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Γ-COMPACTNESS OF SOME CLASSES OF INTEGRAL FUNCTIONALS

DEPENDING ON VECTOR FIELDS

FARES ESSEBEI AND SIMONE VERZELLESI

Abstract. In this paper we achieve some Γ-compactness results for suitable classes of integral
functionals depending on a given family of Lipschitz vector fields, with respect to both the strong
L

p−topology and the strong W
1,p

X −topology.

1. Introduction

Starting form the seminal works by E. De Giorgi and T. Franzoni ([DG, DGF]), the study of
Γ-convergence has pervaded the evolution of modern mathematical analysis, and has developed
in several different directions, exhibiting important applications to many branches of calculus
of variations, such as homogenization, minimal surfaces and partial differential equations. For
an exhaustive introduction to this topic, we refer to the monographs [DM1, Bra, BD].
Since the late 1970s, G. Buttazzo and G. Dal Maso has investigated Γ-convergence in the
framework of Lebesgue spaces, Sobolev spaces and BV spaces (cf. for instance [BDM1, BDM3,
DM2]). More recently, in [FSSC], the authors started the investigation of variational functionals
depending on suitable families of Lipschitz vector fields. By a family of Lipschitz vector fields
we mean an m−tuple X = (X1, . . . , Xm), with m ≤ n, where each Xj is a first-order differential
operator with Lipschitz coefficients cj,i defined on a bounded open set Ω ⊆ R

n, i.e.

Xj(x) =
n

∑

i=1

cj,i(x)∂i j = 1, . . . , m.

Since that and other important works (cf. for instance [GN]), the possibility to extend classical
results to this new framework has been extensively studied in many papers. For instance, many
homogenization problems have been solved in the special setting of the Heisenberg group (cf.
[DDMM]) and in more general Carnot Groups (cf. [BMT, MV, FT]). In the last years, in
[MPSC, MPSC2] the authors started the investigation of the Γ−convergence of translations-
invariant local functionals F : Lp(Ω) × A → [0, ∞], where 1 < p < +∞ and A is the class
of all open subsets of Ω, defined starting from a family of Lipschitz vector fields satisfying the
so-called linear independence condition (LIC), which will be recalled in the following section.
Their strategy strongly relies on the possibility to represent, under suitable conditions, an ab-
stract translations-invariant local functional as an integral functional. This tool, which was
obtained as a generalization of the Euclidean result contained in [BDM3], allowed the authors
to achieve a Γ-compactness property for suitable classes of translations-invariant integral func-
tionals. Afterwards, inspired by [MPSC], in [EPV] the authors took into account the problem of
representing in integral form a local functional for which the translations-invariant assumption
is dropped, extending the integral representation results presented in [BDM1, BDM2] to the
non-Euclidean framework of Lipschitz vector fields. According to [BDM1, BDM2], the authors
of [EPV] took into account both the convex and the non-convex case. For dealing with the
latter situation, they exploited some continuity condition introduced in [BDM2] known as weak
condition (ω) and strong condition (ω).

The aim of the present paper is to generalize the Γ-compactness result presented in [MPSC]
to different classes of integral functionals which are not assumed to be translations-invariant,
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and which can be defined both on Lp(Ω) and on W 1,p
X (Ω). To be more precise, we are going to

show the three following results.

• Γ(Lp)-compactness, under standard boundedness and coercivity requirements, for a class
of non-negative convex integral functionals defined on Lp(Ω) × A.

• Γ(W 1,p
X )-compactness, under standard boundedness requirements, for a class of non-

negative convex integral functionals defined on W 1,p
X (Ω) × A.

• Γ(W 1,p
X )-compactness, under standard boundedness requirements, for a class of non-

negative and possibly non-convex integral functionals defined on W 1,p
X (Ω) × A which

satisfies the strong condition (ωX) uniformly on the class.

Here the strong condition (ωX) is a suitable continuity condition which is strongly inspired
by the classical notion introduced in [BDM2], and that will be properly defined in Section
4. As one could expect, the lack of translations-invariance implies in general a dependence of
the Lagrangian on the function variable. Moreover we point out that in the last two cases no
coercivity assumption is requested, and differently from the Lp situation, we can allow also the
case in which p = 1.

Our general strategy is classical and consists of two main steps:

Step 1 given a sequence (Fh)h in an appropriate class of integral functional I, find a subsequence
(Fhk

)k and a local functional F such that

F (·, A) = Γ − lim
k→∞

Fhk
(·, A)

for any A ∈ A, and moreover show that such an F satisfies some structural properties;

Step 2 choose a suitable subclass J ⊆ I and show that, whenever (Fh)h belongs to J , then F
belongs to J .

Working in the Lp framework the approach is quite standard. Indeed, for achieving Step 1
we exploits classical results of Γ-convergence in Lp, for which we refer to [DM1], and some
properties of the X-gradient, whose definition will be given soon after this introduction. On
the other hand, Step 2 is based on the new integral representation result for convex local func-
tionals introduced in [EPV, Theorem 2.3], and consists in verifying that the abstract Γ-limit F
satisfies the hypotheses relative to J .

When instead we consider functionals defined on W 1,p
X (Ω) and we perform the Γ-limit with

respect to the strong topology of W 1,p
X (Ω), the situation is more delicate. In particular, in

order to achieve Step 1, we need to understand how to modify some arguments of [DM1]. More
precisely, we introduce a suitable notion of uniform fundamental estimate which is inspired by
the classical notion of fundamental estimate but which turns out to be more useful for our
purposes. Indeed it allows us to drop the coercivity assumptions, and to mimicking the results
that allowed the conclusion of Step 1 in the Lp case, adapting them to this new framework.
Again, Step 2 relies on the possibility to exploit [EPV, Theorem 2.3] and the integral represen-
tation result for non-convex integral functionals proved in [EPV, Theorem 4.4] to represent the
Γ(W 1,p

X )−limit in integral form. To this aim we show that the strong condition (ωX), which
implies one of the requirement of the latter result, well behaves with respect to the passage to
the Γ-limit, provided we perform this operation with respect to the strong topology of W 1,p

X (Ω).
For the sake of completeness, we want to point out that some of the results achieved in the
non-Euclidean framework were, to our knowledge, unsolved even in the classical Sobolev setting
W 1,p(Ω).
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To conclude, in the final section we list some remarks and problems that are still opens. In
particular, we show some critical aspects and we prove some results with the hope that they
may be useful to anyone who will try to handle this analysis.

This paper is organized as follows. In Section 2 we collect some preliminaries about Lipschitz
vector fields and related functional spaces, local functionals and Γ-convergence. In Section 3 we
prove the Γ-compactness result in the Lp framework. In Section 4 we show two Γ−compactness
results in the W 1,p

X setting. In Section 5 we make some further remarks and we explain which
problems are still open.

Acknowledgements. We would like to thank M. Bonacini, G. Dal Maso, A. Defranceschi and
A. Pinamonti for useful suggestions and discussions on these topics.

2. Preliminaries

2.1. Notation. We adopt the convention ∞ := +∞. Unless otherwise specified, we let 1 ≤
p < ∞ and m, n ∈ N \ {0} with m ≤ n, we denote by Ω an open and bounded subset of Rn, by
A the family of all open subsets of Ω and by B the family of all Borel subsets of Ω. Given two
sets A and B, we write A ⋐ B whenever A ⊆ B. We set A0 to be the subfamily of A of all the
open subsets A of Ω such that A ⋐ Ω and by B0 the subfamily of B of all the Borel subsets B
of Ω such that B ⋐ Ω. For any v ∈ R

n, we denote by |v| the Euclidean norm of v. We denote
by Ln the restriction to Ω of the n-th dimensional Lebesgue measure, and for any set E ⊆ Ω
we write |E| := Ln(E). Throughout this paper, we mean gradients as row vectors.

2.2. Vector Fields. In what follows we identify a first-order differential operator
∑n

i=1 ci
∂

∂xi

with the map (c1(x), . . . , cn(x)) : Ω → R
n. Given a family X := (X1, . . . , Xm) of Lipschitz

vector fields on Ω, we denote by C(x) the m × n matrix defined as

C(x) := [cj,i(x)] i=1,...,n
j=1,...,m

Throughout this work we assume that X satisfies the so-called linear independence condition
(LIC) on Ω, i.e. we assume that the set

NX := {x ∈ Ω : X1(x), . . . , Xm(x) are linearly dependent}
has Lebesgue measure zero. We point out that this condition is quite general and embraces
many relevant families of vector fields studied in literature. In particular neither the Hörmander
condition, that is, each vector field Xj is smooth and it holds that

span{Lie(X1(x), . . . , Xm(x))} = R
n for any x ∈ Ω,

nor the weaker assumption that X induces a Carnot–Carathéodory metric in Ω, is requested.
For further accounts on this topic we refer to [BLU]. If u ∈ L1

loc(Ω), we define its distributional
X-gradient as

〈Xu, ϕ〉 := −
∫

U
u div(ϕ(x) · C(x))dx for any ϕ ∈ C∞

c (Ω,Rm).

In the particular case in which X is the family of horizontal vector fields of a Carnot Group,
then the X-gradient reduces to the classical horizontal gradient (cf. [BLU]). Moreover, we
define the vector space

W 1,p
X (Ω) := {u ∈ Lp(Ω) : Xu ∈ Lp(Ω)},

and we refer to it as X-Sobolev space, and to its elements as X-Sobolev functions. It is well
known (cf. [FS]) that the vector space W 1,p

X (Ω), endowed with the norm

‖u‖W
1,p

X
(Ω) := ‖u‖Lp(Ω) + ‖Xu‖Lp(Ω,Rm),
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is a Banach space for any p ∈ [1, +∞], and that it is reflexive whenever 1 < p < +∞. The
following simple proposition tells us that X-Sobolev spaces are actually a generalization of the
classical ones, and that the X-gradient can be computed starting from the Euclidean gradient
in a very simple way, whenever the function is regular enough.

Proposition 2.1. The following facts hold:

(i) if n = m and cj,i(x) = δj,i for every i, j = 1, . . . , n, then W 1,p(Ω) = W 1,p
X (Ω);

(ii) W 1,p(Ω) ⊆ W 1,p
X (Ω), the inclusion is continuous and

Xu(x) = Du(x) · C(x)T

for every u ∈ W 1,p(Ω) and a.e. x ∈ Ω.

Let us notice that, being Ω bounded, for any family X of Lipschitz vector fields we have that

W 1,∞(Ω) ⊆ W 1,p(Ω) ⊆ W 1,p
X (Ω).

Finally, similarly to the Euclidean case, a Meyers–Serrin approximation result holds even in
this non-Euclidean framework (cf. [FSSC2, Theorem 1.2]).

Theorem 2.2. Let Ω be an open subset of Rn, and let 1 ≤ p < +∞. Then

W 1,p
X (Ω) ∩ C∞(Ω) = W 1,p

X (Ω),

where the closure is w.r.t. the metric topology of (W 1,p
X (Ω), ‖ · ‖W

1,p

X
(Ω)).

We conclude this section with a Leibniz-type property for the X-gradient, which is a direct
consequence of the previous result and which will be very useful in the sequel.

Proposition 2.3. For any u, v ∈ W 1,p
X (Ω), it holds that

X(uv) = (Xu)v + u(Xv) a.e. on Ω.

Proof. Assume first that u, v ∈ W 1,p
X (Ω) ∩ C∞(Ω). Then it follows that

X(uv) = D(uv) · CT = [(Du)v + u(Dv)] · CT

= Du · CT v + uDv · CT = (Xu)v + u(Xv)
(2.1)

everywhere on Ω. Let now A′ ⋐ Ω, u ∈ W 1,p
X (Ω) and v ∈ W 1,p

X (Ω) ∩ C∞(Ω). From Theorem 2.2
we know in particular that there exists a sequence (uh)h ⊆ W 1,p

X (Ω) ∩ C∞(Ω) converging to u
in the strong topology of W 1,p

X (A′), and clearly v ∈ C∞(A′). It is easy to see that the sequence
(vuh)h belongs to W 1,p

X (A′) ∩ C∞(A′) and converges to uv in the strong topology of W 1,p
X (A′).

This fact, together with (2.1) and recalling that supA′ |Xv| < +∞ since supA′ |Dv| < +∞,
yields that

‖X(uv) − (Xu)v − u(Xv)‖Lp(A′,Rm)

≤ ‖X(uv) − X(uhv)‖Lp(A′,Rm) + ‖(Xv)uh + vX(uh) − (Xu)v − u(Xv)‖Lp(A′,Rm),

and so, passing to the limit as h → ∞, we conclude that

X(uv) = (Xu)v + u(Xv) a.e. on A′.

Since Ω can be approximated by a countable family of open sets A′ ⋐ Ω, we conclude that

X(uv) = (Xu)v + u(Xv) a.e. on Ω

for any u ∈ W 1,p
X (Ω) and v ∈ W 1,p

X (Ω) ∩ C∞(Ω). Repeating once more the same procedure, the
thesis follows. �
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2.3. Local Functionals. Before entering the core of this work, we fix some notation about
local functionals, in order to ease the reading. If we have a functional F : Lp(Ω) ×A −→ [0, ∞]
(resp. F : W 1,p

X (Ω) × A −→ [0, ∞]), we say that F is:

(i) a measure if F (u, ·) is a measure for any u ∈ Lp(Ω) (resp. u ∈ W 1,p
X (Ω));

(ii) local if, for any A ∈ A and u, v ∈ Lp(Ω) (resp. u, v ∈ W 1,p
X (Ω)), then

u|A = v|A =⇒ F (u, A) = F (v, A);

(iii) convex on W 1,p
X (Ω) if F (·, A) restricted to W 1,p

X (Ω) is convex for any A ∈ A;
(v) Lp-lower semicontinuous (resp. W 1,p

X -lower semicontinuous) if F (·, A) is Lp-lower semi-
continuous (resp. W 1,p

X -lower semicontinuous) for any A ∈ A;
(vi) weakly*- sequentially lower semicontinuous if if F (·, A) restricted to W 1,∞(Ω) is seq.

l.s.c. w.r.t. the weak*- topology of W 1,∞(Ω) for any A ∈ A.

2.4. Basic Notions of Γ-convergence. In this section we collect some basic definition and
results about Γ-convergence, for which we refer to [DM1]. We recall that, if (X, τ) is a first-
countable topological space and (Fh)h is a sequence of functions defined on (X, τ) with values
in R, we define the Γ-upper limit and Γ-lower limit respectively as

Γ − lim inf
h→∞

Fh(u) := inf
{

lim inf
h→∞

Fh(uh) : uh → u
}

and

Γ − lim sup
h→∞

Fh(u) := inf

{

lim sup
h→∞

Fh(uh) : uh → u

}

,

and we say that (Fh)h Γ-converges to F : (X, τ) −→ R if it holds that

Γ − lim inf
h→∞

Fh(u) = Γ − lim sup
h→∞

Fh(u)

for any u ∈ X. In this case we say that F is the Γ−limit of (Fh)h and we write F = Γ −
limh→∞ Fh. The next Proposition present some basic properties of Γ-limits which will be useful
later on.

Proposition 2.4. The following facts hold.

· For any u ∈ X and for any sequence (uh)h converging to u in X, it holds that

Γ − lim inf
h→∞

Fh(u) ≤ lim inf
h→∞

Fh(uh) and Γ − lim sup
h→∞

Fh(u) ≤ lim sup
h→∞

Fh(uh).

· For any u ∈ X there exist two sequences (uh)h and (vh)h, converging to u in X, which
we call recovery sequences, such that

Γ − lim inf
h→∞

Fh(u) = lim inf
h→∞

Fh(uh) and Γ − lim sup
h→∞

Fh(u) = lim sup
h→∞

Fh(vh).

· For any u ∈ X and for any sequence (uh)h converging to u in X, it holds that

Γ − lim
h→∞

Fh(u) ≤ lim inf
h→∞

Fh(uh);

· For any u ∈ X there exists a sequence (uh)h converging to u in X, which we call recovery
sequence, such that

Γ − lim
h→∞

Fh(u) = lim
h→∞

Fh(uh).

Beside the notion of Γ-convergence there is a related one, which is more suitable to deal
with sequences of local functionals, usually known as Γ-convergence. If we have a sequence of
increasing functionals such that Fh : X × A −→ R for any h ∈ N, and we define

F ′(·, A) := Γ − lim inf
h→∞

Fh(·, A) and F ′′(·, A) := Γ − lim sup
h→∞

Fh(·, A)
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for any A ∈ A, we say that Fh Γ̄-converges to a functional F : X × A −→ R̄ if it holds that

F (·, A) = sup{F ′(·, A′) : A′ ∈ A, A′
⋐ A} = sup{F ′′(·, A′) : A′ ∈ A, A′

⋐ A}.

In other words we say that (Fh)h Γ̄−converges to F whenever the inner regular envelopes of
F ′ and F ′′ coincide and are equal to F . It is easy to check (cf. [DM1, Remark 16.3]) that
any Γ̄−limit is increasing, inner regular and lower semicontinuous. In the sequel, when we will
deal with Γ-convergence with respect to the strong topology of Lp or with respect to the strong
topology of W 1,p

X , we will refer respectively to Γ(Lp)−convergence or Γ(W 1,p
X )−convergence.

The notions of Γ−convergence and Γ̄-convergence, as one could expect, are strongly related.
Indeed, assume for instance that a sequence of increasing functionals Fh : Lp(Ω) × A → [0, ∞]
is such that

F (·, A) = Γ(Lp) − lim
k→∞

Fh(·, A) (2.2)

for any A ∈ A and for a suitable measure functional F : Lp(Ω) × A → [0, ∞]. Then F is
Lp-lower semicontinuous, since it is a Γ-limit (cf. [DM1, Proposition 6.8], and also increasing
and inner regular, since it is a non-negative measure (cf. [DM1, Theorem 14.23]). Therefore,
[DM1, Proposition 16.4] allows to conclude that

F = Γ̄(Lp) − lim
h→∞

Fh. (2.3)

The converse implication is usually more delicate because, in general, the Γ̄(Lp)−limit is not
a measure. Indeed, even if the Γ̄−limit is always increasing, inner regular and, even if super-
additivity behaves usually well, there are examples (cf. [DM1, Example 16.13]) in which F
fails to be subadditive. Therefore, when dealing with this issues, it is practise to work within
milder classes of local functionals. To this aim, the so-called uniform fundamental estimates
are introduced. These estimates, although depending in their definition on the chosen topo-
logical space, are usually sufficient conditions for the subadditivity of the Γ̄−limit. To give an
instance, we introduce here the standard notion of uniform fundamental estimate (cf. [DM1,
Definition 18.2]) for functional defined on Lp(Ω) × A. We recall here that, as we will deal
also with functionals defined on W 1,p

X (Ω) × A, in Section 4 we will need to slightly modify the
current notion to guarantee a better compatibility with the new functional setting.

Definition 2.5. If we have a class F of non-negative local functionals defined on Lp(Ω) × A,
we say that F satisfies the uniform fundamental estimate on Lp(Ω) if, for any ε > 0 and for
any A′, A′′, B ∈ A, with A′ ⋐ A′′, there exists a constant M > 0 such that for any u, v ∈ Lp(Ω)
and for any F ∈ F , there exists a smooth cut-off function ϕ between A′′ and A′, such that

F
(

ϕu + (1 − ϕ)v, A′ ∪ B
)

≤ (1 + ε)
(

F (u, A′′) + F (v, B)
)

+

+ ε
(

‖u‖p
Lp(S) + ‖v‖p

Lp(S) + 1
)

+ M‖u − v‖Lp(S),
(2.4)

where S = (A′′ \ A′) ∩ B.

The following result, which can be found in [DM1, Theorem 18.7], tells us that (2.3) is
sufficient to guarantee (2.2), provided that our sequence satisfies the uniform fundamental
estimate and that some reasonable boundedness properties hold.

Theorem 2.6. Let Fh : Lp(Ω)×A −→ [0, ∞] be a sequence of functionals for which there exists
a functional F : Lp(Ω) × A −→ [0, ∞] such that (2.3) holds. Assume in addition that (Fh)h

satisfies the uniform fundamental estimate and that there exist constants e1 ≥ 1 and e2 ≥ 0,
a non-negative increasing functional G : Lp(Ω) × A −→ [0, +∞] and a finite measure µ on Ω
such that

G(u, A) ≤ Fh(u, A) ≤ e1G(u, A) + e2‖u‖p
Lp(A) + µ(A) (2.5)

for any u ∈ Lp(Ω), A ∈ A and h ∈ N. Then (2.2) holds.
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3. Γ-compactness in Lp-Spaces

In this section we prove a Γ-compactness result for a class of convex integral functionals
defined on Lp(Ω) with respect to the strong topology of Lp(Ω). Our strategy is based on classical
results of Γ-convergence in Lp spaces and on the possibility to exploit the aforementioned
integral representation result for convex local functionals presented in [EPV, Theorem 2.3].
First of all we introduce a large class of integral functionals for which some important properties,
such as the uniform fundamental estimate introduced in Definition 2.5, are satisfied. Therefore
we let 1 < p < ∞, and we fix a ∈ L1(Ω) and constants 0 < c0 ≤ c1 and c2 ≥ 0. We say that a
functional F : Lp(Ω) × A −→ [0, ∞] belongs to Im,p(a, c0, c1, c2) if there exists a Carathéodory
function f : Ω × R × R

m −→ [0, ∞] such that

c0|η|p ≤ f(x, u, η) ≤ a(x) + c1|η|p + c2|u|p (3.1)

for any (u, η) ∈ R × R
m, for a.e. x ∈ Ω, and it holds that

F (u, A) =







∫

A f(x, u(x), Xu(x)) dx if A ∈ A, u ∈ W 1,p
X (A)

+∞ otherwise
. (3.2)

In particular, we say that F ∈ Km,p(a, c0, c1, c2) whenever F ∈ Im,p(a, c0, c1, c2) and it holds
that

f(x, ·, ·) is convex for a.e. x ∈ Ω. (3.3)

As announced, the main result of this section is the Γ-compactness for the class of convex
integral functionals.

Theorem 3.1. For any sequence (Fh)h ⊆ Km,p(a, c0, c1, c2) there exists a subsequence (Fhk
)k

and a local functional F ∈ Km,p(a, c0, c1, c2) such that

F (·, A) = Γ(Lp) − lim
k→+∞

Fhk
(·, A) for any A ∈ A.

In order to prove the latter we first describe some properties of Γ(Lp)-limits within the class
Im,p(a, c0, c1, c2). To this aim, we recall the following result, which can be found in [MPSC,
Lemma 4.15].

Proposition 3.2. Let us define the functional Ψp : Lp(Ω) × A −→ [0, ∞] as

Ψp(u, A) :=







‖Xu‖p
Lp(A) if A ∈ A, u ∈ W 1,p

X (A)

+∞ otherwise
.

Then Ψp is a a Lp-lower semicontinuous measure.

Proposition 3.3. For any sequence (Fh)h ⊆ Im,p(a, c0, c1, c2) there exists a subsequence (Fhk
)k

and a functional F : Lp(Ω) × A −→ [0, ∞] such that

• F is a measure
• F is local
• F is Lp-lower semicontinuous
• For any u ∈ W 1,p

X (Ω) and A ∈ A it holds that
∫

A
c0|Xu(x)|pdx ≤ F (u, A) ≤

∫

A
a(x) + c1|Xu(x)|p + c2|u(x)|pdx (3.4)

and moreover it holds that

F (·, A) = Γ(Lp) − lim
k→+∞

Fhk
(·, A) (3.5)

for any A ∈ A.
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Proof. The proof is based on general results of [DM1], indeed, according to [DM1, Theo-
rem 19.4], we introduce a suitable superclass of Im,p(a, c0, c1, c2). To this aim, we say that
a functional F : Lp(Ω) × A −→ [0, ∞] belongs to Mp(d1, d2, d3, d4, µ) if F is a measure and
if there exist d1 ≥ 1, d2, d3, d4 ≥ 0, a finite measure µ, independent of F , and a measure
G : Lp(Ω) × A −→ [0, ∞], which may depend on F , such that

G(u, A) ≤ F (u, A) ≤ d1G(u, A) + d2‖u‖Lp(A) + µ(A) (3.6)

and

G(ϕu + (1 − ϕ)v, A) ≤ d4(G(u, A) + G(v, A)) + d3d4(max |Dϕ|p)‖u − v‖Lp(A) + µ(A), (3.7)

for any u, v ∈ Lp(Ω), A ∈ A and ϕ ∈ C∞
c (Ω) such that 0 ≤ ϕ ≤ 1. We are going to show that

Im,p(a, c0, c1, c2) ⊆ Mp(d1, d2, d3, d4, µ). For this purpose, let us define µ : B −→ [0, +∞] as

µ(B) :=
∫

B
|a(x)| dx.

Then µ is a finite measure on Ω. Moreover, thanks to Proposition 3.2, the non-negative local
functional G : Lp(Ω) × A −→ [0, +∞] defined as

G(u, A) := c0Ψp(u, A) for any u ∈ Lp(Ω), A ∈ A
is a measure. Let us show (3.6). Let us set d1 := c1

c0

and d2 := c2. If A ∈ A and u /∈ W 1,p
X (A),

the estimate is trivial, while if u ∈ W 1,p
X (A), it follows from the definition of Im,p(a, c0, c1, c2). So

we are left to show (3.7). Fix then A ∈ A. If either u /∈ W 1,p
X (A) or v /∈ W 1,p

X (A) the estimate
is trivial. Hence assume that u, v ∈ W 1,p

X (A) and take ϕ ∈ C∞
c (Ω) such that 0 ≤ ϕ ≤ 1. Then,

recalling Proposition 2.1, Proposition 2.3, the fact that η 7→ |η|p is convex on R
m, and setting

C := max{‖cj,i‖∞ : j = 1, . . . , m, i = 1, . . . , n}
it follows that 0 < C < ∞ and

G(ϕu + (1 − ϕ)v, A) = c0

∫

A
|Xϕ(u − v) + ϕXu + (1 − ϕ)Xv|p dx

= c02p
∫

A

∣

∣

∣

∣

∣

Xϕ(u − v)

2
+

ϕXu + (1 − ϕ)Xv

2

∣

∣

∣

∣

∣

p

dx

≤ c02
p−1

∫

A
|Xϕ(u − v)|p dx + c02

p−1
∫

A
|ϕXu + (1 − ϕ)Xv|p dx

≤ c02
p−1

∫

A
|Xϕ(u − v)|p dx + 2p−1(G(u, A) + G(v, A))

≤ c02
p−1(C

√
m)p(max |Du|p)‖u − v‖Lp(A) + 2p−1(G(u, A) + G(v, A)).

Thus (3.7) follows. Hence Im,p(a, c0, c1, c2) ⊆ Mp(d1, d2, d3, d4, µ). Therefore, thanks to [DM1,
Theorem 19.5], there exist a subsequence of (Fh)h, still denoted by (Fh)h, and a Lp-lower
semicontinuous functional F ∈ Mp(d1, d2, d3, d4, µ) such that (Fh)h Γ(Lp)-converges to F . In
particular F is a measure. By [DM1, Proposition 16.4] and [DM1, Proposition 16.15], F is
also local. Furthermore, by Proposition 3.2 G is a Lp-lower semicontinuous measure and, since
(Fh)h satisfies the uniform fundamental estimate on Lp(Ω) according to [DM1, Theorem 19.4],
we can apply Theorem 2.6 to conclude that (3.5) holds. Finally, we show that F satisfies (3.4).
Let us fix A ∈ A and u ∈ W 1,p

X (Ω), and a sequence (uh)h such that

F (u, A) = lim
h→+∞

Fh(uh, A). (3.8)

Arguing as above we can assume that (uh)h ⊂ W 1,p
X (A). Therefore, thanks to (3.8) and Propo-

sition 3.2, it follows that

c0

∫

A
|Xu|p dx ≤ lim inf

h→+∞

∫

A
|Xuh|p dx ≤ lim inf

h→+∞
Fh(uh, A) = F (u, A), (3.9)
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and so the first inequality follows. Finally we have that

F (u, A) ≤ lim inf
h→+∞

Fh(u, A) ≤ lim inf
h→+∞

∫

A
a(x) + c1|Xu|p + c2|u|p dx

=
∫

A
a(x) + c1|Xu|p + c2|u|p dx.

This proves the thesis. �

In order to represent the Γ-limit achieved in the previous proposition in an integral form, we
wish to exploit [EPV, Theorem 2.3]. Following a remark that the authors of [EPV] made in
their introduction, we present here a slight variant which is more suitable to our purposes.

Theorem 3.4. Let F : Lp(Ω) × A −→ [0, ∞] be such that:

(i) F is a measure;
(ii) F is local;
(iii) F is convex on W 1,p

X (Ω);
(iv) F satisfies (3.4).

Then there exists a Carathéodory function f : Ω × R × R
m → [0, ∞] which satisfies (3.1) and

(3.3), and such that

F (u, A) =
∫

A
f(x, u(x), Xu(x))dx (3.10)

for any A ∈ A and for any u ∈ W 1,p
X (A).

Proof. We point out that in [EPV] the authors did not take into account the possible equivalence
between the bound from below of the Lagrangian and the bound from below of the functional,
as the latter is actually not necessary to represent an abstract convex local functional in integral
form. On the other hand, it is clear from the proofs in [EPV] that such an equivalence is trivial,
and so, in the current paper, we take it for granted. From [EPV] we know that there exists a a
Carathéodory function f : Ω × R × R

m → [0, ∞] which satisfies (3.1) and (3.3), and such that

F (u, A) =
∫

A
f(x, u(x), Xu(x))dx

for any A ∈ A and for any u ∈ W 1,p
X (Ω). Fix now A ∈ A, A′ ∈ A0 with A′

⋐ A and
u ∈ Lp(Ω) ∩ W 1,p

X (A), and let v := ϕu, where ϕ is a smooth cut-off function between A′ and A.
Then clearly v ∈ W 1,p

X (Ω) and v|A′ = u. As F is local, it follows that

F (u, A′) = F (v, A′) =
∫

A′

f(x, v(x), Xv(x))dx =
∫

A′

f(x, u(x), Xu(x))dx.

Since F is a measure, it is in particular inner regular, and so we conclude that (3.10) holds. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. As F ∈ Km,p(a, c0, c1, c2), thanks to Proposition 3.3 there exists a func-
tional F : Lp(Ω) × A −→ [0, +∞] which is a measure, local, satisfies (3.4) and such that (3.5)
holds. Let us show that F is convex on W 1,p

X (Ω). Fix then A ∈ A and take t ∈ (0, 1) and
u, v ∈ W 1,p

X (Ω). Let (uh)h and (vh)h be two sequences converging respectively to u and v in
Lp(Ω) and such that

F (u, A) = lim
h→+∞

Fh(uh, A), F (v, A) = lim
h→+∞

Fh(vh, A). (3.11)

Since F (u, A) and F (v, A) are finite we can assume that the sequences (uh)h, (vh)h belong to
W 1,p

X (A). Therefore, since each Fh(·, A) is convex on W 1,p
X (A), recalling (3.11) and the fact that
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(tuh + (1 − t)vh)h converges to tu + (1 − t)v in Lp(Ω), it follows that

F (tu + (1 − t)v, A) ≤ lim inf
h→+∞

Fh(tuh + (1 − t)vh, A)

≤ lim inf
h→+∞

(tFh(uh, A) + (1 − t)Fh(vh, A))

= t lim
h→+∞

Fh(uh, A) + (1 − t) lim
h→+∞

Fh(vh, A)

= tF (u, A) + (1 − t)F (v, A).

Therefore we are in position to apply Theorem 3.4. Finally, we notice that if A ∈ A and
u ∈ Lp(Ω) \ W 1,p

X (A), arguing as in (3.9) we conclude that +∞ = c0Ψp(u, A) ≤ F (u, A), which
implies that

{u ∈ Lp(Ω) : F (u, A) < +∞} = W 1,p
X (A),

and so the thesis follows. �

4. Γ-compactness in W 1,p
X

In this section we show two Γ-compactness results for suitable classes of integral functionals
defined on W 1,p

X (Ω) and with respect to the strong topology of W 1,p
X (Ω). Working in this new

framework has surely some advantages. For instance we do not have to assume any coercivity
assumptions on the sequence of Lagrangians, and we can allow the case p = 1, since, among
the other things, Proposition 3.2 is not needed anymore. Therefore, throughout this section,
we let 1 ≤ p < +∞ and, as in the previous one, we fix a ∈ L1(Ω), c1, c2 ≥ 0. We say that a
functional F : W 1,p

X (Ω) × A −→ [0, ∞] belongs to Um,p(a, c1, c2) if there exists a Carathéodory
function f : Ω × R × R

m −→ [0, ∞] such that

f(x, u, η) ≤ a(x) + c1|η|p + c2|u|p (4.1)

for any (u, η) ∈ R × R
m and for a.e. x ∈ Ω, and it holds that

F (u, A) =
∫

A
f(x, u(x), Xu(x))dx

for any A ∈ A and any u ∈ W 1,p
X (Ω). Similarly to the previous section, we will show that

this large class of functionals satisfies many nice properties, among which a suitable notion of
uniform fundamental estimate that will be introduced below. However, this class is too general
to hope to achieve Γ-compactness. Therefore we define two sub-classes which will be shown to
be Γ-compact. For the first case we consider the sub-class of the convex functionals belonging
to Um,p(a, c1, c2), i.e. we say that F ∈ Vm,p(a, c1, c2) whenever F ∈ Um,p(a, c1, c2) and

f(x, ·, ·) is convex for a.e. x ∈ Ω.

In the second case we want to drop the convexity assumption. To this aim, we introduce a
notion of strong condition which is strongly inspired by the classical one introduced in [BDM2].

Definition 4.1. We say that ω = (ωs)s≥0 is a family of locally integrable moduli of continuity
if ωs : Ω × [0, +∞) −→ [0, +∞) and

r 7→ ω(x, r) is increasing, continuous and ω(x, 0) = 0 (4.2)

for a.e. x ∈ Ω and for any s ≥ 0,

s 7→ ωs(x, r) is increasing and continuous (4.3)

for a.e. x ∈ Ω and for any r ≥ 0, and

x 7→ ωs(x, r) ∈ L1
loc(Ω) for any r, s ≥ 0.



Γ-COMPACTNESS OF SOME CLASSES OF INTEGRAL FUNCTIONALS 11

Moreover we say that a functional F : W 1,p
X (Ω) × A −→ [0, ∞] satisfies the strong condition

(ωX) with respect to ω if there exists a family ω = (ωs)s≥0 of locally integrable moduli of
continuity such that

|F (v, A′) − F (u, A′)| ≤
∫

A′

ωs(x, r) dx (4.4)

for any s ≥ 0, A′ ∈ A0, r ≥ 0, u, v ∈ W 1,p
X (Ω) such that

|u(x)|, |v(x)|, |Xu(x)|, |Xv(x)| ≤ s

|u(x) − v(x)|, |Xu(x) − Xv(x)| ≤ r

for a.e. x ∈ A′.

This new notion seems to be more flexible and to fit better with our non-Euclidean setting,
and allows to deal with more general classes of functions. On the other hand, it is quite easy
to see that our condition is stronger than the one introduced in [BDM2], and so all the integral
representation results proved in [BDM2, EPV] remain valid. Moreover, we point out that our
family of moduli of continuity, unlike in [BDM2], is indexed over a continuous set, and the
assumption on the behaviour of s 7→ ωs(x, r) is completely new. Nevertheless we will see in
a while that, at least when dealing with integral functionals, this new requirement is quite
natural. Indeed the following fact holds.

Proposition 4.2. Let F ∈ Um,p(a, c1, c2). Then F satisfies the strong condition (ωX).

Proof. This proof is based on the proof of [BDM2, Lemma 2.5]. Since f is Carathéodory, then
the set Ω′ := {x ∈ Ω : (u, ξ) 7→ f(x, u, ξ) is continuous} satisfies |Ω′| = |Ω|. For any s, r ≥ 0,
set Es

r ⊆ R × R × R
m × R

m as

Es
r := {(u, v, ξ, η) : |u|, |v|, |ξ|, |η| ≤ s, |u − v|, |ξ − η| ≤ r}

and the function

ωs(x, r) :=







sup{|f(x, u, ξ) − f(x, v, η)| : (u, v, ξ, η) ∈ Es
r} if x ∈ Ω′,

0 otherwise.

We show that (ωs)s≥0 is a family of locally integrable moduli of continuity. Let us fix then
s, r ≥ 0: since (u, ξ) 7→ f(x, u, ξ) is continuous for almost every x ∈ Ω, then the supremum
in the definition of ωs can be taken over a countable subset of Ek

ǫ . Since for any (u, v, ξ, η)
the function x 7→ |f(x, u, ξ) − f(x, v, η)| is measurable, then ωs(·, r) is measurable. Moreover,
thanks to (4.1), it follows that, for any (u, v, ξ, η) ∈ Ek

ǫ ,

|f(x, u, ξ) − f(x, v, η)| ≤ 2|a(x)| + c1|ξ|p + c1|η|p + c2|u|p + c2|v|p
≤ 2|a(x)| + 4s(c1 + c2).

Since the right side does not depend on (u, v, ξ, η) ∈ Es
r , we conclude that

ωs(x, r) ≤ 2|a(x)| + 4s(c1 + c2).

Hence ωk(·, ǫ) ∈ L1
loc(Ω). Fix now x ∈ Ω′ and s ≥ 0. Since Es

r ⊆ Es
t for any r ≤ t, then

ωs(x, ·) is increasing, ωk(x, 0) = 0 and the continuity follows from the continuity of f(·, u, ξ).
Finally, taking x ∈ Ω′ and r ≥ 0 we have again that Es

r ⊆ Et
r for any r ≤ t, hence s 7→

ωs(x, r) is increasing. Once more, from the continuity of f(·, u, ξ) we conclude that s 7→
ωs(x, r) is continuous. Then (ωs)s is a family of locally integrable moduli of continuity. It is
straightforward to check that F satisfies the strong condition (ωX) with respect to (ωs)s≥0. �

On the other hand, if (Fh)h ⊆ Um,p(a, c1, c2), even if each Fh satisfies the strong condition
(ωX), in general the family of moduli of continuity strongly depends on h. Therefore we
introduce suitable subclasses of Um,p(a, c1, c2) which present uniformity in the choice of the
family of moduli of continuity. Hence, if a family ω = (ωs)s≥0 is fixed, we say that a functional
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F : W 1,p
X (Ω) × A −→ [0, ∞] belongs to Wm,p(a, c1, c2, ω) if F ∈ Um,p(a, c1, c2) and it satisfies

the strong condition (ωX) with respect to ω.

Remark. Let (Fh)h ⊆ Um,p(a, c1, c2) be such that there exists K ∈ L1
loc(Ω) such that

|fh(x, u, ξ) − fh(x, v, η)| ≤ |K(x)|(|u − v| + |ξ − η|) (4.5)

for any u, v ∈ R, ξ, η ∈ R
m and h ∈ N. If for any s, r ≥ 0 we define Es

r as in Proposition 4.2
and

ω̃s(x, r) := |K(x)| sup{(|u − v| + |ξ − η|) : (u, v, ξ, η) ∈ Es
r},

then it is easy to see that (Fh)h belongs to Wm,p(a, c0, c1, c2, ω̃).

We are ready now to state the two main results of this section.

Theorem 4.3. For any sequence (Fh)h ⊆ Vm,p(a, c1, c2) there exists a subsequence (Fhk
)k and

a functional F ∈ Vm,p(a, c1, c2) such that

F (·, A) = Γ(W 1,p
X ) − lim

k→+∞
Fhk

(·, A) for any A ∈ A.

Theorem 4.4. For any sequence (Fh)h ⊆ Wm,p(a, c1, c2, ω) there exists a subsequence (Fhk
)k

and a functional F ∈ Wm,p(a, c1, c2, ω) such that

F (·, A) = Γ(W 1,p
X ) − lim

k→+∞
Fhk

(·, A) for any A ∈ A.

As already said, one of the key step for the proof of these results is introducing a suitable
notion of uniform fundamental estimate. Therefore, inspired by the classical notion stated in
[DM1], we give the following definition.

Definition 4.5. Let F be a class of non-negative local functionals defined on W 1,p
X (Ω)×A. We

say that F satisfies the uniform fundamental estimate on W 1,p
X (Ω) if, for any ε > 0 and for any

A′, A′′, B ∈ A, with A′ ⋐ A′′, there exists a constant M > 0 and a finite family {ϕ1, . . . , ϕk}
of smooth cut-off functions between A′ and A′′ such that for any u, v ∈ W 1,p

X (Ω) and for any
F ∈ F , we can choose ϕ ∈ {ϕ1, . . . , ϕk} such that

F
(

ϕu + (1 − ϕ)v, A′ ∪ B
)

≤
(

F (u, A′′) + F (v, B)
)

+

+ ε
(

‖u‖p

W
1,p

X
(S)

+ ‖v‖p

W
1,p

X
(S)

+ 1
)

+ M‖u − v‖Lp(S),

where S = (A′′ \ A′) ∩ B.

Let us point out the differences between the two definitions. From one hand, this estimate
is stronger, since it requires that the choice of the cut-off function must be done among a
finite family of candidates which depends only on ε, A′, A′′ and B. This requirement, as we
will see, is crucial to guarantee a uniform estimate for the X-gradients of the test functions.
However, we replace some of the Lp norms on the right hand side of (2.4) with W 1,p

X -norms, thus
weakening some of the requirements. This choice, as we will see, is crucial to avoid the coercivity
assumptions on the Lagrangians. The following results and their proofs are respectively the
counterparts of [DM1, Proposition 19.1] and [DM1, Proposition 18.3].

Proposition 4.6. Um,p(a, c1, c2) satisfies the uniform fundamental estimate on W 1,p
X (Ω).

Proof. Let us set d1 := c1, d2 := c2 and d4 := 2p−1 and σ(C) :=
∫

C |a(x)|dx for any C ∈ B. Fix
ε > 0, B ∈ A and A′, A′′ ∈ A with A′ ⋐ A′′. Choose A ∈ A with A′ ⋐ A ⋐ A′′ and k ∈ N with

max

{

d1 + d2d4

k
,
σ(A \ A′)

k

}

< ε.
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Moreover, choose open sets A1, . . . , Ak+1 such that A′
⋐ A1 ⋐ . . . ⋐ Ak+1 ⋐ A, and, for any

i = 1, . . . , k take a smooth cut-off function ϕi between Ai and Ai+1. Finally, set

M :=
d1d4

k
max
1≤i≤k

max
x∈Ω

|Xϕi(x)|p.

Let F ∈ Um,p(a, c1, c2) and u, v ∈ W 1,p
X (Ω). Then, for any i = 1, . . . , k, from the choice of ϕi it

follows that

F (ϕiu+(1−ϕi)v, A′ ∪B) ≤ F (u, (A′ ∪B)∩Ai)+F (v, B \Ai+1)+F (ϕiu+(1−ϕi)v, Si), (4.6)

where Si := B ∩ (Ai+1 \ Ai). Setting Ii := F (ϕiu + (1 − ϕi)v, Si), from the bound on the
Lagrangian and arguing as in the proof of Proposition 3.3, we get that

Ii ≤ d1

∫

Si

|X(ϕiu + (1 − ϕi)v)|pdx + d2

∫

Si

|ϕiu + (1 − ϕi)v|pdx + σ(Si)

= d1

∫

Si

|uXϕi + ϕiXu − vXϕi + (1 − ϕi)Xv)|pdx + d2

∫

Si

|u|pdx + d2

∫

Si

|v|pdx + σ(Si)

= d1

∫

Si

|(ϕiXu + (1 − ϕi)Xv) + Xϕi(u − v)|pdx + d2

∫

Si

(|u|p + |v|p)dx + σ(Si)

≤ d1d4

[
∫

Si

|ϕiXu + (1 − ϕi)Xv|p +
∫

Si

|Xϕi|p|u − v|pdx
]

+ d2

∫

Si

(|u|p + |v|p)dx + σ(Si)

≤ d1d4

[
∫

Si

|Xu|pdx +
∫

Si

|Xv|pdx
]

+ kM
∫

Si

|u − v|pdx + d2

∫

Si

(|u|p + |v|p)dx + σ(Si)

≤ (d2 + d1d4)
(

‖u‖p

W
1,p

X
(Si)

+ ‖v‖p

W
1,p

X
(Si)

)

+ kM‖u − v‖p
Lp(Si) + σ(Si).

Noticing that σ is a measure and that

S1 ∪ . . . ∪ Sk ⊆ (A \ A′) ∩ B ⊆ S,

and recalling the choice of k, it follows that

min
1≤i≤k

Ii ≤ 1

k

k
∑

i=1

Ik ≤ d2 + d1d4

k

(

‖u‖p

W
1,p

X
(S)

+ ‖v‖p

W
1,p

X
(S)

)

+ M‖u − v‖p
Lp(S) +

σ(A \ A′)

k

≤ ε
(

‖u‖p

W
1,p

X
(S)

+ ‖v‖p

W
1,p

X
(S)

+ 1
)

+ M‖u − v‖p
Lp(S).

(4.7)

Therefore, if ϕi ∈ {ϕ1, . . . , ϕk} is chosen to realize the minimum, observing that F is a measure,
(A′ ∪ B) ∩ Ai ⊆ A′′ and B \ Ai+1 ⊆ B, thanks to (4.6) and (4.7) the thesis follows. �

Proposition 4.7. Let (Fh)h ∈ Um,p(a, c1, c2). Then it holds that

F ′′(u, A′ ∪ B) ≤ F ′′(u, A′′) + F ′′(u, B) (4.8)

for any u ∈ W 1,p
X (Ω), B ∈ A and A′, A′′ ∈ A with A′ ⋐ A′′.

Proof. Let u, A′, A′′, B as above fix ε > 0, and let (uh)h, (vh)h ⊆ W 1,p
X (Ω) be two recovery

sequences for u with respect to F ′′(·, A′′) and F ′′(·, B) respectively. From Proposition 4.6
we know that (Fh)h satisfies the uniform fundamental estimate on W 1,p

X (Ω). Therefore there
exists M > 0 and a finite family {ϕ1, . . . , ϕk} of smooth cut-off functions between A′ and A′′,
depending only on ε, A′, A′′ and B, and a sequence (ϕh)h ⊆ {ϕ1, . . . , ϕk}, such that

Fh

(

ϕhuh + (1 − ϕh)vh, A′ ∪ B
)

≤
(

Fh(uh, A′′) + Fh(vh, B)
)

+

+ ε
(

‖uh‖p

W
1,p

X
(S)

+ ‖vh‖p

W
1,p

X
(S)

+ 1
)

+ M‖uh − vh‖Lp(S),
(4.9)

where S = (A′′ \ A′) ∩ B. Let us define wh := ϕhuh + (1 − ϕh)vh. Then it follows that

‖wh − u‖Lp(Ω) = ‖ϕh(uh − vh)‖Lp(Ω) + ‖vh − u‖Lp(Ω) ≤ ‖uh − vh‖Lp(Ω) + ‖vh − u‖Lp(Ω),
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and moreover

‖Xwh − Xu‖Lp(Ω) = ‖Xϕh · uh + ϕhXuh − Xϕh · vh + (1 − ϕh)Xvh − Xu‖Lp(Ω)

≤ ‖Xϕh(uh − vh)‖Lp(Ω) + ‖ϕh(Xuh − Xvh)‖Lp(Ω) + ‖Xvh − Xu‖Lp(Ω)

≤ max
1≤i≤k

‖|Xϕk|p‖∞ · ‖uh − vh‖Lp(Ω) + ‖Xuh − Xvh‖Lp(Ω) + ‖Xvh − Xu‖Lp(Ω).

Therefore we conclude that wh converges to u ∈ W 1,p
X (Ω). This fact, the choices of uh and vh

and (4.9) allow to conclude that

F ′′(u, A′ ∪ B) ≤ lim sup
h→∞

F ′′(wh, A′ ∪ B)

≤ lim sup
h→∞

F ′′(uh, A′′) + lim sup
h→∞

F ′′(vh, B)

+ ε
(

‖u‖p

W
1,p

X
(S)

+ ‖v‖p

W
1,p

X
(S)

+ 1
)

= F ′′(u, A′′) + F ′′(u, B) + ε
(

‖u‖p

W
1,p

X
(S)

+ ‖v‖p

W
1,p

X
(S)

+ 1
)

.

Being ε arbitrary, the thesis follows. �

We are ready to complete Step 1 of our general scheme.

Proposition 4.8. For any sequence (Fh)h ⊆ Um,p(a, c1, c2) there exists a subsequence (Fhk
)k

and a functional F : W 1,p
X (Ω) × A −→ [0, ∞] such that

• F is a measure
• F is local
• F is W 1,p

X −lower semicontinuous
• for any u ∈ W 1,p

X (Ω) and A ∈ A it holds that

F (u, A) ≤
∫

A
a(x) + c1|Xu(x)|p + c2|u(x)|pdx (4.10)

and moreover we have that

F (·, A) = Γ(W 1,p
X ) − lim

k→+∞
Fhk

(·, A) (4.11)

for any A ∈ A.

Proof. Since (W 1,p
X (Ω), ‖ · ‖

W
1,p

X
(Ω)) is a metric space, by [DM1, Theorem 16.9] we know that,

up to a subsequence, (Fh)h Γ̄(W 1,p
X )-converges to a functional F : W 1,p

X (Ω) × A −→ R. Being
F a Γ̄-limit, we know from [DM1, Remark 16.3] that F is increasing, inner regular and W 1,p

X −
lower semicontinuous. Moreover, thanks to [DM1, Proposition 16.12], we know that F is
superadditive. Let us show that F is non-negative. Indeed, fix A ∈ A and u ∈ W 1,p

X (Ω), then
we know that

F (u, A) = sup
{

inf{lim inf
h→∞

Fh(uh, A′) : uh → u in W 1,p
X (Ω)} : A′ ∈ A, A′

⋐ A
}

.

As each Fh(uh, A′) is non-negative, then F (u, A) ≥ 0. Moreover, in the same way we can see
that F (u, ∅) = 0 for any u ∈ W 1,p

X (Ω). Now, adapting the proof of [DM1, Proposition 16.15], we
show that F is local. Let us fix A ∈ A and u, v ∈ W 1,p

X (Ω) coinciding a.e. on A. Fix A′ ⋐ A,
take a smooth cut-off function ϕ between A′ and A and let (uh)h ⊆ W 1,p

X (Ω) be a recovery
sequence for u with respect to F ′(·, A′). We define a new sequence (vh)h requiring that

vh := ϕuh + (1 − ϕ)v.

It is clear that

‖vh − v‖Lp(Ω) = ‖ϕ(uh − v)‖Lp(Ω) = ‖ϕ(uh − v)‖Lp(A) ≤ ‖uh − u‖Lp(A),
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and moreover

‖Xvh − Xv‖Lp(Ω) = ‖Xϕ(uh − v) + ϕ(Xuh − Xv)‖Lp(Ω)

≤ ‖Xϕ(uh − v)‖Lp(A) + ‖ϕ(Xuh − Xv)‖Lp(A)

≤ ‖|Xϕ|p‖∞‖uh − u‖Lp(A) + ‖Xuh − Xu‖Lp(A).

Therefore we have that vh converges to v in W 1,p
X (Ω). As each Fh is local and uh = vh on A′,

we conclude that

F ′(v, A′) ≤ lim inf
h→∞

Fh(vh, A′) = lim inf
h→∞

Fh(uh, A′) = F ′(u, A′).

As the converse inequality can be proved exchanging the roles of u and v, we conclude that
F ′(u, A′) = F ′(v, A′). Finally, being A′ ⋐ A arbitrary and recalling the definition of a Γ̄−limit,
we conclude that F is local. Moreover, thanks to Proposition 4.7, we can repeat essentially the
same steps of the proof of [DM1, Proposition 18.4] and achieve that F is subadditive. Notice
that, thanks to [DM1, Theorem 14.23] and the previous steps, this suffices to conclude that F
is a measure. If we define now G : W 1,p

X (Ω) × A → [0, +∞] as

G(u, A) :=
∫

A
a(x) + c2|u|p + c1|Xu|p

for any u ∈ W 1,p
X (Ω) and for any A ∈ A, it is clear that G is a measure and that, thanks to our

hypotheses, Fh ≤ G for any h ∈ N. Therefore, if u ∈ W 1,p
X (Ω) and A ∈ A, it follows that

F (u, A) ≤ lim inf
h

Fh(u, A) ≤ G(u, A).

Finally, thanks again to Proposition 4.7 and repeating the proof of [DM1, Theorem 18.7], we
conclude that

F (·, A) = Γ(W 1,p
X ) − lim

h→+∞
Fh(·, A), (4.12)

for any A ∈ A. �

We have developed all the tools that we need to prove Theorem 4.3.

Proof of Theorem 4.3. Since (Fh)h ⊆ Vm,p(a, c1, c2), from Proposition 4.8 we know that there

exists a functional F : W 1,p
X (Ω) × A −→ [0, +∞] which is a measure, local, satisfies (4.10)

and such that (4.11) holds. Moreover, arguing as in the proof of Theorem 3.1, F is convex.
Therefore F satisfies all the hypotheses of [EPV, Theorem 2.3], and so we conclude that F ∈
Vm,p(a, c1, c2). �

In order to prove Theorem 4.4, we wish to apply [EPV, Theorem 4.3] to a suitable functional
F . Anyway, among the other things, we need to guarantee that F satisfies the strong condition
(ωX). With the two following propositions we are going to show that, whenever we work in
Wm,p(a, c1, c2, ω), the strong condition (ωX) with respect to ω is preserved by the operation of

Γ(W 1,p
X )-limit.

Proposition 4.9. If a functional F : W 1,p
X (Ω) × A −→ [0, +∞] is a measure, it is W 1,p

X -
continuous, it satisfies (4.10) for any u ∈ W 1,p

X (Ω) and for any B ∈ B and it satisfies the strong
condition (ωX) with respect to ω, then it holds that

|F (v, B′) − F (u, B′)| ≤
∫

B′

ωs(x, r)dx (4.13)

for any s ≥ 0, B′ ∈ B0, r ≥ 0, u, v ∈ W 1,p
X (Ω) such that

|u(x)|, |v(x)|, |Xu(x)|, |Xv(x)| ≤ s

|u(x) − v(x)|, |Xu(x) − Xv(x)| ≤ r
(4.14)

for a.e. x ∈ B′.
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Proof. It is not restrictive to assume that c1 = c2 = 1. First we show the thesis for regular
functions u, v ∈ W 1,p

X (Ω) ∩ C∞(Ω). Let us fix B′ ∈ B0, and s, r, such that (4.14) holds, and
let us take m, M > 0. Since F (u, ·) and F (v, ·) are Borel measures, there exists a decreasing
sequence of open sets (An)n ⊆ A such that B′ =

⋂∞
n=1 An and moreover

F (u, B′) = lim
n→∞

F (u, An) and F (v, B′) = lim
n→∞

F (v, An).

Furthermore, as B′ ⋐ Ω, we can assume that An ⋐ Ω for each n ∈ N. Finally, as u, v ∈ C1(A0)
we can assume that

|u(x)|, |v(x)|, |Xu(x)|, |Xv(x)| ≤ s +
1

M

|u(x) − v(x)|, |Xu(x) − Xv(x)| ≤ r +
1

m

for any x ∈ An and for any n ≥ 0. We obtain that

|F (u, B′) − F (v, B′)| = lim
n→∞

|F (u, An) − F (v, An)|

≤ lim
n→∞

∫

An

ws+ 1

M

(

x, r +
1

m

)

dx

=
∫

B′

ws+ 1

M

(

x, r +
1

m

)

dx.

Therefore, thanks to (4.2), (4.3) and the Monotone Convergence Theorem we conclude that

|F (u, B′) − F (v, B′)| ≤ lim
m→∞

lim
M→∞

∫

B′

ws+ 1

M

(

x, r +
1

m

)

dx

= lim
m→∞

∫

B′

ws

(

x, r +
1

m

)

dx

=
∫

B′

ws(x, r)dx.

Let now B′ ∈ B0, u, v ∈ W 1,p
X (Ω) and s, r, such that (4.14) holds, and fix again m, M > 0. By

Theorem 2.2 there are two sequences (uh)h, (vh)h ⊆ W 1,p
X (Ω) ∩ C∞(Ω) converging respectively

to u and v in the strong topology of W 1,p
X (Ω). Therefore, thanks to the previous step and the

continuity of the functional, we get that

|F (u, B′) − F (v, B′)| = lim
h→∞

|F (uh, B′) − F (vh, B′)|.

Now we want to estimate the right term. For doing this let us define, for any h ≥ 0,

Ah :=
{

x ∈ B′ : |uh(x)| > s +
1

M

}

Bh :=
{

x ∈ B′ : |vh(x)| > s +
1

M

}

Ch :=
{

x ∈ B′ : |Xuh(x)| > s +
1

M

}

Dh :=
{

x ∈ B′ : |Xvh(x)| > s +
1

M

}

Eh :=
{

x ∈ B′ : |uh(x) − vh(x)| > r +
1

m

}

Fh :=
{

x ∈ B′ : |Xuh(x) − Xvh(x)| > r +
1

m

}

,

and let

Zh := Ah ∪ Bh ∪ Ch ∪ Dh ∪ Eh ∪ Fh. (4.15)

We claim that

lim
h→∞

|Zh| = 0.
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Here we only show that limh→∞ |Ah| = 0, being the other parts of the proof similar. Assume
that x ∈ Ah and assume that (4.14) holds in x. Then it follows that

|uh(x) − u(x)| ≥ |uh(x)| − |u(x)| >
1

M
.

and hence

x ∈
{

z ∈ Ω : |u(z) − uh(z)| >
1

M

}

.

Since uh converges to u in W 1,p
X (Ω), then in particular uh converges to u in measure, and so the

measure of the right set goes to zero as h goes to infinity. We can now estimate in this way.

lim
h→∞

|F (uh, B′) − F (vh, B′)| ≤ lim inf
h→∞

|F (uh, B′ \ Zh) − F (vh, B′ \ Zh)| + |F (uh, Zh) − F (vh, Zh)|

≤
∫

B′

ws+ 1

M

(

x, r +
1

m

)

+ lim inf
h→∞

|F (uh, Zh)| + |F (vh, Zh)|

≤
∫

B′

ws+ 1

M

(

x, r +
1

m

)

dx + lim inf
h→∞

2
∫

Zh

|a(x)|dx

+ lim inf
h→∞

∫

Zh

|uh|pdx +
∫

Zh

|vh|pdx +
∫

Zh

|Xuh|pdx +
∫

Zh

|Xvh|pdx

≤
∫

B′

ws+ 1

M

(

x, r +
1

m

)

dx + lim inf
h→∞

2
∫

Zh

|a(x)|dx

+ lim inf
h→∞

2p−1
(

∫

Zh

|uh − u|pdx +
∫

Zh

|u|pdx +
∫

Zh

|Xuh − Xu|pdx +
∫

Zh

|Xu|pdx
)

+ lim inf
h→∞

2p−1
(

∫

Zh

|vh − v|pdx +
∫

Zh

|v|pdx +
∫

Zh

|Xvh − Xv|pdx +
∫

Zh

|Xv|pdx
)

≤
∫

B′

ws+ 1

M

(

x, r +
1

m

)

dx + K lim
h→∞

(

‖u − uh‖
W

1,p

X
(Ω) + ‖v − vh‖

W
1,p

X
(Ω)

)

+ lim inf
h→∞

∫

B′

χZh
b(x)dx,

for a constant K > 0 and a suitable function b ∈ L1(B′). Therefore, thanks to the Dominated
Convergence Theorem, we conclude that

|F (u, B′) − F (v, B′)| ≤
∫

B′

ws+ 1

M

(

x, r +
1

m

)

dx.

Arguing as in the first step and letting M, m go to infinity, the thesis follows. �

Proposition 4.10. Let (Fh)h be a sequence in Wm,p(a, c1, c2, ω) and assume that there exists

a functional F : W 1,p
X (Ω) × A −→ [0, ∞] such that

F (·, A′) = Γ(W 1,p
X ) − lim

h→∞
Fh(·, A′) for any A′ ∈ A0.

Then F satisfies the strong condition (ωX) with respect to ω.

Proof. Let A′ ∈ A0, u, v ∈ W 1,p
X (Ω) and s, r ≥ 0 such that (4.14) holds, and fix m, M > 0. Let

(uh)h and (vh)h be recovery sequences respectively for u and v. Then it follows that

|F (u, A′) − F (v, A′)| = lim
h→∞

|Fh(uh, A′) − Fh(vh, A′)|.

Notice that, since Fh ∈ Wm,p(a, c1, c2, ω) then it is a measure, it satisfies the strong condition
(ωX) with respect to (ωs)s≥0, and thanks to a slight variant of [EPV, Theorem 3.1], it is
W 1,p

X -continuous. Moreover, thanks to (4.1), it satisfies (4.10) for any u ∈ W 1,p
X (Ω) and for any

B ∈ B. Therefore it satisfies the hypotheses of Proposition 4.9. Hence, repeating exactly the
same estimates performed in the proof of Proposition 4.9, we conclude that

lim
h→∞

|Fh(uh, A′) − Fh(vh, A′)| ≤
∫

A′

ωs(x, r)dx,
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and so the thesis follows. �

We are now in position to give the proof of Theorem 4.4.

Proof of Theorem 4.4. Since (Fh)h ⊆ Wm,p(a, c1, c2, ω), from Proposition 4.8 we know that

there exists a functional F : W 1,p
X (Ω) × A −→ [0, ∞] which is a measure, local, W 1,p

X -lower
semicontinuous and satisfies (4.10), and such that (4.11) holds. Moreover, thanks to Proposition
4.10, F satisfies the strong condition (ωX) with respect to ω. Therefore F satisfies all the
hypotheses of [EPV, Theorem 4.4], and so we conclude that F ∈ Wm,p(a, c1, c2, ω). �

5. Further Remarks and Open Problems

The classical strong and weak condition (ω) were introduced in [BDM2] in order to guarantee
the continuity of the candidate Lagrangian when proving an integral representation result. In
particular, the strong condition (ω) guarantees that f(x, ·, ·) is continuous, while the weak
condition (ω) implies the continuity of f(x, ·, ξ). Moreover, it is easy to see that the strong
condition (ω) implies the weak condition (ω). Anyway, in many situations it is difficult to
verify the strong condition (ω), whereas the weak condition (ω) is easier. On the other hand,
if we require only the weak condition (ω), we have to add an extra hypothesis in order to get
the equivalence, i.e. the weak*-sequential lower semicontinuity of the functional, which is well
known (cf. [AF]) to be equivalent to the convexity of f(x, u, ·). In [EPV], inspired by [BDM2],
the authors exploited these ideas in order to achieve two integral representation results when the
local functional is not assumed to be convex. In Section 3 we obtained a Γ(Lp)−compactness
result for a class of convex integral functionals defined on Lp(Ω), but we did not generalized
it when the convexity assumption is dropped. On the other hand, in Section 4 we considered
also the non-convex case, working in a suitable class of integral functionals where the strong
condition (ωX) is required uniformly on the class. Therefore there are some questions still
unsolved. Let us begin by properly extending Definition 4.1.

Definition 5.1. If ω = (ωs)s≥0 is a family of locally integrable moduli of continuity (cf. Def-
inition 4.1), we say that a functional F : Lp(Ω) × A −→ [0, +∞] satisfies the weak condition
(ωX) with respect to ω if

|F (u + r, A′) − F (u, A′)| ≤
∫

A′

ωs(x, |r|) dx (5.1)

for any s ≥ 0, A′ ∈ A0, r ∈ R, u ∈ W 1,p
X (Ω) such that

|u(x)|, |v(x) + r|, |r| ≤ s

for a.e. x ∈ A′.

Indeed, if ω is a fixed family of moduli of continuity it is reasonable to ask:

• if the subclass of Im,p(a, c0, c1, c2) of those integral functionals satisfying the strong
condition (ωX) with respect to ω is Γ(Lp)−compact;

• if the subclass of Im,p(a, c0, c1, c2) of those integral functionals satisfying the weak con-
dition (ωX) with respect to ω and which are weakly*-seq. l.s.c. is Γ(Lp)−compact;

• if the subclass of Um,p(a, c1, c2) of those integral functionals satisfying the weak condition

(ωX) with respect to ω and which are weakly*-seq. l.s.c. is Γ(W 1,p
X )−compact.

In view of Proposition 3.3, Proposition 4.8 and the integral representation results in [EPV], the
only questions left open are the following.

(a) Is the Γ(Lp)-limit of a sequence of (possibly not weakly*-seq. l.s.c.) functionals a
weakly*-seq. l.s.c functional?

(b) Is the Γ(W 1,p
X )−limit of a sequence of (possibly not weakly*-seq. l.s.c.) functional a

weakly*-seq. l.s.c functional?
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(c) Does the Γ(Lp)-limit of a sequence of functionals satisfy the weak condition (ωX) pro-
vided that the sequence does satisfy it?

(d) Does the Γ(W 1,p
X )−limit of a sequence of functionals satisfy the weak condition (ωX)

provided that the sequence does satisfy it?
(e) Does the Γ(Lp)-limit of a sequence of functionals satisfy the strong condition (ωX)

provided that the sequence does satisfy it?

Unfortunately we have not been able to answer to questions (b), (c) and (e). Anyway we are
going to show that the questions (a) and (d) have a positive answer.

Proposition 5.2 (Answer to question (d)). Let ω be a family of locally integrable moduli of
continuity. Let (Fh)h be a sequence in Um,p(a, c1, c2) and assume that each Fh satisfies the
weak condition (ωX) with respect to ω. Assume in addition that there exists a functional
F : W 1,p

X (Ω) × A −→ [0, +∞] such that

F (·, A′) = Γ(W 1,p
X ) − lim

h→+∞
Fh(·, A′) for any A′ ∈ A0.

Then F satisfies the weak condition (ωX) with respect to ω.

Proof. The proof of this result is totally similar to the proofs of Proposition 4.9 and Proposition
4.10, and so we take it for granted. �

Proposition 5.3 (Answer to question (a)). Let Fh : Lp(Ω) × A −→ [0, +∞] be a sequence of
(not necessary integral) functionals, and assume that there exists a functional F : Lp(Ω)×A −→
[0, ∞] which is a measure and such that

F (·, A′) = Γ(Lp) − lim
h→+∞

Fh(·, A′) for any A′ ∈ A0.

Then F is weakly*-seq. l.s.c

Proof. Let A ∈ A, A′ ∈ A with A′ ⋐ A, u ∈ W 1,∞(Ω) and take a sequence (uh)h ⊆ W 1,∞(Ω)
which is weakly*-convergent to u. Then, since A′ ⋐ A, it is well known that uh converges to
u strongly in L∞(A′), and so in particular strongly in Lp(A′). Being F (·, A′) a Γ(Lp)−limit, it
is Lp−lower semicontinuous. Moreover, being F a measure, it is also increasing. These facts
imply that

F (u, A′) ≤ lim inf
h→∞

F (uh, A′) ≤ lim inf
h→∞

F (uh, A).

Since F is inner regular and since A′ ⋐ A is arbitrary, the conclusion follows. �
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