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Abstract. We study a general version of the Cheeger inequality by considering

the shape functional Fp,q(Ω) = λ
1/p
p (Ω)/λ

1/q
q (Ω). The infimum and the supremum

of Fp,q are studied in the class of all domains Ω of Rd and in the subclass of convex
domains. In the latter case the issue concerning the existence of an optimal domain
for Fp,q is discussed.
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1. Introduction

The starting point of this research is the celebrated Cheeger inequality:

λ(Ω)

h2(Ω)
≥ 1

4
, (1.1)

here λ(Ω) denotes the first eigenvalue of the Laplace operator −∆ on the open set Ω,
with Dirichlet boundary conditions, and h(Ω) denotes the Cheeger constant

h(Ω) = inf

{
P (E)

|E|
: E b Ω

}
, (1.2)

where the symbol E b Ω indicates that the closure of E is contained in Ω. Here P (E)
denotes the perimeter of E in the De Giorgi sense, and |E| the Lebesgue measure of
E. Equivalently h(Ω) can be defined through the expression

h(Ω) = inf

{∫
Ω
|∇u| dx∫

Ω
|u| dx

: u ∈ C1
c (Ω)

}
.

With some additional regularity assumption on Ω, in (1.2) the infimum can be equiv-
alently evaluated on the whole class of subsets E ⊂ Ω. For instance, it is enough to
require that Ω coincides with its essential interior; we refer the reader to [16] and [19]
for a survey on the Cheeger constant. We recall that if Ω is a ball of radius r in Rd

we have h(Ω) = d/r.
In this paper we consider, for every 1 < p < +∞, the p-Laplace operator

−∆pu = − div
(
|∇u|p−2∇u

)
and the corresponding principal eigenvalue

λp(Ω) = inf

{∫
Ω
|∇u|p dx∫

Ω
|u|p dx

: u ∈ C1
c (Ω)

}
. (1.3)

The following properties are well-known:

• any minimizer of (1.3) solves, in the weak sense, the Dirichlet problem:{
−∆pu = λ|u|p−2u in Ω,

u ∈ W 1,p
0 (Ω);
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• λp(·) is decreasing with respect to the set inclusion, that is

λp(Ω) ≤ λp(Ω
′), if Ω′ ⊂ Ω; (1.4)

• the scaling property

λp(tΩ) = t−pλp(Ω), for all t > 0; (1.5)

• the asymptotics

lim
p→+∞

λ1/p
p (Ω) = ρ−1(Ω), lim

p→1+
λp(Ω) = h(Ω), (1.6)

where ρ(Ω) denotes the so-called inradius of Ω, corresponding to the maximal
radius of a ball contained in Ω (see [13] and [15]). Equivalently, ρ(Ω) can be
defined as

ρ(Ω) := ‖dΩ‖L∞(Ω),

where dΩ is the distance function from ∂Ω

dΩ(x) := inf
{
|x− y| : y ∈ ∂Ω

}
.

Taking into account (1.6) we define

λ1/p
p (Ω) =

{
h(Ω) if p = 1;

ρ(Ω)−1 if p = +∞.
(1.7)

Inequality (1.1) can be then seen as a particular case of the more general inequality

λ
1/p
p (Ω)

λ
1/q
q (Ω)

≥ q

p
for every 1 ≤ q ≤ p ≤ +∞ (1.8)

that can be also rephrased as a monotonicity property:

the map p 7→ pλ1/p
p (Ω) is monotonically increasing.

Although this result is already known for 1 < q ≤ p < +∞ (see [17]), for the sake of
completeness we recall its proof in Proposition 2.2.

Our goal is to study from the shape optimization point of view the functionals

Fp,q(Ω) =
λ

1/p
p (Ω)

λ
1/q
q (Ω)

.

From the properties listed above Fp,q is scaling free, that is

Fp,q(tΩ) = Fp,q(Ω) for all t > 0.

We consider the minimization/maximization problem of Fp,q in the classes

Adall = {Ω ⊂ Rd : Ω open, 0 < |Ω| < +∞},
Adconvex = {Ω ∈ Adall : Ω convex}.

For the sake of brevity we denote by md(p, q),Md(p, q) the quantities

md(p, q) = inf
Ω∈Ad

all

Fp,q(Ω), Md(p, q) = sup
Ω∈Ad

all

Fp,q(Ω).

Similarly, for the convex case, we use the notation

md(p, q) = inf
Ω∈Ad

convex

Fp,q(Ω), Md(p, q) = sup
Ω∈Ad

convex

Fp,q(Ω).
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The study of the functionals Fp,q has been proposed in [20], where the author
focused on the case p = 2, q = 1. Recently some developments have been made in [9],
again in the case p = 2, q = 1.

The paper is organized as follows. In Section 2 we discuss the optimization problem
in the class Adall. In particular we prove that (1.8) becomes sharp when d → +∞
(Theorem 2.6), and we characterize the behavior of Md(p, q) in varying p, q, showing
that it remains finite if and only if q > d, (Theorem 2.9). The optimization problems
in the class Adconvex are discussed in Section 3. After recalling some known estimates
we prove that Md(p, q) is always finite (Proposition 3.2) and that, in some cases,
the minimization problems for Fp,q among planar convex open sets, admits a solution,
(Theorem 3.8). In Section 4, we collect some open problems that in our opinion can be
interesting for future researches. At last, we conclude the paper with a small appendix,
where we give self contained proofs of some known facts in shape optimization, which
are useful for our purpose.

2. Optimization in Adall
As it often happens in shape optimization, the one-dimensional case is simpler.

Indeed in this case the functional Fp,q turns out to be constant. Hereinafter we
denote by πp the Poincaré-Sobolev constant:

πp = inf

{
‖φ′‖Lp(0,1)

‖φ‖Lp(0,1)

: φ ∈ C1
c (0, 1), φ(1) = φ(0) = 0

}
= λ1/p

p (0, 1). (2.1)

Explicit computations, see for instance [14], show that

πp = 2π
(p− 1)1/p

p sin(π/p)
.

In particular one has π2 = π, π1 = π∞ = 2, and πp = πp′ for every p, where p′ is the
conjugate exponent of p.

Proposition 2.1. Let 1 ≤ q ≤ p ≤ +∞. Then, for every Ω ∈ A1
all we have

Fp,q(Ω) =
πp
πq
.

Proof. It is enough to notice that if Ω ∈ A1
all is the disjoint union of a family of open

intervals (Ωi)i∈I , then, for every 1 ≤ p ≤ +∞, we have

λ1/p
p (Ω) = inf

i∈I
λ1/p
p (Ωi), (2.2)

Indeed, when p = +∞ (2.2) is straightforward by (1.7), while, when 1 ≤ p < +∞, we
notice that for every u ∈ C∞c (Ω) it holds∫

Ω

|∇u|pdx ≥
∑
i∈I

∫
Ωi

|∇u|pdx ≥
∑
i∈I

λp(Ωi)

∫
Ωi

|u|pdx ≥ inf
i∈I

λp(Ωi)
∑
i∈I

∫
Ωi

|u|pdx,

which implies
λp(Ω) ≥ inf

i∈I
λp(Ωi).

By (1.4), the latter inequality easily leads to (2.2). Taking into account that, by (1.5)
and (2.1), we have

inf
i∈I

λ1/p
p (Ωi) = inf

i∈I
|Ωi|−1πp,

we achieve the thesis. �
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From now on we always assume d ≥ 2. Next proposition provides a lower bound to
md(p, q) and generalizes inequality (1.1).

Proposition 2.2. Let Ω ∈ Adall. Then, the function p 7→ pλ
1/p
p (Ω) is nondecreasing

in [1,+∞]. In particular we have

md(p, q) ≥ q/p. (2.3)

Proof. By (1.6) it is enough to consider the case 1 < q < p <∞. Let u ∈ C∞c (Ω) and
let v = up/q. Then, by Hölder inequality, we get

λq(Ω) ≤
∫

Ω
|∇v|qdx∫

Ω
|v|qdx

=

(
p

q

)q ∫
Ω
|∇u|q|u|p−qdx∫

Ω
|u|pdx

≤
(
p

q

)q (∫
Ω
|∇u|pdx

)q/p∫
Ω
|u|pdx

(∫
Ω

|u|pdx
)1−q/p

=

(
p

q

)q (∫
Ω
|∇u|pdx∫

Ω
|u|pdx

)q/p
.

Since u is arbitrary we obtain

qλ1/q
q (Ω) ≤ pλ1/p

p (Ω)

as required. �

In general, we do not expect the bound given in (2.3) to be sharp. For instance,
as p → +∞, the right-hand side in (2.3) tends to zero, while it is easy to prove that
the minimum of F∞,q is strictly positive and attained at any ball. Indeed, since any
Ω contains a ball of radius ρ(Ω), by (1.4), (1.5) and (1.6), we have

λ1/q
q (Ω) ≤ ρ−1(Ω)λ1/q

q (B1) for every 1 ≤ q ≤ +∞, (2.4)

which clearly implies

md(∞, q) = F∞,q(B1), for every 1 ≤ q < +∞;

here we denote by Bd
r the ball in Rd of radius r centered at the origin, and we omit

the dependence on d when there is no ambiguity.
Recently, by exploiting the fact that λ2(Bd

1) = jd/2−1,1, where jd/2−1,1 denotes the
first root of the d-th Bessel function of first kind, Ftouhi (see [9]) has noticed that

lim
d→+∞

md(2, 1) = 1/2. (2.5)

Our next goal is to generalize the limit (2.5) to every p, q. With this aim we introduce
the quantity

B(s, t) =

∫ 1

0

τ s−1(1− τ)t−1dτ

and recall that, in terms of the Euler’s function Γ, we have

B(s, t) =
Γ(s)Γ(t)

Γ(s+ t)
. (2.6)

Lemma 2.3. Let Ω ∈ Adall and s ≥ 1. Then,

λp(B1) ≤ sp
(

Γ(sp+ d+ 1)Γ(sp− p+ 1)

Γ(sp+ 1)Γ(sp+ d− p+ 1)

)
. (2.7)
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Proof. Let s ≥ 1 and φ(x) = (1− |x|)s. Clearly φ ∈ W 1,p
0 (B1) and∫

B1

|φ(x)|pdx = dωd

∫ 1

0

(1− t)sptd−1dt = dωdB(d, sp+ 1).

Similarly we have∫
B1

|∇φ(x)|pdx = dωds
p

∫ 1

0

(1− t)(s−1)ptd−1dt = dωds
pB(d, sp− p+ 1).

Now, using φ as a test function in (1.3), we obtain

λp(B1) ≤ sp
(
B(d, sp− p+ 1)

B(d, sp+ 1)

)
.

Finally, (2.7) follows from (2.6). �

Lemma 2.4. Let 1 ≤ p < +∞, L > 0, and ω ∈ Ad−1
all . Denote by ΩL = ω ×

(−L/2, L/2). Then{
λp(ω) + πpp/L

p ≤ λp(ΩL) ≤
(
λ

2/p
p (ω) + π2

p/L
2
)p/2

if p ≥ 2,(
λ

2/p
p (ω) + π2

p/L
2
)p/2 ≤ λp(ΩL) ≤ λp(ω) + πpp/L

p if p ≤ 2.
(2.8)

In particular

lim
L→+∞

λ1/p
p (ΩL) = λ1/p

p (ω). (2.9)

Proof. We denote by (x, y) the points in Rd−1 × R. Let u ∈ C∞c (ΩL), then for every
(x, y) ∈ Ω we have

u(·, y) ∈ C∞c (ω), u(x, ·) ∈ C∞c (−L/2, L/2).

If p ≥ 2, using the super-additivity of the function t → tp/2 and Fubini theorem, we
have ∫

ΩL

|∇u|pdxdy =

∫ L/2

−L/2

∫
ω

(
|∇xu|2 + |∂yu|2

)p/2
dxdy

≥
(
λp(ω) +

πpp
Lp

)∫
ΩL

|u|pdxdy.

Similarly, if p ≤ 2, using Fubini theorem together with the reverse Minkowski inequal-
ity

‖f + g‖Lp/2(ΩL) ≥ ‖g‖Lp/2(ΩL) + ‖f‖Lp/2(ΩL),

we obtain∫
ΩL

|∇u|pdxdy =

∫ L/2

−L/2

∫
ω

(
|∇xu|2 + |∂yu|2

)p/2
dxdy

≥

{(∫
ΩL

|∇xu|pdxdy
)2/p

+

(∫
ΩL

|∂yu|pdxdy
)2/p

}p/2

≥
(
λp(ω)2/p +

π2
p

L2

)p/2 ∫
ΩL

|u|pdxdy.

In both cases, the arbitrariness of u proves the left hand side inequalities in (2.8).
The upper estimates in (2.8) can be proved with the same argument, once chosen

a suitable test function. More precisely, we take u(x) and vL(y) optimal functions
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respecively for λp(ω) and λp((−L/2, L/2)), with unitary Lp norm, that is (taking also
(1.5) into account) we require:

‖∇u‖pLp(ω) = λp(ω), ‖v′L‖
p
Lp(−L/2,L/2) = πpp/L

p. (2.10)

Now, the product function φ(x, y) = u(x)vL(y) is admissible in the computation of
λq(ΩL) and gives

λp(ΩL) ≤
∫

ΩL

|∇φ(x, y)|pdxdy =

∫
ΩL

(
|∇xu(x)v(y)|2 + |u(x)v′(y)|2

)p/2
dxdy.

If p ≤ 2, by the sub-additivity of the function t → tp/2, (2.10) and Fubini theorem,
we get

λp(ΩL) ≤ λp(ω) +
πp

Lp
.

Similarly if p ≥ 2, by (2.10), Fubini theorem and Minkowski inequality we have that

λp(ΩL) ≤
(
λ2/p
p (ω) +

π2
p

L2

)p/2
,

which concludes the proof. �

Remark 2.5. The limit (2.9) is clearly true also when p = +∞, since in this case
ρ(ΩL) = ρ(ω), as soon as L is large enough.

We may now prove the general form of limit (2.5).

Theorem 2.6. Let 1 ≤ q < p ≤ +∞. Then the sequence d 7→ md(p, q) is nonincreas-
ing and

lim
d→+∞

md(p, q) = inf
d≥1

md(p, q) = q/p. (2.11)

In particular,
q

p
≤ md(p, q) ≤ m1(p, q) =

πp
πq
.

Proof. The monotonicity of the sequence follows at once by (2.9), hence the limit
above exists as well. In order to prove (2.11), first we suppose q = 1. By applying

(2.7) with s =
√
d, we get

Fp,1(Bd
1) =

λ
1/p
p (Bd

1)

d
≤ 1√

d
·

(
Γ(
√
dp+ d+ 1)Γ(

√
dp− p+ 1)

Γ(
√
dp+ 1)Γ(

√
dp+ d− p+ 1)

)1/p

.

Moreover, using the fact that Γ(s+ t) ≈ Γ(s)st as s→∞, we obtain that, as d→∞,

1√
d

(
Γ(
√
dp+ d+ 1)Γ(

√
dp− p+ 1)

Γ(
√
dp+ 1)Γ(

√
dp+ d− p+ 1)

)1/p

≈ 1√
d

(
1 +

√
d

p

)
.

Hence, by applying also (2.3), we obtain

1/p ≤ lim
d→∞

md(p, 1) ≤ lim sup
d→∞

Fp,1(Bd
1) ≤ 1/p.

To achieve the general case we notice that, for all Ω ⊂ Rd, we have

q/p ≤ md(p, q) ≤ Fp,q(Ω) = Fp,1(Ω)F−1
q,1 (Ω) ≤ qFp,1(Ω),

where the last inequality follows again by (2.3). Then

q/p ≤ lim
d→∞

md(p, q) ≤ q lim
d→∞

md(p, 1) = q/p
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as required. Finally, the last statement is an easy consequence of (2.11). �

We now turn our attention to the quantity Md(p, q) and we notice that limit (2.9)
also implies that the sequence d 7→Md(p, q) is nondecreasing and hence

πp
πq

= M1(p, q) ≤Md(p, q).

Our next result deals with the upper bound for Md(p, q). We recall that the (relative)
p-capacity of a set E ⊂ Ω is defined as

capp(E; Ω) = inf

{∫
Ω

|∇u|pdx : u ∈ W 1,p
0 (Ω), u ≥ 1 a.e. in a neighborhood of E

}
.

A set E ⊂ Rd is said to be of zero p-capacity if

capp(E ∩ Ω; Ω) = 0 for all Ω ∈ Adall;
in this case we simply write capp(E) = 0. For a comprehensive introduction to p-
capacity we refer the reader to [10] and [18]. Here we only point out that, given
1 < p < +∞ and E a relatively closed subset of Ω, then

capp(E) = 0 =⇒ λp(Ω \ E) = λp(Ω).

Moreover, using the fact that when p > d even a single point has nonzero p-capacity,
in [21] it is shown the following.

Theorem 2.7. Let d ∈ N, d ≥ 1 and d < p < +∞. There exists a positive constant
Cp,d, depending on p and d, such that for every bounded open set Ω ⊂ Rd it holds

λ1/p
p (Ω) ≥ Cd,pρ

−1(Ω).

Remark 2.8. Theorem 2.7 can be extended to the whole class Adall by means of a
simple approximation argument. Indeed, it is sufficient to note that, if Ω ∈ Adall is
unbounded, and we set Ωn := Ω ∩Bn, it holds

lim
n→+∞

ρ(Ωn) = ρ(Ω), λp(Ω) = lim
n→+∞

λp(Ωn),

and, by Theorem (2.7),

λp(Ωn) ≥ Cd,pρ
−p(Ωn) for every n ∈ N.

Passing to the limit as n→ +∞ in the inequality above gives the conclusion.

Theorem 2.9. Let 1 ≤ q < p ≤ ∞. ThenMd(p, q) <
λ

1/p
p (B1)

Cd,q
if d < q,

Md(p, q) = +∞ otherwise,

where Cd,q is the constant given by Theorem 2.7.

Proof. The case when d < q follows by combining Theorem 2.7 (applied to λq) and
inequality (2.4) (applied to λp).

The case 1 ≤ q ≤ d < p ≤ ∞ is a consequence of the fact that if 1 < q ≤ d < p
then a single point has zero q-capacity. More precisely, let (xn) be a dense sequence
in a ball B ⊂ Rd and define

Ωn := B \
n⋃
i=1

{xi}.
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Since capq(
⋃n
i=1{xi}) = 0, we have λq(Ωn) = λq(B) for every n ∈ N. Taking into

account (1.6), we have also h(Ωn) = h(B) for every n ∈ N. Moreover, since ρ(Ωn)→ 0,

by Theorem 2.7 or (1.7), we have that λ
1/p
p (Ωn) → +∞. Therefore Fp,q(Ωn) → +∞

for every 1 ≤ q < d < p.
The case when 1 ≤ q < p ≤ d is more delicate. Our argument is inspired by the

example exhibited in the Appendix A of [5]. Given 1 < p ≤ d we construct a sequence
of open bounded sets Ωn ⊂ Rd such that for every q < p

lim
n→∞

Fp,q(Ωn) = +∞.

Let Q = (−1/2, 1/2)d. Being 1 < p ≤ d, it is well known that there exists a compact
set Ep ⊂ [0, 1]d such that capp(Ep) > 0 and capq(Ep) = 0 when 1 < q < p (see Lemma
7.1 in [17]; for instance, Ep can be constructed as a Cantor set). By translating
and rescaling the compact set Ep, we can assume that Ep ⊂ [−1/4, 1/4]d. Then we
consider the open sets

Ωn = (−(n+ 1/2), n+ 1/2)d \
⋃
z∈Zd

n

(Ep + z),

where Zdn = Zd ∩ [−n, n]d and

E =
⋃
n∈N

Ωn = Rd \
⋃
z∈Zd

(Ep + z).

Being capp(Ep) > 0, by Theorem 10.1.2 in [18], we have that

min

{∫
Q
|∇u|p dx∫
Q
|u|p dx

: u ∈ W 1,p(Q), u = 0 on Ep

}
= C(d, p, Ep) > 0. (2.12)

Now, since any function u ∈ C∞c (E) when restricted to Q + z, with z ∈ Zd, vanishes
on a translated copy of Ep, (2.12) readily implies

λp(E) ≥ C(d, p, Ep).

Then, by monotonicity we have

λp(Ωn) ≥ λp(E) ≥ C(d, p, Ep) > 0, (2.13)

for every n ∈ N. Moreover, for every q > 1, being capq(Ep) = 0, we have that

λq(Ωn) = λq((−(n+ 1/2), n+ 1/2)d)

and hence

h(Ωn) = h((−(n+ 1/2), n+ 1/2)d)

as well. This gives

λ1/q
q (Ωn) = (2n+ 1)−1λ1/q

q (Q)→ 0 as n→ +∞ (2.14)

for every q ≥ 1. By combining (2.13) and (2.14) the thesis is easily achieved. �

Remark 2.10. The case 1 ≤ q < p ≤ d in the previous theorem can be also proved
by constructing a sequence Ωn satisfying:

λq(Ωn)→ λq(B1), λp(Ωn)→ +∞. (2.15)
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To do this, one can consider the sequence Ωn obtained by removing from the unit ball
a periodic array of spherical holes of size rn, where{

nd/(p−d) � rn � nd/(q−d) if p < d;

e−n
d/(d−1) � rn � nd/(q−d) if p = d.

Then classical results of shape optimization theory can be used to get (2.15) (see [7]
and references therein). We devote Appendix A to give a self-contained proof.

3. Optimization in Adconvex
In this section we consider the optimization problems in the class Adconvex. We

remark that also in this case Lemma 2.4 provides the monotonicity properties:

d 7→ md(p, q) is nonincreasing and d 7→Md(p, q) is nondecreasing.

To carry on our analysis we use two fundamental inequalities which hold for every
Ω ∈ Adconvex:

• the Hersch-Protter inequality :

ρ(Ω)λ1/p
p (Ω) >

πp
2

; (3.1)

• the Buser inequality :

λ
1/p
p (Ω)

h(Ω)
<
πp
2
. (3.2)

Inequality (3.1) was first proved in [12] and [22] when p = 2, and then extended to
general case in [3], while inequality (3.2) is proved in [20] in the planar linear case,
and in [4] in the general one. Both inequalities are sharp, as one can verify by taking
a sequence of thin slab domains Ωn := [0, 1]× [0, 1/n], see for instance [3] and [4]. As
a consequence one has that

Md(p, 1) =
πp
2
, Md(∞, q) =

2

πq
,

so that the following conjecture formulated by Parini in [20], is satisfied in the partic-
ular cases p = +∞ or q = 1.

Conjecture 3.1. Let 1 ≤ q < p ≤ +∞. Then we have

Md(p, q) =
πp
πq
,

and no maximizer set exists.

Although we are not able prove the conjecture we show the following estimates.

Proposition 3.2. Let 1 ≤ q < p ≤ +∞. Then, for all Ω ∈ Adconvex we have

max
{q
p
,
πp
dπq

}
≤ md(p, q) ≤Md(p, q) ≤ πp min

{q
2
,
d

πq

}
.

Proof. We first notice that, being h(B1) = d, inequality (2.4) with p = 1 provides

h(Ω)ρ(Ω) ≤ d.

Hence, by using (3.1) (with p) and (3.2) (with q), we obtain

Fp,q(Ω) =
λ

1/p
p (Ω)

λ
1/q
q (Ω)

≤ πp
πq
h(Ω)ρ(Ω) ≤ dπp

πq
. (3.3)
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By interchanging the role of p and q, we get

Fp,q(Ω) =
λ

1/p
p (Ω)

λ
1/q
q (Ω)

≥ πp
πq

1

h(Ω)ρ(Ω)
≥ πp
dπq

. (3.4)

Inequalites (3.4) and (1.8) prove that

max
{q
p
,
πp
dπq

}
≤ md(p, q),

while, using (3.2) and (1.8), we have

λ1/p
p (Ω) ≤ πp

2
h(Ω) ≤ q

πp
2
λ1/q
q (Ω),

which, together with (3.3), implies

Md(p, q) ≤ πp min
{q

2
,
d

πq

}
as required. �

In [20] it is proved that the functional F2,1 admits a minimizing set in the class of
bounded convex planar domains. Recently in [9], the author discussed the existence of
minimizers for F2,1 in Adconvex for d ≥ 3, which, up to our knowledge, remains open. In
Theorem 3.8 below we show the existence of a minimizer for Fp,q in the class A2

convex

when q ≤ 2 ≤ p. Before proving the theorem we need some preliminary results, that
we state in the general case of dimension d.

Lemma 3.3. Let 1 ≤ p ≤ +∞ and Ω ∈ Adconvex. Let a = (0, . . . , 0), b = (0, . . . , diam(Ω)),
and suppose a, b ∈ ∂Ω. Then there exists 0 < t < diam(Ω) such that

λ1/p
p (Ω) ≥ λ1/p

p (Ω ∩ {xd = t}),

where in the right-hand side λp(Ω ∩ {xd = t}) is intended in the d − 1 dimensional
sense.

Proof. The case when p = +∞ is trivial and hence we can suppose 1 ≤ p < ∞. We
notice that there exists t ∈ (0, diam(Ω)) such that

λp(Ω ∩ {xd = t}) = inf
τ∈(0,diam(Ω))

λp(Ω ∩ {xd = τ}).

Indeed the map

τ 7→ {Ω ∩ {xd = τ}} ⊂ Rd,

is continuous with respect to the Hausdorff distance, and thus, thanks to the well-
known continuity properties for λp with respect to Hausdorff metrics on the class of
bounded convex sets (see [6] and [11], for details about this fact), the map

τ 7→ λp(Ω ∩ {xd = τ}),

is continuous as well. Moreover both Ω∩{xd = 0} and Ω∩{xd = diam(Ω)} are empty,
so that

lim
t→0+

λp(Ω ∩ {xd = τ}) = lim
τ→diam(Ω)−

λp(Ω ∩ {xd = τ}) = +∞.
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Now, let ε > 0 and φ ∈ C1
c (Ω) be such that ‖φ‖p = 1 and ε+ λp(Ω) ≥ ‖∇φ‖pp. Then

ε+ λp(Ω) ≥
∫

Ω

|∇φ|pdx =

∫ diam(Ω)

0

(∫
Ω∩{xd=τ}

|∇φ|pdx′
)
dτ

≥
∫ diam(Ω)

0

(∫
Ω∩{xd=τ}

|∇x′φ|pdx′
)
dτ

≥
∫ diam(Ω)

0

(
λp(Ω ∩ {xd = τ})

∫
Ω∩{xd=τ}

|φ|pdx′
)
dτ

≥ λp(Ω ∩ {xd = t}),
which, by the arbitrariness of ε, implies the thesis.

�

Lemma 3.4. Let 1 ≤ p ≤ +∞ and (Ωn) ⊂ Adconvex with |Ωn| = 1 for every n ∈ N.
Suppose that

• (0, . . . , 0), (0, . . . , diam(Ωn)) ∈ ∂Ωn,
• infn∈N diam(Ωn) > 0.

Then, there exists c > 0 such that

inf
n∈N

inf
τ∈(0,diam(Ωn))

λ1/p
p (Ωn ∩ {xd = τ}) ≥ c.

Proof. For any n ∈ N and any t ∈ (0, diam(Ωn)), we denote

ωn(t) = Ωn ∩ {xd = t} ∈ Ad−1
convex.

By (3.1) we have

λ1/p
p (ωn(t)) >

πp
2ρ(ωn(t))

.

Being Ωn convex, the cone set having basis ωn(t) and height t ≥ diam(Ωn)/2 is
contained in Ωn. Hence we have

ρd−1(ωn(t))|Bd−1
1 |t

d
≤ |Ωn| = 1.

In particular

ρ(ωn(t)) ≤
(

2d

|Bd−1
1 | diam(Ωn)

)1/(d−1)

.

Since infn∈N diam(Ωn) > 0, we obtain

ρ(ωn(t)) ≤
(

2d

|Bd−1
1 | infn diam(Ωn)

)1/(d−1)

,

and the thesis easily follows. �

Proposition 3.5. Let 1 ≤ q < p ≤ +∞ and (Ωn) ⊂ Adconvex with |Ωn| = 1 for every
n ∈ N. If diam(Ωn)→ +∞, then

md−1(p, q) ≤ lim inf
n→+∞

Fp,q(Ωn) ≤ lim sup
n→+∞

Fp,q(Ωn) ≤Md−1(p, q).

Proof. Let an = (0, . . . , 0) and bn = (0, . . . , diam(Ωn)). Being the functional Fp,q
rotations and translations invariant we can suppose, without loss of generality, that
an, bn ∈ ∂Ωn. By applying Lemma 3.3 there exists tn ∈ (0, diam(Ωn)) such that

λ1/p
p (Ωn) ≥ λ1/p

p (ωn),
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where ωn = Ωn ∩ {xd = tn}. Moreover, we can also suppose tn ≥ diam(Ωn)/2. Let
α ∈ (0, 1), and define Un

α to be the cylinder with basis αωn and height (1−α)tn. More
precisely we consider

Un
α := {(x, y) : x ∈ αωn, y ∈ (αtn, tn)}.

Then, by the convexity of Ωn we have Un
α ⊂ Ωn so that

λq(U
n
α ) ≥ λq(Ωn).

Since

λq(U
n
α ) = α−qλq

(
ωn × (0,

(1− α)

α
tn)

)
we obtain

Fp,q(Ωn) ≥ λ
1/p
p (Ωn)

λ
1/q
q (Un

α )
≥ λ

1/p
p (ωn)

λ
1/q
q (ωn)

(
λq(ωn)

α−1λq(ωn × (0, 1− α)α−1tn)

)1/q

≥ αmd−1(p, q)

(
λq(ωn)

λq(ωn × (0, 1− α)α−1tn)

)1/q

.

Now, suppose that q ≤ 2. By Lemma 2.4 we have

λq(ωn × (0, 1− α)α−1tn) ≤ λq(ωn) +

(
απq

(1− α)tn

)q
.

Since diam(Ωn) → +∞, we can assume infn diam(Ωn) > 0; by applying Lemma 3.4

we have that λ
1/q
q (ωn)tn ≥ ctn for some constant c > 0, that implies

lim
n→+∞

λ1/q
q (ωn)tn = +∞.

Then

lim
n→+∞

λq(ωn)

λq(ωn) +
αqπqq

(1− α)qtqn

= 1.

This allows to conclude that

lim inf
n→+∞

Fp,q(Ωn) ≥ αmd−1(p, q)

and finally, letting α → 1−, we conclude. The case when q ≥ 2 is similar. Indeed,
(2.8) ensures that

λq(ωn × (0, 1− α)α−1tn) ≤ λq(ωn)

(
1 +

α2π2
q

(1− α)2λ
2/q
q (ωn)t2n

)q/2

,

and again Lemma 3.4 applies.
Finally, if we choose ωn to be such that λq(ωn) ≤ λq(Ωn), and we use the fact that

λ
1/p
p (Ωn) ≤ λ

1/p
p (Un

α ) we obtain:

Fp,q(Ωn) ≤ λ
1/p
p (Un

α )

λ
1/q
q (Ωn)

≤ Md−1(p, q)

α

(
λp(ωn × (0, α−1(1− α)tn)

λp(ωn)

)1/p

.

By the same argument as above, passing to the limit, as n→∞, we have

lim sup
n→∞

Fp,q(Ωn) ≤ α−1Md−1(p, q)
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being ωn an open convex set of Rd−1. Finally, letting α→ 1−, we conclude that

lim sup
n→∞

Fp,q(Ωn) ≤Md−1(p, q)

as required. �

Theorem 3.6. Let 1 ≤ q < p ≤ +∞. If md(p, q) < md−1(p, q), then there exists
Ωd
? ∈ Adconvex such that

md(p, q) = Fp,q(Ωd
?).

Proof. Let (Ωn) be such that Fp,q(Ωn) → md(p, q) with |Ωn| = 1 for every n ∈ N.
Then, by Proposition 3.5, we have

sup
n

diam(Ωn) < +∞.

Hence, up to translations, the whole sequence (Ωn) is contained in a compact set and
we can extract a subsequence (Ωnk

) which converges in the Hausdorff distance to some
Ωd
?. Using the continuity properties for λp with respect to Hausdorff metrics on the

class of bounded convex sets, we have

md(p, q) = lim
n→∞

Fp,q(Ωn) = Fp,q(Ωd
?)

as required. �

Lemma 3.7. Let 1 ≤ p <∞ and Q = (0, 1)d be the unitary cube of Rd. Then

d1/pπp ≤ λ1/p
p (Q) < d1/2πp for every p > 2;

d1/2πp < λ1/p
p (Q) ≤ d1/pπp for every p < 2.

Proof. By Lemma 2.4 (applied d times and with L = 1) we need only to prove the
two strict inequalities. With this aim we define

νp(Q) = inf
φ∈C∞c (Q)\{0}

∫
Q

∑d
i=1

∣∣∣ ∂φ∂xi ∣∣∣p dx∫
Q
|φ|pdx

.

We notice that νp(Q) = dπpp, with a minimizer given by

φ(x1, . . . , xd) = u(x1) · · ·u(xd), (3.5)

where u ∈ W 1,p(0, 1) is a non negative function, optimal for (2.1), with unitary Lp

norm. Now, the case when p > 2 follows by strict convexity of the map t → tp/2:
indeed, being d ≥ 2, integrating over Q the inequality

|∇φ(x)|p < dp/2−1
∑
i

∣∣∣∣∂φ(x)

∂xi

∣∣∣∣p ,
we obtain

λp(Q) < dp/2−1νp(Q) = dp/2πpp.

Similarly, when p < 2, we can consider φ̃ to be the optimal positive function for
λp(Q), with unitary Lp norm. Then, being d ≥ 2, the strict concavity of the map
t→ tp/2 gives

|∇φ̃(x)|p > dp/2−1
∑
i

∣∣∣∣∣∂φ̃(x)

∂xi

∣∣∣∣∣
p

,

which, integrated over Q, implies that

λp(Q) > dp/2−1νp(Q) = dp/2πpp.
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This concludes the proof of the lemma. �

We are now in a position to prove the following existence result in the case d = 2.

Theorem 3.8. Let 1 ≤ q < p ≤ +∞. Suppose q ≤ 2 ≤ p, then there exists Ω? ∈
A2
convex such that

Fp,q(Ω?) = min{Fp,q(Ω) : Ω ∈ A2
convex}.

Proof. By Theorem 3.6 it is sufficient to show that

m2(p, q) < m1(p, q) = πp/πq.

The cases when q = 1 or p = +∞ follow at once by inequalities (3.1) and (3.2).
The remaining cases follow by combining the upper estimate for λp(Q) and the lower
estimate for λq(Q) given by Lemma 3.7; notice that since p 6= q, at least one of these
two inequalities is strict. �

Remark 3.9. We notice that, by Proposition 3.5, one readily concludes that if there
exists a maximizing sequence (Ωn) ⊂ Adconvex such that |Ωn| = 1 and satisfying
diam(Ωn)→ +∞, then

Md(p, q) = Md−1(p, q).

In particular when d = 2, this argument would prove Conjecture 3.1. On the other
hand, if any maximizing sequence (Ωn) ⊂ Adconvex with |Ωn| = 1 is contained (up to
translation) in a compact set, arguing as in Theorem 3.6 it is easy to conclude that a
convex maximizer exists.

4. Further remarks and open problems

Several interesting problems and questions about the shape functionals Fp,q are still
open; in this section we list some of them.

Problem 1. In Theorem 2.9 we have shown that Md(p, q) < +∞ when q > d; it
would be interesting to give a characterization of the quantity Md(p, q) in these cases.
In addition, even if we believe that the value Md(p, q) is not a maximum, that is it not
reached on a domain Ω, it would be interesting to describe the behavior of maximizing
sequences (Ωn). It is reasonable to expect that Ωn is made by a domain Ω where n
points are removed; the locations of these points in Ω is an interesting issue: is it true
that in the two-dimensional case they are the centers of an hexagonal tiling?

Problem 2. Proving or disproving the existence of a domain Ω minimizing the
shape functional Fp,q in the class Adall is another very interesting issue. The presence
of small holes in a domain Ω does not seem to decrease the value of Fp,q(Ω), which
could be a point in favor of the existence of an optimal domain Ωp,q.

Problem 3. In the more restricted class Adconvex we know that Md(p, q) is always
finite. It would be interesting to prove (or disprove) Conjecture 3.1 (formulated by
Parini in [20]), that is:

Md(p, q) = πp/πq and no maximizer exists.

In other words, maximizing sequences are made by thin slabs

Ωε = A× (0, ε) with ε→ 0 and A a smooth d− 1 dimensional domain.

At present the problem is open even in the case d = 2, see also Remark 3.9.
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Problem 4. Concerning the minimum md(p, q) of Fp,q in the class Adconvex, estab-
lishing if it is attained is an interesting issue. Theorem 3.8 gives an affirmative answer
in the case d = 2 and q ≤ 2 ≤ p; in particular, this happens for d = 2 and q = 1,
p = 2, which is the original Cheeger case and, according to some indications by E.
Parini [20], the optimal domain could be in this case a square. This is not yet known.
We expect the existence of an optimal domain for every dimension d and every p, q and,
as stated in Theorem 3.6, this would follow once the strict monotonicity of md(p, q)
with respect to the dimension d is proved. At present however, a general proof of this
strict monotonicity is missing.

Appendix A.

We devote this appendix to briefly describe the classical strategy of Cioranescu-
Murat (see [7]) which can be used to prove Theorem 2.9, see Remark 2.10. These
results are well known, but in the case p 6= 2 it is not easy to find precise references,
hence we add them for the sake of completeness and for reader’s convenience. We limit
ourselves to prove only what we need in the paper, pointing out that the following
results can be obtained in a more general framework of γ-convergence (see for instance
the monographs [6], [11] and references therein).

Let 1 ≤ p ≤ d, Ω be a bounded connected smooth open set, and ε > 0. We consider
in Rd (d ≥ 2) the lattice of parallel cubes P i

ε of size 2ε and we denote by xεi the centers.
In each cube we consider a tiny ball Brε(x

ε
i ) of radius rε, where rε < ε. Finally we set

Cε =
{
xεi : P i

ε b Ω
}
.

and

Ωε = Ω \
⋃
x∈Cε

Brε(x).

Our goal is to determine the behavior of λp(Ωε) as ε → 0. This depends on the size
of rε, and more precisely on the following ratio:

aε =

{
ε−drd−pε if p < d,

ε−d(− ln(rε))
1−d if p = d.

(A.1)

Proposition A.1 (super-critical case). If aε → +∞ as ε→ 0, then λp(Ωε)→ +∞.

Proof. Given R > r > 0, we denote by µR,r the least eigenvalue of BR \ Br with
Dirichlet boundary condition on ∂Br and Neumann boundary condition on ∂BR, that
is:

µR,r = inf

{∫
BR\Br

|∇v|pdx∫
BR\Br

|v|pdx
: v ∈ W 1,p(BR \Br), v = 0 on ∂Br

}
, (A.2)

where the condition v = 0 on ∂Br is intended in the usual trace sense. Notice that
by exploiting the convexity property of the functional u 7→

∫
|∇u1/p|p (as done in [1],

[2] and [8]), we can infer that there exists a unique positive minimizer v for (A.2)
with unitary Lp norm. In particular, being the domain BR \Br radial, v is a radially
symmetric function in W 1,p(BR \Br).

We claim that there exist constants c ≥ 1 and ξ > 0 (which do not depend on ε)
such that

λp(Ωε) ≥ ξµcε,rε . (A.3)

Assume (A.3) to be true, we obtain the thesis by proving that µcε,rε → +∞ as ε→ 0.
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Indeed, taking for simplicity c = 1 and using coarea formula, we have that

µε,rε = inf

{∫ ε

rε

|u′(t)|ptd−1dt

}
,

where the infimum is computed among non negative functions u ∈ C∞(rε, ε) vanishing
on rε and satisfying ∫ ε

rε

|u(t)|ptd−1dt = 1. (A.4)

If u is admissible, by Hölder inequality,∫ ε

rε

|u′(t)|ptd−1dt ≥
(∫ ε

rε

|u′(t)|dt
)p(∫ ε

rε

1

t(d−1)/(p−1)
dt

)1−p

; (A.5)

moreover there exists t0 ∈ (rε, ε) such that

|u(t0)| =
(∫ ε

rε

td−1dt

)−1/p

,

since otherwise

0 ≤ u(t) <

(∫ ε

rε

td−1dt

)−1/p

for every t ∈ (rε, ε),

would imply
∫ ε
rε
|u(t)|ptd−1dt < 1, in contradiction with (A.4). Hence, using the fact

that u(rε) = 0, we have∫ ε

rε

|u′(t)|dt ≥
∣∣∣∣∫ t0

rε

u′(t)dt

∣∣∣∣ ≥ (∫ ε

rε

td−1dt

)−1/p

.

Finally, the latter inequality combined with (A.5) implies∫ ε

rε

|u′(t)|ptd−1dt ≥
(∫ ε

rε

td−1dt

)−1(∫ ε

rε

1

t(d−1)/(p−1)
dt

)1−p

.

In the case p < d (the case p = d being similar), computing the right-hand side in the
previous inequality we obtain

µε,rε ≥ d

(
1

εd − rdε

)(
d− p
p− 1

)p−1(
1

r
(p−d)/(p−1)
ε − ε(p−d)/(p−1)

)p−1

.

Taking (A.1) into account, it is easy to verify that the right hand side of the previous
inequality tends to +∞ as ε→ 0.

To conclude let us prove (A.3). We notice that there exists c > 1, which does not
depend on ε, such that for every ε small enough the family of balls

Gε = {Bcε(x) : x ∈ Cε} ,
covers Ω. Moreover there exists N ∈ N, which again does not depend on ε, such that
we can split Gε into N sub-families Gε1, . . .GεN made up of disjoint balls. This latter
assertion can be easily proved once noticed that any ball in Gε can intersect only a
bounded number of different balls in Gε, and such a bound does not depend on ε.
Indeed suppose that Bcε(x̄) ∈ Gε intersects Bcε(x1), . . . , Bcε(xm) ∈ Gε, then we have
also

m⋃
i=1

Bε(xi) b B3cε(x̄),
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in particular, taking the measures of both sets, we get m ≤ (3c)d. Therefore, it is
sufficient to take N = [(3c)d] + 1.

Now, let u ∈ C∞c (Ωε) and extend u by zero outside Ωε. We have

N

∫
Ω

|∇u|pdx ≥
N∑
i=1

∑
B∈Gεi

∫
B

|∇u|pdx ≥ µcε,rε

N∑
i=1

∑
B∈Gεi

∫
B

|u|pdx ≥ µcε,rε

∫
Ω

|u|pdx.

Thus, by the arbitrariness of u we obtain (A.3) with ξ = N−1. �

Proposition A.2 (sub-critical case). If aε → 0 as ε→ 0, then λp(Ωε)→ λp(Ω).

Proof. First we notice that by monotonicity we have

λp(Ωε) ≥ λp(Ω).

Hence it is enough to prove that

lim sup
ε→0

λp(Ωε) ≤ λp(Ω). (A.6)

Let vε be a competitor for capp(Brε ;Bε) chosen in such a way that:

vε ∈ C∞c (Bε), 0 ≤ vε ≤ 1, vε = 1 on Brε , ‖∇vε‖p ≤ capp(Brε ;Bε) + o(εd).

We define Vε in Ω to be

Vε(x) =

{
1− vε(x− xi), in Bi

ε(xi) if xi ∈ Cε
1, in Ω \

⋃
x∈Cε

Bi
ε(x),

and we denote by n(ε) ∈ N be the number of cubes P i
ε such that P ε

i b Ω. We have

‖∇Vε‖Lp(Ω) ≤ n(ε)‖∇vε‖Lp(Bε) ≤ (2ε)−d|Ω|‖∇vε‖Lp(Bε) ≈ (2ε)−d|Ω|capp(Brε ;Bε).

Since rε → 0, the latter implies

‖∇Vε‖Lp(Ω) → 0

(see Section 2.2.4 of [18] for the precise value of capp(Brε ;Bε)). This means that Vε
weakly converge in W 1,p(Ω) to some constant c ∈ R. Moreover, since Vε = 1 on ∂Ω,
we can infer that c = 1.

Now, let u ∈ C∞c (Ω), and consider uε = Vεu. We have uε ∈ W 1,p
0 (Ωε) and uε → u

strongly in W 1,p
0 (Ω). In particular∫

Ω
|∇u|pdx∫

Ω
|u|pdx

= lim
ε→0

∫
Ωε
|∇uε|pdx∫

Ωε
|uε|pdx

≥ lim sup
ε→0

λp(Ωε).

Since u is arbitrary we get (A.6). �
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[7] D. Cioranescu, F. Murat: Un terme étrange venu d’ailleurs. In “Nonlinear partial differ-
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