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Abstract. For s ∈ (0, 1) and a bounded open set Ω ⊂ RN with N > 2s, we study the fractional
Brezis–Nirenberg type minimization problem of finding

S(a) := inf

∫
RN |(−∆)s/2u|2 +

∫
Ω au

2(∫
Ω u

2N
N−2s

)N−2s
N

,

where the infimum is taken over all functions u ∈ Hs(RN ) that vanish outside Ω. The function a

is assumed to be critical in the sense of Hebey and Vaugon. For low dimensions N ∈ (2s, 4s), we
prove that the Robin function φa satisfies infx∈Ω φa(x) = 0, which extends a result obtained by
Druet for s = 1. In dimensions N ∈ (8s/3, 4s), we then study the asymptotics of the fractional
Brezis–Nirenberg energy S(a+ εV ) for some V ∈ L∞(Ω) as ε→ 0+. We give a precise description of
the blow-up profile of (almost) minimizing sequences and characterize the concentration speed and
the location of concentration points.

1. Introduction and main results

Let N ∈ N and 0 < 2s < N for some s ∈ (0, 1), and let Ω ⊂ RN be a bounded open set. The goal
of the present paper is to analyze the variational problem of minimizing, for a given a ∈ C(Ω), the
quotient functional

Sa[u] :=

∫
RN |(−∆)s/2u|2 dy +

∫
Ω
a(y)u(y)2 dy

‖u‖2
L

2N
N−2s (Ω)

(1.1)

over functions in the space

H̃s(Ω) :=
{
u ∈ Hs(RN ) : u ≡ 0 on RN \ Ω

}
, (1.2)

where u ∈ Hs(RN ) iff

‖u‖L2(RN ) +

(∫
RN
|(−∆)s/2u|2 dy

)1/2

<∞, (1.3)

and the fractional Laplacian operator (−∆)su is defined for any u ∈ Hs(RN ) through the Fourier
representation

(−∆)su = F−1(|ξ|2sFu). (1.4)
We also recall the singular integral representation of the fractional Laplacian (see [11, 25]):

(−∆)su(x) := CN,sP.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy, (1.5)

where

CN,s :=
s22sΓ(N+2s

2 )

πN/2Γ(1− s)
. (1.6)
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The associated infimum,
S(a) := inf

{
Sa[u] : u ∈ H̃s(Ω)

}
, (1.7)

is to be compared with the number S := SN,s := S(0), which is equal to the best constant in the
fractional Sobolev embedding ∫

RN
|(−∆)s/2u|2 dy ≥ S‖u‖2

L
2N
N−2s (RN )

, (1.8)

given by

SN,s := 22sπs
Γ(N+2s

2 )

Γ(N−2s
2 )

(
Γ(N/2)

Γ(N)

)2s/N

. (1.9)

We note that the embedding H̃s(Ω) ↪→ Lp+1(Ω) and the associated best constant are in fact inde-
pendent of Ω and equal to the best full-space Sobolev constant SN,s (see [19]). In the classical case
s = 1, problem (1.7) has been first studied in the famous paper [9] by Brezis and Nirenberg, who were
interested in obtaining positive solutions to the associated elliptic equation. One of the main findings
in that paper is that the behavior of (1.7) depends on the space dimension N in a rather striking way.
Indeed, when N ≥ 4, then S(a) < S if and only if a(x) < 0 for some x ∈ Ω. On the other hand, when
N = 3, then S(a) = S whenever ‖a‖∞ is small enough, leaving open the question of characterizing
the cases S(a) < S in terms of a. In [20], Druet proved that, for N = 3, the following equivalence
holds:

S(a) < S ⇐⇒ φa(x) < 0 for some x ∈ Ω, (1.10)
where φa(x) denotes the Robin function associated to a (see (1.11) below). This answered positively
a conjecture previously formulated by Brezis in [8].

For a fractional power s ∈ (0, 1) and assuming a = −λ for some constant λ > 0, Brezis–Nirenberg type
results have been obtained by Servadei and Valdinoci:

(i) In [38], they proved that when N ≥ 4s, then S(−λ) < S whenever λ > 0;
(ii) In [36], they proved that for 2s < N < 4s and prove that there is λs ∈ (0, λ1,s) (where λ1,s is

the first Dirichlet eigenvalue of (−∆)s) such that for every λ ∈ (λs, λ1,s), one has S(−λ) < S.

In this paper, we shall exclusively be concerned with the low-dimensional range 2s < N < 4s. This
is the natural replacement of the classical case N = 3. s = 1, as indicated by the results above.
One may also notice that when 2s < N , the Green’s function for (−∆)s on RN behaves like G(x, y) ∼
|x−y|−N+2s near the diagonal and thus fails to be in L2

loc(RN ) precisely if N ≤ 4s, compare [29].

A central notion to what follows is that of a critical function a, which was introduced by Hebey and
Vaugon in [28] for for s = 1 and readily generalizes to the fractional situation. Indeed, the following
definition is naturally suggested by the behavior of S(a) just described.

Definition 1.1 (Critical function). Let a ∈ C(Ω). We say that a is critical if S(a) = S and S(ã) < S(a)
for every ã ∈ C(Ω) with ã ≤ a and ã 6≡ a.

When N ≥ 4s, the result of [38] implies that the only critical potential is a ≡ 0. For this case, or more
generally for N > 2s with a ≡ 0, the recent literature is rather rich in refined results going beyond [38].
Notably, in [15] and [14], the authors prove the fractional counterpart of some conjectures by Brezis
and Peletier [10] concerning the blow-up asymptotics of minimizers to the problem S(−ε) and a related
problem with subcritical exponent p − ε as ε → 0. In the classical case s = 1, these results are due
to Han [27] and Rey [33, 34]. Corresponding existence results, also for non-minimizing multi-bubble
solutions, are also given in [15, 14], as well as in [17, 26].

In contrast to this, in the more challenging setting of dimension 2s < N < 4s, critical functions can
have all possible shapes and are necessarily non-zero, compare [20] and Corollary 1.3 below. In this
setting, and notably in the presence of a critical function, results of Han–Rey type as just discussed
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are much more scarce in the literature. Even in the local case s = 1 and N = 3, the conjecture of
Brezis and Peletier (see [10, Conjecture 3.(ii)]) which involves a (constant) critical function has only
been proved recently in [23]. For the fractional case 2s < N < 4s, we are not aware of any results
going beyond [36]. The purpose of the present paper is to start filling this gap.

1.1. Main results. For all of our results, a crucial role is played by the Green’s function of (−∆)s+a,
which we introduce now. For a function a ∈ C(Ω) such that (−∆)s + a is coercive, i.e.∫

RN
|(−∆)s/2v|2 dy +

∫
Ω

av2 dy ≥ c
∫
RN
|(−∆)s/2v|2 dy

for some c > 0, define Ga : Ω×RN → R as the unique function such that for every fixed x ∈ Ω{
((−∆)s + a)Ga(x, ·) = γN,sδx in Ω,

Ga(x, ·) = 0 on RN \ Ω.

Here, we set γN,s = 22sπN/2Γ(s)

Γ(N−2s
2 )

, so that (−∆)s|y|−N+2s = γN,sδ0 on RN . Thus this choice of γN,s
ensures that we can write Ga as a sum of its singular part and its regular partHa(x, y) as follows:

Ga(x, y) =
1

|x− y|N−2s
−Ha(x, y).

The function Ha is continuous up to the diagonal, see e.g. Lemma A.3. Therefore, we may define the
Robin function

φa(x) := Ha(x, x), x ∈ Ω. (1.11)
We prove several properties of the Green’s functions Ga in Appendix A.

Our first main result is the following extension of Druet’s theorem from [20] to the fractional case.

Theorem 1.2 (Characterization of criticality). Let 2s < N < 4s and let a ∈ C(Ω) be such that
(−∆)s + a is coercive. The following properties are equivalent.

(i) There is x ∈ Ω such that φa(x) < 0.
(ii) S(a) < S.
(iii) S(a) is achieved by some function u ∈ H̃s(Ω).

As an immediate corollary, we can characterize critical functions in terms of their Robin function.

Corollary 1.3. Let a be critical. Then infx∈Ω φa(x) = 0.

The implications (i) ⇒ (ii) and (ii) ⇒ (iii) in Theorem 1.2 are well-known: indeed, (i) ⇒ (ii) easily
follows by the proper choice of test functions thanks to Theorem 2.1 below; the implication (ii)⇒ (iii)
is the fractional version of the seminal observation in [9] (see [38, Theorem 2]).

Our proof of (iii) ⇒ (ii) is the content of Proposition 3.1 below and follows [20, Step 1]. The most
involved proof is that implication is (ii) ⇒ (i), which we give in Section 4. We adapt the strategy
developed by Esposito in [21], who gave an alternative proof of that implication. His approach is based
on an expansion of the energy functional Sa−ε[uε] as ε→ 0, where a is critical as in Definition 1.1 and
uε is a minimizer of S(a− ε).

In fact, by using the techniques applied in the recent work [24] for s = 1, we are even able to push this
expansion of Sa−ε[uε] further by one order of ε and derive precise asymptotics of the energy S(a− ε)
and of the sequence (uε).

To give a precise statement of our results, let us fix some more assumptions and notations. We denote
the zero set of the Robin function φa by

Na := {x ∈ Ω : φa(x) = 0}.
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It follows from Theorem 1.2 that infΩ φa(x) = 0 if and only if a is critical. In particular, Na is not
empty if a is critical.

We will consider perturbations of a of the form a + εV , with non-constant V ∈ L∞(Ω). For such V ,
following [24], we let

QV (x) :=

∫
Ω

V (y)Ga(x, y)2 dy

and
Na(V ) := {x ∈ Na : QV (x) < 0}.

Finally, we shall assume that Ω has C2 boundary and that

a ∈ C(Ω̄) ∩ C1(Ω), a(x) < 0 for all x ∈ Na; (1.12)

By Corollary 2.2, we have a priori that a(x) ≤ 0 on Na. Therefore assumption (1.12) is not se-
vere.

We point out that with our methods we are able to prove the following theorems only for the restricted
dimensional range 8

3s < N < 4s, which enters in Section 5. We discuss this assumption in some more
detail after the statement of Theorem 1.6 below.

The following theorem describes the asymptotics of the perturbed minimal energy S(a + εV ) as ε →
0+. It shows in particular the non-obvious fact that the condition Na(V ) 6= ∅ is sufficient to have
S(a+ εV ) < S.

Theorem 1.4 (Energy asymptotics). Let 8
3s < N < 4s. Let us assume that Na(V ) 6= ∅. Then

S(a+ εV ) < S for all ε > 0 and

lim
ε→0+

S(a+ εV )− S
ε

2s
4s−N

= σN,s sup
x∈Na(V )

|QV (x)|
2s

4s−N

|a(x)|
N−2s
4s−N

,

where σN,s > 0 is a dimensional constant given explicitly by

σN,s = A
−N−2s

N

N,s (αN,s + cN,sdN,sbN,s)
−N−2s

4s−N

(
N − 2s

2s

) 2s
4s−N 4s−N

N − 2s
.

The constants AN,s, αN,s, cN,s, dN,s and bN,s are given explicitly in Lemma B.5 below.

On the other hand, when Na(V ) = ∅, the next theorem shows that the asymptotics become trivial
provided QV > 0 on Na. Only in the case when minNa QV = 0 we do not obtain the precise leading
term of S(a+ εV )− S.

Theorem 1.5 (Energy asymptotics, degenerate case). Let 8
3s < N < 4s. Let us assume that Na(V ) =

∅. Then S(a+εV ) = S+o(ε2) as ε→ 0+. If, in addition, QV (x) > 0 for all x ∈ Na then S(a+εV ) = S
for sufficiently small ε > 0.

For a potential V such that Na(V ) 6= ∅, and thus S(a + εV ) < S by Theorem 1.4, a minimizer uε of
S(a+ εV ) exists by Theorem 1.2. We now turn to studying the asymptotic behavior of the sequence
(uε). In fact, since our methods are purely variational, we do not need to require that the uε satisfy a
corresponding equation and we can equally well treat a sequence of almost minimizers in the sense of
(1.17) below.

Since the functional Sa is merely a perturbation of the standard Sobolev quotient functional, it is not
surprising that to leading order, the sequence uε approaches the family of functions

Ux,λ(y) =

(
λ

1 + λ2|x− y|2

)N−2s
2

, x ∈ RN , λ > 0. (1.13)
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The Ux,λ are precisely the optimizers of the fractional Sobolev inequality on RN

‖(−∆)s/2u‖2L2(RN ) ≥ SN,s‖u‖
2

L
2N
N−2s (RN )

. (1.14)

and satisfy the equation

(−∆)sUx,λ(y) = cN,sUx,λ(y)
N+2s
N−2s , (1.15)

with cN,s > 0 given explicitly in Lemma B.5.

Since we are working on the bounded set Ω, the first refinement of the approximation consists in
’projecting’ the functions Ux,λ to H̃s(Ω). That is, we consider the unique function PUx,λ ∈ H̃s(Ω)
satisfying {

(−∆)sPUx,λ = (−∆)sUx,λ in Ω,

PUx,λ = 0 on RN \ Ω.
(1.16)

in the weak sense, that is,∫
RN

(−∆)s/2PUx,λ(−∆)s/2η dy =

∫
RN

(−∆)sUx,λη dy = cN,s

∫
Ω

U
N+2s
N−2s

x,λ η dy

for every η ∈ H̃s(Ω).

Finally, we introduce the space

Tx,λ = span
{
PUx,λ, ∂λPUx,λ, {∂xiPUx,λ}Ni=1

}
⊂ H̃s(Ω)

and denote by T⊥x,λ ⊂ H̃s(Ω) its orthogonal complement in H̃s(Ω) with respect to the scalar product
(u, v) :=

∫
RN (−∆)s/2u(−∆)s/2v dy. Moreover, let us denote by Πx,λ and Π⊥x,λ the projections onto

Tx,λ and T⊥x,λ respectively.

Then we have the following result.

Theorem 1.6 (Concentration of almost-minimizers). Let 8
3s < N < 4s. Suppose that (uε) ⊂ H̃s(Ω)

is a sequence such that

lim
ε→0

Sa+εV [uε]− S(a+ εV )

S − S(a+ εV )
= 0 and

∫
Ω

upε dy =

∫
RN

Up0,1 dy. (1.17)

Then there exist sequences (xε) ⊂ Ω, (λε) ⊂ (0,∞), (wε) ⊂ T⊥xε,λε , and (αε) ⊂ R such that, up to
extraction of a subsequence,

uε = αε

(
PUxε,λε + λ−

N−2s
2 Π⊥xε,λε (H0(xε, ·)−Ha(xε, ·)) + rε

)
(1.18)

Moreover, as ε→ 0, we have

xε → x0 for some x0 such that
|QV (x0)|

2s
4s−N

|a(x0)|
N−2s
4s−N

= sup
y∈Na(V )

|QV (y)|
2s

4s−N

|a(y)|
N−2s
4s−N

,

φa(xε) = o(ε),

lim
ε→0

ε
1

4s−N λε =

(
2s(αN,s + cN,sdN,sbN,s)|a(x0)|

(N − 2s)|QV (x0)|

) 1
4s−N

,

αε = ξ +O(ε
N−2s
4s−N ) for some ξ ∈ {±1}.

Finally, rε ∈ T⊥xε,λε and ‖(−∆)
s
2 r‖2L2(RN ) = o(ε

2s
4s−N ).

The constants αN,s, cN,s, dN,s and bN,s are given explicitly in Lemma B.5.
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Theorem 1.6 should be seen as the low-dimensional counterpart of [15, Theorems 1.1 and 1.2], which
concerns N > 4s. The decisive additional complication to be overcome in our case is the presence of a
non-zero critical function a. More concretely, the coefficient φa(x) of the subleading term of the energy
expansion vanishes due to criticality of a (compare Theorem 2.1 and Lemma 5.5). As a consequence, it
is only after further refining the expansion that we are able to conclude the desired information about
the concentration behavior of the sequence uε.

In the same vein, the energy expansions from Theorem 1.4 are harder to obtain than their analogues
in higher dimensions N ≥ 4s. Indeed, for N > 4s we have

S(εV ) = SN,s − c̃N,s sup
{x∈Ω :V (x)<0}

φ0(x)−
2s

N−4s |V (x)|
N−2s
N−4s ε

N−2s
N−4s + o(ε

N−2s
N−4s ), (1.19)

where c̃N,s > 0 is some dimensional constant. In this case, a sharp upper bound on S(εV ) can already
be derived from testing SεV against the family of functions PUx,λ. In contrast, for 2s < N < 4s this
family needs to be modified by a lower order term in order give the sharp upper bound for Theorem
1.4 (see (2.1) and Theorem 2.1 below). For details of the computations in case N ≥ 4s, we refer to the
forthcoming work [18]. It is noteworthy that the auxiliary minimization problem giving the subleading
coefficient in (1.19) is local in V in the sense that it only involves the pointwise value V (x), whereas
that of Theorem 1.4 contains the non-local quantity QV .

Let us now describe in more detail the approach we use in the proofs of Theorems 1.4, 1.5 and 1.6,
which are in fact intimately linked. Firstly, the family of functions ψx,λ defined in (2.1) below yields
an upper bound for S(a + εV ), which will turn out to be sharp. The strategy we use to prove
the corresponding lower bound on Sa+εV [uε], for a sequence (uε) as in (1.17), can be traced back
at least to work of Rey [33, 34] and Bahri–Coron [3] on the classical Brezis–Nirenberg problem for
s = 1; it was adapted to treat problems with a critical potential a when s = 1, N = 3 in [21] and, more
recently, in [24, 23]. This strategy features two characteristic steps, namely (i) supplementing the initial
asymptotic expansion uε = αε(PUxε,λε +wε), obtained by a concentration-compactness argument, by
the orthogonality condition wε ∈ T⊥xε,λε and (ii) using a certain coercivity inequality, valid for functions
in T⊥xε,λε , to improve the bound on the remainder wε. The basic instance of this strategy is carried
out in Section 3. Indeed, after performing steps (i) and (ii), in Proposition 3.6 below we are able to
exclude concentration near ∂Ω and obtain a quantitative bound on wε = α−1

ε uε − PUxε,λε . As in [33]
and [22], this information is enough to arrive at (1.19) and similar conclusions when N > 4s; see the
forthcoming paper [18] for details.

On the other hand, when 2s < N < 4s, the bound that Proposition 3.6 provides for the modified
difference uε − ψxε,λε is still insufficient. For s = 1, it was however observed in [24] that one can
refine the expansion of uε by reiterating steps (i) and (ii). Here, we carry out their strategy in a
streamlined version (compare Remark 5.1) and for fractional s ∈ (0, 1). That is, one writes wε =
ψxε,λε − PUxε,λε + qε, decomposes qε = tε + rε with rε ∈ T⊥xε,λε and applies the coercivity inequality
a second time. We are able to conclude as long as the technical condition 8s/3 < N is met (which is
equivalent to λ−3N+6s = o(λ−2s)). Indeed, in that case the leading contributions of tε to the energy,
which enter to orders λ−N+2s and λ−2N+4s, cancel precisely; see Lemma 5.8. If 8s/3 ≤ N , a plethora
of additional terms in tε, which contribute to orders λ−k(N−2s) with 3 ≤ k ≤ 2s

N−2s , will become
relevant, and we were not able to treat those in a systemized way. It is natural to expect that the
cancellation phenomenon that occurs for k = 1, 2 still persists for k ≥ 3. This would allow to prove
Theorems 1.4, 1.5, and 1.6 for general N > 2s. For further details of the argument and the difficulties
just discussed, we refer to Section 5.

As far as we know, the role of the threshold configurations given by k(N − 2s) = 2s for k ≥ 1 in
the fractional Brezis–Nirenberg problem (1.7) has only been investigated in the literature for k = 1
corresponding to N = 4s, below which the problem is known to behave differently by the results
quoted above. It would be exciting to exhibit some similar, possibly refined, qualitative change in the
behavior of (1.7) at one or each of the following thresholds N = 3s, N = 8s/3, N = 10s/4, etc.
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To conclude this introduction, let us mention that several works in the literature (see [41, 4, 6]) treat
the problem corresponding to (1.7) for a different notion of Dirichlet boundary conditions for (−∆)s on
Ω, namely the spectral fractional Laplacian, defined by classical spectral theory using the L2(Ω)-ONB
of Dirichlet eigenfunctions for −∆. In contrast to this, the notion of (−∆)s we use in this paper, as
defined in (1.4) or (1.5) on H̃s(Ω) given by (1.2), usually goes in the literature by the name of restricted
fractional Laplacian. A nice discussion of these two operators, as well as a method of unified treatment
for both, can be found in [17] (see also [37]).

Our method of proof just described is rather different from most of the previous contributions to
the fractional Brezis–Nirenberg problem. Namely, we do not need to pass through the extension
formulation for (−∆)s due to either [13] for the restricted or to [12, 40] for the spectral fractional
Laplacian. On the other hand, using the properties of PUx,λ (as given in Lemma A.2) allows us
to avoid lengthy calculations with singular integrals, appearing e.g. in [38], while at the same time
optimizing the cutoff procedure with respect to [38].

1.2. Notation. We will often abbreviate the fractional critical Sobolev exponent by p := 2N
N−2s . For

any q ≥ 1, we abbreviate ‖ · ‖q := ‖ · ‖Lq(RN ). When q = 2, we sometimes write ‖ · ‖ := ‖ · ‖2.

Unless stated otherwise, we shall always assume s ∈ (0, 1) and N ∈ (2s, 4s).

For x ∈ Ω, we use the shorthand d(x) = dist(x, ∂Ω).

For a setM and functions f, g : M → R+, we shall write f(m) . g(m) if there exists a constant C > 0,
independent of m, such that f(m) ≤ Cg(m) for all m ∈M , and accordingly for &. If f . g and g . f ,
we write f ∼ g.

The various constants appearing throughout the paper and their numerical values are collected in
Lemma B.5 in the appendix.

2. Proof of the upper bound

The following theorem gives the asymptotics of Sa+εV [ψx,λ], for the test function

ψx,λ(y) := PUx,λ(y)− λ−
N−2s

2 (Ha(x, y)−H0(x, y)), (2.1)

as λ→∞.

Theorem 2.1 (Expansion of Sa+εV [ψx,λ]). As λ→∞, uniformly for x in compact subsets of Ω and
for ε ≥ 0,

‖(−∆)s/2ψx,λ‖22 +

∫
Ω

(a+ εV )ψ2
x,λ dy

= cN,sAN,s − cN,saN,sφa(x)λ−N+2s (2.2)

+ (cN,sdN,sbN,s − αN,s)a(x)λ−2s + ελ−N+2sQV (x) + o(λ−2s) + o(ελ−N+2s)

and ∫
Ω

ψpx,λ dy = AN,s − paN,sφa(x)λ−N+2s + T1(φa(x), λ) + pdN,sbN,sa(x)λ−2s + o(λ−2s). (2.3)

In particular,

Sa+εV [ψx,λ] = S +A
−N−2s

N

N,s

[
aN,scN,sφa(x)λ−N+2s + T2(φa(x), λ)− a(x)λ−2s(αN,s + cN,sdN,sbN,s)

+ ελ−N+2sQV (x)
]

+ o(λ−2s) + o(ελ−N+2s). (2.4)

Here, Ti(φ, λ) are (possibly empty) sums of the form

Ti(φ, λ) :=

K∑
k=2

γi(k)φkλ−k(N−2s) (2.5)
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for suitable coefficients γi(k) ∈ R, where K = b 2s
N−2sc is the largest integer less than or equal to 2s

N−2s .

Theorem 2.1 is valid irrespective of the criticality of a. The following corollary states two consequences
of Theorem 2.1, which concern in particular critical potentials.

Corollary 2.2 (Properties of critical potentials). (i) If S(a) = S, then φa(x) ≥ 0 for all x ∈ Ω.
(ii) If S(a) = S and φa(x) = 0 for some x ∈ Ω, then a(x) ≤ 0.

Proof. Both statements follow from Theorem 2.1 applied with ε = 0. Indeed, suppose that either
φa(x) < 0 or φa(x) = 0 < a(x) for some x ∈ Ω. In both cases, (2.4) gives S(a) ≤ Sa[ψx,λ] < S for
λ > 0 large enough, contradiction. �

Based on Theorem 2.1, we can now easily derive the following upper bound for S(a + εV ) provided
that Na(V ) is not empty.

Corollary 2.3. Suppose that Na(V ) 6= ∅. Then S(a+ εV ) < S for all ε > 0 and, as ε→ 0+,

S(a+ εV ) ≤ S − σN,s sup
x∈Na(V )

|QV (x)|
2s

4s−N

|a(x)|
N−2s
4s−N

ε
2s

4s−N + o(ε
2s

4s−N ), (2.6)

where

σN,s = A
−N−2s

N

N,s (αN,s + cN,sdN,sbN,s)
−N−2s

4s−N

(
N − 2s

2s

) 2s
4s−N 4s−N

N − 2s
. (2.7)

Proof. Let us fix ε > 0 and x ∈ Na(V ). Then by (2.4)

S(a+ εV ) ≤ Sa+εV [ψx,λ] (2.8)

= S +A
−N−2s

N

N,s

(
−(a(x) + o(1))λ−2s(αN,s + cN,sdN,sbN,s) + ελ−N+2s(QV (x) + o(1))

)
.

(2.9)

We first optimize the right side over λ > 0. Since Aε := (−a(x) + o(1))(αN,s + cN,sdN,sbN,s) and
Bε := −QV (x) + o(1), are strictly positive by our assumptions, we are in the situation of Lemma B.6.
Picking λ = λ0(ε) given by (B.5), we have o(λ−2s) = o(ε

2s
4s−N ). Thus, by (B.6), we get, as ε→ 0+,

S(a+ εV ) ≤ S − ε
2s

4s−N
|QV (x)|

2s
4s−N

|a(x)|
N−2s
4s−N

A
−N−2s

N

N,s (αN,s + cN,sdN,sbN,s)
−N−2s

4s−N

(
N − 2s

2s

) 2s
4s−N 4s−N

N − 2s

+ o(ε
2s

4s−N ).

Now, optimizing over x ∈ Na(V ) completes the proof of (2.6). In particular, S(a+ εV ) < S for small
enough ε > 0. Since S(a + εV ) is a concave function of ε (being the infimum over u of functions
Sa+εV [u] linear in ε) and S(a) = S, this implies that S(a+ εV ) < S for every ε > 0. �

Proof of Theorem 2.1. Step 1: Expansion of the numerator. Since (−∆)sHa(x, ·) = aGa(x, ·), the
function ψx,λ satisfies

(−∆)sψx,λ = cN,sU
p−1
x,λ − λ

−N−2s
2 aGa(x, ·).
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Therefore, recalling Lemma A.2,

‖(−∆)s/2ψx,λ‖22 =

∫
Ω

ψx,λ(y)(−∆)sψx,λ(y) dy

=

∫
Ω

(
Ux,λ − λ−

N−2s
2 Ha(x, ·)− fx,λ

)(
cN,sU

p−1
x,λ − λ

−N−2s
2 aGa(x, ·)

)
dy

= cN,s

∫
Ω

Upx,λ dy − cN,sλ−
N−2s

2

∫
Ω

Up−1
x,λ Ha(x, ·) dy

− λ−
N−2s

2

∫
Ω

aGa(x, ·)
(
U − λ−

N−2s
2 Ha(x, ·)

)
dy

−
∫

Ω

fx,λ

(
cN,sU

p−1
x,λ − λ

−N−2s
2 aGa(x, ·)

)
dy.

We now treat the four terms on the right side separately.

A simple computation shows that
∫
RN\Bd(x)(x)

Upx,λ dy = O(λ−N ). Thus the first term is given by

cN,s

∫
Ω

Upx,λ dy = cN,s

(∫
RN

Up0,1 dy

)
+O(λ−N ) = cN,sAN,s + o(λ−2s).

The second term is, by Lemma A.4,

−cN,sλ−
N−2s

2

∫
Ω

Up−1
x,λ Ha(x, ·) dy = −cN,saN,sφa(x)λ−N+2s + cN,sdN,sbN,sa(x)λ−2s + o(λ−2s).

The third term will be combined with a term coming from
∫

Ω
(a+ εV )ψ2

x,λ dy, see below.

The fourth term can be bounded, by Lemma B.1 and recalling ‖fx,λ‖∞ . λ−
N+4−2s

2 from Lemma A.2,
by∣∣∣∣∫

Ω

fx,λ

(
cN,sU

p−1
x,λ − λ

−N−2s
2 aGa(x, ·)

)
dy

∣∣∣∣ . ‖fx,λ‖∞ (‖Ux,λ‖p−1
p−1 + λ−

N−2s
2

)
. λ−N−2+2s = o(λ−2s).

Now we treat the potential term. We have∫
Ω

(a+ εV )ψ2
x,λ dy =

∫
Ω

(a+ εV )
(
Ux,λ − λ−

N−2s
2 Ha(x, ·)− fx,λ

)2

dy

=

∫
Ω

(a+ εV )
(
Ux,λ − λ−

N−2s
2 Ha(x, ·)

)2

dy

− 2

∫
Ω

(a+ εV )fx,λ

(
Ux,λ − λ−

N−2s
2 Ha(x, ·)

)
dy +

∫
Ω

(a+ εV )f2
x,λ dy.

Similarly to the above, the terms containing fx,λ are bounded by∣∣∣∣∫
Ω

(a+ εV )fx,λ

(
Ux,λ − λ−

N−2s
2 Ha(x, ·)

)
dy

∣∣∣∣ . ‖fx,λ‖∞(‖Ux,λ‖1 − λ−
N−2s

2 ) . λ−N−2+2s = o(λ−2s)

and ∣∣∣∣∫
Ω

(a+ εV )f2
x,λ dy

∣∣∣∣ . ‖fx,λ‖2∞ . λ−N−4+2s = o(λ−2s).

Finally, we combine the main term with the third term in the expansion of ‖(−∆)s/2ψx,λ‖22 from above.
Recalling that

Ux,λ − λ−
N−2s

2 Ha(x, ·)− λ−
N−2s

2 Ga(x, ·) = Ux,λ − λ−
N−2s

2 |x− y|−N+2s = −λ
N−2s

2 h(λ(x− y)) (2.10)
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with h as in Lemma B.3, we get

− λ−
N−2s

2

∫
Ω

aGa(x, ·)
(
Ux,λ − λ−

N−2s
2 Ha(x, ·)

)
dy +

∫
Ω

(a+ εV )
(
Ux,λ − λ−

N−2s
2 Ha(x, ·)

)2

dy

= −
∫

Ω

a
(
Ux,λ − λ−

N−2s
2 Ha(x, ·)

)
λ
N−2s

2 h(λ(x− y)) dy + ε

∫
Ω

V
(
Ux,λ − λ−

N−2s
2 Ha(x, ·)

)2

dy.

Since ∫
Ω

aHa(x, ·)h(λ(x− y)) dy . λ−N‖h‖L1(RN ) = o(λ−2s),

by Lemma B.4 we have

−
∫

Ω

a
(
Ux,λ − λ−

N−2s
2 Ha(x, ·)

)
λ
N−2s

2 h(λ(x− y)) dy = −αN,sλ−2sa(x) + o(λ−2s).

Moreover, again by (2.10), and using that h ∈ L2(RN ) by Lemma B.3,

ε

∫
Ω

V
(
U − λ−

N−2s
2 Ha(x, ·)

)2

= ελ−N+2s

∫
Ω

V Ga(x, ·)2 dy − 2ε

∫
Ω

V Ga(x, ·)h(λ(x− y)) dy + ελN−2s

∫
Ω

V h(λ(x− y))2 dy,

with

ε

∫
Ω

V Ga(x, ·)h(λ(x− y)) dy . ελ−N/2‖Ga(x, ·)‖2‖h‖2 = o(ελ−N+2s)

and

ελN−2s

∫
Ω

V h(λ(x− y))2 dy . ελ−2s‖h‖22 = o(ελ−N+2s).

This completes the proof of the claimed expansion (2.2).

Step 2: Expansion of the denominator. Recall p = 2N
N−2s . Firstly, writing ψx,λ = Ux,λ −

λ−
N−2s

2 Ha(x, ·)− fx,λ, we have∫
Ω

ψpx,λ dy =

∫
Ω

(Ux,λ − λ−
N−2s

2 Ha(x, ·))p dy +O(‖Ux,λ − λ−
N−2s

2 Ha(x, ·)‖p−1
p−1‖fx,λ‖∞ + ‖fx,λ‖p∞).

Using Lemma B.1 and the bound ‖fx,λ‖∞ . λ−
N+4−2s

2 , we deduce that the remainder term is o(λ−2s).
To evaluate the main term, from Taylor’s formula for t 7→ tp, we have

(a+ b)p = ap − pap−1b+

K∑
k=2

(
p

k

)
ap−kbk +O(ap−K−1|b|K+1 + |b|p).

Here,
(
p
k

)
:= Γ(p+1)

Γ(p−k+1)Γ(k+1) is the generalized binomial coefficient and K = b 2s
N−2sc as in the statement

of the theorem. Applying this with a = Ux,λ(y), b = −λ−N−2s
2 Ha(x, ·), we find∫

Ω

(Ux,λ − λ−
N−2s

2 Ha(x, ·))p dy =

∫
Ω

Upx,λ dy − pλ−
N−2s

2

∫
Ω

Up−1
x,λ Ha(x, ·) dy

+O
(
λ−N+2s

∫
Ω

Up−2
x,λ Ha(x, ·)2 dy

)
+O

(
λ−N

∫
Ω

Ha(x, ·)p dy

)
.

By Lemma A.4, the claimed expansion (2.3) follows.

Step 3: Expansion of the quotient. For α = 2/p ∈ (0, 1), and fixed a > 0, we again use the Taylor
expansion

(a+ b)−α = a−α − αa−α−1b+

K∑
k=2

(
−α
k

)
a−α−kbk +O(bK+1).
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By Step 2, we may apply this with a = AN,s and b = −paN,sφa(x)λ−N+2s + T1(φa(x), λ) +
pdN,sbN,sa(x)λ−2s + o(λ−2s). Since b = O(λ−N+2s) and K + 1 > 2s

N−2s , we have O(bK+1) = o(λ−2s)
and thus(∫

Ω

ψpx,λ dy

)−2/p

= A
−N−2s

N

N,s +A
− 2(N−s)

N

N,s

(
2aN,sφa(x)λ−N+2s − 2dN,sbN,sa(x)λ−2s

)
(2.11)

+ T3(φa(x), λ) + o(λ−2s), (2.12)

for some term T3(φ, λ) as in (2.5). Multiplying this expansion with (2.2), we obtain

Sa+εV [ψx,λ] = cn,sA
2s
N

N,s +A
−N−2s

N

N,s

[
aN,scN,sφa(x)λ−N+2s + T2(φa(x), λ)

− a(x)λ−2s(αN,s + cN,sdN,sbN,s) + ελ−N+2sQV (x)
]

+ o(λ−2s) + o(ελ−N+2s).

By integrating the equation (−∆)sU0,1 = cN,sU
p−1
0,1 and using the fact that U0,1 minimizes the Sobolev

quotient on RN (or by a computation on the numerical values of the constants given in Lemma B.5),
we have cN,sA

2s
N

N,s = S. Hence, this is the expansion claimed in (2.4). �

3. Proof of the lower bound I: a first expansion

3.1. Non-existence of a minimizer for S(a). In this section, we prove that for a critical potential
a, the infimum S(a) is not attained. As we will see in Section 3.2, this implies the important basic
fact that the minimizers for S(a+ εV ) must blow up as ε→ 0.

The following is the main result of this section.

Proposition 3.1 (Non-existence of a minimizer for S(a)). Suppose that a ∈ C(Ω) is a critical potential.
Then

S(a) = inf
u∈H̃s(Ω),u 6≡0

∫
Ω
|(−∆)s/2u|2 dy +

∫
Ω
au2 dy

‖u‖2 2N
N−2s

is not achieved.

For s = 1, Proposition 3.1 was proved by Druet [20] and we follow his strategy. The feature that makes
the generalization of [20] to s ∈ (0, 1) not completely straightforward is its use of the product rule for
ordinary derivatives. Instead, we shall use the identity

(−∆)s(uv) = u(−∆)sv + v(−∆)su− Is(u, v), (3.1)

where

Is(u, v)(x) := CN,sP.V.

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dy,

with CN,s as in (1.6). While the relation (3.1) can be verified by a simple computation (see e.g. [25,
Lemma 20.2]), it leads to more complicated terms than those arising in Druet’s proof. To be more
precise, the term

∫
Ω
u2|∇ϕ|2 from [20] is replaced by the term I(ϕ) defined in (3.6), which is more

involved to evaluate for the right choice of ϕ.

Proof of Proposition 3.1. For the sake of finding a contradiction, we suppose that there exists u which
achieves S(a), normalized so that ∫

Ω

u
2N
N−2s dy = 1. (3.2)

Then u satisfies the equation
(−∆)su+ au = Su

N−2s
N−2s , (3.3)
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with Lagrange multiplier S = SN,s equal to the Sobolev constant. (Indeed, this value is determined
by integrating the equation against u and using (3.2).)

Since S(a) = S, we have, for every ϕ ∈ C∞(RN ) and ε > 0, and abbreviating p = 2N
N−2s ,

S

(∫
Ω

(u(1 + εϕ))
p

dy

) 2
p

≤
∫
RN
|(−∆)s/2 (u(1 + εϕ)) |2 dy +

∫
Ω

au2(1 + εϕ)2 dy. (3.4)

We shall expand both sides of (3.4) in powers of ε. For the left side, a simple Taylor expansion together
with (3.2) gives(∫

Ω

(u(1 + εϕ))
p

dy

) 2
p

= 1 + 2ε

∫
Ω

upϕdy+ ε2

(
(p− 1)

∫
Ω

upϕ2 dy − (p− 2)

(∫
Ω

upϕdy

)2
)

+o(ε2).

(3.5)
Expanding the right side is harder and we need to invoke the fractional product rule (3.1). Firstly,
integrating by parts we have∫

RN
|(−∆)s/2 (u(1 + εϕ)) |2 dy =

∫
RN

u(1 + εϕ)(−∆)s (u(1 + εϕ)) dy.

By (3.1), we can write

(−∆)s (u(1 + εϕ)) = (1 + εϕ)(−∆)su+ εu(−∆)sϕ− εIs(u, ϕ).

Hence ∫
RN
|(−∆)s/2 (u(1 + εϕ)) |2 dy =

∫
Ω

u(−∆)su(1 + εϕ)2 + ε2I(ϕ),

where we write

I(ϕ) := ε−1

∫
Ω

u(1 + εϕ) (u(−∆)sϕ− Is(u, ϕ)) dy. (3.6)

Writing out (−∆)sϕ as the singular integral given by (1.5), we obtain (we drop the principal value for
simplicity)

I(ϕ) = ε−1CN,s

∫∫
RN×RN

u(x)u(y)(1 + εϕ(x))
ϕ(x)− ϕ(y)

|x− y|N+2s
dxdy (3.7)

=
CN,s

2

∫∫
RN×RN

u(x)u(y)
|ϕ(x)− ϕ(y)|2

|x− y|N+2s
dxdy.

The last equality follows by symmetrizing in the x and y variables.

Thus we can write the right side of (3.4) as∫
RN
|(−∆)s/2 (u(1 + εϕ)) |2 dy +

∫
Ω

au2(1 + εϕ)2 dy

=

∫
Ω

u((−∆)su+ au)(1 + εϕ)2 dy + ε2I(ϕ)

= S

∫
Ω

up(1 + εϕ)2 dy + ε2I(ϕ),

where we used equation (3.3). After expanding the square (1 + εϕ)2, the terms of orders 1 and ε on
both sides of (3.4) cancel precisely. For the coefficients of ε2, we thus recover the inequality∫

Ω

upϕ2 dy ≤ 1

S(p− 2)
I(ϕ) +

(∫
Ω

upϕdy

)2

. (3.8)

We now make a suitable choice of ϕ, which turns (3.8) into the desired contradiction. As in [20], we
choose

ϕi(y) := (S(y))i, i = 1, ..., N + 1,
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where S : RN → SN is the (inverse) stereographic projection, i.e. [31, Sec. 4.4]

ϕi =
2yi

1 + |y|2
for i = 1, ..., N, ϕN+1 =

1− |y|2

1 + |y|2
. (3.9)

Moreover we may assume (up to scaling and translating Ω if necessary) that the balancing condition∫
Ω

upϕi dy = 0, i = 1, ..., N + 1 (3.10)

is satisfied. Since [20] is rather brief on this point, we include some details in Lemma 3.2 below for the
convenience of the reader.

By definition, we have
∑N+1
i=1 ϕ2

i = 1. Testing (3.8) with ϕi and summing over i thus yields, by (3.10),

1 =

∫
Ω

up dy ≤ 1

S(p− 2)

N+1∑
i=1

I(ϕi). (3.11)

To obtain a contradiction and finish the proof, we now show that
∑N+1
i=1 I(ϕi) < S(p−2). By definition

of ϕi, we have
N+1∑
i=1

I(ϕi) =
CN,s

2

∫∫
RN×RN

u(x)u(y)
|S(x)− S(y)|2

|x− y|N+2s
dx dy. (3.12)

To evaluate this integral further, we pass to SN . Set JS−1(η) := detDS−1(η) and define

U(η) := u(S−1(η))JS−1(η)
1
p ,

so that
∫
SN U

p dη = 1. Since the distance transforms as

|S−1(η)− S−1(ξ)| = JS−1(η)
1

2N |η − ξ|JS−1(ξ)
1

2N ,

changing variables in (3.12) gives
N+1∑
i=1

I(ϕi) =
CN,s

2

∫∫
SN×SN

U(η)U(ξ)

|η − ξ|N+2s−2
dη dξ (3.13)

By applying first Cauchy–Schwarz and then Hölder’s inequality, we estimate
N+1∑
i=1

I(ϕi) ≤
CN,s

2

∫∫
SN×SN

U(η)2

|η − ξ|N+2s−2
dη dξ

=
CN,s

2
δN,s

∫
SN
U(η)2 dη <

CN,s
2

δN,s|SN |
2s
N , (3.14)

where the last inequality is strict. Indeed, U vanishes near the south pole of SN , hence there cannot
be equality in Hölder’s inequality applied with the functions U2 and 1. Moreover, in the above we
abbreviated

δN,s :=

∫
SN

1

|η − ξ|N+2s−2
dξ

(note that this number is independent of η ∈ SN ). By transforming back to Rn and evaluating a Beta
function integral, the explicit value of δN,s can be computed explicitly to be

δN,s = 22−2sπN/2
Γ(1− s)

Γ(N2 + 1− s)
.

Inserting this into estimate (3.14), as well as the explicit values of CN,s given in (1.6) and of SN,s given
in (1.9), a direct computation then gives∑N+1

i=1 I(ϕi)

SN,s
<

1

SN,s

CN,s
2

δN,s|SN |
2s
N =

s22−2s

N − 2s

(
2

Γ(N)Γ( 1
2 )

Γ(N+1
2 )Γ(N2 )

) 2s
N

.
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It can be easily shown by induction over N that

2
Γ(N)Γ( 1

2 )

Γ(N+1
2 )Γ(N2 )

= 2N

for every N ∈ N, and hence
N+1∑
i=1

I(ϕi) < S
4s

N − 2s
= S(p− 2).

This is the desired contradiction to (3.11). �

Here is the lemma that we referred to in the previous proof. It expands an argument sketched in [20,
Step 1]. To emphasize its generality, instead of up we state it for a general nonnegative function h
with

∫
Ω
h = 1.

Lemma 3.2. Let Ω ⊂ RN be an open bounded set and 0 ≤ h ∈ L1(Ω) with ‖h‖1 = 1. Then there is
(y, t) ∈ RN × (0,∞) such that

F (y, t) :=

∫
Ω

h(x)
2t(x− y)

1 + t2|x− y|2
dx = 0,

G(y, t) :=

∫
Ω

h(x)
1− t2|x− y|2

1 + t2|x− y|2
dx = 0.

Proof. Define H : RN × R→ RN+1 by

H(y, s) :=

(
F

(
y,
s+
√
s2 + 4

2

)
+ y,G

(
y,
s+
√
s2 + 4

2

)
+ s

)
.

We claim that
|H(y, s)| ≤ |y|2 + s2 (3.15)

whenever |y|2+s2 is large enough. Thus for large enough radii R > 0, the mapH sends B(0, R) ⊂ RN+1

into itself. By the Brouwer fixed point theorem, H has a fixed point (y, s). Then the pair (y, s+
√
s2+4
2 )

satisfies the property stated in the lemma.

To prove (3.15), it is more natural to set t := s+
√
s2+4
2 > 0, so that s = t − t−1. By writing out

|H(y, s)|2, (3.15) is equivalent to

2y · F (y, t) + 2(t− t−1)G(y, t) + |F (y, t)|2 + |G(y, t)|2 ≤ 0 (3.16)

whenever |y|2 + (t− t−1)2 is large enough.

First, it is easy to see that y · F (y, t), F (y, t) and G(y, t) are bounded in absolute value uniformly in
(y, t) ∈ RN × (0,∞). Moreover, there is C > 0 such that

G(y, t) = 1− 2

∫
Ω

h(x)
t2|x− y|2

1 + t2|x− y|2
dx

{
≥ 1

2 if 0 < t ≤ 1/C,

≤ − 1
2 if t ≥ C.

Therefore (t − t−1)G(y, t) → −∞ as t → 0 or t → ∞. Thus (3.16) holds whenever (t − t−1)2 is large
enough.

Thus we assume in the following that t ∈ [1/C,C] and prove that (3.16) holds if |y| is large enough.
For convenience, fix some sequence (y, t) with |y| → ∞ and t → t0 ∈ (0,∞). Then |F (y, t)| → 0 and
G(y, t)→ −1. Moreover, since Ω is bounded, |x−y||y| → 1 uniformly in x ∈ Ω and hence

2y · F (y, t) = −
∫

Ω

h(x)
4t|y|2

1 + t2|x− y|2
+O

(∫
Ω

h(x)
t|y|

1 + t2|x− y|2
dx

)
→ − 4

t0
.
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Altogether, the quantity on the left side of (3.16) thus tends to −2t0 − 2t−1
0 + 1 ≤ −3 < 0, which

concludes the proof of (3.16). �

3.2. Profile decomposition. The following proposition gives an asymptotic decomposition of a gen-
eral sequence of normalized (almost) minimizers of S(a+ εV ).

Proposition 3.3 (Profile decomposition). Let a ∈ C(Ω) be critical and let V ∈ C(Ω) be such that
Na(V ) 6= ∅. Suppose that (uε) ⊂ H̃s(Ω) is a sequence such that

lim
ε→0

Sa+εV [uε]− S(a+ εV )

S − S(a+ εV )
= 0 and

∫
Ω

upε dy =

∫
RN

Up0,1 dy. (3.17)

Then there are sequences (xε) ⊂ Ω, (λε) ⊂ (0,∞), (wε) ⊂ T⊥xε,λε , and (αε) ⊂ R such that, up to
extraction of a subsequence,

uε = αε (PUxε,λε + wε) . (3.18)

Moreover, as ε→ 0, we have

‖(−∆)s/2wε‖2 → 0,

d(xε)λε →∞,
xε → x0,

αε → ±1.

In all of the following, we shall always work with a sequence uε that satisfies the assumptions of
Proposition 3.3. For readability, we shall often drop the index ε from αε, xε, λε and wε, and write
d := dε := d(xε). Moreover, we make the convention that we always assume the strict inequality

S(a+ εV ) < S. (3.19)

In Theorems 1.4 and 1.6 we assume Na(V ) 6= ∅, so assumption (3.19) is certainly justified in view of
Corollary 2.3. For Theorem 1.5, where we assume Na(V ) = ∅, we discuss the role of assumption (3.19)
in the proof of that theorem in Section 6.

Proof. Step 1. We derive a preliminary decomposition in terms of the Sobolev optimizers Uz,λ and
without orthogonality condition on the remainder, see (3.20) below.

The assumptions imply that the sequence (uε) is bounded in H̃s(Ω), hence up to a subsequence we
may assume uε ⇀ u0 for some u0 ∈ H̃s(Ω). By the argument given in [24, Proof of Proposition 3.1,
Step 1], the fact that Sa+εV [uε] → S(a) = S implies that either u0 is a minimizer for S(a), unless
u0 ≡ 0. Since such a minimizer does not exist by Proposition 3.1, we conclude that in fact uε ⇀ 0 in
H̃s(Ω).

By Rellich’s theorem, uε → 0 strongly in L2(Ω), in particular
∫

Ω
(a + εV )u2

ε = o(1). The as-
sumption (1.17) therefore implies that (uε) is a minimizing sequence for the Sobolev quotient∫
RN |(−∆)s/2u|2 dy/‖u‖2 2N

N−2s

. Therefore the assumptions of [32, Theorem 1.3] are satisfied, and we

may conclude by that theorem that there are sequences (zε) ⊂ RN , (µε) ⊂ (0,∞), (σε) such that

µ
−N−2s

2
ε uε(zε + µ−1

ε ·)→ βU0,1

in Ḣs(RN ), for some β ∈ R. By the normalization condition from (1.17), β ∈ {±1}. Now, a change of
variables y = zε + µ−1

ε x implies
uε(y) = Uzε,µε(y) + σε, (3.20)

where still σε → 0 in Ḣs(RN ), since the Ḣs(RN )-norm is invariant under this change of variable.
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Moreover, since Ω is smooth, the fact that∫
µεΩ+zε

Up0,1 dy =

∫
Ω

Upzε,µε dy =

∫
RN

Up0,1 dy + o(1)

implies µεdist(zε,RN \ Ω)→∞.

Step 2. We make the necessary modifications to derive (3.18) from (3.20). The crucial argument is
furnished by [2, Proposition 4.3], which generalizes the corresponding statement by Bahri and Coron
[3, Proposition 7] to fractional s ∈ (0, 1). It states the following. Suppose that u ∈ H̃s(Ω) with
‖u‖H̃s(Ω) = AN,s satisfies

inf
{
‖(−∆)s/2(u− PUx,λ)‖2 : x ∈ Ω, λd(x) > η−1

}
< η. (3.21)

for some η > 0. Then if η is small enough, the minimization problem

inf
{
‖(−∆)s/2(u− αPUx,λ)‖2 : x ∈ Ω, λd(x) > (4η)−1, α ∈ (1/2, 2)

}
(3.22)

has a unique solution.

By the decomposition from Step 1 and Lemma A.2, we have

‖(−∆)s/2(uε − PUzε,µε)‖2 ≤ ‖(−∆)s/2(Uzε,µε − PUzε,µε)‖2 + ‖(−∆)s/2σε‖2 → 0

as ε → 0, so that (3.21) is satisfied by uε for all ε small enough, with a constant ηε tending to zero.
We thus obtain the desired decomposition

uε = αε(PUxε,λε + wε)

by taking (xε, λε, αε) to be the solution to (3.22) and wε := α−1
ε uε − PUxε,λε . To verify the claimed

asymptotic behavior of the parameters, note that since ηε → 0, by definition of the minimization
problem (3.22), we have ‖(−∆)s/2wε‖2 < ηε → 0 and λεd(xε) > (4ηε)

−1 → ∞. Since Ω is bounded,
the convergence xε → x0 ∈ Ω is ensured by passing to a suitable subsequence. Finally, using (1.17) we
have ∫

RN
Up0,1 dy =

∫
Ω

upε dy = |αε|p
∫

Ω

PUxε,λε dy + o(1) = |αε|p
∫
RN

Up0,1 dy + o(1),

which implies αε = ±1 + o(1). �

3.3. Coercivity. In the following sections, our goal is to improve the bounds from Proposition 3.3
step by step.

The following inequality, and its improvement in Proposition 3.5 below, will be central. For s = 1,
these inequalities are due to Rey [34, Eq. (D.1)] and Esposito [21, Lemma 2.1], respectively, whose
proofs inspired those given below.

Proposition 3.4 (Coercivity inequality). For all x ∈ Rn and λ > 0, we have

‖(−∆)s/2v‖22 − cN,s(p− 1)

∫
Ω

Up−2
x,λ v

2 dy ≥ 4s

N + 2s+ 2
‖(−∆)s/2v‖22, (3.23)

for all v ∈ T⊥x,λ.

As a corollary, we can include the lower order term
∫

Ω
av2, at least when d(x)λ is large enough and at

the price of having a non-explicit constant on the right side. This is the form of the inequality which
we shall use below to refine our error bounds in Sections 3.4 and 5.2.

Proposition 3.5 (Coercivity inequality with potential a). Let (xn) ⊂ Ω and (λn) ⊂ (0,∞) be se-
quences such that dist(xn, ∂Ω)λn →∞. Then there is ρ > 0 such that for all n large enough,

‖(−∆)s/2v‖22 +

∫
Ω

av2 dy−cN,s(p−1)

∫
Ω

Up−2
xn,λn

v2 dy ≥ ρ‖(−∆)s/2v‖22, for all v ∈ T⊥xn,λn . (3.24)
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Proof. Abbreviate Un := Uxn,λn and Tn := Txn,λn . We follow the proof of [21] and define

Cn := inf

{
1 +

∫
Ω

av2 dy − cN,s(p− 1)

∫
Ω

Up−2
n v2 dy : v ∈ T⊥n , ‖(−∆)s/2v‖ = 1

}
.

Then Cn is bounded from below, uniformly in n. We first claim that Cn is achieved whenever Cn <
1. Indeed, fix n and let vk be a minimizing sequence. Up to a subsequence, vk ⇀ v∞ in H̃s(Ω)
and consequently ‖(−∆)s/2v∞‖ ≤ 1 and

∫
Ω
av2
k − cN,s(p − 1)

∫
Ω
Up−2
n v2

k dy →
∫

Ω
av2
∞ − cN,s(p −

1)
∫

Ω
Up−2
n v2

∞ dy, by compact embedding H̃s(Ω) ↪→ L2(Ω). Thus

(1− Cn)‖(−∆)s/2v∞‖2 +

∫
Ω

av2
∞ dy − cN,s(p− 1)

∫
Ω

Up−2
n v2

∞ dy

≤ (1− Cn) +

∫
Ω

av2
∞ dy − cN,s(p− 1)

∫
Ω

Up−2
n v2

∞ dy = 0.

On the other hand, the left hand side of the above inequality must itself be non-negative, for otherwise
ṽ := v∞/‖(−∆)s/2v∞‖ (notice that Cn < 1 enforces v∞ 6≡ 0) yields a contradiction to the definition of
Cn as an infimum. Thus the above inequality must be in fact an equality, whence ‖(−∆)s/2v∞‖ = 1.
We have thus proved that Cn is achieved if Cn < 1.

Now, assume for contradiction, up to passing to a subsequence, that limn→∞ Cn =: L ≤ 0. By the
first part of the proof, let vn be a minimizer satisfying

(1− Cn)

∫
RN

(−∆)s/2vn(−∆)s/2w dy +

∫
Ω

avnw dy − cN,s(p− 1)

∫
Ω

Up−2
n vnw dy = 0 (3.25)

for all w ∈ T⊥n . Up to passing to a subsequence, we may assume vn ⇀ v ∈ H̃s(Ω). We claim that

(1− L)(−∆)sv + av = 0 in (H̃s(Ω))′. (3.26)

Assuming (3.26) for the moment, we obtain a contradiction as follows. Testing (3.26) against v ∈ H̃s(Ω)
gives

‖(−∆)s/2v‖2 +

∫
Ω

av2 dy = L‖(−∆)s/2v‖2 ≤ 0.

On the other hand, by coercivity of (−∆)s + a, the left hand side must be nonnegative and hence
v ≡ 0. By compact embedding, we deduce vn → 0 strongly in L2(Ω) and thus

Cn = 1− cN,s(p− 1)

∫
Ω

U2
nv

2
n dy + o(1) ≥ 4s

N + 2s+ 2
+ o(1).

This is the desired contradiction to limn→∞ Cn ≤ 0.

At last, we prove (3.26). Let ϕ ∈ H̃s(Ω) be given and write ϕ = un +wn, with un ∈ Tn and wn ∈ T⊥n .
By (3.25) and using

∫
RN (−∆)s/2vn(−∆)s/2un = 0,

(1− Cn)

∫
RN

(−∆)s/2vn(−∆)s/2ϕdy +

∫
Ω

avnϕdy − cN,s(p− 1)

∫
Ω

Up−2
n vnϕdy (3.27)

=

∫
Ω

avnun dy − cN,s(p− 1)

∫
Ω

Up−2
n vnun dy = O(‖(−∆)s/2un‖). (3.28)

On the one hand, we have ∣∣∣∣∫
Ω

Up−2
n vnϕdy

∣∣∣∣ ≤ ‖Up−2
n ϕ‖ p

p−1
→ 0

because ϕ
p
p−1 ∈ Lp−1 = (L

p−1
p−2 (Ω))′ and U

(p−2)p
p−1

n ⇀ 0 weakly in L
p−1
p−2 (Ω). Thus, by weak convergence,

the expression in (3.27) tends to

(1− L)

∫
RN

(−∆)s/2v(−∆)s/2ϕdy +

∫
Ω

avϕdy
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as desired. In view of (3.28), the proof of (3.26) is thus complete if we can show ‖(−∆)s/2un‖ → 0.
This is again a consequence of weak convergence to zero of the Un. Indeed, by Lemmas B.1 and B.2
we have∣∣∣∣∫

RN
(−∆)s/2

PUn
‖(−∆)s/2PUn‖

(−∆)s/2ϕdy

∣∣∣∣ . ∫
RN

Up−1
n |ϕ|dy = o(1),∣∣∣∣∫

RN
(−∆)s/2

∂λPUn
‖(−∆)s/2∂λPUn‖

(−∆)s/2ϕdy

∣∣∣∣ . λ ∫
RN

Up−2
n ∂λUnϕdy . ‖Up−2

n ϕ‖ p
p−1

= o(1),

and similarly ∫
RN

(−∆)s/2(λ−N+2s∂xiPUn)(−∆)s/2ϕdy = o(1).

Here we used again that Up−1
n ⇀ 0 in L

p
p−1 and U

(p−2)p
p−1

n ⇀ 0 in L
p−1
p−2 weakly.

∫
Ω
U

(p−2)p
p−1 ϕ

p
p−1 dy = o(1)

by weak convergence.

From the convergence to zero of these scalar products, one can conclude un → 0 by using the fact
that the PUn, ∂λPUn, ∂xiPUn are ’asymptotically orthogonal’ by the bounds of Lemma B.2. For a
detailed argument, we refer to Lemma 5.2 below, see also [24, Lemma 6.1]. �

Let us now prepare the proof of Proposition 3.4. We recall that S : RN → SN \{S} (where S = −eN+1

is the southpole) denotes the inverse stereographic projection defined in (3.9), with Jacobian JS(x) :=

detDS(x) =
(

2
1+|x|2

)N
.

Given a function v on RN , we may define a function u on SN by setting

u(ω) := vS−1(ω) := v(S−1(ω))JS−1(ω)
N−2s
2N , ω ∈ SN \ {S}.

The inverse of this map is of course given by

v(y) := uS(y) := u(S(y))JS(y)
N−2s
2N , y ∈ RN .

The exponent in the determinantal factor is chosen such that ‖v‖Lp(RN ) = ‖u‖Lp(SN ).

For a basis (Yl,m) of L2(SN ) consisting of L2-normalized spherical harmonics, write u ∈ L2(SN ) as
u =

∑
l,m ul,mYl,m with coefficients ul,m ∈ R. With

λl =
Γ(l + N

2 + s)

Γ(l + N
2 − s)

. (3.29)

the Paneitz operator P2s is defined by

P2su :=
∑
l,m

λlul,mYl,m

for every u ∈ L2(SN ) such that
∑
l,m λlu

2
l,m <∞.

It is well-known (see [5]) that, for every v ∈ C∞0 (RN ), we have,

(−∆)sv(x) = JS(x)
N+2s
2N P2su(S(x)), (3.30)

where u = vS . Thus we have∫
RN
|(−∆)s/2v|2 dy =

∫
RN

v(−∆)sv dy =

∫
SN
uP2sudy =

∑
l,m

λlu
2
l,m.

Since C∞0 (RN ) is dense in the space Ds,2(RN ) := {v ∈ L
2N
N−2s (RN ) : (−∆)s/2v ∈ L2(RN )} (see e.g.

[7]), the equality ∫
RN
|(−∆)s/2v|2 dy =

2∑
l,m

λlu
2
l,m (3.31)
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extends to all v ∈ Ds,2(RN ). In particular it holds for v ∈ H̃s(Ω).

Proof of Proposition 3.4. We first prove (3.23) for (x, λ) = (0, 1). Let v ∈ T⊥0,1 and denote u = vS .
We claim that the orthogonality conditions on v imply that ul,m = 0 for l = 0, 1. Indeed, e.g. from

v ⊥ ∂λPU0,1 and recalling JS(y) = ( 2
1+|y|2 )N = 2NU

2N
N−2s

0,1 we compute

0 =

∫
RN

(−∆)s/2v(−∆)s/2∂λPU0,1 dy = cN,s
N + 2s

N − 2s

∫
RN

vU
4s

N−2s

0,1 ∂λU0,1 dy

= cN,s
N + 2s

N − 2s
2−

N+2s
2

∫
RN

v(y)JS(y)
N+2s
2N

1− |y|2

1 + |y|2
dy = cN,s

N + 2s

N − 2s
2−

N+2s
2

∫
SN
u(ω)ωN+1 dσ(ω).

Analogous calculations show that v ⊥ PU0,1 implies
∫
SN u = 0 and that v ⊥ ∂xiPU0,1 implies

∫
SN uωi =

0 for i = 1, ..., N . Since the functions 1 and ωi (i = 1, ..., N + 1) form a basis of the space of spherical
harmonics of angular momenta l = 0 and l = 1 respectively, we have proved our claim.

Since the eigenvalues λl of P2s are increasing in l, changing back variables to RN , we deduce from
(3.31) that∫

RN
|(−∆)s/2v|2 dy =

∑
l,m

λlu
2
l,m ≥ λ2

∫
SN
u(ω)2 dσ(ω) = 22sλ2

∫
RN

v2(y)Up−2
0,1 (y) dy.

By an explicit computation using the numerical values of λ2 given by (3.29) and cN,s given in Lemma
B.5, this is equivalent to

‖(−∆)s/2v‖22 − cN,s(p− 1)

∫
Ω

Up−2
0,1 v2 dy ≥ 4s

N + 2s+ 2
‖(−∆)s/2v‖22, (3.32)

which is the desired inequality.

The case of general (x, λ) ∈ Ω× (0,∞) can be deduced from this by scaling. Indeed, for v ∈ T⊥x,λ, set
vx,λ(y) := v(x − λ−1y). Then vx,λ ∈ T⊥0,1 with respect to the set λ(x − Ω), so that by the above vx,λ
satisfies

‖(−∆)s/2vx,λ‖22 − cN,s(p− 1)

∫
λ(x−Ω)

Up−2
0,1 v2

x,λ dy ≥ 4s

N + 2s+ 2
‖(−∆)s/2vx,λ‖22.

Changing back variables now yields (3.32). �

3.4. Improved a priori bounds. The main section of this section is the following proposition, which
improves Proposition 3.3. It states that the concentration point x0 does not lie on the boundary of Ω
and gives an optimal quantitative bound on w.

Proposition 3.6. As ε→ 0,

‖(−∆)s/2w‖ = O(λ−
N−2s

2 ) (3.33)

and

d−1 = O(1). (3.34)

In particular, x0 ∈ Ω.

The proposition will readily follow from the following expansion of Sa+εV [uε] with respect to the
decomposition uε = α(PUx,λ + w) obtained in the previous section.
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Lemma 3.7. As ε→ 0, we have

Sa+εV [uε] = S + 22sπN/2
Γ(s)

Γ(N−2s
2 )

(
S

cN,s

)−N−2s
2s

φ0(x)λ−N+2s

+

(
S

cN,s

)−N−2s
2s
(
‖(−∆)s/2w‖2 +

∫
Ω

aw2 dy − cN,s(p− 1)

∫
Ω

Up−2
x,λ w

2 dy

)
+O

(
λ−

N−2s
2 ‖(−∆)s/2w‖

)
+ o

(
(dλ)−N+2s

)
+ o

(
‖(−∆)s/2w‖2

)
.

Proof of Proposition 3.6. Using the almost minimality assumption (1.17) and the coercivity inequality
from Proposition 3.5, the expansion from Lemma 3.7 yields the inequality

0 ≥ (1+o(1))(S−S(a+εV ))+cφ0(x)λ−N+2s+c‖(−∆)s/2w‖2+O
(
λ−

N−2s
2 ‖(−∆)s/2w‖

)
+o
(
(dλ)−N+2s

)
for some c > 0. By Lemma A.1, we have the lower bound φ0(x) & d−N+2s. Together with the estimate

O
(
λ−

N−2s
2 ‖(−∆)s/2w‖

)
≤ δ‖(−∆)s/2w‖2 + Cδλ

−N+2s,

we obtain by taking δ small enough

Cδλ
−N+2s ≥ (1 + o(1))(S − S(a+ εV )) + c(dλ)−N+2s + c‖(−∆)s/2w‖2.

Since all three terms on the right side are nonnegative, the proposition follows. �

Proof of Lemma 3.7. Step 1: Expansion of the numerator. By orthogonality, we have

‖(−∆)s/2(PUx,λ + w)‖2 = ‖(−∆)s/2PUx,λ‖2 + ‖(−∆)s/2w‖2.
The main term can be written as

‖(−∆)s/2PUx,λ‖2 =

∫
Ω

PUx,λ(−∆)sPUx,λ dy = cN,s

∫
Ω

Up−1
x,λ PUx,λ dy

= cN,s

∫
Ω

Upx,λ dy + cN,sλ
−N−2s

2

∫
Ω

Up−1
x,λ H0(x, ·) dy +O(‖fx,λ‖∞

∫
Ω

Up−1
x,λ dy),

where we used PUx,λ = Ux,λ − λ−
N−2s

2 H0(x, ·) + fx,λ with ‖fx,λ‖∞ . λ
−N+4−2s

2 d−N−2+2s, by Lemma
A.2. Thus

‖f‖∞
∫

Ω

Up−1
x,λ dy . (dλ)−N+2s−2 = o((dλ)−N+2s).

Next, we have∫
RN\Ω

Upx,λ dy ≤
∫
RN\Bd

Upx,λ dy .
∫ ∞
dλ

rN−1

(1 + r2)N
dr . (dλ)−N = o((dλ)−N+2s)

and thus
cN,s

∫
Ω

Upx,λ dy = cN,s‖U0,1‖pp + o((dλ)−N+2s).

Finally, using that H0(x, y) = φ0(x) + O(‖∇yH0(x, ·)‖∞|x − y|) = φ0(x) + O(d−N+2s−1|x − y|) by
Lemma A.1, we have

λ−
N−2s

2

∫
Ω

Up−1
x,λ H0(x, ·) dy = λ−

N−2s
2 φ0(x)

∫
Bd

Up−1
x,λ dy +O(d−N+2s−1λ−

N−2s
2

∫
Bd

Up−1
x,λ |x− y|dy)

+ λ−
N−2s

2

∫
Ω\Bd

Up−1
x,λ H0(x, y) dy.

Since H0(x, y) . d−N+2s by Lemma A.1, the last term is

λ−
N−2s

2

∫
Ω\Bd

Up−1
x,λ H0(x, ·) dy . d−N+2sλ−

N−2s
2

∫
RN\Bd

Up−1
x,λ dy . (dλ)−N = o((dλ)−N+2s).



FRACTIONAL BREZIS–NIRENBERG IN LOW DIMENSIONS 21

Similarly,

λ−
N−2s

2 φ0(x)

∫
Bd

Up−1
x,λ dy = λ−

N−2s
2 φ0(x)‖U0,1‖p−1

p−1 +O

(
φ0(x)λ−

N−2s
2

∫
RN\Bd

Up−1
x,λ dy

)
= λ−

N−2s
2 φ0(x)‖U0,1‖p−1

p−1 +O((dλ)−N )

= λ−
N−2s

2 φ0(x)‖U0,1‖p−1
p−1 + o((dλ)−N+2s).

Finally,

d−N+2s−1λ−
N−2s

2

∫
Bd

Up−1
x,λ |x− y| . (dλ)−N+2s−1

∫ dλ

0

rN

(1 + r2)
N+2s

2

dr = o((dλ)−N+2s)

(where one needs to distinguish the cases where 1 − 2s is positive, negative or zero because the dr-
integral is divergent if 1− 2s ≥ 0).

Collecting all the previous estimates, we have proved

‖(−∆)s/2PUx,λ‖2 = cN,s‖Ux,λ‖pp + cN,sλ
−N+2s‖Ux,λ‖p−1

p−1φ0(x) + o((dλ)−N+2s). (3.35)

The potential term splits as∫
Ω

(a+ εV )(PUx,λ + w)2 dy =

∫
Ω

(a+ εV )PU2
x,λ dy +

∫
Ω

aw2 dy +

∫
Ω

(
(a+ εV )PUx,λw + εV w2

)
dy

and we can estimate ∣∣∣∣∫
Ω

(a+ εV )PU2
x,λ dy

∣∣∣∣ . ‖Ux,λ‖22 . λ−N+2s

as well as∫
Ω

(
(a+ εV )PUx,λw + εV w2

)
dy . ‖PUx,λ‖p′‖w‖p+ε‖w‖2 = O

(
λ−

N−2s
2 ‖(−∆)s/2w‖) + o(‖(−∆)s/2w‖2

)
.

In summary we have, for the numerator of Sa+εV [uε],

α−2

(
‖(−∆)s/2u‖2 +

∫
Ω

(a+ εV )u2 dy

)
= cN,s‖Ux,λ‖pp + cN,sλ

−N+2s‖Ux,λ‖p−1
p−1φ0(x) + ‖(−∆)s/2w‖2 +

∫
Ω

aw2 dy

+O(λ−N+2s) +O(λ−
N−2s

2 ‖(−∆)s/2w‖+ o((dλ)−N+2s) + o(‖(−∆)s/2w‖2).

Step 2: Expansion of the denominator. By Taylor’s formula,

(PUx,λ + w)p = PUpx,λ + pPUp−1
x,λ w +

p(p− 1)

2
PUp−2

x,λ w
2 +O(PUp−3

x,λ |w|
3 + |w|p).

Note that, strictly speaking, we use this formula if p ≥ 3. If 2 < p ≤ 3, the same is true without the
remainder term PUp−3|w|3, which does not affect the rest of the proof. To evaluate the main term,
write PUx,λ = Ux,λ − ϕx,λ with ϕx,λ := λ−1/2H0(x, ·) + fx,λ, see Lemma A.2. Then∫

Ω

PUpx,λ dy =

∫
Ω

Upx,λ dy − p
∫

Ω

Up−1
x,λ ϕx,λ dy +O

(∫
Ω

(Up−2
x,λ ϕ

2
x,λ + ϕpx,λ) dy

)
‖U0,1‖pp − pλ−N+2s‖U0,1‖p−1

p−1φ0(x) + o((dλ)−N+2s)

where we used that by Lemmas A.2 and B.1
∫

Ω
Up−2
x,λ ϕ

2
x,λ dy ≤ ‖Ux,λ‖p−2

p−2‖ϕx,λ‖2∞ . (dλ)−2N+4s =

o((dλ)−N+2s) and ‖ϕx,λ‖pp . (dλ)−N = o((dλ)−N+2s).

Next, the integral of the remainder term is controlled by∫
Ω

(PUp−3
x,λ |w|

3 + |w|p) dy . ‖PUx,λ‖p−3
p ‖w‖3p + ‖w‖pp = o(‖(−∆)s/2w‖2).
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The term linear in w is∫
Ω

PUp−1
x,λ w dy =

∫
Ω

Up−1
x,λ w dy +O

(∫
Ω

(Up−2
x,λ ϕ|w|+ ϕp−1|w|) dy

)
.

Now by orthogonality of w, we have∫
Ω

Up−1
x,λ w dy = c−1

N,s

∫
Ω

(−∆)sUx,λw dy =

∫
RN

(−∆)s/2Ux,λ(−∆)s/2w dy = 0.

Moreover, using ‖ϕx,λ‖p . (dλ)−
N−2s

2 by Lemma A.2, we get∣∣∣∣∫
Ω

ϕp−1
x,λ w dy

∣∣∣∣ ≤ ‖ϕx,λ‖p−1
p ‖w‖p ≤ (dλ)−

N+2s
2 ‖(−∆)s/2w‖ = o((dλ)−N+2s).

Using additionally that ‖ϕx,λ‖∞ . d−N+2sλ−
N−2s

2 by Lemma A.2, by the same computation as in [22,
Lemma A.1] we get ‖Up−2

x,λ ϕx,λ‖ p
p−1
. (dλ)−N+2s and therefore∫

Ω

Up−2
x,λ ϕx,λ|w|dy . (dλ)−N+2s‖(−∆)s/2w‖.

In summary we have, for the denominator of Sa+εV [uε],

α−p
∫

Ω

upε dy = ‖U0,1‖pp − pλ−N+2s‖U0,1‖p−1
p−1φ0(x) +

p(p− 1)

2

∫
Ω

Up−2
x,λ w

2 dy

+O((dλ)−N+2s‖(−∆)s/2w‖) + o(‖(−∆)s/2w‖2) + o((dλ)−N+2s).

Step 3: Expansion of the quotient. Using Taylor’s formula, we find, for the denominator,

α−2

(∫
Ω

upε dy

)−2/p

= ‖U0,1‖−2
p + 2‖U0,1‖−p−2

p ‖U0,1‖p−1
p−1λ

−N+2sφ0(x)

− cN,s(p− 1)‖U0,1‖−p−2
p

∫
Ω

Up−2
x,λ w

2 dy

+O((dλ)−N+2s‖(−∆)s/2w‖) + o(‖(−∆)s/2w‖2) + o((dλ)−N+2s).

Multiplying this with the expansion for the denominator found above, we obtain

Sa+εV [uε] = cN,s‖U0,1‖p−2
p + λ−N+2scN,s‖U0,1‖−2

p ‖U0,1‖p−1
p−1φ0(x)

‖U0,1‖−2
p

(
‖(−∆)s/2w‖2 +

∫
Ω

aw2 dy − cN,s(p− 1)

∫
Ω

Up−2
x,λ w

2 dy

)
+O((dλ)−N+2s‖(−∆)s/2w‖) + o(‖(−∆)s/2w‖2) + o((dλ)−N+2s).

Expressing the various constants using Lemma B.5, we find

cN,s‖U0,1‖p−2
p = S,

‖U0,1‖−2
p =

(
S

cN,s

)−N−2s
2s

,

cN,s‖U0,1‖−2
p ‖U0,1‖p−1

p−1 = 22sπN/2
Γ(s)

Γ(N−2s
2 )

(
S

cN,s

)−N−2s
2s

.

This yields the expansion claimed in the lemma. �
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4. Proof of Theorem 1.2

At this point, we have collected sufficiently precise information on the behavior of a general almost
minimizing sequence to prove Theorem 1.2.

The main difficulty of the argument consists in constructing, for a critical potential a, a point x0 ∈ Ω
at which φa(x0) = 0. To do so, we carry out some additional analysis for a sequence uε which we
assume to consist of true minimizers of S(a − ε), not only almost minimizers as in the rest of this
paper. We make this additional assumption essentially for convenience and brevity of the argument,
see the remark below Lemma 4.1.

Indeed, since a is critical, we have S(a − ε) < S for every ε > 0. By the results of [38], which
adapts the classical lemma of Lieb contained in [9] to the fractional case, this strict inequality implies

existence of a minimizer uε of S(a− ε). Normalizing
∫

Ω
u

2N
N−2s
ε dy = AN,s as in (1.17), uε satisfies the

equation

(−∆)suε + (a− ε)uε =
S(a− ε)
A

2s/N
N,s

u
N+2s
N−2s
ε on Ω, u ≡ 0 on RN \ Ω. (4.1)

By using equation (4.1), we can conveniently extract the leading term of the remainder term wε. We
do this in the following lemma, which is the key step in the proof of Theorem 1.2.

Lemma 4.1. Let uε be minimizers of S(a− ε) which satisfy (4.1). Then we have

S(a− ε) = S + cN,sA
−2/p
N,s φa(x)λ−N+2s + o(λ−N+2s). (4.2)

If 8s/3 < N , Lemma 4.1 is in fact implied by the more refined analysis carried out in Section 5 below,
which does not use the equation (4.1). If 2s < N ≤ 8s/3, we speculate than one can prove Lemma 4.1
for almost minimizers not satisfying (4.1) by arguing like in [24, Section 5], but we do not pursue this
explicitly here.

Proof of Lemma 4.1. Clearly, the analysis carried out in Section 3 so far applies to the sequence (uε).
Thus, up to passing to a subsequence, we may assume that uε = αε(PUxε,λε + wε) with αε → 1,
xε → x0 ∈ Ω and ‖(−∆)s/2wε‖2 . λ−

N−2s
2 as ε→ 0.

Thus the sequence w̃ε := λ
N−2s

2
ε wε is bounded in H̃s(Ω) and converges weakly in H̃s(Ω), up to a

subsequence, to some w̃0 ∈ H̃s(Ω). Inserting the expansion u = α(PUx,λ + w) in (4.1), the equation
fulfilled by w̃ε reads

(−∆)sw̃ε + (a− ε)w̃ε = −(a− ε)PUx,λλ
N−2s

2 + λ−2sS(a− ε)
A

2s/N
N,s

(
PUx,λλ

N−2s
2 + w̃ε

)N+2s
N−2s

. (4.3)

By Lemma A.2, we can write

PUx,λλ
N−2s

2 = G0(x, ·)− λN−2sh(λ(x− ·))− λN−2sfx,λ

with h as in Lemma B.3. By the bounds on h and fx,λ from Lemmas A.2 and B.3, this yields

PUx,λλ
N−2s

2 → G0(x0, ·) uniformly on compacts of Ω \ {x0} and in Lq(Ω), q < N
N−2s . (4.4)

Letting ε→ 0 in (4.3), we obtain∫
Ω

(−∆)s/2w̃0(−∆)s/2ϕdy +

∫
Ω

aw̃0ϕdy = −
∫

Ω

aG0(x, ·)ϕdy (4.5)
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for every ϕ ∈ C∞c (Ω \ {x0}). Now it is straightforward to show that C∞c (Ω \ {x0}) is dense in H̃s(Ω),
by using a cutoff function argument together with identity (3.1). Thus by approximation, (4.5) even
holds for every ϕ ∈ H̃s(Ω). In other words, w̃0 weakly solves the equation

(−∆)sw̃0 + aw̃0 = −aG0(x0, ·) on Ω, w̃0 ≡ 0 on RN \ Ω.

By uniqueness of solutions, we conclude w̃0 = H0(x0, ·)−Ha(x0, ·).

We will now use this information to prove the desired expansion (4.2) of the energy S(a − ε) =

Sa−ε[PUx,λ +w]. Indeed, using the already established bound ‖(−∆)s/2w‖ . λ−N−2s
2 , the numerator

is

‖(−∆)s/2PUx,λ‖2 +

∫
Ω

a(PU2
x,λ + 2PUx,λw) dy + ‖(−∆)s/2w‖2 +

∫
Ω

aw2 dy + o(λ−N+2s). (4.6)

By integrating the equation for w against w and recalling S(a−ε)
A

2s/N
N,s

= cN,s + o(1) , we easily find the

asymptotic identity (compare [21, eq. (8)] for s = 1)

‖(−∆)s/2w‖2 +

∫
Ω

aw2 dy = cN,s(p− 1)

∫
Ω

Up−2
x,λ w

2 dy −
∫

Ω

aPUx,λw dy.

Inserting this in (4.6), together with the expansion of ‖(−∆)s/2PUx,λ‖2 given in (3.35), the numerator
of Sa−ε[PUx,λ + w] becomes

cN,sAN,s− cN,saN,sφ0(x)λ−N+2s+

∫
Ω

a(PU2
x,λ+PUx,λw) dy+ cN,s(p− 1)

∫
Ω

Up−2
x,λ w

2 dy+ o(λ−N+2s).

(4.7)
The numerator of Sa−ε[PUx,λ + w], by the computations in the proof of Lemma 3.7, is given by(∫

Ω

(PUx,λ + w)p dy

)−2/p

= A
− 2
p

N,s −A
− 2
p−1

N,s

(
−2φ0(x)λ−N+2s + (p− 1)

∫
Ω

Up−2
x,λ w

2 dy

)
. (4.8)

Multiplying out (4.7) and (4.8), the terms in
∫

Ω
Up−2w2 dy cancel precisely and we obtain

S(a− ε) = S + cN,sA
−2/p
N,s aN,sφ0(x)λ−N+2s (4.9)

+A
−2/p
N,s λ−N+2s

(∫
Ω

a
(

(λ
N−2s

2 PUx,λ)2 + λ
N−2s

2 PUx,λw̃
)

dy

)
+ o(λ−N+2s).

Now we are ready to return to our findings about w̃0. Indeed, by (4.4), and observing that G0(x, ·) is
an admissible test function in (4.5), we get∫

Ω

a
(

(λ
N−2s

2 PUx,λ)2 + λ
N−2s

2 PUx,λw̃
)

dy =

∫
Ω

a
(
G0(x, ·)2 +G0(x, ·)w̃0

)
dy + o(1) (4.10)

= −
∫

Ω

(−∆)s/2w̃0(−∆)s/2G0(x, ·) dy + o(1) = −w̃0(x) = γN,s(φa(x)− φ0(x)) + o(1). (4.11)

By inserting this into (4.9) and observing that γN,s = cN,saN,s by the numerical values given in Lemma
B.5, the proof is complete. �

Now we have all the ingredients to give a quick proof of our first main result.

Proof of Theorem 1.2. As explained after the statement of the theorem, it only remains to prove the
implication (ii)⇒ (i). Suppose thus S(a) < S and let c > 0 be the smallest number such that ā := a+c
satisfies S(ā) = S. For ε > 0, let uε be the sequence of minimizers S(ā − ε), normalized to satisfy
(4.1). By Lemma 4.1, we have

S > S(ā− ε) = S − cN,sA−2/p
N,s φa(x)λ−N+2s + o(λ−N+2s).
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Letting ε→ 0, this shows φā(x0) ≤ 0. By the resolvent identity, we have for every x ∈ Ω

φã(x) = φa(x) +

∫
Ω

(ã− a)(z)Ga(x, z)Ga+c(z, x) dz < φa(x),

and hence φa(x0) is strictly monotone in a. Thus φa(x0) < φa+c(x0) = 0, and the proof is complete. �

5. Proof of the lower bound II: a refined expansion

This section is the most technical of the paper. It is devoted to extracting the leading term of
the remainder w and to obtaining sufficiently good bounds on the new error term. In Section 5.2
we will need to work under the additional assumption 8s/3 < N in order to obtain the required
precision.

Concretely, we write
w = λ−

N−2s
2 (H0(x, ·)−Ha(x, ·)) + q

and decompose the remainder further into a tangential and an orthogonal part

q = t+ r, t ∈ Tx,λ, r ∈ T⊥x,λ.

(We keep omitting the subscript ε.) A refined expansion of Sa+εV [uε] then yields an error term in r
which can be controlled using the coercivity inequality of Proposition 3.5. The refined expansion is
derived in Section 5.2 below.

On the other hand, since t is an element of the (N + 2)-dimensional space Tx,λ, it can be bounded by
essentially explicit computations. This is achieved in Section 5.1.

Remark 5.1. The present Section 5 thus constitutes the analogon of [24, Section 6], where the same
analysis is carried out for the case s = 1 and N = 3. We emphasize that, despite these similarities,
our approach is conceptually somewhat simpler than that of [24]. Indeed, the argument in [24] relies
on an intermediate step involving a spectral cutoff construction, through which the apriori bound
‖∇q‖ = o(λ1/2) = o(λ−

N−2s
2 ) is obtained.

On the contrary, we are able to conduct the following analysis with only the weaker bound ‖∇q‖ =

O(λ−
N−2s

2 ) at hand (which follows from Proposition 3.6). This comes at the price of some additional
explicit error terms in r, which can however be conveniently absorbed (see Lemmas 5.7 and 5.9). Since
N > 8s/3 is fulfilled when N = 3, s = 1, this simplified proof of course also works in the particular
situation of [24].

5.1. A precise description of t. For λ large enough, the functions PUx,λ, ∂λPUx,λ and ∂xiPUx,λ,
i = 1, ..., N are linearly independent. There are therefore uniquely determined coefficients β, γ, δi,
i = 1, ..., N , such that

t = βλ−N+2sPUx,λ + γλ−N+2s+1∂λPUx,λ +

N∑
i=1

δiλ
−N+2s−2∂xiPUx,λ. (5.1)

Here the choice of the different powers of λ multiplying the coefficients is justified by the following
result.

Lemma 5.2. As ε→ 0, we have β, γ, δi = O(1).

As a corollary, we obtain estimates on t in various norms.

Lemma 5.3. As ε→ 0,

‖(−∆)s/2t‖2 . λ−N+2s and ‖t‖ 2N
N+2s

. ‖t‖2 . λ−
3N−6s

2 .
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Proof. Recall that PUx,λ = Ux,λ−λ−
N−2s

2 H0(x, ·) + fx,λ. Then all bounds follow in a straightforward
way from (5.1) together with Lemma 5.2 and the standard bounds from Lemmas A.1, A.2, B.1 and
B.2. �

Proof of Lemma 5.2. Step 1. We introduce the normalized basis functions

ϕ̃1 :=
PUx,λ

‖(−∆)s/2PUx,λ‖
, ϕ̃2 :=

∂λPUx,λ
‖(−∆)s/2∂λPUx,λ‖

, ϕ̃j :=
∂xj−2

PUx,λ

‖(−∆)s/2∂xj−2
PUx,λ‖

, (5.2)

and prove that

aj :=

∫
RN

(−∆)s/2ϕ̃j(−∆)s/2tdy =

{
O(λ−N+2s), j = 1, 2,

O(λ−N+2s−1), j = 3, ..., N + 2.
(5.3)

Since λ−
N−2s

2 (H0(x, ·)−Ha(x, ·)) + t+ r = w ∈ T⊥x,λ, and r ∈ T⊥x,λ, we have

aj = λ−
N−2s

2

∫
RN

(−∆)s/2ϕ̃j(−∆)s/2 (Ha(x, ·)−H0(x, ·)) dy

= λ−
N−2s

2

∫
RN

(−∆)sϕ̃j (Ha(x, ·)−H0(x, ·)) dy.

Thus,

a1 = λ−
N−2s

2 ‖(−∆)s/2PUx,λ‖−1cN,s

∫
Ω

U
N+2s
N−2s

x,λ (Ha(x, ·)−H0(x, ·)) dy

. λ−N+2s,

where we used that by Lemma B.2, ‖(−∆)s/2PUx,λ‖−1 . 1. The bound for a2 follows similarly. To
obtain the claimed improved bound for aj , j = 3, ..., N + 2, we write

ai+2 . λ
−N−2s

2 ‖(−∆)s/2∂xiPUx,λ‖−1

∫
Ω

U
4s

N−2s

x,λ ∂xiU (Ha(x, ·)−H0(x, ·)) dy

λ−
N−2s

2 ‖(−∆)s/2∂xiPUx,λ‖−1O

(∫
RN\Bd

U
4s

N−2s

x,λ |∂xiUx,λ|dy +

∫
Ω

U
4s

N−2s

x,λ |∂xiUx,λ||x− y|dy

)
. λ−N+2s−1.

Here we wrote Ha(x, y)−H0(x, y) = φa(x)− φ0(x) +O(|x− y|) and used that by oddness of ∂xiU ,

(φa(x)− φ0(x))

∫
Bd

U
4s

N−2s

x,λ ∂xiUx,λ = 0.

This concludes the proof of (5.3).

Step 2. We write

t =

N+2∑
j=1

bjϕ̃j ,

with

b1 = βλ−N+2s‖(−∆)s/2PUx,λ‖, b2 = γ‖(−∆)s/2∂λPUx,λ‖,

bj = δjλ
−N+2s−2‖(−∆)s/2∂xj−2PUx,λ‖, j = 3, ..., N + 2.

Our goal is to show that

bj = aj +O(λ−N+2s) sup
k
ak, j = 1, .., N + 2. (5.4)

From (5.4) we conclude by the estimates on the aj from (5.3) and Lemma B.2.

To prove (5.4), we define the Gram matrix G by

Gj,k := ((−∆)s/2ϕ̃j , (−∆)s/2ϕ̃k).
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By Lemma B.2 and the definition of the ϕ̃j it is easily checked that

Gj,k = δj,k +O(λ−N+2s), j, k = 1, ..., N + 2.

Thus for sufficiently large λ, G is invertible with

(G−1)j,k = δj,k +O(λ−N+2s). (5.5)

By definition of G,

ψj :=

N+2∑
k=1

(G−1/2)j,kϕ̃k (5.6)

is an orthonormal basis of Tx,λ. We can therefore write

t =
∑
j

(
(−∆)s/2ψj , (−∆)s/2t

)
ψj =

∑
j

∑
k

(G−1/2)j,k

(
(−∆)s/2ϕ̃k, (−∆)s/2t

)
φj

=
∑
j

∑
k

(G−1/2)j,kak
∑
l

(G−1/2)j,lϕ̃l

=
∑
l

∑
k

∑
j

(G−1/2)l,j(G
−1/2)j,k

 ak

 ϕ̃l

=
∑
l

(∑
k

(G−1)l,kak

)
ϕ̃l

Thus bl =
∑
k(G−1)l,kak and (5.4) follows from (5.5). �

Remark 5.4. By treating the terms in the above proof more carefully, it can be shown in fact that
λN−2sβ, λN−2s−1γ and λN−2s+2δi have a limit as λ→∞. Indeed, for instance, the leading orders of

the expressions
∫

Ω
U
N+2s
N−2s

x,λ (Ha(x, ·)−H0(x, ·)) dy and ‖(−∆)s/2PUx,λ‖ going into the leading behavior
of β can be explicitly evaluated, see Lemma A.4 and the proof of Lemma B.2 respectively. We do not
need the behavior of the coefficients β, γ, δi to that precision in the following, so we do not state them
explicitly.

5.2. The new expansion of Sa+εV [u]. Our goal is now to expand the value of the energy functional
Sa+εV [uε] with respect to the refined decomposition introduced above, namely

u = α(ψx,λ + q) = α
(
PUx,λ +

(
λ−

N−2s
2 Ha(x, )̇−H0(x, ·)

)
+ t+ r

)
.

In all that follows, we work under the important assumption that

− 3N + 6s < −2s, i.e. 8
3s < N (5.7)

so that λ−3N+6s = o(λ−2s). Assumption (5.7) has the consequence that, using the available bounds
on t and r, we can expand the energy Sa+εV [u] up to o(λ−2s) errors in a way that does not depend on
t. This is the content of the next lemma.

Lemma 5.5. As ε→ 0, we have

Sa+εV [uε] = Sa+εV [ψx,λ] +D
−2/p
0

(
E0[r]− 2N0

pD0
I[r] + o(‖(−∆)s/2r‖2)

)
+ o(λ−2s) + o(ελ−N+2s) + o(φa(x)λ−N+2s).

Here,

N0 := ‖(−∆)s/2ψx,λ‖22 +

∫
Ω

(a+ εV )ψ2
x,λ dy, D0 :=

∫
Ω

ψpx,λ dy, (5.8)

and I[r] is as defined in (5.10) below.
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We emphasize that the contribution of t enters only into the remainders o(λ−2s) + o(ελ−N+2s) +
o(φa(x)λ−N+2s). This is remarkable because t enters to orders λ−N+2s >> λ−2s and λ−2N+4s >> λ−2s

(if N < 3s) into both the numerator and the denominator of Sa+εV [uε], see Lemmas 5.6 and 5.7
below. When calculating the quotients, these contributions cancel precisely, as we verify in Lemma 5.8
below. Heuristically, such a phenomenon is to be expected because (up to projection onto H̃s(Ω) and
perturbation by a+ εV ) by definition t represents the directions along which the quotient functional is
invariant. As already pointed out in the introduction, we suspect, but cannot prove, that in the absence
of assumption (5.7) the contributions of t to the higher order coefficients λ−kN+2ks for 3 ≤ k ≤ 2N

N−2s
would continue to cancel.

We prove Lemma 5.5 by separately expanding the numerator and the denominator of Sa+εV [uε]. We
abbreviate

Eε[u] := ‖(−∆)s/2u‖2 +

∫
Ω

(a+ εV )u2 dy

and write Eε[u, v] for the associated bilinear form.

Lemma 5.6 (Expanding the numerator). As ε→ 0,

|α|−2Eε[uε] = Eε[ψx,λ] +
(

2E0[ψx,λ, t] + ‖(−∆)s/2t‖2
)

+ E0[r] + o(λ−2s) + o(ελ−N+2s).

Proof. We write α−1uε = ψx,λ + t+ r and therefore

Eε[uε] = Eε[ψx,λ] + 2Eε[ψx,λ, t+ r] + Eε[t+ r]. (5.9)

The third term on the right side is

Eε[t+ r] = E0[t] + 2E0[t, r] + E0[r] + ε

∫
Ω

V (t+ r)2 dy.

Now
∫
RN (−∆)s/2t(−∆)s/2r dy = 0 by orthogonality and therefore, by Lemma 5.3,

E0[t, r] =

∫
Ω

atr dy = O(‖(−∆)s/2r‖‖t‖ 2N
N+2s

) = O(λ
−3N+6s

2 ‖(−∆)s/2r‖) = o(λ−2s) + o(‖(−∆)s/2r‖2),

where the last equality is a consequence of assumption (5.7) and Young’s inequality. Finally, again by
Lemma 5.3,

ε

∫
Ω

V (t+ r)2 dy = O(ε(‖t‖2 + ‖(−∆)s/2r‖2)) = o(ελ−N+2s) + o(‖(−∆)s/2r‖2).

The second term on the right side of (5.9) is

2Eε[ψx,λ, t+ r] = 2E0[ψx,λ, t] + 2E0[ψx,λ, r] + 2ε

∫
Ω

V ψx,λ(t+ r) dy.

To start with, using Lemma 5.3,

ε

∫
Ω

V ψx,λ(t+ r) dy = O(ε(‖t‖ 2N
N+2s

+ ‖ψ‖ 2N
N+2s
‖(−∆)s/2r‖))

= O(ελ−
N−2s

2 ‖(−∆)s/2r‖) + o(ελ−N+2s) = o(ελ−N+2s) + o(‖(−∆)s/2r‖2)),

again by Young’s inequality. Moreover, using that r ∈ T⊥x,λ, that (−∆)sHa(x, ·) = aGa(x, ·) and
(−∆)sH0(x, ·) = 0, and integrating by parts,

E0[ψx,λ, r] = λ−
N−2s

2

∫
Ω

(−∆)s/2(H0 −Ha)(x, ·)(−∆)s/2r dy +

∫
Ω

aψx,λr dy

=

∫
Ω

a(−λ−
N−2s

2 Ga(x, ·) + ψx,λ)r dy.
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Since we can write λ−
N−2s

2 Ga(x, y)− ψx,λ(y) = λ
N−2s

2 h(λ(x− y)) + fx,λ with h as in Lemma B.3 and
fx,λ as in Lemma A.2, we get

E0[ψx,λ, r] .
(
λ−

N−2s
2 ‖h(λ·)‖ 2N

N+2s
+ ‖fx,λ‖∞

)
‖(−∆)s/2r‖ . λ−2s‖(−∆)s/2r‖ = o(λ−2s)

by the bounds in those lemmas. Finally,

E0[t] = ‖(−∆)s/2t‖2 +

∫
Ω

at2 dy

and
∫

Ω
at2 dy . ‖t‖22 . λ−3N+6s = o(λ−2s) by Lemma 5.3 and Assumption (5.7). �

Lemma 5.7 (Expanding the denominator). As ε→ 0,

|α|−p
∫

Ω

upε dy =

∫
Ω

ψpx,λ dy +

(
p

∫
Ω

ψp−1
x,λ tdy +

p(p− 1)

2

∫
Ω

ψp−2
x,λ t

2 dy

)
+
p(p− 1)

2

∫
Ω

ψp−2
x,λ r

2 dy

+O
(
λ−

N−2s
2

∫
Ω

Up−2|Ha||r|dy
)

+ o(‖(−∆)s/2r‖2) + o(λ−2s).

Proof. Write α−1uε = ψx,λ + t+ r. We expand∫
Ω

(ψx,λ + t+ r)p dy =

∫
Ω

(ψx,λ + r)p dy + p

∫
Ω

(ψx,λ + r)p−1tdy +
p(p− 1)

2

∫
Ω

(ψx,λ + r)p−2t2 dy

+O
(
‖ψx,λ + r‖p−3

p ‖(−∆)s/2t‖3 + ‖(−∆)s/2t‖p
)
.

By Lemma 5.3 together with assumption (5.7), the last term is o(λ−2s). The third term is, by Lemma
5.3, ∫

Ω

(ψx,λ + r)p−2t2 dy =

∫
Ω

ψp−2
x,λ t

2 dy +O
(
λ−2N+4s‖(−∆)s/2r‖

)
.

The second term is∫
Ω

(ψx,λ + r)p−1tdy =

∫
Ω

ψp−1
x,λ tdy + (p− 1)

∫
Ω

ψp−2
x,λ rtdy + o(‖(−∆)s/2r‖2).

The remaining term
∫

Ω
ψp−2
x,λ rtdy needs to be expanded more carefully. Using ψx,λ = Ux,λ −

λ−
N−2s

2 Ha(x, ·)− fx,λ with ‖λ−N−2s
2 Ha(x, ·) + fx,λ‖∞ . λ−

N−2s
2 , we write∫

Ω

ψp−2
x,λ rtdy =

∫
Ω

Up−2
x,λ rtdy +O

(
λ−

N−2s
2 ‖(−∆)s/2r‖‖(−∆)s/2t‖

)
and using assumption (5.7), the remainder is bounded by

λ−
N−2s

2 ‖(−∆)s/2r‖‖(−∆)s/2t‖ . λ
−3N+6s

2 ‖(−∆)s/2r‖ = o(λ−2s) + o(‖(−∆)s/2r‖2).

Now using orthogonality of r and the expansion (5.1) of s, by some standard calculations, whose details
we omit, one obtains∫

Ω

Up−2
x,λ rtdy = O

(
λ
−3N+6s

2

∥∥∥ (−∆)s/2r‖ = o(λ−2s) + o(‖(−∆)s/2r‖2),

where we used again assumption (5.7) for the last equality.

It remains only to treat the t-independent term
∫

Ω
(ψx,λ + r)p dy. We find∫

Ω

(ψx,λ + r)p dy =

∫
Ω

ψpx,λ dy + p

∫
Ω

ψp−1
x,λ r dy +

p(p− 1)

2

∫
Ω

ψp−2
x,λ r

2 dy + o(‖(−∆)s/2r‖2).

Using orthogonality of r, we get that
∫

Ω
Up−1
x,λ r dy = 0 and hence∫

Ω

ψp−1
x,λ r dy = O

(
λ−

N−2s
2

∫
Ω

Up−2
x,λ |Ha(x, ·)||r|dy + λ−

N+2s
2 ‖(−∆)s/2r‖

)
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and λ−
N+2s

2 ‖(−∆)s/2r‖ . λ−N = o(λ−2s). Finally, we have∫
Ω

ψp−2
x,λ r

2 dy =

∫
Ω

Up−2
x,λ r

2 dy + o(‖(−∆)s/2r‖2).

Collecting all the estimates gives the claim of the lemma. �

We can now prove the claimed expansion of the energy functional.

Proof of Lemma 5.5. We write the expansions of the numerator and the denominator as

Eε[uε] = N0 +N1 + E0(r) + o(λ−2s + (ε+ φa(x))λ−N+2s,

where
N0 = Eε[ψ], N1 := 2E0[ψx,λ, t] + ‖(−∆)s/2t‖2,

and ∫
Ω

upε = D0 +D1 + I[r] + o(λ−2s),

where

D0 =

∫
Ω

ψp, D1 := p

∫
Ω

ψp−1
x,λ t+

p(p− 1)

2

∫
Ω

ψp−2
x,λ t

2,

and

I[r] :=
p(p− 1)

2

∫
Ω

ψp−2
x,λ r

2 +O(λ−
N−2s

2

∫
Ω

Up−2|Ha||r|dy). (5.10)

Taylor expanding up to and including second order, we find(∫
Ω

upε

)−2/p

= D
−2/p
0

(
1− 2

p

D1 + I[r]

D0
+
p+ 2

p2

(D1 + I[r])2

D2
0

)
+ o(λ−2s).

We now observe I[r] . ‖(−∆)s/2r‖2 + o(φa(x)λ−N+2s + λ−2s) since

λ−
N−2s

2

∫
Ω

Up−2|Ha||r| .
∫

Ω

Up−2r2 + λ−N+2s

∫
Ω

Up−2H2
a . ‖(−∆)s/2r‖2 + o(λ−N+2sφa(x))

Hence we can simplify the expression of the denominator to(∫
Ω

upε

)−2/p

= D
−2/p
0

(
1− 2

p

D1 + I[r]

D0
+
p+ 2

p2

D2
1

D2
0

)
+ o(‖(−∆)s/2r‖2) + o(φa(x)λ−N+2s) + o(λ−2s).

Multiplying this with the expansion of the numerator from above, we find

Sa+εV [uε] = D
−2/p
0 N0 +D

−2/p
0

(
N1 −

2

p

N0

D0
D1 −

2

p

N1D1

D0
+
p+ 2

p2

D2
1N0

D2
0

)
+D

−2/p
0

(
E0[r]− 2N0

pD0
I[r] + o(‖(−∆)s/2r‖2)

)
+ o(λ−2s) + o(φa(x)λ−N+2s).

We show in Lemma 5.8 below that the bracket involving the terms N1 and D1 involving s vanishes up
to order o(λ−2s), due to cancellations. Noting that D−2/p

0 N0 is nothing but Sa+εV [ψ], the expansion
claimed in Lemma 5.5 follows. �

Lemma 5.8. Assume (5.7) and let N0, N1, D0, D1 be defined as in the proof of Lemma 5.5. Then

N1 = 2βcN,sAN,sλ
−N+2s

+ cN,sλ
−2N+4s

(
β2AN,s + γ2(p− 1)BN,s − 2aN,sφ0(x)(β − N − 2s

2
γ)

)
+ o(λ−2s)
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and

D1 = λ−N+2spβAN,s + λ−2N+4s

(
p(p− 1)

2
(β2AN,s + γ2BN,s)− p(β −

N − 2s

2
γ)aN,sφ0(x)

)
+ o(φa(x)λ−N+2s) + o(λ−2s).

where we abbreviated BN,s :=
∫
RN U

p−2
0,1 |∂λU0,1|2 dy.

In particular,

N1 −
2

p

N0

D0
D1 −

2

p

N1D1

D0
+
p+ 2

p2

D2
1N0

D2
0

= o(λ−2s) + o(φa(x)λ−N+2s).

Proof. We start with expanding N1 = 2E0[ψ, t] + ‖(−∆)s/2t‖2. From Lemma B.2 and the expansion
(5.1) for t, one easily sees that

‖(−∆)s/2t‖2 = β2λ−2N+4s‖(−∆)s/2PUx,λ‖2 + γλ−2N+4s+2‖(−∆)s/2∂λPUx,λ‖2

= β2cN,sAN,sλ
−2N+4s + γ2(p− 1)cN,sBN,s + o(λ−2s),

where we also used assumption (5.7). Next, recalling ((−∆)s + a)ψx,λ = cN,sU
p−1
x,λ − a(λ

N−2s
2 h(λ(x−

·) + fx,λ) with h as in Lemma B.3, we easily obtain

2E0[ψx,λ, t] = 2cN,s

∫
Ω

Up−1
x,λ tdy + o(λ−2s) = 2βcN,sAN,sλ

−N+2s

− 2cN,saN,sφ0(x)λ−2N+4s(β +
N − 2s

2
γ) + o(λ−2s).

(Observe that the leading order term with γ vanishes because
∫
RN U

p−1
0,1 ∂λU0,1 = 0.) This proves the

claimed expansion for N1. For D1, we have∫
Ω

ψp−1
x,λ tdy = λ−N+2sβ

∫
Ω

ψp−1
x,λ PUx,λ dy + γλ−N+2s+1

∫
Ω

ψp−1
x,λ ∂λPUx,λ dy + o(λ−2s).

Writing out ψx,λ = Ux,λ−λ−
N−2s

2 H0(x, ·)−fx,λ and PUx,λ = Ux,λ−λ−
N−2s

2 H0(x, ·)−f , by the usual
bounds together with assumption (5.7) we get

λ−N+2sβ

∫
Ω

ψp−1PUx,λ dy = λ−N+2sβAN,s − λ−2N+4sβaN,sφ0(x) + o(λ−N+2sφa(x)) + o(λ−2s).

Similarly,

γλ−N+2s+1

∫
Ω

ψp−1∂λPUx,λ dy = γ
N − 2s

2
λ−2N+4saN,sφ0(x) + o(λ−N+2sφa(x)) + o(λ−2s).

(Observe that the leading order term with γ vanishes because
∫
RN U

p−1
0,1 ∂λU0,1 = 0.) Finally,∫

Ω

ψp−2
x,λ t

2 dy = λ−2N+4s
(
β2AN,s + γ2BN,s

)
+ o(λ−2s).

Putting together the above, we end up with the claimed expansion for D1.

The last assertion of the lemma follows from the expansions of N0, D0, N1 and D1 by an explicit
calculation whose details we omit. �

Based on the refined expansion of Sa+εV [uε] obtained in Lemma 5.5, we are now in a position to give
the proofs of our main results.

We first use the coercivity inequality from Proposition 3.4 to control the terms involving r that appear
in Lemma 5.5.
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Lemma 5.9 (Coercivity result). There is ρ > 0 such that, as ε→ 0,

E0[r]− 2N0

pD0
I[r] ≥ ρ‖(−∆)s/2r‖2.

Proof. Recalling the definition (5.10) of I[r] and observing that N0/D0 = cN,s, we find by Proposition
3.5 that

E0[r]− 2N0

pD0
I[r] = ‖(−∆)s/2r‖2 +

∫
Ω

ar2 dy − cN,s(p− 1)

∫
Ω

Up−2
x,λ r

2 dy

+O
(
λ−

N−2s
2

∫
Ω

Up−2
x,λ |Ha(x·)||r|dy

)
+ o(‖(−∆)s/2r‖2)

≥ ρ‖(−∆)s/2r‖2 +O
(
λ−

N−2s
2

∫
Ω

Up−2
x,λ |Ha(x·)||r|dy

)
for some ρ > 0. The remaining error term can be bounded as follows.

λ−
N−2s

2

∫
Ω

Up−2
x,λ |Ha(x, ·)||r|dy ≤ δ′

∫
Ω

Up−2
x,λ r

2 dy + Cλ−N+2s

∫
Ω

Up−2
x,λ Ha(x, ·)2 dy

≤ δ‖(−∆)s/2r‖2 +O(λ−2N+4sφa(x)2) + o(λ−2s)

≤ δ‖(−∆)s/2r‖2 + o(λ−N+2sφa(x) + λ−2s)

where we used Lemma A.4. By choosing δ > 0 small enough, we obtain the conclusion. �

6. Proof of the main results

Combining Lemma 5.9 with Lemma 5.5 gives a lower bound on Sa+εV [uε]. Using the almost-minimizing
assumption (1.17) and the expansion from Theorem 2.1, this lower bound can be stated as fol-
lows:

0 ≥ (1 + o(1))(S − S(a+ εV )) +R (6.1)

+A
−N−2s

N

N,s

(
(QV (x) + o(1))ελ−N+2s − (a(x) + o(1))(αN,s + cN,sdN,sbN,s)λ

−2s
)
,

where
R := A

N−2s
N

N,s

(
aN,scN,s(1 + o(1))φa(x)λ−N+2s + T2(φa(x), λ)

)
+ ρ‖(−∆)s/2r‖22,

for some ρ > 0, and T2(φa(x), λ) as in (2.5).

Recall that φa ≥ 0 by Corollary 2.2 and that φa(x) is bounded because x0 ∈ Ω. Since T2 is a sum of
higher powers (φa(x)λ−N+2s)k with k ≥ 2, we have R ≥ 0 for ε small enough.

Lemma 6.1. As ε→ 0, φa(x) = o(1). In other words, x0 ∈ Na.

Proof. Since S − S(a+ εV ) ≥ 0 and ‖(−∆)s/2r‖22 ≥ 0, the bound (6.1) gives

φa(x) . ε+ λN−4s + λN−2sT2(φa(x), λ).

Since φa(x) is uniformly bounded, we can bound T2(φa(x), λ) . λ−2N+4s, which concludes. �

Lemma 6.2. If Na(V ) 6= ∅, then x0 ∈ Na(V ).

In the proof of this lemma, we need the assumption (1.12), i.e. that a(x) < 0 on Na.

Proof. By Lemma 6.1 we only need to prove that QV (x0) < 0.

Inserting the upper bound from Corollary 2.3 on S−S(a+ εV ) into (6.1), and using R ≥ 0, we obtain
that

(QV (x) + o(1))ελ−N+2s ≤ −C1ε
2s

4s−N + C2λ
−2s.
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Here the numbers C1 and C2 are given by

C1 := (1 + o(1))σN,s sup
x∈Na(V ).

|QV (x)|
2s

4s−N

|a(x)|
N−2s
4s−N

, C2 := −a(x) + o(1)

Using Lemma 6.1 and the assumption a < 0 on Na, we have that C2 is strictly positive and remains
bounded away from zero by assumption. Since Na(V ) is not empty, the same is clearly true for C1.
Thus by Young’s inequality

−C1ε
2s

4s−N + C2λ
−2s ≤ −cελ−N+2s

for some c > 0. This implies QV (x0) < −c < 0 as desired. �

Now we are ready to prove our main results Theorems 1.4, 1.5 and 1.6.

Proof of Theorem 1.4. By using R ≥ 0 and minimizing the last term over λ, like in the proof of
Corollary 2.3, the bound (6.1) implies

(1 + o(1))(S(a+ εV )− S) ≥ −σN,s
|QV (x0)|

2s
4s−N

|a(x0)|
N−2s
4s−N

ε
2s

4s−N + o(ε
2s

4s−N )

≥ −σN,s sup
x∈Na(V )

|QV (x)|
2s

4s−N

|a(x)|
N−2s
4s−N

ε
2s

4s−N + o(ε
2s

4s−N ),

where the last inequality follows from Lemma 6.2. This is equivalent to

S(a+ εV ) ≥ S − σN,s sup
x∈Na(V )

|QV (x)|
2s

4s−N

|a(x)|
N−2s
4s−N

ε
2s

4s−N + o(ε
2s

4s−N ).

Since the matching upper bound has already been proved in Corollary 2.3, the proof of the theorem is
complete. �

Proof of Theorem 1.5. Since x0 ∈ Na by Lemma 6.1, by assumption we have QV (x0) ≥ 0 and a(x0) <
0. Together with R ≥ 0, the bound (6.1) then implies

0 ≥ (1 + o(1))(S − S(a+ εV )) + cλ−2s + o(ελ−N+2s)

for some c > 0. Since o(ελ−N+2s) ≥ − c
2λ
−2s+o(ε

2s
4s−N ) by Young, this implies S(a+εV ) ≥ S+o(ε

2s
N−4s .

Since the inequality
S(a+ εV ) ≤ S (6.2)

always holds (e.g. by Theorem 2.1), we obtain S(a+ εV ) ≥ S + o(ε
2s

N−4s ) as desired.

Now assume that additionally QV (x0) > 0. With R ≥ 0, (6.1) implies, for ε > 0 small enough and
some C1, C2 > 0

S(a+ εV )− S ≥ C1ελ
−N+2s + C2λ

−2s > 0,

which contradicts (6.2). Thus assumption (3.19), under which we have worked so far, cannot be
satisfied, and we must have S(a+ε0V ) = S for some ε0 > 0. Since S(a+εV ) is concave in ε (being the
infimum of functions linear in ε) and since S(a) = S, we must have S(a+εV ) = S for all ε ∈ [0, ε0]. �

Proof of Theorem 1.6. We may first observe that the upper and lower bounds on S(a + εV ) already
discussed in the proof of Theorem 1.4 imply

|QV (x0)|
2s

4s−N

|a(x0)|
N−2s
4s−N

= sup
x∈Na

|QV (x)|
2s

4s−N

|a(x)|
N−2s
4s−N

. (6.3)

Now, by using additionally Lemma B.6, the estimate (6.1) becomes

(1 + o(1)) ((S(a+ εV )− S) ≥ −σN,s
|QV (x0)|

2s
4s−N

|a(x0)|
N−2s
4s−N

ε
2s

4s−N +R′ + o(ε
2s

4s−N ), (6.4)
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where

R′ =

R+ c0ε
2s−2
4s−N

(
λ−1 − λ0(ε)−1

)2 if
(
Aε
Bε

) 1
4s−N

ε−
1

4s−N λ−1 ≤ 2
(

2s
N−2s

) 1
N−4s

,

R+ c0ε
2s

4s−N if
(
Aε
Bε

) 1
4s−N

ε−
1

4s−N λ−1 > 2
(

2s
N−2s

) 1
N−4s

,

in the notation of Lemma B.6, for Aε := A
−N−2s

N

N,s (αN,s + cN,sdN,sbN,s)(|a(x0)| + o(1)) and Bε :=

A
−N−2s

N

N,s (|QV (x0)| + o(1)), with λ0(ε) given by (B.5). Now applying in (6.4) the upper bound on
S(a+ εV ) from Corollary 2.3 yields

R′ = o(ε
2s

4s−N ).

The terms that make up R′ being separately nonnegative, this implies R = o(ε
2s

4s−N ) and (λ−1 −
λ0(ε)−1)2 = o(ε

2
4s−N ), that is,

λ =

(
2sAε

(N − 2s)Bε

) 1
4s−N

ε−
1

4s−N + o(ε−
1

4s−N )

=

(
2s(αN,s + cN,sdN,sbN,s)|a(x0)|

(N − 2s)|QV (x0)|

) 1
4s−N

ε−
1

4s−N + o(ε−
1

4s−N ) (6.5)

and
‖(−∆)s/2r‖2 = o(ε

s
4s−N ). (6.6)

Inserting the asymptotics of λ back into R = o(ε
2s

4s−N ) now gives

φa(x) = o(ε). (6.7)

It remains to derive the claimed expansion for α. From Lemma 5.7, we deduce

|α|−
2N
N−2s

∫
Ω

u
2N
N−2s
ε dy =

∫
Ω

ψ
2N
N−2s

x,λ dy +O
(
‖(−∆)s/2s‖2 + ‖(−∆)s/2r‖22 + λ−N+2s

)
.

Using the bound ‖(−∆)s/2s‖2 . λ−N+2s, together with (6.5), (6.6) and the expansion of
∫

Ω
ψ

2N
N−2s

x,λ

from Theorem 2.1, we obtain

|α|−p = 1 +O(λ−N+2s) = 1 +O(ε
N−2s
4s−N ).

This completes the proof of Theorem 1.6. �

Appendix A. Green’s function

A.1. The Green’s function G0 and the projections PUx,λ. We begin by studying the case a = 0.
The next lemma collect some important estimates on the regular part H0(·, ·) of the Green’s function
and the Robin function φ0(x) = H0(x, x), which will turn out very important for our analysis. Similar
estimates for s = 1 have been derived in [34, Section 2 and Appendix A].

We denote in the following d(x) := dist(x, ∂Ω).

Lemma A.1. Let x ∈ Ω and N > 2s. Then y 7→ H0(x, y) is continuous on Ω and we have, for all
y ∈ Ω,

0 ≤ H0(x, y) . d(x)2s−N ,

|∇yH0(x, y)| . d(x)2s−N−1.

Moreover, the Robin function φ0 satisfies the two-sided bound

d(x)2s−N . φ0(x) . d(x)2s−N . (A.1)
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Proof. H0(x, ·) satisfies

(−∆)sH0(x, ·) = 0 on Ω,

H0(x, ·) =
1

|x− ·|N−2s
on RN \ Ω.

Thus we can write
H0(x, y) =

∫
RN\Ω

1

|x− z|N−2s
dP yΩ(z)

where P yΩ denotes harmonic measure for (−∆)s, see [30, Theorem 7.2]. Since P yΩ is a probability
measure, this implies

0 ≤ H0(x, y) . d(x)−N+2s.

Similarly, since

(−∆)s∇H0(x, ·) = ∇(−∆)sH0(x, ·) = 0 on Ω,

∇H0(x, ·) = ∇ 1

|x− ·|N−2s
on RN \ Ω,

we have

|∇yH0(x, y)| =

∣∣∣∣∣
∫
RN\Ω

(
∇z

1

|x− z|N−2s

)
dP yΩ(z)

∣∣∣∣∣ . d(x)−N+2s−1.

The lower bound d(x)2s−N . φ0(x) is proved in [17, Lemma 7.6]. �

The following important lemma shows the relation between the regular partH0(x, ·) and the projections
PUx,λ introduced in (1.16). For the classical case s = 1, this is [34, Proposition 1]. For fractional
s ∈ (0, 1), a slightly weaker version relying on the extension formulation of (−∆)s appears in [15,
Lemma C.1].

Lemma A.2. Let x ∈ Ω and N > 2s.

(i) We have
0 ≤ PUx,λ ≤ Ux,λ (A.2)

and the function ϕx,λ := Ux,λ − PUx,λ satisfies the estimates

‖ϕx,λ‖L∞(RN ) . d(x)−N+2sλ
−N+2s

2 (A.3)

and
‖ϕx,λ‖Lp(RN ) . (d(x)λ)

−N−2s
2 . (A.4)

(ii) Moreover, the expansion

PUx,λ = Ux,λ − λ
N−2s

2 H0(x, y) + fx,λ, (A.5)

holds with

‖fx,λ‖L∞(Ω) . d(x)−N−2+2sλ−
N+4−2s

2

Proof. Claim (i). Our proof follows mostly [34, Appendix A]. Since

(−∆)sPUx,λ ≥ 0 on Ω,

PUx,λ ≡ 0 on RN \ Ω.

the maximum principle (see e.g. [39, Proposition 2.17]) implies that PUx,λ ≥ 0. Similarly, ϕx,λ =
Ux,λ − PUx,λ satisfies

(−∆)sϕx,λ = 0 on Ω, (A.6)

ϕx,λ = Ux,λ ≥ 0 on RN \ Ω.
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and thus ϕx,λ ≥ 0 by the maximum principle. This completes the proof of (A.2).

By (A.6), we can moreover write

ϕx,λ(y) =

∫
RN\Ω

Ux,λ(z) dP yΩ(z), y ∈ Ω.

Thus ‖ϕx,λ‖L∞(RN ) = ‖Ux,λ‖L∞(RN\Ω) . λ
−N+2s

2 d(x)−N+2s.

Next, let us prove the Lp estimate on ϕx,λ. Since ϕx,λ ∈ Hs(RN ), by the Sobolev inequality we have

‖ϕx,λ‖2Lp(RN ) . ‖(−∆)s/2ϕx,λ‖22

= ‖(−∆)s/2Ux,λ‖22 + ‖(−∆)s/2PUx,λ‖22 − 2

∫
RN

(−∆)sUx,λPUx,λ dy. (A.7)

The second summand in (A.7) can be written as

‖(−∆)s/2PUx,λ‖22 = cN,s

∫
Ω

PUx,λU
p−1
x,λ dy = ‖(−∆)s/2Ux,λ‖22 − cN,s

∫
Ω

ϕx,λU
p−1
x,λ dy

= ‖(−∆)s/2Ux,λ‖22 +O
(
‖ϕx,λ‖∞

∫
Ω

Up−1
x,λ dy

)
= ‖(−∆)s/2Ux,λ‖22 +O

(
(d(x)λ)−N+2s

)
by (A.3).

Similarly, the third summand in (A.7) is

−2

∫
RN

(−∆)sUx,λPUx,λ dy = −2cN,s

∫
Ω

Upx,λ dy + 2cN,s

∫
Ω

Up−1
x,λ ϕx,λ dy

= −2‖(−∆)s/2Ux,λ‖22 +O
(
(d(x)λ)−N+2s

)
,

where we also used the bound ∫
RN\Ω

Upx,λ dy . (d(x)λ)−N .

Collecting these estimates and returning to (A.7), we obtain

‖ϕx,λ‖2Lp(RN ) . (d(x)λ)−N+2s.

This concludes the proof of (A.4).

Claim (ii). The function fx,λ := ϕx,λ − λ−
N−2s

2 H0(x, ·) satisfies

(−∆)sfx,λ = 0 on Ω,

fx,λ = Ux,λ −
λ−

N−2s
2

|x− ·|N−2s
on RN \ Ω.

As in the proof of Lemma A.1, we have

fx,λ(y) =

∫
RN\Ω

(
Ux,λ(y)− λ−

N−2s
2

|x− z|N−2s

)
dP yΩ(z),

and hence, since P xΩ is a probability measure, we have

‖fx,λ‖L∞(Ω) ≤

∥∥∥∥∥Ux,λ(y)− λ−
N−2s

2

|x− y|N−2s

∥∥∥∥∥
L∞(RN\Ω)

= O
(
λ−

N+4−2s
2 dist(x, ∂Ω)−N−2+2s

)
by Lemma B.3 below. �
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A.2. Expanding the regular part Hb(x, y) near the diagonal. We now turn to the Green’s
function Gb, for a general potential b ∈ C1(Ω) ∩ C(Ω) such that (−∆)s + b is coercive. By noting the
potential b rather than a, we emphasize the fact that criticality of b is not needed for the following
expansions. Moreover, in contrast to the previous subsection, we specialize to the condition 2s < N <
4s again, which plays a role in the proof of Lemmas A.3 and A.4 below.

Lemma A.3. Let x ∈ Ω and 2s < N < 4s.

(i) If 4s−N < 1, then as y → x

Hb(x, y) = φb(x)− dN,sb(x)|x− y|4s−N + o(|x− y|4s−N ).

(ii) If 4s−N ≥ 1, then there is ξx ∈ RN such that

Hb(x, y) = φb(x) + ξx · (y − x)− dN,sb(x)|x− y|4s−N + o(|x− y|4s−N ).

Here the constant dN,s > 0 is given by (B.2). The asymptotics are uniform for x in compact subsets
of Ω.

Proof. Fix x ∈ Ω and let

ψx(y) := Hb(x, y)− φb(x) + dN,sb(x)|x− y|4s−N ,
with dN,s as in (B.2). We use the facts that, in the distributional sense,

(−∆)syHb(x, y) = b(y)Gb(x, y) =
b(y)

|x− y|N−2s
− b(y)Hb(x, y)

and, by Lemma B.5,
(−∆)s|x|4s−N = −d−1

N,s|x|
2s−N .

Thus ψx solves, in the distributional sense, the equation

(−∆)syψx(y) = Fx(y), (A.8)

with
Fx(y) =

b(y)− b(x)

|x− y|N−2s
− b(y)Hb(x, y).

Since b ∈ C1(Ω), we have
|b(x)− b(y)|
|x− y|N−2s

. |x− y|−N+2s+1.

We will deduce the assertion of the lemma in each case from elliptic estimates on the equation (A.8)
and appropriate bounds on Fx.

Case −N + 2s + 1 < 0. Since the second summand b(y)Hb(x, y) is in L∞, we have Fx ∈ Lp(Ω) for
every p < N

N−2s−1 . For the following, fix some p ∈ (N2s ,
N

N−2s−1 ). (The assumption N < 4s guarantees
that this interval is not empty.)

Define ψ̃x := (−∆)−sFx, where (−∆)−s is convolution with the Riesz potential. Then by [35, Theorem
1.6.(iii)] we have [ψ̃x]Cα(RN ) . ‖Fx‖Lp(RN ), where α = 2s − N

p . Moreover (−∆)s(ψx − ψ̃x) = 0 on Ω.

Since s-harmonic functions are smooth (see e.g. [1, Section 2]), we conclude that ψx ∈ C2s−Np (Bd/2(x)).

Since ψx(x) = 0, we conclude that as y → x,

ψx(y) = O(|x− y|2s−
N
p ). (A.9)

If we choose p ∈ ( N
N−2s ,

N
N−2s−1 ), then 2s− N

p > 4s−N . (As a consequence of N < 4s, we have the
inclusion ( N

N−2s ,
N

N−2s−1 ) ⊂ (N2s ,
N

N−2s−1 ). Together with the definition of ψx, (A.9) then implies

Hb(x, y) = φb(x)− dN,sb(x)|x− y|4s−N + o(|x− y|4s−N ),

which is the assertion of the lemma.
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Case −N + 2s+ 1 ≥ 0. In this case Fx ∈ L∞(Ω). More precisely, we have

Fx ∈

{
L∞(Ω) if N = 2s+ 1,

C0,−N+2s+1(Ω) if 0 < −N + 2s+ 1.

Notice that we always have −N + 2s + 1 < 1, since N > 2s. As above, define ψ̃x = (−∆)−sFx. By
[39], we find using N < 4s that in any of the above cases, ψ̃x ∈ C1,α for all α ∈ (0, 1] with α < 4s−N .
Using Hölder continuity of the gradient, we easily find

ψx(y) = ψx(x) +∇ψx(x) · (y − x) +O(|x− y|α+1).

Choosing α > 4s−N − 1 and inserting the definition of ψx, we find

Hb(x, y) = φb(x) +∇ψx(x) · (y − x)− dN,sb(x)|x− y|4s−N + o(|x− y|4s−N ),

which is the assertion of the lemma with ξx := ∇ψx(x). �

Lemma A.4. Let k ∈ N with k ≤ p = 2N
N−2s . If k > 2s

N−2s , then

λ−
k
2 (N−2s)

∫
Ω

Up−kx,λ Ha(x, ·)k dy = o(λ−2s).

If 2 ≤ k ≤ 2s
N−2s , then

λ−
k
2 (N−2s)

∫
Ω

Up−kx,λ Ha(x, ·)k dy =

(∫
RN

U0,1(y)p−k dy

)
φa(x)kλ−k(N−2s) + o(λ−2s).

If k = 1,

λ−
N−2s

2

∫
Ω

Up−1
x,λ Hb(x, ·) dy = aN,sφb(x)λ−N+2s − dN,sbN,sb(x)λ−2s + o(λ−2s) + o(φb(x)λ−N+2s).

The asymptotics are uniform for x in compacts of Ω.

Proof. Let us start with the easy case of k > 2s
N−2s . In that case, since Ha(x, ·) is uniformly bounded,

we have

λ−
k
2 (N−2s)

∫
Ω

Up−kx,λ Ha(x, ·)k dy . λ−k(N−2s)

∫
BRλ

Up−k0,1 dy .


λ−k(N−2s) if k < N

N−2s ,

λ−N lnλ if k = N
N−2s ,

λ−N if k > N
N−2s .

In any case, this is o(λ−2s).

Now assume 1 ≤ k ≤ 2s
N−2s . Let us abbreviate d = d(x) and Bd = Bd(x) and show that the integral

over Ω \Bd is o(λ−2s). Indeed, since Ha(x, ·) is uniformly bounded,

λ−
k
2 (N−2s)

∫
Ω\Bd

Up−kx,λ Ha(x, y)k dy . λ−
k
2 (N−2s)

∫
RN\Bd

Up−kx,λ dy (A.10)

= λ−k(N−2s)

∫
RN\Bdλ

Up−k0,1 dy = λ−N = o(λ−2s). (A.11)

To evaluate the remaining integral over Bd, we use the formula

(Ha(x, y))k =
(
φa(x) + ξx · (y − x)− dN,s(a(x) + o(1))|x− y|4s−N

)k
(A.12)

by Lemma A.3 (where ξx may be zero if we are in case (i) of that lemma). After multiplying out the
right side, every term containing the factor ξx · (y − x) only once vanishes by oddness.

Let now k ≥ 2. Since φa(x) and a(x) are uniformly bounded and Ω is bounded, it is clear that we can
estimate

Ha(x, y)k = φa(x)k +O(|y − x|2 + |y − x|4s−N ) ≤ φa(x)k +O(|y − x|4s−N ).
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For the last step we used that 4s−N ≤ 2 + 2s−N < 2. Now

λ−
k
2 (N−2s)

∫
Bd

Up−kx,λ |x− y|
4s−N dy = λ−k(N−2s)λN−4s

∫
Bdλ(0)

Up−k0,1 |y|4s−N dy (A.13)

. λ−Nλ−(k−2)(N−2s) ×

{
lnλ if k = 2,

λ(k−2)(N−2s) if k > 2.
(A.14)

In any case, this is o(λ−2s).

Finally, if k = 1, plugging in expansion (A.12), the term involving a(x) is not negligible anymore.
Instead, it gives

λ−
N−2s

2

∫
Bd

Up−1
x,λ (a(x) + o(1))|x− y|4s−N dy = λ−2saN,sa(x) + o(λ−2s),

which completes the proof. �

Appendix B. Auxiliary computations

In this appendix, we collect some technical results and computations used throughout the paper.

First, we compute the Lq norm of Ux,λ for various values of q.

Lemma B.1 (Lq-norm of Ux,λ). Let x ∈ Ω and q ∈ [1,∞]. As λ → ∞, we have, uniformly for x in
compact subsets,

‖Ux,λ‖Lq(Ω) ∼


λ
N−2s

2 −Nq , q > N
N−2s ,

λ−
N−2s

2 (lnλ)
N−2s
N , q = N

N−2s ,

λ−
N−2s

2 , q < N
N−2s .

Moreover, for ∂λUx,λ = N−2s
2 λ

N−2s−2
2

1−λ2|x−y|2

(1+λ2|x−y|2)
N−2s+2

2

, we have |∂λUx,λ| = O(λ−1Ux,λ) pointwise

and therefore
‖∂λUx,λ‖q . λ−1‖Ux,λ‖q, q ∈ [1,∞].

Finally, for ∂xiUx,λ = (−N + 2s)λ
N−2s+2

2
λ(x−y)

(1+λ2|x−y|2)
N−2s+2

2

, we have

‖∂xiUx,λ‖Lq(Ω) ∼


λ
N−2s+2

2 −Nq , q > N
N−2s+1 ,

λ−
N−2s

2 (lnλ)
N−2s+1

N , q = N
N−2s+1 ,

λ−
N−2s

2 , q < N
N−2s+1 .

Lemma B.2. We have

‖(−∆)s/2PU‖ ∼ 1, ‖(−∆)s/2∂λPU‖ ∼ λ−1, ‖(−∆)s/2∂xiPU‖ ∼ λ.
Moreover, ∫

RN
(−∆)s/2PUx,λ(−∆)s/2∂λPUx,λ dy . λ−N+2s−1,∫

RN
(−∆)s/2PUx,λ(−∆)s/2∂xiPUx,λ dy . λ−N+2s,∫

RN
(−∆)s/2∂λPUx,λ(−∆)s/2∂xiPUx,λ dy . λ−N+2s−1,∫

RN
(−∆)s/2∂xiPUx,λ(−∆)s/2∂xjPUx,λ dy . λ−N+2s.

We remark that the bounds of Lemma B.2 are consistent with the ones proved in [34, Appendix
B].
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Lemma B.3. We have

0 ≤ λ−
N−2s

2

|x− y|N−2s
− Ux,λ(y) = λ

N−2s
2 h(λ(x− y)), (B.1)

with

h(z) :=

(
1

1 + |z|2

)N−2s
2

− 1

|z|N−2s
.

Moreover h(z) ∼ |z|−N−2+2s and |∇h(z)| ∼ |z|−N+2s−3 as |z| → ∞. Consequently, h ∈ Lp(RN ) for
every p ∈ [1, N

N−2s ) and ∇h ∈ Lp(RN ) for every p ∈ [1, N
N−2s+1 ), where the latter interval is possibly

empty.

Lemma B.4. Let b ∈ C(Ω) ∩ C1(Ω). As λ→∞, uniformly for x in compact subsets of Ω,∫
Ω

b(y)Ux,λ(y)λ
N−2s

2 h(λ(x− y)) dy = αN,sλ
−2sb(x) + o(λ−2s).

The numerical value of αN,s =
∫
RN U0,1(y)h(y) dy is given in Lemma B.5 below.

Proof. Abbreviate d = d(x) and Bd = Bd(x). We integrate separately over Bd and over Ω \Bd.

For the outer integral, from Lemma B.3 we get that U0,1(y)h(y) ∼ |y|−2N+4s−2. Thus∫
Ω\Bd

b(y)Ux,λ(y)λ
N−2s

2 h(λ(x− y)) dy . λ−N+2s−2 = o(λ−N ) = o(λ−2s).

For the inner integral, using that b ∈ C1(Ω), we write b(y) = b(x) + ∇b(x) · (y − x) + o(|x − y|) for
y ∈ Bd. Then (the integral over ∇b(x) · (y − x) cancels due to oddness)∫

Bd

b(y)Ux,λ(y)λ
N−2s

2 h(λ(x− y)) dy

= b(x)λ−2s

∫
Bλd(0)

U0,1(y)h(y) dy + o

(
λ−2s−1

∫
Bλd(0)

U0,1(z)h(z)|z|dz

)

= b(x)λ−2sαN,s + o(λ−2s + o

(
λ−2s−1

∫
Bλd(0)

U0,1(z)h(z)|z|dz

)
.

To show that the last term is o(λ−2s) as well, note that by Lemma B.3 we have U0,1(z)h(z)|z| .
|z|−2N+4s−1. Thus

λ−2s−1

∫
Bλd(0)

U0,1(z)h(z)|z|dz .


λ−2s−1 if N > 4s− 1,

λ−2s−1 log λ if N = 4s− 1,

λ−N+4s−1 if N < 4s− 1.

This is o(λ−2s) in all cases. �

We compute explicitly the constants that appear in the asymptotic expansions throughout the pa-
per.

Lemma B.5 (Constants). For N > 2s and p = 2N
N−2s , let U0,1(y) =

(
1

1+|y|2

)N−2s
2

and h(y) =
1

|y|N−2s − 1

(1+|y|2)
N−2s

2

. Then for every 0 ≤ k < N
N−2s we have

aN,s(k) :=

∫
RN

U0,1(y)p−k dy =
πN/2Γ

(
N
2 (1− k) + ks

)
Γ
(
N
2 (2− k) + ks

) .
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We denote AN,s := aN,s(0) and aN,s := aN,s(1). Further,

bN,s :=

∫
RN

U0,1(y)
N+2s
N−2s |y|4s−N dy = πN/2

Γ(2s)Γ
(
N
2 − s

)
Γ
(
N
2

)
Γ
(
N
2 + s

) ,
αN,s :=

∫
RN

U0,1(y)h(y) dy =
πN/2

Γ
(
N
2

)Γ(
N

2
− 2s)

(
Γ(s)

Γ(N2 − s)
−

Γ(N2 )

Γ(N − 2s)

)
,

Moreover, the constant in (−∆)su(x) := CN,sP.V.
∫
RN

u(x)−u(y)
|x−y|N+2s dy is given by

CN,s :=
22sΓ(N+2s

2 )

πN/2sΓ(1− s)

and the constant in (−∆)sU0,1 = cn,sU
N+2s
N−2s

0,1 is given by

cN,s = 22sΓ(N+2s
2 )

Γ(N−2s
2 )

.

The explicit value of the best fractional Sobolev constant in ‖(−∆)s/2u‖2 ≥ S‖u‖2 2N
N−2s

is

S := SN,s = 22sπs
Γ(N+2s

2 )

Γ(N−2s
2 )

(
Γ(N/2)

Γ(N)

)2s/N

.

The constant in (−∆)s|x|4s−N = −d−1
N,s|x|2s−N is given by

dN,s := −2−2s Γ(N−4s
2 )Γ(s)

Γ(N−2s
2 )Γ(2s)

> 0. (B.2)

The constant γN,s in ((−∆)s + a)Ga(x, ·) = γN,sδx is given by

γN,s =
22sπN/2Γ(s)

Γ(N−2s
2 )

.

Proof. The values of an,s(k) and bN,s are a consequence of the following computation. For α, β > 0,∫
RN

(
1

1 + |y|2

)α
|y|β dy =

2πN/2

Γ
(
N
2

) ∫ ∞
0

(
1

1 + r2

)α
rN−1+β dr

=
πN/2

Γ
(
N
2

)B (β+N
2 , α− β+N

2

)
=

πN/2

Γ
(
N
2

) Γ
(
β+N

2

)
Γ
(
α− β+N

2

)
Γ(α)

.

(B.3)

To compute αN,s, we write

αN,s =

∫
RN

U0,1(y)h(y) dy

=
2πN/2

Γ
(
N
2

) ∫ ∞
0

((
1

1 + r2

)N−2s
s

r2s−1 −
(

1

1 + r2

)N−2s

rN−1

)
︸ ︷︷ ︸

I(r,N,s)

dr.

If N > 4s, then the summands of I(r,N, s) are separately integrable, in which case (B.3) gives

αN,s =
πN/2

Γ
(
N
2

)Γ

(
N

2
− 2s

)(
Γ(s)

Γ
(
N
2 − s

) − Γ(N2 )

Γ(N − 2s)

)
. (B.4)

To extend this formula to the case 2s < N < 4s which concerns us, we remark that the right side of
(B.4) defines a holomorphic function of s in the complex subdomain DN := {0 < Re(s) < N/2} \
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{N/4} ⊂ C. On the other hand, by a cancellation I(r,N, s) remains integrable in r ∈ (0,∞) for every
s ∈ (0, 1) and N ∈ (2s, 4s). Indeed,

I(r,N, s) ∼ (r2s−1 − rN−1) as r → 0,

I(r,N, s) ∼
(
r−2N−2s

2 r2s−1(
1

1 + 1
r2

)
N−2s

2 − r−2(N−2s)rN−1(
1

1 + 1
r2

)N−2s

)
=

(
r−2N−2s

2 r2s−1(1 +
1

r2
)−

N−2s
2 − r−2(N−2s)rN−1(1 +

1

r2
)−(N−2s)

)
= r−N+4s−1

(
1−

N
2 − s
r2

+O(
1

r4
)− 1 +

N − 2s

r2
+O(

1

r4
)

)

=

(
N

2
− s
)
r−N+4s−3 +O(r−N+4s−5) as r →∞.

By a standard argument, this implies that
∫∞

0
I(r,N, s) dr is holomorphic in DN as a function of s.

By the identity theorem for analytic functions, the formula (B.4) thus holds also for s ∈ (N/4, N/2),
which is what we wanted to show.

Finally, the claimed value of S can be found e.g. in [16, Theorem 1.1] and that of dN,s in [30, Table
1, p. 168]. �

Lemma B.6. Let 2s < N < 4s and let fε : (0,∞)→ R be given by

fε(λ) =
Aε
λ2s
−Bε

ε

λN−2s

with Aε, Bε > 0 uniformly bounded away from 0 and ∞. The unique global minimum of fε is given by

λ0 = λ0(ε) =

(
2sAε

(N − 2s)Bε

) 1
4s−N

ε−
1

4s−N . (B.5)

with corresponding minimal value

min
λ>0

fε(λ) = fε(λ0) = −ε
2s

4s−N
B

2s
4s−N
ε

A
N−2s
4s−N
ε

(
N − 2s

2s

) 2s
4s−N 4s−N

N − 2s
. (B.6)

Moreover, there is a c0 > 0 such that, for all ε > 0, we have

fε(λ)− fε(λ0) ≥

c0ε
2s−2
4s−N

(
λ−1 − λ0(ε)−1

)2 if
(
Aε
Bε

) 1
4s−N

ε−
1

4s−N λ−1 ≤ 2
(

2s
N−2s

) 1
N−4s

,

c0ε
2s

4s−N if
(
Aε
Bε

) 1
4s−N

ε−
1

4s−N λ−1 > 2
(

2s
N−2s

) 1
N−4s

.
(B.7)

Proof. The values of λ0 and fε(λ0) are obtained by standard computations. Thus we only prove (B.7).
Let F (t) := t2s− tN−2s and denote by t0 := ( 2s

N−2s )−
1

4s−N the unique global minimum of F on (0,∞).
Then, there exists c > 0 such that

F (t)− F (t0) ≥

{
c(t− t0)2 if 0 < t ≤ 2t0,

ctN−2s
0 if t > 2t0.

The assertion of the lemma now follows by rescaling. Indeed, it suffices to observe that

fε(λ) = A
−N−2s

4s−N
ε B

2s
4s−N
ε ε

2s
4s−N F

((
Aε
Bε

) 1
4s−N

ε−
1

4s−N λ−1

)
and to use the boundedness of Aε and Bε. �
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