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Abstract

We compute the Euler equations of a functional useful for simultaneous video inpainting and
motion estimation, which was obtained in [17] as the relaxation of a modified version of the
functional proposed in [16]. The functional is defined on vectorial functions of bounded variations,
therefore we also get the Euler equations holding on the singular sets of minimizers, highlighting
in particular the conditions on the jump sets. Such conditions are expressed by means of traces
of geometrically meaningful vector fields and characterized as pointwise limits of averages on
cylinders with axes parallel to the unit normals to the jump sets.

1 Introduction

In [16] Lauze and Nielsen proposed a variational model for motion compensated video inpainting.
This model was also applied to video deinterlacing [14] and video super-resolution [15]. In [17] the
authors modified the model in order to get better variational properties, moreover they computed the
relaxation of the modified functional and its domain, in such a way to recover existence of minimizers
by resorting to the Direct Methods of Calculus of Variations. Other properties of the model were
studied in [18].
Given Ωs ⊂ R2 (which represents the spatial domain of a video sequence and which is assumed
bounded, open, connected and with Lipschitz boundary) and [0, T ] a temporal domain, we set Ω =
Ωs×[0, T ] and (x, t) denotes a point belonging to Ω. Let D ⊂ Ω denote a known spatiotemporal region
where the video data are lost. We assume that D is open, that both D and Ω \ D have Lipschitz
boundary, and that ∂D ∩ Ω has positive surface measure. Then a degraded video datum can be
represented by means of a function f ∈ L1(Ω \D).
The problem of video inpainting consists in looking for a restored video content u defined on Ω,
matching f outside D and satisfying in D spatial piecewise smoothness. In motion compensated video
inpainting it is also required that u has in D coherence (in some suitable sense) with the apparent
motion of the video data. This can be estimated through gray-value variations of f in Ω \ D and
it is represented by a vector field of velocities σ : Ω → R2 called optical flow. The field σ is an
approximation of the two-dimensional motion field, which is the projection onto the image plane of
the three-dimensional vector field of velocities of objects moving in the scene (see [8], Section 5.3.2). In
order to get the simultaneous estimation inside D of both the gray-value video u and the optical flow
field σ, the variational approach consists in minimizing a suitable energy functional depending on u, σ
and on an approximation of the spatial gradient of u. In Sections 3 and 5 we recall the definition of
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the functional proposed in [17] and its relaxation, which is defined on functions of bounded variation
(“BV ” for short). Differently from Sobolev spaces, BV functions may have discontinuities along
hypersurfaces of codimension one and therefore they can be seen as a natural framework for a model
of image processing, where discontinuities can represent the contours of objects in a visual scene. In the
present paper we compute the Euler equations of the relaxed functional and we will pay attention to
the contribute of the singular sets, which involves the jump discontinuity sets. Some basic definitions
and properties of BV functions are quoted in Section 4. We exploit some tools developed by Anzellotti
in [4] and [5] for functionals with linear growth defined on scalar functions, like for instance the Total
Variation or the Area functional. In our case the functional has a much more complicated form
and, therefore, more technical steps are needed. Moreover, our functional is defined on vectorial BV
functions and, in order to handle the singular part of distributional derivatives, we have to resort to
the Rank one Theorem due to Alberti [1]. Roughly speaking, this theorem permits us to perform
also for the Cantor part a suitable computation, similar to that we would have in the simpler case
where the singular set is made only of the jump set. In particular, we first compute the directional
derivatives of the relaxed functional, then, using a suitable integration by parts formula (consequence
of the Divergence Theorem) holding in BV , we are able to get extremal conditions, which involve:
i) partial differential equations (in divergence form) for the absolutely continuous part; ii) conditions
on the boundary; iii) conditions on the singular sets expressed by means of traces of geometrically
meaningful vector fields and characterized as pointwise limits of averages on cylinders having a suitable
orientation.
Typically, in the image processing literature the numerical schemes (used to get minimizers) concen-
trate on the equations obtained for the absolutely continuous part. Though the conditions on the
singular sets are difficult to handle from the numerical point of view, nevertheless they can highlight
properties about the behavior of minimizers.

2 Notation

For n integer, Ln is the Lebesgue n-dimensional measure in Rn, and Hn−1 is the Hausdorff n − 1-
dimensional measure in Rn. We denote by {e1, · · · , en} the canonical basis of Rn, and we denote by
Mm×n the space of the m× n real matrices. If M ∈Mm×n, we denote M t the transpose matrix and
Tr(M) the trace of M . The symbols 〈·, ·〉 and | · | denote both the Euclidean scalar product and norm
of vectors, and the Frobenius scalar product and norm of matrices. If a, b ∈ Rn with n > 1 we denote
by a⊗ b their tensor product, that means the matrix whose entries are (a⊗ b)ij = aibj .
If O1 and O2 are bounded subsets of Rn and O2 is open, by O1 ⊂⊂ O2 we mean that O1 ⊂ O2. For
ρ > 0 and y ∈ Rn, we set Bρ(y) = {z ∈ Rn : |z− y| < ρ} and ωn = Ln(B1(0)). For O ⊂ Rn we denote
by 1O the characteristic function of O, i.e., 1O(y) = 1 if y ∈ O and 1O(y) = 0 if y /∈ O.
Let O ⊂ Rn be open, and let B(O) be the σ-algebra of Borel subsets of O. Given a measure
µ : B(O) → Rk, we consider its Lebesgue decomposition µ = µa · Ln + µs, where µa is the density
of µ with respect to Ln and µs is the singular part of µ with respect to Ln. If µ is a real or vector
valued measure and ν is a positive measure, then dµ/dν denotes the corresponding Radon-Nikodym
derivative; if µ is absolutely continuous with respect to ν we write µ� ν. We denote by |µ| the total
variation of µ. If O1 ∈ B(O) we set µbO1(O2) = µ(O1 ∩ O2) for every set O2 ∈ B(O).

3 The model

In this section we describe the variational model proposed by the authors in [17], and we recall the
definition of the functional to be minimized. Let Ωs,Ω, D, f be as in Section 1.
We denote by v : Ω→ R2 a vector field which approximates the spatial gradient ∇xu. We set

u ∈W 1,1(Ω), v = (v1, v2) ∈ [W 1,1(Ω)]2, σ = (σ1, σ2) ∈ [W 1,1(Ω)]2,
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and w = (u, v, σ) ∈ V (Ω), with V (Ω) = [W 1,1(Ω)]5, where W 1,1 denotes the Sobolev space of L1

functions having L1 distributional derivatives. For a given ρ > 0 we define

σρ(y) =
1

L3(Ω ∩Bρ(y))

∫
Ω∩Bρ(y)

σ(z)dL3, for any y ∈ Ω, (1)

where Bρ(y) = {z ∈ R3 : |z− y| < ρ}. We set Σρ = (σ1ρ, σ2ρ, 1) and we assume that ρ is a fixed small
parameter.
Let ϕ : R+ → R+ be differentiable for all t > 0, nondecreasing and such that, for every k ∈ N, the
function ψ : Rk → R defined by means of ψ(ξ) = ϕ(|ξ|2) is convex, Lipschitz, and has linear growth
in ξ for large |ξ| (precise growth conditions for ψ are given in Section 4.3).
Such properties are satisfied for instance if ϕ(t) =

√
t+ ε with ε > 0. Another example of function ϕ

useful in applications is the following:

ϕ(t) =


1
2 t if t ∈ [0, 1],

√
t− 1

2 if t ∈ (1,+∞) .

The variational problem consists in minimizing a functional E depending on the vector w of functions
w = (u, v, σ) ∈ V (Ω) which consists of three terms:

E(w) = F (u, v) +G(w) + P (σ). (2)

The functional F is defined by

F (u, v) =

∫
Ω\D

ϕ(|f − u|2)dL3 +

∫
Ω

ϕ(|∇xu− v|2)dL3 +

∫
Ω

ϕ(|∇xv|2)dL3,

where ∇x is the spatial gradient operator. The first term in F enforces the unknown video u to
approximate the datum f in the set Ω \D where data are available. The second and third term are
spatial regularization functionals which enforce the vector field v to approximate the spatial gradient
∇xu, and enforce spatial piecewise smoothness both of the reconstructed video u and of the vector
field v. The linear growth of the function ϕ allows the presence of discontinuities in the function u
which represent the boundaries of moving objects in the video sequence.
The functional G is defined by

G(w) =

∫
Ω

ϕ
(
〈∇u,Σρ〉2 + |(∇v)Σρ|2

)
dL3,

where ∇ is the spatiotemporal gradient. Since σ represents the vector field of velocities of the visible
surfaces of moving objects in the video [8], σ = (dx1/dt, dx2/dt), setting Σ = (σ1, σ2, 1) we have

〈∇u,Σ〉 =
∂u

∂t
+ 〈∇xu, σ〉 =

du

dt
.

Now the requirement that the gray-value intensity u of the video is constant along apparent motion
trajectories, at least for a short duration, yields the optical flow constraint

du

dt
= 0,

which was proposed by Horn and Schunck [13] to estimate the optical flow σ. Moreover, we have for
the matrix by vector product

(∇v)Σ =
∂v

∂t
+ (∇xv)σ =

dv

dt
.
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An extension of the optical flow constraint to the constancy of the spatial gradient ∇xu was proposed
in [19, 9]. Then, after the replacement of Σ with Σρ for small ρ, the term G penalizes global deviations
from the gray-value constancy constraint (optical flow constraint) and from the constancy constraint
of the vector field v which approximates the spatial gradient ∇xu. This term then enforces coherence
corresponding to apparent motion between frames of the reconstructed video u (for almost any t ∈
[0, T ] the function x→ u(x, t) is a frame of the video u).
Eventually, the functional P is defined by

P (σ) =

∫
Ω

ϕ(|∇σ|2)dL3 + c

∫
Ω

ϕ(|σ|2)dL3,

where c is a small positive constant. The integrals in P are, respectively, a spatiotemporal regulariza-
tion term which enforces the piecewise smoothness of the optical flow σ, and a term which helps to
make the functional coercive.
Further details of the variational model can be found in [17]. The function space W 1,1(Ω) is not a
reflexive Banach space, hence, in order to achieve information about minimizing sequences that are
bounded in V (Ω), we have to resort to the relaxed functional of E (for details about the relaxation
method see for instance [10]). The representation of the relaxed functional in a space of vector valued
BV functions has been found in [17] and it will be recalled in Section 5. We remark that the average
of the optical flow σ on a ball with fixed radius ρ permits us to obtain a representation formula for
the relaxed functional of G such that the density of the jump part of the energy can be explicitly
computed (see the end of Section 5 and see [17] for more information).

4 Preliminary results

4.1 Functions of bounded variation

For O ⊂ Rn open, we denote by BV (O) the space of scalar functions of bounded variation in O,
i.e., the functions u ∈ L1(O) such that the distributional gradient of u is representable as a measure
Du : B(O)→ Rn with finite total variation.
For any u ∈ BV (O) and y ∈ O, we denote by u−(y), u+(y) the approximate lower and upper limit of
u at the point y, which satisfy u−(y) ≤ u+(y). We set

Su =
{
y ∈ O : u−(y) < u+(y)

}
.

The set Su will be considered as the discontinuity set of u. We denote by Nu the density of the
measure Du with respect to |Du|, namely

Nu =
dDu

d|Du|
. (3)

If u ∈ BV (O), then the Lebesgue decomposition of Du is given by

Du = Dau+Dsu, Dau = ∇u · Ln, Dsu = Ju+ Cu,

where Dau is the absolutely continuous part of Du with respect to Ln, with density denoted by
∇u = dDau/dLn (which coincides a.e. with the gradient of u defined in the sense of approximate
limits [2]), Dsu is the singular part of Du, Ju and Cu are the jump part and the Cantor part of Dsu,
respectively. We set

Ns
u =

dDsu

d|Dsu|
, NJ

u =
dJu

d|Ju|
, NC

u =
dCu

d|Cu|
. (4)

By the properties of BV functions [2], there exists a set Ku contained in the support of the measure
Dsu, having Ln(Ku) = 0, such that Dsu is concentrated on Ku and Ku = Su ∪ Cu, with the sets Su
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and Cu disjoint and the measure Cu concentrated on Cu. For Hn−1-a.e. y ∈ Su a normal unit vector
νu(y) can be defined such that

lim
ρ→0

1

|Bρ(y) ∩ {z ∈ Rn : 〈z − y, νu(y)〉 ≷ 0}|

∫
Bρ(y)∩{〈z−y,νu(y)〉≷0}

|u(y)− u±(y)|dLn = 0,

and it coincides with NJ
u (y). Moreover there holds

Ju(Ô) =

∫
Su∩Ô

(u+ − u−)νu dHn−1,

with Ô ∈ B(O).
If U = (U1, . . . , Um) ∈ [BV (O)]m, we denote by DU the m × n matrix valued measure whose rows
are DUi for i = 1, . . . ,m, and we set SU = SU1 ∪ · · · ∪ SUm . We use the same notation of the scalar
case in (3) for the density

NU =
dDU

d|DU |
: O →Mm×n,

and the same notation as in (4) for the related singular, jump and Cantor part Ns
U , N

J
U , N

C
U . We set

CU = CU1 ∪ · · · ∪ CUm and KU = SU ∪ CU .
In [1] Alberti proved the following rank one property of the singular parts of distributional derivatives
of vector valued BV functions. By Corollary 4.6 in [1] there exist α : O → Sm−1 and β : O → Sn−1

such that
Ns
U (y) = α(y)⊗ β(y) for |DsU | − a.e. y ∈ O. (5)

Remark 4.1. For Hn−1-a.e. y ∈ SU we have that α = U+(y)−U−(y)
|U+(y)−U−(y)| and β coincides with the normal

unit vector on SU . Therefore, in the sequel we will denote by νU the vector β, when we are on SU .

Corollary 4.2. Remark 4.1 implies that, for i 6= k, if SUi ∩ SUk 6= ∅, on the intersection νUi ≡ νUk .

Remark 4.3. In particular Corollary 4.6 in [1] allows to state a property analogous to Corollary 4.2
also for CU , the Cantor part of DsU . In fact, since the measures CU and JU are mutually singular,
by (5) we infer:

(CU)i,j = αiβj |CU |, (6)

hence
CUi = αi|CU |β. (7)

Moreover, we know

CUi = NC
Ui
|CUi| = NC

Ui

∣∣∣∣ dCUid|CU |

∣∣∣∣ · |CU |, (8)

so that (7) and (8) imply

NC
Ui

∣∣∣∣ dCUid|CU |

∣∣∣∣ = αiβ. (9)

This holds for every i = 1, . . . ,m, therefore all the vectors NC
Ui

are parallel whenever they are not null.

Using Remark 4.1 and Remark 4.3, when we are on KU we write

β = νsU . (10)

If O = Ω ⊂ R3 (the spatiotemporal domain of a video sequence), u ∈ BV (Ω) and y = (x, t) ∈
Ω, then we denote by Dxu : B(Ω) → R2 the measure whose components are the distributional
derivatives of u with respect to the spatial coordinates. We denote by∇xu the density of the absolutely
continuous part of Dxu with respect to L3, we denote by Ds

xu the singular part of Dxu, we denote
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by Nu,x, N
s
u,x, N

J
u,x, N

C
u,x the corresponding Radon-Nikodym derivatives, and we denote by νu,x the

orthogonal projection of νu on the spatial subset of space-time R3. Moreover, Jxu and Cxu are the
jump part and the Cantor part of Ds

xu, respectively. We use analogous notations for the distributional
derivative of u with respect to time: Dtu, ∂tu and Ds

tu.
Analogous notations are used for vector valued functions U ∈ [BV (O)]m, moreover, using (5) and
(10), we set

(Ns
U )x = α⊗ νsU,x,

and we observe that Ns
U,x 6= (Ns

U )x.

4.2 Traces of vector fields

In [3] Anzellotti introduced a suitable notion of trace (on the discontinuity set of a BV function)
for bounded vector fields having distributional divergence in a Lebesgue space (see [3, 5] for more
details). Let O ⊂ Rn be bounded, open and with Lipschitz boundary, and denote by νO the unit
outward normal vector to ∂O. First we introduce the following function space for bounded vector
fields:

W (O)p = {T ∈ [L∞(O)]n : divT ∈ Lp(O)}, 1 ≤ p ≤ +∞.

Definition 4.4. If T ∈W (O)n, then there exists a unique function [〈T, νO〉] ∈ L∞(∂O) such that∫
∂O

[〈T, νO〉]g dHn−1 =

∫
O
g divTdLn +

∫
O
〈T,∇g〉dLn (11)

for all g ∈ C1(O) and there holds:

‖[〈T, νO〉]‖L∞(∂O) ≤ ‖T‖L∞(O). (12)

We remark that, if T is continuous up to the boundary, [〈T, νO〉] coincides with 〈T, νO〉 and this
motivates the above notation.

Definition 4.5. Let T ∈W (O)n; for ν ∈ Sn−1 and y ∈ O we set:

[[〈T, ν〉]](y) = lim
ρ→0+

lim
r→0+

1

2rωn−1ρn−1

∫
Cr,ρ(y,ν)

〈T (y′), ν〉dLn(y′), (13)

where Cr,ρ(y, ν) is the cylinder

Cr,ρ(y, ν) = {ξ ∈ Rn : |〈(ξ − y), ν〉| < r, |(ξ − y)− 〈(ξ − y), ν〉ν| < ρ}.

The following theorem generalizes to BV functions the classical Integration by parts Formula, which
follows by the Divergence Theorem. In particular, we remark that, when the distributional gradient

of u has no singular part, the second term at the right hand-side of (14) reduces to

∫
O
〈T,∇u〉dLn

and, therefore, (14) becomes the usual formula holding in Sobolev spaces.

Theorem 4.6. Let u ∈ BV (O), let Nu be defined as in (3), and let T ∈ W (O)n. Then the function
[[〈T,Nu(y)〉]](y) is defined for |Du|-a.e. y ∈ O and it is |Du|-measurable. Moreover, the following
formula holds:∫

O
u(y) divT (y) dLn(y) =

∫
∂O

[〈T, νO〉](y)u(y) dHn−1(y)−
∫
O

[[〈T,Nu(y)〉]](y)d|Du|(y), (14)

and
[[〈T,Nu(y)〉]](y) = 〈T (y), Nu(y)〉 |Dau| − a.e. in O.
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Let now U ∈ [BV (O)]m and M = (T1, . . . , Tm)t ∈ Mm×n a matrix such that Ti ∈ W (O)n for any
i = 1, . . . ,m. We write M ∈ [W (O)n]m and we denote divM ∈ Rm the vector with components divTi.
The following matrix form of the identity (14), which follows by componentwise summation, will also
be useful (we drop the dependence on y):∫

O
〈U,divM〉dLn =

∫
∂O
〈U, [MνO]〉dHn−1 −

∫
O
〈M,∇U〉dLn −

∫
O
〈α, [[MνsU ]]〉d|DsU |, (15)

where α is the vector field defined in (5), the components of the vector [[MνsU ]] are the functions
[[〈Ti, νsU 〉]] defined in (13) by pointwise limits of averages on cylinders, and the components of the
vector [MνO] are the functions [〈Ti, νO〉].
Recalling that, for M ∈Mm×n and α ∈ Rm, β ∈ Rn, there holds

〈α,M β〉 = 〈M,α⊗ β〉, (16)

using (5) and (10) we have

〈α(y),M(y′)νsU (y)〉 = 〈M(y′), Ns
U (y)〉 for Ln − a.e. y′ ∈ O, |DsU | − a.e. y ∈ KU ,

so that the function [[〈M,Ns
U (y)〉]](y) is defined for |DsU |-a.e. y ∈ KU , and there holds

[[〈M,Ns
U (y)〉]](y) = 〈α(y), [[MνsU (y)]](y)〉 for |DsU | − a.e. y ∈ KU . (17)

4.3 Directional derivatives of functions of measures with linear growth

Let O ⊂ Rn be open and bounded. Let k ∈ N and ψ : Rk → R be a convex function satisfying the
following growth conditions

∃ a1 > 0 and a2 ≥ 0 : a1|ξ| − a2 ≤ ψ(ξ) ≤ a1|ξ|+ a2 ∀ξ ∈ Rk. (18)

Then for any ξ ∈ Rk there exists the limit

ψ∞(ξ) = lim
t→+∞

ψ(tξ)

t
= a1|ξ|, (19)

which is said the recession function of ψ. According to [12], for any measure µ : B(O) → Rk the
following function of measure can be defined:

I(µ) =

∫
O
ψ(µa)dLn +

∫
O
ψ∞

(
dµs

d|µs|

)
d|µs|. (20)

For the properties of functions of measures we refer to [12]. We now recall a result proved by Anzellotti
which allows the computation of directional derivatives of functions of measures (see [4, Theorem 2.4]).
Let the function ψ satisfy the further properties:

(i) ψ(ξ) is differentiable for all ξ ∈ Rk or ψ(ξ) is differentiable for all ξ 6= 0 and ψ(0) = 0;

(ii) there exists M > 0 such that |∂ξψ(ξ)| ≤M for any ξ ∈ Rk.

Theorem 4.7. Let µ and γ be Rk-valued Borel measures on O. Then the function of measure I(µ)
is differentiable at µ in the direction γ if and only if |γs| � |µs| and in this case there holds:

d

dλ
I(µ+ λγ)

∣∣∣∣
λ=0

=

∫
O
〈∂ξψ(µa), γa〉dLn +

∫
O
〈∂ξψ∞

(
dµs

d|µs|

)
,
dγs

d|γs|
〉d|γs|. (21)
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In our case property (ii) of function ψ is satisfied with M = a1. Indeed, by using the definition of
convexity one can check that

ψ∞(ζ) ≥ 〈∂ξψ(ξ), ζ〉 ∀ ξ, ζ ∈ Rk, ζ 6= 0, (22)

from which, for ∂ξψ(ξ) 6= 0, taking ζ = ∂ξψ(ξ)/|∂ξψ(ξ)| and using (19), it follows

|∂ξψ(ξ)| ≤ ψ∞(ζ) = a1,

so that we have
|∂ξψ(ξ)| ≤ a1 ∀ξ ∈ Rk. (23)

5 The relaxed functional

In this section we recall the results found in [17] regarding the relaxation of the functional E introduced
in Section 3. We set X(Ω) = [L1(Ω)]5, and we extend the functional E to X(Ω) by means of the
functional E : X(Ω)→ [0,+∞] defined by

E(w) =

{
E(w) if w ∈ V (Ω),
+∞ elsewhere on X(Ω).

The functionals F,G, P are extended to F ,G,P analogously [17]. We denote by E the relaxed func-
tional of E , i.e., the lower semicontinuous envelope of E with respect to the strong topology of X(Ω).
For every w ∈ X(Ω) we have

E(w) = inf

{
lim inf
h→+∞

E(wh) : {wh} ⊂ V (Ω), wh → w in X(Ω)

}
. (24)

Denoted by Y (Ω) ⊂ X(Ω) the set where E is finite, in [17] it is proved that Y (Ω) = [BV (Ω)]5 and the
relaxed functional E can be written in the form

E(w) = F(u, v) + G(w) + P(σ), (25)

where F ,G,P are the relaxation of F ,G,P, respectively (see [17] for details).
In particular, for w = (u, v, σ) ∈ Y (Ω) we have the following representation formulae:

F(u, v) =

∫
Ω\D

ϕ(|f − u|2)dL3 +

∫
Ω

ϕ(|∇xu− v|2)dL3 +

∫
Ω

ϕ(|∇xv|2)dL3

+ Mϕ [ |Ds
xu|(Ω) + |Ds

xv|(Ω) ] , (26)

where the constant Mϕ is given by the recession function of ϕ(s2) evaluated at s = 1,

Mϕ = lim
t→+∞

ϕ(t2)

t
; (27)

G(w) =

∫
Ω

ϕ
(
〈∇u,Σρ〉2 + |(∇v)Σρ|2

)
dL3 +Mϕ|µsw|(Ω), (28)

where the measure µw : B(Ω)→ R3, with components µw = (µw0, µw1, µw2), is defined as follows,

µw0(O) = 〈Σρ, Du〉(O) =

∫
O
〈Σρ, dDu〉,

µwi(O) = 〈Σρ, Dvi〉(O) =

∫
O
〈Σρ, dDvi〉, for i = 1, 2, (29)
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for any O ∈ B(Ω) and the measure µsw is the singular part of µw with respect to L3 ;

P(σ) =

∫
Ω

ϕ(|∇σ|2)dL3 +Mϕ|Dsσ|(Ω) + c

∫
Ω

ϕ(|σ|2)dL3. (30)

Note that, if ψ : Rk → R is a function as in Section 4.3 and such that ψ(ξ) = ϕ(|ξ|2), taking ζ ∈ Rk
such that |ζ| = 1 and using (19), we have

Mϕ = lim
t→+∞

ϕ(t2|ζ|2)

t
= ψ∞(ζ) = a1. (31)

Existence of minimizers of the relaxed functional E in the space Y (Ω) has been proved in [17].
We conclude this section by recalling the representation of the jump part of the relaxed functional G,
which yields the contribution to G from discontinuities of functions u and v. This is interesting, since
it contains the interaction on the discontinuity set Su ∪ Sv between the optical flow σ, the video u,
and the vector field v which approximates ∇xu. Decomposing the measure µsw into the jump part µJw
and the Cantor part µCw , the result found in [17] is the following:

|µJw|(Ω) =

∫
Su∪Sv

√
〈νu,Σρ〉2 (u+ − u−)2 + 〈νv,Σρ〉2 [(v+

1 − v
−
1 )2 + (v+

2 − v
−
2 )2] dH2 .

In [17] the role played by the average of the optical flow σ on a ball with a fixed radius ρ, in obtaining
such a representation formula, has been discussed.

6 Main results

The purpose of the present paper is to compute the Euler equations of E , highlighting the necessary
conditions of minimality holding for the absolutely continuous part and the singular part of the
measures Du, Dv and Dσ, respectively, and focusing the attention on the discontinuity sets of u, v, σ.
Let w = (u, v, σ) ∈ Y (Ω); we set U = (u, v1, v2) ∈ [BV (Ω)]3 and σ = (σ1, σ2) ∈ [BV (Ω)]2. First we
define suitable vector fields that will be involved in the Euler equations. We denote v̂ : Ω → R3 the
vector field with components (v1, v2, 0) and, given g ∈ BV (Ω), we denote ∇̂xg : Ω → R3 the vector
field with components (∂x1

g, ∂x2
g, 0).

Let T1 : Ω→ R3 be the vector field defined as

T1 = ϕ′
(
|(∇U)Σρ|2

)
〈∇u,Σρ〉Σρ, (32)

where ϕ′ denotes the derivative of ϕ, and let T2 : Ω→M2×3 be the matrix-valued field defined as

T2 = ϕ′
(
|(∇U)Σρ|2

)
((∇v)Σρ)⊗ Σρ . (33)

We collect T1 and T2 in the matrix-valued field T : Ω→M3×3 defined as

T = ϕ′
(
|(∇U)Σρ|2

)
((∇U)Σρ)⊗ Σρ ,

so that T1 is the first row of T and T2 is the submatrix constituted with the second and third row of
T . Let now A : Ω→ R3 be the vector field defined as

A = A0 + T1, A0 = ϕ′
(
|∇xu− v|2

)
(∇̂xu− v̂), (34)

let B : Ω→M2×3 be the matrix-valued field defined as

B = B0 + T2, B0 = ϕ′
(
|∇xv|2

)
∇̂xv, (35)
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and let Q : Ω→M2×3 be the matrix-valued field defined as

Q = ϕ′
(
|∇σ|2

)
∇σ. (36)

We need the following nonlinear operator Λ z,ρ : Y (Ω)→ R2 built with an average on the ball Bρ(z),
with z ∈ Ω:

Λ z,ρ(w) =

∫
Ω∩Bρ(z)

1

L3(Ω ∩Bρ(y))
ϕ′
(
|(∇U(y))Σρ(y)|2

)
(∇xU(y))t(∇U(y))Σρ(y) dL3(y), (37)

where the matrix by vector product (∇xU)t(∇U)Σρ is a vector in R2. We also need the nonlinear
operator Θ z,ρ : Y (Ω)→ R2, built with the singular part DsU of DU , defined as

Θ z,ρ(w) =

∫
KU∩{NsUΣρ 6=0}∩Bρ(z)

1

L3(Ω ∩Bρ(y))

1

|Ns
U (y)Σρ(y)|

((Ns
U )x(y))tNs

U (y)Σρ(y) d|DsU |(y),

(38)
where the matrix by vector product (Ns

U )txN
s
UΣρ is a vector in R2.

We prove the following result.

Theorem 6.1. (Euler equations and trace properties) Let w = (u, v, σ) ∈ Y (Ω) be a minimizer
of E. Then the following necessary conditions hold.
Absolutely continuous part. We have A ∈ W (Ω)∞ and B,Q ∈ [W (Ω)∞]2, and the vector field w
satisfies the following set of Euler equations for L3-a.e. y = (x, t) ∈ Ω:

divA = χΩ\Dϕ
′ (|f − u|2) (u− f), (39)

−divB = ϕ′
(
|∇xu− v|2

)
(∇xu− v) , (40)

divQ = c ϕ′
(
|σ|2

)
σ + Λ y,ρ(w) +

Mϕ

2
Θ y,ρ(w). (41)

Conditions on the singular sets KU and Kσ. We have

[[〈A0, N
s
u〉]](y) =

Mϕ

2
|νsu,x(y)|, for |Dsu| − a.e. y ∈ Ku,

[[〈B0, N
s
v 〉]](y) =

Mϕ

2
|νsv,x(y)|, for |Dsv| − a.e. y ∈ Kv, (42)

[[〈T,Ns
U 〉]](y) =

Mϕ

2
|〈νsU (y),Σρ(y)〉| , for |DsU | − a.e. y ∈ KU ,

[[〈Q,Ns
σ〉]](y) =

Mϕ

2
, for |Dsσ| − a.e. y ∈ Kσ.

Natural boundary conditions on ∂Ω. For H2-a.e. y = (x, t) ∈ ∂Ω we have

[〈A, νΩ〉](y) = 0, (43)

[BνΩ](y) = 0, (44)

[QνΩ](y) = 0. (45)

Though from the theoretical point of view, when we deal with models involving BV functions, we
have to consider their Cantor part, actually in the case of real images the important objects are the
discontinuity sets (of the images or of other quantities related to them, like in our case, for instance,
the velocities of moving objects). Therefore, in the following corollary we explicitly write conditions
(42) for the jump sets of minimizers.

10



Corollary 6.2 (Conditions on the jump sets). Using the identity (17) and Remark 4.1, on the jump
sets conditions (42) become:

[[ϕ′
(
|∇xu− v|2

)
〈∇xu− v, νu,x〉]](y) =

Mϕ

2
|νu,x(y)|, for H2 − a.e. y ∈ Su,

[[ϕ′
(
|∇xv|2

)
〈v+ − v−, (∇xv)νv,x〉]](y) =

Mϕ

2
|νv,x(y)| · |v+(y)− v−(y)|,

for H2 − a.e. y ∈ Sv, (46)

[[ϕ′
(
|(∇U)Σρ|2

)
〈U+ − U−, (∇U)Σρ〉〈Σρ, νU 〉]](y) =

Mϕ

2
|〈νU (y),Σρ(y)〉| ·

∣∣U+(y)− U−(y)
∣∣ ,

for H2 − a.e. y ∈ SU ,

[[ϕ′
(
|∇σ|2

)
〈σ+ − σ−, (∇σ)νσ〉]](y) =

Mϕ

2
|σ+(y)− σ−(y)|, for H2 − a.e. y ∈ Sσ.

Remark 6.3. Recalling that Ω = Ωs × [0, T ], the natural boundary conditions (43) and (44) can be
written in the form:[
ϕ′(|∇xu− v|2)〈∇xu− v, νΩs〉+ ϕ′

(
|(∇U)Σρ|2

)
〈∇u,Σρ〉〈σρ, νΩs〉

]
(x, t) = 0, H1-a.e. x ∈ ∂Ωs,

t ∈ (0, T ),

and [
ϕ′(|∇xv|2) (∇xv) νΩs + ϕ′

(
|(∇U)Σρ|2

)
〈σρ, νΩs〉 (∇v) Σρ

]
(x, t) = 0, H1-a.e. x ∈ ∂Ωs,

t ∈ (0, T ),

where νΩs ∈ R2 denotes the unit outward normal vector to Ωs.

Example 6.4. Let ϕ(s) =
√
s+ ε, then Mϕ = 1 and

A =
∇̂xu− v̂

2
√
ε+ |∇xu− v|2

+
〈∇u,Σρ〉

2
√
ε+ |(∇U)Σρ|2

Σρ,

B =
∇̂xv

2
√
ε+ |∇xv|2

+
((∇v)Σρ)⊗ Σρ

2
√
ε+ |(∇U)Σρ|2

,

Q =
∇σ

2
√
ε+ |∇σ|2

.

Moreover, the necessary conditions (46) become

[[
〈∇xu− v, νu,x〉√
ε+ |∇xu− v|2

]](y) = |νu,x(y)|, for H2 − a.e. y ∈ Su,

[[
〈v+ − v−, (∇xv)νv,x〉√

ε+ |∇xv|2
]](y) = |νv,x(y)| · |v+(y)− v−(y)|, for H2 − a.e. y ∈ Sv,

[[
〈U+ − U−, (∇U)Σρ〉〈Σρ, νU 〉√

ε+ |(∇U)Σρ|2
]](y) = |〈νU (y),Σρ(y)〉| ·

∣∣U+(y)− U−(y)
∣∣ , for H2 − a.e. y ∈ SU ,

[[
〈σ+ − σ−, (∇σ)νσ〉√

ε+ |∇σ|2
]](y) = |σ+(y)− σ−(y)|, for H2 − a.e. y ∈ Sσ.
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7 Application of Euler equations and traces

In this section we discuss how the results obtained in the present paper could be of some help in the
design of numerical algorithms. In order to get a numerical approximation of our model, we observe
that a possible strategy can be derived from the nonlinear primal-dual method proposed by Chan,
Golub and Mulet in [11] for Total Variation image restoration. At least in principle, such a method
could be adapted to the much more complicated problem here considered. The vector field A and
the matrix-valued fields B,Q defined in (34)-(36) play the role of the dual variable introduced in the
primal-dual method. The equations (39)-(41), together with the definitions of the fields A,B,Q and
the boundary conditions (43)-(45), constitute a system of equations in the variables (u, v, σ,A,B,Q),
that we assume can be solved. The problem of the solution of such a complicated system of equations
is beyond the aims of the present paper, and it is introduced only for the purpose of discussing how
the primal-dual method could be applied in principle to the problem at hand.
First we observe that in [11] the authors replace the Euler equation of the Total Variation functional
with a system of equations obtained by introducing a dual vector field. Such a system of equations is
first derived in the case of regular solutions (without jumps). In the presence of jumps the authors
do not use directly such a system of equations, nevertheless, their numerical scheme corresponds to
a discrete approximation of the equations for the absolutely continuous part obtained by means of
the method used by Anzellotti in [4] for the Total Variation functional. Such equations correspond to
equations (39)-(41) for our variational problem.
In the following we show how a solution of the system of equations for the absolutely continuous part,
together with the conditions (42) on the singular sets, could be used to locate approximately the jump
sets.
Let ψ1(ξ) = ϕ(|ξ|2) as in Section 4.3 with k = 2; using (23) with ψ = ψ1 and ξ = ∇xu− v, and using
(31), we have

|A0(y)| ≤ Mϕ

2
a.e. in Ω.

Let A0(y, νu(y), r, ρ) denote the average of the vector field A0 over the cylinder Cr,ρ(y, νu(y)), so that
there also holds:

|A0(y)| ≤ Mϕ

2
a.e. in Ω. (47)

For |Dsu|-a.e. y ∈ Su the first of equations (42) yields

lim
ρ→0+

lim
r→0+

〈νu(y), A0(y, νu(y), r, ρ)〉 =
Mϕ

2
|νu,x(y)|. (48)

Since the temporal component of A0 is null, we have:

|〈νu(y), A0(y, νu(y), r, ρ)〉| ≤ |νu,x(y)| · |A0(y, νu(y), r, ρ)| . (49)

Hence, by (47), (48) and (49) we get

lim
ρ→0+

lim
r→0+

∣∣A0(y, νu(y), r, ρ)
∣∣ =

Mϕ

2
, for |Dsu|-a.e. y ∈ Su, (50)

and the average A0 tends to be parallel to νu,x as ρ, r → 0+.
Let us now consider a function ϕ such that inequality (23) is strict, so that |A0(y)| < Mϕ/2 a.e. in Ω:
that happens for instance for the function ϕ(t) =

√
t+ ε with ε > 0. Then, assuming the jump set Su

of u regular enough, for given r, ρ and δ small enough, we can approximate Su with a neighborhood
∆r,ρ,δ(Su) of Su defined by

∆r,ρ,δ(Su) =

{
y ∈ Ω : ∃ν ∈ S2 :

∣∣∣∣∣∣A0(y, ν, r, ρ)
∣∣− Mϕ

2

∣∣∣∣ < δ

}
,
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where the projection νx of the unit vector ν gives an approximation to νu,x.
Let now ψ2(ξ) = ϕ(|ξ|2) as in Section 4.3 with k = 4; using (23) with ψ = ψ2 and ξ = ∇xv, and using
again (31), we have

|B0(y)| ≤ Mϕ

2
a.e. in Ω.

For |Dsv|-a.e. y ∈ Sv, setting Ns
v = αv ⊗ νv according to (5) and Remark 4.1, and using (17), the

second of equations (42) yields

lim
ρ→0+

lim
r→0+

〈αv(y), B0(y, νv(y), r, ρ)νv(y)〉 =
Mϕ

2
|νv,x(y)|,

whereB0(y, νv(y), r, ρ) denotes the average of the matrix-valued fieldB0 over the cylinder Cr,ρ(y, νv(y)).
Since the third column of the matrix B0 is null, then it follows again

lim
ρ→0+

lim
r→0+

∣∣B0(y, νv(y), r, ρ)
∣∣ =

Mϕ

2
, for |Dsv|-a.e. y ∈ Sv,

and both the row vectors of the average matrix B0 tend to be parallel to νv,x as ρ, r → 0+. The
neighborhood ∆r,ρ,δ(Sv) of Sv, which approximates the jump set Sv, is analogously defined by

∆r,ρ,δ(Sv) =

{
y ∈ Ω : ∃ν ∈ S2 :

∣∣∣∣∣∣B0(y, ν, r, ρ)
∣∣− Mϕ

2

∣∣∣∣ < δ

}
,

where the projection νx of the unit vector ν gives an approximation to νv,x.
The jump set Sσ of the optical flow field σ can be analogously located by resorting to the average Q
over cylinders of the matrix valued field Q. In a discrete algorithm both the averages over cylinders
and the approximating neighborhoods of the jump sets have to be computed by resorting to the
tessellation of the domain Ω into finite elements, which also yields a discrete sets of orientations for
the axes of the cylinders.
The above procedure yields the localization not only of the jump sets, but also of the sets where the
gradients tend to infinity though the functions being continuous (in the sense of approximate limits).
Therefore, such further parts have to be removed by looking at the traces of u, v and σ on the sets
selected by the above method. It follows that a detection of the jump sets during the computation
is in principle possible, and that would give a further explicit information about the location of such
sets with respect to the numerical algorithm used in [11]. Such an information could be used to better
handle the evolution of the jump sets during an algorithm, though the study of such a possibility is
beyond the aims of the present paper.
Eventually, in order to enforce consistently the natural boundary conditions on ∂Ω, we first observe
that the fields A,B,Q depend on quantities, such as the gradients of BV functions, which do not have
a trace on the boundary. Nevertheless, in order to compute explicitly the natural boundary conditions,
according to Proposition 2.2 in [6] (as stated also in Fact 1.1 in [5]), it is possible to characterize the
traces on the boundary of the vector fields A,B,Q by means of the limit of the averages on cylinders
centered on ∂Ω, analogously to formula (13). Then, in the typical case of a rectangular spatial
domain Ωs, such averages can be easily computed by means of the tessellation of Ωs in rectangular
elements used in discrete algorithms, since the cylinders can be chosen in such a way to have the axes
normal to the boundary and their projections on the spatial domain coincident with the rectangles
of the tessellation. Since the natural boundary conditions are necessary conditions obtained by the
vanishing of the first variation associated to a solution of the relaxed variational problem, which has
been proved to exist in [17], the above procedure shows that a consistent implementation of numerically
approximated boundary conditions can be in principle achieved, though somewhat complicated.
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8 Directional derivatives

In order to prove Theorem 6.1, first we compute the directional derivatives of E with respect to u, v, σ
by resorting to Theorem 4.7. In the computations the main difficulties (due to the singular part of the
measures given by the distributional derivatives of u, v, σ) are overcome resorting to fine properties
of Geometric Measure Theory, particularly to the rank one property (5) of derivatives due to Alberti
[1]. By means of this property we can write the whole singular part of the distributional derivative
of a vector valued BV function as a suitable tensor product as well as it happens for the jump part.
In particular, when we compute the directional derivative of the functional G at the point U = (u, v)
(for fixed σ) in the direction θ, under the condition |Dsθ| � |DsU | of Theorem 4.7, such a property
allows to state that the vectors νsU and νsθ , defined in (5) and (10), are equal (see the proof of Lemma
8.3).

8.1 Directional derivatives of E with respect to u and v

We compute first the directional derivatives of the term F(u, v) in the expression (25) of the relaxed

functional E , and defined by means of (26).
We denote by F1 the part of F depending on u for a fixed v, that means:

F1(u) =

∫
Ω\D

ϕ(|f − u|2)dL3 +

∫
Ω

ϕ(|∇xu− v|2)dL3 +Mϕ|Ds
xu|(Ω).

The following lemma yields the directional derivative of F1 with respect to u ∈ BV (Ω) for a fixed
vector field v ∈ [L1(Ω)]2.

Lemma 8.1. Let v ∈ [L1(Ω)]2. Then F1(u) is differentiable at the point u ∈ BV (Ω) in the direction
η ∈ BV (Ω) if and only if |Ds

xη| � |Ds
xu| and in this case there holds:

d

dλ
F1(u+ λη)

∣∣∣
λ=0

= 2

∫
Ω\D

ϕ′(|f − u|2)(u− f)η dL3 + 2

∫
Ω

ϕ′(|∇xu− v|2)〈∇xu− v,∇xη〉dL3

+ Mϕ

∫
Ω

〈Ns
u,x, N

s
η,x〉d|Ds

xη|. (51)

Proof. Let ψ1 : R2 → R be the convex and differentiable function satisfying the growth conditions
(18) and such that ψ1(ξ) = ϕ(|ξ|2). Let µ1 : B(Ω)→ R2 be the measure defined by means of

µ1 = Dxu− v · L3.

Then, using (20) and taking into account that the Radon-Nikodym derivative dµs1/d|µs1| is a vector
valued function with unit norm ([2], Corollary 1.29), for the function of measure I(µ1) we have

I(µ1) =

∫
Ω

ϕ(|∇xu− v|2)dL3 +Mϕ|Ds
xu|(Ω).

Now we apply Theorem 4.7 to I(µ1). Let η ∈ BV (Ω) and γ = Dxη. Using Theorem 4.7, if and only
if |γs| � |µs1|, then we have

d

dλ
I(µ1 + λγ)

∣∣∣∣
λ=0

= 2

∫
Ω

ϕ′(|∇xu− v|2)〈∇xu− v,∇xη〉dL3 +Mϕ

∫
Ω

〈Ns
u,x, N

s
η,x〉d|Ds

xη|,

from which the statement of the lemma follows.
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Now we denote by F2 the part of F depending on v for a fixed u, that means:

F2(v) =

∫
Ω

ϕ(|∇xu− v|2)dL3 +

∫
Ω

ϕ(|∇xv|2)dL3 +Mϕ|Ds
xv|(Ω).

The following lemma yields the directional derivative of F2 with respect to v ∈ [BV (Ω)]2 for a fixed
function u ∈ BV (Ω).

Lemma 8.2. Let u ∈ BV (Ω). Then F2(v) is differentiable at the point v ∈ [BV (Ω)]2 in the direction
η ∈ [BV (Ω)]2 if and only if |Ds

xη| � |Ds
xv| and in this case there holds:

d

dλ
F2(v + λη)

∣∣∣
λ=0

= −2

∫
Ω

ϕ′(|∇xu− v|2)〈∇xu− v, η〉dL3 + 2

∫
Ω

ϕ′(|∇xv|2)〈∇xv,∇xη〉dL3

+ Mϕ

∫
Ω

〈Ns
v,x, N

s
η,x〉d|Ds

xη|. (52)

Proof. Let ψ2 : R4 → R be the convex and differentiable function satisfying the growth conditions
(18) and such that ψ2(ξ) = ϕ(|ξ|2). Let µ2 : B(Ω)→M2×2 be the measure defined by means of

µ2 = Dxv.

We treat the matrix valued measure µ2 as a vector valued measure µ2 : B(Ω)→ R4 with components
(Dxv1, Dxv2). Analogously, we treat ∇xv as a vector in R4 with components (∇xv1,∇xv2). Then,
using (20) and arguing as in the proof of Lemma 8.1, for the function of measure I(µ2) we have

I(µ2) =

∫
Ω

ϕ(|∇xv|2)dL3 +Mϕ|Ds
xv|(Ω).

Now we apply Theorem 4.7 to I(µ2). Let η ∈ [BV (Ω)]2 and γ = Dxη. Using Theorem 4.7, if and only
if |γs| � |µs2|, then we have

d

dλ
I(µ2 + λγ)

∣∣∣∣
λ=0

= 2

∫
Ω

ϕ′(|∇xv|2)〈∇xv,∇xη〉dL3 +Mϕ

∫
Ω

〈Ns
v,x, N

s
η,x〉d|Ds

xη|,

from which, observing that the scalar products of vectors in R4 coincides with the Frobenius scalar
products of the corresponding matrices in M2×2, the statement of the lemma follows.

In order to achieve the directional derivatives of G with respect to u and v, we first compute the deriva-
tive with respect to the variable U = (u, v), then in Corollaries 8.4 and 8.5 we infer the derivatives
with respect to u and v separately.
We set U = (u, v) ∈ [BV (Ω)]3 and we write G(U, σ) = G(u, v, σ). Given also θ ∈ [BV (Ω)]3, recalling
(5) and (10), using Remark 4.1, Corollary 4.2 and Remark 4.3, we write

Ns
U = αsU ⊗ νsU , Ns

θ = αsθ ⊗ νsθ .

Moreover, we define the sets

K̃U = {y ∈ KU : Ns
U (y)Σρ(y) 6= 0}, K̃θ = {y ∈ Kθ : Ns

θ (y)Σρ(y) 6= 0}. (53)

The following lemma yields the directional derivative of G with respect to U ∈ [BV (Ω)]3 for a fixed
vector field σ ∈ [L1(Ω)]2.
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Lemma 8.3. Let σ ∈ [L1(Ω)]2. Then G(U, σ) is differentiable at the point U ∈ [BV (Ω)]3 in the

direction θ ∈ [BV (Ω)]3 if and only if |Dsθ| � |DsU | in K̃U , and in this case there holds:

d

dλ
G(U + λθ, σ)

∣∣∣
λ=0

= 2

∫
Ω

ϕ′
(
|(∇U)Σρ|2

)
〈(∇U)Σρ, (∇θ)Σρ〉dL3

+ Mϕ

∫
K̃U
|〈νsU ,Σρ〉| 〈αsU , αsθ〉d|Dsθ|. (54)

Proof. Let ψ3 : R3 → R be the convex and differentiable function satisfying the growth conditions
(18) and such that ψ3(ξ) = ϕ(|ξ|2). We set (DU)Σρ = µw, where µw : B(Ω) → R3 is the measure
defined in (29). In the sequel of the proof we also write µU = µw in order to remind that the vector
field σ is kept fixed.
Since µaU = (∇U)Σρ, using (20) and arguing as in the proof of Lemma 8.1, for the function of measure
I(µU ) we have

I(µU ) =

∫
Ω

ϕ
(
|(∇U)Σρ|2

)
dL3 +Mϕ

∫
Ω

∣∣∣∣ dµsUd|µsU |

∣∣∣∣ d|µsU | , (55)

so that, using (28) and (29), we have I(µU ) = G(U, σ). Now we remark that we cannot directly apply
Theorem 4.7 to the function of measure I(µU ), since we need to compute the derivative of I(µU ) with
respect to the measure DU and not µU .
Let θ ∈ [BV (Ω)]3 and µθ = (Dθ)Σρ. We have

d

dλ
G(U + λθ, σ)

∣∣∣
λ=0

=
d

dλ
I(µU+λθ)

∣∣∣∣
λ=0

=
d

dλ

∫
Ω

ϕ
(
|(∇U)Σρ + λ(∇θ)Σρ|2

)
dL3

∣∣∣∣
λ=0

+ Mϕ
d

dλ

∫
Ω

∣∣∣∣ dµsUd|µsU |
+ λ

dµsθ
d|µsU |

∣∣∣∣ d|µsU |∣∣∣∣
λ=0

. (56)

Using Lebesgue’s dominated convergence Theorem, for the absolutely continuous part we have

d

dλ

∫
Ω

ϕ
(
|(∇U)Σρ + λ(∇θ)Σρ|2

)
dL3

∣∣∣∣
λ=0

= 2

∫
Ω

ϕ′
(
|(∇U)Σρ|2

)
〈(∇U)Σρ, (∇θ)Σρ〉dL3 . (57)

For the singular part we adapt the method of proof of Theorem 2.4 in [4]. We consider the decompo-
sition µsθ = µsaθ + µssθ , where µsaθ and µssθ are the absolutely continuous part and the singular part of
µsθ with respect to |µsU |, respectively. Since the measures µsU + λµsaθ and µssθ are mutually singular,
we have ∫

Ω

∣∣∣∣ dµsUd|µsU |
+ λ

dµsθ
d|µsU |

∣∣∣∣ d|µsU | = ∫
Ω

∣∣∣∣ dµsUd|µsU |
+ λ

dµsaθ
d|µsU |

∣∣∣∣ d|µsU |+ |λ|∫
Ω

d|µssθ |. (58)

Therefore, in order to get differentiability of G, the second term in the sum at the righthand side of
(58) has to be zero, so that we have µssθ = 0, which implies |µsθ| � |µsU |. It follows

|Dsθ|(K̃θ \ K̃U ) = 0, (59)

indeed, since

|µsU |(O) =

∫
O∩K̃U

|Ns
UΣρ| d|DsU |, |µsθ|(O) =

∫
O∩K̃θ

|Ns
θΣρ| d|Dsθ|,

setting O = K̃θ \ K̃U , if |Dsθ|(O) > 0, then it follows |µsU |(O) = 0 and |µsθ|(O) > 0 contradicting
the relation |µsθ| � |µsU |. Moreover, by the results in [1] we have νsθ(y) = νsU (y) for |Dsθ| − a.e.

y ∈ Kθ ∩ K̃U , so that the condition (59) implies |Dsθ| � |DsU | in K̃U .
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For the Radon-Nikodym derivatives there holds:

dµsU
d|DsU |

(y) = Ns
U (y)Σρ(y) for |DsU | − a.e. y ∈ KU , (60)

from which, using Besicovitch derivation Theorem (Theorem 2.22 in [2]), it follows

dµsU
d|µsU |

(y) =
d|DsU |
d|µsU |

(y)Ns
U (y)Σρ(y) for |DsU | − a.e. y ∈ K̃U . (61)

Analogously, there holds

dµsθ
d|µsθ|

(y) =
d|Dsθ|
d|µsθ|

(y)Ns
θ (y)Σρ(y) for |Dsθ| − a.e. y ∈ K̃θ, (62)

and, for |DsU | − a.e. y ∈ K̃U , by (60) we get

d|DsU |
d|µsU |

(y) = |Ns
U (y)Σρ(y)|−1. (63)

Moreover, using (59) and Proposition 4.4 of [1], we have νsθ(y) = νsU (y) for |Dsθ| − a.e. y ∈ K̃θ. Then
we have

|Ns
U (y)Σρ(y)| = |(αsU (y)⊗ νsU (y))Σρ(y)| = |〈νsU (y),Σρ(y)〉|,

and, using (63), for |DsU | − a.e. y ∈ K̃U ∩ K̃θ, we infer:

〈Ns
U (y)Σρ(y), Ns

θ (y)Σρ(y)〉d|D
sU |

d|µsU |
(y) =

〈(αsU (y)⊗ νsU (y))Σρ(y), (αsθ(y)⊗ νsθ(y))Σρ(y)〉
|Ns

U (y)Σρ(y)|
= |〈νsU (y),Σρ(y)〉|〈αsU (y), αsθ(y)〉, (64)

so that for |DsU | − a.e. y ∈ (KU \ K̃U ) ∩ (Kθ \ K̃θ) we may define by extension:

〈Ns
U (y)Σρ(y), Ns

θ (y)Σρ(y)〉d|D
sU |

d|µsU |
(y) = 0. (65)

Since the vector valued function dµsU/d|µsU | has unit norm, using (61), (62), (64) and (65), we obtain:

d

dλ

∫
Ω

∣∣∣∣ dµsUd|µsU |
+ λ

dµsθ
d|µsU |

∣∣∣∣ d|µsU |∣∣∣∣
λ=0

=

∫
K̃U
〈 dµ

s
U

d|µsU |
,
dµsθ
d|µsU |

〉d|µsU |

=

∫
K̃U
〈 dµ

s
U

d|µsU |
,
dµsθ
d|µsθ|

〉d|µsθ|

=

∫
K̃U
〈Ns

UΣρ, N
s
θΣρ〉

d|DsU |
d|µsU |

· d|D
sθ|

d|µsθ|
d|µsθ|

=

∫
K̃U
|〈νsU ,Σρ〉| 〈αsU , αsθ〉d|Dsθ|. (66)

Eventually, by (56), (57) and (66) we get the thesis.

Now we give the separate directional derivatives of G(u, v, σ) with respect to u and v.
Using U = (u, v1, v2) ∈ R3, we define the following orthogonal unit vectors in R3:

eu =
〈αsU , e1〉
|〈αsU , e1〉|

e1 |Dsu| − a.e. in Ku, eu = e1 |Dsv| − a.e. in Kv \ Ku,

ev =
αsU − 〈αsU , e1〉e1

|αsU − 〈αsU , e1〉e1|
|Dsv| − a.e. in Kv, ev = e2 |Dsu| − a.e. in Ku \ Kv, (67)

17



particularly, 〈eu, ev〉 = 0, |DsU | − a.e. in KU .
Using (5) and (10), we define αsu = ±1 in such a way that

Ns
u = αsuν

s
u |Dsu| − a.e. in Ku. (68)

Corollary 8.4. Let w = (u, v, σ) be such that v ∈ [BV (Ω)]2 and σ ∈ [L1(Ω)]2. Then G(u, v, σ) is
differentiable at the point u ∈ BV (Ω) in the direction η ∈ BV (Ω) if and only if |Dsη| � |DsU | in

K̃U , and in this case there holds:

d

dλ
G(u+ λη, v, σ)

∣∣∣
λ=0

= 2

∫
Ω

ϕ′
(
|(∇U)Σρ|2

)
〈∇u,Σρ〉〈∇η,Σρ〉dL3

+ Mϕ

∫
Ku
|〈νsU ,Σρ〉| 〈αsU , eu〉αsuαsη d|Dsη|. (69)

Proof. Using (5) and (10), we have

dDsu

d|DsU |
= 〈αsU , e1〉νsU ,

and by Besicovitch derivation Theorem:

dDsu

d|DsU |
= Ns

u

d|Dsu|
d|DsU |

= |〈αsU , e1〉|αsuνsu = 〈αsU , eu〉αsuνsu. (70)

Then, using Proposition 4.4 of [1] we have νsU (y) = νsu(y) for |DsU | − a.e. y ∈ Ku, so that it follows

〈αsU , e1〉 = 〈αsU , eu〉αsu. (71)

Let now θ ∈ [BV (Ω)]3 be such that θ = (η, 0, 0). By Lemma 8.3, for fixed v and σ, the directional

derivative of G at u in the direction η exists if and only if |Dsθ| = |Dsη| � |DsU | in K̃U . Using (5)
we have

dDsη

d|Dsθ|
=

dDsη

d|Dsη|
= Ns

η = αsην
s
η,

from which it follows αsθ = (αsη, 0, 0).
The statement of the corollary then follows by substituting θ = (η, 0, 0) in the directional derivative
(54), taking into account that, using (71), we have

〈αsU , αsθ〉 = 〈αsU , e1〉αsη = 〈αsU , eu〉αsuαsη,

and that 〈αsU , eu〉 = 0 outside of Ku.

In order to compute the directional derivative of G(u, v, σ) with respect to v, using (5) and (10), now
we set

Ns
v = αsv ⊗ νsv ∈M2×3. (72)

Corollary 8.5. Let w = (u, v, σ) be such that u ∈ BV (Ω) and σ ∈ [L1(Ω)]2. Then G(u, v, σ) is
differentiable at the point v ∈ [BV (Ω)]2 in the direction η ∈ [BV (Ω)]2 if and only if |Dsη| � |DsU |
in K̃U , and in this case there holds:

d

dλ
G(u, v + λη, σ)

∣∣∣
λ=0

= 2

∫
Ω

ϕ′
(
|(∇U)Σρ|2

)
〈(∇v)Σρ, (∇η)Σρ〉dL3

+ Mϕ

∫
Kv
|〈νsU ,Σρ〉| 〈αsU , ev〉〈αsv, αsη〉d|Dsη|. (73)
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Proof. We write ev = (0, ev), where ev ∈ R2 has unit norm, so that we have

dDsv

d|DsU |
= 〈αsU , ev〉ev ⊗ νsU ,

and by Besicovitch derivation Theorem:

dDsv

d|DsU |
= Ns

v

d|Dsv|
d|DsU |

= 〈αsU , ev〉αsv ⊗ νsv . (74)

Then, using Proposition 4.4 of [1] we have νsU (y) = νsv(y) for |DsU | − a.e. y ∈ Kv, so that it follows

αsv = ev. (75)

Let now η = (η1, η2) and let θ ∈ [BV (Ω)]3 be such that θ = (0, η1, η2). By Lemma 8.3, for fixed u and
σ, the directional derivative of G at v in the direction η exists if and only if |Dsθ| = |Dsη| � |DsU |
in K̃U . Using (5) we have

dDsη

d|Dsθ|
=

dDsη

d|Dsη|
= Ns

η = αsη ⊗ νsη ∈M2×3,

from which it follows αsθ = (0, αsη).
The statement of the corollary then follows by substituting θ = (0, η) in the directional derivative
(54), taking into account that, using (75), we have

〈αsU , αsθ〉 = 〈αsU , ev〉〈ev, αsη〉 = 〈αsU , ev〉〈αsv, αsη〉,

and that 〈αsU , ev〉 = 0 outside of Kv.

Remark 8.6. Let w = (u, v, σ) be such that v ∈ [BV (Ω)]2 and σ ∈ [L1(Ω)]2. Then E(u, v, σ) is
differentiable, for fixed v, σ, at the point u ∈ BV (Ω) in the direction η ∈ BV (Ω) if and only if

|Ds
xη| � |Ds

xu| and |Dsη| � |DsU | in K̃U , and in this case the corresponding directional derivative is
obtained by adding the derivatives (51) and (69).
Let w = (u, v, σ) be such that u ∈ BV (Ω) and σ ∈ [L1(Ω)]2. Then E(u, v, σ) is differentiable, for
fixed u, σ, at the point v ∈ [BV (Ω)]2 in the direction η ∈ [BV (Ω)]2 if and only if |Ds

xη| � |Ds
xv| and

|Dsη| � |DsU | in K̃U , and in this case the corresponding directional derivative is obtained by adding
the derivatives (52) and (73).

8.2 Directional derivative of E with respect to σ

We compute first the directional derivative of G(u, v, σ) with respect to σ for fixed functions U =

(u, v) ∈ [BV (Ω)]3. Differently from the computations in the previous subsection for u and v, here
the variable σ appears in the functional by means of its average σρ, and therefore we need to apply
Fubini’s Theorem in order to have, in the final expression of the directional derivative, the direction η
instead of its average ηρ. Roughly speaking, it can be seen as a passage of the average from η to the
rest of the integrand, which, in some sense, plays a role analogous to an Integration by parts Formula.
For applying Fubini’s Theorem, we prove the following preliminary lemma, which will be also useful
in Section 9 in order to prove that the vector fields A,B,Q have bounded distributional divergence.
We observe that, using (1), the function Σρ is continuous and bounded: |Σρ(y)| ≤ C for any y ∈ Ω,
with C = C(σ, ρ,Ω) positive constant.

Lemma 8.7. For any y ∈ Ω and any ξ ∈M3×3 the following inequality holds:

ϕ′
(
|ξΣρ(y)|2

)
|ξΣρ(y)| ≤ CMϕ/2,

where ξΣρ(y) denotes the matrix by vector product of ξ and Σρ(y).
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Proof. The matrix ξ ∈ M3×3 will also be treated as a vector in R9. Let Ψ : Ω × R9 → R be the
function defined by

Ψ(y, ξ) = ϕ
(
|ξΣρ(y)|2

)
, (76)

then, by definition of the function ϕ, the function Ψ is continuous in (y, ξ), and for any y ∈ Ω it is
convex in ξ and satisfies the growth condition (18) from above. Using (27), the recession function of
Ψ is given by

Ψ∞(y, ξ) = Mϕ |ξΣρ(y)| , (77)

moreover, Ψ(y, ξ) is differentiable in ξ for all (y, ξ) ∈ Ω× R9, and we have

∂ξΨ(y, ξ) = 2ϕ′
(
|ξΣρ(y)|2

)
[ξΣρ(y)]⊗ Σρ(y). (78)

Let (y, ξ) be such that ∂ξΨ(y, ξ) 6= 0 and let ζ = ∂ξΨ(y, ξ)/|∂ξΨ(y, ξ)|. Using inequality (22) we have

|∂ξΨ(y, ξ)| ≤ Ψ∞(y, ζ) = Mϕ |ζΣρ(y)| ≤Mϕ|ζ| |Σρ(y)| ≤ CMϕ. (79)

Recalling now that, given vectors a, c ∈ Rm and b, d ∈ Rn, there holds

〈a⊗ b, c⊗ d〉 = 〈a, c〉〈b, d〉, (80)

using (78) and (79), and taking into account that ϕ is nondecreasing, we have

|∂ξΨ(y, ξ)| = 2ϕ′
(
|ξΣρ(y)|2

)
|ξΣρ(y)| · |Σρ(y)| ≤ CMϕ.

Since Σρ = (σ1ρ, σ2ρ, 1), then we have |Σρ(y)| ≥ 1 and the statement of the lemma follows.

Now we compute the directional derivative of G(u, v, σ) with respect to σ. We remark that in the

following lemma we may assume σ to belong to [L1(Ω)]2, because in the definition of G its derivatives
do not appear. In the subsequent lemma, instead, we have to restrict to [BV (Ω)]2.

Lemma 8.8. Let U = (u, v) ∈ [BV (Ω)]3. Then G(U, σ) is differentiable at the point σ ∈ [L1(Ω)]2 in
the direction η ∈ [L1(Ω)]2 and there holds:

d

dλ
G(U, σ + λη)

∣∣∣
λ=0

=

∫
Ω

〈2Λ z,ρ(w) +MϕΘ z,ρ(w), η(z)〉 dL3(z), (81)

where the nonlinear operators Λ z,ρ and Θ z,ρ are defined in (37) and (38), respectively.

Proof. Using (55) and (60), we write the relaxed functional G(U, σ) in the form

G(U, σ) =

∫
Ω

ϕ
(
|(∇U)Σρ|2

)
dL3 +Mϕ

∫
Ω

|Ns
UΣρ| d|DsU |. (82)

Let η ∈ [L1(Ω)]2 and η̃ = (η, 0) ∈ [L1(Ω)]3.
Step 1. Directional derivative of the absolutely continuous part of G.
Using Lebesgue’s dominated convergence Theorem, we have

d

dλ

∫
Ω

ϕ
(
|(∇U)(Σρ + λη̃ρ)|2

)
dL3

∣∣∣
λ=0

= 2

∫
Ω

ϕ′
(
|(∇U)Σρ|2

)
〈(∇U)Σρ, (∇xU)ηρ〉dL3, (83)

where ηρ is the average of η on the ball of radius ρ defined as in (1). We set χρ(y, z) = 1Ω∩Bρ(y)(z),
so that we get∫

Ω

ϕ′
(
|(∇U(y))Σρ(y)|2

)
〈(∇U(y))Σρ(y), (∇xU(y))ηρ(y)〉 dL3(y)

=

∫
Ω

ϕ′
(
|(∇U(y))Σρ(y)|2

)〈
(∇U(y))Σρ(y),

∇Ux(y)

L3(Ω ∩Bρ(y))

∫
Ω∩Bρ(y)

η(z) dL3(z)
〉
dL3(y)

=

∫
Ω

1

L3(Ω ∩Bρ(y))
ϕ′
(
|(∇U(y))Σρ(y)|2

)〈
(∇U(y))Σρ(y),∇xU(y)

∫
Ω

χρ(y, z)η(z) dL3(z)
〉
dL3(y).
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Using Lemma 8.7 with ξ = ∇U(y) we have

ϕ′
(
|(∇U(y))Σρ(y)|2

)
|(∇U(y))Σρ(y)| ≤ CMϕ/2.

Then we have ∣∣∣∣ 1

L3(Ω ∩Bρ(y))
ϕ′
(
|(∇U(y))Σρ(y)|2

)
〈(∇U(y))Σρ(y), (∇xU(y))η(z)〉χρ(y, z)

∣∣∣∣
≤ 1

L3(Ω ∩Bρ(y))
ϕ′
(
|(∇U(y))Σρ(y)|2

)
|(∇U(y))Σρ(y)| · |∇xU(y)| · |η(z)|

≤ CMϕ

2L3(Ω ∩Bρ(y))
|∇U(y)| · |η(z)| = g(y, z),

from which, since ∇U ∈ [L1(Ω)]3, η ∈ [L1(Ω)]2, and Ω is a set with Lipschitz boundary, it follows
that the function g(y, z) is summable with respect to the product measure L3(y) × L3(z). Then we
may apply Fubini’s Theorem and, using (83) and the following equality for (y, z) ∈ Ω× Ω:

χρ(y, z) = 1Ω∩Bρ(y)(z) = 1Ω(z)1Bρ(y)(z) = 1Ω(y)1Bρ(z)(y) = 1Ω∩Bρ(z)(y) = χρ(z, y),

we find

d

dλ

∫
Ω

ϕ
(
|(∇U)(Σρ + λη̃ρ)|2

)
dL3

∣∣∣
λ=0

= 2

∫
Ω

[∫
Ω

χρ(z, y)

L3(Ω ∩Bρ(y))
ϕ′
(
|(∇U(y))Σρ(y)|2

)〈
(∇U(y))Σρ(y),∇xU(y) dL3(y)

]
η(z)

〉
dL3(z)

= 2

∫
Ω

〈[∫
Ω∩Bρ(z)

1

L3(Ω ∩Bρ(y))
ϕ′
(
|(∇U(y))Σρ(y)|2

)
(∇xU(y))t(∇U(y))Σρ(y) dL3(y)

]
, η(z)

〉
dL3(z),

from which we get

d

dλ

∫
Ω

ϕ
(
|(∇U)(Σρ + λη̃ρ)|2

)
dL3

∣∣∣
λ=0

= 2

∫
Ω

〈Λ z,ρ(w), η(z)〉 dL3(z). (84)

Step 2. Directional derivative of the singular part of G.
We have: ∫

Ω

|Ns
UΣρ| d|DsU | =

∫
K̃U
|Ns

UΣρ| d|DsU |,

from which, using Lebesgue’s dominated convergence Theorem, it follows

d

dλ

∫
Ω

|Ns
U (Σρ + λη̃ρ)| d|DsU |

∣∣∣
λ=0

=

∫
K̃U

1

|Ns
UΣρ|

〈Ns
UΣρ, (N

s
U )xηρ〉d|DsU |. (85)

Arguing as in Step 1, we write the integral on the right in the form∫
K̃U

1

L3(Ω ∩Bρ(y))

1

|Ns
U (y)Σρ(y)|

〈
Ns
U (y)Σρ(y), (Ns

U )x(y)

∫
Ω

χρ(y, z)η(z) dL3(z)
〉
d|DsU |(y).

Now for (y, z) ∈ K̃U × Ω we estimate∣∣∣∣ 1

L3(Ω ∩Bρ(y))

1

|Ns
U (y)Σρ(y)|

〈Ns
U (y)Σρ(y), (Ns

U )x(y)η(z)〉χρ(y, z)
∣∣∣∣

≤ 1

L3(Ω ∩Bρ(y))
|Ns

U (y)| · |η(z)| = h(y, z),
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from which, since |Ns
U | is summable on KU with respect to the measure |DsU |, η ∈ [L1(Ω)]2, and Ω

is a set with Lipschitz boundary, it follows that the function h(y, z) is summable with respect to the
product measure |DsU |(y) × L3(z). Then we may apply Fubini’s Theorem and, using (85) and the
following equality for (y, z) ∈ KU × Ω:

χρ(y, z) = 1Ω∩Bρ(y)(z) = 1Ω(z)1Bρ(y)(z) = 1KU (y)1Bρ(z)(y) = 1KU∩Bρ(z)(y),

we find

d

dλ

∫
Ω

|Ns
U (Σρ + λη̃ρ)| d|DsU |

∣∣∣
λ=0

=

∫
Ω

〈[∫
K̃U∩Bρ(z)

((Ns
U )x(y))tNs

U (y)Σρ(y)

L3(Ω ∩Bρ(y)) |Ns
U (y)Σρ(y)|

d|DsU |(y)

]
, η(z)

〉
dL3(z),

from which we get

d

dλ

∫
Ω

|Ns
U (Σρ + λη̃ρ)| d|DsU |

∣∣∣
λ=0

=

∫
Ω

〈Θ z,ρ(w), η(z)〉 dL3(z). (86)

Collecting (82), (84) and (86) we obtain the statement of the lemma.

Now we compute the directional derivative of P(σ) with respect to σ ∈ [BV (Ω)]2.

Lemma 8.9. The functional P(σ) is differentiable at the point σ ∈ [BV (Ω)]2 in the direction η ∈
[BV (Ω)]2 if and only if |Dsη| � |Dsσ| and in this case there holds:

d

dλ
P(σ + λη)

∣∣∣
λ=0

= 2

∫
Ω

ϕ′(|∇σ|2)〈∇σ,∇η〉dL3 +Mϕ

∫
Ω

〈Ns
σ, N

s
η 〉d|Dsη|+ 2c

∫
Ω

ϕ′
(
|σ|2

)
〈σ, η〉dL3.

(87)

Proof. Let ψ4 : R6 → R be the convex and differentiable function satisfying the growth conditions
(18) and such that ψ4(ξ) = ϕ(|ξ|2). Let µ4 : B(Ω)→M2×3 be the measure defined by means of

µ4 = Dσ.

We treat the matrix valued measure µ4 as a vector valued measure µ4 : B(Ω)→ R6 with components
(Dσ1, Dσ2). Analogously, we treat ∇σ as a vector in R6 with components (∇σ1,∇σ2). Then, using
(20) and arguing as in the proof of Lemma 8.1, for the function of measure I(µ4) we have

I(µ4) =

∫
Ω

ϕ(|∇σ|2)dL3 +Mϕ|Dsσ|(Ω),

and

P(σ) = I(µ4) + c

∫
Ω

ϕ(|σ|2)dL3. (88)

Now we apply Theorem 4.7 to I(µ4). Let η ∈ [BV (Ω)]2 and γ = Dη. Using Theorem 4.7, if and only
if |γs| � |µs4|, then we have

d

dλ
I(µ4 + λγ)

∣∣∣∣
λ=0

= 2

∫
Ω

ϕ′(|∇σ|2)〈∇σ,∇η〉dL3 +Mϕ

∫
Ω

〈Ns
σ, N

s
η 〉d|Dsη|,

from which, observing that the scalar products of vectors in R6 coincides with the Frobenius scalar
products of the corresponding matrices in M2×3, the statement of the lemma follows using (88) and
observing that

d

dλ

∫
Ω

ϕ
(
|σ + λη|2

)
dL3

∣∣∣
λ=0

= 2

∫
Ω

ϕ′
(
|σ|2

)
〈σ, η〉dL3.
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Remark 8.10. Let w = (u, v, σ) be such that u ∈ BV (Ω) and v ∈ [BV (Ω)]2. Then E(u, v, σ) is
differentiable, for fixed u, v, at the point σ ∈ [BV (Ω)]2 in the direction η ∈ [BV (Ω)]2 if and only if
|Dsη| � |Dsσ|, and in this case the corresponding directional derivative is obtained by adding the
derivatives (81) and (87).

9 Euler equations and trace properties

Here we use the results of the previous section in order to compute the Euler equations of E , dis-
tinguishing the contributes of the absolutely continuous part, of the conditions on the singular sets,
and of the natural boundary conditions on ∂Ω. In particular, we collect the contributes given by the
directional derivatives of the several terms defining the functional, and we use the Integration by parts
Formula and the definitions related to traces of vector fields given in Subsection 4.2. This procedure
was used by Anzellotti in [5] for functionals defined on scalar BV functions, and it reproduces in the
BV framework the same strategy useful to compute the Euler equations for functionals defined in
Sobolev spaces. The results are summarized in Theorem 6.1 that we now prove.

Proof of Theorem 6.1

Let w = (u, v, σ) ∈ Y (Ω) be a minimizer of E .

Absolutely continuous part

Step 1. We first consider the necessary condition on w which follows deriving E with respect to u,
namely:

d

dλ
E(u+ λη, v, σ)

∣∣∣
λ=0

= 0, (89)

with η ∈ BV (Ω). Using Lemma 8.1, Corollary 8.4 and Remark 8.6, and taking η ∈ C∞0 (Ω), we get∫
Ω\D

ϕ′(|f − u|2)(u− f)η dL3 +

∫
Ω

ϕ′(|∇xu− v|2)〈∇xu− v,∇xη〉dL3

+

∫
Ω

ϕ′
(
|(∇U)Σρ|2

)
〈∇u,Σρ〉〈∇η,Σρ〉dL3 = 0. (90)

Using the vector fields A, A0 and T1 defined in (32) and (34), the identity (90) becomes∫
Ω

〈A,∇η〉dL3 = −
∫

Ω

χΩ\D ϕ
′(|f − u|2)(u− f)η dL3, for any η ∈ C∞0 (Ω). (91)

Let ψ1(ξ) = ϕ(|ξ|2) as in Section 4.3 with k = 2; using (23) with ψ = ψ1 and ξ = ∇xu− v, and using
(31), we have

|A0(y)| = ϕ′(|∇xu(y)− v(y)|2) |∇xu(y)− v(y)| ≤Mϕ/2, a.e. in Ω, (92)

and, using Lemma 8.7 with ξ = ∇U(y), we have

|T1(y)| ≤ ϕ′
(
|(∇U(y))Σρ(y)|2

)
|(∇U(y))Σρ(y)| · |Σρ(y)| ≤ C2Mϕ/2, a.e. in Ω,

so that it follows A = A0 + T1 ∈ [L∞(Ω)]3. By the properties of the function ϕ we also have

‖ϕ′(|f − u|2)(u− f)‖L∞(Ω) ≤Mϕ/2. (93)
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Using (91), the vector field A has a divergence in the sense of distributions, inequality (93) yields
divA ∈ L∞(Ω), so that A ∈W (Ω)∞ and we have

divA = χΩ\D ϕ
′(|f − u|2)(u− f), a.e. in Ω, (94)

which coincides with Equation (39).
Step 2. We now consider the necessary condition on w which follows deriving E with respect to v,
namely:

d

dλ
E(u, v + λη, σ)

∣∣∣
λ=0

= 0, (95)

with η ∈ [BV (Ω)]2. Using Lemma 8.2, Corollary 8.5 and Remark 8.6, and taking η ∈ [C∞0 (Ω)]2, we
get

−
∫

Ω

ϕ′(|∇xu− v|2)〈∇xu− v, η〉dL3 +

∫
Ω

ϕ′(|∇xv|2)〈∇xv,∇xη〉dL3

+

∫
Ω

ϕ′
(
|(∇U)Σρ|2

)
〈(∇v)Σρ, (∇η)Σρ〉dL3 = 0. (96)

Using the identity (16) with α = (∇v)Σρ, β = Σρ and M = ∇η, and using the matrix-valued fields
B, B0 and T2 defined in (33) and (35), the identity (96) becomes∫

Ω

〈B,∇η〉dL3 =

∫
Ω

ϕ′(|∇xu− v|2)〈∇xu− v, η〉dL3, for any η ∈ [C∞0 (Ω)]2. (97)

Let ψ2(ξ) = ϕ(|ξ|2) as in Section 4.3 with k = 4; using (23) with ψ = ψ2 and ξ = ∇xv, and using
(31), we have

|B0(y)| = ϕ′(|∇xv(y)|2) |∇xv(y)| ≤Mϕ/2, a.e. in Ω,

and, using Lemma 8.7 with ξ = ∇U(y) and (80), we have

|T2(y)| ≤ ϕ′
(
|(∇U(y))Σρ(y)|2

)
|(∇U(y))Σρ(y)| · |Σρ(y)| ≤ C2Mϕ/2, a.e. in Ω,

so that it follows B = B0 +T2 ∈ L∞(Ω;M2×3). Using (97), the matrix-valued field B has a divergence
in the sense of distributions, inequality (92) yields divB ∈ [L∞(Ω)]2, so that B ∈ [W (Ω)∞]2 and we
have

−divB = ϕ′
(
|∇xu− v|2

)
(∇xu− v) , a.e. in Ω, (98)

which coincides with Equation (40).
Step 3. We now consider the necessary condition on w which follows deriving E with respect to σ,
namely:

d

dλ
E(u, v, σ + λη)

∣∣∣
λ=0

= 0, (99)

with η ∈ [BV (Ω)]2. Using Lemma 8.8, Lemma 8.9 and Remark 8.10, and taking η ∈ [C∞0 (Ω)]2, we get∫
Ω

〈Λ z,ρ(w) +
Mϕ

2
Θ z,ρ(w), η〉 dL3 +

∫
Ω

ϕ′(|∇σ|2)〈∇σ,∇η〉dL3 + c

∫
Ω

ϕ′
(
|σ|2

)
〈σ, η〉dL3 = 0. (100)

Using the matrix-valued field Q, defined in (36), the identity (100) becomes∫
Ω

〈Q,∇η〉dL3 = −
∫

Ω

〈c ϕ′
(
|σ|2

)
σ+Λ z,ρ(w)+

Mϕ

2
Θ z,ρ(w), η〉 dL3, for any η ∈ [C∞0 (Ω)]2. (101)

Let ψ4(ξ) = ϕ(|ξ|2) as in Section 4.3 with k = 6; using (23) with ψ = ψ4 and ξ = ∇σ, and using (31),
we have

|Q(z)| ≤Mϕ/2, a.e. in Ω,
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so that it follows Q ∈ L∞(Ω;M2×3). Arguing as in Step 1 of the proof of Lemma 8.8, we have∣∣∣ϕ′ (|(∇U(y))Σρ(y)|2
)

(∇xU(y))t(∇U(y))Σρ(y)
∣∣∣ ≤ CMϕ

2
|∇U(y)|,

from which it follows

|Λ z,ρ(w)| ≤ CMϕ

2

∫
Ω∩Bρ(z)

1

L3(Ω ∩Bρ(y))
|∇U(y)| dL3(y),

from which, since∇U ∈ [L1(Ω)]3 and Ω is a set with Lipschitz boundary, it follows Λ z,ρ(w) ∈ [L∞(Ω)]2

as a function of z. Arguing now as in Step 2 of the proof of Lemma 8.8, for |DsU | − a.e. y ∈ K̃U we
have

1

|Ns
U (y)Σρ(y)|

∣∣((Ns
U )x(y))tNs

U (y)Σρ(y)
∣∣ ≤ |Ns

U (y)| = 1,

from which it follows

|Θ z,ρ(w)| ≤
∫
K̃U∩Bρ(z)

1

L3(Ω ∩Bρ(y))
d|DsU |(y),

from which, since U ∈ [BV (Ω)]3 and Ω is a set with Lipschitz boundary, it follows Θ z,ρ(w) ∈ [L∞(Ω)]2

as a function of z. Using again ψ1(ξ) = ϕ(|ξ|2) with k = 2, and arguing as before with ξ = σ, we have

c ϕ′
(
|σ(z)|2

)
|σ(z)| ≤ cMϕ/2, a.e. in Ω,

so that

c ϕ′
(
|σ|2

)
σ + Λ z,ρ(w) +

Mϕ

2
Θ z,ρ(w) ∈ [L∞(Ω)]2.

Using (101), the matrix-valued field Q has a divergence in the sense of distributions with divQ ∈
[L∞(Ω)]2, so that Q ∈ [W (Ω)∞]2 and we have

divQ = c ϕ′
(
|σ|2

)
σ + Λ z,ρ(w) +

Mϕ

2
Θ z,ρ(w), (102)

which coincides with Equation (41).

Natural boundary conditions on ∂Ω

We choose η ∈ C∞(Ω) and we use (11) for the vector field A:∫
Ω

η divAdL3 =

∫
∂Ω

[〈A, νΩ〉]η dH2 −
∫

Ω

〈A,∇η〉dL3. (103)

Then, using (94) and subtracting (91) from (103) we find∫
∂Ω

[〈A, νΩ〉]η dH2 = 0, for any η ∈ C∞(Ω),

from which, using Lemma 6.2.1 of [7], the natural boundary condition (43) follows. In [7] Lemma
6.2.1 is stated for sets Ω with C1 boundary, but one can check that the statement holds true also for
sets with Lipschitz boundary.
Now we choose η ∈ [C∞(Ω)]2 and by (11) we get the following formula for the matrix-valued field B:∫

Ω

〈η,divB〉 dL3 =

∫
∂Ω

〈[BνΩ], η〉 dH2 −
∫

Ω

〈B,∇η〉dL3. (104)

Then, using (98) and subtracting (97) from (104) we find∫
∂Ω

〈[BνΩ], η〉 dH2 = 0, for any η ∈ [C∞(Ω)]2,

from which, using Lemma 6.2.1 of [7], the natural boundary condition (44) follows.
The natural boundary condition (45) follows analogously.
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Conditions on the singular sets

We first consider the conditions on KU .
Using Remark 8.6 for the directional derivative of E with respect to u, substituting (51) and (69) into
(89), using the definition (32) and (34) of the vector field A, taking η = u and using |Ns

u,x| = 1 and

(αsu)
2

= 1, we get

2

∫
Ω

χΩ\D ϕ
′(|f − u|2)(u− f)u dL3 + 2

∫
Ω

〈A,∇u〉dL3 (105)

+ Mϕ|Ds
xu|(Ω) +Mϕ

∫
K̃U
|〈νsU ,Σρ〉| 〈αsU , eu〉 d|Dsu| = 0.

We now use the boundary condition (43) and we apply Theorem 4.6 to the vector field A and the
function u: ∫

Ω

udivAdL3 = −
∫

Ω

〈A,∇u〉dL3 −
∫

Ω

[[〈A,Ns
u〉]]d|Dsu| ,

from which, using (39) and (105), it follows

Mϕ|Ds
xu|(Ω) +Mϕ

∫
K̃U
|〈νsU ,Σρ〉| 〈αsU , eu〉 d|Dsu| − 2

∫
Ω

[[〈A,Ns
u〉]]d|Dsu| = 0. (106)

Using Remark 8.6 for the directional derivative of E with respect to v, substituting (52) and (73) into
(95), using the definition (33) and (35) of the matrix-valued field B, taking η = v and using (16),

|Ns
v,x| = 1 and |αsv|

2
= 1, we get

−2

∫
Ω

ϕ′(|∇xu− v|2)〈∇xu− v, v〉dL3 + 2

∫
Ω

〈B,∇v〉dL3 (107)

+ Mϕ|Ds
xv|(Ω) +Mϕ

∫
K̃U
|〈νsU ,Σρ〉| 〈αsU , ev〉 d|Dsv| = 0.

We now use the boundary condition (44), we apply the identity (15) to the matrix-valued field B and
the vector field v, and we use (17):∫

Ω

〈v,divB〉dL3 = −
∫

Ω

〈B,∇v〉dL3 −
∫

Ω

[[〈B,Ns
v 〉]]d|Dsv|,

from which, using (40) and (107), it follows

Mϕ|Ds
xv|(Ω) +Mϕ

∫
K̃U
|〈νsU ,Σρ〉| 〈αsU , ev〉 d|Dsv| − 2

∫
Ω

[[〈B,Ns
v 〉]]d|Dsv| = 0. (108)

Now, using (70) and (74) we have

d|Dsu|
d|DsU |

= 〈αsU , eu〉,
d|Dsv|
d|DsU |

= 〈αsU , ev〉, (109)

and taking into account that, using αsU ∈ S2 and (67),

〈αsU , eu〉2 + 〈αsU , ev〉2 = 1,

adding (106) and (108), we obtain

Mϕ|Ds
xu|(Ω)− 2

∫
Ω

[[〈A,Ns
u〉]]d|Dsu|+Mϕ|Ds

xv|(Ω)− 2

∫
Ω

[[〈B,Ns
v 〉]]d|Dsv|

+ Mϕ

∫
K̃U
|〈νsU ,Σρ〉| d|DsU | = 0. (110)
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Now we observe that, using (68), we have

dDs
xu

d|Dsu|
= αsuν

s
u,x, |Ds

xu|(Ω) =

∫
Ω

∣∣∣∣ dDs
xu

d|Dsu|

∣∣∣∣ d|Dsu| =
∫

Ω

|νsu,x| d|Dsu|,

where we remind that νsu,x denotes the orthogonal projection of νsu on the spatial subset of space-time
R3. Analogously, using (72), we have

dDs
xv

d|Dsv|
= αsv ⊗ νsv,x, |Ds

xv|(Ω) =

∫
Ω

∣∣∣∣ dDs
xv

d|Dsv|

∣∣∣∣ d|Dsv| =
∫

Ω

|νsv,x| d|Dsv|.

Then the equality (110) becomes∫
Ω

{
Mϕ|νsu,x| − 2[[〈A,Ns

u〉]]
}
d|Dsu|+

∫
Ω

{
Mϕ|νsv,x| − 2[[〈B,Ns

v 〉]]
}
d|Dsv|

+ Mϕ

∫
K̃U
|〈νsU ,Σρ〉| d|DsU | = 0,

from which, by the definition (53) of K̃U , taking into account that Ns
UΣρ = αsU 〈νsU ,Σρ〉, and using

again (109), we get∫
Ω

{
Mϕ|νsu,x| − 2[[〈A,Ns

u〉]]
}
〈αsU , eu〉d|DsU |+

∫
Ω

{
Mϕ|νsv,x| − 2[[〈B,Ns

v 〉]]
}
〈αsU , ev〉d|DsU |

+ Mϕ

∫
Ω

|〈νsU ,Σρ〉| d|DsU | = 0. (111)

In order to get (42), we first need to prove that the overall integrand in (111) is non-negative, so that
(111) will implies that it is actually equal to 0 (namely (120)).
Let ψ1 : R2 → R be the convex and differentiable function satisfying the growth conditions (18) and
such that ψ1(ξ) = ϕ(|ξ|2). Applying the inequality (22) to the function ψ1, using (19), (31) and the
definition (34) of the vector field A0, we have

〈A0, N
s
u〉 = αsuϕ

′(|∇xu− v|2)〈∇xu− v, νsu,x〉

=
αsu
2
〈∂ξψ1(∇xu− v), νsu,x〉 ≤

αsu
2
ψ1,∞(νsu,x) ≤ Mϕ

2
|νsu,x|,

from which it follows the inequality

〈A0(y′), Ns
u(y)〉 ≤ Mϕ

2
|νsu,x(y)|, for a.e. y′ = (x′, t′) ∈ Ω and |Dsu| − a.e. y = (x, t) ∈ Ku. (112)

Now we apply the inequality (22) to the convex function ψ2 : R4 → R such that ψ2(ξ) = ϕ(|ξ|2) and
to the matrix-valued field B0 defined in (35), obtaining

〈B0, N
s
v 〉 = ϕ′(|∇xv|2)〈∇xv, αsv ⊗ νsv,x〉

=
1

2
〈∂ξψ2(∇xv), αsv ⊗ νsv,x〉 ≤

1

2
ψ2,∞(αsv ⊗ νsv,x) ≤ Mϕ

2
|νsv,x|,

from which it follows the inequality

〈B0(y′), Ns
v (y)〉 ≤ Mϕ

2
|νsv,x(y)|, for a.e. y′ = (x′, t′) ∈ Ω and |Dsv| − a.e. y = (x, t) ∈ Kv. (113)

Using now (109) and the definitions (32-35), we have

〈T1, N
s
u〉〈αsU , eu〉+ 〈T2, N

s
v 〉〈αsU , ev〉 = 〈T,Ns

U 〉. (114)
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Then we apply the inequality (22) to the function Ψ(y, ξ) defined in (76), which is convex in ξ for any
y ∈ Ω, and to the matrix-valued field T : using (77) and (78) with ξ = ∇U (we drop the dependence
on y) we obtain

〈T,Ns
U 〉 = ϕ′

(
|(∇U)Σρ|2

)
〈((∇U)Σρ)⊗ Σρ, α

s
U ⊗ νsU 〉

=
1

2
〈∂ξΨ(∇U), αsU ⊗ νsU 〉 ≤

1

2
Ψ∞(αsU ⊗ νsU )

=
Mϕ

2
|(αsU ⊗ νsU ) Σρ| =

Mϕ

2
|〈νsU ,Σρ〉| ,

from which it follows the inequality

〈T (y′), Ns
U (y)〉 ≤ Mϕ

2
|〈νsU (y),Σρ(y

′)〉| , (115)

for a.e. y′ = (x′, t′) ∈ Ω and |DsU | − a.e. y = (x, t) ∈ KU .

According to Definition 4.5, and using the identities (15) and (17), we consider the averages on in-
finitesimal cylinders Cr,δ(y, νsU ) of the vector field A0 and the matrix-valued field B0. Using inequalities
(112) and (113) we have

1

2πrδ2

∫
Cr,δ(y,νsu(y))

〈A0(y′), Ns
u(y)〉dL3(y′) ≤ Mϕ

2
|νsu,x(y)|, for |Dsu| − a.e. y = (x, t) ∈ Ku, (116)

1

2πrδ2

∫
Cr,δ(y,νsv(y))

〈B0(y′), Ns
v (y)〉dL3(y′) ≤ Mϕ

2
|νsv,x(y)|, for |Dsv| − a.e. y = (x, t) ∈ Kv. (117)

Using inequality (115), for the matrix-valued field T we get

1

2πrδ2

∫
Cr,δ(y,νsU (y))

〈T (y′), Ns
U (y)〉dL3(y′) ≤ Mϕ

4πrδ2

∫
Cr,δ(y,νsU (y))

|〈νsU (y),Σρ(y
′)〉| dL3(y′),

for |DsU | − a.e. y = (x, t) ∈ KU . (118)

Since the function Σρ is continuous on Ω, then it is uniformly continuous and, for |DsU |-a.e. y ∈ KU ,
we have

lim
δ→0+

lim
r→0+

1

2πrδ2

∫
Cr,δ(y,νsU (y))

|〈νsU (y),Σρ(y
′)〉| dL3(y′)

≤ |〈νsU (y),Σρ(y)〉|+ lim
δ→0+

lim
r→0+

sup
y′∈Cr,δ(y,νsU (y))

|Σρ(y′)− Σρ(y)| = |〈νsU (y),Σρ(y)〉| . (119)

Using now inequalities (116-119), taking the limit for r, δ → 0+, and using Definition 4.5, for |DsU |-a.e.
y ∈ KU , we have

2[[〈A,Ns
u〉]](y)〈αsU (y), eu(y)〉+ 2[[〈B,Ns

v 〉]](y)〈αsU (y), ev(y)〉
≤ Mϕ

{
|νsu,x(y)|〈αsU (y), eu(y)〉+ |νsv,x(y)|〈αsU (y), ev(y)〉+ |〈νsU (y),Σρ(y)〉|

}
.

Hence the overall integrand with respect to the measure |DsU | in the identity (111) is non-negative,
from which it follows

2[[〈A,Ns
u〉]](y)〈αsU (y), eu(y)〉+ 2[[〈B,Ns

v 〉]](y)〈αsU (y), ev(y)〉
= Mϕ

{
|νsu,x(y)|〈αsU (y), eu(y)〉+ |νsv,x(y)|〈αsU (y), ev(y)〉+ |〈νsU (y),Σρ(y)〉|

}
. (120)

for |DsU |-a.e. y ∈ KU .
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We now go to conclude the proof of the first three equalities in (42), proceeding in the following steps.
Step 1. For |Dsu|-a.e. y ∈ Ku we define

A
(δ,r)

0 (y) =
1

2πrδ2

∫
Cr,δ(y,νsu(y))

〈A0(y′), Ns
u(y)〉dL3(y′),

T
(δ,r)

1 (y) =
1

2πrδ2

∫
Cr,δ(y,νsu(y))

〈T1(y′), Ns
u(y)〉dL3(y′),

and for |Dsv|-a.e. y ∈ Kv we define

B
(δ,r)

(y) =
1

2πrδ2

∫
Cr,δ(y,νsv(y))

〈B(y′), Ns
v (y)〉dL3(y′).

We rewrite equality (120) as follows (we drop the dependence on y):

2〈αsU , eu〉 lim
δ,r→0+

(
A

(δ,r)

0 + T
(δ,r)

1

)
+ 2〈αsU , ev〉 lim

δ,r→0+
B

(δ,r)

= Mϕ

{
|νsu,x|〈αsU , eu〉+ |νsv,x|〈αsU , ev〉+ |〈νsU ,Σρ〉|

}
. (121)

Using (114) and inequalities (116-119), we have for any δ, r:

A
(δ,r)

0 ≤ Mϕ

2
|νsu,x|,

〈αsU , eu〉T
(δ,r)

1 + 〈αsU , ev〉B
(δ,r)

+O(δ, r) ≤ Mϕ

2

[
|νsv,x|〈αsU , ev〉+ |〈νsU ,Σρ〉|

]
,

where limδ,r→0+ O(δ, r) = 0. It follows the existence of the separate limit

lim
δ,r→0+

A
(δ,r)

0 =
Mϕ

2
|νsu,x|, (122)

otherwise, on a subsequence (not relabeled) of (δ, r), from the previous inequalities we have

lim
δ,r→0+

A
(δ,r)

0 <
Mϕ

2
|νsu,x|,

and equality (121) would not be satisfied. Then, for |Dsu|-a.e. y ∈ Ku, there exists the separate trace
[[〈A0, N

s
u〉]](y) as a limit of the averages on cylinders, and from equality (122) it follows

[[〈A0, N
s
u〉]](y) =

Mϕ

2
|νsu,x(y)|, for |Dsu| − a.e. y ∈ Ku,

which is the first equality of (42) in the main results.
Step 2. As above, for |Dsv|-a.e. y ∈ Kv we define

B
(δ,r)

0 (y) =
1

2πrδ2

∫
Cr,δ(y,νsv(y))

〈B0(y′), Ns
v (y)〉dL3(y′),

T
(δ,r)

2 (y) =
1

2πrδ2

∫
Cr,δ(y,νsv(y))

〈T2(y′), Ns
v (y)〉dL3(y′),

and, using (122), we rewrite equality (120) as follows

2〈αsU , eu〉 lim
δ,r→0+

T
(δ,r)

1 + 2〈αsU , ev〉 lim
δ,r→0+

(
B

(δ,r)

0 + T
(δ,r)

2

)
= Mϕ

{
|νsv,x|〈αsU , ev〉+ |〈νsU ,Σρ〉|

}
.
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Using now (114) and inequalities (117-119), we have for any δ, r:

B
(δ,r)

0 ≤ Mϕ

2
|νsv,x|,

〈αsU , eu〉T
(δ,r)

1 + 〈αsU , ev〉T
(δ,r)

2 +O(δ, r) ≤ Mϕ

2
|〈νsU ,Σρ〉| .

Arguing as before, the existence of the separate limit

lim
δ,r→0+

B
(δ,r)

0 =
Mϕ

2
|νsv,x| (123)

follows. Then, for |Dsv|-a.e. y ∈ Kv, there exists the separate trace [[〈B0, N
s
v 〉]](y) as a limit of the

averages on cylinders, and from equality (123) it follows

[[〈B0, N
s
v 〉]](y) =

Mϕ

2
|νsv,x(y)|, for |Dsv| − a.e. y ∈ Kv,

which is the second equality of (42) in the main results.
Step 3. Now, for |DsU |-a.e. y ∈ KU we define

T
(δ,r)

(y) =
1

2πrδ2

∫
Cr,δ(y,νsU (y))

〈T (y′), Ns
U (y)〉dL3(y′),

and, using (122), (123) and (114), we rewrite equality (120) as follows

2 lim
δ,r→0+

[
T

(δ,r)

1 〈αsU , eu〉+ T
(δ,r)

2 〈αsU , ev〉
]

= 2 lim
δ,r→0+

T
(δ,r)

= Mϕ |〈νsU ,Σρ〉| .

Then, for |DsU |-a.e. y ∈ KU , there exists the separate trace [[〈T,Ns
U 〉]](y) as a limit of the averages

on cylinders, and we have

[[〈T,Ns
U 〉]](y) =

Mϕ

2
|〈νsU (y),Σρ(y)〉| , for |DsU | − a.e. y ∈ KU ,

which is the third equality of (42) in the main results.

We now consider the conditions on the set Kσ.
Using now Remark 8.10 for the directional derivative of E with respect to σ, substituting (81) and
(87) into (99), using the definition (36) of the matrix-valued field Q, taking η = σ and using |Ns

σ| = 1,
we get ∫

Ω

〈2Λ z,ρ(w) +MϕΘ z,ρ(w), σ(z)〉 dL3(z) + 2

∫
Ω

ϕ′(|∇σ|2)|∇σ|2dL3

+ Mϕ|Dsσ|(Ω) + 2c

∫
Ω

ϕ′
(
|σ|2

)
|σ|2dL3 = 0. (124)

We now use the boundary condition (45), we apply the identity (15) to the matrix-valued field Q and
the vector field σ, and we use (17):∫

Ω

〈σ, divQ〉dL3 = −
∫

Ω

〈Q,∇σ〉dL3 −
∫

Ω

[[〈Q,Ns
σ〉]]d|Dsσ|,

from which, using (41) and (124), it follows

Mϕ|Dsσ|(Ω)− 2

∫
Ω

[[〈Q,Ns
σ〉]]d|Dsσ| = 0,
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so that ∫
Ω

{Mϕ − 2[[〈Q,Ns
σ〉]]}d|Dsσ| = 0. (125)

Now we apply the inequality (22) to the convex function ψ4 : R6 → R such that ψ4(ξ) = ϕ(|ξ|2) and
to the matrix-valued field Q defined in (36), obtaining

〈Q,Ns
σ〉 = ϕ′(|∇σ|2)〈∇σ, αsσ ⊗ νsσ〉

=
1

2
〈∂ξψ4(∇σ), αsσ ⊗ νsσ〉 ≤

1

2
ψ4,∞(αsσ ⊗ νsσ) =

Mϕ

2
|αsσ ⊗ νsσ| =

Mϕ

2
,

from which it follows the inequality

〈Q(y′), Ns
σ(y)〉 ≤ Mϕ

2
, for a.e. y′ = (x′, t′) ∈ Ω and |Dsσ| − a.e. y = (x, t) ∈ Kσ. (126)

Then we consider the average on infinitesimal cylinders Cr,δ(y, νsσ) of the vector field Q so that, using
inequality (126), we have

1

2πrδ2

∫
Cr,δ(y,νsσ(y))

〈Q(y′), Ns
σ(y)〉dL3(y′) ≤ Mϕ

2
, for |Dsσ| − a.e. y = (x, t) ∈ Kσ.

Then, taking the limit for r, δ → 0+, for |Dsσ|-a.e. y ∈ Kσ, we have

2[[〈Q,Ns
σ〉]](y) ≤Mϕ,

hence the integrand with respect to the measure |Dsσ| in the identity (125) is non-negative, from
which it follows

[[〈Q,Ns
σ〉]](y) =

Mϕ

2
, for |Dsσ| − a.e. y ∈ Kσ,

which is the last equality of (42) in the main results.
The proof of Theorem 6.1 is completed.
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