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Sobolev W 1
p -spaces on d-thick closed subsets of RRRRRRRn

S. K. Vodopyanov and A. I. Tyulenev

Abstract. Let S ⊂ Rn be a nonempty closed set such that for some
d ∈ [0, n] and ε > 0 the d-Hausdorff content H d

∞(S ∩ Q(x, r)) ⩾ εrd for
all cubes Q(x, r) with centre x ∈ S and edge length 2r ∈ (0, 2]. For each
p > max{1, n − d} we give an intrinsic characterization of the trace space
W 1

p (Rn)|S of the Sobolev space W 1
p (Rn) to the set S. Furthermore, we

prove the existence of a bounded linear operator Ext: W 1
p (Rn)|S →W 1

p (Rn)
such that Ext is the right inverse to the standard trace operator. Our results
extend those available in the case p ∈ (1, n] for Ahlfors-regular sets S.
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§ 1. Introduction

Given m, n ∈ N let Cm(Rn) denote the linear space of all functions on Rn with
continuous partial derivatives up to order m equipped with the standard seminorm.
The problem considered by Whitney in 1934 in his famous papers [1] and [2] reads
as follows.

Classical Whitney Extension Problem. Let m, n ∈ N and let S be an arbitrary
nonempty subset of Rn . How can we decide whether a given function f : S → R
extends to a Cm(Rn)-function?

Whitney [2] solved this problem completely only in the case n = 1. Furthermore,
he gave a solution of the analogous problem in the context of the Lipschitz spaces
Cm−1,1(Rn), m, n ∈ N (see [1]). After [1] and [2], great progress was made by
many authors (see [3]–[5] and also the references there). Fefferman gave a complete
solution (that is, for all m, n ∈ N) of the Classical Whitney Extension Problem
[6]–[9] only recently.

Recall that, according to the classical Sobolev embedding theorem (for example,
see [10], Ch. I, § 1.8.2), in the case m ∈ N, j ∈ {1, . . . ,m} and p > n/(m−j+1), for
every F ∈ Wm

p (Rn) there exists a representative F̂ ∈ Cj−1(Rn). This fact enables
one to identify each element F ∈ Wm

p (Rn) with its unique continuous represen-
tative. This implies that F has a well-defined restriction to any given nonempty
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subset of Rn. As a result, in the case p > n we can consider the analogue of
the Classical Whitney Extension Problem, where Cm(Rn) is replaced by Wm

p (Rn).
There is extensive literature devoted to these problems (see [11]–[19]).

In the case when m, n ∈ N, n ⩾ 2 and 1 < mp ⩽ n, functions in the space
Wm

p (Rn) do not (in general) have continuous representatives (see Ch. 5, § 6 in [20]).
Nevertheless, every F ∈ Wm

p (Rn) has a ‘sufficiently nice’ representative F̂ which
has a well-defined trace F̂ |S on each set S ⊂ Rn with positive Cm,p-capacity. Unfor-
tunately, by contrast with the case p > n, in the case 1 < p ⩽ n Whitney-type
problems have been posed and solved only in very particular cases. More precisely,
either Ahlfors d-regular sets S [21]–[23] or special cusps in R2 [24] have been con-
sidered. Under minimal restrictions on S the corresponding problem is very
complicated and has never been considered. In [25], for each d ∈ [0, n] Rychkov
introduced so-called d-thick sets S ⊂ Rn, which are regular with respect
to the d-Hausdorff content, that is, H d

∞(Q(x, r) ∩ S) ≈ rd for all x ∈ S and
r ∈ (0, 1]. For such sets he considered Whitney-type problems in the context of
Besov and Lizorkin-Triebel spaces. Given d ∈ [0, n], the class of Ahlfors d-regular
sets is strictly contained in the class of d-thick sets, but the latter is much wider.
For example, every path connected subset of Rn is 1-thick but in general is not
Ahlfors 1-regular (see Example 2.1 below).

In this paper we solve the following problem.

Problem A. Let d ∈ [0, n], p ∈ (max{1, n − d},∞], and let S ⊂ Rn be a d-thick
closed set. Given a function f : S → R, how can we decide whether there exists
a function F ∈ W 1

p (Rn) such that F̂ |S(x) = f(x) for C1,p-quasi-every x ∈ S? Con-
sider the W 1

p (Rn)-norms of all functions F ∈ W 1
p (Rn) such that F̂ |S(x) = f(x) for

C1,p-q.e. x ∈ S . How small can these norms be?

Given a set S ⊂ Rn with C1,p(S) > 0, we denote the usual trace space of
the space W 1

p (Rn) by W 1
p (Rn)|S and let Tr |S : W 1

p (Rn) → W 1
p (Rn)|S denote the

corresponding trace operator. In our paper we obtain also a solution to the following
problem.

Problem B. Let d ∈ [0, n] and p ∈ (max{1, n − d},∞], and let S ⊂ Rn be
a closed d-thick set. Does there exist a bounded linear operator Ext: W 1

p (Rn)|S →
W 1

p (Rn) such that Tr |S ◦ Ext = Id on W 1
p (Rn)|S ?

In § 4 we present solutions to Problems A and B. In § 5 we consider simplified
versions of these problems, when the set S has a porous boundary. In this case the
corresponding criterion (the solution to Problem A) can be simplified. In § 6 we
show that our main results include the corresponding results concerning W 1

p -spaces
obtained in [21], [23] and [24] as particular cases.

Finally we would like to underline that the methods in [25] gave a solution to
Problem B only in the case d > n − 1. To the best of our knowledge, Problem A
has never been considered in the literature. We introduce new methods which
have never been used before. For example, we introduce the concept of a d-regular
sequence of measures and generalized Calderón-type maximal functions with respect
to such sequences. Such tools help us to capture the smoothness properties of
functions in the trace space and enable us to solve Problems A and B for every
d ∈ [0, n].
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§ 2. Necessary background and statements of the main results

Throughout the paper C, C1, C2, . . . will be generic positive constants. These
constants can change even in a single string of estimates. The dependence of a con-
stant on certain parameters is shown, for instance, by the notation C = C(n, p, k).
We write A ≈ B if there is a constant C ⩾ 1 such that A/C ⩽ B ⩽ CA.

Throughout the paper x = (x1, . . . , xn) denotes an element of the space Rn.
The symbols α and β will be used to denote multi-indices, that is, elements of the
space Nn

0 . Following [23] it will often be convenient to measure distances in Rn in
the uniform norm ∥x∥ := ∥x∥∞ := max{|xi| : i = 1, . . . , n}, x ∈ Rn. Given two
subsets A and B of Rn, set dist(A, B) := inf{∥a − b∥∞ : a ∈ A, b ∈ B}. For any
C ⊂ Rn we also set diam C := sup{∥a− a′∥∞ : a, a′ ∈ C}.

The symbols B(x, r) and Q(x, r) stand for the closed balls with centre x and
radius r > 0 in the standard Euclidean norm ∥ · ∥2 and in the uniform norm ∥ · ∥∞,
respectively (we will also call Q = Q(x, r) a cube) Given a number c > 0 we write
cB (cQ) to denote the ball B(x, cr) (the cube Q(x, cr), respectively). By a dyadic
cube we mean an arbitrary half-open cube Q̃k,m :=

∏n
i=1[mi/2k, (mi + 1)/2k),

k ∈ Z, m = (m1, . . . ,mn) ∈ Zn. Given k ∈ Z, we let Qk denote the mesh of all
dyadic cubes with edge length 2−k.

For any set E ⊂ Rn we let E and int E denote the closure and interior of E
in the topology induced by an arbitrary norm in Rn (recall that all norms in Rn

are equivalent). For A ⊂ Rn and δ > 0 we define the δ-neighbourhood of A to be
Uδ(A) :=

⋃
x∈A int Bδ(x).

Given a Borel measure m and a nonempty Borel set S ⊂ Rn, we define the
restriction of m to S. More precisely, we set m⌊S(G) := m(G∩S) for every nonempty
Borel set G ⊂ Rn.

Let m be an arbitrary Borel measure on Rn. Given f ∈ Lloc
1 (Rn, m), for every

Borel set G ⊂ Rn with m(G) < +∞ we set

fG,m :=
 

G

f(x) dm(x) :=


1

m(G)

ˆ
G

f(x) dm(x), m(G) > 0,

0, m(G) = 0.
(2.1)

2.1. Ahlfors d-regular sets and d-thick sets. Given S ⊂ Rn, 0 ⩽ d ⩽ n and
δ ∈ (0, +∞] we set

H d
δ (S) := inf

∑
j

rd
j ,

where the infimum is taken over all countable covers of S by cubes Q(xj , rj) with
arbitrary centres xj and radii rj < δ. We call the quantity H d

∞(S) the d-Hausdorff
content of S.

We define the Hausdorff d-measure of S by H d(S) := limδ→0 H d
δ (S). Note

that our definitions of Hausdorff contents and measures are slightly different from
the classical ones (cf. § 5.1 in [26]). We use covers by balls in the ∥ · ∥∞-norm,
that is, by cubes instead of classical balls. Up to some universal constants both
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approaches return the same values of the corresponding measures. Note also that
in our case H n coincides with the classical Lebesgue measure Ln on the Borel
σ-algebra of Rn.

Given m ∈ N and p ∈ (1,∞), recall the concept of Cm,p-capacity (see § 2.1
of [26]). In what follows we say that some property holds (m, p)-quasi-everywhere
((m, p)-q.e. for short) if it holds everywhere outside some set E with Cm,p(E) = 0.
The following property summarizes the connections between C1,p-capacity and
Hausdorff measures (see Theorems 5.1.9 and 5.1.13 in [26]).

Proposition 2.1. Let p ∈ (1, n] and let E ⊂ Rn . If H n−p(E) < +∞, then
C1,p(E) = 0. Conversely, if C1,p(E) = 0, then H d(E) = 0 for every d > n− p.

We have taken the following definition from [22], Ch. 2, §§ 1.1 and 1.2.

Definition 2.1. Given d ∈ [0, n], we say that a closed set S ⊂ Rn is Ahlfors
d-regular (or just a d-set for short) if there exists a d-measure on S, that is, a Borel
measure m with supp m = S such that for all x ∈ S and r ∈ (0, 1]

c1(m)rd ⩽ m(Q(x, r) ∩ S) ⩽ c2(m)rd, (2.2)

where the positive constants c1(m), c2(m) depend on m but do not depend on x
or r.

Remark 2.1. We can show that given a (closed) d-set S the restriction H d⌊S is
a d-measure on S (see [22], § 1.2, Theorem 1, for details).

Using Remark 2.1 we introduce the following important notation. In what fol-
lows, given an Ahlfors d-regular (closed) set S we set cd

i (S) := ci (H d⌊S), i = 1, 2.
The following proposition will be useful for comparing d-sets with d-thick sets

below.

Lemma 2.1. Let d ∈ [0, n] and let I be a nonempty index set. Let {Sα}α∈I be
a family of dα-sets with dα ∈ [d, n], α ∈ I , such that the set S :=

⋃
α∈I Sα is

closed and Ahlfors d-regular. Then the following holds.
(1) dα = d for every α ∈ I .
(2) Suppose the family {Sα}α∈I is such that H d(Sα ∩ Sα′) = 0 for every

α, α′ ∈ I , α ̸= α′ , infα∈I cd
1(Sα) > 0 and

⋂
α∈I Sα ̸= ∅. Then card I < ∞.

Proof. (1) If there exists α0 ∈ I for which dα0 > d, then Remark 2.1 and (2.2)
with m = H dα0 ⌊S , together with elementary properties of Hausdorff measures,
show that H d(Q(x, r) ∩ S) = +∞ for all x ∈ Sα0 and all r ∈ (0, 1]. Hence the
right-hand side of (2.2) must be violated for m = H d⌊S , each x ∈ Sα0 and r ∈ (0, 1].
This contradicts the Ahlfors d-regularity of S.

(2) Fix a point x0 ∈
⋂

α∈I Sα. By (1), dα = d for all α ∈ I . Assume that
card I = ∞. Then it is easy to see from our assumptions that for every r ∈ (0, 1]
there is a countable family of different indices {αk} ⊂ I such that S̃αk

(r) :=
Q(x0, r) ∩ (Sαk

\
⋃k−1

j=1 Sαj
) ̸= ∅ for all k ∈ N. Hence there is a sequence of

distinct points {xk} such that xk ∈ S̃αk
(r/2) for every k ∈ N. Let cd(S) :=

infα∈I cd
1(Sα). It is clear from the construction and Remark 2.1 that H d(S̃αk

(r)) ⩾
H d(Q(xk, r/2)∩S̃αk

(r)) ⩾ H d(Q(xk, r/2)∩Sαk
) ⩾ cd(S)(r/2)d for every r ∈ (0, 1].
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Hence the fact that the sets S̃αk
(r) are disjoint and measurable, together with the

countable additivity of the Hausdorff measures, gives the following estimate, which
contradicts (2.2). Namely, for all r ∈ (0, 1]

H d(Q(x0, r) ∩ S) ⩾ H d

( ∞⋃
j=1

S̃αj
(r)

)
⩾

∞∑
j=1

cd(S)
(

r

2

)d

= +∞ ∀ r ∈ (0, 1].

The proof is complete.

To the best of our knowledge the following concept was first introduced in [25].

Definition 2.2. Let d ∈ [0, n]. A set S ⊂ Rn is said to be d-thick if there exists
a constant cd

3(S) > 0 such that for all x ∈ S and r ∈ (0, 1]

cd
3(S)rd ⩽ H d

∞(Q(x, r) ∩ S). (2.3)

The following proposition is an immediate consequence of Definition 2.2. We
omit the proof.

Proposition 2.2. Let S ⊂ Rn be a d-thick set for some d ∈ [0, n]. Then
(1) the closure S of S is d-thick;
(2) S is d′-thick for every d′ , 0 ⩽ d′ ⩽ d, and cd′

3 (S) ⩾ cd
3(S).

The following lemma exhibits an important relation between the concepts of
Ahlfors d-regular sets and d-thick sets.

Lemma 2.2. Let d ∈ [0, n]. Every Ahlfors d-regular set S ⊂ Rn is d-thick. Fur-
thermore,

cd
3(S) ⩾

cd
1(S)

cd
2(S)2d+1

. (2.4)

Proof. Suppose that S ⊂ Rn is an Ahlfors d-regular set. Fix a cube Q = Q(x, r)
with x ∈ S and 0 < r ⩽ 1. Let {Qj}j∈N = {Q(xj , rj)}j∈N be a covering of Q ∩ S
such that H d

∞(Q∩S) ⩾ (1/2)
∑

j∈N(rj)d. Clearly, we can assume that Qj ∩S ̸= ∅
for all j ∈ N. For every j ∈ N fix a point x̃j ∈ Qj ∩ S. Using Remark 2.1,
estimate (2.2), and the subadditivity of H d

∞ we obtain the required estimate:

H d
∞(Q ∩ S) ⩾

1
2d+1

∑
j∈N

(2rj)d ⩾
1

cd
2(S)2d+1

∑
j∈N

H d(Q(x̃j , 2rj) ∩ S)

⩾
1

cd
2(S)2d+1

H d(Q ∩ S) ⩾
cd
1(S)

cd
2(S)2d+1

rd. (2.5)

The proof is complete.

The next result is a direct consequence of Lemma 2.2, Proposition 2.2, (2), and
the monotonicity of H d

∞.

Lemma 2.3. Let I be an arbitrary nonempty index set. Let 0 ⩽ d ⩽ dα ⩽ n
for every α ∈ I . Let {Sα}α∈I be a family of Ahlfors dα-regular sets and let
S :=

⋃
α∈I Sα . Then S is d-thick and

c3(S) ⩾ sup
α∈I

cd
3(Sα). (2.6)
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Now that we have Lemmas 2.1 and 2.3 at our disposal, we can present
useful examples which illustrate the huge difference between Definition 2.1 and
Definition 2.2.

Example 2.1. Let Ω be a path connected subset of Rn. Then Ω and Ω are 1-thick.
In fact, fix a point x ∈ Ω. Let Q = Q(x, r) be a cube with edge length 0 < 2r ⩽ 2.
Consider two cases.

In the first case there is a point y ∈ Ω \ Q. Hence there is a curve γx,y which
connects x and y. Let {Qj}j∈N = {Q(xj , rj)}j∈N be an arbitrary covering of Q∩Ω
for which ∑

j∈N
rj ⩽ 2H 1

∞(Ω ∩Q). (2.7)

We choose an index set A ⊂ N such that γx,y ∩ Qj ̸= ∅ for every j ∈ A and
γx,y ⊂

⋃
j∈A Qj . Consider the projections γi

x,y, i = 1, . . . , n, of our curve and the
projections Qi

j of cubes in the cover onto the ith coordinate axes. Since we measure
distances in the ∥·∥∞-norm, there exists i0 ∈ {1, . . . , n} for which H 1(γi0

x,y) ⩾ r. By
construction the family of closed intervals {Qi0

j }j∈A covers γi0
x,y. Hence from (2.7)

we derive

H 1
∞(Ω ∩Q) ⩾

1
2

∑
j∈N

rj ⩾
1
2

∑
j∈A

rj ⩾
H 1(γi0

x,y)
2

⩾
r

2
. (2.8)

In the second case Ω ⊂ Q(x, r). Since r ⩽ 1, we have

H 1
∞(Q(x, r) ∩ Ω) ⩾ H 1

∞(Ω) ⩾ H 1
∞(Ω)r. (2.9)

Combining (2.8) and (2.9) shows that Ω is 1-thick, and we can take c1
3(Ω) =

min{H 1
∞(Ω), 1/2}.

It is obvious that this set cannot be Ahlfors 1-regular for n ⩾ 2. In addition,
elementary computations show that for each s > 1 and n ⩾ 2 the cusp Ωs := {x =
(x′, xn) ∈ Rn : xn > 0, ∥x′∥∞ ⩽ xs

n} cannot be Ahlfors d-regular for d ∈ [0, n].

Example 2.2. Let S := Q(0, 1) ∪ ([1, 2]× {0}) ⊂ R2. This set is 1-thick as a union
of a 2-thick set (a square) and a 1-thick set (a line interval). From Lemma 2.1, (1),
it follows that S is not Ahlfors 1-regular.

Example 2.3. Let E :=
⋃

n∈N{(r, φ) : r ∈ [0, 1], φ = 2−n} ∪ [0, 1]× {0} ⊂ R2. From
Lemma 2.3 it follows that E is 1-thick. It is not Ahlfors 1-regular by Lemma 2.1, (2).

Example 2.4. We can show that any (ε, δ)-domain Ω is n-thick. We present only
a sketch of the proof. Fix x ∈ Ω and r < min{diam Ω, δ}/4. Choose an arbi-
trary y ∈ Ω so that ∥x − y∥ ⩾ r. Then it easily follows from formulae (1.1)
and (1.2) in [27] that there exists a curve γx,y and a point z ∈ γx,y ∩ ∂Q(x, r/3)
such that B(z, c(ε, δ, n)r) ⊂ Ω for some positive constant c(ε, δ, n). The case
r ⩾ min{diam Ω, δ}/4 can be considered similarly to the second case in Exam-
ple 2.1.

2.2. Regular sequences of measures and Calderón-type maximal func-
tions. The following concept is one of the cornerstones which enable us to solve
Problem A.



792 S.K. Vodopyanov and A. I. Tyulenev

Definition 2.3. Let S be a closed d-thick set for some d ∈ [0, n]. Let {µk}k∈N0 be
a sequence of Borel measures such that supp µk = S, k ∈ N0. We say that {µk}k∈N0

is a d-regular sequence of measures on S if and only if for some C > 0 the following
properties hold for every k ∈ N0:

(1) µk(Q(x, r)) ⩽ rd for every x ∈ Rn and every r ∈ (0, 2−k]; (2.10)

(2) µk(Q(x, 2−k)) ⩾ C2−dk for every x ∈ S; (2.11)
(3) µk = γkµ0 for γk ∈ L∞(S, µ0) and

2d−nγk+1(x) ⩽ γk(x) ⩽ γk+1(x) for µ0-a.e. x ∈ S. (2.12)

Remark 2.2. It is clear that there exists a largest positive constant C for which
(2.11) holds. We denote it by C{µk}.

Remark 2.3. We show in § 3 below that Definition 2.3 is consistent: for every d-thick
closed set S there exists a d-regular sequence of measures on S.

Definition 2.4. Let m be an arbitrary nonzero Radon measure. Let Q = Q(x, r)
be a closed cube. Given a function f ∈ Lloc

1 (Rn, m), the best approximation
to f by constants on Q, normalized with respect to m, is defined by Em(f, Q) :=
infc∈R

ffl
Q
|f(y)− c| dm(y).

Remark 2.4. Elementary computations give

Em(f, Q) ⩽ Ẽm(f, Q) :=
 

Q

|f(y)− fQ,m| dm(y) ⩽ 2Em(f, Q) (2.13)

(recall (2.1)).

Here and in the sequel we use the following notation. Given a number r ∈ (0, 1]
we set k(r) :=

∣∣[log2 r]
∣∣, so that this is the unique integer such that r ∈ [2−k(r),

2−k(r)+1).
The following definition is a far-reaching generalization of the classical concept

of a maximal function measuring smoothness first introduced by Calderón [28].

Definition 2.5. Let S ⊂ Rn be a d-thick closed set for some d ∈ [0, n]. Let
{µk}k∈N0 be a d-regular sequence of measures on S. Let f ∈ Lloc

1 (Rn, µk) for every
k ∈ N0. Given t ∈ [0, 1], we consider the Calderón-type maximal function with
respect to {µk}k∈N0 . For every x ∈ Rn

f ♯
{µk}(x, t) :=

{
supr∈(t,1] r

−1Eµk(r)(f, Q(x, r)), t ∈ [0, 1),
Eµk(r)(f, Q(x, 1)), t = 1.

Remark 2.5. We set f ♯
{µk}(x) := f ♯

{µk}(x, 0) for brevity. If the set S is Ahlfors
n-regular, we can take µk = H n⌊S for every k ∈ N0. Hence, in this case our maxi-
mal function f ♯

{µk} is similar to that introduced by Shvartsman [23]. In particular,
if S = Rn, we obtain the Calderón-type maximal function (see [28]).
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2.3. Porous sets.

Definition 2.6. Let S be a closed nonempty subset of Rn and let λ ∈ (0, 1). For
every j ∈ N0 we define

Sj(λ) := {x ∈ S : there exists y ∈ Q(x, 2−j) such that int Q(y, λ2−j) ⊂ Rn \ S}

and call Sj(λ) the maximal 2−j-porous subset of S. We say that S is porous if
there exists λ ∈ (0, 1) such that Sj(λ) = S for every j ∈ N0.

We gather some useful facts about porous sets. The second (see item (2) below)
is a special case of Proposition 9.18 in [29].

Proposition 2.3. Let S be a closed nonempty subset of Rn and let λ ∈ (0, 1).
Then

(1) Sj(λ) is closed for every j ∈ N0 ;
(2) if S is Ahlfors d-regular for some d ∈ [0, n), then S is porous.

Example 2.5. Let β : [0, +∞) → [0, +∞) be a continuous function that is strictly
increasing and such that β(0) = 0 and β(t) > 0, t > 0. Consider the closed single
cusp

Gβ := {x = (x′, xn) ∈ Rn : xn ∈ [0,∞), ∥x′∥∞ ⩽ β(xn)}.

It is easy to see that the boundary ∂Gβ of Gβ is porous.

2.4. Trace spaces of Sobolev spaces. Recall that given p ∈ [1,∞], n ∈ N and
an open set G ⊂ Rn, the Sobolev space W 1

p (G) is the linear space of all (equivalence
classes of) real functions F ∈ Lp(G) whose generalized partial derivatives on G
DαF , |α| ⩽ 1, belong to Lp(G). This space is equipped with the norm

∥F |W 1
p (G)∥ :=

∑
|α|⩽1

∥DαF |Lp(G)∥. (2.14)

The next result, which is a very special case of Theorem 6.2.1 in [26], will help
us to define the trace of a Sobolev function F consistently on a given ‘sufficiently
massive’ set S.

Proposition 2.4. Let p ∈ (1,∞] and F ∈ W 1
p (Rn). If p ∈ (1, n], then there exists

a set EF ⊂ Rn with C1,p(EF ) = 0 and a representative F̂ of the element F such
that every point x ∈ Rn \ EF is a Lebesgue point of F̂ . If p > n, then there exists
a continuous representative F̂ of F .

In the sequel we call the representative F̂ constructed in Proposition 2.4 a good
representative of F . Recall that, given p ∈ (1,∞), a property of F is said to hold
(1, p)-quasi-everywhere ((1, p)-q.e. for short) if it holds everywhere except on a set
of C1,p-capacity zero.

Definition 2.7. Let p ∈ (1, n] and F ∈ W 1
p (Rn). Let F̂ be a good representa-

tive of F . Given a set S ⊂ Rn with C1,p(S) > 0, the trace F |S of F on S is the
class of equivalent (modulo sets of C1,p-capacity zero) functions f : S → R such
that F̂ (x) = f(x) for (1, p)-q.e. x ∈ S.
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Definition 2.8. Let p ∈ (n,∞] and F ∈ W 1
p (Rn). Let F̂ be a continuous repre-

sentative of F . Given a nonempty set S ⊂ Rn the trace F |S of F on the set S is
the pointwise restriction of F̂ to S.

Below we identify a function f : S → R and the class of functions each of which
coincides (1, p)-quasi-everywhere with f on S.

Now using Definitions 2.7 and 2.8 we introduce the following.

Definition 2.9. Let p ∈ (1,∞]. Given a nonempty set S ⊂ Rn with C1,p(S) > 0,
we define the trace space W 1

p (Rn)|S of the space W 1
p (Rn) as follows:

W 1
p (Rn)|S := {f : S → R : there exists F ∈ W 1

p (Rn) such that F |S = f}.

We equip this space with the usual trace norm

∥f |W 1
p (Rn)|S∥ := inf ∥F |W 1

p (Rn)∥,

where the infimum is taken over all F ∈ W 1
p (Rn) such that F |S = f . Furthermore,

we define the trace operator Tr |S : W 1
p (Rn) → W 1

p (Rn)|S which takes F ∈ W 1
p (Rn)

and gives back F |S .

Definition 2.10. Let p ∈ (1,∞]. Let S ⊂ Rn be a nonempty set. Assume that
C1,p(S) > 0 whenever p ∈ (1, n]. We say that a map Ext: W 1

p (Rn)|S → W 1
p (Rn)

is an extension operator if it is the right inverse for the trace operator, so that
Tr |S ◦ Ext = Id on W 1

p (Rn)|S .

Remark 2.6. Let d ∈ [0, n], and let S ⊂ Rn be a d-thick set. It is important
to underline that Proposition 2.1 and Definition 2.9 clearly imply that for every
p ∈ (max{1, n−d},∞) the trace space W 1

p (Rn)|S is well defined. Furthermore, our
definitions immediately implies that the trace operator Tr |S : W 1

p (Rn) → W 1
p (Rn)|S

is linear and bounded.

Remark 2.7. In the case p = ∞ the Sobolev space W 1
∞(Rn) can be identified with

the space LIP(Rn) of Lipschitz functions, and it is known that the restriction
LIP(Rn)|S of the latter coincides with the space LIP(S) of Lipschitz continuous
functions on S and that, furthermore, the classical Whitney extension operator
maps LIP(S) linearly and continuously into LIP(Rn) (for instance, see [20], Ch. 6).
Hence in the sequel we will only deal with the case 1 < p < ∞.

2.5. Statements of the main results. As we said above, without loss of gen-
erality we can work with the case p ̸= ∞.

Given a closed set S ⊂ Rn and k ∈ N0, we define

Σk := Σk(S) := {x ∈ S : dist(x, ∂S) ⩽ 2−k}.

Definition 2.11. Let p ∈ (1,∞), d ∈ [0, n] and λ ∈ (0, 1). Let S ⊂ Rn be a d-thick
closed set. Let {µk} = {µk}k∈N0 be a d-regular sequence of measures on S. For
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every p ∈ (1,∞) we define the following nonnegative functionals (with values in
[0, +∞]) on the space W 1

p (Rn)|S :

S N S,p[f ] := ∥f ♯
{µk}|Lp(S, H n)∥,

B̃N S,p,λ[f ] :=
( ∞∑

k=1

2k(d−n)

ˆ
Sk(λ)

(
f ♯
{µk}(x, 2−k)

)p
dµk(x)

)1/p

,

BN S,p[f ] :=
( ∞∑

k=1

2kp(1−(n−d)/p)

ˆ
Σk

(
Eµk

(f, Q(x, 2−k))
)p

dµk(x)
)1/p

,

ÑS,p,λ[f ] := ∥f |Lp(µ0)∥+ S N S,p[f ] + B̃N S,p,λ[f ],
NS,p[f ] := ∥f |Lp(µ0)∥+ S N S,p[f ] + BN S,p[f ]. (2.15)

Remark 2.8. From Proposition 2.1 and Lemma 3.6 it follows that all the functionals
in (2.15) are well defined on the trace space W 1

p (Rn)|S . More precisely their values
remain the same after changing the function f on a set of C1,p-capacity zero.

Remark 2.9. The symbols S N S,p, B̃N S,p,λ and BN S,p have not been picked at
random. Informally speaking, S N p is the ‘Sobolev part’ of the trace norm, while
we may regard the functionals BN S,p and B̃N S,p,λ as possible variants for the
role of a Besov-type seminorm in the trace space. We clarify this in Examples 6.1
and 6.2, respectively.

Now we are ready to formulate our main result, which solves Problems A and B.

Theorem 2.1. Let d ∈ [0, n] and p ∈ (max{1, n− d},∞). Let S ⊂ Rn be a d-thick
closed set. Let {µk}k∈N0 be a d-regular sequence of measures on S . Then a function
f : S → R belongs to the trace space W 1

p (Rn)|S if and only if for (1, p)-q.e. x ∈ S

lim
r→0

 
Q(x,r)∩S

|f(x)− f(z)| dµk(r)(z) = 0 (2.16)

and ÑS,p,λ[f ] < ∞ for some λ ∈ (0, 1). Furthermore,

∥f |W 1
p (Rn)|S∥ ≈ ÑS,p,λ[f ] (2.17)

and there exists a bounded linear extension operator Ext: W 1
p (Rn)|S → W 1

p (Rn).

Remark 2.10. Recall Example 2.1. Consider a path connected closed set S ⊂ R2.
It is obvious that using Theorem 2.1 we obtain an intrinsic description of the trace
space of the Sobolev space W 1

p (Rn) on S in the full range of parameters p ∈ (1,∞).
We would like to underline that even this particular case of Theorem 2.1 was never
considered in the literature.

The results in Theorem 2.1 can be simplified in the case when either S or Rn \S
possesses a certain ‘plumpness’.
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Theorem 2.2. Let d ∈ [0, n] and p ∈ (max{1, n− d},∞). Let S ⊂ Rn be a d-thick
closed set. Let {µk}k∈N0 be a d-regular sequence of measures on S . Assume that
∂S is porous. Then a function f : S → R belongs to the trace space W 1

p (Rn)|S if
and only if for (1, p)-q.e. x ∈ S

lim
r→0

 
Q(x,r)∩S

|f(x)− f(z)| dµk(r)(z) = 0 (2.18)

and NS,p[f ] < ∞. Furthermore,

∥f |W 1
p (Rn)|S∥ ≈ NS,p[f ] (2.19)

and there exists a linear bounded extension operator Ext: W 1
p (Rn)|S → W 1

p (Rn).

§ 3. Main technical tools

The aim of this section is to bring together all the necessary technical results
which are essential to the proofs of Theorems 2.1 and 2.2. As well as some very
well-known facts, the section contains some new results. We split the section into
several subsections for the reader’s convenience.

3.1. Maximal functions and potentials. Let F ∈ Lloc
1 (Rn) and α ∈ [0, n).

Given t, s ∈ [0,∞], we introduce the fractional maximal operator

M<s
>t [F, α](x) := sup

r∈(t,s)

rα

 
Q(x,r)

|F (y)| dH n(y), x ∈ Rn.

We use the notation M>t[·, α] := M<∞
>t [·, α], M[·, α] := M>0[·, α] and M<s

>t [F ] :=
M<s

>t [F, 0].

Remark 3.1. Assume that 0 < t′ ⩽ t < s ⩽ s′ ⩽ +∞. Then it is easy to see that
for every x ∈ Rn and y ∈ Q(x, t)

M<s
>t [F, α](x) ⩽ M<s′

>t′ [F, α](x), M<s
>t [F, α](x) ⩽ C(n) M<2s

>t [F, α](y). (3.1)

The following result is a very particular case of Theorem B in [30].

Theorem A. Let d ∈ [0, n], α ∈ [0, n), s ∈ (0, +∞] and γ ∈ (1,∞). Let m be
a Radon measure on Rn such that for some (universal) positive constant C

m(Q(x, r)) ⩽ Crd, x ∈ Rn, r ∈ (0, s). (3.2)

If γα ⩾ n− d, then the operator M<s[·, α] is bounded from Lγ(Rn) into Lγ(Rn, m).

The following simple fact will be of use in what follows (see [31], § 2.4.3, for
instance, for the proof).

Proposition 3.1. Suppose that d ∈ [0, n). Then given a function F ∈ Lloc
1 (Rn),

there exists a set EF ⊂ Rn with H d(EF ) = 0 such that for every x ∈ Rn \ EF

lim
r→0

1
rd

ˆ
Q(x,r)

|F (y)| dH n(y) = 0.
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Let α ∈ [0, n). Given a function g ∈ Lloc
1 (Rn), for every cube Q we define the

reduced Riesz potential by

IQα [g](x) :=
ˆ

Q

g(y)
∥x− y∥n−α

2

dH n(y), x ∈ Rn.

Remark 3.2. It is useful to note a simple relation between Riesz potentials and frac-
tional maximal operators. Suppose that α ∈ (0, n). Then for every R > 0 and
δ ∈ (0, α)

M<R[g, α](x) ⩽ IQ(x,R)
α [g](x) ⩽ C(δ, R) M<2R[g, (α− δ)](x), x ∈ Rn. (3.3)

Now we formulate an important beautiful estimate, which is a special case of
one of the implications in Theorem 2.1 in [32]. In fact, in [32] classical (nonre-
duced) Riesz potentials were considered. Nevertheless, the corresponding proof for
reduced Riesz potentials is similar (at any rate, in the case of interest to us).

Given a (nonnegative) Radon measure µ and parameters q ∈ (1,∞) and α ∈
(0, n/q), we define the Wolf potential at the scale R > 0 by

W R
α,q[µ](x) :=

ˆ R

0

(
µ(Q(x, r))

rn−qα

)q′−1
dr

r
, x ∈ Rn. (3.4)

Theorem B. Let R > 0, q ∈ (1,∞), qα ∈ (0, n), and let µ be a positive Radon
measure on Rn . Assume that W 2R

α,q [µ] ∈ L1(Rn, µ). Then there exists a positive
constant C (independent of g) such thatˆ

Rn

IQ(x,R)
α [g](x) dµ(x) ⩽ C∥g|Lq(Rn)∥ (3.5)

for every g ∈ Lq(Rn). Moreover, the least possible constant C in (3.5) satisfies the
inequality

C ⩽ b∥W 2R
α,q [µ]|L1(Rn, µ)∥1/q′ , (3.6)

where the positive constant b does not depend on µ.

Recall a classical Poincaré-type inequality (see formula (7.45) in [33]).

Proposition 3.2. Assume that F ∈ W 1,loc
1 (Rn). Then for every cube Q = Q(x, r),

r > 0, 
Q

∣∣∣∣F (y)−
 

Q

F (z) dH n(z)
∣∣∣∣ dH n(y) ⩽ C(n)r

 
Q

|∇F (y)| dH n(y). (3.7)

The following estimate is well known.

Proposition 3.3. Let p ∈ (1,∞) and F ∈ W 1
p (Rn). Then for (1, p)-q.e. points

x ∈ Rn (for every point in the case p > n) and every cube Q = Q(y, r) ∋ x∣∣∣∣F̂ (x)−
 

Q

F (z) dH n(z)
∣∣∣∣ ⩽ C IQ1 [|∇F |](x), (3.8)

where the positive constant C is independent of F , x and r .

To prove this we use Propositions 2.4 and 3.2, and then repeat the simple argu-
ments in the proof of Theorem 5.2 in [34] almost verbatim, with minor modifica-
tions. We omit the elementary details.
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3.2. Overlappings of sets. Given a nonempty family {Eα}α∈I of nonempty
subsets of Rn, we say that the multiplicity of overlapping of the sets Eα is finite if
there exists C > 0 such that

∑
α∈I χEα

(x) ⩽ C for every x ∈ Rn.

Definition 3.1. Let E be a nonempty set in Rn. Let ε > 0, and let {xj}j∈J ,
J ⊂ N, be a subset of E with the following properties:

(i) ∥xi − xj∥∞ ⩾ ε for every i, j ∈ J , i ̸= j;
(ii) for every x ∈ E \ {xj}j∈J there is a point xj such that ∥x− xj∥∞ < ε.
We call the set {xj}j∈J a maximal ε-separated subset of E.

The following propositions will be used often in what follows. We omit the ele-
mentary proofs.

Proposition 3.4. Let {Qj}j∈J be a family of pairwise disjoint cubes with the
same edge length. Then for every c ⩾ 1 there is a positive constant C = C(n, c)
such that the multiplicity of overlapping of the cubes cQj is finite and bounded above
by C .

Proposition 3.5. Let m be a finite Borel measure on Rn . Let {Ej}j∈J be a family
of Borel subsets of Rn such that the multiplicity of overlapping of the sets Ej is finite
and bounded above by some constant N ∈ N. Then∑

j∈J

m(Ej) ⩽ Nm(Rn). (3.9)

The following elementary observation is a direct consequence of Definition 3.1.

Lemma 3.1. Let E be a nonempty subset of Rn . Let ε > 0 and let {xj}j∈J be
a maximal ε-separated subset of E . Then

(1) E ⊂
⋃

j∈J Q(xj , ε);
(2) the family {Q(xj , ε/2)}j∈J is pairwise disjoint;
(3) every point x ∈ E belongs to at most 3n cubes in {Q(xj , ε)}j∈J .

3.3. The Whitney decomposition. Recall that we measure the distances in Rn

in the uniform norm ∥ · ∥∞. For a cube Q ⊂ Rn we set Q∗ := (9/8)Q. Recall that,
unless otherwise stated, all cubes are assumed to be closed.

The following result is a slight modification of the Classical Whitney Decompo-
sition Lemma. Its proof repeats the proof of Theorem 1 in [29], Ch. 6, with minor
changes.

Lemma 3.2. For each closed nonempty set S ⊂ Rn there exists a family of closed
dyadic cubes WS = {Qκ}κ∈I = {Q(xκ , rκ)}κ∈I with the following properties:

(1) Rn \ S =
⋃

κ∈I Qκ ;
(2) for each κ ∈ I

diam(Qκ) ⩽ dist(Qκ , S) ⩽ 4 diam(Qκ); (3.10)

(3) the following inequalities hold:

1
4

diam(Qκ) ⩽ diam(Qκ′) ⩽ 4 diam(Qκ), if Q∗κ ∩Q∗κ′ ̸= ∅; (3.11)
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(4) for each index κ ∈ I there exist at most C(n) indices κ′ such that
Q∗κ ∩Q∗κ′ ̸= ∅;

(5) int Qκ ∩ int Qκ′ = ∅ for every κ, κ′ ∈ I , κ ̸= κ′ , and Q∗κ ∩Q∗κ′ ̸= ∅ if and
only if Qκ ∩Qκ′ ̸= ∅.

The family of cubes WS ={Qκ}κ∈I ={Q(xκ , rκ)}κ∈I , constructed in Lemma 3.2
is called a Whitney decomposition of the open set Rn\S, and the cubes Qκ are called
Whitney cubes. In what follows we also need the part of the Whitney decomposition
comprised of the cubes of small edge length. More precisely, we set WS = {Qκ}κ∈I ,
where I := {κ ∈ I : rκ ⩽ 1}.

The following notation is useful below. Given a closed set S, for every κ ∈ I set

b(Qκ) := b(κ) := {κ′ ∈ I : Qκ ∩Qκ′ ̸= ∅} = {κ′ ∈ I : Q∗κ ∩Q∗κ′ ̸= ∅}. (3.12)

We call a cube Qκ′ neighbouring to a cube Qκ if κ′ ∈ b(Qκ). Similarly, set
b(x) := {κ ∈ I : Q∗κ ∋ x} for every x ∈ Rn \ S.

To construct our extension operator we use the following (see [20], Ch. 6, § 1.3,
for details).

Proposition 3.6. Let S ⊂ Rn be a closed nonempty set and let {Qκ}κ∈I be the
Whitney decomposition of the open set Rn \ S constructed in Lemma 3.2. Then
there exists a family of functions {φκ}κ∈I with the following properties:

(1) φκ ∈ C∞0 (Rn \ S) for every κ ∈ I ;
(2) 0 ⩽ φκ ⩽ 1 and supp φκ ⊂ (Qκ)∗ := (9/8)Qκ for every κ ∈ I ;
(3)

∑
κ∈I φκ(x) = 1 for all x ∈ Rn \ S ;

(4) ∥Dαφκ |L∞(Rn)∥ ⩽ C(diam Qκ)−|α| for every multi-index α ∈ Nn
0 and every

κ ∈ I , where the positive constant C depends only on n.

Definition 3.2. Given a closed nonempty set S ⊂ Rn and x /∈ S, we say that x̃
is a nearest point to x or a metric projection of x onto S whenever dist(x, S) =
dist(x, x̃).

Remark 3.3. Let x̃ be a metric projection of x ∈ Rn \ S onto S. Consider the line
interval

[x, x̃] := {y = x + t(x̃− x) : t ∈ [0, 1]}.
Consider an arbitrary r ∈ (0, ∥x− x̃∥) and a point yr = ∂Q(x̃, r) ∩ [x, x̃]. We show
that dist(yr, S) = ∥yr − x̃∥∞ = r.

Clearly, dist(yr, S) ⩽ r because yr ∈ ∂Q(x̃, r). Assume that dist(yr, S) < r.
Then there is a point y′ ∈ S such that ∥yr − y′∥∞ < r = ∥yr − x̃∥∞. Using
this and the equality ∥x − x̃∥∞ = ∥x − yr∥∞ + ∥yr − x̃∥∞ we obtain dist(x, S) ⩽
∥x − y′∥∞ ⩽ ∥x − yr∥∞ + ∥yr − y′∥∞ < ∥x − x̃∥∞. This contradicts the fact that
∥x̃− x∥∞ = dist(x, S).

Definition 3.3. Fix a closed nonempty set S. For a cube Q = Q(x, r) ⊂ Rn with
x /∈ S we call Q̃ = Q(x̃, r) a reflected cube, where x̃ is a metric projection of x
onto S.

Remark 3.4. Clearly, a metric projection onto a closed nonempty set exists. It
is not unique in general. We will specify an algorithm for choosing x̃ only when
our constructions require this. Otherwise, given a cube Q(x, r), we fix any metric
projection x̃ and the cube Q̃(x̃, r).
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Lemma 3.3. Let S ⊂ Rn be a closed nonempty set and let WS = {Qκ}κ∈I be
a Whitney decomposition of Rn \ S . Then for every c > 0 there exists a positive
constant C = C(n, c) such that

sup
r>0

sup
x∈Rn

∑
κ∈I
rκ=r

χQ(x̃κ ,crκ)(x) ⩽ C(n, c).

Proof. Suppose that Q(x̃κ , crκ)∩Q(x̃κ′ , crκ′) ̸= ∅ for some κ, κ′ ∈ I with rκ = rκ′ .
In view of (3.10) we have dist(Qκ , x̃κ) ⩽ 4 diam(Qκ) and dist(Qκ′ , x̃κ′) ⩽
4 diam(Qκ′). Hence dist(Qκ , Qκ′) ⩽ (8 + c) diam(Qκ). This implies that Qκ′ ⊂
(19+2c)Qκ . Then Lemma 3.2, (5), and arguments based on volume estimates give

sup
r>0

sup
x∈Rn

∑
κ∈I
rκ=r

χQ(x̃κ ,crκ)(x) ⩽ sup
κ∈I

card{κ′ ∈ I : rκ′ = rκ and Qκ′ ⊂ (19 + 2c)Qκ}

⩽
H n((19 + 2c)Qκ)

H n(Qκ)
= (19 + 2c)n.

The proof is complete.

Lemma 3.4. Let S ⊂ Rn be a closed nonempty set and let WS = {Qκ}κ∈I be
a Whitney decomposition of Rn\S . Let m be a finite Borel measure with supp m ⊂ S .
Then for every c ⩾ 1∑

κ∈I

H n(Q(x̃κ , rκ))m(Q(x̃κ , c)) ⩽ Cm(S),

where the positive constant C depends only on c and n.

Proof. Consider the family of cubes {Q(x̃κ , c)}κ∈I . Using Vitali’s covering theo-
rem (see § 1.5 of [3] for details) we find an index set Î ⊂ I such that all cubes in
the family {Q(x̃κ , c)}κ∈Î are mutually disjoint and⋃

κ∈I

Q(x̃κ , c) ⊂
⋃

κ∈Î

Q(x̃κ , 5c). (3.13)

Note that if Q(x̃κ′ , rκ′) ∩Q(x̃κ , 5c) ̸= ∅ for some κ, κ′ ∈ I , then

Q(x̃κ′ , rκ′) ⊂ Q(x̃κ′ , c) ⊂ Q(x̃κ , 7c), (3.14)

because c ⩾ 1 and rκ′ ⩽ 1. From this and (3.10) it follows that Qκ′ ⊂ Q(xκ , 20c).
Hence, using Lemma 3.2, (5), we obtain∑

κ′∈I
Q(x̃κ′ ,rκ′ )∩Q(x̃κ ,5c) ̸=∅

H n(Q(x̃κ′ , rκ′))

⩽
∑

Qκ′⊂Q(x̃κ ,20c)

H n(Q(x̃κ′ , rκ′)) ⩽ H n(Q(xκ , 20c)) ⩽ (20c)n.
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Using this fact, (3.13), (3.14) and Propositions 3.4 and 3.5 we obtain the required
estimate ∑

κ∈I

H n(Q(x̃κ , rκ))m(Q(x̃κ , c))

⩽
∑

κ∈Î

∑
κ′∈I

Q(x̃κ′ ,rκ′ )∩Q(x̃κ ,5c) ̸=∅

H n(Q(x̃κ′ , rκ′))m(Q(x̃κ′ , c))

⩽
∑

κ∈Î

m(Q(x̃κ , 7c))
∑

κ′∈I
Q(x̃κ′ ,rκ)∩Q(x̃κ ,5c)̸=∅

H n(Q(x̃κ′ , rκ′))

⩽ (20c)n
∑

κ∈Î

m(Q(x̃κ , 7c)) ⩽ C(c, n)m(S).

The proof is complete.

Recall Definition 2.1 and Remark 2.1. The following result is a minor modifica-
tion of Theorem 2.4 in [23] and can be proved analogously.

Theorem C. Let S be a closed Ahlfors n-regular set in Rn , and let WS = {Qκ}κ∈I

be a Whitney decomposition of Rn\S . Then there exists a family U := {Uκ : κ ∈ I }
of Borel sets with the following properties:

(1) Uκ ⊂ (10Qκ) ∩ S for all κ ∈ I ;
(2) H n(Qκ) ⩽ κ1H n(Uκ) for all κ ∈ I ;
(3)

∑
κ∈I χUκ (x) ⩽ κ2 for x ∈ S .

The positive constants κ1 and κ2 depend only on n, and the constants cn
1 (S)

and cn
2 (S).

3.4. d-regular sequences of measures. The following result is a version of
Frostman’s theorem adapted for our purposes (cf. Theorem 5.1.12 in [26]). For the
reader’s convenience we present a detailed proof.

Theorem 3.1. Let S be a closed nonempty subset of Rn . Then given d ∈ [0, n],
there exists a sequence of Borel measures {νk}k∈N0 with supp νk = S , k ∈ N0 , such
that for every k ∈ N0 the following properties hold:

(1)
νk(Q(x, r)) ⩽ 15nrd, x ∈ Rn, r ∈ (0, 2k]; (3.15)

(2) for every finite index set A ⊂ Zn let V k
A :=

⋃
m∈A Qk,m ; then

νk(V k
A ∩ S) ⩾ H d

∞(V k
A ∩ S); (3.16)

(3) there exists a function γk ∈ L∞(S, ν0) such that νk = γkν0 and

2d−nγk+1(x) ⩽ γk(x) ⩽ γk+1(x), ν0-a.e. x ∈ S. (3.17)

Proof. Fix a nonnegative integer k and let νk,0 := νk be a measure with constant
density that has mass 2−kd on each Qk,m that intersects S. We now modify νk

in the following way. If νk(Qk−1,m) > 2−(k−1)d for some Qk−1,m ∈ Qk−1, we
reduce its mass uniformly on Qk−1,m until it becomes 2−(k−1)d. On the other hand,
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if νk(Qk−1,m) ⩽ 2−(k−1)d, we leave νk unchanged on Qk−1,m. In this way we obtain
a new measure νk,1. Using the fact that every cube Qk−1,m which has nonempty
intersection with S contains ⩽ 2n cubes Qk,m′ with the property Qk,m′ ∩S ̸= ∅ we
have

νk,1(Qk,m) ⩽ νk,0(Qk,m) ⩽ 2n−dνk,1(Qk,m).

We repeat this procedure for νk,1, obtaining νk,2, and after k steps we obtain νk,k.
It follows from this construction that

νk,k−j(Qi,m) ⩽ 2−id (3.18)

for every j = 0, 1, . . . , k and every dyadic cube Qi,m ∈ Qi, where i = j, . . . , k.
Furthermore, it is clear that

νk,j+1(Qk,m) ⩽ νk,j(Qk,m) ⩽ 2n−dνk,j+1(Qk,m), j = 0, 1, . . . , k − 1. (3.19)

Using (3.18) it is easy to see that for every j ∈ N0 the sequence {νk,k−j(E)}k⩾j is
bounded for every compact subset E of S. Then {νk,k−j}k⩾j has a subsequence
that converges weakly to νj (see [31], § 1.9, Theorem 2), and clearly supp νj ⊂ S
(recall that S is closed).

Fix an arbitrary j ∈ N and an arbitrary Borel set G ⊂ S. We compare νj(G)
and νj−1(G). First note that, according to our construction, for every dyadic
cube Qk,m we have

νk,k−j+1(Qk,m) ⩽ νk,k−j(Qk,m) ⩽ 2n−dνk,k−j+1(Qk,m), k ⩾ j.

Let Cc(Rn) be the set of continuous functions f : Rn → R with compact support.
For every nonnegative function f ∈ Cc(Rn) we have

ˆ
Rn

f(x) dνk,k−j+1(x) ⩽
ˆ

Rn

f(x) dνk,k−j(x)

⩽ 2n−d

ˆ
Rn

f(x) dνk−j+1(x), k ⩾ j. (3.20)

Fix an arbitrary nonnegative f ∈Cc(Rn). Choosing an appropriate subsequence if
necessary and passing to the limit in (3.20) we obtain
ˆ

Rn

f(x) dνj−1(x) ⩽
ˆ

Rn

f(x) dνj(x) ⩽ 2n−d

ˆ
Rn

f(x) dνj−1(x), j ∈ N. (3.21)

Using the Borel regularity of the measures νj and the Radon-Nikodym theorem and
taking (3.21) into account we obtain (3.17).

We show that νj(Qi,m) ⩽ 3n2−id for every i, j ∈ N0, i ⩾ j, and every dyadic
cube Qi,m ∈ Qi. Indeed, if fi,m ∈ C∞0 (Rn) is such that χQi,m ⩽ fi,m ⩽ χ3Qi,m ,
then (3.18) yields

νj(Qi,m) ⩽
ˆ

Rn

fi,m(x) dνj(x) = lim
l→∞

ˆ
Rn

fi,m(x) dνkl,kl−j(x) ⩽ 3n2−id.

Hence, using the fact that every closed cube Q(x, r) with x ∈ Rn and r ∈ (0, 2−k]
has nonempty intersection with ⩽ 5n dyadic cubes Qk(r),m, where k(r) := |[log2 r]|,
we obtain (3.15).
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Fix an arbitrary nonempty index set A ⊂ Zn and k ∈ N0 and fix an arbitrary
l ∈ N, l ⩾ k. The key observation, which follows directly from our construction, is
that every x ∈ V k

A ∩ S belongs to some dyadic cube Q(j) ∈ Qnj
, k ⩽ nj ⩽ l, (or

several cubes) such that νl,l−k(Q(j)) = 2−njd. We can choose a disjoint covering
consisting of maximal dyadic cubes with this property, so that S ∩ V k

A ⊂
⋃

j Q(j).
This gives

νl,l−k(V k
A ∩ S) =

∑
j

νl,l−k(Q(j)) =
∑

j

2−njd ⩾ inf
∑

i

2−nid,

where the infimum is taken over all finite or countable coverings of V k
A ∩ S with

dyadic cubes Q(i) ∈
⋃

l⩾k Ql. The right-hand side is independent of l. Combining
this with the definition of the d-Hausdorff content we note that V k

A is a compact
set. This gives

νk(V k
A ∩ S) ⩾ lim

s→∞
νls,ls−k(V k

A ∩ S) ⩾ inf
∑

i

2−nid ⩾ H d
∞(V k

A ∩ S). (3.22)

This completes the proof.

The following result shows that Definition 2.3 is consistent.

Corollary 3.1. Let d ∈ [0, n] and let S ⊂ Rn be a d-thick closed set. Then there
exists a d-regular sequence of measures on S .

Proof. We apply Theorem 3.1 to the set S. This gives a sequence of Borel measures
{νk}k∈N0 with supp νk = S satisfying (3.15)–(3.17). We set µk := 15−nνk for every
k ∈ N0.

It is sufficient to verify (2.11). Fix some x ∈ S, and let A ⊂ Zn be the index set
such that m ∈ A if and only if Qk+2,m∩Q(x, 2−k−2) ̸= ∅. It is clear that V k+2

A :=⋃
m∈A Qk+2,m ⊂ Q(x, 2−k) and Q(x, 2−k−2) ⊂ V k+2

A . Hence, using Definition 2.2,
estimates (3.16) and (3.17) and the monotonicity of the H d

∞-content we obtain

22(n−d)µk(Q(x, 2−k)) ⩾ µk+2(Q(x, 2−k)) ⩾ µk+2(V k+2
A ∩Q(x, 2−k−2))

⩾ 15−nH d
∞(V k+2

A ∩ S) ⩾ 15−nH d
∞(Q(x, 2−k−2) ∩ S) ⩾ 15−ncd

3(S)4−d2−kd.

This completes the verification of the corollary.

The following lemma gives some asymptotic estimates for measures in a fixed
d-regular sequence. Recall Remark 2.2.

Lemma 3.5. Let d ∈ [0, n] and let S be a d-thick closed set. Let {µk}k∈N0 be
a d-regular sequence of measures on S . Then for each c ⩾ 1 and every k > log2 c

C{µk}

(2c)n
µk(Q(x, 2−k)) ⩽ µk

(
Q

(
x,

2−k

c

))
⩽ µk(Q(x, c2−k)) ⩽

(2c)n

C{µk}
µk(Q(x, 2−k)).

(3.23)
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Proof. Fix j ∈ N0 such that c ∈ [2j , 2j+1). It follows from estimates (2.10)–(2.12)
that for every k > log2 c and every x ∈ S

µk

(
Q

(
x,

2−k

c

))
⩾ 2(j+1)(d−n)µk+j+1

(
Q

(
x,

2−k

c

))
⩾ 2(d−n)(j+1)µk+j+1

(
Q

(
x,

2−k

2j+1

))
⩾

C

2n(j+1)
2−dk ⩾

C{µk}

(2c)n
µk(Q(x, 2−k)). (3.24)

Similarly,

µk(Q(x, c2−k)) ⩽ 2(j+1)(n−d)µk−j−1(Q(x, 2j+1−k)) ⩽ 2(j+1)(n−d)2(j+1−k)d

⩽
(2c)n

C{µk}
µk(Q(x, 2−k)). (3.25)

The required estimate (3.23) follows from (3.24) and (3.25), which completes the
proof.

Remark 3.5. Recall that a Borel measure µ on a metric space (X, d) is called
a doubling measure if there exists a constant Cµ ⩾ 1 such that µ(B(x, 2r)) ⩽
Cµµ(B(x, r)) for all x ∈ X and r > 0. It is very important to note that the esti-
mate (3.23) does not imply the doubling property of the measures µk, k ∈ N0.
Roughly speaking, the point is that, given k ∈ N0, in Lemma 3.5 we compare
µk(Q(x, r)), where x ∈ S and r ∈ (0, 1], only with µk(Q(x, 2−k)). If we try to com-
pare µk(Q(x, r)) and µk(Q(x, r/2)) for k ≫ | log2 r|, then we obtain a bad estimate,
with the corresponding positive constant C depending heavily on k.

Lemma 3.6. Let d ∈ [0, n] and let S be a d-thick closed set. Let {µk}k∈N0 be
a d-regular sequence of measures on S . Let E be a Borel subset of S . If H d(E) = 0,
then µk(E) = 0 for every k ∈ N0 . The converse is false.

Proof. Fix E ⊂ S with H d(E) = 0. Using (2.10) and the definition of Hausdorff
measure it is easy to see that µk(E) = 0 for every k ∈ N0.

To prove that the converse is false we use the construction from Example 6.3
below. More precisely, in Example 6.3 we build a 1-thick path-connected set S ⊂ Rn

with dimH S = n and a 1-regular sequence of measures {µk}k∈N0 on S such that
every µk is absolutely continuous with respect to H n. Hence for every smooth
curve γ ∈ S with H 1(γ) > 0 we obtain µk(γ) = 0 for all k ∈ N. The proof is
complete.

Recall that for every r > 0 we set k(r) := |[log2 r]|. The following theorem will
be an important technical tool in the sequel. Recall Remark 2.2.

Theorem 3.2. Let d ∈ [0, n] and let S be a d-thick closed set. Let {µk}k∈N0 be
a d-regular sequence of measures on S . Then for every r ∈ (0, 1), x ∈ S and every
Borel set G ⊂ Q(x, r) ∩ S

H n(G)
H n(Q(x, r))

⩽ C
µk(r)(G)

µk(r)(Q(x, r) ∩ S)
. (3.26)

The positive constant C depends only on n and C{µk} in Remark 2.2.
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Proof. Fix x, y ∈ S, and t and r, 0 < t < r < 1, such that Q(y, t) ⊂ Q(x, r). It is
clear that

H n(Q(y, t) ∩ S)
H n(Q(x, r))

⩽
H n(Q(y, t) ∩ S)

H n(Q(y, t))
H n(Q(y, t))
H n(Q(x, r))

⩽ 2n(k(r)−k(t)+1) H
n(Q(y, t) ∩ S)

H n(Q(y, t))
. (3.27)

On the other hand, using (2.10)–(2.12) (we can use these estimates because x, y ∈ S)
we have

µk(r)(Q(y, t) ∩ S)
µk(r)(Q(x, r) ∩ S)

⩾ 2(d−n)(k(t)−k(r)) µk(t)(Q(y, t) ∩ S)
µk(r)(Q(x, r) ∩ S)

⩾ C{µk}2
n(k(r)−k(t)).

(3.28)
Combining (3.27) and (3.28) we obtain

H n(Q(y, t) ∩ S)
H n(Q(x, r))

⩽
2n

C{µk}

µk(r)(Q(y, t) ∩ S)
µk(r)(Q(x, r) ∩ S)

H n(Q(y, t) ∩ S)
H n(Q(y, t))

⩽
2n

C{µk}

µk(r)(Q(y, t) ∩ S)
µk(r)(Q(x, r) ∩ S)

. (3.29)

Hence we obtain (3.26) for G = Q(y, t).
Fix r ∈ (0, 1). For every j ∈ N, j > j0 := [2r/(1− r)]+1, let {xj

i}
N(j)
i=1 be a max-

imal (r/j)-separated subset of Q(x, r)∩S. Clearly, Q(x, r)∩S ⊂
⋃

i int Q(xj
i , 2r/j)

and the cubes Q(xj
i , r/(2j)) are pairwise disjoint. For every j ∈ N take an arbitrary

nonempty set A j ⊂ {1, . . . , N(j)} and consider the set Uj :=
⋃

i∈A j int Q(xj
i , 2r/j).

It is clear that Uj ⊂ Q(x, r + 2r/j0) ⊂ Q(x, 1) for every j > j0. We use this inclu-
sion, (3.29), Propositions 3.4 and 3.5, and (2.12); then for every j > j0 we obtain

H n(Uj ∩ S) ⩽
∑

i∈A j

H n

(
Q

(
xj

i ,
2r

j

)
∩ S

)

⩽ CH n(Q(x, r))
∑

i∈A j

µk(r)(Q(xj
i , 2r/j) ∩ S)

µk(r)(Q(x, r) ∩ S)

⩽ CH n(Q(x, r))
µk(r)(Uj ∩ S)

µk(r)(Q(x, r) ∩ S)
⩽ CH n(Q(x, r))

µk(r)(Uj ∩ S)
µk(r)(Q(x, r) ∩ S)

.

(3.30)

Fix an arbitrary compact set K ⊂ Q(x, r) ∩ S. Now using the σ-additivity of
the measures H n and µk(r) we have

H n(K) = lim
j→∞

H n(Uj ∩ S) and µk(r)(K) = lim
j→∞

µk(r)(Uj ∩ S). (3.31)

Combining (3.31) and (3.30), we obtain (3.26) for every compact set K ⊂
Q(x, r) ∩ S. To establish (3.26) for a general Borel set G ⊂ S it remains to recall
that the measures µk, k ∈ N, and H n are Radon measures. The proof is complete.



806 S.K. Vodopyanov and A. I. Tyulenev

Corollary 3.2. Let d ∈ [0, n] and let S be a d-thick closed set. Let {µk}k∈N0 be
a d-regular sequence of measures on S . Assume that f ∈ Lloc

1 (S, µk) for some (and
hence every) k ∈ N0 . Then there exists C > 0 (independent of f , x and r) such
that

1
H n(Q(x, r))

ˆ
Q(x,r)∩S

|f(y)| dH n(y)

⩽ C

 
Q(x,r)∩S

|f(y)| dµk(r)(y) for all x ∈ S, r ∈ (0, 1]. (3.32)

Proof. The estimate (3.32) clearly holds for a simple function f : S → R due to
Theorem 3.2. In the general case we have to construct an increasing sequence of
simple functions converging to |f | and use the monotone convergence theorem for
integrals (see § 1.3 of [31]). This completes the verification of the corollary.

Lemma 3.7. Let d ∈ [0, n] and let S be a d-thick closed set. Let {µk}k∈N0 be
a d-regular sequence of measures on S . Assume that g ∈ Lloc

1 (Rn, µk) for some
(and hence every) k ∈ N0 . Let c ⩾ 1, x ∈ S , x′ ∈ Rn and r ∈ (0, 1) satisfy
cr ∈ (0, 1) and Q(x, r) ⊂ Q(x′, cr). Then

 
Q(x,r)

|g(z)| dµk(r)(z) ⩽ C

 
Q(x′,cr)

|g(z)| dµk(r)(z),
 

Q(x,r)

|g(z)| dµk(r)(z) ≈
 

Q(x,r)

|g(z)| dµk(r)±1(z), (3.33)

where the positive constant C does not depend on x, x′ , r or g .

Proof. Clearly, Q(x, r) ⊂ Q(x′, cr) ⊂ Q(x, 2cr). Suppose cr ∈ (0, 1/2). Using
this we obtain µk(r)(Q(x′, cr)) ⩽ µk(r)(Q(x, 2cr)) ⩽ C−1

{µk}(4c)nµk(r)(Q(x, r)) by
Lemma 3.5, which obviously implies the first inequality in (3.33). When cr ∈
(1/2, 1) the corresponding estimate easily follows from (2.11) and (2.12).

The second estimate in (3.33) follows immediately from (2.10)–(2.12). The proof
is complete.

3.5. Calderón-type maximal functions. Recall Definition 2.5 and also that
k(r) := −[log2 r] for every r > 0.

Lemma 3.8. Let d ∈ [0, n] and let S be a d-thick closed set. Let {µk}k∈N0 be
a d-regular sequence of measures on S . Assume that f ∈ Lloc

1 (Rn, µk) for every
k ∈ N0 . Let c ⩾ 1, x ∈ S , x′ ∈ Rn and r ∈ (0, 1) be such that Q(x, r) ⊂ Q(x′, cr).
Then

f ♯
{µk}(x, r) ⩽ C

(
f ♯
{µk}(x

′, r) +
 

Q(x′,c)

|f(y)| dµ0(y)
)

. (3.34)

The positive constant C in (3.34) depends on the constant c but does not depend
on x, x′, r or f .

Proof. Fix t ∈ (r, 1]. If tc < 1, then we use the inclusion Q(x, t) ⊂ Q(x′, ct),
Lemma 3.7, Remark 2.4 and the monotonicity of f ♯

S(x′, t) with respect to t.
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We obtain

Eµk(t)(f, Q(x, t)) ⩽
 

Q(x,t)

∣∣∣∣f(y)−
 

Q(x,t)

f(z) dµk(t)(z)
∣∣∣∣ dµk(t)(y)

⩽
 

Q(x,t)

 
Q(x,t)

|f(y)− f(z)| dµk(t)(z) dµk(t)(y)

⩽ C

 
Q(x′,ct)

 
Q(x′,ct)

∣∣∣∣f(y)±
 

Q(x′,ct)

f(z′) dµk(ct)(z′)− f(z)
∣∣∣∣ dµk(ct)(z) dµk(ct)(y)

⩽ C

 
Q(x′,ct)

∣∣∣∣f(y)−
 

Q(x′,ct)

f(z) dµk(ct)(z)
∣∣∣∣ dµk(ct)(y)

⩽ Ctf ♯
{µk}(x

′, cr) ⩽ Ctf ♯
{µk}(x

′, r). (3.35)

Now consider the case tc ⩾ 1. We use Remark 2.4 and Lemma 3.7 and note that
k(t) ⩽ |[log2 c]|+ 1. This gives

1
t
Eµk(t)(f, Q(x, t)) ⩽

1
t

 
Q(x,t)

∣∣∣∣f(y)−
 

Q(x,t)

f(z) dµk(t)(z)
∣∣∣∣ dµk(t)(y)

⩽ 2c

 
Q(x,t)

|f(y)| dµk(t)(y) ⩽ C

 
Q(x′,c)

|f(y)| dµk(t)(y)

⩽ C

 
Q(x′,c)

|f(y)| dµ0(y). (3.36)

Now (3.34) follows directly from Definition 2.5 and estimates (3.35) and (3.36).
The proof is complete.

Lemma 3.9. Let d ∈ [0, n] and let S be a d-thick closed set. Let {µk}k∈N0 be
a d-regular sequence of measures on S . Assume that f ∈ Lloc

1 (Rn, µk) for some
(and hence every) k ∈ N0 . Let 0 < r < t < 1, x ∈ S and x′ ∈ Rn be such that
Q(x, r) ⊂ Q(x′, t) and R = ∥x− x′∥+ t < 1. Then∣∣∣∣ 

Q(x,r)

f(y) dµk(r)(y)−
 

Q(x′,t)

f(z) dµk(t)(z)
∣∣∣∣

⩽ C min{Eµk(R)(f, Q(x′, R)), Eµk(R)(f, Q(x, R))}+ Ct sup
t′∈(r,t]

1
t′

Eµk(t′)(f, Q(x, t′)),

(3.37)

where the positive constant C > 0 does not depend on x, x′, r, t or f .

Proof. Clearly, Q(x, t) ⊂ Q(x′, R) =: Q′ and Q(x′, t) ⊂ Q(x, R) = Q. Since
Q(x, r) ⊂ Q(x′, t) we have ∥x− x′∥+ r < t and hence R ⩽ 2t. Arguing as in (3.35)
and using Remark 2.4 we obtain∣∣∣∣ 

Q(x,t)

f(y) dµk(t)(y)−
 

Q(x′,t)

f(z) dµk(t)(z)
∣∣∣∣

⩽
 

Q(x,t)

 
Q(x′,t)

|f(y)− f(z)| dµk(t)(y) dµk(t)(z)

⩽ C

 
Q′

∣∣∣∣f(y)−
 

Q′
f(z) dµk(R)(z)

∣∣∣∣ dµk(R)(y) ⩽ CEµk(R)(f, Q′)
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(note that R ⩽ 2t). Clearly, similar inequalities hold true with Q′ replaced by Q.
Hence, we get∣∣∣∣ 

Q(x,t)

f(y) dµk(t)(y)−
 

Q(x′,t)

f(z) dµk(t)(z)
∣∣∣∣ ⩽ C min{Eµk(R)(f, Q′), Eµk(R)(f, Q)}.

(3.38)
Let j0 := [log2(t/r)]. Arguing as in (3.38) and using Remark 2.4 we have∣∣∣∣ 

Q(x,r)

f(y) dµk(r)(y)−
 

Q(x,t)

f(z) dµk(t)(z)
∣∣∣∣

⩽

∣∣∣∣ 
Q(x,r)

f(y) dµk(r)(y)−
 

Q(x,t/2j0 )

f(z) dµk(t/2j0 )(z)
∣∣∣∣

+
j0−1∑
j=0

t

2j

2j

t

∣∣∣∣ 
Q(x0,t/2j)

f(z) dµk(t/2j)(z)−
 

Q(x0,t/2j+1)

f(z′) dµk(t/2j+1)(z′)
∣∣∣∣

⩽
t

2j0
C

2j0

t
Eµ

k(t/2j0 )

(
f, Q

(
x,

t

2j0

))
+ C

j0∑
j=0

t

2j

(
2j

t
Eµk(t/2j)

(
f, Q

(
x,

t

2j

)))
⩽ Ct sup

t′∈(r,t]

1
t′

Eµk(t′)(f, Q(x, t′)). (3.39)

Combining (3.38) and (3.39) we obtain (3.37), which completes the proof.

Theorem 3.3. Let d ∈ [0, n] and let S be a d-thick closed set. Let {µk}k∈N0 be
a d-regular sequence of measures on S . Let f ∈ Lloc

1 (S, µk) for some (and hence
every) k ∈ N0 . Then there exists a positive constant C such that for any x, x′ ∈ S ,
r, t ∈ (0, 1) with R̃ := max{r, t}+ ∥x− x′∥ < 1/2∣∣∣∣ 

Q(x,r)

f(z) dµk(r)(z)−
 

Q(x′,t)

f(z′) dµk(r)(z′)
∣∣∣∣ ⩽ CR̃

(
f ♯
{µk}(x, r) + f ♯

{µk}(x
′, t)

)
.

(3.40)

Proof. Note that Q(x, r) ⊂ Q(x′, R̃) and Q(x′, t) ⊂ Q(x′, R̃). Using the triangle
inequality, (3.37) and the monotonicity of f ♯

{µk}(x, t) with respect to t we see that
the left-hand side of (3.40) is bounded above by∣∣∣∣ 

Q(x,r)

f(z) dµk(r)(z)−
 

Q(x′,R̃)

f(z′) dµk(R̃)(z
′)

∣∣∣∣
+

∣∣∣∣ 
Q(x′,R̃)

f(z) dµk(R̃)(z)−
 

Q(x′,t)

f(z′) dµk(r)(z′)
∣∣∣∣

⩽ CR

(
1
R

min{Eµk(R)(f, Q(x, R)), Eµk(R)(f, Q(x′, R))}
)

+ CR̃f ♯
{µk}(x, r) + CR̃f ♯

{µk}(x
′, t) ⩽ CR̃

(
f ♯
{µk}(x, r) + f ♯

{µk}(x
′, t)

)
; (3.41)

here we have set R = R̃ + ∥x− x′∥ ⩽ 2R̃ < 1. This completes the proof.
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Corollary 3.3. Let d ∈ [0, n] and let S be a d-thick closed set. Let {µk}k∈N0 be
a d-regular sequence of measures on S . Let f ∈ Lloc

1 (S, µk) for some (and hence
every) k ∈ N0 . Let x, x′ ∈ S be such that ∥x− x′∥ < 1/2 and let

f(x) = lim
r→0

 
Q(x,r)

f(z) dµk(r)(z) and f(x′) = lim
r→0

 
Q(x′,r)

f(z′) dµk(r)(z′).

(3.42)
Then there exists C > 0 (independent of x, x′ and f ) such that

|f(x)− f(x′)| ⩽ C∥x− x′∥
(
f ♯
{µk}(x) + f ♯

{µk}(x
′)

)
. (3.43)

Proof. From Theorem 3.3, using the monotonicity of f ♯
{µk}(x, t) with respect to t

we obtain the required estimate

|f(x)− f(x′)| ⩽ lim
r→0

∣∣∣∣f(x)−
 

Q(x,r)

f(z) dµk(r)(z)
∣∣∣∣

+ lim
r→0

∣∣∣∣ 
Q(x,r)

f(z) dµk(r)(z)−
 

Q(x′,r)

f(z′) dµk(r)(z′)
∣∣∣∣

+ lim
r→0

∣∣∣∣f(x′)−
 

Q(x′,r)

f(z′) dµk(r)(z′)
∣∣∣∣

⩽ C lim
r→0

(2r + ∥x− x′∥)
(
f ♯
{µk}(x, r) + f ♯

{µk}(x
′, r)

)
⩽ C∥x− x′∥

(
f ♯
{µk}(x) + f ♯

{µk}(x
′)

)
. (3.44)

This completes the verification of the corollary.

The following result is crucial in proving the ‘direct trace theorem’. Recall
Proposition 2.4 and Definitions 2.7 and 2.8.

Theorem 3.4. Let d ∈ [0, n] and let S be a d-thick closed set. Let {µk}k∈N0 be
a d-regular sequence of measures on S . Let q ∈ (max{1, n−d},∞) and F ∈ W 1

q (Rn).
Then for every cube Q = Q(x, r) with x ∈ S and r ∈ (0, 1]

 
Q∩S

∣∣∣∣F |S(y)−
 

Q

F (z) dH n(z)
∣∣∣∣ dµk(r)(y) ⩽ Cr

( 
Q

∑
|α|=1

|DαF (t)|q dH n(t)
)1/q

,

(3.45)
where the positive constant C does not depend on x, r or F .

Proof. Fix a cube Q = Q(x, r) with x ∈ S and r ∈ (0, 1]. We consider several cases.
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Case 1. Assume that q > n. Using the well-known Sobolev embedding theorem
(see [10], § 1.8.2) we obtain the estimate required in this case:

 
Q∩S

∣∣∣∣F |S(y)−
 

Q

F (z) dH n(z)
∣∣∣∣ dµk(r)(y)

⩽
 

Q∩S

 
Q

|F̂ (y)− F̂ (z)| dH n(z) dµk(r)(y)

⩽ sup
x,y∈Q

|F̂ (x)− F̂ (y)| ⩽ Cr

( 
Q

∑
|α|=1

|DαF (t)|q dH n(t)
)1/q

.

Here F̂ is the continuous representative of F and C > 0 depends only on n and q.
Case 2. Now we consider the most complicated case, when d > 0 and q ∈
(max{1, n − d}, n). We set g := χQ|∇F |. It is clear that Q ∩ S ⊂ Q(y, 2r) for
every y ∈ Q∩S. We can rewrite (3.8) as follows. For (1, p)-quasi-every (and hence
for µk(r)-almost every) y ∈ Q ∩ S∣∣∣∣F̂ (y)−

 
Q

F (z) dH n(z)
∣∣∣∣ ⩽ C IQ1 [g](y) ⩽ C IQ(y,2r)

1 [g](y). (3.46)

Set µQ := µk(r)⌊Q∩S . Since Q = Q(x, r) lies in a union of at most 5n cubes with
edge length 2−k(r), it follows from (2.10) that µQ(Q(y, t)) ⩽ 5ntd for t ∈ (0, 4r) and
y ∈ Q. This gives (recall the definition of the Wolf potential (3.4))

ˆ
Rn

W 4r
1,q [µQ](y) dµQ(y) ⩽ Crd

ˆ 4r

0

t(q+d−n)(q′−1)−1 dt ⩽ Crd+(q+d−n)q′/q. (3.47)

The positive constant C in (3.47) does not depend on x or r.
Now we recall Lemma 3.6 and apply Theorem B with measure µQ (instead of µ)

and with α = 1. Hence, using (2.11), (3.46) and (3.47) we obtain
 

Q∩S

∣∣∣∣F |S(y)−
 

Q

F (z) dH n(z)
∣∣∣∣ dµk(r)(y) ⩽ Cr−d

ˆ
IQ(y,2r)
1 [g](y) dµQ(y)

⩽ Cr−drd/q′+(q+d−n)/q

(ˆ
Q

|∇F |q(z) dH n(z)
)1/q

⩽ Cr

( 
Q

|∇F |q(z) dH n(z)
)1/q

. (3.48)

Case 3. In the case d > 0, q = n we choose an arbitrary q̃ ∈ (max{1, n− d}, n) and
use the previous step to obtain (3.45) with q̃ instead of q. To complete the proof it
remains to apply Hölder’s inequality.

Corollary 3.4. Let d ∈ [0, n] and let S be a d-thick closed set. Assume that q ∈
(max{1, n − d},∞) and F ∈ W 1

q (Rn) and set f := F |S . Then for every r ∈ [0, 1]
and every x ∈ S

f ♯
{µk}(x, r) ⩽ C

(
M<2

>r[|∇F |q](x)
)1/q

. (3.49)
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Proof. Consider the case r < 1. The case r = 1 is similar. Using Remark 2.4 and
Theorem 3.4, for every x ∈ S we have the required estimate

f ♯
{µk}(x, r) ⩽ sup

t∈(r,1]

1
t

 
Q(x,t)∩S

∣∣∣∣f(y)−
 

Q(x,t)∩S

f(z) dµk(t)(z)
∣∣∣∣ dµk(t)(y)

⩽ sup
t∈(r,1]

1
t

[ 
Q(x,t)∩S

∣∣∣∣f(y)−
 

Q(x,t)

f(y′) dH n(y′)
∣∣∣∣ dµk(t)(y)

+
∣∣∣∣ 

Q(x,t)

f(y′) dH n(y′)−
 

Q(x,t)∩S

f(z) dµk(t)(z)
∣∣∣∣]

⩽ sup
t∈(r,1]

2
t

 
Q(x,t)∩S

∣∣∣∣f(y)−
 

Q(x,t)

f(y′) dH n(y′)
∣∣∣∣ dµk(t)(y)

⩽ C sup
t∈(r,1]

( 
Q(x,t)

|∇F (y)|q dH n(y)
)1/q

⩽ C
(
M<1

>r[|∇F |q](x)
)1/q

.

(3.50)

The verification of the corollary is complete.

3.6. Porous sets. Recall Lemma 3.2 and Definitions 2.6 and 3.2. Also recall
that we let k(κ) denote the unique integer such that rκ = 2−k(κ). We continue to
measure distances in Rn in the ∥ · ∥∞-norm.

Lemma 3.10. Let S be a closed nonempty set in Rn . Let Qκ = Q(xκ , rκ) be
a Whitney cube in WS . Then x̃κ ∈ Sj(λ) for every j ⩾ k(κ) and λ ∈ (0, 1). Fur-
thermore, Q(x̃κ , rκ(c− 1)/c)∩S ⊂ Sk(κ)(λ) for every c > 1 and every λ ∈ (0, 1/c].

Proof. Consider the interval (xκ , x̃κ) := {x = xκ + t(x̃κ − xκ) : t ∈ (0, 1)}. Cle-
arly, S ∩ (xκ , x̃κ) = ∅ because otherwise there exists a point x′ ∈ S such that
∥xκ − x′∥ < ∥xκ − x̃κ∥ = dist(xκ , S). For every r ∈ (0, rκ ] consider the point yr :=
(xκ , x̃κ) ∩ ∂Q(x̃κ , r). It follows from Remark 3.3 that dist(yr, S) = r. Hence for
every λ ∈ (0, 1) the cube Q(yr, λr) lies in Rn \ S. This proves the first claim in the
lemma.

Given a number c > 1 we set rc := rκ/c. Then from Remark 3.3 we conclude
that dist(yrc

, S) = rκ/c. On the other hand it is clear that yrc
∈ Q(x, rκ) for every

x ∈ Q(x̃κ , rκ(c− 1)/c). This proves the second claim.

Lemma 3.11. Let S be a closed nonempty set in Rn . Let WS = {Qκ}κ∈I be
a Whitney decomposition of Rn \ S . Let λ ∈ (0, 1) and k ∈ N0 . Then for every
x ∈ Sk(λ) there exists a point y(x) ∈ Q(x, 2−k) such that

λ2−k

5
⩽ diam Qκ ⩽ 2−k (3.51)

for every Whitney cube Qκ ∋ y(x).

Proof. By Definition 2.6 there exists a point y ∈ Q(x, 2−k) such that Q(y, λ2−k) ⊂
Rn \ S. We set y(x) := y. Now we prove (3.51). Consider an arbitrary Whitney
cube Qκ ∋ y(x). From (3.10) we have

diam Qκ ⩽ dist(Qκ , S) ⩽ dist(S, y(x)) ⩽ 2−k.
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On the other hand, using (3.10) again, we see that

λ2−k ⩽ dist(y(x), S) ⩽ dist(Qκ , S) + diam(Qκ) ⩽ 5 diam(Qκ).

Combining the above estimates we complete the proof.

§ 4. The main results

Recall that, given r > 0, we set k(r) := −[log2 r]. For each closed nonempty set
S ⊂ Rn and a Whitney decomposition {Qα}α∈I of Rn \ S we set k(κ) := k(rκ) for
each κ ∈ I. Throughout this section, unless otherwise stated, we equip Rn with
the uniform norm ∥ · ∥∞.

4.1. The direct trace theorem. Recall Definitions 2.3 and 2.6 and the notation
following Lemma 3.2.

Lemma 4.1. Let d ∈ [0, n], p ∈ (1,∞) and λ ∈ (0, 1). Let S be a d-thick closed set.
Let {µk} = {µk}k∈N0 be a d-regular sequence of measures on S . Assume that
f ∈ Lloc

1 (S, µk) for some (and hence every) k ∈ N0 . Then there is a positive
constant C independent of f such that

∞∑
k=1

2k(d−n)

ˆ
Sk(λ)

(
f ♯
{µk}(x, 2−k)

)p
dµk(x)

⩽ C
∑

κ∈I

H n(Qκ)
[(

f ♯
{µk}(x̃κ , rκ)

)p +
 

Q(x̃κ ,8)

|f(y)|p dµ0(y)
]
. (4.1)

Proof. Given k ∈ N0, let {xk,j}j∈Jk
be a maximal 2−k-separated subset Sk(λ)

of S. Using Lemma 3.1, (1), for every k ∈ N0 we have
ˆ

Sk(λ)

(
f ♯
{µk}(x, 2−k)

)p
dµk(x) ⩽

∑
j∈Jk

ˆ
Sk(λ)∩Q(xk,j ,2−k)

(
f ♯
{µk}(x, 2−k)

)p
dµk(x).

(4.2)
Using Lemma 3.11, for every k ∈ N0 and j ∈ Jk we choose a point y(xk,j) ∈
Q(xk,j , 2−k) and fix an index κ(k, j) ∈ I such that Qκ(k,j) ∋ y(xk,j) and (3.51)
holds. We define a map Θ:

⋃
k Jk → I as follows:

Θ(k, j) := κ(k, j), k ∈ N0, j ∈ Jk. (4.3)

Since Qκ∩Q(xk,j , 2−k) ̸= ∅, it follows from (3.51) that Qκ ⊂ 3Q(xk,j , 2−k). Using
this, Lemma 3.1, (2), and Proposition 3.4 for c = 6, it is easy to see that there
exists a positive constant C(n) such that for every fixed k ∈ N0 and every κ ∈ I

card{Θ−1(κ) ∩Jk} ⩽ C(n). (4.4)

It follows from (3.51) that the equality Θ(k, j) = κ = Θ(k′, j′) implies that

|k′ − k| ⩽ log2

5
λ

. (4.5)
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Combining (3.51), (4.4) and (4.5), for every κ ∈ I we obtain∑
(k,j)∈Θ−1(κ)

2−kn ⩽ C(n, λ)H n(Qκ). (4.6)

If κ = Θ(k, j) for some k ∈ N0, j ∈ Jk, then it follows from (3.10) and (3.51) that

∥xk,j − x̃κ∥ ⩽ ∥xk,j − y(xk,j)∥+ ∥y(xk,j)− x̃κ∥

⩽ 2−k + dist(Qκ , S) + diam(Qκ) ⩽ 2−k + 5 diam(Qκ) ⩽
6
2k

.

This gives the inclusion

Q

(
x̃Θ(k,j),

8
2k

)
⊃ Q(x, 2−k) for each x ∈ Q(xk,j , 2−k). (4.7)

Now we use (2.10) and (4.7) and apply Lemma 3.8 for c = 8. Then for every k ∈ N
we obtain

∞∑
k=1

∑
j∈Jk

2k(d−n)

ˆ
Sk(λ)∩Q(xk,j ,2−k)

(
f ♯
{µk}(x, 2−k)

)p
dµk(x)

⩽ C

∞∑
k=1

∑
j∈Jk

2−kn

[(
f ♯
{µk}

(
x̃Θ(k,j), 2−k

))p +
 

Q(x̃Θ(k,j),8)

|f(y)|p dµ0(y)
]
.

(4.8)

From (4.6) it follows that

S1 :=
∞∑

k=1

∑
j∈Jk

2−kn
(
f ♯
{µk}

(
x̃Θ(k,j), 2−k

))p

⩽ C
∑

κ∈I

∑
(k,j)∈Θ−1(κ)

2−kn
(
f ♯
{µk}

(
x̃κ , 2−k

))p
⩽ C

∑
κ∈I

H n(Qκ)
(
f ♯
{µk}

(
x̃κ , rκ

))p
.

(4.9)

Similarly

S2 :=
∞∑

k=1

∑
j∈Jk

2−kn

 
Q(x̃Θ(k,j),8)

|f(y)|p dµ0(y)

⩽ C
∑

κ∈I

H n(Qκ)
 

Q(x̃κ ,8)

|f(y)|p dµ0(y). (4.10)

Combining (4.2), (4.8), (4.9) and (4.10) we complete the proof of Lemma 4.1.

Lemma 4.2. Let d ∈ [0, n], p ∈ (1,∞) and λ ∈ (0, 1). Let S be a d-thick closed set.
Let {µk} = {µk}k∈N0 be a d-regular sequence of measures in S . Assume that
f ∈ Lp(S, µ0). Then for each c ⩾ 1 there is a positive constant C depending only
on d, p, n, c and C{µk} such that∑

κ∈I

H n(Qκ)
 

Q(x̃κ ,c)

|f(y)|p dµ0(y) ⩽ C∥f |Lp(S, µ0)∥p. (4.11)
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Proof. We use (2.11) and then apply Lemma 3.4 with dm(y) = |f(y)|p dµ0(y). This
gives the required estimate∑

κ∈I

H n(Qκ)
 

Q(x̃κ ,c)

|f(y)|p dµ0(y) ⩽
∑

κ∈I

H n(Qκ)
ˆ

Q(x̃κ ,c)

|f(y)|p dµ0(y)

⩽ C∥f |Lp(S, µ0)∥p. (4.12)

The proof is complete.

Recall the notion of a good representative F̂ of a given element F ∈ W 1
p (Rn).

Lemma 4.3. Let d ∈ (0, n] and p ∈ (max{1, n − d}, n]. Let S ⊂ Rn be a d-thick
closed set. Let {µk}k∈N0 be a d-regular sequence of measures on S . Then for every
F ∈ W 1

p (Rn)

lim
r→0

 
Q(x,r)∩S

|F̂ (x)− F̂ (z)| dµk(r)(z) = 0 for (1, p)-q.e. x ∈ S. (4.13)

Proof. Let S′ ⊂ S be the intersection of S with the set of all Lebesgue points of
the function F̂ . It follows from Proposition 2.4 that C1,p(S \ S′) = 0. For every
x ∈ S′ we have 

Q(x,r)∩S

|F̂ (x)− F̂ (z)| dµk(r)(z) ⩽

∣∣∣∣F̂ (x)−
 

Q(x,r)

F̂ (y) dH n(y)
∣∣∣∣

+
 

Q(x,r)∩S

∣∣∣∣F̂ (z)−
 

Q(x,r)

F̂ (y) dH n(y)
∣∣∣∣ dµk(r)(z) =: J1(x, r) + J2(x, r).

(4.14)

Clearly, J1(x, r) → 0 as r → 0 according to the construction of S′. Combining
this fact with (4.14) and Proposition 2.1 we conclude that it is sufficient to show
that J2(x, r) → 0 as r → 0 for H n−p-a.e. x ∈ S. In fact, applying Theorem 3.4
(for q = p) and Proposition 3.1 gives

lim
r→0

(J2(x, r))p

⩽ C lim
r→0

1
rn−p

∑
|α|=1

ˆ
Q(x,r)

|DαF̂ (z)|p dH n(z) = 0 for H n−p-a.e. x ∈ S.

(4.15)

The lemma is proved.

Now we are ready to prove the main result of this subsection. Recall Defini-
tions 2.7–2.9 and 2.11.

Theorem 4.1. Let d ∈ [0, n], p ∈ (max{1, n − d},∞) and λ ∈ (0, 1). Let S ⊂ Rn

be a d-thick closed set, and let {µk}k∈N0 be a d-regular sequence of measures on S .
Then the functional ÑS,p,λ is bounded on the trace space W 1

p (Rn)|S .

Proof. It is sufficient to verify that there exists a positive constant C (independent
of F ) such that the inequality

ÑS,p,λ[f ] ⩽ C∥F |W 1
p (Rn)∥ (4.16)

holds for each F ∈ W 1
p (Rn) with F |S = f .
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We fix some F ∈ W 1
p (Rn) with F |S = f throughout the proof.

Step 1. First of all we estimate S N S,p[f ] from above. Fix an arbitrary q ∈
(max{1, n − d}, p). We apply Corollary 3.4, Remark 3.1 and Theorem A for m =
H n, α = 0, d = n and exponent p/q instead of p. Then we obtain(

S N S,p[f ]
)p

⩽ C

ˆ
S

(
M<1[|∇F |q](x)

)p/q
dH n(x) ⩽ C∥F |W 1

p (Rn)∥p. (4.17)

Step 2. Fix some q ∈ (max{1, n−d}, p). From Lemma 3.2 it follows that Q(x̃κ , r) ⊂
Q(x, 10r) for every κ ∈ I , x ∈ Qκ and r ∈ (rκ , 1). Applying Corollary 3.4,
Remark 3.1, Theorem A for m = H n, α = 0 and γ = p/q, and the fact that the
interiors of different Whitney cubes are mutually disjoint gives∑

κ∈I

H n(Qκ)
(
f ♯
{µk}(x̃κ , rκ)

)p
⩽ C

∑
κ∈I

H n(Qκ)
(
M<2

>rκ
[|∇F |q](x̃κ)

)p/q

⩽ C
∑

κ∈I

H n(Qκ) inf
x∈Qκ

(
M>rκ [|∇F |q](x)

)p/q

⩽ C

ˆ
Rn

(
M[|∇F |q](x)

)p/q
dH n(x) ⩽ C∥F |W 1

p (Rn)∥p. (4.18)

Step 3. We estimate ∥f |Lp(S, µ0)∥ from above. Let {xj}j∈J be a maximal
1-separated subset of S. Consider the family of cubes {Qj}j∈J := {Q(xj , 1)}j∈J .
It is clear that Q(x, 1) ⊂ 2Qj for every x ∈ S ∩Qj . Using this and Lemma 3.1, (1),
we derive the following estimate:ˆ

S

|f(x)|p dµ0(x) ⩽
∑
j∈J

ˆ
Qj

|f(x)|p dµ0(x)

⩽ C
∑
j∈J

ˆ
Qj

∣∣∣∣f(x)−
 

Q(x,1)

F (y) dH n(y)
∣∣∣∣p dµ0(x)

+ C
∑
j∈J

ˆ
Qj

( 
2Qj

|F (y)| dH n(y)
)p

dµ0(x). (4.19)

Using Hölder’s inequality, (2.10), Lemma 3.1, (2), Proposition 3.4 with c = 4
and Proposition 3.5 with dm(y) = |F (y)|p dH n(y), we easily obtain∑

j∈J

ˆ
Qj

( 
2Qj

|F (y)| dH n(y)
)p

dµ0(x)

⩽
∑
j∈J

ˆ
2Qj

|F (y)|p dH n(y) ⩽ C(n)
ˆ

Rn

|F (y)|p dH n(y). (4.20)

Recall Proposition 2.1 and Lemma 3.6 (also recall that d > n−p). Then applying
Proposition 3.3 and Remark 3.2 shows that there exists C > 0 (independent of F )
such that for every δ ∈ (0, 1)∣∣∣∣f(x)−

 
Q(x,1)

F (y) dH n(y)
∣∣∣∣ ⩽ C M<2[|∇F |, (1− δ)](x) for µ0-a.e. x ∈ Rn.

(4.21)
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Since d > n− p, we can choose δ in such a way that p(1− δ) > n− d. Now we use
Lemma 3.1, then Proposition 3.5 with dm(x) =

(
M<2[|∇F |, (1 − δ)](x)

)p
dµ0(x),

and finally apply Theorem A with γ = p and α = (1− δ). As a result, using (4.21)
we obtain∑

j∈J

ˆ
Qj

∣∣∣∣f(x)−
 

Q(x,1)

F (y) dH n(y)
∣∣∣∣p dµ0(x)

⩽ C
∑
j∈J

ˆ
Qj

(
M<2[|∇F |, (1− δ)](x)

)p
dµ0(x)

⩽ C

ˆ
Rn

(
M<2[|∇F |, (1− δ)](x)

)p
dµ0(x) ⩽ C

ˆ
Rn

|∇F (y)|p dH n(y). (4.22)

Combining (4.19), (4.20) and (4.22) yields

∥f |Lp(S, µ0)∥ ⩽ C∥F |W 1
p (Rn)∥. (4.23)

Step 4. Combining Lemmas 4.1 and 4.2, and estimates (4.18) and (4.23) we obtain(
B̃N S,p,λ[f ]

)p
⩽ C∥F |W 1

p (Rn)∥p. (4.24)

Now the required estimate (4.16) follows directly from (4.17), (4.23) and (4.24).
The proof is complete.

4.2. The reverse trace theorem. The following pointwise characterization of
the functions in the space W 1

p (Rn) is given in [35].

Theorem D. Let p ∈ (1,∞] and F ∈ Lp(Rn). Then F ∈ W 1
p (Rn) if and only if

there exist a nonnegative function g ∈ Lp(Rn), a set EF with H n(EF ) = 0 and
a constant δ > 0 such that

|F (x)− F (y)| ⩽ ∥x− y∥
(
g(x) + g(y)

)
(4.25)

for every x, y ∈ Rn \ EF with ∥x− y∥ < δ . Furthermore,∑
|α|=1

∥DαF |Lp(Rn)∥ ⩽ C∥g|Lp(Rn)∥, (4.26)

where the positive constant C does not depend on g .

Proof. We only sketch the proof. One implication was established in [35] (see the
text before Theorem 1 there); see also [36]. For the reverse implication we have to
cover Rn by a countable family of ‘sufficiently nicely overlapping’ balls {Bi}i∈N of
diameter δ > 0 and for every i ∈ N apply Theorem 1 in [35] for Ω = intBi. Then
we observe that, given a function F ∈ Lloc

1 (Rn), the fact that F ∈
⋂N

i=1 W 1
p (int Bi)

implies F ∈ W 1
p

(⋃N
i=1 int Bi

)
for any N ∈ N. This shows that locally integrable

weak derivatives DαF exist on Rn and their restrictions to any open ball int Bi

coincide with the corresponding weak derivatives of F |int Bi
. It remains to sum the

appropriate analogues of estimate (4.26) for all open balls int Bi.
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Now we are ready to present our construction of the extension operator.

Definition 4.1. Let S ⊂ Rn be a d-thick closed set for some d ∈ [0, n]. Let {µk} =
{µk}k∈N0 be a d-regular sequence of measures on S. Assume that f ∈ Lloc

1 (S, µk)
for every k ∈ N0. For the same family of functions {φκ}κ∈I as in Proposition 3.6
we set

Ext[f ](x) := χS(x)f(x) +
∑

κ∈I

φκ(x)fκ , x ∈ Rn, (4.27)

where
fκ :=

 
Q̃κ∩S

f(x) dµk(κ)(x), κ ∈ I .

Remark 4.1. In fact, (4.27) defines not a single extension operator, but a whole
family of operators. The reason is that the choice of the d-regular sequence of
measures {µk} is not unique. Furthermore, generally speaking, the choice of the
reflected cubes Q̃κ is not unique either.

The following result plays a crucial role. It gives a pointwise estimate of the
extension constructed in (4.27). Recall the notation b(κ): see (3.12).

Lemma 4.4. Let d ∈ [0, n] and let S be a d-thick closed set. Let {µk} = {µk}k∈N0

be a d-regular sequence of measures on S . Let f ∈ Lloc
1 (S, µk) for some (and hence

every) k ∈ N0 . Suppose that

lim
k→∞

 
Q(x,2−k)

|f(x)− f(y)| dµk(y) = 0 for H n-a.e. x ∈ S. (4.28)

Then there exists a positive constant C depending only on n, p, d and C{µk} such
that for each δ ∈ (0, 1/150), for (H n ×H n)-a.e. (x, y) ∈ R2n , ∥x − y∥ < δ , the
function F := Ext[f ] : Rn → R defined in (4.27) satisfies

|F (x)− F (y)| ⩽ C∥x− y∥
(
g(x) + g(y)

)
, x, y ∈ Rn, (4.29)

where, for every x ∈ Rn ,

g(x) := χS(x)f ♯
{µk}(x)

+
∑

κ∈I

χQκ (x)
∑

κ′∈I
κ′∈b(κ)

(
f ♯
{µk}(x̃κ′ , rκ′) +

 
Q̃κ′∩S

|f(z)| dµk(κ′)(z)
)

. (4.30)

Proof. Fix an arbitrary δ ∈ (0, 1/150). It is obvious that we have to consider five
cases:

(1) x, y ∈ S and ∥x− y∥ < δ;
(2) x ∈ S, y ∈ Rn \ S and ∥x− y∥ < δ;
(3) y ∈ S, x ∈ Rn \ S and ∥x− y∥ < δ;
(4) x, y ∈ U1/60(S) \ S and ∥x− y∥ < δ;
(5) x, y ∈ Rn \ S and, furthermore, ∥x − y∥ < δ and either x /∈ U1/60(S) or

y /∈ U1/60(S).
By the symmetry of the left-hand side of (4.29) with respect to x and y, we can

identify cases (2) and (3) up to changes in notation.
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Case (1). From (4.28) and Corollary 3.3 it follows that for H n×H n-almost every
(x, y) ∈ S × S

|F (x)− F (y)| ⩽ C∥x− y∥
(
f ♯
{µk}(x) + f ♯

{µk}(y)
)
. (4.31)

Case (2) (= case (3)). Consider the case when x ∈ S, y ∈ Uδ(S)\S and ∥x−y∥ ⩽ δ.
Since δ ∈ (0, 1/150), estimate (3.11) and Proposition 3.6, (2), give∑

κ∈I

φκ(y) = 1 for all y ∈ Uδ(S). (4.32)

Recall the notation b(y) (given after Lemma 3.2). From Proposition 3.6, (2), it
follows that b(y) = {κ ∈ I : y ∈ Q∗κ} for every y ∈ Rn \ S. Hence from (4.27)
and (4.32) we have

|F (x)−F (y)| = |f(x)−F (y)| ⩽
∑

κ∈b(y)

φκ(y)
∣∣∣∣f(x)−

 
Q̃κ∩S

f(z) dµk(κ)(z)
∣∣∣∣. (4.33)

Fix κ ∈ b(y) and set r = 2 max{∥x − x̃κ∥, diam Q̃κ}. Now, (3.10) and Proposi-
tion 3.6, (2), give

∥x− y∥ ⩾ dist(x, Qκ)− 1
8

diam Qκ ⩾
1
2

diam Qκ =
1
2

diam Q̃κ .

Hence, using (3.10) again we obtain

∥x− x̃κ∥ ⩽ ∥x− y∥+ ∥y − xκ∥+ ∥xκ − x̃κ∥

⩽ ∥x− y∥+ 6 diam Q̃κ ⩽ 13∥x− y∥. (4.34)

We use (4.34) and the fact that ∥x− y∥ ⩽ δ ∈ (0, 1/120). Then we obtain

r ⩽ 26∥x− y∥ <
1
2
. (4.35)

We note that rκ can be much smaller than r. Hence we need to estimate with
care. Note that Q̃κ := Q(x̃κ , rκ) ⊂ Q(x̃κ , r/2) ⊂ Q(x, r). Using the same argu-
ments as in the proof of Corollary 3.3, for every κ ∈ b(y) and H n-a.e. x ∈ S
we have∣∣∣∣f(x)−

 
Q̃κ∩S

f(z) dµk(κ)(z)
∣∣∣∣ ⩽ Cr(f ♯

{µk}(x) + f ♯
{µk}(x̃κ , rκ)

)
; (4.36)

we have also used the fact that 2r < 1. As a result, combining (4.33), (4.35)
and (4.36), for H n-a.e. x ∈ S and all y ∈ Q(x, δ) \ S we deduce that

|F (x)− F (y)| ⩽ C∥x− y∥
(

f ♯
{µk}(x) +

∑
κ∈b(y)

f ♯
{µk}(x̃κ , rκ)

)
⩽ C∥x− y∥

(
g(x) + g(y)

)
. (4.37)
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Case (4). Fix δ ∈ (0, 1/150) and x, y ∈ U1/60(S)\S with ∥x−y∥ ⩽ δ. From (3.10) it
follows that κ0, κ1 ∈ I for every Q∗κ0

∋ x and Q∗κ1
∋ y. Furthermore, from (3.11)

it follows that b(κ0) ∪ b(κ1) ⊂ I in this case. Hence we have∑
κ∈I

φκ(x) =
∑

κ′∈I

φκ′(y) = 1. (4.38)

There are two subcases here. In the first Qκ ∩ Qκ′ = ∅ for any Q∗κ ∋ x and
Q∗κ′ ∋ y; in the second Qκ0 ∩ Qκ1 ̸= ∅ for some cubes Q∗κ0

and Q∗κ1
containing

x and y, respectively.
Consider the first subcase. Using (4.38) and arguing as in (4.33) we have

|F (x)− F (y)| ⩽
∑

κ∈b(x)

∑
κ′∈b(y)

∣∣∣∣ 
Q̃κ∩S

f(z) dµk(κ)(z)−
 

Q̃κ′∩S

f(z) µk(κ′)(z)
∣∣∣∣.

(4.39)
For fixed κ ∈ b(x) and κ′ ∈ b(y) we set

r := ∥x̃κ − x̃κ′∥+ max{diam(Q̃κ), diam(Q̃κ′)}.

It is clear that κ′ /∈ b(κ) and κ /∈ b(κ′) in this subcase. Hence we obtain

∥x− y∥ ⩾
3
16

max{diam(Q̃κ), diam(Q̃κ′)}. (4.40)

On the other hand, using (3.10) we have

∥x̃κ − x̃κ′∥ ⩽ ∥x̃κ − xκ∥+ ∥x̃κ′ − xκ′∥+ ∥x− y∥+ ∥x− xκ∥+ ∥y − xκ′∥

⩽ ∥x− y∥+
91
16

diam(Q̃κ) +
91
16

diam(Q̃κ′). (4.41)

Combining (4.40) and (4.41) we easily deduce that

r ⩽ 67∥x− y∥ <
1
2
. (4.42)

It is clear that Q̃κ ⊂ Q(x̃κ , r) and Q̃κ′ ⊂ Q(x̃κ , r). We take (4.42) into account
and apply Theorem 3.3 (which is possible due to (4.42) and the restrictions on δ).
Then we obtain ∣∣∣∣ 

Q̃κ∩S

f(z) dµk(κ)(z)−
 

Q̃κ′∩S

f(z) dµk(κ′)(z)
∣∣∣∣

⩽ C∥x− y∥
(
f ♯
{µk}(x̃κ , rκ) + f ♯

{µk}(x̃κ′ , rκ′)
)
. (4.43)

Combining (4.39) and (4.43) and using (4.30), for this choice of x and y we have

|F (x)− F (y)| ⩽ C∥x− y∥
(
g(x) + g(y)

)
. (4.44)

Now consider the second subcase. Fix arbitrary Q∗κ0
∋ x and Q∗κ1

∋ y with Qκ0∩
Qκ1 ̸= ∅. Let γx,y : [0, 1] → ∪κ∈b(κ0)∪b(κ1)Qκ be a smooth curve with |γ̇x,y(t)| ⩽
C∥x − y∥, t ∈ [0, 1]. We use (4.27), Lagrange’s mean value inequality, (4.38),
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Proposition 3.6, (4), and estimates (3.11). As a result, we obtain (recall that
supp µk = S for each k ∈ N0)

1
∥x− y∥

|F (x)− F (y)| ⩽ C max
t∈[0,1]

|∇F (γx,y(t))|

⩽ C max
t∈[0,1]

∣∣∣∣ ∑
κ∈b(κ0)∪b(κ1)

∇φκ(γx,y(t))

×
( 

Q̃κ∩S

f(z) dµk(κ)(z)−
 

Q̃κ0∩S

f(z′) dµk(κ0)(z
′)

)∣∣∣∣
⩽

C

max{rκ0 , rκ1}

( ∑
κ∈b(κ0)

∣∣∣∣ 
Q̃κ0∩S

f(z′) dµk(κ0)(z
′)−

 
Q̃κ∩S

f(z) dµk(κ)(z)
∣∣∣∣

+
∑

κ∈b(κ1)

∣∣∣∣ 
Q̃κ1∩S

f(z′) dµk(κ0)(z
′)−

 
Q̃κ∩S

f(z) dµk(κ)(z)
∣∣∣∣

+
∣∣∣∣ 

Q̃κ1∩S

f(z′) dµk(κ1)(z
′)−

 
Q̃κ0∩S

f(z) dµk(κ0)(z)
∣∣∣∣). (4.45)

From (3.10) and (3.11) it follows that

∥x̃κ − x̃κ0∥ ⩽ ∥xκ − xκ0∥+ dist(xκ , S) + dist(xκ0 , S) ⩽ 5 diamQκ + 5 diamQκ0

⩽ 25 min{diam Qκ , diam Qκ0} for every κ ∈ b(κ0).

Similarly, ∥x̃κ − x̃κ1∥ ⩽ 25 min{diam Qκ , diam Qκ1} for every κ ∈ b(κ1). As
a result, since diam Qκi ⩽ max{dist(x, S), dist(y, S)} ⩽ 1/60 for i = 0, 1 (due
to (3.10)) we obtain

∥x̃κ − x̃κi
∥+ max

κ∈b(κi)
max{diam Qκ , diam Qκi

} ⩽ 30 diamQκi
<

1
2
, i = 0, 1.

(4.46)
Using (4.46) we apply Theorem 3.3 and continue with (4.45). This gives

1
∥x− y∥

|F (x)− F (y)| ⩽ C
(
g(x) + g(y)

)
. (4.47)

Combining (4.44) and (4.47) we can establish case (4).
Case (5). Fix δ ∈ (0, 1/120) and x, y ∈ Rn such that ∥x− y∥ < δ. Without loss of
generality assume that x ∈ Rn \U1/60(S). Then y ∈ Rn \U1/120(S). By (3.10) this
implies that for every Qκ ∋ x and Qκ′ ∋ y

60−1 ⩽ dist(x, S) ⩽ diam Qκ + dist(Qκ , S) ⩽ 5 diamQκ ,

120−1 ⩽ dist(y, S) ⩽ diam Qκ′ + dist(Qκ′ , S) ⩽ 5 diamQκ′ .
(4.48)

Consider two subcases by analogy with case (4).
In the first subcase Qκ ∩Qκ′ = ∅ for any Q∗κ ∋ x and Q∗κ′ ∋ y. Then the same

arguments as in (4.40) together with (4.48) give

∥x− y∥ ⩾
3
16

max{diam Q̃κ , diam Q̃κ′} ⩾
1

1600
. (4.49)
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By (4.27) and (4.30) this implies that

1
∥x− y∥

|F (x)− F (y)| ⩽ C

( ∑
κ∈I

χQκ (x)
 

Q̃κ

|f(z)| dµk(κ)(z)

+
∑

κ∈I

χQκ′ (y)
 

Q̃κ′

|f(z′)| dµk(κ′)(z′))
)

⩽ C
(
g(x) + g(y)

)
. (4.50)

In the second subcase there are Q∗κ0
∋ x and Q∗κ1

∋ y with Qκ0 ∩ Qκ1 ̸= ∅.
Arguing as in (4.45)) and taking (4.48) into account we obtain

1
∥x− y∥

|F (x)− F (y)| ⩽ C
∑

κ∈I
κ∈b(κ0)∪b(κ1)

 
Q̃κ

⋂
S

|f(z)| dµk(κ)(z) ⩽ C
(
g(x) + g(y)

)
.

(4.51)
Combining (4.50) and (4.51) we obtain case (5).

The proof of Lemma 4.4 is complete.

Lemma 4.5. Let d ∈ [0, n], p ∈ (1,∞) and λ ∈ (0, 1). Let S be a d-thick closed set.
Let {µk} = {µk}k∈N0 be a d-regular sequence of measures on S . Then there exists
a positive constant C , depending only on d, n, p and C{µk} , such that

1
C

∑
κ∈I

H n(Qκ)
(
f ♯
{µk}(x̃κ , rκ)

)p

⩽
∞∑

k=1

2kd

2kn

ˆ
Sk(λ)

(
f ♯
{µk}(x, 2−k)

)p
dµk(x) + ∥f |Lp(S, µ0)∥p. (4.52)

Proof. Clearly, Q(x̃κ , r) ⊂ Q(x, 2r) ⊂ Q(x̃κ , 3) for every x ∈ Q(x̃κ , rκ) and r ⩾ rκ .
Hence, applying Lemma 3.8 (for c = 2) gives

f ♯
{µk}(x̃κ , rκ) ⩽ C inf

x∈Q(x̃κ ,rκ)∩S

(
f ♯
{µk}(x, rκ) +

 
Q(x,2)

|f(y)| dµ0(y)
)

⩽ C inf
x∈Q(x̃κ ,rκ)∩S

f ♯
{µk}(x, rκ) + C

ˆ
Q(x̃κ ,3)

|f(y)| dµ0(y) (4.53)

for every κ ∈ I . Note that µk(rκ)(Q(x̃κ , (1−λ)rκ)∩S) = µk(rκ)(Q(x̃κ , (1−λ)rκ))
because supp µk = S. Hence using (2.11) and (3.23) for c = (1− λ)−1, from (4.53)
we derive that

Hn(Qκ)
(
f ♯
{µk}(x̃κ , rκ)

)p = Hn(Qκ)
µk(κ)(Q(x̃κ , (1− λ)rκ))
µk(κ)(Q(x̃κ , (1− λ)rκ))

(
f ♯
{µk}(x̃κ , rκ)

)p

⩽ C(rκ)n−d

ˆ
Q(x̃κ ,(1−λ)rκ)∩S

(
f ♯
{µk}(x, rκ)

)p
dµk(κ)(x)

+ CH n(Qκ)
ˆ

Q(x̃κ ,3)

|f(y)|p dµ0(y). (4.54)

It follows from Lemma 3.3 that for every fixed k ∈ N0 the multiplicity of overlapping
of the sets Q(x̃κ , (1− λ)rκ) ∩ S with rκ = 2−k is bounded above by some positive
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constant C(n). Furthermore, from Lemma 3.10 it follows that Q(x̃κ , (1−λ)rκ)∩S ⊂
Sk(λ) for each k ∈ N0, provided that rκ = 2−k. This, (4.54) and Lemma 4.2 (with
c = 3) give the required estimate∑

κ∈I

H n(Qκ)
(
f ♯
{µk}(x̃κ , rκ)

)p

⩽ C

∞∑
k=0

∑
rκ=2−k

2k(d−n)

ˆ
Q(x̃κ ,(1−λ)rκ)∩S

(
f ♯
{µk}(x, rκ)

)p
dµk(rκ)(x)

+ C
∑

κ∈I

H n(Qκ)
ˆ

Q(x̃κ ,3)

|f(y)|p dµ0(y)

⩽ C

∞∑
k=0

2k(d−n)

ˆ
Sk(λ)

(
f ♯
{µk}(x, 2−k)

)p
dµk(x) + C

ˆ
S

|f(y)|p dµ0(y). (4.55)

Combining (4.54) and (4.55) we complete the proof.

Lemma 4.6. Let d ∈ [0, n], p ∈ (1,∞) and λ ∈ (0, 1). Let S be a d-thick closed set.
Let {µk} = {µk}k∈N0 be a d-regular sequence of measures on S . Let f : S → R be
a Borel function such that ÑS,p,λ[f ] < ∞. Let F := Ext[f ] be the function con-
structed in (4.27) and g be the function defined in (4.30). Then

∥g|Lp(Rn)∥+ ∥F |Lp(Rn)∥ ⩽ CÑS,p,λ[f ]. (4.56)

The positive constant C in (4.56) is independent of f .

Proof. From (4.27) and Proposition 3.6 it is clear that |F (x)| ⩽ χS(x)|f(x)| +
χRn\S(x)g(x). It follows from (4.30) that for some positive constant C independent
of f we have

∥g|Lp(S)∥ ⩽ CS N S,p[f ]. (4.57)

Hence it is sufficient to establish that

∥g|Lp(Rn \ S)∥ ⩽ CÑS,p,λ[f ] and ∥f |Lp(S, H n)∥ ⩽ C∥f |Lp(S, µ0)∥, (4.58)

with a positive constant C independent of f . It is clear that (4.56) follows
from (4.57) and (4.58).
Step 1. We establish the first estimate in (4.58). Using Lemma 3.2, (3)–(5), we
obtain

∥g|Lp(Rn \ S)∥p ⩽ C
∑

κ∈I

H n(Qκ)
[(

f ♯
{µk}(x̃κ , rκ)

)p

+
( 

Q(x̃κ ,rκ)

|f(y)| dµk(κ)(y)
)p]

=: S1 + S2. (4.59)

From Lemma 4.5 and (2.15) we clearly have

S1 ⩽ C
(
ÑS,p,λ[f ]

)p
. (4.60)
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Using (2.13) and arguing as in (3.39) we obtain( 
Q(x̃κ ,rκ)

|f(y)| dµk(κ)(y)
)p

⩽ C

( 
Q(x̃κ ,rκ)

∣∣∣∣f(y)−
 

Q(x̃κ ,rκ)

f(z) dµk(κ)(z)
∣∣∣∣ dµk(κ)(y)

)p

+
∣∣∣∣ 

Q(x̃κ ,1)

f(z) dµ0(z)−
 

Q(x̃κ ,rκ)

f(z) dµk(κ)(z)
∣∣∣∣p + C

∣∣∣∣ 
Q(x̃κ ,1)

f(z) dµ0(z)
∣∣∣∣p

⩽ C
(
f ♯
{µk}(x̃κ , rκ)

)p + C

( 
Q(x̃κ ,1)

|f(z)| dµ0(z)
)p

for every κ ∈ I , rκ ⩽ 2−1. (4.61)

Using Hölder’s inequality, (4.60) and Lemma 4.2 for c = 1, from (4.61) we obtain

S2 ⩽ CS1 +
∑

κ∈I

H n(Qκ)
 

Q(x̃κ ,1)

|f(y)|p dµk(κ)(y) ⩽ C
(
ÑS,p,λ[f ]

)p
. (4.62)

As a result, combination of (4.59), (4.60) and (4.62) gives the first estimate in (4.58).
Step 2. Let {xj}j∈J be a maximal (1/2)-separated subset in S. Using Defini-
tion 2.3, Lemma 3.1, Corollary 3.2 and Propositions 3.4 and 3.5, we obtain the
second estimate in (4.58):

ˆ
S

|f(x)|p dH n(x) ⩽
∑
j∈J

ˆ
Q(xj ,1/2)

|f(x)|p dH n(x)

⩽ C
∑
j∈J

ˆ
Q(xj ,1/2)

|f(x)|p dµ1(x) ⩽ C

ˆ
S

|f(x)|p dµ0(x). (4.63)

The lemma is proved.

Recall the definitions of the trace F |S of a given element F ∈ W 1
p (Rn) on the

set S (Definitions 2.7 and 2.8). Also recall Definition 4.1.

Theorem 4.2. Let d ∈ [0, n] and p ∈ (max{1, n− d},∞). Let S ⊂ Rn be a d-thick
closed set and {µk}k∈N0 a d-regular sequence of measures on S . If ÑS,p,λ[f ] < +∞
for some λ > 0 and

lim
r→0

 
Q(x,r)∩S

|f(x)− f(z)| dµk(r)(z) = 0 for (1, p)-q.e. x ∈ S, (4.64)

then Ext[f ]|S = f .

Proof. Let S′ ⊂ S be the set of all points x where (4.64) holds. Set F := Ext[f ]. We
are going to show that F̂ = F . Fix a cube Q(x, r) with x ∈ S and r ∈ (0, 1/100).
Using (3.10) and the definition of Q∗κ we see that

7
8

diam Qκ ⩽ r <
1

100
provided that κ ∈ I, Q∗κ ∩Q(x, r) ̸= ∅. (4.65)
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From (4.65) it follows that rκ < 1 and thus κ ∈ I . Then it follows from Lemma 3.2,
(4), and Proposition 3.6, (2), (3), that

 
Q(x,r)

|F̂ (x)− F̂ (z)| dH n(z) ⩽
1

H n(Q(x, r))

ˆ
Q(x,r)∩S

|f(x)− f(z)| dH n(z)

+
C

H n(Q(x, r))

∑
κ∈I

Q∗κ∩Q(x,r)̸=∅

H n(Qκ)
 

Q̃κ∩S

|f(x)− f(z)| dµk(κ)(z)

:= J1(x, r) + J2(x, r). (4.66)

Using Corollary 3.2 and (4.64), for (1, p)-q.e. x ∈ S we have

J1(x, r) ⩽ C

 
Q(x,r)∩S

|f(x)− f(z)| dµk(r)(z) → 0, as r → 0. (4.67)

To estimate J2(x, r) we need some preliminaries.
From (4.65) we deduce the inequality ∥x−xκ∥∞ ⩽ r+9rκ/8 ⩽ r+9r/14. Hence

for all κ ∈ I such that Q∗κ ∩Q(x, r) ̸= ∅ we have

Qκ := Q(xκ , rκ) ⊂ Q

(
xκ ,

4r

7

)
⊂ Q(x, 3r). (4.68)

Recall that Whitney cubes have disjoint interiors. Hence, using (4.68) we obtain∑
κ∈I

Q∗κ∩Q(x,r)̸=∅

H n(Qκ) ⩽ H n(Q(x, 3r)) ⩽ 3nH n(Q(x, r)). (4.69)

Now for every κ ∈ I with Q∗κ ∩Q(x, r) ̸= ∅ it follows from (3.10) that

∥x− x̃κ∥ ⩽ r +
9
8

diam Qκ + 4 diamQκ ⩽ 7r. (4.70)

For all such κ, from (4.70) it follows that

Q̃κ := Q(x̃κ , rκ) ⊂ Q(x, 9r) ⊂ Q(x̃κ , 17r). (4.71)

Taking the inclusions (4.71) into account we use (2.13) and then apply Lemma 3.9
for R = ∥x− x̃∥+9r (note that 17r < 1/2). Finally, we use (4.70) and the monoto-
nicity of f ♯

{µk}(·, r) with respect to r. This gives

 
Q̃κ∩S

∣∣∣∣f(z)−
 

Q(x,9r)∩S

f(z′) dµk(9r)(z′)
∣∣∣∣ dµk(κ)(z)

⩽

∣∣∣∣ 
Q̃κ∩S

f(z) dµk(κ)(z)−
 

Q(x,9r)∩S

f(z′) dµk(9r)(z′)
∣∣∣∣

+ Eµk(κ)(Q̃κ , f) ⩽ C min{Eµk(R)(Q(x̃κ , R), f), Eµk(R)(Q(x, R), f)}

+ Eµk(κ)(Q̃κ , f) + Crf ♯
µk

(x̃κ , rκ) ⩽ Crf ♯
{µk}(x̃κ , rκ). (4.72)
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Combining (4.69) and (4.72) we obtain

J2(x, r) ⩽
C

H n(Q(x, r))

∑
κ∈I

Q∗κ∩Q(x,r) ̸=∅

H n(Qκ)
∣∣∣∣f(x)−

 
Q(x,9r)

f(z′) dµk(9r)(z′)
∣∣∣∣

+
C

H n(Q(x, r))

∑
κ∈I

Q∗κ∩Q(x,r)̸=∅

H n(Qκ)
 

Q̃κ∩S

∣∣∣∣f(z)

−
 

Q(x,9r)

f(z′) dµk(9r)(z′)
∣∣∣∣ dµk(κ)(z)

⩽ C

 
Q(x,9r)∩S

|f(x)− f(z′)| dµk(9r)(z′)

+ C
r

H n(Q(x, r))

∑
κ∈I

Q∗κ∩Q(x,r)̸=∅

H n(Qκ)f ♯
{µk}(x̃κ , rκ). (4.73)

From (4.69), by Hölder’s inequality for sums with exponents p and p′ we see that
the second term on the right-hand side of (4.73) is bounded above by

C

(
rp

H n(Q(x, r))

∑
κ∈I

Q∗κ∩Q(x,r)̸=∅

H n(Qκ)
(
f ♯
{µk}(x̃κ , rκ)

)p
)1/p

=:
(
K(x, r)

)1/p
.

(4.74)
Clearly, the first term on the right-hand side of (4.73) tends to zero as r → +0

for (1, p)-q.e. points x ∈ S because of (4.64).
In the case p > n we use (4.59) and (4.60) and obtain

(K(x, r))1/p ⩽ C(rp−nS1)1/p ⩽ Cr(p−n)/p
(
ÑS,p,λ[f ]

)1/p → 0 as r → 0, (4.75)

for every x ∈ S because ÑS,p,λ[f ] < ∞. Hence J2(x, r) → 0 as r → 0 everywhere
in this case. This, with (4.66) and (4.67), shows that (1, p)-quasi-every point x ∈ S
where (4.64) holds is a Lebesgue point of F . This fact together with Definition 2.7
proves the claim in the case p > n.

Consider the case p ∈ (1, n]. In view of Proposition 2.1, to show that J2(x, r) → 0
as r → +0 for (1, p)-q.e. points x ∈ S it is sufficient to verify that K(x, r) → 0 as
r → 0 for H n−p-q.e. points x ∈ S.

In the case p = n this is easy. Indeed, since ÑS,p,λ[f ] < ∞ and (4.60) holds, we
can estimate K(x, r) from above by a remainder part of a convergent series:

K(x, r) ⩽ C
∑

κ∈I
diam Qκ⩽10r

H n(Qκ)
(
f ♯
{µk}(x̃κ , rκ)

)p → 0 as r → 0. (4.76)

Consider now the case p ∈ (1, n). Fix j ∈ N and define

Sj :=
{

x ∈ S : lim
r→0

K(x, r) > 2−j
}

. (4.77)
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Fix some δ ∈ (0, 10−3). For each point x ∈ Sj we find δx ∈ (0, δ/50) with
K(x, δx) > 2−j . The family of cubes {10Q(x, δx)}x∈Sj covers Sj . Using Vitali’s
covering theorem (see [31], Ch. 1, § 1.5.1) we find an at most countable family of
disjoint cubes {10Qδ

k} = {Q(xk, 10δxk
)}k∈J such that Sj ⊂

⋃
k∈J 50Qδ

k. Since the
cubes 10Qδ

k are disjoint, the inclusions in (4.68) imply that for each κ ∈ I the cube
Q∗κ can have nonempty intersection with at most one cube Qδ

k. This observation
together with (4.74) and (4.77) yields

H n−p
δ (Sj) ⩽

∑
k∈J

50n−p
(
diam Qδ

k

)n−p
⩽ C2j

∑
k∈J

∑
κ∈I

Q∗κ∩Qδ
k ̸=∅

H n(Qκ)
(
f ♯

S(x̃κ , rκ)
)p

⩽ C2j
∑

κ∈I
diam Qκ<10δ

H n(Qκ)
(
f ♯

S(x̃κ , rκ)
)p

. (4.78)

Recall that according to our assumption ÑS,p,λ[f ] < ∞. This fact, with estimates
(4.59) and (4.60), shows that the right-hand side of (4.78) is a remainder part of
a convergent series and hence tends to zero as δ → 0. This clearly implies that
H n−p(Sj) = limδ→0 H n−p

δ (Sj) = 0, and hence H n−p(
⋃

j Sj) = 0. As a result,
the arguments above and (4.73) imply that

J2(x, r) → 0, r → 0, for (1, p)-q.e. x ∈ S. (4.79)

Combining (4.66), (4.67) and (4.79) we complete the proof in the case p ∈ (1, n).
Theorem 4.2 is proved.

Now we can formulate the reverse trace theorem. Recall our construction of the
extension operator (4.27).

Theorem 4.3. Let p ∈ (1,∞), λ ∈ (0, 1), d ∈ [0, n] and d > n− p. Let S ⊂ Rn be
a d-thick closed set. Let {µk}k∈N0 be a d-regular sequence of measures on S . Let
ÑS,p,λ[f ] < ∞ and

lim
r→0

 
Q(x,r)∩S

|f(x)− f(z)| dµk(r)(z) = 0 for (1, p)-q.e. x ∈ S. (4.80)

Then f ∈ W 1
p (Rn)|S and

∥f |W 1
p (Rn)|S∥ ⩽ CÑS,p,λ[f ], (4.81)

where the positive constant C depends only on the parameters p, n, λ, d and C{µk} .

Proof. Assume that ÑS,p,λ[f ] < ∞. Then it is obvious that fκ < ∞ for all κ ∈ I .
Consequently, (4.27) yields a well-defined function F := Ext[f ] ∈ C∞(Rn \ S),
whose pointwise restriction to S coincides with the original function f . Applying
Theorem 4.2 gives F |S = f , and hence Tr |S ◦ Ext = Id.

From Theorem D and Lemmas 4.4 and 4.6 it follows that F ∈ W 1
p (Rn) and

∥F |W 1
p (Rn)∥ ⩽ CÑS,p,λ[f ], (4.82)

where the positive constant C does not depend on f . Combining Definition 2.9
and (4.82) we obtain (4.81). The theorem is proved.
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4.3. The proof of the main result. Now we are ready to prove the main result
in this paper.

Proof of Theorem 2.1. Given f ∈ W 1
p (Rn)|S , from Theorem 4.1 it follows that

ÑS,p,λ[f ] ⩽ C∥f |W 1
p (Rn)|S∥, (4.83)

where the positive constant C does not depend on f . Furthermore, from Lemma 4.3
we deduce that (2.16) holds.

Conversely, assume that ÑS,p,λ[f ] < +∞. Then we deduce from Theorem 4.3
that f ∈ W 1

p (Rn)|S and

∥f |W 1
p (Rn)|S∥ ⩽ CÑS,p,λ[f ], (4.84)

where the positive constant C does not depend on f .
Clearly operator Ext constructed in (4.27) is linear. Furthermore, it was men-

tioned in the proof of Theorem 4.3 that Tr |S ◦ Ext = Id.
Finally, estimates (4.83) and (4.84) obviously imply (2.17) and boundedness of

the operator Ext. The proof is complete.

Remark 4.2. As we noted above, while constructing the extension operator we chose
a d-regular sequence of measures. It is remarkable, however, that both the proofs of
Theorems 2.1 and 4.3 and the constants in these proofs depend only on the constant
C{µk} in Remark 2.2 but are independent of the concrete choice of the d-regular
sequence of measures.

Remark 4.3. We would like to draw the reader’s attention to the fact that (in gene-
ral) it is impossible to obtain (2.16) from the condition ÑS,p,λ[f ] < ∞ alone. The
point is that, given a set E ⊂ Rn with µk(E) = 0, k ∈ N, we cannot claim that
C1,p(E) = 0. Hence, changing the given function f : S → R on a set E such
that µk(E) = 0, k ∈ N, does not affect the value of ÑS,p,λ[f ], but can violate (2.16).

§ 5. A simplified criterion for sets with porous boundary

In this section we are going to prove Theorem 2.2, which is a simplified version
of Theorem 2.1 in the case of sets with porous boundary. Recall Definition 2.6.

Let S be a closed set in Rn with porous boundary. Given λ > 0, for every k ∈ N0

we set

∂S+
k (λ) := {x∈ ∂S : there exists y ∈Q(x, 2−k) for which Q(y, λ2−k)⊂Rn \ S},

∂S−k (λ) := {x∈ ∂S : there exists y′ ∈Q(x, 2−k) for which Q(y′, λ2−k) ⊂ S \ ∂S}.
(5.1)

From Definition 2.6 it is clear that if ∂S is porous then there exists a number
λ > 0 such that for all k ∈ N0

∂S = ∂S+
k (λ) ∪ ∂S−k (λ). (5.2)

Definition 5.1. Let S be a closed nonempty subset of Rn. We set

Σk := Σk(S) := {x ∈ S : dist(x, ∂S) ⩽ 2−k}, k ∈ N0. (5.3)
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Lemma 5.1. Let d ∈ [0, n], p ∈ (1,∞) and p > n − d. Let S ⊂ Rn be a d-thick
closed set and {µk}k∈N0 a d-regular sequence of measures on S . Assume that ∂S is
porous. Then there exists a positive constant C depending only on d, n, p and C{µk}
such that for every F ∈ W 1

p (Rn)

∞∑
k=1

2kp(1−(n−d)/p)

ˆ
Σk

(
Eµk

(F |S , Q(x, 2−k))
)p

dµk(x) ⩽ C∥F |W 1
p (Rn)∥p. (5.4)

Proof. Given k ∈ N, let {xk,j}j∈Jk
be an arbitrary maximal 2−k-separated subset

of Σk. For every k ∈ N0 we set Qk,j := Q(xk,j , 2−k), j ∈ Jk.
Step 1. Given k ∈ N and j ∈ Jk, it is clear that 2Qk,j ⊃ Q(x, 2−k) for every
x ∈ Qk,j . Hence elementary computations (similar to (3.35)) give

Ẽµk
(F |S , Q(x, 2−k)) ⩽ CẼµk

(F |S , 2Qk,j). (5.5)

Using Lemma 3.1, (1), estimates (2.10) and (5.5) and Remark 2.4 we obtain
ˆ

Σk

(
Eµk

(F |S , Q(x, 2−k))
)p

dµk(x) ⩽
∑

j∈Jk

ˆ
Qk,j

(
Ẽµk

(F |S , Q(x, 2−k))
)p

dµk(x)

⩽ C2−kd
∑

j∈Jk

(
Ẽµk

(F |S , 2Qk,j

)p
. (5.6)

Fix some q ∈ (max{1, n − d}, p). Arguing as in (3.50), from (5.6) we derive the
following estimate:

∞∑
k=1

2kp(1−(n−d)/p)

ˆ
Σk

(
Eµk

(F |S , Q(x, 2−k))
)p

dµk(x)

⩽ C

∞∑
k=1

2kp(1−n/p)
∑

j∈Jk

(
Eµk

(F |S , 2Qk,j)
)p

⩽ C

∞∑
k=1

∑
j∈Jk

H n(Qk,j)
( 

2Qk,j

|∇F (y)|q dH n(y)
)p/q

. (5.7)

Step 2. Fix some λ > 0 such that (5.2) holds. Since all the cubes Qk,j are assumed
to be closed, Qk,j ∩ ∂S ̸= ∅ for all k ∈ N and j ∈ Jk. Let J 1

k be the set of
all j ∈ Jk such that Qk,j ∩ ∂S+

k (λ) ̸= ∅. Let J 2
k be the set of all j ∈ Jk such

that Qk,j ∩ ∂S−k (λ) ̸= ∅. It is clear that Jk = J 1
k ∪J 2

k for every k ∈ N.
Let W 1 and W 2 be Whitney decompositions of Rn\S and S\∂S, respectively. Let

I 1 and I 2 be the sets of indices corresponding to the cubes with edge length ⩽ 1
in W 1 and W 2, respectively.

For every k ∈ N and j ∈ J 1
k we choose a point x′k,j ∈ Qk,j ∩ ∂S+

k (λ), and for
every j ∈ J 2

k we choose a point x′k,j ∈ Qk,j ∩ ∂S−k (λ). Since Q(x′k,j , 2
−k) ⊂ 2Qk,j

for every k and j, we apply Lemma 3.11 and for each j ∈ J 1
k we find a point

y(x′k,j) ∈ 2Qk,j ∩ Rn \ S such that

λ

5
2−k ⩽ 2rκ ⩽ 2−k for every W 1 ∋ Qκ ∋ y(x′k,j). (5.8)
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Similarly, for each j ∈ J 2
k we find a point z(x′k,j) ∈ int S ∩ 2Qk,j such that

λ

5
2−k ⩽ 2rκ′ ⩽ 2−k for every W 2 ∋ Qκ′ ∋ z(x′k,j). (5.9)

Consider a map Θ1 that takes a pair (k, j) (k ∈ N, j ∈ J 1
k ) and returns an

arbitrary index κ = Θ1(k, j) ∈ I 1 such that (5.8) holds. Similarly, we build a map
Θ2 that takes (k, j) and returns an arbitrary κ′ = Θ2(k, j) ∈ I 2 such that (5.9)
holds. Arguing as in (4.6), from (5.8) and (5.9) we derive the existence of a positive
constant C(n, λ) such that for every κ ∈ I 1 and κ′ ∈ I 2∑

(k,j)∈(Θ1)−1(κ)

H n(Qk,j) ⩽ C(n, λ)H n(Qκ),

∑
(k,j)∈(Θ2)−1(κ′)

H n(Qk,j) ⩽ C(n, λ)H n(Qκ′).
(5.10)

Step 3. Let k ∈ N, j ∈ J 1
k and κ = Θ1(k, j). From (5.8) it follows that 2Qk,j ⊂

5Q(x, 2−k) for every x ∈ Qκ . Using this and (3.1) we obtain
 

2Qk,j

|∇F (y)| dH n(y) ⩽ C inf
x∈Qκ

 
5Q(x,2−k)

|∇F (y)|q dH n(y)

⩽ C inf
x∈Qκ

M> 5
2k

[|∇F |q](x) ⩽ C inf
x∈Qκ

M[|∇F |q](x). (5.11)

Similarly, if k ∈ N, j ∈ J 2
k and κ′ = Θ2(k, j), then

 
2Qk,j

|∇F (y)|q dH n(y) ⩽ C inf
x∈Qκ′

M[|∇F |q](x). (5.12)

Combining (5.10) and (5.11) we have

∑
k∈N

∑
j∈J 1

k

H n(Qk,j)
( 

2Qk,j

|∇F (y)|q dH n(y)
)p/q

⩽ C
∑

κ∈I 1

∑
(k,j)∈(Θ1)−1(κ)

H n(Qk,j) inf
x∈Qκ

(
M[|∇F |q](x)

)p/q

⩽ C
∑

κ∈I 1

H n(Qκ) inf
x∈Qκ

(
M[|∇F |q](x)

)p/q

⩽ C

ˆ
Rn\S

(
M[|∇F |q](x)

)p/q
dH n(x). (5.13)

Similarly, from (5.10) and (5.12) we obtain

∑
k∈N

∑
j∈J 2

k

H n(Qk,j)
( 

2Qk,j

|∇F (y)|q dH n(y)
)p/q

⩽ C

ˆ
int S

(
M[|∇F |q](x)

)p/q
dH n(x). (5.14)
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We combine estimates (5.7), (5.13) and (5.14) and apply Theorem A with α = 0,
d = n and m = H n. This gives

∞∑
k=1

2kp(1−(n−d)/p)

ˆ
Σk

(
Eµk

(F |S , Q(x, 2−k))
)p

dµk(x)

⩽ C

ˆ
Rn

(
M[|∇F |q](x)

)p/q
dH n(x) ⩽ C∥F |W 1

p (Rn)∥p. (5.15)

Lemma 5.1 is proved.

Lemma 5.2. Let d ∈ [0, n], p ∈ (1,∞) and p > n − d. Let S ⊂ Rn be a d-thick
closed set with porous boundary ∂S . Let {µk} = {µk}k∈N0 be a d-regular sequence of
measures on S . Assume that f ∈ Lloc

1 (Rn, µk) for some (and hence every) k ∈ N0 .
Then∑

κ∈I

H n(Qκ)2kp
(
Eµk

(f, Q(x̃κ , 2−k))
)p

⩽ C
(
BN S,p[f ]

)p + C∥f |Lp(S, µ0)∥p.

(5.16)

The positive constant C in (5.16) does not depend on f .

Proof. Fix an arbitrary positive number k ⩾ 5. We set Ik := {κ ∈ I : rκ ⩽ 2−k}.
Using Vitali’s covering theorem (see [31], § 1.5.1) we find an index set Îk ⊂ Ik such
that the cubes belonging to the family {Qκ(x̃κ , 2−k)}κ∈Îk

are mutually disjoint
and ⋃

κ∈Ik

Q
(
x̃κ , 2−k

)
⊂

⋃
κ∈Îk

Q

(
x̃κ ,

5
2k

)
. (5.17)

Note that if Q
(
x̃κ′ , 1/2k

)
∩ Q

(
x̃κ , 5/2k

)
̸= ∅ for some κ′ ∈ Ik and κ ∈ Îk,

then Q
(
x̃κ′ , 2−k

)
⊂ Q

(
x̃κ , 7/2k

)
. Using Remark 2.4 and reasoning as in (3.35) it

is easy to show that for such κ and κ′

Eµk
(f, Q(x̃κ′ , 2−k)) ⩽ CEµk

(
f, Q

(
x̃κ ,

7
2k

))
. (5.18)

Since different Whitney cubes have disjoint interiors, we find that for every
κ ∈ Îk ∑

κ′∈Ik

Q
(
x̃κ′ ,2

−k
)
∩Q

(
x̃κ ,5/2k

)
̸=∅

H n(Qκ′) ⩽
∑

κ′∈I

Q
(
x̃κ′ ,2

−k
)
⊂Q

(
x̃κ ,7/2k

) H n(Qκ′) ⩽ C2−kn.

(5.19)
Combining (5.17), (5.18) and (5.19) we obtain

∑
κ∈Ik

H n(Qκ)
(
Eµk

(f, Q(x̃κ , 2−k))
)p

⩽ C2−kn
∑

κ∈Îk

(
Eµk

(
f, Q

(
x̃κ ,

7
2k

)))p

.

(5.20)



Sobolev spaces on d-thick sets 831

It is clear that Q
(
x̃κ , 7/2k

)
⊂ Q(x, 15/2k) for every x ∈ S ∩Q

(
x̃κ , 7/2k

)
. Using

this observation, Remark 2.4, (2.11) and (2.12) and arguing as in (3.35), for every
κ ∈ Ik we have(

Eµk

(
f, Q

(
x̃κ ,

7
2k

)))p

⩽ C inf
x∈Q

(
x̃κ ,7/2k

)
∩S

(
Eµk

(f, Q(x, 24−k))
)p

⩽ C inf
x∈Q

(
x̃κ ,7/2k

)
∩S

(
Eµk−4(f, Q(x, 2−(k−4)))

)p

⩽ C2(k−4)d

ˆ
Q
(
x̃κ ,7/2k

)
∩S

(
Eµk−4(f, Q(x, 2−(k−4)))

)p
dµk−4(x). (5.21)

It is clear that Q
(
x̃κ , 7/2k

)
∩ S ⊂ Σk−4. Furthermore, according to our con-

struction of Îk the multiplicity of overlapping of the sets Q
(
x̃κ , 7/2k

)
∩S, κ ∈ Îk

is finite and independent of k. Hence, substituting (5.21) into (5.20) and using
Proposition 3.5 we obtain

∞∑
k=5

∑
κ∈Ik

H n(Qκ)2kp
(
Eµk

(f, Q(x̃κ , 2−k))
)p

⩽ C
(
BN S,p[f ]

)p
. (5.22)

Now we use Remark 2.4 and Hölder’s inequality. Then we use Lemma 3.7 and
Lemma 4.2 for c = 1. This gives

5∑
k=1

∑
κ∈Ik

H n(Qκ)2kp
(
Eµk

(f, Q(x̃κ , 2−k))
)p

⩽ C

5∑
k=1

∑
κ∈Ik

H n(Qκ)
 

Q(x̃κ ,2−k)

|f(y)|p dµk(y)

⩽ C
∑

κ∈I

H n(Qκ)
 

Q(x̃κ ,1)

|f(y)|p dµ0(y) ⩽ C

ˆ
S

|f(y)|p dµ0(y). (5.23)

To complete the proof it is sufficient to put (5.22) and (5.23) together.

Lemma 5.3. Let λ ∈ (0, 1), d ∈ [0, n], p ∈ (1,∞) and p > n−d. Let S be a d-thick
closed set with porous boundary ∂S . Let {µk} = {µk}k∈N0 be a d-regular sequence
of measures on S . Assume that f ∈ Lloc

1 (Rn, µk) for every k ∈ N0 . Then for each
λ ∈ (0, 1) (

B̃N S,p,λ[f ]
)p

⩽ C
[
(BN S,p[f ])p + ∥f |Lp(S, µ0)∥p

]
. (5.24)

The positive constant C in (5.24) is independent of f .

Proof. It is clear from Lemma 3.5 and Remark 2.4 that for every κ ∈ I (recall
that diam Qκ ⩽ 1 for such κ) we can choose jκ ∈ N0 so that 0 ⩽ jκ < | log2 rκ |
and

f ♯
{µk}(x̃κ , rκ) ⩽ C2jκ Ẽµjκ

(f, Q(x̃κ , 2−jκ )) ⩽ C2jκ Eµjκ
(f, Q(x̃κ , 2−jκ )). (5.25)
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Given k ∈ N, let Ik := {κ ∈ I : jκ = k}. Estimate (5.25) together with
Lemmas 4.1, 4.2 and 5.2 allow us to deduce that

∞∑
k=1

2k(d−n)

ˆ
Sk(λ)

(
f ♯
{µk}(x, 2−k)

)p
dµk(x) ⩽

∑
κ∈I

H n(Qκ)
[
(f ♯
{µk}(x̃κ , rκ))p

+
 

Q(x̃κ ,15)

|f(y)|p dµ0(y)
]

⩽ C
∑

κ∈I

H n(Qκ)2kp
(
Eµk

(f, Q(x̃κ , 2−k))
)p

+
∑

κ∈I

H n(Qκ)
 

Q(x̃κ ,15)

|f(y)|p dµ0(y)

⩽ C
[
(BN S,p[f ])p + ∥f |Lp(S, µ0)∥p

]
. (5.26)

The proof is complete.

Proof of Theorem 2.2. Let f ∈ W 1
p (Rn)|S . It follows from Lemma 5.1 and (4.16)

that
NS,p[f ] ⩽ C∥f |W 1

p (Rn)|S∥, (5.27)

where the positive constant C does not depend on f . Furthermore, from Lemma 4.3
we deduce that (2.18) holds.

Conversely, let NS,p[f ] < +∞. Then, from Lemma 5.3 we deduce that
ÑS,p,λ[f ] ⩽ CNS,p[f ] for some λ ∈ (0, 1), with a positive constant C independent
of f . Hence, from Theorem 4.3 we deduce that f ∈ W 1

p (Rn)|S and

∥f |W 1
p (Rn)|S∥ ⩽ CNS,p[f ], (5.28)

where the positive constant C does not depend on f .
Finally, estimates (5.27) and (5.28) obviously imply (2.19). The proof is com-

plete.

§ 6. Example

The aim of this section is to present several useful examples, which show the
power of our main results.

Example 6.1. Let S be an Ahlfors n-regular closed subset of Rn, and let p > 1.
In this case we can take µk = H n⌊S for every k ∈ N0 to obtain an n-regular
sequence of measures on S. Hence, taking Remark 2.4 into account, for every
t ∈ [0, 1) we have

f ♯
{µk}(x, t) ≈ sup

r∈(t,1)

1
r

 
Q(x,r)∩S

∣∣∣∣f(y)−
 

Q(x,r)∩S

f(z) dH n(z)
∣∣∣∣ dH n(y), x ∈ S.

(6.1)
To simplify our notation we set f ♯

S := f ♯
{µk} in this case. This notation was used

in [23].
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We establish the following key estimate:

B̃N S,p,λ[f ] ⩽ C(S N S,p[f ] + ∥f |Lp(S)∥), (6.2)

where the positive constant C does not depend on f .
We combine Theorem C, (2), and Lemmas 4.1 and 4.2. This gives

(B̃N S,p,λ[f ])p ⩽ C
∑

κ∈I

H n(Uκ)
(
f ♯

S(x̃κ , rκ)
)p + C

ˆ
S

|f(x)|p dH n(x). (6.3)

Adapting the arguments in the proof of Lemma 4.5 to this case (and also using the
monotonicity of f ♯

S(·, t) with respect to t) we easily obtain∑
κ∈I

H n(Uκ)
(
f ♯

S(x̃κ , rκ)
)p

⩽
∑

κ∈I

H n(Uκ) inf
x∈Uκ

(
f ♯

S(x, rκ)
)p

+
∑

κ∈I

H n(Uκ)
ˆ

Q(x̃κ ,3)

|f(x)|p dH n(x)

⩽ C

( ∑
κ∈I

ˆ
Uκ

(
f ♯

S(x)
)p

dH n(x) + ∥f |Lp(S, H n)∥p

)
⩽ C

(ˆ
S

(
f ♯

S(x)
)p

dH n(x) + ∥f |Lp(S, H n)∥p

)
= C(S N S,p[f ])p. (6.4)

Now (6.2) clearly follows from (6.3) and (6.4).
Recall that H n-a.e. points x ∈ S are Lebesgue points of a function f ∈ Lp(S).

If we relax the notion of the trace of a given F ∈ W 1
p (Rn) and identify F |S with

the class of functions equivalent modulo coincidence H n-a.e. on S, then from (6.2)
we deduce the following simplified version of Theorem 2.1.

Let S ⊂ Rn be an Ahlfors n-regular set. Then a function f : S → R belongs to
the trace space W 1

p (Rn)|S if and only if

∥f |Lp(S, H n)∥+ ∥f ♯
S |Lp(S, H n)∥ < +∞. (6.5)

Moreover, the operator Ext constructed in (4.27) is a bounded linear extension
operator Ext: W 1

p (Rn)|S → W 1
p (Rn) and

∥f |Lp(S, H n)∥+ ∥f ♯
S |Lp(S, H n)∥ ≈ ∥f |W 1

p (Rn)|S∥.

This result is a slight modification of the corresponding result obtained by
Shvartsman [23] in the context of first-order Sobolev spaces.

Example 6.2. Let d ∈ [0, n) and p ∈ (max{1, n − d},∞). Let S be an Ahlfors
d-regular subset of Rn. In this case there exists a simple d-regular sequence of mea-
sures on S. More precisely, set µk = H d⌊S for every k ∈ N0. Clearly, H n(S) = 0.
Furthermore, int S = ∅ and ∂S is porous (see Proposition 2.3).

Note that the measure H d⌊S is Radon. Hence, from Theorem 1 in [31], § 1.7.1,
we conclude that if f ∈ Lloc

1 (S, H d⌊S), then 
Q(x,r)∩S

|f(x)− f(y)| dH d(y) = 0

for H d-almost every x ∈ S.
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Now we apply Theorem 2.2 and take the above facts into account. If we relax the
notion of the trace of a given element F ∈ W 1

p (Rn) and identify F |S with the class
of functions equivalent modulo coincidence H d-a.e. on S, we obtain the following
simplified version of Theorem 2.2.

Given an Ahlfors d-regular set S ⊂ Rn , for some d ∈ [0, n), let p ∈ (max{1,
n− d},∞). Then a function f : S → R belongs to the trace space W 1

p (Rn)|S if and
only if

∥f |Lp(S, H d⌊S)∥

+
( ∞∑

k=1

2kp(1−(n−d)/p)

ˆ
S

(
EH d⌊S(f, Q(x, 2−k))

)p
dH d(x)

)1/p

< ∞.

Moreover, the operator Ext constructed in (4.27) is a bounded linear extension
operator from W 1

p (Rn)|S to W 1
p (Rn) and

∥f |W 1
p (Rn)|S∥ ≈ ∥f |Lp(S, H d⌊S)∥

+
( ∞∑

k=0

2kp(1−(n−d)/p)

ˆ
S

(
EH d⌊S(f, Q(x, 2−k))

)p
dH d(x)

)1/p

.

Note that this result coincides with that obtained in [21] in the context of
first-order Sobolev spaces.

In the simplest case when S = Rd ⊂ Rn, d = 1, . . . , n−1, this is a classical result.
Namely, W 1

p (Rn)|Rd = B
1−(n−d)/p
p,p (Rd). This fact together with Theorem 2.2 imp-

lies that BN Rd,p,λ[f ] ≈ ∥f |B1−(n−d)/p
p,p (Rd)∥. This equivalence has motivated us

to call BN S,p[f ] a ‘Besov-type seminorm’.

Example 6.3. Let β : [0, +∞) → [0, +∞) be a strictly increasing continuous func-
tion such that β(0) = 0 and β(t) > 0 for every t > 0. Let β−1 denote the
inverse function, so that β−1 ◦ β = id on [0, +∞). Consider the closed single
cusp Gβ := {x = (x′, xn) : maxi=1,...,n−1 |xi| ⩽ β(xn)}. For each k ∈ N0 we also
consider the sets

Gβ
k :=

{
x = (x′, xn) : max

i=1,..., n−1
|xi| ⩽ β(xn), 0 ⩽ xn ⩽ β−1(2−k)

}
∪

{
x = (x′, xn) : β(xn) ⩾ max

i=1,..., n−1
|xi| > β(xn)− 2−k, xn > β−1(2−k)

}
.

(6.6)

Recall Definition 5.1. It is clear that Gβ
k coincides with Σk(Gβ).

For every k ∈ N0 consider the measure dµk(x) = wβ
k (x) dH n(x), where

wβ
k (x) := wβ

k (x′, xn) :=


(β(xn))1−n, xn ∈ [0, β−1(2−k)],
2k(n−1), xn ⩾ β−1(2−k),
0, x /∈ Gβ .

(6.7)

It is clear from (6.7) (recall that β is strictly increasing) that

wβ
k (x) ⩽ wβ

k+1(x) ⩽ 2n−1wβ
k (x) for all x ∈ Gβ . (6.8)
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Using the monotonicity of β and elementary geometric observations, it is easy
to see that for every point x = (x′, xn) ∈ Gβ and r ∈ (0, 1)

µk(Q((0, xn), r)) ⩾ µk(Q((x′, xn), r)). (6.9)

On the other hand, using (6.7) and the monotonicity and continuity properties of β,
it is easy to show that for every x = (x′, xn) ∈ Gβ

µk(Q((0, xn), 2−k)) ⩽ C(β)µk(Q(x, 2−k)). (6.10)

Direct computations give

µk(Q((0, xn), r) = c(n)
ˆ xn+r

max{0,xn−r}
(β(t))n−1 1

(β(t))n−1
dt ≈ c(n)r (6.11)

for every x = (x′, xn) ∈ Gβ .
Combining (6.8)–(6.11) we see that the sequence of measures {µk}k∈N0 , possibly

after multiplying by a fixed constant (depending on n and β), becomes 1-regular
on Gβ .

Recall Example 2.1, (2), and Example 2.5. Thus we see that the set Gβ is 1-thick
and has a porous boundary. Consider a slightly relaxed definition of the trace of
F ∈ W 1

p (Rn) on the set Gβ . Namely, we write F |Gβ = f if F (x) = f(x) for H n-a.e.
x ∈ Gβ . Then from Theorem 2.2 we clearly derive the following criterion.

Let p > n− 1. Then a function f : Gβ → Rn lies in the trace space W 1
p (Rn)|Gβ

if and only if

N [f ] :=
(ˆ

Gβ

(
f ♯
{µk}(x)

)p
dH n(x)

)1/p

+
(ˆ

Gβ

ωβ
0 (x)|f(x)|p dH n(x)

)1/p

+
( ∞∑

k=1

2kp(1−(n−1)/p)

ˆ
Gβ

k

ωβ
k (x)

(
Eµk

(f, Q(x, 2−k))
)p

dH n(x)
)1/p

< ∞.

(6.12)

Furthermore, the functional N gives an equivalent norm in the trace space
W 1

p (Rn)|Gβ and the operator Ext in (4.27) is a bounded linear extension operator
from W 1

p (Rn)|Gβ to W 1
p (Rn).

Remark 6.1. To the best of our knowledge the results in Example 6.3 are new and
could not be obtained using the techniques previously known. However, we have
to mention [24], where a similar example was considered under certain additional
assumptions on β. More precisely, it was assumed there that β is Lipschitz. Fur-
thermore, in [24] precise statements were only formulated in the case n = 2.
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