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Abstract. We give a constructive proof of a global controllability result for an

autonomous system of ODEs guided by bounded locally Lipschitz and diver-
gence free (i.e. incompressible) vector field, when the phase space is the whole

Euclidean space and the vector field satisfies so-called vanishing mean drift

condition. For the case when the ODE is defined over some smooth compact
connected Riemannian manifold, we significantly strengthen the assertion of

the known controllability theorem in absence of nonholonomic constraints by

proving that one can find a control steering the state vector from one given
point to another by using the observations of only the state vector, i.e., in other

words, by changing slightly the vector field, and such a change can be made

small not only in uniform, but also in Lipschitz (i.e. C1) topology.

1. Introduction

Consider the ordinary differential equation (ODE)

(1.1) ẋ = V (x)

where V is a globally bounded smooth (or at least locally Lipschitz) vector field
in a Euclidean phase space Rd satisfying divergence free (or else also called incom-
pressibility) condition

div V = 0,

where for locally Lipschitz vector fields the divergence operator is defined almost
everywhere due to Rademacher’s theorem. The classical point-to-point controlla-
bility problem is that of finding, given two points p and q in the phase space, the
control function u = u(t) steering the state vector x(·) from p to q, i.e. formally,
such that the solution (trajectory) of the ODE

(1.2) ẋ = V (x) + u(t),

starting at x(0) = p satisfies x(T ) = q for some T > 0. Usually the control is
required to be small. The problem has been interpreted in [1] in the following
way: a fish in an unbounded turbulent ocean (modelled by the phase space Rd)
with the flow velocity field given by V is able to move with its own velocity u not
exceeding in modulus the given value ε > 0. The assumptions of boundedness and
incopressibility of V are quite natural in this setting. The control problem termed
in these words is that of asking whether the fish can reach any point starting from
an arbitrary one. If the answer to this question is positive, the ODE (1.1) is called
globally controllable.

If the phase space of (1.2) is a smooth compact manifold instead of Rd, then the
answer to the posed question is positive and provided by the known global control-
lability result (theorem 4.2.7 in [2] where it is formulated for analytic vector fields
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on compact Riemannian manifolds). Nevertheless in the whole Rd the incompress-
ibility condition of V is not enough for global controllability to hold as can be seen
just taking V to be constant vector field with sufficiently large norm. However,
it has been proven in [1] that if V is incompressible and has vanishing mean drift
(called small mean drift in [1]) in the sense

(1.3) lim
`→∞

sup
x∈Rd

∣∣∣∣∣ 1

`d

∫
[0,`]d

V (x+ y) dy

∣∣∣∣∣ = 0,

then (1.1) is globally controllable (this result has been further extended in [3] to
nonautonomous ODEs). Roughly speaking, the assumption of vanishing mean drift
means that the average value of the flow velocity over big boxes vanishes with the
corresponding limit uniform with respect to the selection of those big boxes.

In [4] we took a completely different approach to the proof of this global control-
lability result obtaining, as a side product, a version of C. Pugh’s closing lemma for
divergence free vector fields on the whole Rd satisfying vanishing mean drift con-
dition (1.3). However, both our proof of the controllability result and the original
proof from [1] are inherently nonconstructive: in other words they assure the fish
that it can reach any desired destination but do not give any clue of how to do it.
The goal of this paper is to provide a constructive proof of the global controllability
result for (1.1), namely, providing not only the result itself but an explicit construc-
tion of the steering control u(·). Our basic instruments will be the main result of [4]
which gives a constructive way of changing slightly the vector field so that all the
points of the phase space become nonwandering for the corrected vector field.

We also compare the proven controllability result over the whole Rd with the
original classical setting of the global controllability theorem, i.e. with the case
when the ODE (1.1) is defined over some smooth compact connected Riemannian
manifold without boundary instead of Rd. In this case we significantly strengthen
its assertion, by proving that one can find a control u(·) in the form u(t) = W (x(t)),
where x(·) is the trajectory of the controlled system (i.e. we may control the system
by using the observations of only its state vector), and the vector field W is small
not only in uniform, but also in Lipschitz (i.e. C1) norm. In other words, we give a
constructive proof for the Connecting Lemma for orbits in the case of divergence-free
vector fields.

2. Notation and preliminaries

The Euclidean norm in the finite-dimensional space Rd will be denoted by | · |,
Br(x) ⊂ Rd stands for the open Euclidean ball of radius r centered at x, and x · y
stands for the usual scalar product of x ∈ Rd and y ∈ Rd, and Ld stands for tor
the d-dimensional Lebesgue measure. For any set D ⊂ Rd, we let D̄ be its closure.
By Lip(Rd;Rd) (resp. Liploc(Rd;Rd), C1(Rd;Rd)) we denote the set of Lipschitz
(resp. locally Lipschitz, continuously differentiable) functions f : Rd → Rd. The
standard uniform norm of functions and vector functions will be denoted by ‖ · ‖∞.
For a V ∈ Lip(Rd;Rd) we denote by LipV its least Lipschitz constant, and set
‖V ‖Lip := ‖V ‖∞ + LipV . The notation C∞0 (U) stands for the class of infinitely
differentiable real-valued functions with compact support in an open U ⊂ Rd.

For a diffeomorphism f : U ⊂ Rd → f(U) ⊂ Rd, where U ⊂ Rd is open, and a
vector field V over U we denote the push-forward f∗V of V by f by the formula

(f∗V )(y) := (Df)(f−1(y))V (f−1(y)) = (Df−1)−1(y)V (f−1(y)),

so that if x(·) is a trajectory of the ODE ẋ = V (x) in U , then y(·) := f(x(·)) is a
trajectory of the ODE ẏ = (f∗V )(x) in f(U). Of course an identical (up to notation)
definition can be done for vector fields on smooth manifolds and diffeomorphisms of
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open subsets of smooth manifolds. For a distribution u (in particular, a measure)
over U we define its pushforward f#u by f over f(U) as

〈ϕ, f#u〉 := 〈ϕ ◦ f, u〉

for every test function ϕ ∈ C∞0 (Rd), where 〈ϕ, v〉 stands for the action of a distribu-
tion v on a test function ϕ, and ϕ ◦ f stands for the composition of ϕ with f , once
f is sufficiently smooth (e.g. when u is a finite Borel measure, then this definition
can be extended to ϕ just bounded and continuous and f just Borel).

3. Global controllability

The following theorem is the main result of this paper.

Theorem 3.1. Let V ∈ C1(Rd;Rd) ∩ Lip(Rd;Rd) be a bounded incompressible
vector field with uniformly continuous first derivatives, and satisfy vanishing mean
drift condition (1.3). Then for every couple of points {p, q} ⊂ Rd and every ε > 0
there is a piecewise continuous function u : R+ → Rd (“control”) with ‖u‖∞ < ε
such that the trajectory of the ODE (1.2) satisfying x(0) = p passes through q, i.e.
x(T ) = q for some T > 0.

The rest of this section will be dedicated to the proof of the above Theorem 3.1.
The following statement uses a construction from proposition 3.3 of [4] and is of

some independent interest.

Lemma 3.2. Let x : [a, s]→ Rd be a trajectory of the ODE

ẋ(t) = F (t, x)

over some time interval [a, s], where F : R × Rd → Rd is bounded and continuous.
Then for every ε > 0 there is a τ ∈ (0, s − a) and a ρ > 0 depending on ε and
τ such that whenever |x(s) − y| < ρ, there is a piecewise continuous control uε(·)
with |uε(·)| < ε different from zero only on (s − τ, s], for which there is a solution
xε : [a, s]→ Rd of the ODE

(3.1) ẋε(t) = F (t, xε(t)) + uε(t)

coinciding with x(·) over [a, s− τ ] and having xε(s) = y.

Remark 3.3. Note that in Lemma 3.2 one can choose τ arbitrarily small, but the
smaller is τ , the smaller becomes also ρ. In particular, it is easily deduced from the
proof that when

|F (t, z̄)− F (t, z)| ≤ L|z̄ − z|
for some L > 0, then one can take

(3.2) τ < min (s− a, ε/4L, ε/8L‖F‖∞) , ρ = τε/4.

Proof. Denote z := x(s). Given a ε > 0, choose a δ > 0 depending on ε so small
that

(3.3) |F (t, z̄)− F (t, z)| < ε/4,

for all z̄ ∈ Bδ(z) and all t ∈ [a, s], and a τ ∈ (0, s− a) (depending on δ, hence on ε)
so small that

‖F‖∞τ < δ/2,(3.4)

so that in particular

|x(s− τ)− z| ≤ ‖F‖∞τ < δ/2.(3.5)

Denote x̄(·) over [s− τ, s] the trajectory of the ODE

˙̄x(t) = F (t, z).
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satisfying x̄(s− τ) = x(s− τ). We get that both x̄(t) ∈ Bδ(z) and x(t) ∈ Bδ(z) for
all t ∈ [s− τ, s] due to (3.4) and (3.5). Moreover, one has

(3.6) |z − x̄(s)| = |x(s)− x̄(s)| < τε/4

in view of (3.3).
Fixed an arbitrary y ∈ Bρ(z) with a ρ > 0 to be chosen later, we set

α := (y − x̄(s))/τ ∈ Rd.
One has

|y − x̄(s)| ≤ |y − z|+ |z − x̄(s)|
≤ |y − z|+ τε/4 by (3.6)

< ρ+ τε/4,

so that once we choose
ρ := τε/4,

we get
|y − x̄(s)| < τε/2,

and hence
|α| < ε/2.

Define xε(t) by

xε(t) :=

{
x(t), t ∈ [a, s− τ ],

x̄(t) + α(t− s+ τ), t ∈ (s− τ, s]. .

Note that ẋε(t) = F (t, z) + α for t ∈ (τ − s, s), and hence xε satisfies (3.1) with

uε(t) :=

{
0, t ∈ [a, s− τ ],

F (t, z)− F (t, xε(t)) + α, t ∈ (s− τ, s].
Further, by the choice of α one has x(s) = y. Finally,

|uα(t)| ≤ |α|+ |F (t, z)− F (t, xε(t))|

<
ε

2
+ sup
z̄∈Bδ(z)

|F (t, z̄)− F (t, z)|

<
ε

2
+
ε

4
by (3.3)

< ε,

which proves the claim. �

The following statement summarizes the results from [4].

Proposition 3.4. Suppose that V ∈ Liploc(Rd;Rd) be a bounded incompressible
vector field with vanishing mean drift. Then, given an ε > 0, there is a bounded
vector field Ṽ ∈ Liploc(Rd;Rd) such that

(i) every point x ∈ Rd is nonwandering for the ODE

(3.7) ẋ = Ṽ (x).

Moreover Ld-a.e. point x′ ∈ Rd is Poisson stable, i.e. for the trajectory x(·)
of (3.7) with x(0) = x′ there are sequences {t±k }k ⊂ R with limk t

±
k = ±∞

such that
x′ = lim

k→∞
x(t±k ).

(ii) ‖Ṽ − V ‖∞ < ε, and, moreover, if V ∈ C1(Rd;Rd) ∩ Lip(Rd;Rd) and has

uniformly continuous first derivatives, then one can assume ‖Ṽ −V ‖Lip < ε,

(iii) ‖div Ṽ ‖∞ < ε,

(iv) for some p ∈ ((d − 1)/2, d/2), and α > ᾱ = ᾱ(p, ε) one has divψṼ = 0,
where ψ(x) := (|x|2 + α2)−p.
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Moreover, every vector field Ṽ ∈ Liploc(Rd;Rd) satisfying (iv), necessarily satis-
fies (i).

Proof. Part of claim (i) (all points are nonwandering) and claims (ii)-(iv) are a
summary of lemma 4.7 and theorem 4.8 from [4]. Note that in theorem 4.8 of [4] it

has been proven in fact, that for every vector field Ṽ ∈ Liploc(Rd;Rd) satisfying (iv)
the thesis of the Poincaré recurrence theorem as formulated in corollary 4.5 of [4]
holds, which in particular means (see the proof of [4, corollary 4.5] or alternatively
of [5, proposition 4.1.18]) that claim (i) is fully satisfied, i.e. not only all points are
nonwandering but also Ld-a.e. point is Poisson stable (note that in corollary 4.5
of [4] one only speaks of Poisson stability for positive semitrajectories; the proof for
negative semitrajectories is completely symmetric). �

We are now able to prove Theorem 3.1.

Proof of Theorem 3.1. Let Ṽ be as in Proposition 3.4 with ε/3 instead of ε, i.e.

‖Ṽ − V ‖Lip < ε

and Ld-a.e. point x ∈ Rd is Poisson stable for the equation

(3.8) ẋ = Ṽ (x).

In particular one has

(3.9) LipṼ ≤ LipV + ε, Lip‖Ṽ ‖∞ ≤ ‖V ‖∞ + ε.

Choose a ρ > 0 such that

(3.10) ρ < min

(
1

4
,

ε2

144(LipV + ε)
,

ε2

288(LipV + ε)(‖V ‖∞ + ε)

)
, τ = ρε/12.

Choose {xj}nj=1 ⊂ Rd such that

x1 = p, xn = q, |xj − xj+1| < ρ/4, j = 1, . . . , n− 1.

Let also
x′n := xn = q

For an arbitrary δ ∈ (0, ρ/8) there are Poisson stable points {x′j}
n−1
j=1 ⊂ Rd for the

equation (3.8) satisfying x′j ∈ Bδ(xj), hence in particular

|x′j − x′j+1| ≤ |xj − xj+1|+ 2δ < ρ/4 + 2ρ/8 = ρ/2, j = 1, . . . , n− 1.

Let Tj > 3/ε be such that a trajectory xj(·) of (3.8) with xj(0) = x′j satisfies

|xj(Tj)− x′j | ≤ ρ/2, j = 1, . . . , n− 1.

It is worth observing that in particular (3.10) and (3.9) imply

(3.11) ρ < min

(
Tj(ε/3)

4
,

(ε/3)2

16LipṼ
,

(ε/3)2

32LipṼ ‖Ṽ ‖∞

)
, τ = ρ

(ε/3)

4
.

Construct uk = uk(t), k = 1, . . . , n, with ‖uk‖∞ ≤ ε/3 inductively. Let u0 := 0.
Note that the trajectory of (3.8) starting at x′1 arrives at x1(T1) at τ1 = T1 > 0.

Lemma 3.2 applied with a := 0, s := τ1, ε/3 in place of ε, F (t, x) := Ṽ (x), y := x′2
provides the existence of a control u1 over [0, τ1] which is nonzero only over [τ1−τ, τ1]
such that the trajectory of

ẋ(t) = Ṽ (x(t)) + u0(t) = Ṽ (x(t)),

arrives at x′2 at τ1. Assume now that for some k ∈ N the function uk = uk(t) be a
control defined over [0, τk] such that the trajectory of

ẋ(t) = Ṽ (x(t)) + uk(t)

starting at x′1, arrives at x′k at some τk > 0, i.e. x(τk) = xk. Let uk+1 be the
control coinciding with uk over [0, τk) and over [τk, τk+1], where τk+1 := τk + Tk,
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being the control provided by Lemma 3.2 with a := τk, s := τk+1, ε/3 in place of ε,
F (t, x) := V̄ (x), y := x′k+1, i.e. is nonzero only over [τk+1 − τ, τk+1] Note that the
application of Lemma 3.2 is possible because (3.11) gives exactly (3.2) with these
data.

Proceeding in this way we get that that the trajectory x(·) of the ODE

ẋ(t) = Ṽ (x(t)) + un(t),

starting at x(0) = x′1, eventually arrives at x′n = q at some instance T := τn > 0,
i.e. x(T ) = x′n = q.

Now, since δ > 0 can be chosen arbitrarily small, then one can find by Remark 4.6
some V̄ ∈ Liploc(Rd;Rd) satisfying ‖V̄ − Ṽ ‖∞ < ε/3, and the trajectory x̄(·) of the
ODE

ẋ(t) = V̄ (x(t)) + un(t)

satisfying x̃(0) = p passes through q. It suffices to define now

u(t) := V̄ (x̄(t))− V (x̄(t)) + un(t),

and estimate

‖u‖∞ := ‖V̄ −V ‖∞+‖un‖∞ ≤ ‖V̄ −Ṽ ‖∞+‖Ṽ −V ‖∞+‖un‖∞ < ε/3+ε/3+ε/3 = ε

by construction, to conclude the proof. �

4. Case of a compact manifold

It is worth comparing the Theorem 3.1 with the case when the vector field V
and hence the differential equation (1.1) are defined not on Rd but rather over some
compact smooth connected Riemannian manifold M . In this case we can say more,
namely, that one can find a control u(·) in the form u(t) = W (x(t)), where x(·) is
the trajectory of the controlled system (i.e. in more control theoretic terminology
we may control the system by observing only its state vector), and the vector field
W is small not only in uniform, but also in Lipschitz (i.e. C1) norm. Here for C1

vector field V on M we denote

‖V ‖Lip := sup
x∈M
|V (x))|x + sup

{(x,y)∈M×M,x6=y}

|Pγ,x,yV (x)− V (y)|y
dM (x, y)

,

where dM stands for the Riemannian distance, Pγ,x,y stands for the canonical par-
allel transport operator of a vector in the tangent space TxM to the tangent space
TyM along the geodesics γ, | · |x stands for the norm over TxM provided by the
metric tensor. Clearly the convergence of vector fields with respect to ‖ · ‖Lip is
equivalent to convergence in Whitney C1 topology once M is compact (this can be
easily seen e.g. once one uses the rather simple and general equivalent definition of
Whitney topologies from [6], see also [7, theorem 5.7]).

Theorem 4.1. Let M be a C∞ smooth compact connected Riemannian manifold
without boundary, the vector field V over M be C1, i.e. be a continuously differen-
tiable section of the tangent bundle TM of M , satisfying div V = 0, the divergence
being intended with respect to the volume measure of M . Then for every couple of
points {p, q} ⊂ Rd and every ε > 0 there is a C1 vector field Ṽ on M such that

(4.1) ‖Ṽ − V ‖Lip < ε

and the trajectory of the ODE

(4.2) ẋ = Ṽ (x)

satisfying x(0) = p passes through q, i.e. x(T ) = q for some T > 0.
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Proof. It suffices to prove the claim for p 6= q. We use first theorem 1.1 from [8] to

get a C1 vector field V̂ on M such that

‖V̂ − V ‖Lip < ε/2

and the flow of V̂ is topologically mixing, i.e. for every couple of open sets Up and
Uq in M and for all sufficiently large T > 0 there is a trajectory of

ẏ = V̂ (y)

starting at a point y(0) ∈ Up and arriving at y(T ) ∈ Uq. We use then Lemma 4.2

below with V̂ instead of V and ε/2 instead of ε to get a Ṽ such that the trajectory
of (4.2) satisfying x(0) = p passes through q, and

‖V̂ − Ṽ ‖Lip < ε/2,

which together with (4) gives (4.1) as claimed. �

The following statements have been used in the above proof.

Lemma 4.2. Let V be a Lipschitz vector field on a smooth compact connected
Riemannian manifold M , which is topologically mixing. Then for every p ∈M and
q ∈ M , p 6= q, disjoint open neighborhoods Up of p and Uq of q in M respectively,

and ε > 0 there is a Lipschitz vector field Ṽ on M coinciding with V outside of
Up ∪ Uq such that

(4.3) ‖Ṽ − V ‖Lip < ε

and the trajectory y(·) over M of

ẏ = Ṽ (y),

starting at y(0) = p passes through q, i.e. y(T ) = q for some T > 0.

Remark 4.3. It is easy to observe from the proof of the above Lemma 4.2 that it
holds under somewhat milder assumption of V than topological mixing property:
in fact, transitivity (existence of a dense trajectory) would suffice.

Proof. Take a small ρ > 0 such that there is a smooth embedding f of the ball
Bρ(p) ⊂ Up ⊂M into Rd and of the ball Bρ(q) ⊂ Uq ⊂M (a smooth diffeomorphism
onto the image) with

1

2
d(x, y) ≤ |f(x)− f(y)| ≤ 2d(x, y), and(4.4)

|||f−1
∗ ||| ≤ 2,(4.5)

where d stands for the distance inM and |||f−1
∗ ||| stands for the norm of pushforward

operator f−1
∗ of vector fields seen as a linear operator between Lipschitz vector fields

in Rd and Lipschitz vector fields over B̄ρ(p). We consider the pushforward f∗V of
the vector field V by f defined over f(Bρ(p)) ∪ f(Bρ(q)). Given an ε > 0, by
Lemma 4.4 and Remark 4.5 there is a δ ∈ (0, 1) which we may take to satisfy
δ < ρ/6, with the following property: whenever x1 and x2 are points in M , for
which

(4.6) |f(p)− f(x0)| ≤ δ3, |f(p)− f(x1)| ≤ δ3,

and x̂(·) a trajectory of
˙̂x = (f∗V )(x̂),

satisfying x̂(0) = f(x1), x̂(T ) = f(x2) for some T > 0, then there is a vector field

V̂ : Rd → Rd coinciding with f∗V outside of B2δ(f(x1)) ∪B2δ(f(x2)), such that

(4.7) ‖f∗V − V̂ ‖Lip < ε/2

and for the trajectories ŷ1(·) and ŷ2(·) of

(4.8) ẏ = V̂ (y)
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satisfying ŷ1(0) = f(p) and ŷ2(T ) = f(q) one has that

(i) ŷ1(·) coincides with x̂(·) over f(Bρ(p)) \B2δ(f(x1))
(ii) ŷ2(·) coincides with x̂(·) over f(Bρ(q)) \B2δ(f(x2)).

To prove the existence of a x̂ and T as above consider a trajectory x(·) of (1.1)
such that x1 := x(0) ∈ Bδ3/2(p) and x2 := x(T ) ∈ Bδ3/2(q) for some T > 0
(such a trajectory exists since V is assumed to be topologically mixing), and define
x̂(·) := f(x(·)). Note that then (4.6) are satisfied in view of (4.4).

Let now Ṽ := f−1
∗ V̂ stand for the pushforward of V by f−1, and denote yi(·) :=

f−1(ŷi(·)), i = 1, 2. Then

(i’) y1(·) coincides with x(·) over Bρ(p) \ f−1(B2δ(f(x1))),
(ii’) y2(·) coincides with x(·) over Bρ(q) \ f−1(B2δ(f(x2))),

(iii’) Ṽ coincides with V over (Bρ(p) ∪Bρ(q)) \ f−1(B2δ(f(x1)) ∪B2δ(f(x2))).

Define Ṽ over M \ (Bρ(p)∪Bρ(q)) by setting Ṽ (x) := V (x) for x 6∈ Bρ(p)∪Bρ(q)).
Note that

f−1(B2δ(f(x1))) ⊂ B4δ(f(x1)) by (4.4)(4.9)

⊂ B2δ3+4δ(p) by (4.6) and (4.4)(4.10)

⊂ B6δ(p) because 0 < δ < 1,(4.11)

and analogously f−1(B2δ(f(x2)))B6δ(q), and therefore

Bρ(p) \ f−1(B2δ(f(x1))) ⊃ Bρ(p) \B6δ(q) 6= ∅,

and analogously Bρ(q) \ f−1(B2δ(f(x2))) 6= ∅. Thus the vector field Ṽ defined over
M is smooth. Moreover, (i’) and (ii’) above imply that in fact y1 and y2 are the
same trajectory y of (4.8), thus satisfying y(0) = p, y(T ) = q. Finally, from (4.7)
and (4.5) we get (4.3) concluding the proof. �

The following results have been used in the above proof.

Lemma 4.4. For every ε > 0 there is a δ ∈ (0, 1) with the following property: if θ
is a trajectory of (1.1), i.e.

θ := {x(t) : t ∈ R},
where x(·) solves (1.1), then for every y0 ∈ Rd such that

|y0 − x(0)| ≤ δ3

there is a vector field Ṽ : Rd → Rd coinciding with V outside of B2δ(x(0)) with

(4.12) ‖V − Ṽ ‖Lip < ε

such that the (forward) trajectory (i.e. positive semitrajectory) y(·) of

(4.13) ẏ = Ṽ (y)

satisfying y(0) = y0 coincides with x(·) over the segment [t1, t2], where

t1 := min{t ≥ 0 : x(t) /∈ B2δ(x(0))}, t2 := inf{t ≥ t1 : x(t) ∈ B2δ(x(0))}.
Remark 4.5. The same proof applied to a backward trajectory of (1.1) with fixed
x(T ) for some T > 0 (instead of a forward trajectory with x(0) fixed) shows that
once

|y1 − x(T )| ≤ δ3

there is a vector field Ṽ : Rd → Rd coinciding with V outside of B2δ(x(T )) with

‖V − Ṽ ‖Lip < ε

such that the backward trajectory y(·) of

ẏ = Ṽ (y)

satisfying y(T ) = y1 coincides with x(·) such that the coincides with x(·) over the
segment [t1, t2] defined above.
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Remark 4.6. The same proof can be applied also to nonautonomous ODEs. For
instance, in this way we prove that for every ε > 0 there is a δ ∈ (0, 1) such that if
x(·) is a trajectory of

ẋ = F (t, x),

with a bounded vector field F : R× Rd → Rd, satisfying

|F (t, x1)| − F (t, x2)| ≤ L|x1 − x2|,

then for every y0 ∈ Rd such that

|y0 − x(0)| ≤ δ3,

there is a vector field F̃ : Rd → Rd coinciding with F outside of R×B2δ(x(0)) with

‖F − F̃‖∞ < ε

such that the trajectory y(·) of

ẏ = F̃ (t, y)

satisfying y(0) = y0 coincides with θ outside of B2δ(x(0)). Moreover, if

F (t, x) = V (x) + u(t),

then F̃ (t, x) = Ṽ (x) + u(t), with

‖V − Ṽ ‖∞ < ε.

Of course, if one is interested only in the the smallness of ‖F − F̃‖∞, only Steps 1-4
of the proof are needed.

Proof of Lemma 4.4. Consider a function ϕ ∈ C∞0 (Rd) with suppϕ ∈ B2(0) satis-
fying

0 ≤ ϕ(x) ≤ 1 for all x ∈ Rd,
ϕ(x) = 1 for all x ∈ B̄1(0),

and set

Φ(x) := ϕδ(x)(x− (y0 − x(0))) + (1− ϕδ(x))x, where

ϕδ(x) := ϕ

(
x− x(0)

δ

)
.

By plugging x = Φ(y) into (1.1), we get

ẏ = (DΦ)−1(y(t))V (Φ(y(t))),

which is (4.13) with

Ṽ (y) := (DΦ)−1(y)V (Φ(y)).

The rest of the proof will be divided in several steps.
Step 1 (preparatory observations). We first note that

Φ(x) = x− ϕδ(x)(y0 − x(0)).

Therefore,

DΦ = Id−∇ϕδ ⊗ (y0 − x(0)),

∂yjDΦ = −∇(∂yjϕδ)⊗ (y0 − x(0)),

so that, recalling

‖∇ϕδ‖∞ ≤
‖∇ϕ‖∞

δ
,

‖∇(∂yjϕδ)‖∞ ≤
‖D2ϕ‖∞

δ2
,
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we get

|y − Φ(y)| ≤ δ3,(4.14)

|DΦ(y)| ≥ 1− ‖∇ϕ‖∞δ2, for all y ∈ Rd,(4.15)

‖DΦ− Id|‖∞ ≤ ‖∇ϕ‖∞δ2,(4.16)

‖∂yjDΦ‖∞ = ‖D2ϕ‖∞δ.(4.17)

In particular, from (4.15) we get that when

(4.18) 0 ≤ δ < 1

‖∇ϕ‖1/2∞
,

then |DΦ(y)| > 0 for all y ∈ Rd. Since |Φ(y)| ≥ |y| − δ3, we have that Φ: Rd → Rd
is a proper map (i.e. preimage of a compact set is precompact), and hence under
the condition (4.18) it is globally invertible.

Step 2. Since Φ(x) = x for x ∈ B2δ(x(0))c, we get that y(t) ∈ θ when y(t) 6∈
B2δ(x(0)). Further, under condition (4.18) since Φ is globally invertible, then for
every z ∈ θ \ B2δ(x(0)) one has that z = y(t) for some t ∈ R, i.e. in other words
y(·) coincides with θ outside of B2δ(x(0))c.

Step 3. We claim that y(0) = y0, if δ < 1. In fact, x(0) = Φ(y(0)). This means
that y(0) ∈ Bδ(x(0)), since

y(0)− x(0) = ϕδ(y(0))(y0 − x(0)),

and hence

|y(0)− x(0)| ≤ |y0 − x(0)| ≤ δ3 < δ.

But Φ(x) = x− (y0 − x(0)) for x ∈ B̄δ(x(0)), and hence

x(0) = Φ(y(0)) = y(0)− (y0 − x(0)),

implying the claim.
Step 4. It remains to prove (4.12) for a suitable choice of δ < 1. We prove first

(4.19) ‖V − Ṽ ‖∞ < ε/2.

To this aim we note

|V (y)− Ṽ (y)| ≤ |V (y)− V (Φ(y))|+ |V (Φ(y))− (DΦ)−1(y)V (Φ(y))|
≤ LipV |y − Φ(y)|+ ‖V ‖∞|Id− (DΦ)−1(y)|
≤ LipV |y − Φ(y)|+ ‖V ‖∞|(DΦ)−1(y)||(DΦ)(y)− Id|.

Plugging (4.14), (4.15) and (4.16) into the above estimate, we get

(4.20) |V (y)− Ṽ (y)| ≤ LipV δ3 + ‖V ‖∞
‖∇ϕ‖∞δ2

1− ‖∇ϕ‖∞δ2
,

so that to get (4.19) it is enough to take δ > 0 so that the right-hand side of (4.20)
be less than ε/2.

Step 5. To conclude the proof of (4.12), it remains to prove

(4.21) ‖DV −DṼ ‖∞ < ε/2.

Suppose V ∈ Lip(Rd;Rd) ∩ C1(Rd;Rd) with uniformly continous derivatives. We
estimate

(4.22)
|DV (y)−DṼ (y)| ≤|DV (y)− (DṼ )(Φ(y))|

+ |D((DΦ)−1)(y) · V (Φ(y))|.

Clearly, when δ < 1, we have x(0) ∈ B1(y0). Denoting by ω(·) the (nondecreasing)
modulus of continuity of DV over B̄1(y0), we have

(4.23) |DV (y)− (DṼ )(Φ(y))| ≤ ω(|y − Φ(y)|) ≤ ω(δ3).
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Further, from

∂yj ((DΦ)−1)(y) = −(DΦ)−1(y)∂yj (DΦ)(y)(DΦ)−1(y)

and (4.15), (4.17) we get

(4.24) |D((DΦ)−1)(y) ≤ ‖D2ϕ‖∞δ
(1− ‖∇ϕ‖∞δ2)

2 .

Plugging (4.23) and (4.24) into (4.22), we obtain

|DV (y)−DṼ (y)| ≤ ω(δ3) +
‖D2ϕ‖∞δ

(1− ‖∇ϕ‖∞δ2)
2 ,

which implies (4.21) and hence, toghether with (4.19), also (4.12), thus concluding
the proof. �
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Center, Gdańsk University of Technology and Faculty of Mathematics and Computer

Science, St. Petersburg State University, 13B Universitetskaya Emb., St. Petersburg
199034, Russia

Email address, Sergey Kryzhevich: kryzhevich@gmail.com

(Eugene Stepanov) St.Petersburg Branch of the Steklov Mathematical Institute of
the Russian Academy of Sciences, Fontanka 27, 191023 St.Petersburg, Russia and Higher

School of Economics, Faculty of Mathematics, Usacheva str. 6, 119048 Moscow, Russia,
and Department of Mathematical Physics, Faculty of Mathematics and Mechanics, St.

Petersburg State University, Universitetskij pr. 28, Old Peterhof, 198504 St.Peters-

burg, Russia
Email address, Eugene Stepanov: stepanov.eugene@gmail.com


