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ABSTRACT. We study a general version of the Cheeger inequality by considering
the shape functional F, ,(Q2) = )\Il)/p(Q)/)\é/q(Q). The infimum and the supremum
of F,, are studied in the class of all domains 2 of R? and in the subclass of convez
domains. In the latter case the issue concerning the existence of an optimal domain
for F, 4 is discussed.
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1. INTRODUCTION

The starting point of this research is the celebrated Cheeger inequality:
A(Q2) 1
NV s T 1.1
R2(Q) — 47 (1.1)
here A(Q2) denotes the first eigenvalue of the Laplace operator —A on the open set €,
with Dirichlet boundary conditions, and h(€2) denotes the Cheeger constant

h(Q) :mf{% L Ee Q} (1.2)

where the symbol E' € 2 indicates that the closure of E is contained in 2. Here P(FE)
denotes the perimeter of E in the De Giorgi sense, and |E| the Lebesgue measure of
E. Equivalently h(€2) can be defined through the expression

h(QY) = inf{% TS Ccl(Q)}

With some additional regularity assumption on €2, in the infimum can be equiv-
alently evaluated on the whole class of subsets £ C 2. For instance, it is enough to
require that  coincides with its essential interior; we refer the reader to [16] and [19]
for a survey on the Cheeger constant. We recall that if Q is a ball of radius r in R¢

we have h(Q2) = d/r.
In this paper we consider, for every 1 < p < +oo, the p-Laplace operator
—Ayu = —div (|Vu[P~*Vu)
and the corresponding principal eigenvalue
Ap(Q) = inf {% L u€ Ccl(Q)}. (1.3)
The following properties are well-known:
e any minimizer of solves, in the weak sense, the Dirichlet problem:

—Apyu = ANulP?u  in Q,
u € Wy (Q);
1



2 L. BRIANI, G. BUTTAZZO, AND F. PRINARI

e )\,(-) is decreasing with respect to the set inclusion, that is

Ap(02) < A (Q), if Q' c Q; (1.4)
e the scaling property
Ap(t2) = 17PN, (Q), for all t > 0; (1.5)
e the asymptotics
; 1/p — L ; —
T AP =@, T () = b (1.6)

where p(Q2) denotes the so-called inradius of €2, corresponding to the maximal
radius of a ball contained in Q (see [I3] and [15]). Equivalently, p(£2) can be
defined as

p(Q) = ||dall =),
where dq, is the distance function from 02
do(z) :=inf {|z —y| : y € 0Q}.
Taking into account (|1.6)) we define
h(Q if p=1;
ayr(e) = MO =L (17)
p(Q) if p = 4o00.
Inequality (1.1) can be then seen as a particular case of the more general inequality

AP (0
’17/( )Zg for every 1 < ¢ < p < +o0 (1.8)
ANQ) P

that can be also rephrased as a monotonicity property:

the map p — p)\[l)/ P(€) is monotonically increasing.

Although this result is already known for 1 < ¢ < p < 400 (see [17]), for the sake of
completeness we recall its proof in Proposition [2.2]
Our goal is to study from the shape optimization point of view the functionals

M)
A1)
From the properties listed above F,, is scaling free, that is
Fp (1) = Fpp0(Q) for all ¢ > 0.
We consider the minimization/maximization problem of F,, in the classes
AL, ={Q CcR? : Qopen, 0<|Q| < +o0},
Al ={Qec A%, : Q convex}.

CONvexT

fp,q(Q) =

For the sake of brevity we denote by my(p, q), Ma(p, q) the quantities
ma(p,q) = nf Fq(Q),  Ma(p.q) = sup Fpe(Q).

all QeAd,

Similarly, for the convex case, we use the notation

Ma(p,q) = inf Fpy(Q),  Malp,g) = sup Fpy(Q).

convex QGAgonvez
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The study of the functionals F,, has been proposed in [20], where the author
focused on the case p = 2, ¢ = 1. Recently some developments have been made in [9],
again in the case p =2, ¢ = 1.

The paper is organized as follows. In Section [2] we discuss the optimization problem
in the class A%,. In particular we prove that becomes sharp when d — +o00
(Theorem [2.6)), and we characterize the behavior of My(p, ¢) in varying p, ¢, showing
that it remains finite if and only if ¢ > d, (Theorem . The optimization problems
in the class A% are discussed in Section . After recalling some known estimates
we prove that My(p,q) is always finite (Proposition and that, in some cases,
the minimization problems for F, , among planar convex open sets, admits a solution,
(Theorem . In Section , we collect some open problems that in our opinion can be
interesting for future researches. At last, we conclude the paper with a small appendix,
where we give self contained proofs of some known facts in shape optimization, which
are useful for our purpose.

2. OPTIMIZATION IN A%,

As it often happens in shape optimization, the one-dimensional case is simpler.
Indeed in this case the functional F,, turns out to be constant. Hereinafter we
denote by , the Poincaré-Sobolev constant:

m, = inf {”gb”ﬂ ¢ e CH0,1), ¢(1) = (0) = 0} = AP0, 1). (2.1)
101l e (0,1) 8

Explicit computations, see for instance [14], show that

(p—1)"7

psin(m/p)

In particular one has m = 7w, m = 7T = 2, and 7, = 7y for every p, where p’ is the
conjugate exponent of p.

Ty = 27

Proposition 2.1. Let 1 < q < p < +oco. Then, for every Q € AL, we have
Tp

Fp7q<Q) =

Tq

Proof. Tt is enough to notice that if Q € Al is the disjoint union of a family of open
intervals (€2;);e;, then, for every 1 < p < 400, we have

A/P(9) = inf AYP(02), (2.2)

Indeed, when p = o0 (2.2) is straightforward by (1.7)), while, when 1 < p < +o00, we
notice that for every u € C'2°(2) it holds

/ Vs > S / Vurdr > 37 A(0) / uPds > inf () S / lufPdz,
Q el VS il 2 el el Sk
which implies

A(©) > inf A, Q).
1€
By (1.4)), the latter inequality easily leads to (2.2]). Taking into account that, by (|L.5|)
(2.1)

and , we have
: /p(0).) — -1
i A () = el
we achieve the thesis. O
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From now on we always assume d > 2. Next proposition provides a lower bound to
ma(p, q) and generalizes inequality (1.1).

Proposition 2.2. Let Q € A%,. Then, the function p — p/\ll,/p(Q) is mondecreasing
in [1,400]. In particular we have

ma(p,q) > q/p- (2.3)

Proof. By (|1.6) it is enough to consider the case 1 < ¢ < p < co. Let u € C°(Q2) and
let v = uP/?. Then, by Holder inequality, we get

)\ (Q) < fQ |V/U‘qdl' _ (E)q fQ ‘Vu‘q‘u’p—qu
1 - fQ lv|2dx q fQ |u|pdx

(2] AT (1Y (Y (BiSrEY

Since u is arbitrary we obtain

aA () < pX/P(Q)
as required. O

In general, we do not expect the bound given in (2.3 to be sharp. For instance,
as p — +o0o, the right-hand side in (2.3)) tends to zero, while it is easy to prove that
the minimum of F , is strictly positive and attained at any ball. Indeed, since any

Q2 contains a ball of radius p(£2), by (1.4)), (1.5) and (1.6}, we have

)\é/q(Q) < p_l(Q))\é/q(Bl) for every 1 < ¢ < +o0, (2.4)
which clearly implies

maq(00,q) = Fooq(B1), for every 1 < g < +o0;

here we denote by B¢ the ball in R? of radius r centered at the origin, and we omit
the dependence on d when there is no ambiguity.

Recently, by exploiting the fact that \y(BY) = Jaj2-1,1, where jg/o_11 denotes the
first root of the d-th Bessel function of first kind, Ftouhi (see [9]) has noticed that

lm ma(2,1) =1/2. (2.5)
d—+o00

Our next goal is to generalize the limit (2.5)) to every p, ¢. With this aim we introduce
the quantity

1
B(s,t) = / 1 — 1) dr
0

and recall that, in terms of the Euler’s function I', we have

_Tr
B(s,t) = TGrh) (2.6)
Lemma 2.3. Let Q € A%, and s > 1. Then,
C(sp+d+1I'(sp—p+ 1))
A\p(By) < sP . 2.7
p(Br) < 5 (F(sp+1)F(sp+d—p+1) (2.7)
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Proof. Let s > 1 and ¢(z) = (1 — |z])*. Clearly ¢ € Wy*(B;) and
1
6(2) [Pz = dug / (1= )Lt = dwyB(d, sp + 1).
B1 0
Similarly we have

1
|Vo(x)Pdr = dwdsp/ (1 — )Pttt = dwysP B(d, sp — p + 1).
0

B
Now, using ¢ as a test function in (|1.3]), we obtain
B(d,sp—p+1)
Ap(Bp) < 8P :
< (S
Finally, (2.7) follows from ({2.6]). O

Lemma 2.4. Let 1 < p < 400, L > 0, and w € .Affl_ll. Denote by Qp = w X
(=L/2,L/2). Then

{Ap«u) HT/L S () < (W) +m /L) iz
(W/P(w) + 12/ L2 < 0(Q1) < Aplw) + 72/LP if p < 2. |
In particular

Hm A/P(Qr) = AP(w). (2.9)

L—+o00

Proof. We denote by (z,y) the points in R¥™t x R. Let u € C>°(£2), then for every
(z,y) € Q we have

u(-,y) € CF(w), u(z,-) € C*(—L/2,L/2).

If p > 2, using the super-additivity of the function ¢ — t*/? and Fubini theorem, we
have

L/2
/ \VulPdzdy = / / (IVaul* + |8yu|2)p/2 dxdy
972 —L/2Jw

P
> ()\p(w) + L_II)’) /QL |ulPdzdy.

Similarly, if p < 2, using Fubini theorem together with the reverse Minkowski inequal-
ity

If+ gHLP/?(QL) > ||g||LP/2(QL) + ||f||L1’/2(QL)7
we obtain

L/2
/ \VulPdxdy = / / (IVaul® + layu]2)p/2 dxdy
Qr, — w

L2

2/p 2/p) P/
> {(/ \qu|pdxdy) + (/ \8yu\pd:cdy) }
QL QL

2 p/2
> (Ap(w)”u L—g) / |u[Pdzdy.
Qr,

In both cases, the arbitrariness of u proves the left hand side inequalities in ([2.8]).
The upper estimates in (2.8) can be proved with the same argument, once chosen
a suitable test function. More precisely, we take u(z) and vz (y) optimal functions
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respecively for \,(w) and A\, ((—L/2, L/2)), with unitary L” norm, that is (taking also
(1.5) into account) we require:

“VUHZJ(W) = Ap(w), ||U,L||Z£p(_L/2,L/2) =my/LP. (2.10)

Now, the product function ¢(z,y) = u(z)vr(y) is admissible in the computation of
A (€r) and gives
M) < [ Vol g)Pdrdy = [ (1Vsula)ol) + futa)o' (o)) dedy
L L
If p < 2, by the sub-additivity of the function ¢t — */2, (2.10) and Fubini theorem,

we get

7P
M(0) < Mp(w) + 7o
Similarly if p > 2, by (2.10]), Fubini theorem and Minkowski inequality we have that

2
which concludes the proof. 0]

2 p/2
Apmms(ﬁ/pww ) |

Remark 2.5. The limit (2.9)) is clearly true also when p = o0, since in this case
p(Qr) = p(w), as soon as L is large enough.

We may now prove the general form of limit (2.5)).

Theorem 2.6. Let 1 < g < p < 400. Then the sequence d — mgy(p, q) is nonincreas-
ing and

Jim ma(p,q) = }éﬁ mq(p,q) = q/p. (2.11)
In particular,
q s
= < malp,q) <mi(p,q) = L.
D Tq

Proof. The monotonicity of the sequence follows at once by (2.9), hence the limit
above exists as well. In order to prove (2.11)), first we suppose ¢ = 1. By applying

@7) with s = V/d, we get
1/
NIBY) 1 (TWdp+d+ DI Wdp—p+ 1)
S [ .
d Vd \T(Vdp+1)I'(Vdp+d—p—+1)
Moreover, using the fact that I'(s+t) = I'(s)s’ as s — oo, we obtain that, as d — oo,
1/
1 (TWdp+d+ DI(Vdp—p+1)\ " 1 |, Vi
VA \T(Vdp+ DI (Vdp+d—p+1) Vd '
Hence, by applying also (2.3)), we obtain
1/p < dlim mq(p, 1) < limsup F,;(BY) < 1/p.
—00

d—o0

]:p,l(Bii) -

p

To achieve the general case we notice that, for all Q C R?, we have
q/p < ma(p,q) < Fpg(Q) = Fpa(QF, () < ¢F,1(9),

q

where the last inequality follows again by (2.3). Then
g/p < lim my(p, q) < g lim ma(p,1) = q/p
—00 d—o0
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as required. Finally, the last statement is an easy consequence of ([2.11)). O

We now turn our attention to the quantity My(p,¢) and we notice that limit (2.9))
also implies that the sequence d — My(p, q) is nondecreasing and hence

T
W—p = Mi(p,q) < Mqy(p,q).

q

Our next result deals with the upper bound for My(p, ). We recall that the (relative)
p-capacity of a set E C () is defined as

cap,(E; Q) = inf {/ \VulPdz = u e WyP(Q), u>1ae. in aneighborhood of E} .
Q

A set E C R? is said to be of zero p-capacity if
cap,(EN§;Q) =0 for all Q € A%,;

in this case we simply write capp(E) = 0. For a comprehensive introduction to p-
capacity we refer the reader to [I0] and [I8]. Here we only point out that, given
1 < p < +oo and E a relatively closed subset of €2, then

cap,(E) =0 = A\, (Q2\ E) = A, (Q).

Moreover, using the fact that when p > d even a single point has nonzero p-capacity,
in [21] it is shown the following.

Theorem 2.7. Letd € N, d > 1 and d < p < +o00. There exists a positive constant
Cp.d, depending on p and d, such that for every bounded open set €2 C R? it holds

NP(Q) 2 Capp™ ().
Remark 2.8. Theorem can be extended to the whole class A%, by means of a

simple approximation argument. Indeed, it is sufficient to note that, if Q € A9, is
unbounded, and we set €2, :== QN B, it holds

lim p(2,) = p(©2), Ap(€2) = Him A, (€2,),

n—-400o n—-400

and, by Theorem ([2.7)),
A (2,) > CappP(20) for every n € N.
Passing to the limit as n — +o0 in the inequality above gives the conclusion.

Theorem 2.9. Let 1 < g <p <oo. Then

)\1/27 B '
Md(p7 Q> < pCc(l 1) Zfd <4gq,
7q
My(p,q) =+ otherwise,

where Cqq is the constant given by Theorem [2.7]

Proof. The case when d < q follows by combining Theorem (applied to A,) and

inequality (2.4]) (applied to A,).
The case 1 < ¢ < d < p < o0 is a consequence of the fact that if 1 < ¢ < d < p

then a single point has zero g-capacity. More precisely, let (z,) be a dense sequence
in a ball B C R? and define

Q, = B\U{:cl-}.
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Since cap,(U;_,{z:}) = 0, we have A\,(Q2,) = A\;(B) for every n € N. Taking into
account ([1.6]), we have also h(€2,) = h(B) for every n € N. Moreover, since p(£2,,) — 0,

by Theorem 2.7/ or (1.7)), we have that AP(2,) = +oo. Therefore F,, ,(€,) = +00
forevery 1 < g <d<p.

The case when 1 < ¢ < p < d is more delicate. Our argument is inspired by the
example exhibited in the Appendix A of [5]. Given 1 < p < d we construct a sequence
of open bounded sets ,, C R? such that for every ¢ < p

lim F,,(£,) = +o0.

n—oo

Let Q = (—1/2,1/2)% Being 1 < p < d, it is well known that there exists a compact
set B, C [0,1]% such that cap,(E,) > 0 and cap,(E,) = 0 when 1 < ¢ < p (see Lemma
7.1 in [I7]; for instance, E, can be constructed as a Cantor set). By translating
and rescaling the compact set FE,, we can assume that E, C [—1/4,1/4]%. Then we
consider the open sets

Q= (—(n+1/2),n+1/2)"\ | J (B, + 2),
2€7Z4
where Z4 = 74 N [-n,n]¢ and
E=J =R\ |J(B +2)
neN z€Z4

Being cap,(£,) > 0, by Theorem 10.1.2 in [I8], we have that
_ fQ |VulP dx
min § —————
{ fQ |ulP dx

Now, since any function v € C°(E) when restricted to Q + z, with z € Z4, vanishes
on a translated copy of E,, (2.12) readily implies

)\P(E> Z C(d7p7 EP)

s u € W(Q), u=0on Ep} =C(d,p, E,) > 0. (2.12)

Then, by monotonicity we have
A(82,) > N (E) > C(d,p, E,) > 0, (2.13)
for every n € N. Moreover, for every ¢ > 1, being cap,(E,) = 0, we have that
A(2,) = A ((—(n+1/2),n + 1/2)%)
and hence
h() = h((—(n +1/2),n +1/2)%)

as well. This gives

1 —141
A1) = 2n+1)7A/(Q) =0 asn— 400 (2.14)
for every ¢ > 1. By combining (2.13) and (2.14]) the thesis is easily achieved. O

Remark 2.10. The case 1 < ¢ < p < d in the previous theorem can be also proved
by constructing a sequence §2,, satisfying:

M) = A(B1), A(Q) — +oo. (2.15)
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To do this, one can consider the sequence €2,, obtained by removing from the unit ball
a periodic array of spherical holes of size r,,, where

nd =4 « p < pdle=d if p < d;
eind/(d—l) <L, < nd/(qfd) ifp =d.

Then classical results of shape optimization theory can be used to get (2.15]) (see [7]
and references therein). We devote Appendix [A] to give a self-contained proof.

3. OPTIMIZATION IN A%

CONVET

In this section we consider the optimization problems in the class A% = We

remark that also in this case Lemma provides the monotonicity properties:
d — my(p, q) is nonincreasing and d — M 4(p, ¢) is nondecreasing.

To carry on our analysis we use two fundamental inequalities which hold for every
Qe Al

e the Hersch-Protter inequality:
T,

pN/(9) > 2, (3.1)

e the Buser inequality:

6Q) _m

h(2) 2

Inequality was first proved in [12] and [22] when p = 2, and then extended to

general case in [3], while inequality is proved in [20] in the planar linear case,

and in [4] in the general one. Both inequalities are sharp, as one can verify by taking

a sequence of thin slab domains Q,, := [0, 1] x [0, 1/n], see for instance [3] and [4]. As
a consequence one has that

(3.2)

_ T — 2
Mgy(p,1) =2 M = —

d<p7 ) 2 ) d(007 q) 7Tq7
so that the following conjecture formulated by Parini in [20], is satisfied in the partic-
ular cases p = +oo or ¢ = 1.
Conjecture 3.1. Let 1 < g < p < +o00. Then we have

— T
Md<p7 Q) = _P7
Tq

and no maximizer set exists.
Although we are not able prove the conjecture we show the following estimates.

Proposition 3.2. Let 1 < g < p < +oo. Then, for all Q € A? we have

CONVEX
q Tp

max {]—9, d_wq} <m4(p,q) < Ma(p,q) < m,min {g %}

Proof. We first notice that, being h(B;) = d, inequality with p = 1 provides
RO < d.

Hence, by using (with p) and (with ¢), we obtain

1/p -
Fpa@) = 2 8 o)) <

dm,
1/(1 T 7'('_
)‘q (Q) q q

(3.3)
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By interchanging the role of p and ¢, we get

M) w1
MHQ) T m h(©Q)p(Q)

Inequalites (3.4) and (1.8]) prove that

q 7Tp} _
max 4 —, — ¢ < my(p,q),
{p dr, S = a(p; q)

while, using (3.2) and (1.8]), we have

> s
AP(@) < 2(9) < gZ2A(9),

7T
- > 2 i

which, together with (3.3]), implies

Mq(p,q) < m, min {

N |
SRS

}

as required. [l

Y

In [20] it is proved that the functional F,; admits a minimizing set in the class of
bounded convex planar domains. Recently in [9], the author discussed the existence of
minimizers for 5y in A%, for d > 3, which, up to our knowledge, remains open. In

Theorem below we show the existence of a minimizer for F,, in the class A2 .

when ¢ < 2 < p. Before proving the theorem we need some preliminary results, that
we state in the general case of dimension d.

Lemma 3.3. Let1 < p < 400 and Q) € A¢ Leta = (0,...,0),b=(0,...,diam(Q2)),

convex

and suppose a,b € 0. Then there exists 0 < t < diam(2) such that
APQ) = NP QN {za =1},

where in the right-hand side A\,(2 N {xy = t}) is intended in the d — 1 dimensional
sense.

Proof. The case when p = 400 is trivial and hence we can suppose 1 < p < co. We
notice that there exists ¢t € (0, diam(£2)) such that

Q = = inf Q = )
MOz =) = _ inf (@0 {ra=T})

Indeed the map
7= {QN{zg=1}} CRY,
is continuous with respect to the Hausdorff distance, and thus, thanks to the well-

known continuity properties for A\, with respect to Hausdorff metrics on the class of
bounded convex sets (see [0] and [I1], for details about this fact), the map

T = M0N0 {zg =17},
is continuous as well. Moreover both QN {z, = 0} and QN {z,; = diam(2)} are empty,

so that
lim \,(QN{zg=7}) = lim ANQN{xg=7}) = +o0.

t—0t T—diam ()~
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Now, let £ > 0 and ¢ € C}(Q) be such that [[¢[l, = 1 and € + A,(Q2) > [[Vo||5. Then

diam(Q)
£+ A\ (2) > / Vo|Pde = / (/ |V¢|pdx') dr
Q 0 Qn{zq=7}
diam(2)
- | (/ Ivmlpd“*") u
0 QN{zg=7}

diam(Q)
> /0 <)\p(Q N{xqg="7}) /Qm{xd:T} 9| dx) dr
> )‘p(Q N {xd = t})?

which, by the arbitrariness of ¢, implies the thesis.
O

Lemma 3.4. Let 1 < p < +o0 and (,) C AL~
Suppose that

e (0,...,0),(0,...,diam(£2,)) € 0Q,,
e inf,cydiam(2,) > 0.
Then, there exists ¢ > 0 such that

inf inf  A/P(Q,N{x, =74 >c
TlL]éNTE(O,;i];m(Qn)) o {ra=71}) 2 ¢

with |Q,| = 1 for every n € N.

Proof. For any n € N and any t € (0,diam(2,,)), we denote
wn(t) = QN {zg =1} € AL

convex*

By (3.1) we have

Tp

> —.

2p(wn(t))
Being €, convex, the cone set having basis w,(t) and height ¢t > diam(€2,)/2 is
contained in €2,,. Hence we have

P (wa (1) BE It
d

Y 1/(d—-1)
plwn(t)) < (|B‘11_1| diam(Qn)) |

Since inf,cy diam(€2,) > 0, we obtain

(wn(t)) < ( 2 )WH)
P =\ |BF | inf, diam(2,,) ’

and the thesis easily follows. O

AP (wn(t))

< |0, = 1.

In particular

Proposition 3.5. Let 1 < ¢ < p < +o0 and (2,) C A% ...
n € N. If diam(2,) — 400, then

mdfl(pa Q) S lyllr_{l}.g ‘Fp,q(Qn) S hm sup Fp,q(Qn) S Mdfl(p, Q)-

n—-+o0o

with |Q,] =1 for every

Proof. Let a, = (0,...,0) and b, = (0,...,diam(f2,)). Being the functional F,,
rotations and translations invariant we can suppose, without loss of generality, that
(p, b, € 09),. By applying Lemma there exists ¢, € (0,diam(€2,)) such that

AP () 2 NP (wn),
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where w,, = Q, N {zxy = t,}. Moreover, we can also suppose ¢, > diam(£2,)/2. Let
a € (0,1), and define U? to be the cylinder with basis aw, and height (1 —«)t,. More
precisely we consider

Ur={(z,y) : © € aw,, y€ (aty,t,)}.
Then, by the convexity of 2, we have U C 2, so that
A(Ua) = Ag(n)-

Since
A(U2) = a~1A, <wn « (0, ;O‘)tn)>
we obtain
B 2 0 M) (e
A IUD) T A (wn) N Ag(wn x (0,1 — a)a™'y,)

_ Ayl "
> amg—1(p, q) ()\q(wn x (0,1 — a)a—ltn)> .

Now, suppose that ¢ < 2. By Lemma [2.4] we have

Ag(wn X (0,1 — a)at,) < Ay(wn) + ((lg—ﬂaq)t?)q

Since diam(€2,) — 400, we can assume inf, diam(2,) > 0; by applying Lemma
we have that )\é/ Y(wp)t, > ct, for some constant ¢ > 0, that implies

lim A;/q(wn)tn = +o0.

n—4o00
Then
L Aq(wn()ﬂwg =1
MO e

This allows to conclude that

liminf F, ,(2,) > amg—1(p, q)

n—-+o0o

and finally, letting @« — 17, we conclude. The case when ¢ > 2 is similar. Indeed,
(2.8]) ensures that

a’m? “”2
Ao(wn X (0,1 —a)at,) < Ag(w,) | 1+ 1 ,
(% (0,1 = @)a~,) < Aywn) ( o (wn)t2>

n

and again Lemma [3.4] applies.
Finally, if we choose w,, to be such that \,(w,) < A\;(€2,,), and we use the fact that

AP (Q,) < AYP(UM) we obtain:

MU M (p.0) (wn x (0,a71(1 - a)tn))”f’
)\;/Q(Qn) - Q Ap(wh) .
By the same argument as above, passing to the limit, as n — oo, we have

limsup Fp4(Q) < o "My_1(p, q)

n—oo

‘FP#J(QTL) S
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being w,, an open convex set of R4~!. Finally, letting & — 17, we conclude that
limsup F, ,(2,) < My_1(p,q)

n—0o0

as required. 0

Theorem 3.6. Let 1 < g < p < +oo. If my(p,q) < Ma_1(p,q), then there exists
0l e Al such that

CONveEx

ma(p, q) = fp,q(Qf)-

Proof. Let (€2,) be such that F,,(€2,) — ma(p,q) with |Q,| = 1 for every n € N.
Then, by Proposition [3.5] we have

sup diam(£2,,) < +o0.

n

Hence, up to translations, the whole sequence (£2,,) is contained in a compact set and
we can extract a subsequence (€2, ) which converges in the Hausdorff distance to some
Q2. Using the continuity properties for \, with respect to Hausdorff metrics on the
class of bounded convex sets, we have

ma(p, q) = nlglgo Fpa(§2n) = }_p,q(Qil)
as required. O
Lemma 3.7. Let 1 <p < oo and Q = (0,1)? be the unitary cube of RY. Then
dl/pwp < )\Zl)/p(Q) < d1/27rp for every p > 2;
dl/zﬂ'p < )\;/p(Q) < dl/pwp for every p < 2.
Proof. By Lemma (applied d times and with L = 1) we need only to prove the
two strict inequalities. With this aim we define
d o
fQ Dict aa(i
vp(Q) = in
oeCE (V0 [, |oPdx

p

dx

We notice that v,(Q) = dn?, with a minimizer given by

¢($1,...,$d) = U(I‘l) "'U(.Id), (35>
where u € W'P(0,1) is a non negative function, optimal for (2.1)), with unitary L?

norm. Now, the case when p > 2 follows by strict convexity of the map ¢ — #/2:
indeed, being d > 2, integrating over () the inequality

Vol < a2 30| 26

8:1:,~

p

b

we obtain

M(Q) < &Py (Q) = dPPat.

Similarly, when p < 2, we can consider ¢ to be the optimal positive function for
Ap(Q), with unitary LP norm. Then, being d > 2, the strict concavity of the map

t — tP/2 gives
p

09 (x)

Vo) > @ty

i

?

which, integrated over (), implies that
M(Q) > 211, (Q) =
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This concludes the proof of the lemma. O
We are now in a position to prove the following existence result in the case d = 2.

Theorem 3.8. Let 1 < g < p < 400. Suppose q < 2 < p, then there exists {)* €
A? such that

CONvVexT

‘Fp,q(Q*) = min{‘vaq(Q) 0 Q € Agonvex}'
Proof. By Theorem [3.6] it is sufficient to show that

ma(p,q) < ma(p, q) = mp/my.

The cases when ¢ = 1 or p = 400 follow at once by inequalities and .
The remaining cases follow by combining the upper estimate for A,(@) and the lower
estimate for \;(Q) given by Lemma ; notice that since p # ¢, at least one of these
two inequalities is strict. O

Remark 3.9. We notice that, by Proposition [3.5, one readily concludes that if there
exists a maximizing sequence (£,) C A% such that |Q,] = 1 and satisfying
diam(£2,) — +oo, then

Md(]% q) = Md—l(l% q).

In particular when d = 2, this argument would prove Conjecture 3.1 On the other
hand, if any maximizing sequence (Q2,) C A%, .. with |, = 1 is contained (up to

translation) in a compact set, arguing as in Theorem it is easy to conclude that a
convex maximizer exists.

4. FURTHER REMARKS AND OPEN PROBLEMS

Several interesting problems and questions about the shape functionals 7, , are still
open; in this section we list some of them.

Problem 1. In Theorem we have shown that My(p,q) < +oo when ¢ > d; it
would be interesting to give a characterization of the quantity My(p, ¢) in these cases.
In addition, even if we believe that the value My(p, ¢) is not a maximum, that is it not
reached on a domain €2, it would be interesting to describe the behavior of maximizing
sequences (£2,,). It is reasonable to expect that 2, is made by a domain 2 where n
points are removed; the locations of these points in €2 is an interesting issue: is it true
that in the two-dimensional case they are the centers of an hexagonal tiling?

Problem 2. Proving or disproving the existence of a domain {2 minimizing the
shape functional F,, in the class A%, is another very interesting issue. The presence
of small holes in a domain {2 does not seem to decrease the value of F,,(€2), which
could be a point in favor of the existence of an optimal domain €2, ,.

d . We know that My(p, q) is always
finite. It would be interesting to prove (or disprove) Conjecture (formulated by
Parini in [20]), that is:

Problem 3. In the more restricted class A%

M y(p,q) = /7, and no maximizer exists.
In other words, maximizing sequences are made by thin slabs
Q. =Ax(0,e) withe — 0and A asmooth d — 1 dimensional domain.

At present the problem is open even in the case d = 2, see also Remark
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Problem 4. Concerning the minimum m,(p, q) of F,, in the class A¢ .., estab-

lishing if it is attained is an interesting issue. Theorem gives an affirmative answer
in the case d = 2 and ¢ < 2 < p; in particular, this happens for d = 2 and ¢ = 1,
p = 2, which is the original Cheeger case and, according to some indications by E.
Parini [20], the optimal domain could be in this case a square. This is not yet known.
We expect the existence of an optimal domain for every dimension d and every p, ¢ and,
as stated in Theorem [3.6] this would follow once the strict monotonicity of mq4(p, ¢)
with respect to the dimension d is proved. At present however, a general proof of this
strict monotonicity is missing.

APPENDIX A.

We devote this appendix to briefly describe the classical strategy of Cioranescu-
Murat (see [7]) which can be used to prove Theorem see Remark 2.10f These
results are well known, but in the case p # 2 it is not easy to find precise references,
hence we add them for the sake of completeness and for reader’s convenience. We limit
ourselves to prove only what we need in the paper, pointing out that the following
results can be obtained in a more general framework of y-convergence (see for instance
the monographs [0], [T1] and references therein).

Let 1 <p < d, Q) be a bounded connected smooth open set, and € > 0. We consider
in R? (d > 2) the lattice of parallel cubes P! of size 2¢ and we denote by x5 the centers.
In each cube we consider a tiny ball B,_(z5) of radius r., where r. < . Finally we set

C.={zf : PLEQ}.

and

0. =0\ (J B.(2).
zeC;e
Our goal is to determine the behavior of \,(€2.) as ¢ — 0. This depends on the size
of r., and more precisely on the following ratio:

gdpd-p if p<d,
aE = —d 1—d . o (A1>
e~ (—1In(r.)) if p=d.

Proposition A.1 (super-critical case). If a. — +00 as € — 0, then \,(£).) = +oo.

Proof. Given R > r > 0, we denote by g, the least eigenvalue of Bg \ B, with
Dirichlet boundary condition on 0B, and Neumann boundary condition on 0Bpg, that
is:

: fBR\B VolPdz 1 -
PR, = inf : cveWHP(Bg\ B,), v=0o0n0dB, ;, (A.2)
I \5, [vPdz
R T

where the condition v = 0 on 0B, is intended in the usual trace sense. Notice that
by exploiting the convexity property of the functional u + [ |Vu'/?|P (as done in [1],
[2] and [§]), we can infer that there exists a unique positive minimizer v for ({A.2])
with unitary L? norm. In particular, being the domain By \ B, radial, v is a radially
symmetric function in W'*(Bg \ B,).

We claim that there exist constants ¢ > 1 and & > 0 (which do not depend on ¢)
such that

/\p(Qs) Z £M6877‘5' (A3)
Assume (A.3)) to be true, we obtain the thesis by proving that fi..,. — 400 as e — 0.
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Indeed, taking for simplicity ¢ = 1 and using coarea formula, we have that

o, =it { [ opee}.

where the infimum is computed among non negative functions u € C*°(r., €) vanishing
on r. and satisfying

/6 lu(t) Pt dt = 1. (A.4)

If u is admissible, by Holder inequality,

€ B € p € 1 1-p

moreover there exists ty € (re,£) such that

€ -1/p
ulty)] = ( / t“dt) |

€ —1/p
0 <u(t) < </ td_ldt> for every t € (7, ¢),

€

since otherwise

would imply f:g lu(t)|Pt¢=1dt < 1, in contradiction with (A.4)). Hence, using the fact

that u(r.) = 0, we have
e to € —1/p
/ [/ (t)|dt > / u’(t)dt’ > (/ td—ldt) .

Finally, the latter inequality combined with (A.5) implies

€ J € 4 -1 € 1 1-p
/ ppd—1 -1
/rE |u (t)| t dt > (/Ts t dt) (/TE —t(d—l)/(p—l) dt) .

In the case p < d (the case p = d being similar), computing the right-hand side in the
previous inequality we obtain

1 d—p\"! 1 ot
fere = d< d d) ( P) ( (p—d)/(p—1) ) '
et—rg) \p—1 PP/ E=D _ o(p-d)/(p-1)

Taking into account, it is easy to verify that the right hand side of the previous
inequality tends to +o00 as € — 0.

To conclude let us prove . We notice that there exists ¢ > 1, which does not
depend on ¢, such that for every € small enough the family of balls

G° ={Be(z) : z€C.},

covers ). Moreover there exists N € N, which again does not depend on ¢, such that
we can split G° into N sub-families Gf, ... G5 made up of disjoint balls. This latter
assertion can be easily proved once noticed that any ball in G° can intersect only a
bounded number of different balls in G°, and such a bound does not depend on .
Indeed suppose that B..(Z) € G° intersects Be.(z1), ..., Be(Ty) € G°, then we have
also

m

| B:(2:) € Bsec(2),

i=1
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in particular, taking the measures of both sets, we get m < (3¢)?. Therefore, it is
sufficient to take N = [(3¢)¢] + 1.
Now, let u € C2°(€2.) and extend u by zero outside Q.. We have

N N
N/ |Vul|Pdz > Z Z / |VulPde > piee . Z Z / |ulPdz > ,ucws/ |u|Pdx.
Q B B Q

i—1 Begs i—1 Begr
Thus, by the arbitrariness of u we obtain (A.3)) with £ = N~L. O

Proposition A.2 (sub-critical case). If a. — 0 as e — 0, then A\,(2.) — A\,(Q).
Proof. First we notice that by monotonicity we have

M(92) = A(Q).
Hence it is enough to prove that

lim sup A\p(€Q:) < A, (). (A.6)

e—0

Let v, be a competitor for capp(Ere; B.) chosen in such a way that:
ve € CF(B:), 0<wv.<1l, wv.=1lonB,, [Vi],< capp(ErE; B.) + o(e?).
We define V, in €2 to be

V() = 1 —v.(z —z;), in Bi(x;)if z; € C.
) N 17 n Q\UxECE Bé(l'),

and we denote by n(¢) € N be the number of cubes P! such that Pf € Q. We have
IVVellzei@y < n(@)IVellna.) < (26)™1QUIV el o) ~ (26) 7|9 cap,(B,.; Be).

Since r. — 0, the latter implies
||VV€||Lp(Q) — 0

(see Section 2.2.4 of [18] for the precise value of cap,(B;.; B:)). This means that V.
weakly converge in W1?(Q) to some constant ¢ € R. Moreover, since V. = 1 on 99,
we can infer that ¢ = 1.

Now, let u € C°(12), and consider u. = V.u. We have u. € Wol’p(QE) and u. — u
strongly in Wol’p(Q). In particular

M— i M>limsn Ap(£22)
fQ|U|pdl‘ 0 fQE |ue|Pdx Eﬁop e

Since u is arbitrary we get (A.6]). O
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