U ;Rm).
By the compactness result Theorem 2.5 in [29] we can suppose that there

exists W0 : Mm×(n−1) → [0, +∞) such that Ej(u,U) Γ-converge for all sets of
the form U = U ′ × (−1, 1) or U = U ′ × (0, 1) to the functional given by

E0(u,U) =





∫

U

W0(Dαu) dx if u ∈ W 1,p(U ;Rm) and Dnu = 0

+∞ otherwise.

(5.7)

Proposition 5.2 For all F ∈ Mm×(n−1) define

W hom(F ) = inf
{∫

(0,1)n

Whom(xn, Du + F ) dx : (5.8)

u ∈ W 1,p
loc (Rn;Rm), u 1-periodic in xα

}
.

Then

W hom(F ) =
∫ 1

0

W̃hom(t, F ) dt, (5.9)
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where
W̃hom(t, F ) = inf

Fn

Whom(t, F |Fn) (5.10)

and F 7→ W̃hom(t, F ) is convex.

Proof. It can be easily proved that F 7→ W̃hom(t, F ) is convex.
With fixed η > 0, by the Measurable Selection Criterion (see e.g [36]), we

can find Gn(t) a measurable function such that

Whom(t, F |Gn) ≤ inf
Fn

Whom(t, F |Fn) + η.

We can consider
u(xα, xn) =

∫ xn

0

Gn(s) ds

as test function in (5.8). We then get

W hom(F ) ≤
∫ 1

0

Whom(xn, F |Gn(xn)) dxn

and so

W hom(F ) ≤
∫ 1

0

inf
Fn

Whom(t, F |Fn) dt + η =
∫ 1

0

W̃hom(t, F ) dt + η.

Conversely,

W hom(F ) ≥ inf
{∫

(0,1)n

W̃hom(xn, Dαu + F ) dx :

u ∈ W 1,p
loc ((0, 1)n;Rm), u 1-periodic in xα

}

≥
∫ 1

0

(
inf

{∫

(0,1)n−1
W̃hom(t,Dαu + F ) dxα :

u|(0,1)n−1 ∈ W 1,p
loc ((0, 1)n−1;Rm), u 1-periodic in xα

})
dt

≥
∫ 1

0

W̃hom(t, F ) dt

by Jensen’s inequality.

Theorem 5.3 For all F ∈ Mm×(n−1) we have W0(F ) = W hom(F ).

Proof. With fixed η > 0 let v be a test function for (5.8) such that
∫

(0,1)n

Whom(xn, Dv + F ) dx ≤ W hom(F ) + η .
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By Theorem 4.15 there exists a sequence vj converging to v such that vj = v on
∂(0, 1)n (and, hence, in particular vj is 1-periodic in xα) and

∫

(0,1)n

Whom(xn, Dv + F ) dx = lim
j→+∞

∫

Ωj∩(0,1)n

W (Dvj + F ) dx . (5.11)

If we define uj(xα, xn) = 1
j vj(jxα, xn) then uj → 0 in Lp((0, 1)n;Rm) and

∫

Ωj∩(0,1)n

W (Dvj + F ) dx =
1

jn−1

∫

Ωj∩((0,j)n−1×(0,1))

W (Dvj + F ) dx

=
∫

Ωj2∩(0,1)n

W (Dvj(jyα, yn) + F ) dy

=
∫

Ωj2∩(0,1)n

W (Dαuj + F |jDnuj) dy

= Ej(uj + Fxα, (0, 1)n); (5.12)

hence, we can conclude that

W0(F ) ≤ lim inf
j→+∞

Ej(uj + Fxα, (0, 1)n)

= lim inf
j→+∞

∫

Ωj∩(0,1)n

W (Dvj + F ) dx

≤ W hom(F ) + η

by (5.7), (5.12), (5.11) and (5.8).

Now we prove the converse inequality. Let uj → 0 be such that

W0(F ) = lim
j→+∞

Ej(uj + Fxα, (0, 1)n).

By [29] Lemma 2.6 we can choose uj 1-periodic in xα; let vj be defined by vj(x) =
juj(xα/j, xn). With fixed j, N ∈ N, (0, 1)n =

⋃N
m=1(0, 1)n−1×((m−1)/N, m/N);

we can define a function vj,m by setting

vj,m(xα, xn) =





vj(xα, xn + 2k
N ) if m−1

N − 2k
N < xn < m

N − 2k
N

vj(xα, 2m
N − xn − 2k+2

N ) if m−1
N − 2k+1

N < xn < m
N − 2k+1

N

for k ∈ Z, which is 1-periodic in xα and 2/N -periodic in xn. Hence, we can
construct

wj,k|(0,1)n−1×((m−1)/N,m/N) = vj,m,k(x)

where vj,m,k(x) = j
kvj,m(k

j x), such that wj,k is j
k -periodic in xα and
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wj,k|(0,1)n−1×((m−1)/N,m/N) →
(
0,

(∫

(0,1)n

Dnvj,mdx
)
xn

)
= wm

as k → +∞, in Lp((0, 1)n;Rm). In this case the functions wj,k defined as above
belong to W 1,p(Ωk ∩ (0, 1)n;Rm).

Finally, we define w such that

w|(0,1)n−1×((m−1)/N,m/N) = wm

which is 1-periodic in xα. Let

A
m/N
j = Ωj ∩ {xn = m/N}

and
A

m/N
k = Ωk ∩ {xn = m/N},

we define

EN
j =

N⋃
m=1

A
m/N
j × ((m− 1)/N, m/N)

and

EN
k =

N⋃
m=1

A
m/N
k × ((m− 1)/N, m/N).

We restrict our analysis to the case where k/j odd, the other case being dealt
with by introducing a small error term. Hence, if we use the notation

Il(u, (0, 1)n) =
∫

EN
l
∩(0,1)n

W (Du) dx

(l = j or k) we have that

Ij(vj + Fxα, (0, 1)n) = Ik(wj,k + Fxα, (0, 1)n). (5.13)

Reasoning as in Theorems 4.11 and 4.13 we get that

Ihom(w + Fxα, (0, 1)n) = Γ- lim
k→+∞

Ik(w + Fxα, (0, 1)n)

=
N∑

m=1

∫

(0,1)n−1×((m−1)/N,m/N)

Whom(m/N, Dw + F ) dx

=
N∑

m=1

∫

(0,1)n−1×((m−1)/N,m/N)

Whom

( [xnN ] + 1
N

,Dw + F
)

dx

=
∫

(0,1)n

Whom

( [xnN ] + 1
N

,Dw + F
)

dx
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≥
∫ 1

0

W̃hom

( [xnN ] + 1
N

, F
)

dxn

by (5.10). Taking the limit as N → +∞, we obtain

Ihom(w + Fxα, (0, 1)n) ≥ W hom(F ) (5.14)

by Proposition 5.2. Hence,

Ej(uj + Fxα, (0, 1)n) =
∫

Ωj∩(0,1)n

W (Dvj + F ) dx

≥ lim inf
k→+∞

Ik(wj,k + Fxα, (0, 1)n)

≥ W hom(F )

by (5.12)-(5.14). By the choice of (uj) we get the desired inequality.

The proof of Theorem 5.1 will be complete once we observe that in the convex
case formula (5.6) simplifies that in Theorem 4.13 (see Theorem 1.46).

5.2 Convergence of minimum problems
As an application of the Γ-convergence result of the previous section, we describe
the asymptotic behaviour of problems of the form

mε,δ = min
{∫

Ω(ε,δ)

W (Du) dx : u ∈ Lp(ω × (−ε, ε);Rm),

u|Ω(ε,δ) ∈ W 1,p(Ω(ε, δ);Rm), u = φ on (∂ω)× (−ε, ε)
}

, (5.15)

where φ = φ(xα) ∈ W 1,p(ω;Rm), Ω(ε, δ) is given by (5.1) and f and W satisfy
the hypotheses of Theorem 5.1. By using Poincaré’s inequality it can immediately
be checked that problem (5.15) admits at least one solution for each choice of
ε, δ > 0. The asymptotic behaviour of these solutions when ε → 0 and δ << ε is
given by the following result.

Proposition 5.4 Let ε and δ = δ(ε) satisfy the hypotheses of Theorem 5.1,
and for each ε let uε be a solution of (5.15). Then, upon extracting a sub-
sequence, there exist a sequence (vε) in Lp(ω × (−1, 1);Rm) and a function
w ∈ W 1,p(ω;Rm) such that

(i) vε = uε on Ω(ε, δ(ε)),
(ii) if wε(xα, xn) = vε(xα, εxn), then wε converges (with the identification

w(x) = w(xα)) to w in Lp((ω × (−1, 1);Rm),
(iii) w is a solution of the minimum problem

m̃0 = min
{∫

ω

2W hom(Dαu) dxα : u ∈ Lp(ω;Rm), u = φ on ∂ω
}

, (5.16)

where W hom is defined by (5.5) and (5.6),
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(iv) mε,δ(ε)/ε converges to m̃0.

Proof. Note that, in the notation of Theorem 5.1, ũε defined by ũε(xα, xn) =
uε(xα, εxn) is a solution of

m̃ε =
1
ε
mε,δ(ε) = min

{∫

Ωε

W
(
Dαu,

1
ε
Dnu

)
dx : u ∈ Lp(ω × (−1, 1);Rm),

u|Ωε
∈ W 1,p(Ωε;Rm), u = φ on (∂ω)× (−1, 1)

}
. (5.17)

By [29] Remark 2.3, upon extracting a subsequence, there exist wε ∈ Lp((ω ×
(−1, 1);Rm) converging to some w in Lp((ω × (−1, 1);Rm), Dnw = 0 and
wε = ũε on Ωε. By the well-known property of the convergence of minima and
minimizers of Γ-converging functionals (see Theorem 1.23), (iii) and (iv) follow
from Theorem 5.1, since the Γ-limit is not influenced by the boundary value φ
(see [29] Lemma 2.6).



6

ASYMPTOTIC ANALYSIS OF PERIODICALLY-PERFORATED
NONLINEAR MEDIA

6.1 Statement of the main result

In all that follows p > 1, m ≥ 1, n > p are fixed (m,n ∈ N); the Γ-limit of
a sequence (Φj) of functionals defined on W 1,p(Ω;Rm) will be performed with
respect to Lp(Ω;Rm)-convergence.

6.1.1 Periodically perforated domains

For all δ > 0 we consider the lattice δZn whose points will be denoted by xδ
i = δi

(i ∈ Zn). Moreover, for all i ∈ Zn

Bδ
i = Bδn/(n−p)(xδ

i )

denotes the ball of centre xδ
i and radius δn/(n−p). The main result of the chapter

is the following.

Theorem 6.1 Let Ω be a bounded open subset of Rn with |∂Ω| = 0. Let f :
Mm×n → [0, +∞) be a Borel function such that f(0) = 0 and satisfying a
growth condition of order p: there exist two constants c1, c2 > 0 such that

c1(|A|p − 1) ≤ f(A) ≤ c2(|A|p + 1) for all A ∈ Mm×n. (6.1)

Let (δj) be a sequence of strictly positive numbers converging to 0. Then, upon
possibly extracting a subsequence, for all A ∈ Mm×n there exist the limit

g(A) = lim
j

δ
np

n−p

j Qf
(
δ
− n

n−p

j A
)
, (6.2)

where Qf denotes the quasiconvexification of f , so that the value

ϕ(z) = inf
{∫

Rn

g(Dζ)dx : ζ − z ∈ W 1,p(Rn;Rm), ζ = 0 on B1(0)
}

(6.3)

is well defined for all z ∈ Rm. Moreover, the functionals Fj : W 1,p(Ω;Rm) →
[0, +∞] defined by

Fj(u) =





∫

Ω

f(Du) dx if u = 0 a.e. on
⋃

i∈Zn B
δj

i ∩ Ω

+∞ otherwise

(6.4)
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Γ-converge with respect to the Lp(Ω;Rm)-convergence to the functional F :
W 1,p(Ω;Rm) → [0, +∞) defined by

F (u) =
∫

Ω

Qf(Du) dx +
∫

Ω

ϕ(u) dx. (6.5)

Corollary 6.2 If f is positively homogeneous of degree p then the limit is inde-
pendent of the subsequence and

ϕ(z) = inf
{∫

Rn

f(Dζ) dx : ζ − z ∈ W 1,p(Rn;Rm), ζ = 0 on B1(0)
}

(6.6)

for all z ∈ Rm.

Proof. It suffices to remark that in this case formula (6.2) gives g = Qf and
that we may replace Qf by f in (6.3) by using Remark 1.21 and Theorem 1.12.

Corollary 6.3 (Convergence of minimum problems) Let (δj) satisfy the thesis
of Theorem 6.1. Then for all φ ∈ W−1,p(Ω;Rm) the minimum values

mj = inf
{

Fj(u) + 〈φ, u〉 : u ∈ W 1,p
0 (Ω;Rm)

}

converge to
m = min

{
F (u) + 〈φ, u〉 : u ∈ W 1,p

0 (Ω;Rm)
}

.

Moreover, if uj is such that Fj(uj) + 〈φ, uj〉 = mj + o(1) as j → +∞, then
it admits a subsequence weakly converging in W 1,p

0 (Ω;Rm) to a solution of the
problem defining m.

Proof. By a cut-off argument near ∂Ω (see Section 1.7.2) if u ∈ W 1,p
0 (Ω;Rm)

then the sequences in (1.13) of the definition of Γ-convergence can be taken in
W 1,p

0 (Ω;Rm) as well, while by the growth condition (6.1) we have uj ⇀ u weakly
in W 1,p

0 (Ω;Rm). This fact, together with the continuity of G(u) = 〈φ, u〉 with
respect to the weak convergence in W 1,p

0 (Ω;Rm), implies that the functionals

Φj(u) =
{

Fj(u) + G(u) if u ∈ W 1,p
0 (Ω;Rm)

+∞
Γ-converge to

Φ0(u) =
{

F (u) + G(u) if u ∈ W 1,p
0 (Ω;Rm)

+∞

on W 1,p(Ω;Rm). We can then apply Theorem 1.23 with K = {u ∈ W 1,p
0 (Ω;Rm) :

‖Du‖Lp(Ω;Rm) ≤ c} for a suitable c > 0.
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Remark 6.4 (Non-spherical holes) The results are easily extended to non-sphe-
rical geometries, by fixing any bounded set E ⊂ Rn and considering xδ

i +
δn/(n−p)E in place of Bδ

i . The same conclusion follows, upon replacing B1(0)
by E in the definition of ϕ.

Remark 6.5 In general, the function g depends on the subsequence (δj), and
so does ϕ. In this case, the Γ-limit as δ → 0 of the functionals

Fδ(u) =





∫

Ω

f(Du) dx if u = 0 a.e. on
⋃

i∈Zn Bδ
i ∩ Ω

+∞ otherwise

(6.7)

does not exist.

The proof of Theorem 6.1 will be obtained in the next sections.

6.2 A joining lemma on varying domains

In this section we prove a technical result which allows to modify sequences of
functions near the sets Bδ

i . Its proof is close in spirit to the method introduced
by De Giorgi to match boundary conditions for minimizing sequences (see [44]).
For future reference we state this lemma in a general form.

Let (δj) be a sequence of positive numbers converging to 0, and let fj :
Rn×Mm×n → [0,+∞) be Borel functions satisfying the growth conditions (6.1)
uniformly in j. In the following sections we will simply take fj(x, z) = f(z).

Note that in this section and the following ones sometimes we simply write
δ in place of δj not to overburden notation.

Lemma 6.6 Let (uj) converge weakly to u in W 1,p(Ω;Rm), and let

Zj = {i ∈ Zn : dist (xδ
i ,R

n \ Ω) > δj}. (6.8)

Let k ∈ N be fixed. Let (ρj) be a sequence of positive numbers with ρj < δj/2.
For all i ∈ Zj there exists ki ∈ {0, . . . , k − 1} such that, having set

Cj
i =

{
x ∈ Ω : 2−ki−1ρj < |x− xδ

i | < 2−kiρj

}
, (6.9)

ui
j = |Cj

i |−1

∫

Cj
i

uj dx (the mean value of uj on Cj
i ), (6.10)

and
ρi

j =
3
4
2−kiρj (the middle radius of Cj

i ), (6.11)

there exists a sequence (wj), with wj ⇀ u in W 1,p(Ω;Rm) such that

wj = uj on Ω \
⋃

i∈Zj

Cj
i (6.12)
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wj(x) = ui
j if |x− xδ

i | = ρi
j (6.13)

and ∫

Ω

∣∣∣fj(x,Dwj)− fj(x,Duj)
∣∣∣ dx ≤ c

1
k

. (6.14)

Moreover, if ρj = o(δj) and the sequence (|Duj |p) is equi-integrable, then we can
choose ki = 0 for all i ∈ Zj.

Proof. For all j ∈ N, i ∈ Zj and h ∈ {0, ..., k − 1} let

Cj
i,h =

{
x ∈ Ω : 2−h−1ρj < |x− xδ

i | < 2−hρj

}
,

and let

ui,h
j = |Cj

i,h|−1

∫

Cj
i,h

uj dx,

and

ρi,h
j =

3
4
2−hρj .

Consider a function φ = φj
i,h ∈ C∞0 (Cj

i,h) such that φ = 1 on ∂Bρi,h
j

(xδ
i ) and

|Dφ| ≤ c/2−hρj = c/ρi,h
j . Let wi,h

j be defined on Cj
i,h by

wi,h
j = ui,h

j φ + (1− φ)uj on Cj
i,h,

with φ = φj
i,h as above. We then have, by the growth conditions on fj ,

∫

Cj
i,h

fj(x,Dwi,h
j ) dx =

∫

Cj
i,h

fj(x,Dφ(ui,h
j − uj) + (1− φ)Duj)) dx

≤ c

∫

Cj
i,h

(1 + |Dφ|p|uj − ui,h
j |p + |Duj |p) dx.

By the Poincaré inequality and its scaling properties we have
∫

Cj
i,h

|uj − ui,h
j |p dx ≤ c(ρi,h

j )p

∫

Cj
i,h

|Duj |p dx, (6.15)

so that, recalling that |Dφ| ≤ c/ρi,h
j ,

∫

Cj
i,h

fj(x,Dwi,h
j ) dx ≤ c

∫

Cj
i,h

(1 + |Duj |p) dx.

Since by summing up in h we trivially have
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k−1∑

h=0

∫

Cj
i,h

(1 + |Duj |p) dx ≤ |Bρj (x
δ
i )|+

∫

Bρj
(xδ

i
)

|Duj |p dx,

there exists ki ∈ {0, . . . , k − 1} such that
∫

Cj
i,ki

(1 + |Duj |p) dx ≤ 1
k

(
|Bρj (x

δ
i )|+

∫

Bρj
(xδ

i
)

|Duj |p dx
)
, (6.16)

There follows that
∫

Cj
i,ki

fj(x,Dwi,ki

j ) dx ≤ c

k

(
|Bρj

(xδ
i )|+

∫

Bρj
(xδ

i
)

|Duj |p dx
)
. (6.17)

By (6.16) and (6.17) we get
∫

Cj
i,ki

|fj(x,Duj)− fj(x, Dwj)| dx ≤
∫

Cj
i,ki

(fj(x, Duj) + fj(x,Dwj)) dx

≤ c

k

(
|Bρj (x

δ
i )|+

∫

Bρj
(xδ

i
)

|Duj |p dx
)
.

Note that if (|Duj |p) is equi-integrable and ρj = o(δj) then we do not need to
use this argument, and may simply choose ki = 0 for all i ∈ Zj .

With this choice of ki for all i ∈ Zj , conditions (6.12)–(6.14) are satisfied
by choosing h = ki in the definitions above, i.e. with Cj

i = Cj
i,ki

, ui
j = ui,ki

j

ρi
j = ρi,ki

j and wj defined by (6.12) and

wj = ui
jφ + (1− φ)uj on Cj

i ,

with φ = φj
i,ki

.
Finally we prove the convergence of wj to u in Lp(Ω;Rm). By (6.15)

∫

Ω

|wj − u|p dx =
∫

Ω\
⋃

i∈Zj
Cj

i

|uj − u|p dx

+
∫
⋃

i∈Zj
Cj

i

|ui
jφ

j
i,ki

+ (1− φj
i,ki

)uj − u|p dx

≤
∫

Ω\
⋃

i∈Zj
Cj

i

|uj − u|p dx

+c
∑

i∈Zj

∫

Cj
i

|uj − ui
j |p dx + c

∫
⋃

i∈Zj
Cj

i

|uj − u|p dx

≤ c

∫

Ω

|uj − u|p dx + cρp
j

∑

i∈Zj

∫

Cj
i

|Duj |p dx
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≤ c

∫

Ω

|uj − u|p dx + cρp
j sup

j

∫

Ω

|Duj |p dx.

Hence passing to the limit as j tends to +∞ we get the desired convergence.
In particular, since (wj) is bounded in W 1,p(Ω;Rm), we get that (wj) weakly
converges to u in W 1,p(Ω;Rm).

6.3 Some auxiliary energy densities
It will be convenient to approximate the function ϕ defined in (6.3) by suitable
energy densities defined by minimum problems on bounded sets so as to use the
properties of convergence of minima by Γ-convergence (Theorem 1.23). In this
section we define such energies and list some of their properties.

We begin by proving in the following remark the existence of g in (6.2).

Remark 6.7 We can consider the functions gj : Mm×n → [0,+∞) defined by

gj(A) = δ
np

n−p

j Qf
(
δ
− n

n−p

j A
)
. (6.18)

Since gj are quasiconvex and satisfy uniformly a growth condition of order p
they are equi-locally Lipschitz continuous on Mm×n: there exists C depending
only on c1, c2, p such that

|gj(A)− gj(B)| ≤ C(1 + |A|p−1 + |B|p−1)|A−B| (6.19)

for all A,B ∈ Mm×n (see Remark 1.16(i) and (iii)). Hence, there exists a sub-
sequence (not relabeled) converging pointwise to some limit function g. We may
therefore assume that (6.2) holds. Note that this convergence implies that for all
subsets U of Rn the functionals Gj(·, U) defined on W 1,p(U ;Rm) by

Gj(u,U) =
∫

U

gj(Du) dx (6.20)

Γ-converge to the functional G(·, U) defined on W 1,p(U ;Rm) by

G(u, U) =
∫

U

g(Du) dx (6.21)

(see Proposition 1.41).

Using the notation of the remark above, we set

ϕN,j(z) = inf
{∫

BN (0)

gj(Dζ) dy : ζ − z ∈ W 1,p
0 (BN (0);Rm), ζ = 0 on B1(0)

}
.

(6.22)
Note that by the Γ-convergence in Remark 6.7 and Theorem 1.23, arguing as
in the proof of Corollary 6.3, we easily deduce that ϕN,j converge pointwise as
j → +∞ to the function ϕN , defined by
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ϕN (z) = inf
{∫

BN (0)

g(Dζ) dy : ζ − z ∈ W 1,p
0 (BN (0);Rm), ζ = 0 on B1(0)

}
.

(6.23)
We briefly examine some properties of the functions ϕN,j and ϕN which are

easily deduced from the growth conditions satisfied by gj and g.

Remark 6.8 (i) For all N ∈ N and η > 0 there exists cN,η such that

|ϕN,j(z)− ϕN,j(w)| ≤ cN,η δ
n(p−1)/(n−p)
j |z − w|(1 + |w|p−1 + |z|p−1)

+c|z − w|(|w|p−1 + |z|p−1) (6.24)

for all |z|, |w| > η and j. This can be easily checked if we consider a linear
similitude φ such that φ(z) = w and ζ ∈ z + W 1,p

0 (BN (0);Rm) such that ζ =
0 on B1(0) and

ϕN,j(z) =
∫

BN (0)

gj(Dζ) dy .

The existence of ζ follows from the quasiconvexity of gj . If we define ζ̃ = φ(ζ)
then ζ̃ ∈ w+W 1,p

0 (BN (0);Rm) and ζ̃ = 0 on B1(0). By using ζ̃ as a test function
we can estimate ϕN,j(w) taking into account the following inequality

|gj(A)− gj(B)| ≤ C(δn(p−1)/(n−p)
j + |A|p−1 + |B|p−1)|A−B| ,

which refines (6.19). By a symmetric argument we deduce the estimate on |ϕN,j(z)−
ϕN,j(w)|.

(ii) From (i) we deduce that ϕN,j → ϕN uniformly on compact sets of Rm\{0}
by Ascoli Arzela’s Theorem.

(iii) By comparison with the well-known case gj(A) = |A|p, in which case we
have ϕN,j(z) = c|z|p, we deduce that

ϕN,j(z) ≤ cNδ
np/(n−p)
j + c|z|p. (6.25)

(iv) Note that c1|A|p ≤ g(A) ≤ c2|A|p, so that, again by comparison with the
case g(A) = |A|p, we have c1c|z|p ≤ ϕN (z) ≤ c2c|z|p. Taking this into account
and arguing as in (i) for fixed η > 0 we also have

|ϕN (z)− ϕN (w)| ≤ c (ηp + |z − w|(|w|p−1 + |z|p−1)) (6.26)

for all w, z ∈ Rm.
(v) Arguing as in (ii) and taking (iv) into account, we deduce that ϕN → ϕ

uniformly on compact sets of Rm.

Proposition 6.9 Let (uj) be a bounded sequence in L∞(Ω;Rm) converging to
u weakly in W 1,p(Ω;Rm), let (Cj

i ) (i ∈ Zj) be a collection of annuli of the form
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(6.9) for an arbitrary choice of ki, let ui
j be defined by (6.10), and let ψj be

defined by

Qδ
i = xδ

i +
(
−δj

2
,
δj

2

)n

, ψj =
∑

i∈Zj

ϕN,j(ui
j)χQδ

i
. (6.27)

Then we have
lim

j

∫

Ω

|ψj − ϕN (u)| dx = 0. (6.28)

Proof. Let η > 0 be fixed. If η < |z| ≤ supj ‖uj‖∞ then we have, by Remark
6.8(ii),

|ϕN,j(z)− ϕN (z)| ≤ o(1)

as j → +∞, uniformly in z, while, if |z| < η then, by Remark 6.8(iii),

|ϕN,j(z)− ϕN (z)| ≤ cNδ
np/(n−p)
j + 2cηp.

Set
ψ̂j =

∑

i∈Zj

ϕN (ui
j)χQδ

i
. (6.29)

By the arbitrariness of η and the convergence of ϕN (uj) to ϕN (u) in L1(Ω), we
deduce that the limit in (6.28) equals the limits

lim
j

∫

Ω

|ψ̂j − ϕN (u)| dx = lim
j

∫

Ω

|ψ̂j − ϕN (uj)| dx

= lim
j

∑

i∈Zj

∫

Qδ
i

|ϕN (ui
j)− ϕN (uj)| dx (6.30)

≤ c
(
ηp + lim

j

(
sup

j
‖uj‖p

L∞(Ω;Rm)

) ∑

i∈Zj

∫

Qδ
i

|ui
j − uj |dx

)

by (6.26). By Hölder’s and Poincaré’s inequalities, we have
∫

Qδ
i

|ui
j − uj | dx ≤ δ

n(p−1)/p
j

(∫

Qδ
i

|ui
j − uj |p dx

)1/p

≤ δ
n(p−1)/p
j cδj

(∫

Qδ
i

|Duj |p dx
)1/p

,

so that ∑

i∈Zj

∫

Qδ
i

|ui
j − uj | dx ≤ cδj

(∫

Ω

|Duj |p dx
)1/p

,

which proves the convergence to 0 of the limits in (6.30) by the arbitrariness of
η.
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6.4 Proof of the liminf inequality

Let u ∈ W 1,p(Ω;Rm) and let uj → u in Lp(Ω;Rm) be such that supj Fj(uj) <
+∞. Note that by (6.1) uj ⇀ u weakly in W 1,p(Ω;Rm).

We can use a sequence (wj) constructed as in Lemma 6.6 to estimate the
liminf inequality for (Fj). We fix k,N ∈ N with N > 2k, and define wj as in
Lemma 6.6 with

ρj = Nδ
n/(n−p)
j . (6.31)

Note that with this choice of ρj we always have wj = uj = 0 on Bδ
i . Let Ej =

Ek,N
j be given by

Ej =
⋃

i∈Zj

Bj
i , where Bj

i = Bρi
j
(xδ

i )

for all i ∈ Zj (Zj given by (6.8) and ρi
j by (6.11)). We first deal with the

contribution of the part of Duj outside the set Ej .

Proposition 6.10 We have

lim inf
j

∫

Ω\Ej

f(Duj) dx ≥
∫

Ω

Qf(Du) dx− c

k
(6.32)

Proof. Let

vj(x) =
{

ui
j if x ∈ Bj

i

wj(x) if x ∈ Ω \ Ej .

Note that by Lemma 6.6 (vj) is bounded in W 1,p(Ω;Rm) and that limj |{x ∈
Ω : uj(x) 6= vj(x)}| = 0. We deduce that vj ⇀ u weakly in W 1,p(Ω;Rm) so that

lim inf
j

∫

Ω\Ej

f(Duj) dx +
c

k
≥ lim inf

j

∫

Ω\Ej

f(Dwj) dx

= lim inf
j

∫

Ω

f(Dvj) dx ≥
∫

Ω

Qf(Du) dx,

the last inequality following from Remark 1.21.

We now turn to the estimate of the contribution on Ej . With fixed j ∈ N
and i ∈ Zj , let

ζ(y) = wj

(
xδ

i + δ
n/(n−p)
j y

)

be defined on B 3
42−ki N (0), and extended to ui

j outside this ball. Note that

ζ − ui
j ∈ W 1,p

0 (BN (0);Rm) and ζ = 0 on B1(0). (6.33)

By a change of variables we obtain
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∫

Bj
i

f(Dwj) dx = δn
j

∫

BN (0)

δ
np/(n−p)
j f(δ−n/(n−p)

j Dζ) dx ≥ δn
j ϕN,j(ui

j) (6.34)

by (6.22); hence, to give the estimate on Ej we have to compute the limit

lim inf
j

∑

i∈Zj

δn
j ϕN,j(ui

j) = lim inf
j

∫

Ω

ψj dx, (6.35)

where ψj is defined as in (6.27).

Proposition 6.11 We have

Γ- lim inf
j

Fj(u) ≥
∫

Ω

Qf(Du) dx +
∫

Ω

ϕ(u) dx

for all u ∈ W 1,p(Ω;Rm).

Proof. Let uj → u in Lp(Ω;Rm). We can assume, upon possibly passing to
a subsequence, that there exists the limit

lim
j

Fj(uj) < +∞,

so that uj ⇀ u in W 1,p(Ω;Rm). By [27] Lemma 3.5, upon passing to a further
subsequence, for all M ∈ N and η > 0 there exists RM > M and a Lipschitz
function ΦM of Lipschitz constant 1 such that ΦM (z) = z if |z| < RM and
ΦM (z) = 0 if |z| > 2RM , and

lim
j

Fj(uj) ≥ lim inf
j

Fj(ΦM (uj))− η. (6.36)

From Lemma 6.6, (6.35), and Proposition 6.9, applied to (ΦM (uj)) in place
of (uj), we get that

lim inf
j

∫

Ej

f(DΦM (uj)) dx +
c

k
≥ lim inf

j

∑

i∈Zj

δn
j ϕN,j((ΦM (u))i

j)

=
∫

Ω

ϕN (ΦM (u)) dx

≥
∫

Ω

ϕ(ΦM (u)) dx. (6.37)

Summing up (6.37) and (6.32) and by the arbitrariness of k, we then obtain

lim inf
j

Fj(ΦM (uj)) ≥
∫

Ω

Qf(DΦM (u)) dx +
∫

Ω

ϕ(ΦM (u)) dx. (6.38)

By (6.36) we then have



120 Asymptotic analysis of periodically-perforated nonlinear media

lim
j

Fj(uj) + η ≥
∫

Ω

Qf(DΦM (u)) dx +
∫

Ω

ϕ(ΦM (u)) dx.

We can let M → +∞ and note that ΦM (u) ⇀ u in W 1,p(Ω;Rm) to get

lim
j

Fj(uj) + η ≥
∫

Ω

Qf(Du) dx +
∫

Ω

ϕ(u) dx.

The thesis is obtained by letting η → 0.

6.5 Proof of the limsup inequality

The limsup inequality is obtained by suitably modifying a recovery sequence for
the lower semicontinuous envelope of

∫
Ω

f(Du) dx.

Proposition 6.12 If |∂Ω| = 0 then we have

Γ- lim sup
j

Fj(u) ≤
∫

Ω

Qf(Du) dx +
∫

Ω

ϕ(u) dx

for all u ∈ W 1,p(Ω;Rm).

Proof. Let u ∈ W 1,p(Ω;Rm) and let (vj) be a sequence converging to u
weakly in W 1,p(Ω;Rm) such that

lim
j

∫

Ω

f(Dvj) dx =
∫

Ω

Qf(Du) dx (6.39)

We preliminarily note that we may assume that (|Dvj |p) is equi-integrable on Ω
(see Section 1.8.1). With fixed N ∈ N, by Lemma 6.6 applied with uj = vj ,

ρj =
4
3
Nδ

n/(n−p)
j ,

and taking the equi-integrability of |Dvj |p into account we may also suppose
that vj equals a constant vj

i on ∂Bρ′
j
(xδ

i ) for all i ∈ Zj , where

ρ′j = Nδ
n/(n−p)
j .

Step 1. We first assume that in addition (vj) is a bounded sequence in
L∞(Ω;Rm).

Let η > 0 be fixed. We now modify the sequence (vj) to obtain functions
uj ∈ W 1,p(Ω;Rm) such that

uj = vj on Ω \
⋃

i∈Zn

Bρ′
j
(xδ

i ), uj = 0 on Ω ∩
⋃

i∈Zn

Bδ
i
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and
lim sup

j

∫

Ω∩
⋃

i∈Zn Bρ′
j
(xδ

i
)

f(Duj) dx ≤
∫

Ω

ϕ(u) dx + η|Ω|. (6.40)

The sequence (uj) will then be a recovery sequence for the limsup inequality. In
fact, clearly uj → u in Lp(Ω;Rm) since limj |{uj 6= vj}| = 0 and (uj) is bounded
in W 1,p(Ω;Rm), and

lim sup
j

∫

Ω

f(Duj) dx ≤ lim sup
j

∫

Ω\
⋃

i∈Zn Bρ′
j
(xδ

i
)

f(Dvj) dx

+ lim sup
j

∫

Ω∩
⋃

i∈Zn Bρ′
j
(xδ

i
)

f(Duj) dx

≤ lim
j

∫

Ω

f(Dvj) dx +
∫

Ω

ϕ(u) dx + η|Ω|

=
∫

Ω

Qf(Du) dx +
∫

Ω

ϕ(u) dx + η|Ω|. (6.41)

We now define uj on each Bρ′
j
(xδ

i ) ∩ Ω. We treat separately the cases i ∈ Zj

and i ∈ Zn \ Zj . We first treat the case i ∈ Zj . Let

M = sup
j
‖vj‖L∞(Ω;Rm).

By Remark 6.8(v) we can choose N such that

ϕ(z) ≥ ϕN (z)− η

3
(6.42)

for all |z| ≤ M . Recall moreover that ϕN,j converges uniformly on compact sets
of Rm to ϕN as j → +∞; we may therefore assume that

|ϕN,j(z)− ϕN (z)| ≤ η

3
(6.43)

for all |z| ≤ M and j ∈ N.
Let ζi

j ∈ vi
j + W 1,p

0 (BN (0);Rm) be such that ζi
j = 0 on B1(0) and

∫

BN (0)

δ
np/(n−p)
j f(δ−n/(n−p)

j Dζi
j) dx ≤ ϕN,j(vi

j) +
η

3
≤ ϕ(vi

j) + η, (6.44)

the last inequality being a consequence of (6.42) and (6.43), taking into account
that |vi

j | ≤ M .
We define uj on Bρ′

j
(xδ

i ) by

uj(x) = ζi
j

(
(x− xδ

i )δ
−n/(n−p)
j

)
.
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By a change of variables we then have
∫

Bρ′
j
(xδ

i
)

f(Duj) dx = δn
j

∫

BN (0)

δ
np/(n−p)
j f(δ−n/(n−p)

j Dζi
j) dx ≤ δn

j ϕ(vi
j) + δn

j η.

(6.45)
If i 6∈ Zj it is not possible to use the construction above since Bρ′

j
(xδ

i ) might
intersect ∂Ω. We then consider a scalar ζ ∈ W 1,p(BN (0)) such that ζ − 1 ∈
W 1,p

0 (BN (0)), 0 ≤ ζ ≤ 1 and ζ = 0 on B1(0), and simply define

uj(x) = vj(x) ζ
(
(x− xδ

i )δ
−n/(n−p)
j

)

on Bρ′
j
(xδ

i ) ∩ Ω. We then have

∫

Bρ′
j
(xδ

i
)∩Ω

f(Duj) dx

≤ c2

∫

Bρ′
j
(xδ

i
)∩Ω

(1 + |Duj |p) dx

≤ c

∫

Bρ′
j
(xδ

i
)∩Ω

(
1 + |Dvj |p + δ

−np/(n−p)
j

∣∣∣Dζ
(
(x− xδ

i )δ
−n/(n−p)
j

)∣∣∣
p

|vj |p
)

dx

≤ cδn
j

(
1 + M

∫

BN (0)

|Dζ|p dx
)

+ c

∫

Bρ′
j
(xδ

i
)∩Ω

|Dvj |p dx. (6.46)

Let
E′

j =
⋃

i∈Zn\Zj

Bρ′
j
(xδ

i ) ∩ Ω and Ω′j =
⋃

i∈Zn\Zj

Qδ
i .

Then (6.46) above implies that

∫

E′
j

f(Duj) dx ≤ c|Ω′j |+ c

∫

E′
j

|Dvj |p dx = o(1), (6.47)

by the equi-integrability of (|Dvj |p) and the fact that limj |Ω′j | = |∂Ω| = 0.
Taking (6.45) and (6.47) into account, we have

lim sup
j

∫

Ω∩
⋃

i∈Zn Bρ′
j
(xδ

i
)

f(Duj) dx ≤ lim sup
j

∑

i∈Zj

δn
j ϕ(vi

j) dx + η|Ω|,

so that (6.40) is proved by Proposition 6.9.
Step 2. We now remove the boundedness assumption. First assume that u ∈

L∞(Ω;Rm). Then let M = 4‖u‖L∞(Ω;Rm) and let Φ : Rm → Rm be a Lipschitz
function of Lipschitz constant 1 such that Φ(z) = z if |z| ≤ M/2 and Φ(z) = 0
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if |z| ≥ M . Let (vj) be a sequence converging to u weakly in W 1,p(Ω;Rm) such
that (6.39) holds and (|Dvj |p) is equi-integrable on Ω, and define vM

j = Φ(vj).
We have vM

j ⇀ u weakly in W 1,p(Ω;Rm) and limj |{vj 6= vM
j }| = 0. Hence, by

the equi-integrability of (|Dvj |p), we obtain that

lim
j

∫

Ω

f(DvM
j ) dx = lim

j

∫

Ω

f(Dvj) dx =
∫

Ω

Qf(Du) dx.

We can then repeat all the reasonings above with (vM
j ) in the place of (vj).

Finally, for arbitrary u ∈ W 1,p(Ω;Rm), simply note that it can be approx-
imated by a sequence of functions uk ∈ W 1,p(Ω;Rm) ∩ L∞(Ω;Rm) with re-
spect to the strong convergence of W 1,p(Ω;Rm). By the lower semicontinuity of
F ′′(u) = Γ-lim supj Fj(u) with respect to the Lp(Ω;Rm) convergence (see Re-
mark 1.24(i)) we then have F ′′(u) ≤ lim infk F ′′(uk) = limk F (uk) = F (u) as
desired.



7

SEPARATION OF SCALES AND ALMOST-PERIODIC
EFFECTS IN THE ASYMPTOTIC BEHAVIOUR OF

PERFORATED PERIODIC MEDIA

7.1 Setting of the problem

In all that follows Ω is a bounded open subset of Rn, n ≥ 3; the Γ-limit of a
sequence of functionals Fj defined on H1

0 (Ω) will be performed with respect to
the L2(Ω)-convergence.

The functionals we consider are defined as follows. Let f : Rn×Rn → [0, +∞)
be a Borel function satisfying

(H1) (periodicity) f(·, z) is 1-periodic for all z ∈ Rn;
(H2) (positive homogeneity) f(x, ·) is positively homogeneous of degree 2 for

all x ∈ Rn;
(H3) (growth conditions) there exist two constants c1, c2 > 0 such that

c1|z|2 ≤ f(x, z) ≤ c2|z|2 for all x, z.
It is well known (see Theorem 1.46) that the Γ-limit G0 of the functionals

(Gε) defined by

Gε(u) =
∫

Ω

f
(x

ε
,Du

)
dx (7.1)

on H1
0 (Ω) exists and can be represented as

G0(u) =
∫

Ω

fhom(Du) dx, (7.2)

where

fhom(z) = inf
{∫

(0,1)n

f(y, Du + z) dy : u ∈ H1
loc(R

n) 1-periodic
}

(7.3)

for z ∈ Rn defines a convex function positively homogeneous of degree 2 (see
Remark 1.16(ii) and (iii) and Remark 1.24(iii)).

For all δ > 0 we will consider the lattice δZn whose points will be denoted
xδ

i = δi (i ∈ Zn). Moreover, for all i ∈ Zn

Bδ
i = Bδn/(n−2)(xδ

i ).

For all ε, δ > 0 we consider Fε,δ : H1
0 (Ω) → [0, +∞] defined by
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Fε,δ(u) =





∫

Ω

f
(x

ε
,Du

)
dx if u = 0 on

⋃
i∈Zn Bδ

i

+∞ otherwise.

(7.4)

With fixed δ = δ(ε) we will study the Γ-limits of sequences (Fj) with

Fj = Fεj ,δ(εj). (7.5)

We will separately consider the following cases:
(1) (Section 7.3.1) ε << δn/(n−2). In this case the Γ-limit does not depend

on (εj) and can be written in the form

F0(u) =
∫

Ω

fhom(Du) dx + C

∫

Ω

|u|2 dx (7.6)

on the whole H1
0 (Ω). The characterization of C is described in Theorem 7.6;

(2) (Section 7.3.2) ε >> δ. The same conclusion of (1) above holds with a
different characterization of C (see Theorem 7.7);

(3) (Section 7.4) In the remaining cases in general the Γ-limit does not exist,
but we may have converging sequences (Fj) both to functionals of the form (7.6)
with different C or to functionals of the form

F0(u) =
∫

Ω

fhom(Du) dx +
∫

Ω

ϕ|u|2 dx (7.7)

for some strictly positive ϕ ∈ L∞(Ω).

Remark 7.1 (i) Since the functionals we consider are weakly equi-coercive on
H1

0 (Ω) (more precisely, if supj(Fj(uj)) < +∞ and (uj) is bounded in L2(Ω)
then it is weakly pre-compact in H1

0 (Ω)) in the Γ-liminf inequality above we
may consider only sequences (uj) weakly converging in H1

0 (Ω);
(ii) if H is a continuous functional on L2(Ω) then Fj+H Γ-converge to F0+H.

By the well-known property of convergence of minima of Γ-limits (see Theorem
1.23) we deduce for instance in case (1) above that for all fixed h ∈ L2(Ω) the
values

mε = inf
{∫

Ωδ(ε)

f
(x

ε
,Du

)
dx−

∫

Ωδ(ε)

hu dx : u = 0 on ∂Ωδ(ε)

}
,

where Ωδ denotes the δ-periodically perforated set

Ωδ = Ω \ (Bδn/(n−2)(0) + Zn) = Ω \
⋃

i∈Zn

Bδ
i , (7.8)

converge to

m = min
{∫

Ω

(
fhom(Du) + C|u|2 − hu

)
dx : u = 0 on ∂Ω

}
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as ε → 0.
Furthermore, if f is convex in the second variable, for each ε a solution uε of

mε exists, the family (uε) (extended to 0 on Ω \ Ωδ(ε)) is weakly precompact in
H1

0 (Ω) and every its limit is a solution for m. If f(x, z) = 〈a(x, z), z〉 (a linear) we
may then restate this Γ-convergence result in terms of convergence of solutions
of elliptic PDE as in the Introduction.

7.2 A general Γ-convergence approach

In this section we describe a general procedure to compute the Γ-limit of func-
tionals defined on perforated domains. In the following sections we specialize this
approach to the cases (1)–(3) highlighted in the previous section.

Let fj : Rn ×Rn → [0, +∞) be Borel functions satisfying the positive ho-
mogeneity condition (H2) and the growth conditions (H3) uniformly in j. We
suppose that the sequence of functionals (Gj) defined on H1

0 (Ω) by

Gj(u) =
∫

Ω

fj(x,Du) dx (7.9)

Γ-converges to a functional G0 of the form

G0(u) =
∫

Ω

f0(x,Du) dx. (7.10)

In our case fj(x, z) = f(x/εj , z) and f0 = fhom.
Let (δj) be a sequence of positive numbers converging to 0 and let (Fj) be

defined on H1
0 (Ω) by

Fj(u) =





Gj(u) if u = 0 on
⋃

i∈Zn Bδ
i

+∞ otherwise.
(7.11)

Note that sometimes we use the notation δ = δj not to overburden notation.

7.2.1 The Γ-liminf inequality

Let (uj) converge weakly to u in H1
0 (Ω). We can suppose that supj Fj(uj) < +∞.

We wish to separate the contribution due to Duj ‘near the balls Bδ
i ’ and ‘far

from them’. The latter will be estimated simply by G0(u), while the former will
be described by a limit capacitary formula.

The way to discriminate between ‘near’ and ‘far’ contribution is formalized
by the following lemma, whose proof, together with a slightly more general state-
ment can be found in Chapter 6.

Lemma 7.2 Let uj be a sequence weakly converging to u in H1
0 (Ω) as above,

and let N, k ∈ N. Let (δj) be a sequence of positive numbers converging to 0 and
let

Zj = {i ∈ Zn : dist (xδ
i ,R

n \ Ω) > δj}.
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For all i ∈ Zj there exists ki ∈ {0, . . . , k − 1} such that, having set

Cj
i =

{
x ∈ Ω : 2−ki−1Nδ

n/(n−2)
j < |x− xδ

i | < 2−kiNδ
n/(n−2)
j

}
, (7.12)

ui
j = |Cj

i |−1

∫

Cj
i

uj dx (the mean value of uj on Cj
i ), (7.13)

and
ρi

j =
3
4
2−kiNδ

n/(n−2)
j (the middle radius of Cj

i ), (7.14)

there exists a sequence (wj), with wj ⇀ u in H1
0 (Ω) such that

wj = uj on Ω \
⋃

i∈Zj

Cj
i (7.15)

wj(x) = ui
j if |x− xδ

i | = ρi
j (7.16)

and ∫

Ω

∣∣∣fj(x,Dwj)− fj(x,Duj)
∣∣∣ dx ≤ c

1
k

. (7.17)

Moreover if uj = vj with |Dvj |2 equi-integrable, setting

Cj
i =

{
x ∈ Ω :

1
2
Nδ

n/(n−2)
j < |x− xδ

i | <
3
2
Nδ

n/(n−2)
j

}
, (7.18)

vi
j = |Cj

i |−1

∫

Cj
i

vj dx (the mean value of vj on Cj
i ), (7.19)

and
ρj = Nδ

n/(n−2)
j (the middle radius of Cj

i ), (7.20)

we get the same conclusions above.

By this lemma we can use the sequence (wj) to estimate the Γ-liminf inequal-
ity for (Fj). We first deal with the contribution of the part of Duj ‘external’ to
the annuli Cj

i ; i.e., outside the set

Ej =
⋃

i∈Zj

Bj
i , where Bj

i = Bρi
j
(xδ

i ) (7.21)

for all i ∈ Zj .
Let k,N be fixed, let ui

j be constructed as in (7.13). We define

ψj =
∑

i∈Zj

|ui
j |2χQδ

i
, (7.22)

where
Qδ

i = xδ
i +

(
−δj

2
,
δj

2

)n

.

The following lemma describes the asymptotic behaviour of ψj .
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Lemma 7.3 The sequence ψj converges to |u|2 strongly in L1(Ω).

Proof. By the Poincaré inequality
∫

Qδ
i

|uj − ui
j |2 dx ≤ c(ki) δ2

j

∫

Qδ
i

|Duj |2 dx,

where c(l) depends only on l ∈ {0, . . . , k − 1}; since k ∈ N is fixed we get

∑

i∈Zj

∫

Qδ
i

|uj − ui
j |2 dx ≤ c δ2

j

∫

Ω

|Duj |2 dx, (7.23)

where c := maxki=0,...,k−1 c(ki). Since
⋃

i∈Zj
Qδ

i invades Ω and uj → u in L2(Ω)
as j → +∞, by (7.23) we have that

lim sup
j→+∞

∫

Ω

ψj dx ≤ lim sup
j→+∞

2
(∑

i∈Zj

∫

Qδ
i

|ui
j − uj |2 +

∫

Ω

|uj |2 dx
)

= 2
∫

Ω

|u|2 dx , (7.24)

and, by (7.24), (7.23) and Hölder’s inequality

lim sup
j→+∞

∫

Ω

|ψj − |u|2| dx ≤ c lim sup
j→+∞

(∑

i∈Zj

∫

Qδ
i

|ui
j − uj |2 dx

)1/2

× lim sup
j→+∞

(∫

Ω

(ψj + |uj |2) dx
)1/2

≤ c
(∫

Ω

|u|2 dx
)1/2

lim
j→+∞

δj

(∫

Ω

|Duj |2 dx
)1/2

= 0

as desired.

Proposition 7.4 Let (uj) be as above. Let k, N ∈ N and let (wj) be given by
Lemma 7.2. Then we have

lim inf
j→+∞

∫

Ω

fj(x,Duj) dx ≥
∫

Ω

f0(x,Du) dx + lim inf
j→+∞

∫

Ej

fj(x,Dwj) dx− c

k
.

(7.25)

Proof. We define

vk,N
j =

{
ui

j on Bj
i , i ∈ Zj

wj otherwise .

The sequence (vk,N
j )j is bounded in H1

0 (Ω); hence, it is pre-compact in L2(Ω).
Since Ln({vk,N

j − wj}) → 0 and wj → u in L2(Ω) as j → +∞, vk,N
j converges

strongly to u in L2(Ω).
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By Lemma 7.2 and condition (H2)

Fj(uj) + c
1
k
≥ Fj(wj) =

∫

Ω\Ej

fj(x,Dwj) dx +
∫

Ej

fj(x,Dwj) dx

=
∫

Ω

fj(x,Dvk,N
j ) dx +

∫

Ej

fj(x, Dwj) dx

= Gj(v
k,N
j ) +

∫

Ej

fj(x,Dwj) dx . (7.26)

By the Γ-liminf inequality of the functionals Gj (7.9)

lim inf
j→+∞

Gj(v
k,N
j ) ≥

∫

Ω

f0(x,Du) dx (7.27)

and (7.25) follows immediately.

We now turn to the estimate of the contribution due to Duj on Ej . From now
on, we suppose that N > 2k so that the construction of wj in Lemma 7.2 keeps
wj = uj on Bδ

i . With fixed j ∈ N and i ∈ Zj such that ui
j 6= 0 let ζ : BN (0) → R

be defined by

ζ(y) =





1
ui

j

(
ui

j − wj

(
xδ

i − δ
n/(n−2)
j y

))
y ∈ B 3

42−ki N (0)

0 otherwise .

If ui
j = 0 we simply set ζ = 0. Note that

ζ ∈ H1
0 (BN (0)) and ζ = 1 on B1(0). (7.28)

By a change of variables we obtain
∫

Bj
i

fj(x,Dwj) dx = δn
j |ui

j |2
∫

BN (0)

fj(xδ
i − δ

n/(n−2)
j x,Dζ) dx; (7.29)

hence, if we set

ϕN,j(x) = inf
{∫

BN (0)

fj(x−δ
n/(n−2)
j y,Dζ) dy : ζ ∈ H1

0 (BN (0)), ζ = 1 on B1(0)
}

(7.30)
the computation of the liminf on the right hand side of (7.25) is translated into
computing the limit

lim inf
j→+∞

∑

i∈Zj

δn
j |ui

j |2ϕN,j(xδ
i ). (7.31)

By considering the functions ψj and ϕN
j defined by (7.22) and by
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ϕN
j =

∑

i∈Zj

ϕN,j(xδ
i )χQδ

i
, (7.32)

respectively, the limit (7.31) is translated into

lim inf
j→+∞

∫

Ω

ϕN
j ψj dx. (7.33)

By Lemma 7.3 it is sufficient to compute the weak∗ limit ϕN in L∞(Ω) of
the functions ϕN

j as j → +∞. For our problem this will be done differently in
the cases (1)–(3) described in Section 7.1. We then have

lim inf
j→+∞

∫

Ej

fj(x,Dwj) dx ≥
∫

Ω

ϕN |u|2 dx, (7.34)

and a Γ-liminf inequality is achieved by taking the supremum in N .

7.2.2 The Γ-limsup inequality
The Γ-limsup inequality is obtained by suitably modifying a recovery sequence
for the Γ-limit of Gj . Let u ∈ H1

0 (Ω) and let (vj) be a sequence converging to u
weakly in H1

0 (Ω) such that limj Gj(vj) = G0(u). Let

Ω(δj) = {x ∈ Ω : dist (x, ∂Ω) > δj};

we may assume that spt vj ⊂ Ω(δj) (see Proposition 1.33) and that |Dvj |2 is
equi-integrable (see Section 1.8.1).

By Lemma 7.2, taking the equi-integrability of |Dvj |2 into account, we may
also suppose that vj equals a constant vi

j on ∂Bρj (x
δ
i ), where

ρj = Nδ
n/(n−2)
j .

The construction of a recovery sequence will be then obtained easily if, fixed η,
we construct functions ζi

j in H1
0 (BN (0)) with ζi

j = 1 on B1(0) such that, setting

uj(x) =





vj(x) on Ω \⋃
i∈Zj

Bρj (x
δ
i )

vi
j

(
1− ζi

j

(
x−xδ

i

δ
n/(n−2)
j

))
on Bρj (x

δ
i ),

(7.35)

we have
lim sup

j

∫
⋃

i
Bρj

(xδ
i
)

fj(x,Duj) dx ≤
∫

Ω

ϕ|u|2 dx + η,

where ϕ = supN ϕN is suggested by the liminf inequality. Indeed, with this choice
of (uj), we obtain

lim sup
j→+∞

∫

Ω

fj(x, Duj) dx ≤
∫

Ω

f0(x,Du) dx + lim sup
j→+∞

∫
⋃

i
Bρj

(xδ
i
)

fj(x,Duj) dx
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≤
∫

Ω

f0(x,Du) dx +
∫

Ω

ϕ|u|2 dx + η , (7.36)

and the Γ-limsup inequality is verified.

7.3 Separation of scales

In this section we study the extreme cases ε << δn/(n−2) and ε >> δ. In both
cases the Γ-limit of the whole family (Fε,δ) exists and it is described by an
extra term of the form C

∫
Ω
|u|2 dx, whose computation highlights a separation

of scales effect.

7.3.1 Highly-oscillating energies in perforated domains
We treat the case ε << δn/(n−2) first. In this case the limit is computed as if by
first letting ε → 0, thus obtaining a homogenized functional, and then applying
the theory of perforated domains for a fixed functional.

Remark 7.5 We define

caphom(B1) = inf
{∫

Rn

fhom(Dζ) dz : ζ ∈ H1(Rn), ζ = 1 on B1(0)
}

.

It can be easily checked that

caphom(B1) = lim
N→+∞

min
{∫

B
N+ 1

N
(0)

fhom(Dζ) dz : ζ ∈ H1(BN+ 1
N

(0))

ζ = 1 on ∂BN+ 1
N

(0) ζ = 0 on B1− 1
N

(0)
}

= lim
N→+∞

min
{∫

B
N− 1

N
(0)

fhom(Dζ) dz : ζ ∈ H1(BN− 1
N

(0))

ζ = 1 on ∂BN− 1
N

(0) ζ = 0 on B1+ 1
N

(0)
}

.

Theorem 7.6 Let f satisfy (H1)–(H3) and let Fε,δ be given by (7.4). Let δ :
(0,+∞) → (0, +∞) be such that

lim
ε→0

δ(ε) = 0 lim
ε→0

δn/n−2(ε)
ε

= +∞;

then there exists the Γ-limit with respect to the L2(Ω)-convergence

Γ- lim
ε→0

Fε,δ(ε)(u) =
∫

Ω

fhom(Du) dx + caphom(B1)
∫

Ω

|u|2 dx

for all u ∈ H1
0 (Ω).

Proof. We fix a sequence (εj) of positive numbers converging to 0 and let
δj = δ(εj). Let Fj = Fεj ,δj . Note that we sometime simply write δ in place of δj .
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We first deal with the Γ-liminf inequality. Let uj be weakly converging to u
in H1

0 (Ω), such that supj Fj(uj) < ∞. Let k ∈ N and N > 2k, and let wj be as
in Lemma 7.2; by Proposition 7.4 to compute the Γ-liminf inequality we have to
study the contribution on the set Ej given by (7.21).

For all i ∈ Zn let yε
i = εj [

xδ
i

εj
], so that xδ

i ∈ yε
i + [0, εj)n. Taking into account

that εj << δ
n/(n−2)
j , we deduce the following inclusions

B
(1− 1

N )δ
n

n−2
j

(yε
i ) ⊂ Bδ

i (7.37)

and
Bj

i ⊂ Bρj (x
δ
i ) ⊂ B

(N+ 1
N )δ

n/n−2
j

(yε
i ) (7.38)

for j large enough. There follows that wj can be extended outside Bj
i as

wj,i =

{
wj on Bj

i

ui
j on B

(N+ 1
N )δ

n/n−2
j

(yε
i ) \Bj

i . (7.39)

Let ui
j 6= 0. By (7.39) and conditions (H1) and (H2), by a change of variables,

we get
∫

Bj
i

f
( x

εj
, Dwj

)
dx =

∫

B
(N+ 1

N
)δ

n/n−2
j

(yε
i
)

f
( x

εj
, Dwj,i

)
dx

= δn
j |ui

j |2
∫

B(N+ 1
N

)(0)

f
(
z
δ

n/n−2
j

εj
, Dζi

j

)
dz, (7.40)

where
ζi
j(z) = wj,i(zδ

n/n−2
j + yε

i )/ui
j .

Note that by (7.37) and (7.38) ζi
j(z) = 1 on ∂B(N+ 1

N )(0) and ζi
j = 0 on B1(0).

If we denote ηj = εj/δ
n/n−2
j , by (7.40) we have

∫
⋃

i
Bj

i

f
( x

εj
, Dwj

)
dx

≥
∑

i∈Zj

δn
j |ui

j |2 min
{∫

B(N+ 1
N

)(0)

f
( z

ηj
, Dζ(z)

)
dz : ζ ∈ H1(BN+ 1

N
(0))

ζ = 1 on ∂B(N+ 1
N )(0) ζ = 0 on B(1− 1

N )(0)
}

; (7.41)

hence, by (7.41), Lemma 7.3 and the Γ-convergence of the functionals (7.1) to
that in (7.2), we have

lim inf
j→+∞

∫
⋃

i
Bj

i

f
( x

εj
, Dwj

)
dx
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≥ min
{∫

B(N+ 1
N

)(0)

fhom(Dζ(z)) dz : ζ ∈ H1(BN+ 1
N

(0))

ζ = 1 on ∂B(N+ 1
N )(0) ζ = 0 on B(1− 1

N )(0)
} ∫

Ω

|u|2 dx .

Passing to the limit in the inequality given by Proposition 7.4 first as N and
then as k tend to +∞, by Remark 7.5 we have that

lim inf
j→+∞

Fj(uj) ≥
∫

Ω

fhom(Du) dx + caphom(B1)
∫

Ω

|u|2 dx

as desired. By the arbitrariness of uj the Γ-liminf inequality is proved.
Now we pass to compute the Γ-limsup inequality. Given u ∈ H1

0 (Ω) we want
to construct a recovery sequence (uj) for the Γ-limit of Fj . Following the ap-
proach of Section 7.2.2, it remains to define uj on Bρj

(xδ
i ).

We denote

mN
η = min

{∫

B(N− 1
N

)(0)

f
(z

η
,Dζ(z)

)
dz : ζ ∈ H1(BN− 1

N
(0))

ζ = 1 on ∂B(N− 1
N )(0) ζ = 0 on B(1+ 1

N )(0)
}

and

mN = min
{∫

B(N− 1
N

)(0)

fhom(Dζ(z)) dz : ζ ∈ H1(BN− 1
N

(0))

ζ = 1 on ∂B(N− 1
N )(0) ζ = 0 on B(1+ 1

N )(0)
}

,

and fix M ∈ N; by Remark 7.5 and for N large enough

mN ≤ caphom(B1) +
1
M

.

By the Γ-convergence of the functionals (7.1) to that in (7.2), we have that mN
η

converges to mN as η tends to 0 (see Theorem 1.23). Considering ηj = εj/δ
n/n−2
j ,

from the convergence of minima we deduce that there exists a sequence ζj ∈
H1(BN− 1

N
(0)) with ζj = 1 on ∂B(N− 1

N )(0) and ζj = 0 on B(1+ 1
N )(0) such that

lim
j→+∞

∫

B(N− 1
N

)(0)

f
( z

ηj
, Dζj(z)

)
dz ≤ caphom(B1) +

1
M

. (7.42)

By a change of variables we get
∫

B(N− 1
N

)(0)

f
( z

ηj
, Dζj(z)

)
dz =

1
δn
j

∫

B
(N− 1

N
)δ

n/n−2
j

(yε
i
)

f
( x

εj
, Dζ̃i

j(x)
)

dx, (7.43)
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where

ζ̃i
j(x) = ζj

( x− yε
i

δ
n/n−2
j

)
.

Reasoning as for the Γ-liminf inequality we may suppose that

Bδ
i ⊂ B

(1+ 1
N )δ

n/n−2
j

(yε
i ) and B

(N− 1
N )δ

n/n−2
j

(yε
i ) ⊂ Bρj (x

δ
i ) . (7.44)

Since ζ̃i
j(x) = 1 on ∂B

(N− 1
N )δ

n/n−2
j

(yε
i ) and ζ̃i

j(x) = 0 on B
(1+ 1

N )δ
n/n−2
j

(yε
i ), by

(7.44) we can define

ζi
j(x) =





ζ̃i
j on B

(N− 1
N )δ

n/n−2
j

(yε
i )

1 on Bρj (x
δ
i ) \B

(N− 1
N )δ

n/n−2
j

(yε
i )

so that ζi
j = 1 on ∂Bρj (x

δ
i ) and ζi

j = 0 on Bδ
i . By (7.43) and condition (H2), we

get
∫

B(N− 1
N

)(0)

f
( z

ηj
, Dζj(z)

)
dz =

1
δn
j

∫

Bρj
(xδ

i
)

f
( x

εj
, Dζi

j(x)
)

dx . (7.45)

Now we can construct the recovery sequence uj by setting

uj =





vj on Ω \⋃
i Bρj (x

δ
i )

vi
j ζi

j(x) on Bρj (x
δ
i ),

(7.46)

and prove that it converges weakly to u in H1(Ω). In fact (uj) is bounded in
H1(Ω) and vj − uj tends to 0 in measure. Since vj → u in L2(Ω), then also
uj → u in L2(Ω) and hence weakly in H1(Ω).

By (7.36), (7.46), (7.45), Lemma 7.3 and (7.42) we have

lim sup
j→+∞

Fj(uj) ≤
∫

Ω

fhom(Du) dx

+ lim sup
j→+∞

∑

i∈Zj

δn
j |vi

j |2
∫

B(N− 1
N

)(0)

f
( z

ηj
, Dζj(z)

)
dz

≤
∫

Ω

fhom(Du) dx +
(
caphom(B1) +

1
M

) ∫

Ω

|u|2 dx .

By the arbitrariness of M we conclude the Γ-limsup inequality; hence, the Γ-
convergence of the functionals Fε,δ(ε) as ε → 0.
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7.3.2 Slowly-oscillating energies in perforated domains

Now we treat the case ε >> δ. In this case the limit is computed as if first
applying the limit process to functionals in which x/ε acts as a parameter, and
then averaging the outcome.

We consider for the sake of simplicity the case of continuous f :
(H4) (continuity) f(·, z) is continuous for all z ∈ Rn.

This condition can be easily dropped, at the expense of a much heavier notation.

Theorem 7.7 Let f satisfy (H1)–(H4) and let Fε,δ be given by (7.4). Let δ :
(0,+∞) → (0, +∞) be such that

lim
ε→0

δ(ε)
ε

= 0 .

There exists the Γ-limit with respect to the L2(Ω)-convergence

Γ- lim
ε→0

Fε,δ(ε)(u) =
∫

Ω

fhom(Du) dx +
∫

(0,1)n

a(x) dx

∫

Ω

|u|2 dx

for all u ∈ H1
0 (Ω), where

a(x) = inf
{∫

Rn

f(x,Dζ) dy : ζ ∈ H1(Rn), ζ = 1 on B1(0)
}

. (7.47)

Before proving Theorem 7.7 we make some general observations from which
the Γ-limsup inequality will easily follow, and that will be used also in the next
sections.

Remark 7.8 In this Section and in the next one, we will consider several cases
for which the Γ-limsup inequality will be obtained by considering the recovery
sequence (7.35) introduced in Section 7.2.2, but the functions ζi

j will be con-
structed in a different way with respect to the previous section. In this case the
function ϕN,j defined as in (7.30) takes the form

ϕN,j(x) = inf
{∫

BN (0)

f
(
x− δ

n/(n−2)
j

εj
y, Dζ

)
dy :

ζ ∈ H1
0 (BN (0)), ζ = 1 on B1(0)

}
. (7.48)

With fixed j ∈ N and i ∈ Zj we take ζi
j in H1

0 (BN (0)) with ζi
j = 1 on B1(0)

such that

∫

BN (0)

f
(xδ

i

εj
− δ

n/(n−2)
j

εj
y, Dζi

j

)
dy ≤ ϕN,j

(xδ
i

εj

)
+

1
j

. (7.49)

By a change of variables we obtain
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1
δn
j

∫

Bρj
(xδ

i
)

f
( x

εj
, Dζi

j

( x− xδ
i

δ
n/(n−2)
j

))
dx ≤ ϕN,j

(xδ
i

εj

)
+

1
j

and
∫
⋃

i
Bρj

(xδ
i
)

f
( x

εj
, D

(
vi

j

(
1− ζi

j

( x− xδ
i

δ
n/(n−2)
j

))))
dx ≤

∑

i∈Zj

δn
j |vi

j |2ϕN,j

(xδ
i

εj

)
+

1
j

.

Hence, if we define

ϕN
j =

∑

i∈Zj

ϕN,j

(xδ
i

εj

)
χQδ

i
, (7.50)

where ϕN,j is given by (7.48), and

ψj =
∑

i∈Zj

vi
jχQδ

i
(7.51)

with vi
j given by (7.19), we have

lim sup
j→+∞

∫
⋃

i
Bρj

(xδ
i
)

f
( x

εj
, Duj

)
dx

= lim sup
j→+∞

∫
⋃

i
Bρj

(xδ
i
)

f
( x

εj
, D

(
vi

j

(
1− ζi

j

( x− xδ
i

δ
n/(n−2)
j

))))
dx

≤ lim sup
j→+∞

∑

i∈Zj

δn
j |vi

j |2ϕN,j

(xδ
i

εj

)
= lim sup

j→+∞

∫

Ω

ψjϕ
N
j dx . (7.52)

Proof of Theorem 7.7. We fix a sequence (εj) of positive numbers con-
verging to 0 and let δj = δ(εj). We have already shown in Section 7.2.2 that to
get the Γ-liminf inequality we have to study (in the notation of that section) the
weak∗ convergence in L∞(Ω) of the functions ϕN

j to ϕN , as j → +∞. In our
case ϕN

j is given by (7.50).
If we define

aN (x) = inf
{∫

BN (0)

f(x,Dζ) dy : ζ ∈ H1
0 (BN (0)), ζ = 1 on B1(0)

}
(7.53)

by hypothesis (H4), we have that

‖ϕN,j − aN‖∞ ≤ ω
(
N

δ
n/(n−2)
j

εj

)
(7.54)

and
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∣∣∣aN

(xδ
i

εj

)
− aN

( y

εj

)∣∣∣ ≤ ω
(δj

εj

)
(7.55)

for all y ∈ Qδ
i . Hence, if we define

aN
j =

∑

i∈Zj

aN

(xδ
i

εj

)
χQδ

i
and āN =

∫

(0,1)n

aN (y) dy

since aN is 1-periodic, we have aN ( ·εj
) ⇀∗ āN in L∞ and by (7.55) also aN

j ⇀∗

āN as j → +∞. By (7.54) ϕN
j ⇀∗ ϕN = āN and hence

lim
N→+∞

ϕN =
∫

(0,1)n

a(x) dx . (7.56)

By Proposition 7.4, (7.34), Lemma 7.3 and (7.56) we get the Γ-liminf inequality.
The Γ-limsup inequality is obtained by considering the recovery sequence

(7.35) with ζi
j constructed by (7.49), and recalling (7.52) and Lemma 7.3.

7.4 Interaction between homogenization processes

In this section we treat the remaining cases when ε is between the scales δn/n−2

and δ. We will suppose that (δj) and (εj) are such that

lim
j→∞

δ
n/(n−2)
j

εj
= q ∈ [0, +∞) lim

j→∞
εj

δj
< +∞ (7.57)

hold. We define the localized capacitary formula

aq(x) = inf
{∫

Rn

f(x− qy, Dζ) dy : ζ ∈ H1(Rn), ζ = 1 on B1(0)
}

. (7.58)

Note that when q = 0, a0 coincides with the function a defined in (7.47).

Theorem 7.9 (Periodic interaction of scales) Let f satisfy (H1)–(H4) and let
Fj = Fεj ,δj with Fε,δ as in (7.4). Let εj → 0 and let δj → 0 be such that (7.57)
holds. Suppose that δj = kj

M εj with kj ∈ N prime with M ∈ N. Then there exists
the Γ-limit with respect to the L2(Ω)-convergence

Γ- lim
j→+∞

Fj(u) =
∫

Ω

fhom(Du) dx + C

∫

Ω

|u|2 dx,

on H1
0 (Ω), where

C =
1

Mn

∑

h∈{0,...,M−1}n

aq
( h

M

)
. (7.59)
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Proof. Let ϕN,j be the 1-periodic function defined as in (7.48), and let

aq
N (x) = inf

{∫

BN (0)

f(x− qy, Dζ) dy : ζ ∈ H1
0 (BN (0)), ζ = 1 on B1(0)

}
.

(7.60)
As δj = kj

M εj then

xδ
i

εj
= i

kj

M
= k +

h

M
k ∈ Zn, h ∈ {0, ...,M − 1}n . (7.61)

By (7.61) and the periodicity of ϕN,j

∑

i∈Zj

δn
j |ui

j |2ϕN,j

(xδ
i

εj

)
=

∑

h∈{0,...,M−1}n

(∑

i∈Ih

δn
j |ui

j |2
)
ϕN,j

( h

M

)
=

∫

Ω

ψjϕ
N
j dx ,

(7.62)
where

Ih =
h

M
+ Zn ∩ Zj

and ψj , ϕ
N
j are defined in (7.22) (7.50), respectively. Note that

ϕN
j (x) =

∑

h∈{0,...,M−1}n

∑

i∈Ih

ϕN,j

( h

M

)
χQδ

i
(x)

and ‖ϕN,j − aq
N‖∞ → 0 as j → +∞; hence,

ϕN
j ⇀∗ ϕN =

∑

h∈{0,...,M−1}n

1
Mn

aq
N

( h

M

)

and

lim
N→+∞

ϕN =
∑

h∈{0,...,M−1}n

1
Mn

aq
( h

M

)
.

Recalling Lemma 7.3 we obtain the Γ-liminf inequality.
In order to obtain the Γ-limsup inequality, by (7.52) it is sufficient to use the

scheme of Section 7.2.2 with ζi
j as in (7.49).

Remark 7.10 In the particular case when δj/εj ∈ N (i.e., M = 1) the constant
C is given by the single problem defining aq(0).

Theorem 7.11 (Almost-periodic interaction of scales) Let f satisfy (H1)–(H4)
and let Fj = Fεj ,δj with Fε,δ as in (7.4). Let εj → 0 and let δj → 0 be such that
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(7.57) holds. Suppose that δj = (kj + r)εj with kj ∈ N and r /∈ Q. Then there
exists the Γ-limit with respect to the L2(Ω)-convergence

Γ- lim
j→+∞

Fj(uj) =
∫

Ω

fhom(Du) dx + C

∫

Ω

|u|2 dx

on H1
0 (Ω), where

C =
∫

(0,1)n

aq(x) dx . (7.63)

Proof. The sequence ϕN
j defined in (7.50) is bounded in L∞(Ω); hence,

up to subsequences, there exists ϕN ∈ L∞(Ω) such that ϕN
j ⇀∗ ϕN in L∞(Ω)

as j → +∞. In order to identify the limit ϕN , it suffices to test it against
characteristic functions of n-cubes. Hence, if we prove that

∫

A

ϕN
j dx → Ln(A)C (7.64)

for every n-cube A, we have ϕN = C.
We define

ϕ̃N
j =

∑

i∈Zj

δn
j

Mn

εn
j

ϕN,j(
xδ

i

εj
)χQ ε

M
(xδ

i
)+Zn ,

where
Q ε

M
(xδ

i ) = xδ
i +

(
− εj

M
,
εj

M

)n

.

Note that also ϕ̃N
j ⇀∗ ϕN in L∞(Ω). By the continuity of ϕN,j

∣∣∣ϕN,j

(xδ
i

εj

)
− ϕN,j

( x

εj

)∣∣∣ ≤ ω
( 1

M

)

if x ∈ Q ε
M

(xδ
i ) + Zn; hence, we study the weak∗ convergence of

x 7→
∑

i∈Zj

δn
j

Mn

εn
j

ϕN,j

( x

εj

)
χQ ε

M
(xδ

i
)+Zn(x) .

Let A be an n-cube with edges parallel to the coordinate axes and of side length
l, we compute

∫

A

∑

i∈Zj

δn
j

Mn

εn
j

ϕN,j

( x

εj

)
χ

Q 1
M

(
xδ

i
εj

)+Zn

( x

εj

)
dx

= εn
j

∫
1

εj
A

∑

i∈Zj

δn
j

Mn

εn
j

ϕN,j(z)χQ 1
M

( x
εj

)+Zn(z) dz
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= [(l/εj)− 1]nεn
j

∫

(0,1)n

ϕN,j(z)
∑

i∈Zj

δn
j

Mn

εn
j

χ
Q 1

M
(

xδ
i

εj
)+Zn

(z) dz

+εn
j

∫

Rj

ϕN,j(z)
∑

i∈Zj

δn
j

Mn

εn
j

χ
Q 1

M
(

xδ
i

εj
)+Zn

(z) dz, (7.65)

where we have decomposed (1/εj)A as the union of [(l/εj)− 1]n unit cubes and
of a set Rj , with Ln(Rj) ≤ 2n(l/εj)n−1.

By an application of Birkhoff’s Theorem (see e.g. [60]) as in [25] Appendix
A and (7.65) we deduce

lim
j→+∞

∫

A

∑

i∈Zj

δn
j

Mn

εn
j

ϕN,j

( x

εj

)
χQ εj

M

(xδ
i
)+Zn(x) dx

= Ln(A)
∫

(0,1)n

aq
N (z) dz

∫

(0,1)n

χQ 1
M

(z)Mn dz = Ln(A)
∫

(0,1)n

aq
N (z) dz,

where aq
N is defined by (7.60). By (7.64) we have

ϕN =
∫

(0,1)n

aq
N (z) dz;

hence, by Lemma 7.3

lim
j

∫

Ω

ϕN
j ψj dx = ϕN

∫

Ω

|u|2 dx, (7.66)

where ψj is defined as in (7.22), and

lim
N→+∞

ϕN =
∫

(0,1)n

aq(x) dx . (7.67)

By (7.34)

lim inf
j→+∞

∫

Ej

f
( x

εj
, Dwj

)
dx ≥

∫

(0,1)n

aq(x) dx

∫

Ω

|u|2 dx (7.68)

and we obtain the Γ-liminf inequality.
Recalling (7.52), we choose ζi

j as in (7.49), and by (7.66), (7.67) we get the
Γ-limsup inequality.

Corollary 7.12 (Non-existence) If δ : (0, +∞) → (0,+∞) is a continuous func-
tion such that

lim
ε→0

δ(ε) = lim
ε→0

ε

δ(ε)
= 0, and lim

ε→0

δn/(n−2)(ε)
ε

= q ∈ [0, +∞),

then the Γ-limit of the functionals Fε,δ(ε) as ε → 0 does not exist.
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Remark 7.13 The case δj = εj (more generally, δj = sεj with fixed s > 0) is
covered by Theorem 7.9 and Theorem 7.11. Note that the condition limj→+∞ δj/εj =
1 does not allow to conclude the existence of the Γ-limit of Fj as shown by Ex-
ample 7.14 below.

Example 7.14 (Finely-tuned interplay between scales) We finally give an exam-
ple when the extra term in the limit is not described by a constant: if δj = εj +ε2

j

then
Γ- lim

j→+∞
Fj(u) =

∫

Ω

fhom(Du) dx +
∫

Ω

a(x)|u(x)|2 dx .

In fact, by the periodicity of ϕN,j defined as in (7.48)

∑

i∈Zj

δn
j |ui

j |2ϕN,j

(xδ
i

εj

)
=

∑

i∈Zj

δn
j |ui

j |2ϕN,j(iεj)

If we consider the function aN defined by (7.53), by condition (H4)

∣∣∣aN

(xδ
i

εj

)
− aN (xδ

i )
∣∣∣ ≤ ω(ε2

j ); (7.69)

hence, by (7.54) and (7.69), we have that

lim
j→+∞

∑

i∈Zj

δn
j |ui

j |2ϕN,j

(xδ
i

εj

)
= lim

j→+∞

∑

i∈Zj

δn
j |ui

j |2aN (xδ
i )

=
∫

Ω

aN (x)|u(x)|2 dx (7.70)

and
lim

N→+∞

∫

Ω

aN (x)|u(x)|2 dx =
∫

Ω

a(x)|u(x)|2 dx . (7.71)

Reasoning as in the proof of Theorems 7.9 and 7.11 we get the Γ-liminf and the
Γ-limsup inequalities.
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