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Abstract. We show the existence of generalized clusters of a finite or even
infinite number of sets, with minimal total perimeter and given total masses, in

metric measure spaces homogeneous with respect to a group acting by measure

preserving homeomorphisms, for a quite wide range of perimeter functionals.
Such generalized clusters are a natural “relaxed” version of a cluster and can

be thought of as “albums” with possibly infinite pages, having a minimal

cluster drawn on each page, the total perimeter and the vector of masses being
calculated by summation over all pages, the total perimeter being minimal

among all generalized clusters with the same masses. The examples include

any anisotropic perimeter in a Euclidean space, as well as a hyperbolic plane
with the Riemannian perimeter and Heisenberg groups with a canonical left

invariant perimeter or its equivalent versions.

1. Introduction

In a finite-dimensional Euclidean space Rn we call E = (E1, . . . , EN ) with N ∈
N ∪ {∞} an N -cluster of sets if each Ej ⊂ Rn is Borel (possibly empty), and
Ln(Ei ∩ Ej) = 0 for all i 6= j, Ln standing for the Lebesgue measure. If P (M)
stands for the classical (Euclidean) perimeter of the set M ⊂ Rn, we set

m(E) := (Ln(E1), . . . ,Ln(EN ))

P (E) :=
1

2

∑
j≥1

P (Ej) +
1

2
P

⋃
j≥1

Ej


An N -cluster E is usually called minimal, or isoperimetric, if

P (E) = min {P (F) : m(F) = m(E)} .
Existence of finite (i.e. with N < +∞) isoperimetric clusters for the classical

(Euclidean) perimeter in a Euclidean space has been proven in [12] for each given
vector of masses m. The technique of the proof has been further extended to several
other situations, for various different notions of perimeter. More has been done for
the problem of existence of isoperimetric sets, i.e. in our terminology, minimal
1-clusters. It has been accomplished for different versions of perimeter in finite-
dimensional spaces such as Riemannian manifolds (see the list of relevant results
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in the Introduction to [14] as well as the recent papers [5, 9, 3, 7]) and even in
more general spaces with Ricci curvature bounds [2, 4]. However these techniques
are based on regularity of isoperimetric sets, and are quite difficult even in the
Euclidean case. Moreover, such results are only valid for finite clusters.

The difficulty to prove the existence by purely variational techniques, even in the
Euclidean space and just for isoperimetric sets (i.e. just 1-clusters) is only due to
noncompactness of the ambient space (in compact spaces it is trivial), and comes
from the fact that minimizing sequences of sets may “escape to infinity” and lose
part of their volumes. It is however well-known that the limits of the pieces going
to infinity are still isoperimetric sets for their own volumes (which may be lower
than the original requirement), see e.g. [8, 16] where the problem of existence of
isoperimetric sets has been studied for quite a general family of weighted perimeters
and volume measures. The same is known to happen also with finite isoperimetric
clusters, see [18, 7] where a formula for the perimeter of a minimal finite cluster
is proven (again, for possibly weighted perimeters and volumes) suggesting that
a minimal cluster is given by the union of the limit cluster (with possibly lower
volumes) for a minimizing sequence and a “cluster at infinity” which has precisely
the missing volumes. Therefore to prove the existence of an isoperimetric set or
cluster one needs to appropriately adjust the sets by adding necessary volume which
requires a great deal of heavy regularity techniques. However it is important to
emphasize that the problem is not merely technical. In fact, even for N = 1
(isoperimetric sets) it might happen that in some Riemannian manifolds there are
no isoperimetric sets of some or even every volume, see [17] as well as [15, 14].

Here we consider a more general situation of a metric measure space (X, d, µ)
(with distance d and measure µ) instead of an Euclidean space with Lebesgue
measure, which is homogeneous with respect to some group acting by measure
preserving homeomorphisms. We show that in such a situation one can easily
prove by means of concentration compactness-like technique (i.e. similar to [11]),
the existence of “generalized” minimal clusters (finite or possibly infinite) for each
given vector of masses. Such generalized clusters are in a sense a natural “relaxed”
version of a cluster and can be thought of as “albums” with possibly infinite pages,
having a minimal N -cluster drawn on each page, the total perimeter and the vector
of masses being calculated by summation over all pages, the total perimeter being
minimal among all generalized clusters with the same vector of masses. Such a
generalized cluster in fact keeps track of all the parts of minimal sequences “escaping
at infinity” by placing them on possibly different pages.

The toy examples we provide include finite or infinite minimal clusters for any
anisotropic perimeter in Rn, as well as in a hyperbolic plane with the Riemannian
perimeter and in Heisenberg groups with a canonical left invariant perimeter or its
equivalent versions. In all these examples there is some natural discrete group act-
ing on the respective space properly discontinuously and cocompactly by measure
preserving isometries (of course, the existence of isoperimetric sets is also known in
such situations). Note that the technique developed here is purely variational and
does not involve any regularity-type arguments, thus allowing to obtain existence
of generalzied minimal clusters for the whole range of perimeter functionals. The
cost paid for such a simplicity is of course that one can say nothing a priori about
the regularity of generalized clusters; and it has to be noted that even very weak
regularity properties of a minimal generalized cluster would allow to conclude the
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existence of a solution to the original problem (i.e. the existence of minimal clusters
in the original space).

The paper is structured as follows. After introducing the general axiomatic
notion of a perimieter functional by a set of quite weak requirements in Section 2,
we provide in Section 3 the general semicontinuity and compactness result for this
functional for sequences of sets and in Section 4 for sequences of clusters. This
allows to prove the existence of generalized optimal clusters in Section 5. Finally,
in Section 6 we give some basic applications of such existence results for various
types of perimeter functional in different environments, in partcicular, in a finite-
dimensional normed space (i.e. with either classical or anisotropic perimeter), in a
hyperbolic space and in te Heisenberg group.

2. Notation and prelimiaries

In the sequel we suppose (X, d, µ) to be a metric measure space with distance
d and nonnegative σ-finite Radon measure µ with µ(X) 6= 0, and G be a discrete
countable topological group acting properly discontinuously onX (i.e. {g ∈ G : gK∩
K 6= ∅} is finite for all compact K ⊂ X) by homeomorphisms preserving the
measure µ. We denote by B(X) the Borel σ-algebra of X, and by A(X) the class
of open subsets of X. For a set S ⊂ X and x ∈ X we denote dist(x, S) :=
inf{d(x, y) : y ∈ S} to be a distance from x to S. The metric space (X, d) is said
to have Heine-Borel property, if every closed ball is compact.

By L1(µ) (resp. L1
loc(µ)) we denote the usual Lebesgue space of µ-integrable

(resp. µ-integrable over compact sets) functions over X, and if X = Rn, we denote
by C∞0 (Rn) the set of infinitely differentiable functions with compact support. As
usual, for an E ⊂ X we let Ē stand for the closure of E and 1E for the characteristic
function of E, while Br(x) denotes the open ball of radius r > 0 centered at x ∈ X.

We write gk → ∞ for a sequence of gk ∈ G, if limk gk = ∞ in the one-point
compactifictaion G ∪ {∞} of G, that is, for every finite F ⊂ G the set of {k ∈
N : gk ∈ F} is finite.

In what follows we let P : B(X)×A(X)→ R+ ∪ {∞} be a “relative perimeter”
functional for which we customarily abbreviate P (E) := P (E,X), satisfying

(semicontinuity) P (D,U) ≤ lim infk P (Dk, U) whenever Dk
L1

loc(µ)−→ D,
(Beppo Levi) If Uk ↗ X, then P (D,Uk)↗ P (D) as k →∞,

(monotonicity) P (B,U) ≤ P (B, V ) as U ⊂ V ,

(superadditivity) P (B,U) ≥
∑M
k=1 P (B,Uk) whenever U =

⊔M
i=1 Uk,

(G-invariance) P (gB, gU) = P (B,U) for every g ∈ G,
(compactness) if Ek ⊂ X satisfy sup

k
P (Ek, U) < +∞ for some precompact set U , then

there exists an E ⊂ X such that, up to a subsequence, Ek ∩ U
L1(µ)−→ E.

3. Compactness and semicontinuity for sequences of sets

3.1. Semicontinuity. We start with the following semicontinuity statement which
will be further applied both to perimeters and measures.

Theorem 3.1 (semicontinuity). Assume that (X, d) has Heine-Borel property. Let
Ek ⊂ X be a sequence of Borel sets, and Ei ⊂ X, i ∈ I, I at most countable,
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gik ∈ G such that:

lim
k

(gi
′

k )−1gik = +∞ for all i 6= i′(1)

(gik)−1Ek
L1

loc(µ)−→ Ei as k → +∞.(2)

Let also F : B(X)×A(X)→ R be a functional satisfying

(semicontinuity) F (B,U) ≤ lim infk F (Bk, U) whenever Bk
L1

loc(µ)−→ B,
(Beppo Levi) If Uk ↗ X, then F (D,Uk)↗ F (D,X) as k →∞,

(monotonicity) F (D,U) ≤ F (D,V ) as U ⊂ V ,

(superadditivity) F (B,U) ≥
∑M
k=1 F (B,Uk) whenever U =

⊔M
i=1 Uk,

(G-invariance) F (gB, gU) = F (B,U) for every g ∈ G.

If G acts on X properly discontinuously, then∑
i

F (Ei, X) ≤ lim inf
k

F (Ek, X).

Proof. Up to a subsequence (not relabeled) we may suppose that

lim inf
k

F (Ek, X) = lim
k
F (Ek, X).

Fix arbitrary M ∈ N, x0 ∈ X and R > 0 and denote for brevity U := BR(x0). Since
U is precompact by Heine-Borel property, and the action of G on X is properly
discontinuous, then gU ∩ U 6= ∅ only for a finite number of g ∈ G. Thus from (1)
we get that the sets g1kU, . . . , g

M
k U are pairwise disjoint for all sufficiently large k.

Hence we get

(3)

lim
k
F (Ek, X) ≥ lim sup

k
F

(
Ek,

M⊔
i=1

gikU

)
by monotonicity of F

= lim sup
k

M∑
i=1

F (Ek, g
i
kU) by superadditivity of F

≥
M∑
i=1

lim inf
k

F (Ek, g
i
kU).

But F (Ek, g
i
kU)) = F ((gik)−1Ek, U) and from (2) using semicontinuity of F we

obtain

(4) lim inf
k

F (Ek, g
i
kU) = lim inf

k
F ((gik)−1Ek, U) ≥ F (Ei, U).

The inequalities (3) and(4) together give

lim
k
F (Ek, X) ≥

M∑
i=1

F (Ei, U) =

M∑
i=1

F (Ei, BR(x0)).

Letting now R→ +∞, we obtain

lim
k
F (Ek, X) ≥

M∑
i=1

F (Ei, X)

and finally letting M → +∞ we get

lim
k
F (Ek, X) ≥

∑
i

F (Ei, X).



ISOPERIMETRIC CLUSTERS IN HOMOGENEOUS SPACES 5

as desired. �

Corollary 3.2. Let (X, d, µ), Ek, Ei, I, gik be as in Theorem 3.1. If G acts on X
properly discontinuously, then∑

i

P (Ei) ≤ lim inf
k

P (Ek),∑
i

µ(Ei) ≤ lim inf
k

µ(Ek).

Proof. Apply Theorem 3.1 with F (B,U) := P (E,U), and then with F (B,U) :=
µ(E ∩ U). �

3.2. Compactness. The following theorem is our main technical tool to prove the
existence of generalized isoperimetric clusters.

Theorem 3.3 (concentration compactness). Assume that (X, d) has Heine-Borel
property. Let

Ek ∈ B(X), µ(Ek) = m, sup
k
P (Ek) = P < +∞.

Suppose that

(i) G act on X properly discontinuously,
(ii) there is a precompact B ∈ B(X) with µ(∂B) = 0, such that GB = X and

µ(gB ∩B) = 0 for all g ∈ G except g = 1.

Assume further that

(iii) there is an ε > 0 and a precompact open V ⊂ X with B ⊂ V such that the
local isoperimetric inequality

(5) P (E, V ) ≥ f(µ(E ∩ V ))

holds for all Borel E ⊂ X with µ(E ∩ V ) ≤ ε with some nondecreasing
function f : R+ → R+ such that f(0) = 0 and f ′(0) = +∞.

Then there are: a subsequence Ek, some Borel sets Ei ⊂ X, and gik ∈ G, i ∈ I, I
at most countable, such that

lim
k

(gi
′

k )−1gik = +∞ for all i 6= i′(6)

(gik)−1Ek
L1

loc(µ)−→ Ei, k → +∞(7) ∑
i

µ(Ei) = m.(8)

Remark 3.4. In many examples condition (iii) of the above Theorem 3.3 is verified
with f(t) := Ctα for some α ∈ (0, 1) and C > 0, namely, (5) reads as the local
isoperimetric inequality

(9) P (E, V ) ≥ Cµ(E ∩ V )α.

Proof. For each k let hjk be an enumeration of G such that the sequence j 7→
µ(Ek∩hjkV ) is not-increasing. Let U stand for the interior of B. One observes that
U 6= ∅, because µ(B) > 0 (otherwise from GB = X one would have µ(X) = 0),
and µ(∂B) = 0 hence µ(U) = µ(B \ ∂B) > 0.



6 NOVAGA, PAOLINI, STEPANOV, AND TORTORELLI

Note that Qjk := hjkU are open sets since G acts by homeomorphisms. If there are

infinitely many sets hjkV in which Ek has positive measure we avoid to enumerate
those with zero measure.

By the compactness property of the perimeter functional, for each j we may
suppose that up to a subsequence ((hjk)−1Ek) ∩ U converges in L1(µ) as k → +∞
and hence there exists F j ⊂ U such that

(10) (hjk)−1(Ek ∩Qjk) = ((hjk)−1Ek) ∩ U L1(µ)−→ F j , as k →∞.

By a diagonal argument we may choose a single subsequence of k (not relabeled)
such that (10) holds for all j ∈ N. The rest of the proof is divided in several steps.

Step 1. We claim that
∑
j µ(F j) = m.

To show the claim, we first note that since the action of G on X is properly
discontinuous, and V is precompact, we have

ν := #{g ∈ G : gV ∩ V 6= ∅} <∞.

Applying Lemma A.5 one has a partition of G in at most ν disjoint subsets Gλ
such that the sets hV are mutually disjoint for all h ∈ Gλ.

Since j 7→ µ(Ek ∩ hjk(V )) is non-increasing, we have

(11)

µ(Ek ∩ hnkV ) ≤ 1

n

n∑
j=1

µ(Ek ∩ hjkV ) ≤ 1

n

+∞∑
j=1

µ(Ek ∩ hjkV )

≤ 1

n

ν∑
λ=1

∑
g∈Gλ

µ(Ek ∩ gV ) ≤ ν

n
µ(Ek) =

νm

n
.

In particular, by (11) for every δ > 0 one can choose an N = N(ε, δ) ∈ N such that
for all j ≥ N we have

µ(Ek ∩ hjkV ) ≤ ε, hence also(12)

µ(Ek ∩Qjk) ≤ ε,(13)

and, moreover,

(14)
µ(Ek ∩Qjk)

f(µ(Ek ∩Qjk))
≤ δ.

Thus for such j ∈ N, using (13), (iii) and the invariance of perimeter, we get

(15)
f(µ(Ek ∩Qjk)) ≤ f(µ((hjk)−1Ek ∩ V ))

≤ P ((hjk)−1Ek, V ) = P (Ek, h
j
kV ).
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Therefore, for n ≥ N we have

+∞∑
j=n

µ(Ek ∩Qjk) ≤
+∞∑
j=n

µ(Ek ∩Qjk)

f(µ(Ek ∩Qjk))
f(µ(Ek ∩Qjk))

≤
+∞∑
j=n

µ(Ek ∩Qjk)

f(µ(Ek ∩Qjk))
P (Ek, h

j
kV ) [by (15)]

≤ δ
+∞∑
j=n

P (Ek, h
j
kV ) [by (14)]

≤ δ
ν∑
λ=1

∑
g∈Gλ

P (Ek, gV )

≤ δ
ν∑
λ=1

P

Ek, ⊔
g∈Gλ

gV

 [by superadditivity of perimeter]

≤ δ
ν∑
λ=1

P (Ek) [by monotonicity of perimeter]

= νδP (Ek) ≤ νδP.

Since δ > 0 is arbitrary, we get

lim
n→+∞

sup
k

+∞∑
j=n

µ(Ek ∩Qjk) = 0.

But we also have

µ(F j) = lim
k
µ(Ek ∩Qjk).

Apply Lemma B.1 with mj := µ(F j), mk,j := µ(Ek ∩Qjk), recalling that∑
i

mk,j = µ
(
Ek ∩

⋃
j

hjkU
)

[since µ(hU ∩ U) = 0 for all h ∈ G]

= µ
(
Ek ∩

⋃
j

hjkB
)

[since µ(h(B \ U)) = µ(B \ U) = 0 for all h ∈ G]

= µ(Ek) = m [since GB = X],

to obtain
∑
j µ(F j) = m as claimed.

Step 2: construction of gik and Ei. Define on N an equivalence relation by

letting j ∼ j′ whenever the set {(hj
′

k )−1hjk : k ∈ N} ⊂ G is finite and let I := N/∼
be the quotient set. For each i ∈ I let i := min i. Passing to a subsequence in k we

might and shall suppose that for all i ∈ I and all j ∈ i the sequence {(hik)−1hjk}k
(which by assumption assumes a finite number of values) is actually constant, which
will be denoted hj ∈ G.

Clearly for j ∈ i all hj are distinct because so are hjk ∈ G. Define gik := h
i
k and

suppose that, up to a subsequence, the sets (gik)−1Ek converge in L1
loc(µ) to some

Borel set Ei as k → +∞. Hence (6) and (7) hold by construction.
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Step 3. It remains to prove (8). To this aim observe that from (10) with j ∈ i
we get

µ(F j)← µ(Ek ∩Qjk) = µ
(

(gik)−1(Ek ∩Qjk)
)

= µ
(

(gik)−1Ek ∩ (gik)−1hjkU
)

= µ
(
(gik)−1Ek ∩ hjU

)
→ µ

(
Ei ∩ hjU

)
as k →∞, so that µ(F j) = µ(Ei ∩ hjU) whenever j ∈ i. Therefore

lim
k
µ(Ek) = m =

∑
j

µ(F j) [by Step 1]

=
∑
i

∑
j∈i

µ(Ei ∩ hjU) =
∑
i

µ
(
Ei ∩

⋃
j∈i

hjU
)
≤
∑
i

µ
(
Ei
)
,

the reverse inequality coming from Theorem 3.1. �

4. Compactness and semicontinuity for sequences of clusters

The following definition of an isoperimetric cluster is an obvious extension of
the classical one provided in the Introduction from a Euclidean to a general metric
measure space.

Definition 4.1 (isoperimetric clusters). We say that E = (Ej)
N
j=1 with N ∈ N ∪

{∞}, is an N -cluster in X if each Ej ⊂ X is a Borel set and µ(Ei ∩ Ej) = 0
for all i 6= j. If N is finite we have E = (E1, . . . , EN ), if N = ∞ we have E =
(E1, . . . , En, . . . ). We set

m(E) := (µ(Ej))
N
j=1

P (E) :=
1

2

∑
j≥1

P (Ej) +
1

2
P

⋃
j≥1

Ej


An N -cluster E will be called minimal, or isoperimetric, if

P (E) = inf {P (F) : m(F) = m(E)} .

Theorem 4.2 (concentration compactness for clusters). Assume that (X, d) has
Heine-Borel property. Let Ek be a sequence of N -clusters in X, N ∈ N∪{∞}, with

m(Ek) = m ∈ RN and P (Ek) ≤ P < +∞.
Then under conditions (i), (ii) and (iii) of Theorem 3.3 there exist N -clusters Ei

with i ∈ I, I at most countable, such that∑
i

m(Ei) = m∑
i

P (Ei) ≤ lim inf
k

P (Ek)

and there exist gik ∈ G such that up to a subsequence

(gik)−1(Ek)j → (Ei)j as k → +∞ in L1
loc(µ)

for all j = 1, . . . , N and i ∈ I.
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Proof. Up to a subsequence suppose that lim infk P (Ek) = limk P (Ek). Let

Fk :=

N⊔
j=1

(Ek)j .

Clearly P (Fk) ≤ 2P (Ek) ≤ 2P , and hence we can apply Theorem 3.3 to find F i ⊂
X, gik ∈ G, limk(gi

′

k )−1gik =∞ for i 6= i′ such that, up to a subsequence, (gik)−1Fk →

F i in L1
loc(µ) as k → ∞ with

∑
i

µ(F i) = µ(Fk) =

N∑
j=1

mj . Since P ((Ek)j) ≤

P (Ek) ≤ P , by the compactness assumption on the perimeter functional, up to
subsequences we can define the sets

Eij := L1
loc(µ)- lim

k
(gik)−1(Ek)j .

By Lemma B.2 then

F i =

N⊔
j=1

Eij .

By Theorem 3.1 we have
∑
i

µ(Eij) ≤ µ((Ek)j). Therefore, since

∑
j

∑
i

µ(Eij) =
∑
i

∑
j

µ(Eij) =
∑
i

µ(F i) = µ(Fk) =
∑
j

µ((Ek)j),

one gets
∑
i

µ(Eij) = µ((Ek)j). Hence Ei = (Ei1, . . . , E
i
N ) is an M -cluster, M ≤ N ,

with ∑
i

m(Ei) = m,

P (Ei) =
1

2

N∑
j=1

P (Eij) +
1

2
P (Ei).

Again by Theorem 3.1 we have∑
i

P (F i) ≤ lim inf
k

P (Fk),∑
i

P (Eij) ≤ lim inf
k

∑
j

P ((Ek)j), j = 1, . . . , N

Summing up these relationships we get∑
i

P (Ei) ≤ lim
k
P (Ek)

as claimed. �

5. Existence of generalized isoperimeric clusters

We introduce now the notion of a generalized isoperimeric cluster.
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Definition 5.1 (generalized isoperimetric clusters). Let X∞ := Z × X and let
φi : X → X∞ be the inclusion φi(x) = (i, x). We call E = (Ej)

N
j=1, Ej ⊂ X∞ a

generalized N -cluster in X with N ∈ N∪{∞}, if for each i ∈ Z the N -uple Ei with
components Eij := φ−1i (Ej) ⊂ X, j = 1, . . . , N is a N -cluster in X. We will also

write φ−1i (E) instead of Ei. We set

m∞(E) :=
∑
i

m(Ei) =

∑
i

µ(Ei1, . . . ,
∑
j

µ(EiN )


P∞(E) :=

∑
i

P (Ei) =
1

2

∑
i

∑
j

P (Eij).

E will be called minimal, or isoperimetric, if

P∞(E) = min {P∞(F) : m(F) = m(E)} .

It is convenient to think of a generalized cluster as a sequence of N -clusters Ei

drawn each on a page Xi := {i}×X of the “album” X∞ and φ−1i as an extraction
of the i-th page from this album.

Proposition 5.2. Every page of a generalized minimal cluster is a minimal cluster,
namely, for every i ∈ Z one has that Ei = φ−1i (E) is a minimal cluster in X.

Proof. If not, there is an N -cluster G in X such that

P (G) < P (Ei) and m(G) = m(Ei).

Then for the generalized cluster F defined by

Fh =

{
Eh, if h 6= i,

G, if h = i,

one has P∞(F) < P∞(E) contradicting the minimality of E. �

Notice that a generalized N -cluster E in X is nothing else than an N -cluster in
X∞ by considering X∞ = Z×X as a metric space with the euclidean distance:

d∞((i, x), (h, y)) =
√
d(x, y)2 + (i− h)2.

The measure µ∞ and perimeter P∞ are naturally defined by:

µ∞(E) :=
∑
i

µ(φ−1i (E)),

P∞(E,U) :=
∑
i

P (φ−1i (E), φ−1i (U)).

This allows us to prove the existence of minimal generalized clusters.

Theorem 5.3 (existence of generalized minimal clusters). Assume that (X, d) has
Heine-Borel property. If conditions (i), (ii) and (iii) of Theorem 3.3 hold, condi-
tion (iii) being satisfied with f : R+ → R+ subadditive (this is true in particular
when f(t) := Ctα, with C > 0, α ∈ (0, 1)), then for an arbitrary m ∈ RN+ there
exists a minimal generalized N -cluster E with m∞(E) = m.
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Proof. Define G∞ = Z×G the product group acting over X∞ by

(n, g)(m,x) = (n+m, g(x)) g ∈ G, x ∈ X,n,m ∈ Z.
Notice that d∞ has the Heine-Borel property, P∞ and µ∞ satisfy monotonic-

ity, superadditivity, G∞-invariance and compactness properties of section 2. The
semicontinuity property is simply an application of Fatou Lemma and Beppo Levi
property is an application of Beppo Levi theorem.

We claim that (i) of Theorem 3.3 holds. In fact if K∞ is a compact set in X∞

then the set I := {i ∈ Z : (i, x) ∈ K∞ for some x ∈ X} is finite. Let K := {x ∈
X : (i, x) ∈ K∞ for some i ∈ I}. Since I is finite K is compact in X. Then the set

{(n, g) ∈ G∞ : (n, g)K∞ ∩K∞ 6= ∅} ⊂ (I − I)× {g ∈ G : gK ∩K 6= ∅}
is finite because if (i, x) ∈ (n, g)K∞ ∩ K∞ then x ∈ K, g(x) ∈ K, i ∈ I and
n+ i ∈ I.

Also the condition (ii) of Theorem 3.3 is satisfied for the metric measure space
X∞ with this group action. In fact the set U∞ := {0} ×U satisfies G∞U∞ = X∞

and µ∞(gU∞ ∩ U∞) = 0 for all g ∈ G∞ except when g is the neutral element in
G∞.

For condition (iii) of Theorem 3.3 just notice that if µ∞(E) < ε implies that
µ(Ei) < ε (where Ei = φ−1i (E)) hence P (Ei, V ) ≥ f(µ(Ei ∩ V )) and summing up,
using the subadditivity of f ,

P∞(E, {0} × V ) = P (E0, V ) +
∑
i 6=0

P (Ei, ∅) ≥ P (E0, V )

= P (E0, V ) +
∑
i 6=0

f(µ(∅)) ≥ f(µ(E0 ∩ V ))

= f(µ∞(E ∩ ({0} × V ))).

Let Ek be a sequence of generalized N -clusters in X satisfying m∞(Ek) = m ∈
RN . By Theorem 4.2 applied to Ek, X∞, µ∞, P∞ in place of X, µ, P respectively,
we have the existence of N -clusters Eh in X∞ for h ∈ H with H at most countable,
such that

(16)
∑
h

m∞(Eh) = m,
∑
h

P∞(Eh) ≤ lim inf
k

P∞(Ek).

Given an injective map f : H × Z → Z we can define the generalized N -cluster
E = (E1, . . . , EN ) in X such that

φ−1f(h,i)(Ej) = φ−1i ((Eh)j), for every j = 1, . . . N , i ∈ Z, h ∈ H.

Hence (16) reads now

m∞(E) = m, P∞(E) ≤ lim inf
k

P∞(Ek)

which means that E is a generalized minimal N -cluster in X. �

Remark 5.4. Note that a minimal generalized cluster can be thought in many
particular cases as a kind of natural relaxation of the notion of a minimal cluster.
In fact, if it is possible, say, to cut away from each page everything outside of a
sufficiently large ball, without changing too much the perimeter and the volumes,
so that what remains on each a page is a bouunded cluster, then put by the group
action all the bounded clusters from each page to just one page, and finally adjust
the volumes, say, by adding small isoperimetric sets or at least sets with sufficiently
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small perimeters, we get that for every ε > 0 and for each generalized c N -cluster
E there is an N -cluster E′ with the same volumes, i.e. m∞(E′) = m(E) and

P (E′) ≤ P∞(E) + ε.

This can be done for instance in a Euclidean space (the cutting of a large bounded
set from each page without changing too much the volumes and the perimeter can
be done in view of the coarea formula; in more general spaces even a coarea type
inequality would suffice).

6. Basic examples

For merely illustrative purposes we provide here several examples of existence
of finite or infinite generalized isoperimetric clusters in a finite-dimensional vector
space (for any anisotropic perimeter related to some norm), in the hyperbolic plane
and in the Heisenberg groups. Note that even such simple examples in fact provide
immediately the existence resluts for the whole range of equivalent perimeters in
the mentioned spaces, without requiring the study of regularity properties of such
clsuters and/or just isoperimetric sets for each particular perimeter. It is also worth
mentioning that in the same way one can formulate similar existence results in many
more interestng geometries (in particular, in higher dimensional hyperbolic spaces,
or more general Carnot groups).

6.1. Finite-dimensional space. Let X be an n-dimensional finite dimensional
space equipped with any norm ‖·‖, µ be the Lebesgue measure onX, G := Zn acting
by translations, and P be the relative perimeter functional in X corresponding to
the chosen norm, i.e.

P (E,U) := sup

{∫
U

1Edivv dµ : ‖v‖∞ ≤ 1

}
,

the sup being taken over smooth vector fields v with compact support on H, with
‖v‖∞ := supp∈X ‖v(p)‖. The following corollary is a direct consequence of Theo-
rem 5.3.

Corollary 6.1. For every m ∈ RN+ there exists a minimal generalized N -cluster E
in X with m∞(E) = m.

It is worth mentioning that there is nothing obligatory in the choice of the group
G = Zn; instead, some other crystallographic group could have been chosen.

6.2. Hyperbolic space. Taking H to be the hyperbolic plane, µ be its canonical
volume measure, G be any countable Fuchsian group (i.e. a discrete subgroup of
isometries of H) acting properly discontinuously and cocompactly on H (e.g. one
may take G to be the classical Fucsian group providing the tiling of H into isometric
Schwartz triangles) and P be the classical Riemannian relative perimeter functional
in H, i.e.

P (E,U) := sup

{∫
U

1EdivHv dµ : ‖v‖∞ ≤ 1

}
,

the sup being taken over smooth vector fields v with compact support on H, with
‖v‖∞ := supp∈H |vp|p, | · |p standing for the Riemannian norm of a vector in TpH.

Corollary 6.2. For every m ∈ RN+ there exists a minimal generalized N -cluster E
in H with m∞(E) = m.
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Proof. Note that the perimeter functional P clearly satisfies the semicontinuity,
monotonicity, superadditivity, compactness, G-invariance and Beppo Levi proper-
ties, and conditions (i) and (ii) of Theorem 3.3 are satisfied as well with B given
by Lemma A.1. Condition (iii) of Theorem 3.3 is satisfied as in Remark 3.4 with
V ⊃ B being a sufficiently large ball containing B, and α := 1/2, ε < µ(V )/2 due
to the relative isoperimetric inequality over a compact Riemannian manifold V̄ [10].
The claim is now a direct application of Theorem 5.3. �

Remark 6.3. If, chosen a Fuchsian group G, there is an equivalent Finslerian struc-
ture on H (with the norm ‖ · ‖p in each TpH equivalent to the Riemannian one
| · |p), invariant under the action of G, then the same argument gives the existence
for every m ∈ RN+ of a minimal generalized N -cluster E in H with m∞(E) = m,
for the perimeter PG relative to this Finslerian structure instead of P , i.e. for

PG(E,U) := sup

{∫
U

1EdivHv dµ : ‖v‖G,∞ ≤ 1

}
,

the sup being taken over smooth vector fields v with compact support on H, with
‖v‖G,∞ := supp∈H ‖vp‖p. To see this it is enough to note that PG and P are
equivalent.

6.3. Heisenberg groups. Taking Hn to be the Heisenberg group of topological
dimension 2n + 1, µ be its Haar measure, G be the respective discrete Heisenberg
group (i.e. once Hn is canonically associated with a group of matrices with real
entries, G is associated with the subgroup of such matrices with integer entries),
{Xi}2ni=1 be left-invariant vector fields satisfying the Hörmander condition, and P
be the sub-Riemannian relative perimeter functional corresponding to the choice of
Xi, defined as the total variation measure of the vector (R2n-valued) measure

DX11 := (DX1
1E , . . . , DX2n

1E),

where the distribution DXif is defined by its action 〈ϕ,DXif〉 on every test function
ϕ∈C

∞
0 (R2n) by the formula

〈ϕ,DXif〉 := −
∫
R2n

fXi · ∇ϕdx−
∫
R2n

fϕdivXi dx.

Note that there are several equivalent definitions of this perimeter given by the-
orem 3.1 of [1]. We also observe that one of the equivalent definitions is given
in [section 5.3][13] and used in particular in [6].

Corollary 6.4. For every m ∈ RN+ there exists a minimal generalized N -cluster E
in Hn with m∞(E) = m.

Proof. We equip Hn with either the Carnot-Caratheodory distance or any equiv-
alent left-invariant distance d, so that now G acts by isometries. The claim fol-
lows from Theorem 5.3 since he perimeter functional P satisfies the semicontinuity,
monotonicity, superadditivity, Beppo Levi and G-invariance properties, as well as
conditions (i) and (ii) of Theorem 3.3 (with B given by Lemma A.1), while

• condition (iii) of Theorem 3.3 is satisfied as in Remark 3.4 with V ⊃ B
sufficiently large ball containing U , and α := (Q − 1)/Q, Q := 2n + 2
standing for the homogeneous dimension of Hn, ε < µ(V )/2 due to the
relative isoperimetric inequality in a ball of a Carnot-Caratheodory space
(theorem 1.6 from [6]),
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• compactness property is given by theorem 3.7 from [13].

�

Remark 6.5. Similarly to Remark 6.3 if one takes in Hn any perimeter P defined as
P (E,U) := |D1E |(U) with the metric total variation u 7→ |Du| defined with respect
to any chosen left G-invariant distance in Hn, then word-to-word repetition of the
proof of the above Corollary 6.4 gives the existence for every m ∈ RN+ of a minimal
generalized N -cluster E in H with m∞(E) = m for such a perimeter.

Appendix A. Useful facts about group actions

We collect here the following lemma, useful in applications of our results to verify
condition (ii) of Theorem 3.3, and some easy remarks related to it.

Lemma A.1. Let (X, d, µ) be a complete locally compact metric space with non-
negative σ-finite Radon measure. Suppose G is a topological group acting on X by
homeomorphisms preserving µ-nullsets, and

(i) the action of G is proper discontinuous,
(ii) the set S of x ∈ X having nontrivial stabilizer subgroup

Gx := {g ∈ G : gx = x},
i.e. S := {x ∈ X : Gx 6= {1}}, is µ-negligible, that is, µ(S) = 0,

(iii) and X is compactly generated, i.e. there exists a compact K ⊂ X such that
GK = X.

Then there is a precompact Borel set B ⊂ X (a fundamental domain for the action
of G) such that GB = X, µ(∂B) = 0, and µ(gB ∩ B) = 0 for all g ∈ G, g 6= 1.
Moreover, if the action of G on X is free, then one can choose B so as to have
gB ∩B = ∅ for all g ∈ G, g 6= 1.

Remark A.2. Condition (iii) of Lemma A.1 for locally compact metric space X
is equivalent to cocompactness of the action of G, that is, to compactness of the
quotient space X/G. In fact, since the natural projection map π : X → X/G is
continuous, then condition (iii) implies that X/G = π(K) is compact. Vice versa,
note that π is also an open map (as a projection map under group action, namely,
because for every open U ⊂ X one has π−1(π(U))) = ∪g∈GgU is open since so is
each gU). Therefore, taking a cover {Uλ} of X by precompact open sets, we have
that {π(Uλ)} is an open cover of X/G, and if X/G is compact, extracting a finite
subcover {π(Uλj )}mj=1, m ∈ N of {π(Uλ)}, we get that

K :=

m⋃
j=1

Ūλj

is a compact set satisfying GK = X.

Remark A.3. Another immediate observation worth mentioning is that for the
condition (iii) of Lemma A.1 to hold, it is necessary that G be infinite, unless, of
course, X is compact.

Proof. We divide the proof in two steps.
Step 1. For all x ∈ X \S we show that there exists a ρ > 0 (which can be taken

arbitrarily small) such that B̄ρ(x) is compact, Bρ(x) ∩ S = ∅, µ(∂Bρ(x)) = 0 and
gBρ(x) ∩Bρ(x) = ∅ for all g ∈ G, g 6= 1. In particular this proves that S is closed.
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By proper dicontinuity of the action of G for a precompact neighborhood W of x
the set {g ∈ G : gW̄ ∩W̄ 6= ∅, g 6= 1} is finite; let g1, . . . , gn be its elements. For each
k = 1, . . . , n since x 6∈ S we have x 6= gkx and hence we can find Uk neighbourhood
of x and Vk neighbourhood of gkx which are disjoint, i.e. Uk ∩ vk = ∅. Since
W,U1, . . . , Un and g−11 V1, . . . , g

−1
n Vn are all neighbourhoods of x (because gk are

homeomorphisms), their interesection U is also a neighbourhood of x. Since U ⊂W
we have gU ∩U = ∅ unless g = gk for some k = 1, . . . , n. But in the latter case, i.e.
when g = gk, since U ⊂ Uk and gU = gkU ⊂ Vk we find that gU ∩U ⊂ Uk∩Vk = ∅.
Clearly U ∩ S = ∅ since otherwise there would exist an x ∈ U ∩ S and g 6= 1 such
that gx = x ∈ U .

Now since U is a neighbourhood of x, there exists an ε > 0 such that for all
ρ ≤ ε the ball Bρ(x) is precompact and B̄ρ(x) ⊂ U . To complete the proof of the
claim of this step notice that all but a countable number of ρ < ε have the property
µ(∂Bρ(x)) = 0, because otherwise µ(Bε(x)) would be infinite, contrary to the fact
that is should be finite since which should be finite since Bε(x) is precompact and
µ is a Radon measure.

Step 2. Let K̃ ⊃ K be a cover of K by a finite number of open balls so small
to be precompact, so that in particular, K̃ is open and precompact. Let Sk be a
sequence of open sets satisfying

S ∩K ⊂ Sk ⊂ S̄k ⊂ K̃
and such that µ(S̄k) → 0 as k → ∞ (one can take for instance Sk := {x ∈
X : dist(x, S ∩ K) < tk} for a sequence of numbers tk ↘ 0). By compactness
we can take a finite cover U1, . . . , Un1 of K \ S1 with open balls Ui satisfying the

properties stated in Step 1 and such that Ūi ⊂ K̃. Inductively we can take a finite
cover Unk+1, . . . , Unk+1

of the compact set (K \ Sk+1) \
⋃nk
i=1 Ui by open balls Ui

satisfying the properties stated in Step 1 which are all contained in Sk so that we
have

K \ S ⊂
+∞⋃
i=1

Ui,

+∞⋃
i=nk

Ui ⊂ Sk.

Define inductively the disjoint sets

V1 := U1,

Vi+1 := Ui+1 \
i⋃

j=1

GUj .

Note that since Uj are all precompact and G acts properly discontinuously, then
each GUj in the definition of Vi+1 can be substituted by a finite union of gUj over
a finite subset of g ∈ G (depending of course on i and j): in fact,

gUj ∩ Ui+1 ⊂ g(Uj ∪ Ui+1) ∩ (Uj ∪ Ui+1) 6= ∅
for an at most finite set of g ∈ G. Therefore, recalling also that ∂(gUj) = g∂Uj
(since the action of g is a homeomorphism), and hence µ(∂(gUj)) = µ(g∂Uj) = 0
(since the action preserves µ-nullsets), we get µ(∂Vi) = 0 for all i.

Let

B̃ :=

+∞⋃
i=1

Vi, B := (S ∩ K̃) ∪ B̃,

so that B ⊂ K̃ is a precompact Borel set.
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We now verify the claimed properties of B. Let us prove first that GB ⊃ K.
For x ∈ K we have either x ∈ S or x ∈ Ui for some i ∈ N. If x ∈ S we have x ∈ B
because x ∈ S ∩ K ⊂ S ∩ K̃. If x ∈ Ui then either x ∈ Vi and hence x ∈ B or
there exists a g ∈ G and j < i such that x ∈ gUj . If j is the minimum possibile
index with this property, then Vj = Uj and we obtain that g−1x ∈ Vj ⊂ B. Hence
GB ⊃ K and since GK = X, we conclude that GB = X.

To prove µ(∂B) = 0, note that

∂B̃ ⊂
nk⋃
i=1

∂Vi ∪ ∂

( ∞⋃
i=nk+1

Vi

)
⊂

nk⋃
i=1

∂Vi ∪ S̄k,

the latter inclusion being due to the fact that Vi ⊂ Sk for i ≥ nk. Thus from
µ(∂Vi) = 0 we get

µ(∂B̃) ≤ µ(S̄k)→ 0

as k →∞, which gives µ(B̃) = 0. Recalling that µ(S) = 0 we get the claim.
It remains to prove that µ(gB ∩ B) = 0 for all g ∈ G, g 6= 1. To this aim first

notice that gB̃ ∩ B̃ = ∅ because Vi ∩ gVj = ∅ for all i, j and g 6= 1. Now

gB ∩B ⊂ gS ∪ S ∪ (gB̃ ∩ B̃) = gS ∪ S
hence µ(gB ∩B) ≤ µ(gS) + µ(S) = 0 for all g 6= 1. Finally note that when S = ∅,
then B ⊂ B̃, hence gB ∩B ⊂ gB̃ ∩ B̃ = ∅ concluding the proof. �

Remark A.4. It is worth remarking that in many applications already the Dirichlet-
Voronoi fundamental domain

Dx := {y ∈ X : d(y, x) < d(gy, x) for all g ∈ G, g 6= 1}
for some x ∈ X satisfies the statement of Lemma A.1. Note in fact that

gDx ∩Dx = ∅ for all g ∈ G, g 6= 1,

because if y ∈ gDx, that is, gy ∈ Dx, then y := g−1gy 6∈ Dx. Thus one can take
B := Dx when µ(∂B) = 0. For instance, when X = Rn, and G = Zn acting by
translations (say, by integer valued vectors), then one can take for B the Dirichlet-
Voronoi fundamental domain for this action which is the cube containing part of its
boundary, once µ is absolutely continuous with respect to the Lebesgue measure.

The following easy technical lemma is also used in the paper.

Lemma A.5. Let G be a group acting on a set X and V ⊂ X. If

ν := #{g ∈ G : gV ∩ V 6= ∅} <∞,
then there is a partition of G into ν pairwise disjoint subsets G1, . . . , Gν , such that
hV ∩ gV = ∅ for every h, g ∈ Gj, h 6= j, j = 1, . . . , ν.

Proof. We consider the family F of all subsets F ⊂ G with the property that
hV ∩ gV = ∅ for all h, g ∈ F , h 6= g. Thanks to Zorn’s lemma we can find G1 in
F which is maximal with respect to inclusion. Then define inductively Gn+1 by
taking any maximal subset of G \

⋃n
j=1Gj in the family F . We claim that Gn = ∅

for all n > ν because if g ∈ Gn then for all j < n by the maximality of Gj there
exists hj ∈ Gj such that hjV ∩gV 6= ∅. This means g−1hjV ∩V 6= ∅ for j = 1, . . . , ν
and, of course, also V ∩ V 6= ∅ (if V is empty the lemma is trivial). So we have
found ν + 1 distinct elements of G in the set {g ∈ G : gV ∩ V 6= ∅} against the
hypothesis. �
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Appendix B. Auxiliary lemmata

We collect here, mainly for the sake of completeness and readers’ convenience,
some auxiliary lemmata of more or less folkloric nature.

Lemma B.1 (equisummability). Suppose that mk,i ≥ 0, and:

lim
k→+∞

∑
i

mk,i = m,

lim
k
mk,i = mi

lim
n

(
sup
k

+∞∑
i=n

mk,i

)
= 0.

Then ∑
i

mi = m.

Proof. For every ε > 0 there is an nε ∈ N such that for all k ∈ N and n ≥ nε one
has

+∞∑
i=n

mk,i < ε, and
∑
i<n

mk,i ≤
∑
i

mk,i ≤
∑
i<n

mk,i + ε.

Hence either m = +∞ and mi = +∞ for some i < nε, or m ∈ R. In the first case
the thesis follows. In the second letting k → +∞ we obtain for n ≥ nε the estimate

m− ε ≤
n∑
i=1

mi ≤ m.

Letting now n→ +∞, one gets

m− ε ≤
∑
i

mi ≤ m

for all ε > 0 implying the thesis. �

Lemma B.2. Suppose that for all k ∈ N, j = 1, . . . , N , where N ∈ N ∪ {∞} the

sets Ak ⊂ X, Ajk ⊂ X be µ-measurable and

µ

Ak4 N⋃
j=1

Ajk

 = 0, µ
(
Ajk ∩A

i
k

)
= 0 whenever i 6= j.

If Ak → A and Ajk → Aj in L1
loc(µ) as k →∞, then

µ

A4 N⋃
j=1

Aj

 = 0, µ
(
Aj ∩Ai

)
= 0 whenever i 6= j.

Proof. It suffices to write for every compact K ⊂ X the relationships

µ

Ak4 N⋃
j=1

Ajk

 ∩K
 =

∫
K

∣∣∣∣∣∣1Ak(x)−

 N∑
j=1

1Ajk
(x)

∣∣∣∣∣∣ dµ(x),

µ
((
Ajk ∩A

i
k

)
∩K

)
=

∫
K

1Ajk
(x)1Aik(x) dµ(x),

and pass to the limit as k →∞. �
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[17] Manuel Ritoré. Constant geodesic curvature curves and isoperimetric domains in rotationally

symmetric surfaces. Comm. Anal. Geom., 9(5):1093–1138, 2001.
[18] Vincenzo Scattaglia. A formula for the minimal perimeter of clusters with density. Rend.

Semin. Mat. Univ. Padova.

(Matteo Novaga, Emanuele Paolini, Vincenzo Tortorelli) Dipartimento di Matematica, Uni-
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