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Abstract
We present some fine properties of immersions ℐ ∶ 𝑀 → 𝑁 between manifolds; with particular

attention to the case of immersed curves 𝑐 ∶ 𝑆1 → ℝ𝑛. We present new results, as well as known results
but with quantitative statements (that may be useful in numerical applications) regarding: tubular
coordinates, neighborhoods of immersed and freely immersed curve, local unique representations of
nearby such curves, possibly “up to reparameterization”. We present examples and counter-examples
to support the significance of these results. Eventually we provide a complete and detailed proof
of a result first stated in a 1991 paper by Cervera, Mascaró and Michor: the quotient of the freely
immersed curves by the action of reparameterization is a smooth (infinite dimensional) manifold.

1 Introduction
In general, let 𝑀 and 𝑁 be smooth finite dimensional connected Hausdorff paracompact manifolds
without boundary, with dim(𝑀) ≤ dim(𝑁).

This paper studies properties of immersions ℐ ∶ 𝑀 → 𝑁 , that are 𝐶1 maps such that 𝑇 ℐ𝑥 is full rank
at each 𝑥.

A particular but very interesting case are closed immersed curves 𝑐 ∶ 𝑆1 → ℝ𝑛, that are 𝐶1 maps
with 𝑐′(𝜃) ≠ 0 at all 𝜃 ∈ 𝑆1; where 𝑆1 = {𝑥 ∈ ℝ2 ∶ |𝑥| = 1} be the circle in the plane. They will be called
planar when 𝑛 = 2.

This paper is mostly devoted to this case. (A forthcoming paper [15] will generalize many results in
this paper to the general case of immersions ℐ ∶ 𝑀 → 𝑁 .)

Immersed planar curves 𝑐 ∶ 𝑆1 → ℝ2 have been used in Computer Vision for decades; indeed the
boundary of an object in an image can be modeled as a closed embedded curve, by the Jordan Theorem.
Possibly the first occurrence was active contours, introduced by [9] and used for the segmentation prob-
lem: the idea is to minimize an energy, defined on contours or curves, that contains an image based edge
attraction term and a smoothness term, which becomes large when the curve is irregular. An evolution
is derived to minimize the energy based on principles from the calculus of variations. There have been
many variations to original model of [9]; for example [6], and a survey in [3].

An unjustified feature of the model of [9] was that the evolution is dependent on the way the contour is
parameterized. Thereafter, [11] [4] considered minimizing a geometric energy, which is a generalization of
Euclidean arclength, defined on curves for the edge-detection problem. The authors derived the gradient
descent flow in order to minimize the geometric energy.

This lead to a principle: all operations related to curves should be independent of the choice of
parameterizations.

Operations on the space of curves are best described and studied if the whole space of curves is
endowed with a differential structure, so that it becomes a smooth manifold.

The above two remarks lead to the following question. If 𝐼 is the space of curves that we are interested
in, and 𝐷 is the action of reparameterization, then the quotient

𝐵 = 𝐼/𝐷 (1)
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is the space of curves up to parameterization (also called geometric curves in the following): when (and
how) can we say that this quotient 𝐵 is a smooth manifold?

This was discussed in [16], using a result from [5].
A purpose of this paper is to revisit the key result in [5]: indeed the proof in that paper is missing

two key steps.

1.1 Plan of the paper
In Section 2 we will define the needed topologies on the space of functions; we will present well known

definitions and notations for curves, such as: derivation and integration in arc parameter, length, normal
vectors, curvature, etc; we will classify immersed and freely immersed curves and present results and
examples.

In Section 3 we will present advanced results for immersed curves; we will discuss representation
of nearby curves in tubular coordinates; we will show how the open neighborhood of a curve 𝑐 in the
space of curves can be defined using tubular coordinates, so that if 𝑐 is immersed (respectively, freely
immersed) then all curves in the neighborhood are immersed (respectively, freely immersed); we will
show with examples what goes wrong when hypotheses are not met.

In Section 4 we will present the proof of this theorem: the quotient of the freely immersed curves by
the action of reparameterization is a smooth (infinite dimensional) manifold. We will then explain, in a
step by step analysis, why the original proof in [5] was incorrect.

A supplemental file contains Wolfram Mathematica code to generate some of the figures.

2 Definitions
In this section we will present well known definitions and results regarding immersions, with particular
attention to immersed curves.

2.1 Topologies
Definition 1. We denote by 𝐶𝑟(𝑀, 𝑁) the space of all maps 𝑓 ∶ 𝑀 → 𝑁 that are of class 𝐶𝑟. Here
𝑟 ∈ {0, 1, 2 … , ∞}.

There are classically two types of topologies for this space.

• The weak topology, as defined in Ch. 1 Sec. 1 in [8], that coincides with the compact-open 𝐶𝑟-
topology as defined in 41.9 in [12]; if 𝑁 = ℝ𝑛, then the “weak topology” is the topology of the
Fréchet space of local uniform convergence of functions and their derivatives up to order 𝑟.

• The strong topology as defined Ch. 1 Sec. 1 in [8], that coincides with the Whitney 𝐶𝑟-topology as
defined in 41.10 in [12].

If 𝑀 is compact, then the two above coincide; if moreover 𝑁 = ℝ𝑛 and 𝑟 < ∞ then 𝐶𝑟(𝑀, ℝ𝑛) is the
usual Banach space.

Remark 1. If 𝑁 = ℝ𝑛 but 𝑀 is not compact, then “strong topology” does not make 𝐶𝑟(𝑀, ℝ𝑛) a topo-
logical vector space, since it has uncountably many connected components; but the connected component
containing 𝑓 ≡ 0 contains only compactly supported functions, and it has the topology 𝐶𝑟

𝑐 (𝑀, ℝ𝑛) (as
defined in 6.9 in Rudin [18]) that is the strict inductive limit of the immersions

𝑉𝐾 → 𝐶𝑟
𝑐 (𝑀, ℝ𝑛) (2)

where, for each 𝐾 ⊂ 𝑀 compact, 𝑉𝐾 is the space of 𝑓 ∶ 𝑀 → 𝑁 that are zero outside of 𝐾, with a
standard Banach (or Fréchet, for 𝑟 = ∞) structure. (For the definition of strict inductive limit and its
properties, we refer to 17G at page 148 in [10].)

Proposition 1. The sets of immersions, submersions, embeddings, are open in 𝐶𝑟(𝑀, 𝑁) with the
strong topology, for 𝑟 ≥ 1.

Proofs are in Ch. 1 Sec. 1 in [8].
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Definition 2. For 𝑟 ∈ {1, … , ∞}, let Diff𝑟(𝑀) be the family of diffeomorphisms of 𝑀 : all the maps
𝜙 ∶ 𝑀 → 𝑀 that are 𝐶𝑟 and invertible, and the inverse 𝜙−1 is 𝐶𝑟. It is a group, the group operation
being “composition of functions”.

Proposition 2. Diff𝑟(𝑀) is open in 𝐶𝑟(𝑀, 𝑀) with the strong topology.

See Thm. 1.7 in Ch. 1 Sec. 1 in [8].
We will omit the superscript “𝑟” from Diff𝑟(𝑀) in the following, for ease of notation.

2.2 Immersions
2.2.1 Free Immersion

Definition 3. An immersion ℐ ∶ 𝑀 → 𝑁 is called “free” if ℐ ≡ ℐ ∘ 𝜙 for 𝜙 ∈ Diff(𝑀) implies that 𝜙 is
the identity.

Proposition 3 ([5] Lemma 1.3). If ℐ is immersed and ℐ(𝜙(𝑡)) = ℐ(𝑡) for all 𝑡 and 𝜙(𝑡) = 𝑡 for a 𝑡, then
𝜙 =Id.

Proof. Indeed it is easily seen that
{𝑡 ∈ 𝑀 ∶ 𝜙(𝑡) = 𝑡} (3)

is closed; and it is also open, since an immersion is also a local diffeomorphism with its image.

As a corollary, if ℐ ∘ 𝜙 ≡ ℐ and ℐ ∘ 𝜓 ≡ ℐ and 𝜙(𝑡) = 𝜓(𝑡) for a 𝑡, then 𝜙 ≡ 𝜓. Another corollary
states the following.

Corollary 1 ([5] Lemma 1.4). If ℐ is an immersion and there is a 𝑥 ∈ ℝ𝑛 s.t. ℐ(𝑡) = 𝑥 for one and
only one 𝑡, then ℐ is a free immersion.

This implies that, when dim(𝑀) < dim(𝑁), the free immersions are a dense subset of all immersions
(for all the topologies considered in this paper).

2.2.2 Reparameterizations, Isotropy group

We first consider the general case of immersions ℐ ∶ 𝑀 → 𝑁 .

Definition 4. The isotropy group (a.k.a. “stabilizer subgroup” or “little group”) 𝒢ℐ is the set of all
𝜙 ∈ Diff(𝑀) such that ℐ ≡ ℐ ∘ 𝜙; it is a subgroup of Diff(𝑀).

Obviously ℐ is freely immersed if and only if 𝒢ℐ contains only the identity.
We will prove that 𝒢ℐ is discrete, and finite when 𝑀 is compact.

Remark 2. If we reparameterize ̃ℐ = ℐ ∘ �̃� then 𝒢ℐ changes by conjugation

𝜙 ∈ 𝒢ℐ ↔ �̃�−1 ∘ 𝜙 ∘ �̃� ∈ 𝒢 ̃ℐ . (4)

Remark 3. If 𝑀 is orientable then Diff(𝑀) has a subgroup Diff+(𝑀) of orientation preserving diffeo-
morphisms; for the case of curves then we obtain that Diff(𝑆1) has two connected components

Diff(𝑆1) = Diff+(𝑆1) ∪ Diff−(𝑆1) (5)

where

• Diff+(𝑆1) is the family of diffeomorphisms with 𝜙′ > 0, and is a normal subgroup;

• Diff−(𝑆1) is the family of diffeomorphisms with 𝜙′ < 0.

Consider a curve 𝑐 and let 𝒢𝑐 be its isotropy group: we will prove in Lemma 3 that if 𝜙 ∈ 𝒢𝑐 then
𝜙 ∈ Diff+(𝑆1). We will mostly use Diff+(𝑆1) in the following. Note that Diff+(𝑆1) is a perfect group
[19] (see [13] for a self contained presentation); it is also a simple group: see the discussion in Sec. 2 in
[2] for further references . (The author thanks Prof. Kathryn Mann for her help on these subjects.)
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2.3 Curves
Remember that 𝑆1 = {𝑥 ∈ ℝ2 ∶ |𝑥| = 1} is the circle in the plane. We will often associate ℝ2 = ℂ, for
convenience. In this case we will associate 𝑆1 = {𝑒𝑖𝑡, 𝑡 ∈ ℝ} ⊂ ℂ.

Definition 5. A closed curve is a map 𝑐 ∶ 𝑆1 → ℝ𝑛. We will always assume that the curve is of class
𝐶1 (at least). The image of the curve, or trace of the curve, is 𝑐(𝑆1).

When convenient, we will (equivalently) view 𝑆1 as ℝ/(2𝜋) (that is ℝ modulus 2𝜋 translations), and
consequently a closed curve will be a map 𝑐 ∶ ℝ → ℝ𝑛 that is 2𝜋-periodic.

In particular this will be the correct interpretation when we will write the operation 𝜃1 + 𝜃2 for
𝜃1, 𝜃2 ∈ 𝑆1.

Remark 4. The “distance” of points in 𝑆1 will be the intrinsic distance; this distance will be represented
by the notation

𝑑𝑆1(𝜃1, 𝜃2) (6)

for 𝜃1, 𝜃2 ∈ 𝑆1, and it is the length of the shortest arc in 𝑆1 connecting the two points 𝜃1, 𝜃2. Note that
if we identify 𝑆1 to ℝ/(2𝜋), and pick two points 𝜃1, 𝜃2 ∈ ℝ/(2𝜋) and represent them as real numbers, it
may happen that

|𝜃1 − 𝜃2| > 𝑑𝑆1(𝜃1, 𝜃2) . (7)

Definition 6 (basepoint). We will select a distinguished point 𝜃0 in the circle 𝑆1: for 𝑆1 ⊂ ℝ2, it will
be 𝜃0 = (1, 0); for 𝑆1 ⊂ ℂ, it will be 𝜃0 = 1; for 𝑆1 = ℝ/(2𝜋), it will be 𝜃0 = 0.

Given a curve as above, we will call 𝑐(𝜃0) the basepoint for the curve.

Example 1 (of a non-freely immersed curve).
The doubly traversed circle, defined as

• 𝑐2(𝑧) = 𝑧2 for 𝑧 ∈ 𝑆1 when we consider 𝑆1 ⊂ ℂ, or equivalently

• 𝑐2(𝜃) = (cos(2𝜃), sin(2𝜃)) for 𝜃 ∈ ℝ/(2𝜋) that we identify with 𝑆1.

Setting 𝜙(𝑡) = 𝑡 + 𝜋, we have that 𝑐2 = 𝑐2 ∘ 𝜙, so 𝑐2 is not freely immersed.

Example 2 (Taken from [5]). Note that there are free immersions without a point with only one preimage:
consider a figure eight which consists of two touching circles. Now we may map the circle to the figure
eight by going first three times around the upper circle, then twice around the lower one. This immersion
𝑐 ∶ 𝑆1 → ℝ2 is free.

We provide a simple example 3 that shows how such curve can be made smooth.

2.3.1 Length, tangent, curvatures

In the following let 𝑐 ∶ 𝑆1 → ℝ𝑛 be an immersed curve.

Definition 7. If the curve 𝑐 is immersed, we can define the derivation with respect to the arc parameter

𝜕
𝜕𝑠 = 1

|𝑐′|
𝜕
𝜕𝜃 . (8)

We will write 𝜕
𝜕𝑐 instead of 𝜕

𝜕𝑠 when we are dealing with multiple curves, and we will want to specify
which curve is used.

Definition 8. We define the tangent vector

𝑇 (𝜃) = 𝑐′(𝜃)
|𝑐′(𝜃)| = 𝜕

𝜕𝑠𝑐(𝜃) . (9)

Definition 9. The length of the curve 𝑐 is

len(𝑐) def= ∫
𝑆1

|𝑐′(𝜃)| 𝕕𝜃 . (10)
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Definition 10. We define the integration by arc-parameter of a function 𝑔 ∶ 𝑆1 → ℝ𝑛 along the curve
𝑐 by

∫
𝑐

𝑔(𝑠) 𝕕𝑠 def= ∫
𝑆1

𝑔(𝜃)|𝑐′(𝜃)| 𝕕𝜃 . (11)

There are two different definitions of curvature of an immersed curve: mean curvature 𝐻 and signed
curvature 𝜅, which is defined when 𝑐 is valued in ℝ2.

𝐻 and 𝑘 are extrinsic curvatures, they are properties of the embedding of 𝑐 into ℝ𝑛.

Definition 11 (H). If 𝑐 is 𝐶2 regular and immersed, we can define the (mean) curvature 𝐻 of 𝑐 as

𝐻 = 𝜕
𝜕𝑠

𝜕
𝜕𝑠𝑐 = 𝜕

𝜕𝑠𝑇 (12)

It is easy to prove that 𝐻 ⟂ 𝑇 .

Definition 12 (N). When the curve 𝑐 is planar we can define a normal vector 𝑁 to the curve, by
requiring that |𝑁| = 1, 𝑁 ⟂ 𝑇 and 𝑁 is rotated 𝜋/2 degree anticlockwise with respect to 𝑇 .

Definition 13 (𝜅). If 𝑐 is in ℝ2 and 𝐶2, then we can define a signed scalar curvature 𝜅 = ⟨𝐻, 𝑁⟩, so
that

𝜕
𝜕𝑠𝑇 = 𝜅𝑁 = 𝐻 and 𝜕

𝜕𝑠𝑁 = −𝜅𝑇 . (13)

There is a choice of sign in the above two definitions; this choice agrees with the choice in [21].
When we will be dealing with multiple curves, we will specify the curve as a subscript, e.g. 𝑇𝑐, 𝜅𝑐, 𝑁𝑐

will be the tangent, curvature and normal to the curve 𝑐.

Remark 5. Note that 𝑇 , 𝜅, 𝑁, 𝐻 are geometrical quantities. If 𝜓 ∈ Diff+(𝑆1) and ̃𝑐 = 𝑐 ∘ 𝜓, then
𝑇 ̃𝑐 = 𝑇𝑐 ∘ 𝜓, 𝜅 ̃𝑐 = 𝜅𝑐 ∘ 𝜓, 𝑁 ̃𝑐 = 𝑁𝑐 ∘ 𝜓 and 𝐻 ̃𝑐 = 𝐻𝑐 ∘ 𝜓.

2.3.2 Arc parameter

Let 𝑐 be an immersed planar curve. We recall this important transformation.

Lemma 1 (Constant speed reparameterization). A curve 𝑐 ∈ 𝐶1 can be reparameterized to ̃𝑐 = 𝑐 ∘ 𝜑
using a 𝜑 ∈ Diff+(𝑆1) so that | ̃𝑐′| ≡ ℓ where ℓ = len(𝑐)/(2𝜋) is constant.

Proof. For simplicity we assume that 𝑆1 = [0, 2𝜋]. Let 𝐿 = len(𝑐), let 𝜓(𝑡) = 2𝜋
𝐿 ∫𝑡

0 |𝑐′(𝜃)| 𝕕𝜃. Then
𝜓 ∶ [0, 2𝜋] → [0, 2𝜋] is a diffeomorphism, let 𝜑 = 𝜓−1.

Reparameterization to constant speed is a smooth operation in the space of curves, see Theorem 7
in [20].

When |𝑐′| ≡ 1 we will say that the curve is by arc parameter. A curve can be reparameterized to arc
parameter without changing its domain (as done above) iff len(𝑐) = 2𝜋. (If this is not the case, we will
rescale the curve to make it so.)

2.3.3 Angle function, Rotation index

Proposition 4 (Angle function, rotation index). If 𝑐 ∈ 𝐶1 is planar and is immersed, then 𝑇 = 𝑐′/|𝑐′|
is continuous and |𝑇 | = 1, so there exists a continuous function 𝛼 ∶ ℝ → ℝ satisfying

𝑇 (𝑠) = (cos(𝛼(𝑠)), sin(𝛼(𝑠))) (14)

and 𝛼(𝑠) is unique, up to adding the constant 𝑘2𝜋 with 𝑘 ∈ ℤ.
𝛼 is called the angle function.

Moreover 𝛼(𝑠 + 2𝜋) − 𝛼(𝑠) = 2𝜋𝐼, where 𝐼 is an integer, known as rotation index of 𝑐. This number
is unaltered if 𝑐 is deformed by a smooth homotopy. See Fig. 1 on the following page

(See 2.1.4 in [1] or Thm. 53.1 in [17], and following).
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Figure 1: Examples of curves of different rotation index

Remark 6. We can use the angle function to compute the scalar curvature 𝜅, that was defined in
Definition 13 by 𝜕𝑠𝑇 = 𝜅𝑁 , indeed deriving (14) and combining this with

𝑁(𝑠) = (− sin(𝛼(𝑠)), cos(𝛼(𝑠))) (15)

we obtain
𝜅 = 𝛼′

|𝑐′| = 𝜕𝑠𝛼 . (16)

2.4 Shapes
Shapes are usually considered to be geometric objects. Representing a curve using 𝑐 ∶ 𝑆1 → ℝ𝑛 forces a
choice of parameterization, that is not really part of the concept of “shape”.

Suppose that 𝐼 is a space of immersed curves 𝑐 ∶ 𝑆1 → ℝ𝑛.

Definition 14 (Geometric curves). The quotient space 𝐵 = 𝐼/ Diff(𝑆1) is the space of curves up to
reparameterization, also called geometric curves in the following. Two parametric curves 𝑐1, 𝑐2 ∈ 𝑀
such that 𝑐1 = 𝑐2 ∘ 𝜙 for a 𝜙 ∈ Diff(𝑆1) are the same geometric curve inside 𝐵.

𝐵 is mathematically defined as the set 𝐵 = {[𝑐]} of all equivalence classes [𝑐] of curves that are equal
but for reparameterization,

[𝑐] def= {𝑐 ∘ 𝜙 for 𝜙 ∈ Diff(𝑆1)}. (17)

We may also consider the quotient w.r.t Diff+(𝑆1). The quotient space 𝐼/ Diff+(𝑆1) is the space of
geometric oriented curves.

Unfortunately, the quotient of immersed curves by reparameterizations is not a manifold; but the
quotient of freely immersed curve is.

Theorem 1. Suppose that 𝐼 is the space of the freely immersed curves; and that 𝐼 and Diff(𝑆1) have the
topology of the Fréchet space of 𝐶∞ functions, then the quotient 𝐵 = 𝐼/ Diff+(𝑆1) is a smooth manifold
modeled on 𝐶∞.

One aim of this paper will be to give a complete proof of this result, first presented in [5]; the proof
is in Sec. 4.1. (We remark that the theorem in [5] was presented for the case of immersions ℐ ∶ 𝑀 → 𝑁 .)

Indeed, as we will discuss in section 4.2, the proof in [5] misses some key arguments.

3 Advanced properties of immersed curves
In this section we will present results regarding immersed curves that are either new, or presented in
more precise form than usually found in the literature.

Most of the results are presented, for sake of simplicity, for planar curves 𝑐 ∶ 𝑆1 → ℝ2, but can
be extended to the case of curves 𝑐 ∶ 𝑆1 → 𝑁 taking values in a manifold 𝑁 , up to some nuisance in
notations.

The general case of immersions ℐ ∶ 𝑀 → 𝑁 requires instead some arguments that will be discussed
in a future paper [15].
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3.1 Examples
Definition 15. We start with some classical examples of 𝐶∞ functions of compact support. Let

𝜂0 ∶ ℝ → ℝ , 𝜂0(𝑢) def= {𝑒 4
𝜋 − 1

𝑢 − 1
𝜋−𝑢 𝑢 ∈ [0, 𝜋]

0 elsewhere
(18)

and

𝜂1 ∶ ℝ → ℝ , 𝜂1(𝑢) def= {4(2𝑢 − 𝜋)𝑒− 1
𝑢 − 1

𝜋−𝑢 𝑢 ∈ [0, 𝜋]
0 elsewhere

(19)

(see figures 2 on the next page).
We will use these to build some following examples.

Example 3. We present here a simple smooth formula for example 2

𝑐 ∶ [0, 5𝜋] → ℝ2 , 𝑐(𝑢) def= ( sin(2𝑢) , 𝑐2(𝑢)) , 𝑐2(𝑢)

⎧{{{
⎨{{{⎩

𝜂0(𝑢) 𝑢 ≤ 𝜋
𝜂0(𝑢 − 𝜋) 𝑢 ≤ 2𝜋
−𝜂0(𝑢 − 2𝜋) 𝑢 ≤ 3𝜋
−𝜂0(𝑢 − 3𝜋) 𝑢 ≤ 4𝜋
−𝜂0(𝑢 − 4𝜋) 𝑢 ≤ 5𝜋

(20)

this is a 𝐶∞ function depicted at figure 3 on the following page.

3.1.1 Trace and parameterization

If a curve is embedded then the curve is identified by its image, in these senses.
• If 𝑐, ̃𝑐 ∶ 𝑆1 → ℝ𝑛 are embedded and have the same image, then there is an unique reparameterization

𝜙 such that ̃𝑐 = 𝑐 ∘ 𝜙
• Suppose that 𝑐0 ∶ 𝑆1 → ℝ𝑛 is embedded and 𝐴 = 𝑐(𝑆1) is the trace; suppose that 𝑐0 is parameterized

by constant speed parameter; let us fix a candidate basepoint 𝑣 ∈ 𝐴 in the trace.
We can state that 𝐴, 𝑣 characterize the embedded curve up to a choice of direction: precisely, there
are exactly two different 𝑐1, 𝑐2 ∶ 𝑆1 → ℝ𝑛, parameterized by constant speed parameter, such that
𝑐1(𝜃0) = 𝑐2(𝜃0) = 𝑣, and they satisfy

𝑐1(𝜃) = 𝑐0(𝜃 + 𝑎) , 𝑐2(𝜃) = 𝑐0(𝑏 − 𝜃) , (21)

for unique choices of 𝑎, 𝑏 ∈ 𝑆1 (dependant on 𝑣).
In particular, if the rotation index of 𝑐0 is 𝑟, then the latter curves have rotation indexes ±𝑟.

Since the definition of freely immersed curve says that the curve identifies an unique parameterization,
then we may be induced to think that the above two properties extend to freely immersed curves: but
this is not the case.
Example 4. The following two curves have the same trace, are freely immersed, are smooth, but have
rotation indexes 0 and 1.

1. This immersed closed curve 𝑐 ∶ [0, 2𝜋] → ℝ2 with components

𝑐1(𝑢) = sin(2𝑢) , 𝑐2(𝑢) = {𝜂1(2𝑢) 𝑢 ∈ [0, 𝜋/2]
𝜂1(2𝑢 − 𝜋/2) 𝑢 ∈ [𝜋/2, 𝜋] (22)

2. This immersed closed curve 𝑐 ∶ [0, 2𝜋] → ℝ2 with components

𝑐2(𝑢) = sin(2𝑢) , 𝑐2(𝑢) = {𝜂1(2𝑢) 𝑢 ∈ [0, 𝜋/2]
−𝜂1(2𝑢 − 𝜋/2) 𝑢 ∈ [𝜋/2, 𝜋] (23)

See figure 4 on the next page.
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Figure 2: Graph of 𝜂0 as defined in eqn. (18); graph of 𝜂1 as defined in eqn. (19)
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3.2 Reparameterizations, Isotropy group
Lemma 2. If 𝜙 ∈ Diff−(𝑆1) then 𝜙 has two fixed points.

Proof. We represent 𝜙 as a map 𝜙 ∶ [0, 2𝜋] → ℝ that is continuous, strictly decreasing and such that

𝜙(0) ∈ [2𝜋, 4𝜋) , 𝜙(2𝜋) = 𝜙(0) − 2𝜋 , (24)

then
𝜙(2𝜋) ∈ [0, 2𝜋) (25)

so the graph 𝑦 = 𝜙(𝑥) must intersect both the graph 𝑦 = 𝑥 and the graph 𝑦 = 𝑥 + 2𝜋 for two different
points 𝑥1, 𝑥2 ∈ [0, 2𝜋), that are the two fixed points.

Lemma 3. If 𝑐 is immersed and 𝜓 ∈ 𝒢𝑐 then 𝜓 ∈ Diff+(𝑆1).
Proof. Suppose that 𝜓 ∈ Diff−(𝑆1), let 𝑢 ∈ 𝑆1 be a fixed point (by Lemma 2). By deriving

𝑐′(𝜃) = 𝑐′(𝜓(𝜃))𝜓′(𝜃) (26)

setting 𝜃 = 𝑢
𝑐′(𝑢) = 𝑐′(𝑢)𝜓′(𝑢) (27)

and this is impossible since 𝜓′(𝑢) < 0.

3.3 Local embedding
3.3.1 Length of curve arcs

Definition 16. Suppose 𝑐 ∶ 𝑆1 → ℝ𝑛 is 𝐶1. Let 𝜎, �̃� ∈ 𝑆1. When 𝜎 ≠ �̃� there are two arcs in 𝑆1

connecting 𝜎 to �̃�. By
len 𝑐 [𝜎,�̃�] (28)

we will mean the minimum of the lengths of 𝑐 when restricted to one of the two arcs connecting 𝜎 to �̃�.

If 𝑐 is periodically extended to 𝑐 ∶ ℝ → ℝ𝑛 and 𝜎, �̃� ∈ ℝ, then there is an unique 𝑘 ∈ ℤ such that

𝜎 ≤ �̃� + 𝑘2𝜋 < 𝜎 + 2𝜋 (29)

and then, letting

𝑙1 = ∫
�̃�+𝑘2𝜋

𝜎
|𝑐′(𝜃)| 𝕕𝜃 , 𝑙2 = ∫

𝜎+2𝜋

�̃�+𝑘2𝜋
|𝑐′(𝜃)| 𝕕𝜃 (30)

we define
len 𝑐 [𝜎,�̃�] = min{𝑙1, 𝑙2} . (31)

In particular when 𝑐 is parameterized at constant speed (i.e. |𝑐′| ≡ ℓ) then we will (covertly) assume
that 𝜎, �̃� are chosen (up to adding 𝑘2𝜋) so that |𝜎 − �̃�| = 𝑑𝑆1(𝜎, �̃�) ≤ 𝜋 and then

len 𝑐 [𝜎,�̃�] = ℓ|𝜎 − �̃�| (32)

Remark 7. When 𝑐 is not parameterized by constant velocity, the above may lead to some confusion.
The interval [𝜎, �̃�] in the notation (28) implicitly refers to the choice of arc in 𝑆1 that provides the above
minimum. Note that this may not be the shortest arc connecting 𝜎 to �̃� in 𝑆1. This may happen if the
parameterization of 𝑐 has regions of fast and slow velocity, as in this example.
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Figure 5: Plot of function 𝜙 in Eqn. (33) in Example 5

Example 5. Let ̃𝑐(𝜃) = (cos(𝜃), sin(𝜃)) be the standard circle, and

𝜙(𝜃) = {4𝜃 0 ≤ 𝜃 ≤ 𝜋/3
2
5 (𝑥 + 3𝜋) 𝜋/3 ≤ 𝜃 ≤ 2𝜋 (33)

(see plot in Figure 5) then smooth out the corners of 𝜙 so that it becomes a diffeomorphism of 𝑆1; let

𝑐 = ̃𝑐 ∘ 𝜙 (34)

let 𝜃0 = 0, 𝜃1 = 𝜋/3 in 𝑆1 ∼ ℝ/(2𝜋); then 𝑑𝑆1(𝜃0, 𝜃1) = 𝜋/3, and is given by the arc moving counter-
clockwise from 𝜃0 to 𝜃1, while

len 𝑐 [𝜎0,𝜎1] = 2𝜋/3 (35)

is given by the arc moving clockwise from 𝜃0 to 𝜃1.

This never happens for small distances/lengths, though.

Theorem 2. Fix an immersed curve 𝑐 ∶ 𝑆1 → ℝ𝑛; let

𝑀 = max |𝑐′| , 𝑚 = min |𝑐′| 𝜎𝑐
def= 1

𝑀
𝑚 + 1 ; (36)

• for any 𝜃0, 𝜃1 in 𝑆1 such that
𝑑𝑆1(𝜃0, 𝜃1) < 2𝜋𝜎𝑐 (37)

the shortest arc connecting them in 𝑆1 is also the arc where

len 𝑐 [𝜃0,𝜃1] (38)

is computed

• for any 𝜃0, 𝜃1 in 𝑆1 such that
len 𝑐 [𝜃0,𝜃1] < 𝜎𝑐 len(𝑐) (39)

the arc where
len 𝑐 [𝜃0,𝜃1] (40)

is computed is also the shortest arc connecting them in 𝑆1, whose length is

𝑑𝑆1(𝜃0, 𝜃1) ; (41)

• in any of the above cases

𝑚𝑑𝑆1(𝜃0, 𝜃1) ≤ len 𝑐 [𝜃0,𝜃1] ≤ 𝑀𝑑𝑆1(𝜃0, 𝜃1) . (42)
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3.3.2 Estimates

We begin with this estimate.

Proposition 5. Let 𝛼(𝑠) be the angle function, for 𝑠 ∈ 𝐽 = [0, 2𝜋]. The fact that the curve is closed
imposes lower bounds on max𝐽 |𝛼′|.

• If the rotation index 𝐼 of the curve is not zero, then |𝛼(2𝜋)−𝛼(0)| = 2𝜋|𝐼| so necessarily max𝐽 |𝛼′| ≥
|𝐼|.

• If the rotation index of the curve is zero, then necessarily max𝐽 |𝛼′| ≥ 1/2.
Indeed we can prove that

max
𝐽

𝛼 − min
𝐽

𝛼 ≥ 𝜋 ; (43)

otherwise, let
𝛽 = max𝐽 𝛼 + min𝐽 𝛼

2 (44)

taking 𝑣 = (cos 𝛽, sin 𝛽), we would have

𝑣 ⋅ 𝑐′(𝜃) = |𝑐′(𝜃)| cos(𝛽 − 𝛼(𝜃)) > 0 (45)

for all 𝜃, hence the curve would not be closed.

Definition 17. Given 𝑐 ∶ 𝑆1 → ℝ2, a 𝐶2 immersed closed curve, we recall that 𝜅 is the scalar curvature
of 𝑐; we define

𝛿𝑐
def= 𝜋/(3 max |𝜅|) , 𝜏𝑐

def= 1/(2 max |𝜅|) . (46)

Note that, since the curve is closed, then 𝜅 cannot be identically zero.
Note that 𝛿𝑐 = 𝜏𝑐

2𝜋
3 but we define two quantities since this simplifies the notation in the following.

We have 2𝜏𝑐 ≤ 𝛿𝑐 but 3𝜏𝑐 ≥ 𝛿𝑐.

Remark 8. Note that if we rescale the curve 𝑐 by a factor 𝜆 then 𝛿𝑐, 𝜏𝑐 and len 𝑐 [𝜎,�̃�] are multiplied by
𝜆 as well. If we rotate or translate 𝑐 then 𝛿𝑐, 𝜏𝑐 and len 𝑐 [𝜎,�̃�] are unaffected. If we reparameterize then
𝛿𝑐, 𝜏𝑐 are unchanged, whereas if 𝜓 ∈ Diff(𝑆1) and ̃𝑐 = 𝑐 ∘ 𝜓 we have

len ̃𝑐 [𝜓(𝜎),𝜓(�̃�)] = len 𝑐 [𝜎,�̃�] . (47)

In all following definitions, propositions and theorems, the formulas are built to be “geometrical”: this
means that, if the curves are reparameterized, rescaled, translated or rotated, then the formulas change
in predictable ways (as explained above); with the exception of relation (100) in Lemma 7.

This simplifies the proofs: in the proofs we can assume, with no loss of generality, that the curve is
parameterized by arc parameter.

Remark 9. Note that 𝛿𝑐 ≤ len(𝑐)/3 for curves of index zero, and 𝛿𝑐 ≤ len(𝑐)/(6|𝐼|) for curves of index
𝐼 ≠ 0.

Proof. We use Prop. 5. The formula in the thesis is invariant for reparameterizations and scaling;
we rescale the curve so that len(𝑐) = 2𝜋 and reparameterize by arc parameter so that |𝑐′| ≡ 1. For
curves of index zero the thesis 𝜋/(3 max𝐽 |𝜅|) ≤ len(𝑐)/3 that is 𝜋 ≤ max𝐽 |𝜅| len(𝑐); since |𝑐′| ≡ 1
by (16) this last becomes 1/2 ≤ max𝐽 |𝛼′|, that was proved above. For curves of index 𝐼 the thesis
𝜋/(3 max𝐽 |𝜅|) ≤ len(𝑐)/(6|𝐼|) that is 2𝜋|𝐼| ≤ max𝐽 |𝜅| len(𝑐) then becomes |𝐼| ≤ max𝐽 |𝛼′|, that was
proved above.

For 𝐼 ≠ 0 the above is sharp, as in the case of 𝑐(𝜃) = (cos(𝐼𝜃), sin(𝐼𝜃)).
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3.3.3 Local embedding of curves

It is well known that a 𝐶1 immersion ℐ ∶ 𝑀 → 𝑁 is a local embedding. For curves of class 𝐶2, we can
provide a simple quantitative statement.

Proposition 6 (Local embedding). Let 𝑐 ∶ 𝑆1 → ℝ2 a 𝐶2 immersed curve. Define 𝛿𝑐 as in Definition
17. For any 𝑎, 𝑏 ∈ 𝑆1 let 𝐿 def= len 𝑐 [𝑎,𝑏], assume that 𝐿 ≤ 2𝛿𝑐 then |𝑐(𝑏) − 𝑐(𝑎)| ≥ 𝐿/2; so 𝑐|[𝑎,𝑏]

is
embedded.

Proof. For simplicity we assume that 𝑐 is periodically extended to 𝑐 ∶ ℝ → ℝ2; then we identify the interval
in ℝ that is associated to the arc of the curve where the length len 𝑐|[𝑎,𝑏]

is computed; for simplicity, we
call this interval [𝑎, 𝑏] again. (If the arc is short enough, then by Thm. 2 no ambiguity is possible).

Using Lemma 1 and Remark 8 assume that |𝑐′| ≡ ℓ = len(𝑐)/(2𝜋); then 𝜕𝑠 = 1
ℓ 𝜕𝜃, so 𝑇 = 𝑐′/ℓ and

len 𝑐|[𝑎,𝑏]
= ℓ(𝑏 − 𝑎) . (48)

As noted in (16)
|𝜅| = |𝜕𝑠𝑇 | = |𝑇 ′|/ℓ = |𝛼′|/ℓ (49)

so 𝛿𝑐 = ℓ𝜋/(3 max |𝛼′|). Let 𝑚 = (𝑎 + 𝑏)/2 be the middle point. Let 𝛼(𝑡) be the angle function (14).
Up to rotation suppose 𝑐′(𝑚) = (ℓ, 0), 𝑇 (𝑚) = (1, 0) so we can assume 𝛼(𝑚) = 0. Let 𝐿 = len 𝑐|[𝑎,𝑏]

=
ℓ(𝑏 − 𝑎) ≤ 2𝛿𝑐. For any 𝜃 ∈ [𝑎, 𝑏] we have ℓ|𝜃 − 𝑚| ≤ 𝛿𝑐 hence |𝜃 − 𝑚| ≤ 𝜋/(3 max |𝛼′|) hence for all
𝑎 ≤ 𝜃 ≤ 𝑏 we have

|𝛼(𝜃)| ≤ |𝜃 − 𝑚| max |𝛼′| ≤ 𝜋
3 (50)

hence cos(𝛼(𝜃)) ≥ 1/2; hence for 𝑎 ≤ 𝜃1 ≤ 𝜃2 ≤ 𝑏 for the abscissa we can write

𝑐1(𝜃2) − 𝑐1(𝜃1) = ℓ ∫
𝜃2

𝜃1

cos(𝛼(𝜃)) 𝕕𝜃 ≥ ℓ(𝜃2 − 𝜃1)1
2 . (51)

3.4 Isotropy group is discrete
Given an immersion ℐ ∶ 𝑀 → 𝑁 , it is possible to prove that the isotropy group is discrete (when 𝑀 is
paracompact) and even finite (when 𝑀 is compact; this latter result appears in [5]). When considering
curves, we can obtain the same results (and even more) in a more direct and geometric way.

Lemma 4. Let 𝑐 ∶ 𝑆1 → ℝ𝑛 be immersed.

• 𝒢𝑐 is finite.

• If 𝑐 ∘ 𝜓 ≡ 𝑐 ∘ 𝜙 and 𝜓(𝑎) = 𝜙(𝑎) for an 𝑎 ∈ 𝑆1 then 𝜓 ≡ 𝜙.

• If 𝑐 is parameterized by constant speed (see Lemma 1), then there is a 𝑘 ∈ ℕ, 𝑘 ≥ 1 s.t. 𝒢𝑐 is the
set of all 𝜙(𝑡) = 𝑡 + 2𝜋𝑗

𝑘 for 𝑗 = 0, … , 𝑘 − 1.

Proof. The proof of this is a special case of the 2nd step of the proof of Lemma 9.

• We prove the third point. Indeed deriving 𝑐 = 𝑐 ∘ 𝜙 and noting that |𝑐′| ≡ ℓ we obtain 𝜙′ ≡ 1
so 𝜙(𝑡) = 𝑡 + 𝛽 hence 𝜙𝑗(𝑡) = 𝑡 + 𝑗𝛽 ∈ 𝒢𝑐 for all 𝑗; if 𝛽/𝜋 is irrational then 𝑗𝛽 would be dense
in 𝑆1 = ℝ/(2𝜋), and this is denied by Prop. 6. Moreover if 𝜙(𝑡) = 𝑡 + 2𝜋

𝑘 and 𝑐 = 𝑐 ∘ 𝜙 then
𝑐(0) = 𝑐(2𝜋/𝑘) but by Prop. 6 (2𝜋)/(3 max |𝜅|) ≤ 2𝜋ℓ

𝑘 that is 𝑘 ≤ 3ℓ max |𝜅|. So there is an unique
𝑘 such that any 𝜙 ∈ 𝒢𝑐 can be written as 𝜙(𝑡) = 𝑡 + 2𝜋𝑗

𝑘 .

• The above characterization shows that if 𝜙′ ≡ 1 ≡ 𝜓′ and 𝜙(𝑎) = 𝜓(𝑎) then 𝜙 ≡ 𝜓. By Remark 2
this is valid for any curve (even when it is not parameterized by constant speed). This proves the
second point.

• The first point follows again from Remark 2.
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3.5 Tubular neighborhoods
Existence of tubular neighborhood is well known; we provide a quantitative result for 𝐶2 planar immersed
curves.

Proposition 7 (tubular neighborhood). Define 𝛿𝑐, 𝜏𝑐 as in Definition 17. Fix 𝑎, 𝑏 ∈ 𝑆1 with len 𝑐|[𝑎,𝑏]
≤

2𝛿𝑐. Let
𝛷 ∶ [𝑎, 𝑏] × [−𝜏𝑐, 𝜏𝑐] → ℝ2 , 𝛷(𝑠, 𝑡) = 𝑐(𝑠) + 𝑡𝑁(𝑠) (52)

then 𝛷 is a diffeomorphism with its image. Moreover if the arc [𝑠1, 𝑠2] is contained in the arc [𝑎, 𝑏]
identified above, then

|𝛷(𝑠1, 𝑡1) − 𝛷(𝑠2, 𝑡2)| ≥ 1
4 len 𝑐|[𝑠1,𝑠2]

, (53)

whereas (obviously)
|𝛷(𝑠, 𝑡1) − 𝛷(𝑠, 𝑡2)| = |𝑡2 − 𝑡1| . (54)

Proof. Assume that the curve has length 2𝜋, is parameterized in arc parameter; with no loss of generality
(recalling Remark 8); let 𝛼 be the angle function (14).

Extend 𝑐 to a periodic function 𝑐 ∶ ℝ → ℝ2 and identify the interval in ℝ that is associated to the arc
of the curve where the length len 𝑐|[𝑎,𝑏]

is computed. For simplicity, we call this interval [𝑎, 𝑏] again. (If
the arc is short enough, then by Thm. 2 no ambiguity is possible).

The Jacobian of 𝛷 is
𝜕
𝜕𝑠𝛷 = 𝑇 (1 − 𝜅𝑡) (55)

𝜕
𝜕𝑡𝛷 = 𝑁

so its determinant is (1 − 𝜅𝑡) ≥ 1/2 by the hypothesis |𝑡| ≤ 𝜏𝑐.
We will then prove that 𝛷 is injective so it will be an homeomorphism with its image, and since it is

a local diffeomorphism, it will be a diffeomorphism.
Choose (𝑠1, 𝑡1) and (𝑠2, 𝑡2) with 𝑎 ≤ 𝑠1 < 𝑠2 ≤ 𝑏 and |𝑡1| ≤ 𝜏𝑐, |𝑡2| ≤ 𝜏𝑐.
We set 𝑚 = (𝑠2 + 𝑠1)/2. Up to rotation we assume that 𝑇 (𝑚) = 𝑒1 = (1, 0) and 𝛼(𝑚) = 0, so that

𝑁(𝑚) is perpendicular to the 𝑥 axis. As in Prop. 6 we can prove that cos(𝛼(𝑠)) ≥ 1/2 for all 𝑠1 ≤ 𝑠 ≤ 𝑠2.
We write

𝛷(𝑠, 𝑡) = 𝑐(𝑠) + 𝑡𝑁(𝑠) = 𝑐(𝑚) + ∫
𝑠

𝑚
𝑇 (𝑠) 𝕕𝜃 + 𝑡𝑁(𝑠) (56)

and then for the abscissa

𝛷(𝑠, 𝑡)1 = 𝑐(𝑚)1 + ∫
𝑠

𝑚
cos(𝛼(𝜃)) 𝕕𝜃 + 𝑡 sin(𝛼(𝑠)) , (57)

note that 𝛷(𝑚, 𝑡)1 = 𝑐(𝑚)1. Deriving we obtain

𝜕
𝜕𝑠𝛷(𝑠, 𝑡)1 = cos(𝛼(𝑠))(1 − 𝑡𝛼′(𝑠)) ≥ 1

4 . (58)

We then obtain that
𝛷(𝑠2, 𝑡2)1 − 𝛷(𝑚, 𝑡2)1 ≥ 1

4(𝑠2 − 𝑚) (59)

while
𝛷(𝑚, 𝑡1)1 − 𝛷(𝑠1, 𝑡1)1 ≥ 1

4(𝑚 − 𝑠1) (60)

and recalling that 𝛷(𝑚, 𝑡1)1 = 𝛷(𝑚, 𝑡2)1 = 𝑐(𝑚)1 and summing we obtain

𝛷(𝑠2, 𝑡2)1 − 𝛷(𝑠1, 𝑡1)1 ≥ 1
4(𝑠2 − 𝑠1) . (61)

We will call tubular coordinates around 𝑐 the formula (52)
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3.5.1 Counterexample

The hypothesis “𝑐 ∈ 𝐶2” in the previous proposition may be broadened to “𝑐 ∈ 𝐶1,1”; but the results
fails if we only assume that “𝑐 ∈ 𝐶1,𝛼” with 𝛼 ∈ (0, 1), as seen in this example (adapted from [1])

Example 6. Let 0 < 𝛼 < 1 and 𝑐(𝜃) = (𝜃, |𝜃|1+𝛼); then for 𝜃 > 0

𝑐(𝜃) + 𝑎𝑁(𝜃) = (𝜃 − 𝑎(𝛼 + 1)𝜃𝛼

√(𝛼 + 1)2𝜃2𝛼 + 1
, 𝑎

√(𝛼 + 1)2𝜃2𝛼 + 1
+ 𝜃𝛼+1) (62)

and this meets the 𝑦 axes for

𝑎 = ̃𝑎(𝜃) = 𝜃1−𝛼√(𝛼 + 1)2𝜃2𝛼 + 1
𝛼 + 1 (63)

so, by symmetry,
𝑐(𝜃) + ̃𝑎(𝜃)𝑁(𝜃) = 𝑐(−𝜃) + ̃𝑎(−𝜃)𝑁(−𝜃) (64)

and at the same time
lim
𝜃→0

̃𝑎(𝜃) = 0 . (65)

3.5.2 Nearby points

Suppose 𝑐 ∶ 𝑆1 → ℝ2 is a 𝐶2 immersed curve. Let 0 < 𝜏 ≤ 𝜏𝑐 and 𝑉𝜏 = 𝑆1 × [−𝜏, 𝜏]. and

𝛷 ∶ 𝑉𝜏 → ℝ2 , 𝛷(𝑠, 𝑡) = 𝑐(𝑠) + 𝑡𝑁(𝑠) (66)

and 𝑈𝜏 = 𝛷(𝑉𝜏).
Proposition 8. 𝑈𝜏 is also the set of points at distance at most 𝜏 from the trace 𝑐(𝑆1).
Proof. Let 𝐾 = 𝑐(𝑆1) be the trace of the curve (it is a compact subset of ℝ2). We use the distance
function 𝑑𝐾 ∶ ℝ2 → ℝ defined as

𝑑𝐾(𝑥) ∶= inf
𝑦∈𝐾

|𝑥 − 𝑦| (67)

(for an introduction to this object, see [14] and references therein).
Let 𝑥 ∈ 𝑈𝜏 , there is a 𝜃, 𝑡 ∈ 𝑉𝜏 such that

𝑥 = 𝑐(𝜃) + 𝑡𝑁(𝜃) (68)

so
|𝑥 − 𝑐(𝜃)| ≤ |𝑡| ≤ 𝜏 ; (69)

then let ̃𝜃 be a minimum for
|𝑥 − 𝑐(𝜃)| (70)

so clearly
𝑑𝐾(𝑥) = |𝑥 − 𝑐( ̃𝜃)| ≤ 𝜏 . (71)

Vice versa if 𝑑𝐾(𝑥) ≤ 𝜏 let ̃𝜃 be a minimum as above, then geometrical considerations tell that the
segment from 𝑥 to 𝑐( ̃𝜃) is orthogonal to the tangent 𝑇 ( ̃𝜃) at 𝑐( ̃𝜃).

As a corollary of Prop. 7, for any such neighborhood of the image of 𝑐, the “projection to 𝑐” is a 𝐶1

multi valued map (with finitely many projections in 𝑆1).
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Figure 6: Figure for example in Sec. 3.6; the curve 𝑐 is blue and the curve ̃𝑐 is red.

3.6 Not a covering map
By looking at the previous Prop. 7 we may think that 𝛷 is the universal covering map of 𝑈 = 𝛷(𝑉 ) (see
[17] for the definition). This would be very convenient, indeed we could use the lifting lemma to ease
some of the following proofs.

Suppose ̃𝑐, 𝑐 ∶ 𝑆1 → ℝ2 are 𝐶2 immersed curves. Consider this statement, that is usually called lifting
lemma:
«if the trace of ̃𝑐 is contained in 𝑈𝜏 then there is a choice of continuous 𝜑 ∶ ℝ → ℝ, 𝑎 ∶ ℝ → [−𝜏, 𝜏] such
that

∀𝜃 , ̃𝑐(𝜃) = 𝛷(𝜑(𝜃), 𝑎(𝜃)) = 𝑐(𝜑(𝜃)) + 𝑎(𝜃)𝑁(𝜑(𝜃)) .» (72)

Unfortunately this is not the case, as seen in this example in Figure 6, where the curve 𝑐 is blue and
the curve ̃𝑐 is red. The trace of the curve ̃𝑐 is all contained in the open set 𝑈𝜏𝑐

, but the representation
(72) cannot hold. We can though prove a version of the lifting lemma useful in the following.

3.7 Neighborhoods
3.7.1 Nearby projection

Lemma 5 (Nearby projection). Fix a 𝐶𝑅 immersed curve 𝑐, with 𝑅 ≥ 2.

1. If 𝑥 ∈ ℝ2 and �̃� ∈ 𝑆1 and
𝑑 def= |𝑥 − 𝑐(�̃�)| < 𝛿𝑐/4 (73)

then there is an 𝑎 ∈ ℝ with |𝑎| ≤ 𝑑 and a 𝜎 ∈ 𝑆1 with

len 𝑐 [𝜎,�̃�] ≤ 4𝑑 (74)

such that
𝑥 = 𝑐(𝜎) + 𝑎𝑁(𝜎) . (75)

(Note also that 𝑎 is uniquely identified by 𝜎).

2. They are unique in the family of 𝜎, 𝑎 such that |𝑎| ≤ 𝜏𝑐 and

len 𝑐 [𝜎,�̃�] ≤ 𝛿𝑐 (76)

so we can see 𝜎, 𝑎 as functions of 𝑥, as follows.

3. Consider ̃𝑥 ∈ ℝ2 and �̃� ∈ 𝑆1 for which

𝑑 def= | ̃𝑥 − 𝑐(�̃�)| ≤ 𝜏𝑐/2 ; (77)

let 𝜀 > 0 small such that 𝑑 + 𝜀 < 𝛿𝑐/4 and let 𝐵 = 𝐵( ̃𝑥, 𝜀) def= {𝑥 ∈ ℝ2 ∶ |𝑥 − ̃𝑥| < 𝜀} for convenience.
There is a choice of function 𝑎, 𝜑 ∶ 𝐵 → ℝ of class 𝐶𝑅−1 such that

𝑥 = 𝛷(𝜑(𝑥), 𝑎(𝑥)) = 𝑐(𝜑(𝑥)) + 𝑎(𝑥)𝑁(𝜑(𝑥)) . (78)

for all 𝑥 ∈ 𝐵, and they are unique as specified above.
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(Note that 𝜏𝑐/2 < 𝛿𝑐/4 < 𝜏𝑐).

Proof. Suppose 𝑐 is by arc parameter (with no loss of generality as explained in Remark 8); so we write
(recalling (32)) |𝑎 − 𝑏| instead of len 𝑐 [𝑎,𝑏].

• Choose 𝑥, �̃� as in the statement and let 𝐽�̃� = [�̃� − 𝛿𝑐, �̃� + 𝛿𝑐] then consider any minimum point ̂𝜃
of

min
𝜃∈𝐽�̃�

|𝑥 − 𝑐(𝜃)| ; (79)

note that the minimum value has to be less than 𝑑: so

|𝑐(�̃�) − 𝑐( ̂𝜃)| ≤ |𝑐(�̃�) − 𝑥| + |𝑥 − 𝑐( ̂𝜃)| ≤ 2𝑑 (80)

but at the same time (since �̃� and ̂𝜃 are at arc distance at most 𝛿𝑐) by the previous Prop. 6

|𝑐(�̃�) − 𝑐( ̂𝜃)| ≥ 1
2 | ̂𝜃 − �̃�| (81)

so combining the two
4𝑑 ≥ | ̂𝜃 − �̃�| (82)

but 4𝑑 < 𝛿𝑐 so ̂𝜃 is not at extremes. Then any ̂𝜃 providing the minimum must be internal in the
interval 𝐽�̃�: by geometrical reasoning the segment from 𝑥 to 𝑐( ̂𝜃) is orthogonal to the curve so there
is a 𝑎 such that

𝑥 = 𝛷( ̂𝜃, 𝑎) (83)

• Recall that 𝛿𝑐/4 ≤ 𝜏𝑐; the map 𝛷 is injective for 𝜃 ∈ 𝐽�̃� and |𝑎| ≤ 𝜏𝑐 so ̂𝜃, 𝑎 are unique.

• For any 𝑥 ∈ 𝐵 we have
|𝑥 − 𝑐(�̃�)| < 𝑑 + 𝜀 (84)

and since 𝑑 + 𝜀 < 𝛿𝑐/4 then there is an unique 𝜎 ∈ 𝐽�̃� and 𝑎 with |𝑎| ≤ 𝜏𝑐 such that

𝑥 = 𝑐(𝜎) + 𝑎𝑁(𝜎) . (85)

and we denote them by 𝜎 = 𝜑(𝑥), 𝑎 = 𝑎(𝑥). Moreover we can invert the function

𝛷 ∶ 𝐽�̃� × [−𝜏𝑐, 𝜏𝑐] → ℝ2 (86)

and write
(𝜑(𝑥), 𝑎(𝑥)) = 𝛷−1(𝑥) (87)

for 𝑥 ∈ 𝐵. This proves that 𝜑, 𝑎 ∈ 𝐶1(𝐵).

3.7.2 Global lifting

Proposition 9 (Global Lifting). Suppose 𝑐 ∶ 𝑆1 → ℝ2 is a 𝐶𝑅 immersed curve and ̃𝑐 ∶ 𝑆1 → ℝ2 is
𝐶𝑅−1; with 𝑅 ≥ 2. Fix 0 < 𝜏 < 𝛿𝑐/4. Suppose that we have | ̃𝑐(𝜃) − 𝑐(𝜃)| ≤ 𝜏 for all 𝜃. There exists
choice of 𝑎 ∶ 𝑆1 → ℝ and 𝜑 ∶ 𝑆1 → 𝑆1 such that

∀𝜎 ∈ 𝑆1 , ̃𝑐(𝜎) = 𝛷(𝜑(𝜎), 𝑎(𝜎)) = 𝑐(𝜑(𝜎)) + 𝑎(𝜎)𝑁𝑐(𝜑(𝜎)) . (88)

with |𝑎(𝜎)| ≤ 𝜏 and
len 𝑐 [𝜎,𝜑(𝜎)] ≤ 4𝜏 (89)

holding for all 𝜎. And they are unique in the class of 𝐶𝑅−1 functions such that |𝑎| ≤ 𝜏𝑐 and

len 𝑐 [𝜎,𝜑(𝜎)] ≤ 𝛿𝑐 (90)

(Note also that 𝑎 is uniquely identified by 𝜑).
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Figure 7: Curves in Example 7; the curve 𝑐 is blue and the curve ̃𝑐 is red.

Proof. We just substitute 𝑥 = ̃𝑐(𝜎) in the previous Lemma. By the second point we can define functions
𝜑(𝜃), 𝑎(𝜃) uniquely as prescribed. By the third point they are 𝐶1.

Remark 10. Suppose we are given two curves 𝑐1, 𝑐2 and we know that there exists a choice (𝑎, 𝜑) such
that

∀𝜎 ∈ 𝑆1 , 𝑐2(𝜎) = 𝑐1(𝜑(𝜎)) + 𝑎(𝜎)𝑁𝑐1
(𝜑(𝜎)) (91)

as in equation (88). If we rotate or translate the two curves, then the above relation will hold, with the
same (𝑎, 𝜑). If we rescale the two curves by 𝜆 > 0 then the relation will hold with (𝜆𝑎, 𝜑).

If we choose 𝜓 ∈ Diff+(𝑆1) and we reparameterize all curves at the same time by ̃𝑐𝑖 = 𝑐𝑖 ∘ 𝜓, then

∀𝑠 ∈ 𝑆1 , ̃𝑐2(𝑠) = ̃𝑐1(�̃�(𝑠)) + ̃𝑎(𝑠)𝑁 ̃𝑐1
(�̃�(𝑠)) , (92)

holds for
̃𝑎 = 𝑎 ∘ 𝜓 , �̃� = 𝜓−1 ∘ 𝜑 ∘ 𝜓 . (93)

This follows from direct computation and Remark 5.

Example 7. So far so good ... but 𝜑 may fail to be a diffeomorphism, as in this simple example in
Figure 7, where the curve 𝑐 is blue and the curve ̃𝑐 is red.

But some simple Lemmas can help.

Lemma 6. Let 0 < 𝛼 < 1. If we have 𝑤, 𝑣 ∈ ℝ𝑛 such that

|𝑤 − 𝑣| ≤ 𝛼|𝑣| (94)

then the angle 𝛽 between 𝑣 and 𝑤 satisfies |𝛽| ≤ arcsin(𝛼) and moreover

(1 − 𝛼)|𝑣| ≤ 𝑣 ⋅ 𝑤 ≤ (1 + 𝛼)|𝑣| , (1 − 𝛼)|𝑣| ≤ |𝑤| ≤ (1 + 𝛼)|𝑣| . (95)

See Figure 8 on the following page.

Remark 11. Let 𝛼 > 0. Suppose 𝑐1, 𝑐2, 𝑐3 ∶ 𝑆1 → ℝ2 are 𝐶1 maps and

|𝑐′
2(𝜃) − 𝑐′

3(𝜃)| ≤ 𝛼|𝑐′
1(𝜃)| (96)

if 𝜓 ∈ Diff+(𝑆1) and we reparameterize all curves at the same time by ̃𝑐𝑖 = 𝑐𝑖 ∘ 𝜓, then

| ̃𝑐′
2(𝜃) − ̃𝑐′

3(𝜃)| ≤ 𝛼| ̃𝑐′
3(𝜃)| . (97)

Similarly if we rescale, rotate, or translate all curves at the same time.

So (96) is a geometric estimate, indeed we may rewrite it as

|𝜕𝑐1
𝑐2(𝜃) − 𝜕𝑐1

𝑐3(𝜃)| ≤ 𝛼 . (98)

where 𝜕𝑐1
= 1

|𝑐′
1|

𝜕
𝜕𝜃 .
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Figure 8: Scheme for Lemma 6 on the previous page.

Lemma 7. Assume all hypotheses in Prop. 9. Assume moreover that 𝜏 ≤ 𝜏𝑐/4, and assume that

| ̃𝑐′(𝜎) − 𝑐′(𝜎)| ≤ 1
2 |𝑐′(𝜎)| ∀𝜎 ∈ 𝑆1 (99)

then ̃𝑐 is immersed, 𝜑 is a diffeomorphism. Moreover when 𝑐 is parameterized at constant speed, we can
state that 1

5 ≤ 𝜑′ ≤ 4 . (100)

Proof. We rescale and reparameterize 𝑐 to arc parameter using a reparameterization 𝜓, and at the same
time we rescale and reparameterize ̃𝑐 using the same rescaling and 𝜓 (note that ̃𝑐 is not necessarily by
arc parameter); with no loss in generality, as explained in Remarks 11 and 10.

Let 𝛽 be the angle between ̃𝑐′(𝜎) and 𝑐′(𝜎): by Lemma 6 𝛽 = arcsin(𝛼) so it is at most 𝜋/6. Let
𝜃 = 𝜑(𝜎) we know that |𝜎 − 𝜃| ≤ 4𝜏 ≤ 𝜏𝑐; the angle 𝛾 between 𝑐′(𝜎) and 𝑐′(𝜃) is at most |𝜎 − 𝜃| max |𝑘|
so 𝛾 ≤ 1/2: so the angle 𝛽 + 𝛾 between ̃𝑐′(𝜎) and ̃𝑐′(𝜑(𝜎)) is at most 1/2 + 𝜋/6, and this is less than
𝜋/2.

Deriving in 𝜎 and assuming that 𝑐 is by arc parameter

̃𝑐′(𝜎) = 𝑇 𝜑′(𝜎)(1 − 𝜅𝑎) + 𝑎′𝑁 (101)

where 𝑇 , 𝑁, 𝜅 are evaluated at (𝜑(𝜎)); then

̃𝑐′ ⋅ 𝑇 = 𝜑′(𝜎)(1 − 𝜅𝑎) (102)

now if |𝑎| ≤ 𝜏𝑐 then (1 − 𝜅𝑎) ≥ 1/2; moreover by the above reasoning ̃𝑐′ ⋅ 𝑇 > 0 so 𝜑′(𝜎) > 0. Moreover
we note that 1/2 ≤ | ̃𝑐′| ≤ 3/2, 1/2 ≤ (1 − 𝜅𝑎) ≤ 3/2 and cos(1/2 + 𝜋/6) ≤ 6/10 to prove (100). Relation
(93) tells then that 𝜑 will always be a diffeomorphism, for any curve satisfying the hypotheses.

We summarize all the above: we show sufficient hypothesis such that ̃𝑐 may be represented in tubular
coordinates around 𝑐.

Theorem 3 (Representation Theorem). Suppose 𝑐 ∶ 𝑆1 → ℝ2 is a 𝐶𝑅 immersed curve and ̃𝑐 ∶ 𝑆1 → ℝ2

is 𝐶𝑅−1; with 𝑅 ≥ 2. Define 𝛿𝑐, 𝜏𝑐 as in Definition 17. Fix 0 < 𝜏 ≤ 𝜏𝑐/4. Suppose that we have
| ̃𝑐(𝜃) − 𝑐(𝜃)| ≤ 𝜏 and

| ̃𝑐′(𝜃) − 𝑐′(𝜃)| ≤ |𝑐′(𝜃)|/2 (103)

for all 𝜃.
Then ̃𝑐 is immersed, there are 𝜑 ∈ Diff+(𝑆1) and 𝑎 ∶ 𝑆1 → [−𝜏, 𝜏] of class 𝐶𝑅−1 such that

∀𝜃 , ̃𝑐(𝜑(𝜃)) = 𝛷(𝜃, 𝑎(𝜃)) = 𝑐(𝜃) + 𝑎(𝜃)𝑁(𝜃) (104)
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A B

Figure 9: Curves for the example in Sec. 3.7.3; the curve 𝑐 is blue and the curve ̃𝑐 is red.

with |𝑎(𝜎)| ≤ 𝜏 and
len 𝑐 [𝜎,𝜑(𝜎)] ≤ 4𝜏 (105)

holding for all 𝜎.
They are unique in the class of 𝐶1 functions such that |𝑎| ≤ 𝜏𝑐 and

len 𝑐 [𝜃,𝜑(𝜃)] ≤ 𝛿𝑐 (106)

(Note also that 𝑎 is uniquely identified by 𝜑).

Proof. We can rescale and reparameterize 𝑐 to arc parameter, and we rescale and reparameterize ̃𝑐 at
the same time ( ̃𝑐 will not be by arc parameter in general); as discussed in Remarks 8, 10 and 11, the
hypotheses and theses are unaffected by this action. Then we apply all previous results. Just note that

max
𝜃∈𝑆1

|𝜃 − 𝜑(𝜃)| = max
𝜃∈𝑆1

|𝜃 − 𝜑−1(𝜃)| (107)

for any diffeomorphism.

Remark 12. Actually, rerunning on the above proofs with some patience, we can improve the above
thesis a bit. We add to the previous theorem these hypotheses: fix 0 < 𝛼 ≤ 1/2 and then 0 < 𝜏 ≤ 𝛼𝜏𝑐/2
and suppose that we have | ̃𝑐(𝜃) − 𝑐(𝜃)| ≤ 𝜏 and

| ̃𝑐′(𝜃) − 𝑐′(𝜃)| ≤ 𝛼|𝑐′(𝜃)|/2 (108)

for all 𝜃.
Then all above thesis hold, moreover there are two continuous functions 𝑓, 𝑔 ∶ [0, ∞] → ℝ (independent

on 𝛼, 𝜏) with 𝑓(0) = 𝑔(0) = 1, such that

𝑓(𝛼) ≤ 𝜑′ ≤ 𝑔(𝛼) . (109)

3.7.3 Asymmetry

Warning. The previous theorem seems symmetric, but it is not. The caveat is in the constants 𝜏𝑐, 𝛿𝑐:
it may be the case that they are quite different from 𝜏 ̃𝑐, 𝛿 ̃𝑐. In the Figure 9, we see a piece of the two
curves: the curve 𝑐 is blue and is flat; the curve ̃𝑐 is red, and it has two inflections points 𝐴, 𝐵 where
the tangents are at an angle 𝛽 which is as small as we would like; but then the inflection points can also
be so close that the normals will cross before reaching the curve 𝑐. So, while there is an easy way of
representing ̃𝑐 using tubular coordinates around 𝑐, there is no way to find �̃� ∈ Diff(𝑆1), ̃𝑎 so as to write

𝑐(𝜑(𝜃)) = ̃𝑐(𝜃) + ̃𝑎(𝜃) ̃𝑁(𝜃) . (110)

3.7.4 Vice versa

We have also a sort of vice versa of the previous Theorem 3.

Proposition 10 (Derepresentation). Suppose 𝑐 ∶ 𝑆1 → ℝ2 is a 𝐶2 immersed curve and 𝑐1, 𝑐2 ∶ 𝑆1 → ℝ2

are given by tubular coordinates

𝑐𝑖(𝜃) = 𝛷(𝜃, 𝑎𝑖(𝜃)) = 𝑐(𝜃) + 𝑎𝑖(𝜃)𝑁(𝜃) (111)
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where 𝑖 = 1, 2 and 𝑎1, 𝑎2 ∶ 𝑆1 → ℝ are of class 𝐶1; define

𝛼 def= ‖𝑎1 − 𝑎2‖∞ max |𝜅| , 𝛽 def= ∥𝜕
𝜕𝑐 𝑎1 − 𝜕

𝜕𝑐 𝑎2∥
∞

(112)

(where 𝜅 is the curvature of 𝑐). Then

|𝑐′
1(𝜃) − 𝑐′

2(𝜃)| ≤ |𝑐′(𝜃)|√(𝛼2 + 𝛽2) (113)

and (obviously) ‖𝑐1 − 𝑐2‖∞ = 2𝛼𝜏𝑐, for all 𝜃.

Proof. We rescale and reparameterize 𝑐 by arc parameter, and we rescale and reparameterize 𝑐1, 𝑐2 along
with 𝑐, as explained in Remark 11; this operation is justified by Remarks 8, 10; in particular, note that
𝛼, 𝛽 are scale invariant; then

𝑐′
𝑖 = 𝑇 (1 − 𝜅𝑎𝑖) + 𝑎′

𝑖𝑁 (114)

so
𝑐′

1 − 𝑐′
2 = −𝑇 𝜅(𝑎1 − 𝑎2) + (𝑎′

1 − 𝑎′
2)𝑁 (115)

hence
|𝑐′

1 − 𝑐′
2| ≤ √𝛼2 + 𝛽2 . (116)

3.7.5 Loss of Regularity

Unfortunately the representation discussed above suffers from a loss of regularity. Indeed, if 𝑐 ∶ 𝑆1 → ℝ2

is 𝐶2 and 𝑎 ∶ 𝑆1 → ℝ is 𝐶∞, it may be the case that

̃𝑐(𝜃) = 𝛷(𝜃, 𝑎(𝜃)) = 𝑐(𝜃) + 𝑎(𝜃)𝑁(𝜃) (117)

is of class 𝐶1 but not of class 𝐶2.
This can be seen in very simple examples.

Example 8. Suppose that, for 𝑡 near 𝑡 = 0, we have

𝑐(𝑡) = {(𝑡, 0) 𝑡 < 0
(𝑡, 𝑡3/3) 𝑡 ≥ 0 (118)

such a curve is 𝐶2 but not 𝐶3; then for 𝑡 ≥ 0

𝑇 (𝑡) = 1√
1 + 𝑡4 (1, 𝑡2) , 𝑁(𝑡) = 1√

1 + 𝑡4 (−𝑡2, 1) , 𝜅 = 2𝑡
(1 + 𝑡4)3/2 (119)

(that can be easily computed using a standard formula for curvature of planar curves, see Sec. 1.7.1 in
[21]).

Choose then 𝑎 ≡ 1 so
̃𝑐(𝑡) = 𝑐(𝑡) + 𝑁(𝑡) (120)

but then
̃𝑐(𝑡)″ = 𝑐(𝑡)″ + 𝑁(𝑡)″ (121)

and for 𝑡 > 0

𝑁″(𝑡) = (2 (5𝑡4 − 1)
(𝑡4 + 1)5/2 , 6𝑡2 (𝑡4 − 1)

(𝑡4 + 1)5/2 ) (122)

so
lim

𝑡→0+
̃𝑐(𝑡)″ = (−2, 0) (123)

but ̃𝑐(𝑡)″ = 0 for 𝑡 < 0.
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3.7.6 Neighborhoods of a curve

The above results encode two different but equivalent ways to define a topology on the “manifold of
immersed curves”. We specify them by describing the local bases of neighborhoods of a curve 𝑐.

• The “Banach way” in which a local base of open neighborhoods of a curve 𝑐 is given by the sets

𝑈 = 𝑈𝑐,𝜀1
= { ̃𝑐 ∶ 𝑆1 → ℝ2 ∶ ‖𝑐 − ̃𝑐‖𝐶𝑅 < 𝜀1} (124)

where 𝜀1 > 0 is small, and

‖𝑐‖𝐶𝑅
def= max

𝜃∈𝑆1
|𝑐(𝜃)| + |𝑐′(𝜃)| + … + |𝑐(𝑅)| . (125)

• The “geometric way” in which a neighborhood in the local base is defined, for 𝜀2 > 0 small, as the
set 𝑉 = 𝑉𝑐,𝜀2

of all ̃𝑐 that can be expressed as in (88), namely

̃𝑐(𝜎) = 𝛷(𝜑(𝜎), 𝑎(𝜎)) = 𝑐(𝜑(𝜎)) + 𝑎(𝜎)𝑁(𝜑(𝜎)) (126)

for all choices of 𝑎 ∶ 𝑆1 → ℝ and 𝜙 ∈ Diff(𝑆1) with

‖𝑎‖𝐶𝑅 < 𝜀2 , ‖𝜑 − Id‖𝐶𝑅 < 𝜀2 , (127)

where
‖𝜑 − Id‖𝐶𝑅 = max

𝜃∈𝑆1
𝑑𝑆1(𝜑(𝜃), 𝜃) + |𝜑′(𝜃) − 1| + … + |𝜑(𝑅)(𝜃)| (128)

(moreover derivatives of 𝑎 may be computed in arc-parameter).

The above are “equivalent” in this sense. Assume that the curve 𝑐 is 𝐶𝑅+1.

• For any 𝜀1 that defines neighborhood 𝑈 of the first type, there is small enough 𝜀2 that defines a
neighborhood 𝑉 of the second type, so that 𝑉 ⊆ 𝑈 ; this is easily proved (by using Leibnitz and
Faa di Bruno formulas).

• Consider now a neighborhood 𝑉 of the second type, for an 𝜀2 > 0 small; for 𝜀1 small enough the
previous results Theorem 3 and Remark 12 tells us that any curve ̃𝑐 ∈ 𝑈 can be expressed in
tubular coordinates; since tubular coordinates are a local diffeomorphism, similar arguments as
above (plus Theorem 2) show that (for 𝜀1 even smaller) 𝑈 ⊆ 𝑉 .

(We skip details for sake of brevity.)
In all the above there is though an annoying condition: to prove equivalence of 𝐶𝑅 neighborhoods

we have to assume that the curve 𝑐 is 𝐶𝑅+1. For this reason, this works well for defining topologies in
the “manifold of smooth immersed curves”; in this case we will use neighborhoods of the first kind (or,
respectively, of the second kind) for all 𝜀 > 0 and all 𝑅. This is the common approach, see [12].

3.7.7 Local injectivity

So far, we have considered parametric curves. We have seen in Theorem 3 that we can represent nearby
curves in an unique way using tubular coordinates, i.e. the map 𝛷.
What happens when we consider geometric curves, that is, curves up to parameterization?

Lemma 8 (Local injectivity). Let 𝑐 be a 𝐶2 freely immersed planar curve. There exists a 𝑟 = 𝑟𝑐 > 0
such that, if

̃𝑐(𝑠) def= 𝑐(𝑠) + 𝑎(𝑠)𝑁(𝑠) (129)
and

̃𝑐(𝜑(𝑠)) = 𝑐(𝑠) + 𝑏(𝑠)𝑁(𝑠)
with

‖𝑎‖∞ ≤ 𝑟 , ‖𝑏‖∞ ≤ 𝑟 , ∥𝜕𝑎
𝜕𝑐 ∥

∞
≤ 1/2 , ∥𝜕𝑏

𝜕𝑐 ∥
∞

≤ 1/2 (130)

where 𝜕
𝜕𝑐 is the arc derivation: then 𝑎 ≡ 𝑏 and 𝜑 is the identity.
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Proof. If rescale the curves 𝑐, ̃𝑐 and the functions 𝑎, 𝑏 by a constant 𝜆 > 0, and we rescale the constant
𝑟𝑐 by the same constant 𝜆, then all hypotheses and theses are unaffected. So we can assume with no loss
of generality that 𝑐 has length 2𝜋.

If we reparameterize ̂𝑐 = 𝑐 ∘ 𝜓 then (cf the relation (93) in Remark 10) the functions 𝑎, 𝑏 are
reparameterized as well; having ̂𝑎 = 𝑎 ∘ 𝜓 then 𝜕�̂�

𝜕 ̂𝑐 = 𝜕𝑎
𝜕𝑐 ∘ 𝜓; and similarly for 𝑏; again hypotheses and

theses are unaffected.
So we can assume that 𝑐 is parameterized by arc parameter with no loss of generality.
Suppose that

̃𝑐(𝜃) = 𝑐(𝑠) + 𝑎(𝑠)𝑁(𝑠) (131)

with |𝑎| ≤ 𝜏𝑐 and |𝑎′| ≤ 1/2 then
̃𝑐′ = 𝑇 (1 − 𝜅𝑎) + 𝑎′𝑁 (132)

so

1/2 ≤ | ̃𝑐′| ≤ √9
4 + 1

4 ≤ 2 (133)

Suppose moreover
̃𝑐(𝜑(𝜃)) = 𝑐(𝑠) + 𝑏(𝑠)𝑁(𝑠) (134)

with |𝑏′| ≤ 1/2 then
1/2 ≤ | ̃𝑐′|𝜑′ ≤ 2 (135)

and then
1/4 ≤ 𝜑′ ≤ 4 (136)

By contradiction we may write

̃𝑐𝑛(𝜃) = 𝑐(𝑠) + 𝑎𝑛(𝑠)𝑁(𝑠) , ̃𝑐𝑛(𝜑𝑛(𝑠)) = 𝑐(𝑠) + 𝑏𝑛(𝑠)𝑁(𝑠) (137)

with
‖𝑎𝑛‖∞ ≤ 1/𝑛 , ‖𝑏𝑛‖∞ ≤ 1/𝑛 , ‖𝑎′

𝑛‖∞ ≤ 1/2 , ‖𝑏′
𝑛‖∞ ≤ 1/2 (138)

where 𝜑𝑛 is not the identity: then, when 1/𝑛 < 𝜏𝑐/4, the uniqueness condition (90) is contradicted so
there is a 𝜎𝑛 such that

len 𝑐𝑛 [𝜎𝑛,𝜑𝑛(𝜎𝑛)] ≥ 𝛿𝑐 (139)

so using Thm. 2
lim inf
𝑛→∞

𝑑𝑆1(𝜑−1
𝑛 (𝜃𝑛), 𝜃𝑛) > 0 . (140)

Up to a subsequence we can assume that 𝜃𝑛 → ̃𝜃 and

lim
𝑛→∞

𝑑𝑆1(𝜑−1
𝑛 (𝜃𝑛), 𝜃𝑛) = ̃𝑑 > 0 . (141)

We know that
1/4 ≤ 𝜑′

𝑛 ≤ 4 ∶ (142)

up to a subsequence 𝜑𝑛 → 𝜑 uniformly and 𝜑−1
𝑛 → 𝜑−1 uniformly, where 𝜑 is a bi-Lip homeomorphism.

Then ̃𝑐𝑛 → 𝑐 uniformly, and passing to the limit

𝑐 = 𝑐 ∘ 𝜑 (143)

so 𝜑 is a diffeomorphism. Moreover
𝑑𝑆1(𝜑−1( ̃𝜃), ̃𝜃) = ̃𝑑 (144)

so 𝜑 cannot be the identity, hence 𝑐 is not freely immersed.
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3.7.8 Auto representation

(This section may be skipped on a first read, since it is not needed in the following.) The above result is
very important, but the proof gives no hint on what is going on. To this end, we drop the requirement
that the curve be freely immersed, and look at an easy question. Is it possible for a curve to represent
itself locally?

Lemma 9. Let 𝑐 be a 𝐶2 immersed planar curve. There are only finitely many ways in which the curve
can represent itself geometrically, that is, finitely many choices 𝑎, 𝜙

𝑐(𝑠) + 𝑎(𝑠)𝑁(𝑠) = 𝑐(𝜙(𝑠)) (145)

with 𝜙 ∈ Diff(𝑆1) and 𝑎 ∶ 𝑆1 → ℝ continuous with ‖𝑎‖∞ ≤ 𝜏𝑐/2. In particular there is a 𝜌𝑐 > 0 such
that, if ‖𝑎‖∞ ≤ 𝜌𝑐 then 𝑎 ≡ 0.

In particular if 𝑐 is freely immersed then ‖𝑎‖∞ ≤ 𝜌𝑐 implies 𝑎 ≡ 0 and 𝜙 ≡Id.

Proof. Define 𝛿𝑐, 𝜏𝑐 as in Definition 17 (see also Prop. 7). Let 𝛷(𝑠, 𝑡) = 𝑐(𝑠)+𝑡𝑁(𝑠). Consider the family
𝑃 of all the pairs 𝑎, 𝜑 with ‖𝑎‖∞ ≤ 𝜏𝑐/2 and 𝑎 ≢ 0 and

𝛷(𝑠, 𝑎(𝑠)) = 𝑐(𝑠) + 𝑎(𝑠)𝑁(𝑠) = 𝑐(𝜑(𝑠)) (146)

we will prove that there are only finitely many such pairs.
Hence we will let 𝜌𝑐 be smaller than the minimum of ‖𝑎‖∞ for all such pairs:

𝜌𝑐 = 1
2 min

(𝑎,𝜑)∈𝑃
‖𝑎‖∞ . (147)

In the example in Figure 10 on the following page there are 3 pairs in 𝑃 .
We have some very strong properties.

• If (𝑎1, 𝜑1), (𝑎2, 𝜑2) ∈ 𝑃 and there is a ̃𝑠 ∈ 𝑆1 s.t. 𝜑1( ̃𝑠) = 𝜑2( ̃𝑠) then 𝜑1 ≡ 𝜑2 and 𝑎1 ≡ 𝑎2. Indeed
there is a small interval 𝐽 containing ̃𝑠 where we can invert the map 𝛷 and

(𝑠, 𝑎𝑖(𝑠)) = 𝛷−1(𝑐(𝜑𝑖(𝑠))) (148)

that is, the first component of 𝛷−1 ∘ 𝑐 is 𝜑−1
𝑖 , so 𝜑1 ≡ 𝜑2 in 𝐽 ; so the set {𝑠 ∈ 𝑆1 ∶ 𝜑1(𝑠) = 𝜑2(𝑠)}

is both open and closed. The previous argument also proves that 𝑎1 ≡ 𝑎2.

• Figure 11 on the next page can be used as a visual guide in the following proof.
Let 𝐼0 ⊂ 𝑆1 be an open interval such that the length of 𝑐 𝐼0

is less than 𝛿𝑐 and more than 𝛿𝑐/2.
As noted in Remark 9, 𝛿𝑐 ≤ len(𝑐)/2. Let 𝑈0 be the image of 𝛷 for 𝑠 ∈ 𝐼0 and |𝑡| < 𝜏𝑐. Choose
(𝑎𝑖, 𝜑𝑖) ∈ 𝑃 with 𝑖 ∈ 1, 2, let

𝐼𝑖 = 𝜑𝑖(𝐼0) (149)
we will prove that either 𝐼1 ∩ 𝐼2 = ∅, or 𝐼1 = 𝐼2, 𝜑1 ≡ 𝜑2, 𝑎1 ≡ 𝑎2. Assume that ̃𝑠 ∈ 𝐼1 ∩ 𝐼2, let
𝑠𝑖 = 𝜑−1

𝑖 ( ̃𝑠) then 𝑠1, 𝑠2 ∈ 𝐼0 so
𝑐(𝜑𝑖(𝑠𝑖)) = 𝑐( ̃𝑠) (150)

using the relation (146)

𝛷(𝑠𝑖, 𝑎𝑖(𝑠𝑖)) = 𝑐(𝑠𝑖) + 𝑎𝑖(𝑠𝑖)𝑁(𝑠) = 𝑐(𝜑𝑖(𝑠𝑖)) = 𝑐( ̃𝑠) ∈ 𝑈 (151)

and the fact that 𝛷 is a diffeomorphism for 𝑠 ∈ 𝐼0, |𝑡| < 𝜏𝑐 and 𝑐( ̃𝑠) ∈ 𝑈 we obtain that 𝑠1 = 𝑠2 = ̂𝑠
so 𝜑1( ̂𝑠) = 𝜑2( ̂𝑠) = ̃𝑠 hence by the previous point 𝜑1 ≡ 𝜑2, 𝑎1 ≡ 𝑎2.

• The differential of 𝛷 (computed using arc-length derivative) is

𝑇 (1 − 𝜅𝑡) 𝕕𝑠 + 𝑁 𝕕𝑡 (152)

so the smallest principal value is at least 1/2. We can estimate the length of 𝑐 for 𝑠 ∈ 𝐼𝑖 to be at
least 𝛿𝑐/4. Hence there can be only finitely many such intervals.

23



-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

 z/20 + z2/8 + z4

Figure 10: Example of curve with 3 pairs in 𝑃 .
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Figure 11: Helper scheme for proof of Lemma 9
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Figure 12: Curve in the Example in Section 9.

Example 9. The constants 𝜌𝑐 in Lemma 9 and 𝑟𝑐 in Lemma 8 though cannot be estimated apriori by
using differential quantities such as max |𝜅|. These constants may arbitrarily smaller than the quantity
𝜏𝑐 (defined in Definition 17) that provides the width of the tubular neighborhood (Prop. 7). They really
depend on how the curve is drawn.

This is seen in simple examples such as this:

• 𝑐(𝑧) = 𝜀𝑧 + 𝑧2 for 𝑧 ∈ 𝑆1 ⊂ ℂ, or equivalently 𝑐(𝜃) = (𝜀 cos(𝜃) + cos(2𝜃) , 𝜀 sin(𝜃) + sin(2𝜃)) for
𝜃 ∈ ℝ/(2𝜋) ∼ 𝑆1.

that is a small 𝐶∞ perturbations of the doubly traversed circle 𝑐2 seen in Example 1; see Fig. 12. This
curve is freely immersed, but it is quite near to the doubly traversed circle that is not freely immersed.
For 𝜀 small the curvature 𝜅𝑐 of 𝑐 is approximatively 1 so 𝜏𝑐 ∼ 1/2, and

|𝑐2(𝜃) − 𝑐(𝜃)| = 𝜀 (153)

while
|𝑐′| ∼ 2 ± 𝜀 , |𝑐′

2(𝜃) − 𝑐′(𝜃)| = 𝜀 (154)
hence

|𝑐′
2(𝜃) − 𝑐′(𝜃)| ∼ 𝜀

2 |𝑐′(𝜃)| (155)

so we can use Thm. 3 to express
𝑐2(𝜃) = 𝑐(𝜃) + 𝑎(𝜃)𝑁(𝜃) (156)

using tubular coordinates when 𝜀 < 1/8, with 𝑎 ∼ 𝜀: so 𝑟𝑐
∼
≤ 𝜀; similarly we can represent 𝑐(𝜃 + 𝜋) using

𝑐, so we have 𝜌𝑐
∼
≤ 𝜀.

3.8 Free immersions are open
We have thus come to a fundamental result.

Theorem 4. Free immersions are an open subset of immersions.

We can detail and prove this fact in two ways.
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• We can see it as a corollary of Lemma 8. Consider a neighborhoods 𝑉 defined using the tubular coor-
dinates; precisely, define 𝑉 as in the second definition in Sec. 3.7.6, choosing 𝜀2 < min{𝑟𝑐, 1/2, 𝜏𝑐/4}
and 𝑅 = 2; knowing that ̃𝑐(𝑠) ≡ ̃𝑐(𝜑(𝑠)) we could choose 𝑎 ≡ 𝑏 but then by Lemma 8 𝜑 would be
the identity. So each and any curve in 𝑉 is freely immersed.
As discussed in Sec. 3.7.6, this proves the result in the manifold of smooth immersed curves, where
the above neighborhoods define a topology.

• If we instead want to prove this for the standard Banach 𝐶2 topology (first definition in Sec. 3.7.6)
we can proceed as follows. Suppose that 𝑐𝑛 is a sequence of immersed curves that are not free;
and suppose that 𝑐𝑛 → 𝑐 in 𝐶2. We may rescale and reparametrize all the curves so that all have
length 2𝜋 and |𝑐′

𝑛| ≡ 1, and still 𝑐𝑛 → 𝑐 in 𝐶2; we skip the details (see Theorem 7 in [20]); these
assumptions simplify the following arguments. Let 𝜙𝑛 be a sequence such that 𝑐𝑛 = 𝑐𝑛 ∘ 𝜙𝑛 and 𝜙𝑛
is not the identity; as above we know that 𝜙′

𝑛 ≡ 1 and we may choose 𝜙𝑛 to be a generator of the
isotropy group, so that 𝜙𝑛(𝑡) = 𝑡 + (2𝜋)/𝑗𝑛; we know that 𝑗𝑛 is bounded by 4 times the curvature,
so up to a subsequence 𝑗𝑛 is constant, let’s call it 𝑗, and then 𝜙𝑛 = 𝜙 with 𝜙(𝑡) = 𝑡 + (2𝜋)/𝑗; and
passing to the limits 𝑐 ∘ 𝜙 = 𝑐 so 𝑐 is not freely immersed.

Note that both proofs need a compactness argument; this seems unavoidable, since the size of the
neighborhood cannot be estimated by using differentiable quantities, as explained in Example. 9.

4 The manifold of free geometric curves
Definition 18 (Classes of Curves).

• Imm(𝑆1, ℝ𝑛) is the class of immersed curves 𝑐: curves such that 𝑐′ ≠ 0 at all points.

• Imm𝑓(𝑆1, ℝ𝑛) is the class of freely immersed curve, the immersed 𝑐 such that, moreover, if 𝜙 ∶
𝑆1 → 𝑆1 is a diffeomorphism and 𝑐(𝜙(𝑡)) = 𝑐(𝑡) for all 𝑡, then 𝜙 =Id.

• Emb(𝑆1, ℝ𝑛) are the embedded curves, maps 𝑐 that are diffeomorphic onto their image 𝑐(𝑆1); and
the image is an embedded submanifold of ℝ𝑛 of dimension 1.

Each class contains the one following it (this follows from the propositions seen in Sec. 2.3).

4.1 Proof of Theorem 1
Definition 19.

𝐵𝑖,𝑓(𝑆1, ℝ2) = Imm𝑓(𝑆1, ℝ2)/ Diff+(𝑆1) (157)

is the quotient of Imm𝑓(𝑆1, ℝ2) (free immersions) by the positive diffeomorphisms Diff+(𝑆1) (reparame-
terizations).

We now provide the complete proof of Theorem 1, namely that this 𝐵𝑖,𝑓 is a manifold, for the case
of smooth freely immersed planar curves; afterward we will show in Sec. 4.2 how and where the proof in
[5] misses some key arguments.

The following proof is for immersed curves 𝑐 ∶ 𝑆1 → ℝ2, in a forthcoming paper [15] we will explain
how it can be generalized to the case of immersions ℐ ∶ 𝑀 → 𝑁 .

4.1.1 Quotient topology

We discuss the topological aspect of theorem 1.
Let 𝜋 ∶ Imm𝑓 → 𝐵𝑖,𝑓 be the canonical projection of the quotient that defines 𝐵𝑖,𝑓 in (157).
The definition of the quotient topology is as follows. A set 𝒵 is open in 𝐵𝑖,𝑓 when the union of its

orbits
𝜋−1(𝒵) = {𝑐 ∈ Imm𝑓 ∶ [𝑐] ∈ 𝒵} = ⋃

[𝑐]∈𝒵
[𝑐] (158)

is open in Imm𝑓 , that is, it is open in 𝐶∞.
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We endow Imm𝑓 with the 𝐶∞ topology described earlier, and 𝐵𝑖,𝑓 with the induced quotient topology.
Now we want to describe a specific family of open neighborhoods that will be quite useful. Fix 𝑐1

smooth freely immersed. Let 𝜏 ≤ min{𝑟𝑐1
, 𝜏𝑐1

/4, 1/2}; where 𝑟𝑐 was defined in Lemma 8.

Proposition 11. Consider the set

𝒰𝑐1
= { ̃𝑐 ∈ Imm𝑓 ∶ | ̃𝑐 − 𝑐1| < 𝜏 , | ̃𝑐′ − 𝑐′

1| < |𝑐′
1|/3} (159)

this set is open in 𝐶∞(𝑆1 → ℝ2).
Proof. This is a simple case of the arguments of Sec. 3.7.6. Let 𝑚 = min |𝑐′

1|, let 𝑐2 ∈ 𝒰𝑐1
and

𝛼 = ‖𝑐2 − 𝑐1‖∞ , 𝛽 = ∥𝜕
𝜕𝑐1

𝑐2 − 𝜕
𝜕𝑐1

𝑐1∥
∞

(160)

we know that 𝛼 < 𝜏, 𝛽 < 1/3; if 𝑐3 is a smooth curve and satisfies

‖𝑐3 − 𝑐2‖∞ < (𝜏 − 𝛼) , ‖𝑐′
3 − 𝑐′

2‖∞ < (1/3 − 𝛽)𝑚 (161)

then by the results in the previous section 𝑐3 ∈ 𝒰𝑐1

By Theorem 4 all curves in 𝒰𝑐1
are freely immersed.

Now let us reparameterize all the curves in 𝒰𝑐1
and define

𝒲𝑐1
def= { ̃𝑐 ∘ 𝜑 ∶ | ̃𝑐 − 𝑐1| < 𝜏 , | ̃𝑐′ − 𝑐′

1| < |𝑐′
1|/3 , 𝜑 ∈ Diff+} (162)

since the above conditions are reparameterization invariant, then

𝒲𝑐1
= ⋃

𝑐2=𝑐1∘𝜑 , 𝜑∈Diff+
𝒰𝑐2

(163)

that is an union of open sets, hence it is open in 𝐶∞. Moreover it contains all the orbits of all of its
curves: in the language of [5], we may say that “𝒲𝑐1

is saturated for the action of Diff+(𝑆1)”.
So we define

�̃�𝑐1
= 𝜋(𝒲𝑐1

) (164)

and we have
𝒲𝑐1

= 𝜋−1(�̃�𝑐1
) ; (165)

hence �̃�𝑐1
is open in 𝐵𝑖,𝑓 .

4.1.2 Geometric representation

We discuss the representation aspect of Theorem 1. Consider again the set 𝒲𝑐1
defined in (162). For

any curve ̃𝑐 in this set, by Theorem 3, we have a representation

̃𝑐 ∘ 𝜑 = 𝑐 + 𝑎𝑁 (166)

with |𝑎| ≤ 𝜏 .
Let ̂𝑐 = ̃𝑐 ∘ 𝜑 for convenience; by the derepresentation result Theorem 10 (setting 𝛼 = 1/8, 𝛽 = 1/3

in that proposition and noting √(1/64 + 1/9 < 1/2) we have

| ̂𝑐′(𝜃) − 𝑐′
1(𝜃)| < |𝑐′

1(𝜃)|1/2 (167)

so there is an unique reparameterization of ̃𝑐 that can be expressed in tubular coordinates around 𝑐, by
Lemma 8: this means that 𝜑 is uniquely identified by ̃𝑐; so we will concentrate on 𝑎.

Proposition 12. Let

𝒬𝑐1

def= {𝑎 ∶ 𝑆1 → ℝ ∶ ∃ ̃𝑐 ∈ 𝒰𝑐1
, ∃𝜑 ∈ Diff+ , ̃𝑐 ∘ 𝜑 = 𝑐 + 𝑎𝑁} (168)

be the set of all such 𝑎. This set is open.
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Proof. The map (𝜑, 𝑎) ↦ (𝑐 + 𝑎𝑁) ∘ 𝜑−1 is smooth, and 𝒬𝑐1
is the projection on the second component

of the counterimage of 𝒲𝑐1
that is open.

All of the above can be stated in the language of [5] as follows: the set 𝒲𝑐1
is an open neighborhood

of 𝑐1 in 𝐶∞, it is composed only of freely immersed curves, it is saturated for the Diff+(𝑆1)-action and
the map

(𝜑, 𝑎) ↦ (𝑐 + 𝑎𝑁) ∘ 𝜑−1 (169)
splits it smoothly as

𝒲𝑐1
∼= 𝒬𝑐1

× Diff+(𝑆1) . (170)

4.1.3 Charts

Choose a curve 𝑐1; consider the map

𝛷𝑐1
∶ 𝒬𝑐1

→ 𝒲𝑐1
, 𝛷𝑐1

(𝑎) def= 𝑐1 + 𝑎𝑁1 (171)

(it is not the same maps 𝛷 defined in Prop. 7); we already proved in Lemma 8 that it is injective; 𝛷𝑐1
is

also smooth as a map from 𝐶∞ to 𝐶∞.
If we compose

𝛷𝑐1
= 𝜋 ∘ 𝛷𝑐1

(172)
then the composition

𝛷𝑐1
∶ 𝒬𝑐1

→ �̃�𝐶1
(173)

is bijective: indeed if 𝐶1 ∈ �̃�𝐶1
then we proved in the previous section that, picking a ̃𝑐 in the equivalence

class 𝐶1,
̃𝑐 ∈ 𝒰𝑐1∘𝜑 (174)

for an unique 𝜑, and then
̃𝑐 ∘ 𝜑−1 = 𝑐1 + 𝑎𝑁1 (175)

for an unique 𝑎.

4.1.4 Atlas

To conclude, we discuss the atlas of charts needed for Theorem 1. For 𝑖 = 1, 2 consider now two
equivalence classes 𝐶𝑖 ∈ 𝐵𝑖,𝑓 and choose a curve 𝑐𝑖 ∈ 𝐶𝑖 in each; we consider the maps

𝛷𝑐𝑖
= 𝜋 ∘ 𝛷𝑐𝑖

. (176)

We want to check that these are charts of an atlas for the manifold.
Suppose that

̃𝑐 ∈ �̃�𝑐1
∩ �̃�𝑐2

(177)
then

̃𝑐(𝜑1(𝜃)) = 𝑐1(𝜃) + ̃𝑎1(𝜃)𝑁𝑐1
(𝜃) , ̃𝑐(𝜑2(𝜃)) = 𝑐2(𝜃) + ̃𝑎2(𝜃)𝑁𝑐2

(𝜃) (178)
we need to check that

𝛷−1
𝑐2

∘ 𝛷𝑐1
(179)

is smooth in a neighborhood of ̃𝑎1. We can change variable in the previous one, that is, reparameterize
𝑐1, 𝑐2, so that

̃𝑐(𝜃) = 𝑐1(𝜃) + ̃𝑎1(𝜃)𝑁𝑐1
(𝜃) , ̃𝑐(𝜃) = 𝑐2(𝜃) + ̃𝑎2(𝜃)𝑁𝑐2

(𝜃) (180)
but for 𝑎1 near ̃𝑎1 we know that

𝑐1(𝜃) + 𝑎1(𝜃)𝑁𝑐1
(𝜃) ∈ 𝒰𝑐2

(181)
by Lemma 10 so by the representation Theorem 3 there are 𝜑 and 𝑎2 dependent on 𝑎1 such that

𝑐1(𝜃) + 𝑎1(𝜃)𝑁𝑐1
(𝜃) = 𝑐2(𝜑(𝜃)) + 𝑎2(𝜑(𝜃))𝑁𝑐2

(𝜑(𝜃)) (182)

the representation theorem’s proof shows that the dependency of 𝑎2 on 𝑎1 is smooth (it is given by the
inverse of the tubular coordinates, as discussed in the nearby projection Lemma 5).

This concludes the desired proof of Theorem 1.
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4.2 Comparison with [5]
We endow 𝑁 with a Riemannian metric such that scalar curvatures are bounded and convexity radius
is bounded uniformly away from zero; see [7].

The proof in [5] is presented for generic immersions ℐ ∶ 𝑀 → 𝑁 ; we fix one such immersion.
We follow notations and definitions in [5], here copied for convenience of the user (parts copied from

[5] will be in italic, and enclosed in «...»).
«We choose connected open sets (𝑈𝛼)𝛼 and (𝑊𝛼)𝛼 such that 𝑊𝛼 ⊂ 𝑊𝛼 ⊂ 𝑈𝛼 ⊂ 𝑀 , (𝑊𝛼)𝛼 is an

open cover of 𝑀 , each 𝑊𝛼 is compact, (𝑈𝛼)𝛼 is a locally finite open cover of 𝑀 , and such that ℐ 𝑈𝛼
is

an embedding. »
«Let 𝑝 ∶ 𝒩(ℐ) → 𝑀 be the normal bundle of ℐ, defined in the following way: for 𝑥 ∈ 𝑀 let

𝒩(ℐ)𝑥
def= (𝑇𝑥ℐ(𝑇𝑥𝑀))⟂ (183)

that is the orthogonal complement of tangent at ℐ(𝑥) of the immersed manifold in 𝑇ℐ(𝑥)𝑁 . »
«The following diagram

𝒩(ℐ) 𝑇 𝑁

𝑀 𝑁

ℐ

𝑝 𝜋𝑁

ℐ

is a vector bundle homomorphism over ℐ , which is fiberwise injective.»
«Let exp𝑁 ∶ 𝑇 𝑁 → 𝑁 be the exponential map on 𝑁 . Now there is a neighboorhood 𝑈 of the zero

section in the previous bundle 𝒩(ℐ) that is small enough so that

exp𝑁 ∘ℐ (184)

when restricted to 𝑈|𝑈𝛼 is a diffeomorphism with its image. The restriction of exp𝑁 ∘ℐ to 𝑈 is called
𝜏ℐ. It will serve us as a substitute for a tubular neighborhood of ℐ(𝑀). »

(The notation 𝑈|𝑈𝛼 is not described in [5], but by its usage it should be equivalent to 𝑈 ∩ 𝑝−1(𝑈𝛼).
Note also that, later on, the paper adds the superscript ℐ to 𝑈𝛼 and will write it as 𝑈ℐ

𝛼).
Consider planar immersed curves 𝑐 ∶ 𝑆1 → ℝ2: normal vectors at 𝑐(𝜃) are a one dimensional space

𝑡𝑁𝑐 (where 𝑁𝑐 is the normal vector to the curve 𝑐 as defined in Definition 12), hence the fibre of 𝒩(ℐ)
is one dimensional, so a point in the bundle 𝒩(ℐ) can be represented by a pair 𝜃 ∈ 𝑆1, 𝑡 ∈ ℝ, and the
map 𝜏ℐ becomes the map 𝛷 defined in eqn. (52) in Prop. 7. Fix a 𝜏 > 0, small, as we will discuss later
on. We cover 𝑆1 by arcs 𝑈𝛼 ⊆ 𝑆1 each shorter than 𝜀, and 𝑊𝛼 ⊂ 𝑈𝛼 subarcs that can be chosen so that
they are an open cover; for small 𝜀 we can ensure that tubular coordinates can be perused. The open
set 𝑈 will include normal vectors 𝑡𝑁𝑐 with |𝑡| < 𝜀.

The statement of main Theorem 1.5 in [5] starts as follows.
«Let ℐ be a free immersion 𝑀 → 𝑁 . Then there is an open neighborhood 𝒲(ℐ) in Imm(𝑀, 𝑁)

which is saturated for the Diff(𝑀)-action and which splits smoothly as

𝒲(ℐ) = 𝒬(ℐ) × Diff(𝑀). (185)

Here 𝒬(ℐ) is a smooth splitting submanifold of Imm(𝑀, 𝑁), diffeomorphic to an open neighborhood of 0
in 𝐶∞(𝑁(ℐ)). In particular the space Immf(𝑀, 𝑁) is open in 𝐶∞(𝑀, 𝑁).»

The proof covers also the case when 𝑀 is not compact; we will assume that 𝑀 is compact so that
some arguments can be simplified.

The proof goes as follows.
«Define

𝒰(ℐ) def= {𝑗 ∈ Imm(𝑀, 𝑁) ∶ 𝑗(𝑊𝛼) ⊆ 𝜏ℐ(𝑈ℐ|𝑈ℐ
𝛼)∀𝛼}, … » (186)

(the proof then goes on showing that this is an open set — we skip details).
«For each 𝑗 ∈ 𝑈(ℐ) we define

𝜑ℐ(𝑗) ∶ 𝑀 → 𝑈ℐ ⊆ 𝑁(ℐ), (187)
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𝜑ℐ(𝑗)(𝑥) def= (𝜏ℐ|(𝑈ℐ|𝑈ℐ
𝛼))−1(𝑗(𝑥)) if 𝑥 ∈ 𝑊 ℐ

𝛼 . »

Indeed we know that 𝜏ℐ|(𝑈ℐ|𝑈ℐ
𝛼) is a diffeomorphism onto its image, and that 𝑗(𝑥) ∈ 𝜏ℐ(𝑈ℐ|𝑈ℐ

𝛼)
when 𝑥 ∈ 𝑊 ℐ

𝛼 , by definition of 𝒰(ℐ).
«Then 𝜑ℐ ∶ 𝑈(ℐ) → 𝐶∞(𝑀, 𝒩(ℐ)) is a mapping which is bijective onto the open set

𝒱(ℐ) def= {ℎ ∈ 𝐶∞(𝑀, 𝒩(ℐ)) ∶ ℎ(𝑊𝛼) ⊆ 𝑈ℐ|𝑈ℐ
𝛼 ∀𝛼} (188)

in 𝐶∞(𝑀, 𝒩(ℐ)). Its inverse is given by the smooth mapping

𝜏ℐ
∗ ∶ ℎ ↦ 𝜏ℐ◦ℎ . » (189)

The proof then goes on showing that this 𝜑 is smooth (we skip details).
We now translate the above objects into the language of the Section 4.1. If 𝑐 = ℐ ∶ 𝑆1 → ℝ2 is a

freely immersed curve, and ̃𝑐 = 𝑗 is a curve such that

̃𝑐(𝑊𝛼) ⊂ 𝑈𝛼 (190)

then ‖ ̃𝑐 − 𝑐‖ ≤ 2𝜀, so, for 𝜀 small, for each 𝜎 ∈ 𝑆1 there are 𝜃 ∈ 𝑆1, 𝑡 ∈ ℝ such that

̃𝑐(𝜎) = 𝑐(𝜃) + 𝑎𝑁𝑐(𝜃) , (191)

this pair 𝜃 ∈ 𝑆1, 𝑡 ∈ ℝ, is exactly associated to correct point in the above bundle, that is, we can write

𝑥 = (𝜃, 𝑡𝑁𝑐(𝜃)) ∈ 𝒩(ℐ) , (192)

and
̃𝑐(𝜎) = 𝜏ℐ(𝑥) .

Possibly reducing the width 𝜀 of the tubular neighborhoods we can also use Prop. 9 to ensure that the
above representation is “unique”. So Prop. 9 can be applied and this means that, for each 𝜎, we can
write

̃𝑐(𝜎) = 𝑐(𝜑(𝜎)) + 𝑎(𝜎)𝑁𝑐(𝜑(𝜎)) ; (193)

so in conclusion we can explicitely write the map ℎ above defined as

ℎ(𝜃) = ( 𝜑(𝜃) , 𝑎(𝜃)𝑁𝑐(𝜑(𝜃)) ) (194)

the first component in ℎ encodes a position in the base space 𝑀 = 𝑆1 of the bundle 𝒩(ℐ), the second
encodes a normal vector 𝑎𝑁𝑐 to the curve 𝑐 at 𝜑(𝜃). Indeed the inverse 𝜏∗ is exactly the map (193).

The proof continues as follows.
« We have 𝜏ℐ

∗ (ℎ◦𝑓) = 𝜏ℐ
∗ (ℎ)◦𝑓 for those 𝑓 ∈ Diff(𝑀) which are near enough to the identity so that

ℎ◦𝑓 ∈ 𝒱(ℐ) (that was defined in (188)). We consider now the open set

𝒵 def= {ℎ◦𝑓 ∶ ℎ ∈ 𝒱(ℐ), 𝑓 ∈ Diff(𝑀)} ⊆ 𝐶∞((𝑀, 𝒰ℐ)) . (195)

(We added the notation 𝒵 for ease of reference.) Obviously we have a smooth mapping from it into

𝐶∞(𝑈ℐ) × Diff(𝑀) (196)

given by
ℎ ↦ (ℎ◦(𝑝◦ℎ)−1, 𝑝◦ℎ) (197)

where 𝐶∞(𝑈ℐ) is the space of sections of 𝑈ℐ → 𝑀 .»
Here though comes the first mistake in the original proof. Consider the Example 7, where 𝑐 = ℐ is

the blue curve and 𝑗 = ̃𝑐 is the red curve. There is a choice of 𝑈𝛼, 𝑊𝛼 such that 𝑗 ∈ 𝒰(ℐ). We can
express

̃𝑐(𝜎) = 𝑐(𝜑(𝜎)) + 𝑎(𝜎)𝑁(𝜑(𝜎)) (198)
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and then define ℎ by (194); but when we apply the rule (197) to this ℎ, we obtain that

𝑝◦ℎ = 𝜑 (199)

and 𝜑 is a map 𝜑 ∶ 𝑆1 → 𝑆1 that is not a diffeomorphism.
The correct statement is that the map (197) achieves a splitting of the open set 𝒵 described in (195)

into
𝐶∞(𝑈ℐ) × 𝐶∞(𝑀 → 𝑀) . (200)

Some condition must be added to the definition of 𝒵 to make sure that 𝜑 is a diffeomorphism; as was
done in eqn. (159) to define 𝒰, by adding the condition | ̃𝑐′ − 𝑐′

1| < |𝑐′
1|/3: this condition is necessary to

apply the representation Theorem 3. No similar condition is present in the proof in [5].

The proof afterwords proceeds as follows.
«So if we let

𝒬(ℐ) def= 𝜏ℐ
∗ (𝐶∞(𝑈ℐ) ∩ 𝑉 (ℐ)) ⊂ Imm(𝑀, 𝑁) (201)

we have
𝒲(ℐ) def= 𝑈(ℐ)◦ Diff(𝑀) ∼= 𝒬(ℐ) × Diff(𝑀) ∼= (𝐶∞(𝑈ℐ) ∩ 𝒱(ℐ)) × Diff(𝑀) (202)

since the action of Diff(𝑀) on ℐ is free. Consequently Diff(𝑀) acts freely on each immersion in 𝒲(ℐ),
so Immf(𝑀, 𝑁) is open in 𝐶∞(𝑀, 𝑁).» (This 𝒬(ℐ) defined in (201) is not the same as the 𝒬𝑐1

defined
in (168), but it has the same scope; the latter one is an open neighborhood of 0 in 𝐶∞(𝒩(ℐ))).

This is the second mistake in the proof.
Even if we restrict the open set described in (195) by adding a first order condition, so that the map

(197) properly splits 𝒬, we have not guarantee that all curves in the associated neighborhood are freely
immersed. This was shown in Example 9.

This is why in our proof we added the condition 𝜏 ≤ 𝑟𝑐 to the definition of 𝒰.

We have shown that the proof in [5] does not prove the desired result.
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