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Abstract. In this note, we prove a controllability result for entropy solutions of scalar conservation

laws on a star-shaped graph. Using a Lyapunov-type approach, we show that, under a monotonicity

assumption on the flux, if u and v are two entropy solutions corresponding to different initial data
and same in-flux boundary data (at the exterior nodes of the star-shaped graph), then u ≡ v for a

sufficiently large time. In order words, we can drive u to the target profile v in a sufficiently large

control time by inputting the trace of v at the exterior nodes as in-flux boundary data for u. This
result can also be shown to hold on tree-shaped networks by an inductive argument. We illustrate

the result with some numerical simulations.

1. Introduction

Hyperbolic models on networks are extensively used to describe applied problems related to blood
circulation [68, 43], gas pipelines [27, 28], vehicular traffic [44], irrigation channels [41], supply chains
[38], etc. (see [22] and references therein for further information).

We focus on a network composed by a single junction with n incoming and m outgoing edges (see
Figure 1). Following the notations of [44], we describe the junction by a finite set of incoming edges,
labeled by i ∈ Iin := {1, . . . , n} and parameterized by the segments Ii := (−Li, 0) and by a finite
set of outgoing edges, labeled by j ∈ Iout := {n + 1, . . . , n + m} and parameterized by the segments
Ij := (0, Lj), with Li, Lj > 0. In both cases the junction is at x = 0. We shall also use the notation
G = (0, E), where E = {I`}`∈{1,...,n+m}, to denote the star-shaped graph described above.

For each edge of the graph, we consider the dynamics given by a scalar hyperbolic conservation laws
with flux f` (with ` ∈ {1, . . . , n+m}) satisfying the following conditions:

(F1) f` ∈ Lip(R;R+);
(F2) f` is non-degenerate: i.e., for all (ξ, ζ) ∈ R×R\{(0, 0)}, we have L ({z ∈ R : ξ + ζf ′`(z) = 0}) =

0, where L denotes the Lebesgue measure;
(F3) infξ∈R f

′
`(ξ) ≥ c` > 0.

With these assumptions, we study the system

∂tui + ∂xfi (ui) = 0, t > 0, x ∈ Ii,
∂tuj + ∂xfj (uj) = 0, t > 0, x ∈ Ij ,
ui(0, x) = u0,i(x), x ∈ Ii,
uj(0, x) = u0,j(x), x ∈ Ij ,
ui(t,−Li) = ub,i(t), t > 0,∑n
i=1 fi(ui(t, 0−)) =

∑n+m
j=n+1 fj(uj(t, 0+)), t > 0,

(1.1)

for all i ∈ {1, . . . , n} and j ∈ {n + 1, . . . , n + m}. Here, for every ` ∈ {1, . . . , n + m}, the initial data
satisfies u0,` ∈ L∞(I`;R+) and, at the entry points of the network, we prescribed an in-flux boundary
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Figure 1. Junction with n = 2 incoming and m = 3 outgoing edges.

condition with data ub,i ∈ L∞((0,∞);R+) for i ∈ {1, . . . , n}. The condition in the last line is a
modellistic choice: it imposes the conservation of the total density at the junction.

Let us comment on the assumptions needed for the flux functions. Hypothesis (F2) is a technical
condition needed to guarantee the existence of traces for L∞ entropy solutions of the conservation
laws (see [64] and also [65, 71]): i.e., the non-degeneracy of the flux yields a regularization effect at
the boundary (see [36]). See also [19] for further information on trace theorems in the linear case.

Hypothesis (F3) corresponds, roughly speaking, to the requirement that all generalized character-
istics (see [37]) exiting from (t, x) ∈ {0} × I` leave the cylinder (0, T )× I` before time T` = L`/c`, so
that the dynamics on each edge only depends on the boundary data at the exterior nodes and not on
the initial data for a sufficiently large time horizon. Under hypotheses (F3), the effective boundary
condition is imposed only at x = −Li for i ∈ {1, . . . , n} (i.e. at the incoming boundary); moreover,
the junction conditions is given more explicitly.

We remark that (F3) makes (1.1) not suitable for traffic flow models, as they usually consider bell-
shaped flux functions (see [44] and references therein). On the other hand, in supply chain production
models, a typical flux function is given by the M/M/1 queuing model with capacity one1 (see [38]), i.e.
f(u) = u

u+1 , which satisfies f ′(u) = 1
(u+1)2 ≥ c > 0.

The well-posedness of a suitable notion of entropy solutions for conservation laws at a junction
has been subject of intensive investigation. We refer to [44, 22] for a survey of this research area
and various definitions of admissible solutions at a junction. In the present paper, we focus on the
(unique) entropy-admissible solution that is obtained by the vanishing viscosity approximation process
(see [12, 63]), whose definition is recalled in Section 2.

The main result in our contribution concerns the controllability to trajectories of entropy solutions
of (1.1), i.e. steering the solution to a given entropy-admissible target profile using the boundary
datum as control.

Our main theorem is then as follows.

Theorem 1.1 (Controllability of entropy solutions on star-shaped graphs). Let us assume that hy-
potheses (F1)–(F3)2 are satisfied and let ~v = (v1, . . . , vn+m) be the entropy solutions of (1.1) (in the
sense of Definition 2.1) with initial data v0,` ∈ L∞(I`;R+) for ` ∈ {1, . . . , n+m} and boundary data
vb,i ∈ L∞((0, T );R+) for i ∈ {1, . . . , n} (~v is a target profile). Let us consider any other initial data
u0,` ∈ L∞(I`;R+) for ` ∈ {1, . . . , n+m}. Then, the entropy solution ~u = (u1, . . . , un+m) of (1.1) cor-
responding to initial data u0,` and the in-flux boundary data of ~v, i.e. ub,i ≡ vb,i for all i ∈ {1, . . . , n},

1The model name is written in Kendall’s notation (see [56]): M/M/1 means that the system has a Poisson arrival

process, an exponential service time distribution, and one server (M here stands for Markovian).
2Or, more precisely, the infimum in (F3) should be taken over the convex hull of the ranges of u` and v` as the system

satisfies the ordering property (cf. [12]).
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satisfies

u`(t, x) = v`(t, x), t > T̂ , a.e. x ∈ I`, ∀` ∈ {1, . . . , n+m},

where the control time T̂ is given by T̂ := maxi∈Iin{Li/ci}+ maxj∈Iout{Lj/cj}.

Remark 1.1 (Null-controllability). If we assume
∑n
i=1 fi(0) =

∑n+m
j=n+1 fj(0) (or, alternatively,

f`(0) = 0 for all ` ∈ {1, . . . , n+m}), then 0 is an admissible entropy solution of (1.1) with ~u0 = ~0 and
ub,` = f`(0) (or ub,` = 0, respectively). Then, considering ~v(t, ·) ≡ 0 for all t ≥ 0, Theorem 1.1 can be
seen as a null-controllability result: we steer the system to the zero state by considering the boundary
control ub,i = fi(0) (or ub,i = 0, respectively).

Theorem 1.1 adapts a result proved by Donadello and Perrollaz in [39, Prop. 4] (for multi-
dimensional scalar conservation laws) to the case of a networked system. The strategy of our proof is
also similar: we employ a Lyapunov functional consisting of an exponentially-weighted L1 norm. The
added difficulty of the case of a networked system, compared to [39], consists in the handling of the
transmission condition at the junction: we need to carefully consider an adapted entropy-admissibility
(see Section 2) in order to propagate information across the junction. This is similar in spirit to the
considerations of [23] about the controllability of a linear hyperbolic first-order problem.

Remark 1.2 (Controllability of entropy solutions on tree-shaped graphs). We can prove a similar
result on a tree-shaped network, i.e. a network without loops, arguing by induction as in [23]. In the
case of a tree, in the statement of Theorem 1.1, the control time is given by the maximal propagation
time required for information to flow out of the tree as defined in [23, Definition 3.1]. For networks
with loops, difficulties arise, as already pointed out in in the case of linear transport problems in [23,
Section 3.4].

Finally, let us consider a viscous regularization of (1.1):

∂tuε,i + ∂xfi (uε,i) = ε∂2
xxuε,i, t > 0, x ∈ Ii,

∂tuε,j + ∂xfj (uε,j) = ε∂2
xxuε,j , t > 0, x ∈ Ij ,

uε,i(0, x) = u0,ε,i(x), x ∈ Ii,
uε,j(0, x) = u0,ε,j(x), x ∈ Ij ,
uε,i(t,−Li) = ub,i(t), t > 0,

uε,j(t, Lj) = ub,j(t), t > 0,∑n
i=1

(
fi(uε,i(t, 0−))− ε∂xuε,i(t, 0−)

)
=
∑n+m
j=n+1

(
fj(uε,j(t, 0+))− ε∂xuε,j(t, 0+)

)
, t > 0,

uε,i(t, 0−) = uε,j(t, 0+), t > 0,

(1.2)

for all i ∈ {1, . . . , n} and j ∈ {n+ 1, . . . , n+m}. We remark that, due to the effect of viscosity, at time

T = T̂ , a small exponential tail remains as an error when we consider the evolution of the difference of
two solutions ~uε and ~vε with different initial condition and same boundary data. This is summarized
in the following stabilization result.

Theorem 1.2 (Exponential stabilization for the viscous problem). Let us assume that hypotheses
(F1) and (F3) are satisfied and n ≤ m. Let ~uε = (uε,1, . . . , uε,n+m) and ~vε = (vε,1, . . . , vε,n+m) be
classical solutions of (1.2) (in the sense of [25, Theorem 1.2]) with initial data u0,ε,` ∈ C∞(I`;R+)
and v0,ε,` ∈ C∞(I`;R+) respectively and same boundary data ub,` ≡ vb,` ∈ L∞((0, T );R+) for all
` ∈ {1, . . . , n+m}. Then,

n+m∑
`=1

‖uε,`(t, ·)− vε,`(t, ·)‖L1(I`) ≤ e
− cα2ε ((1−α2 )ct−L)

n+m∑
`=1

‖uε,0,` − vε,0,`‖L1(I`), t > 0,

for any α ∈ (0, 1], c = min`∈{1,...,n+m} c`, and L := maxi∈{1,...,n} Li + maxj∈{n+1,...,n+m} Lj.
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This kind of stabilization result provides a robustness estimate for Theorem 1.1 and is the first step
towards the analysis of the cost of controllability for conservation laws on networks in the vanishing
viscosity singular limit, which will be tackled in forthcoming works (cf. [23, Proposition 7.1] for the
corresponding result in the linear setting). We remark that the role of the assumption n ≤ m in the
energy dissipation mechanism for viscous conservation laws at a junction is also discussed in [24].

We refer to [35, 50, 47, 48, 49] for the study of the problem of uniform controllability of linear
or nonlinear transport problems in Euclidean domains in the vanishing viscosity limit or in the zero
diffusion-dispersion singular limit; and to [23] for linear advection-diffusion equations on networks.

1.1. Literature on well-posedness and controllability of scalar conservation laws on net-
works. The study of conservation laws on networks goes back to [53, 26] and has received much
attention over the last two decades. We refer the reader to [44, 22] for an extensive survey. We empha-
size that, recently, a well-posedness result for a suitable notion of entropy-admissible solution has been
obtained in [12, 63]. However, no controllability results seem to have been obtained in the framework
of entropy solutions. There are only results on some optimization problems (see [7, 6]); stabilization
issues [40]; and on the related topic of conservation laws on the real line with space-discontinuous flux
(see [1, 8]).

On the other hand, the controllability and stabilization of (systems of) conservation laws on networks
have been widely studied in the context of smooth solutions (see, e.g., [51, 52] and references therein).

For the IBVP associated with (systems of) conservation laws, the study of controllability has a
much longer history. In the framework of classical solutions, the controls, in addition to driving the
state to the target, also prevent the formation of singularities (see [58, 59, 32, 17] and references
therein). In the context of entropy solutions, the set of admissible target states has been investigated
in [9, 10, 13, 14, 29] and several controllability results have been obtained by relying on the method
of generalized characteristics introduced by Dafermos in [37] (see [10, 14, 29, 55, 66]); on the Lax-
Oleinik representation formula (see [2, 13]); or on the return method introduced by Coron in [30] (see
[55, 47, 57]). We remark, however, that the Lax-Oleinik formula is applicable only when the flux
function is strictly convex/concave; the theory of generalized characteristics includes flux functions
with one inflection point; and the return method was used in [57] to cover the case of a finite number
of inflection points. More recently, in [39], Donadello and Perrollaz used the classical ideas of Lyapunov
functionals coming from the study of asymptotic stabilization (see [67, 18, 17, 31, 33]) to prove a null-
controllability result for multi-dimensional conservation laws without convexity/concavity assumptions,
but under an assumption analogous to (F3).

On the other hand, for systems of conservation laws, the only available tool for investigating the
exact controllability of entropy solutions in one space dimension is wave front tracking algorithm (see
[20]), which was employed in [60, 72, 46, 45, 21, 9]. The asymptotic stabilization of entropy solutions
of systems of conservation laws has also been subject to investigation in [11, 17, 34].

In this note, we use the Lyapunov-type approach from [39] to give a short proof of the null-
controllability result in Theorem 1.1. This establishes the first controllability results for scalar conser-
vation laws on networks in the context of entropy solutions and complements the existing literature
on the controllability of smooth solutions for hyperbolic systems on networks.

2. Entropy admissible solutions for scalar conservation laws on networks

In this section, following [12], we review some known results on the entropy formulation for conser-
vation laws at a junction. We remark that the theory of [12] was developed in the case of bell-shaped
fluxes; however, the results still apply under the assumption (F3), which is the setting of the more
recent works [63, 42].
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Let us start by considering an IBVP on the half-line for a scalar conservation law with Lipschitz
continuous flux: 

∂tu+ ∂xf(u) = 0, t > 0, x > 0,

u(0, x) = u0(x), x > 0,

u(t, 0) = ub(t), t > 0,

(2.1)

We say that u is an entropy solution of (2.1) if it is a Kružkov entropy solution in the interior of the
half-plane R+ × R+, i.e.

∂t|u− c|+ ∂x (sign(u− c)(f(u)− f(c))) ≤ 0

holds in the sense of distributions, and if it satisfies the boundary condition in the sense of Bardos-
LeRoux-Nédélec (see [16, 15]), i.e. the trace u(t, 0+) satisfies

f(u(t, 0+)) = G(ub(t), u(t, 0+)),

where G denotes the Godunov numerical flux associated to f (see [54, Eq. (3.8)]), which is given by

G(a, b) =

{
minξ∈[a,b] f(ξ) if a ≤ b,
maxξ∈[b,a] f(ξ) if a ≥ b.

Due to the results in [65, 71], for a Lipschitz continuous flux f such that f ′ is not identically zero on
any interval (cf. assumptions (F1)-(F2)), the function u(t, ·) admits one-sided limits; in particular, we
can define the strong trace of u on R+ × {0} which is mentioned above. The Bardos-LeRoux-Nédélec
condition is generally recognized as the correct interpretation of the Dirichlet boundary condition
for hyperbolic conservation laws. This is justified in particular by convergence of vanishing viscosity
or numerical approximations of the boundary value problem: indeed, it may happen that the limit
(hyperbolic) problem satisfies an effective boundary condition that may differ from the formal boundary
condition prescribed for the approximation level due to viscous or numerical boundary layer effects
(see [15, 69] for a more detailed discussion of boundary conditions for hyperbolic conservation laws).

After these preliminaries, let us now present the notions of entropy-admissible solutions for conser-
vation laws on networks studied in [12]. We remark that there the authors considered Ii = R− and
Ij = R+, so we need to slightly extend [12, Definition 1.2] to deal with the case of I` being segments.

Definition 2.1 (Entropy admissible solution: formulation using Godunov fluxes at the junction). Let
u0,` ∈ L∞(I`;R+) and ub,i ∈ L∞(R+), we say that ~u = (u1, . . . , un+m) is an entropy solution of (1.1)
if u` ∈ L∞((0,∞)× I`) for all ` ∈ {1, . . . , n+m} and the following conditions are satisfied:

(1) For all ` ∈ {1, . . . , n + m}, the function u` is an entropy solution of the conservation law in
the interior of I`, i.e. for all non-negative test functions ϕ` ∈ C∞c ([0,∞) × I`) and for any
constant c ≥ 0, there holds∫ ∞

0

∫
I`

(η(u`, c)∂tϕ` + q`(u`, c)∂xϕ`) dxdt+

∫
I`

η(u0,`, c)ϕ`(0, x) dx ≥ 0,

where η(u`, c) := |u` − c| and q`(u`, c) := sign(u` − c)(f`(u`)− f`(c)) are called the Kružkov’s
entropy-entropy flux pairs;

(2) The boundary conditions in the exterior vertices of the network are satisfied in the sense of
Bardos-LeRoux-Nédélec, i.e.

fi(ui(t,−Li+)) = Gi(ub,i(t), ui(t,−Li+)), a.e. t > 0, i ∈ {1, . . . , n},

where Gi and Gj are the Godunov fluxes associated to fi and fj respectively;
(3) The junction condition is satisfied in the following sense: there exists a function p ∈

L∞((0,∞);R+) such that

fi(ui(t, 0−)) = Gi(ui(t, 0−), p(t)), a.e. t > 0, i ∈ {1, . . . , n},
fj(uj(t, 0+)) = Gj(p(t), uj(t, 0+)), a.e. t > 0, j ∈ {n+ 1, . . . , n+m},
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and the conservativity condition

n∑
i=1

Gi(ui(t, 0−), p(t)) =

n+m∑
j=n+1

Gj(p(t), uj(t, 0+)), for a.e. t > 0

holds.

Remark 2.1 (The case of monotone fluxes). Under hypothesis (F3), our flux is strictly increasing.
In this particular case, we remark that the Godunov flux is given by G(a, b) = f(a). As a consequence,
as already remarked from the beginning of the paper, in Point (2) of Definition 2.1, we cannot impose
a boundary condition at x = Lj−, i.e.

fj(uj(t, Lj−)) = Gi(p(t), uj(t, Lj−)), j ∈ {n+ 1, . . . , n+m};

on the contrary, the in-flux boundary condition can be imposed only at x = −Li for i ∈ {1, . . . , n}:

fi(ui(t,−Li+)) = fi(ub,i(t)), i ∈ {1, . . . , n}.

We also note that, being the flux invertible, we can equivalently write

ui(t,−Li+) = ub,i(t), i ∈ {1, . . . , n}.

Moreover, Point (3) reduces to

fj(uj(t, 0+)) = fn+1(un+1(t, 0+)), j ∈ {n+ 1, . . . , n+m},
n∑
i=1

fi(ui(t, 0−)) =

n+m∑
j=n+1

fj(uj(t, 0+)).

The second line indicates the conservation of mass; the first one, indicates that the entropy-admissibility
condition amounts to requiring an equi-distribution of the flux coming out of the junction.

Definition 2.1 can be equivalently reformulated in terms of an adapted entropy inequality that
accounts for the admissibility of ~u at the junction (see [12, Definition 2.10]).

Definition 2.2 (Entropy admissible solution: formulation using adapted entropies at the junction).
Let u0,` ∈ L∞(I`;R+) and ub,i ∈ L∞(R+), we say that ~u = (u1, . . . , un+m) is an entropy solution of
(1.1) if u` ∈ L∞((0,∞)× I`) for all ` ∈ {1, . . . , n+m} and the following conditions are satisfied:

(1) Points (1) and (2) of Definition 2.1 hold;
(2) For any ~c = (c1, . . . , cn+m) ∈ GV V , ~u satisfies the adapted entropy inequality on the network,

i.e. for all non-negative test functions ϕ` ∈ C∞c ((0,∞)× Ī`) such that ϕ`(t, 0) = ϕ1(t, 0), there
holds

n+m∑
`=1

∫ ∞
0

∫
I`

(
η(u`, c`)∂tϕ` + q`(u`, c`)∂xϕ`

)
dxdt ≥ 0,

where η(u`, c`) = |u`− c`| and q`(u`, c) = sign(u`− c`)(f`(u`)− f`(c`)). Here GV V denotes the
vanishing viscosity germ, defined as follows (see [12, Definition 2.1]):

GV V =


~u = (u1, . . . , um+n) : ∃p ≥ 0 such that∑n

i=1Gi (ui, p) =
∑m+n
j=m+1Gj (p, uj) and

Gi (ui, p) = fi (ui) , Gj (p, uj) = fj (uj) ,
∀i ∈ {1, . . . , n}, j ∈ {n+ 1, . . . , n+m}


Remark 2.2 (On the vanishing viscosity germ and Oleinik-type inequalities). We can characterize
the vanishing viscosity germ GV V by a set of Oleinik-type inequalities (see [12, Lemma 2.2]) observing
that the following equivalences hold for all i ∈ {1, . . . , n} and j ∈ {n+ 1, . . . , n+m}:

∀ξ ∈ [min{ui, p},max{ui, p}] : Gi(ui, p) = fi(ui) ⇐⇒ (ui − p)(fi(ξ)− fi(ui)) ≥ 0,

∀ξ ∈ [min{uj , p},max{uj , p}] : Gj(p, uj) = fj(uj) ⇐⇒ (p− uj)(fj(uj)− fj(ξ)) ≥ 0.
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Under assumptions (F1)-(F3), it can be proved that such entropy solutions exist and are the limit
of a vanishing viscosity approximation process (see [12, Theorem 4.1]) and Godunov-type numerical
schemes (see [12, Theorem 3.3] and also [70] for a more explicit implementation of the scheme). More-
over, with this entropy formulation, the following uniqueness result can be proved ([12, Proposition
3.1]).

Theorem 2.1 (L1-stability of entropy solutions). Let us assume that (F1)-(F3) hold and let ~u and ~v
be entropy solutions of (1.1) in the sense of Definition 2.1 with initial data u0,`, v0,` ∈ L∞((0,∞)×I`),
respectively, and same boundary data ub,i ∈ L∞((0,∞);R+) for ` ∈ {1, . . . , n+m}. Then

n∑
i=1

‖ui(t, ·)− vi(t, ·)‖L1(Ii)
+

n+m∑
j=n+1

‖uj(t, ·)− vj(t, ·)‖L1(Ij)

≤
n∑
i=1

‖ui(0, ·)− vi(0, ·)‖L1(Ii)
+

n+m∑
j=n+1

‖uj(0, ·)− vj(0, ·)‖L1(Ij)

for every t > 0. In particular, there exists at most one entropy solution for given initial and boundary
data.

Due to the finite speed of propagation of the waves of hyperbolic conservation laws, these existence
and uniqueness result can be extended inductively to more general networks (see [44]).

3. Proof of the controllability and exponential stabilization results via a Lyapunov
approach

3.1. Controllability of the hyperbolic problem. Before going into the proof of Theorem 1.1, we
shall outline the strategy with the following toy problem.3

Remark 3.1 (A case study: the IBVP for the linear transport equation). We consider
∂tu+ c∂xu = 0, t > 0, x ∈ (0, L),

u(0, x) = u0(x), x ∈ (0, L),

u(t, 0) = 0, t > 0,

(3.1)

where L > 0, c > 0, and u0 ∈ L2(0, L). Let us define the Lyapunov functional

∀t ≥ 0, Jν(t) =

∫ L

0

u2e−νx dx,(3.2)

with ν > 0, and compute

d

dt
Jν(t) =

d

dt

∫ L

0

u2e−νx dx =

∫ L

0

2u∂tue
−νx dx = −

∫ L

0

2cu∂xue
−νx dx

= −νc
∫ L

0

u2e−νx dx−[u2e−νx]L0︸ ︷︷ ︸
≤0

≤ −νcJν(t).

Gronwall’s lemma yields
Jν(t) ≤ e−cνtJν(0).

We then observe that
e−ν‖u(t, ·)‖2L2(0,L) ≤ Jν(t) ≤ ‖u(t, ·)‖2L2(0,L).

Putting these together, we have

e−Lν‖u(t, ·)‖2L2(0,L) ≤ e
−cνt‖u0‖L2(0,L),

3This example was presented by V. Perrollaz in the conference “VIII Partial Differential Equations, Optimal Design

and Numerics”, 2019.



8 N. DE NITTI AND E. ZUAZUA

i.e.

‖u(t, ·)‖2L2(0,L) ≤ e
−cνt+Lν‖u0‖L2(0,L) = e−cν(t−Lc )‖u0‖L2(0,L).

Therefore, letting ν →∞, we conclude ‖u(t, ·)‖L2(0,L) = 0 for t > L/c.

In order to make the proof of Remark 3.1 rigorous for the conservation laws, we need to rely on the
entropy formulation (see [39]). Moreover, to adapt the argument to the case of networked systems, we
need to take particular care of the transmission of information at the junction.

Proof of Theorem 1.1. Following the strategy in [39], we define, for each edge i ∈ {1, . . . , n} and
j ∈ {n+ 1, . . . , n+m}, the Lyapunov functional

∀t ≥ 0, Jν,i(t) :=

∫ 0

−Li
|ui(t, x)− vi(t, x)|e−νx dx, Jν,j(t) :=

∫ Lj

0

|uj(t, x)− vj(t, x)|e−νx dx.

for a fixed ν > 0.
Step 1: Analysis of the in-coming edges. Given t̄ ≥ 0, for any i ∈ {1, . . . , n}, the edge-wise entropy

condition (see Point (1) of Definition 2.1) yields, by a “doubling of variables”-type argument (see [39]),

0 ≤
∫ t̄

0

∫ 0

−Li
|ui(t, x)− vi(t, x)|∂tϕi(t, x) dx dt

+

∫ t̄

0

∫ 0

−Li
sign

(
ui(t, x)− vi(t, x)

)(
fi(ui(t, x))− fi(vi(t, x))

)
∂xϕi(t, x) dxdt,

+

∫ 0

−Li
|ui(0, x)− vi(0, x)|ϕi(0, x) dx

with 0 6 ϕi ∈ C∞c ([0,∞) × (−Li, 0)). Here, we used the existence of a strong trace at the boundary
to use point (2) of Definition 2.1 – namely, that there exist γi ∈ L∞(0, T ) and a negligible set Pi ⊂ Ii
such that

lim
x→−L+

i

x/∈Pi

∫ T

0

|ui(t, x)− γi(t)| dt = 0.

We consider a sequence {ϕi,k}k∈N ⊂ C
∞
c ([0,∞)× (−Li, 0)) such that

ϕi,k → χ(−∞,t̄]e
−νx strongly in L1 as k →∞.

Then, letting k →∞, we obtain

Jν,i(t̄) ≤ Jν,i(0)− ν
∫ t̄

0

∫ 0

−Li
e−νx sign

(
ui(t, x)− vi(t, x)

)(
fi(ui(t, x))− fi(vi(t, x))

)
dx dt.(3.3)

Here, we needed to use the existence of strong traces at the boundary guaranteed by (F2).
In order to estimate the last term of (3.3), we observe that, for all (a, b) ∈ R2,

sign(a− b)(f`(a)− f`(b)) = sign(a− b)
(∫ 1

0

f ′`(b+ s(a− b)) (a− b) ds

)
= |a− b|

∫ 1

0

f ′`(b+ s(a− b)) ds

≥ |a− b|
∫ 1

0

c` ds ≥ c`|a− b|,

where we used assumption (F3) to bound f ′` from below. Therefore, we obtain

Jν,i(t̄) ≤ Jν,i(0)− νci
∫ t̄

0

Jν,i(t) dt,

which yields, by Gronwall’s lemma,

Jν,i(t̄) ≤ e−ciνt̄Jν,i(0).(3.4)
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As t̄ was arbitrarily chosen, we can write, for all t ≥ 0,

‖ui(t, ·)− vi(t, ·)‖L1(Ii) ≤ Jν,i(t) ≤ e
νLi‖ui(t, ·)− vi(t, ·)‖L1(Ii).(3.5)

Thus, plugging (3.5) into (3.4), we compute

‖ui(t, ·)− vi(t, ·)‖L1(Ii) ≤ Jν,i(t) ≤ e
νLi−νcitJν,i(0) ≤ e−νci

(
t−Lici

)
‖u0,i − v0,i‖L1(Ii)

and, letting ν → ∞, we conclude that ui(t, ·) − vi(t, ·) = 0 for t > Li/ci. Therefore, ui(t, ·) = vi(t, ·)
for all i ∈ {1, . . . , n} if t > maxi∈Iin{Li/ci}.

Step 2: Analysis of the out-going edges. By Definition 2.1 (and Remark 2.1), the traces of ~u and
~v at the junction satisfy

fj(uj(t, 0+))− fj(vj(t, 0+)) = fn+1(un+1(t, 0+))− fn+1(vn+1(t, 0+)),(3.6)

∀j ∈ {n+ 1, . . . , n+m},
n∑
i=1

fi(ui(t, 0−))− fi(vi(t, 0−)) =

n+m∑
j=1

fj(uj(t, 0+))− fj(vj(t, 0+)).(3.7)

From Step 1, for all i ∈ {1, . . . , n}, we have ui(t, 0−) − vi(t, 0−) = 0 for t > maxi∈Iin {Li/ci}. Then,
from (3.7), we have

n+m∑
j=1

fj(uj(t, 0+))− fj(vj(t, 0+)) = 0.

By (3.6), this yields uj(t, 0+) = vj(t, 0+) for t > maxi∈Iin {Li/ci} for all j ∈ {n+1, . . . , n+m}. Then,
we can repeat the argument of Step 1: we consider the Lyapunov functional

Jν,j(t) =

∫ Lj

0

|uj(t, x)− vj(t, x)|e−νx dx

and prove that uj(t, ·) = vj(t, ·) for all j ∈ {n+ 1, . . . , n+m} if t > maxi∈Iout {Lj/cj} .
Step 3: Conclusion of the argument. Putting Step 1 and Step 2 together, we conclude that, for

any

t > T̂ := max
i∈Iin

{Li/ci}+ max
j∈Iout

{Lj/cj},

it holds

u`(t, x) = v`(t, x) for almost every x in I`, ∀` ∈ {1, . . . , n+m}.

�

3.2. Exponential stabilization of the viscous system. In this section, we prove the stabilization
result for the viscous problem. As in the previous section, we first illustrate the strategy with a toy
problem.

Remark 3.2 (The effect of viscosity in the toy problem). Let us consider a viscous regularization of
the toy problem (3.1): 

∂tuε + c∂xuε = ε∂2
xxuε, t > 0, x ∈ (0, L),

uε(0, x) = u0(x), x ∈ (0, L),

uε(t, 0) = uε(t, 1) = 0, t > 0,

with ε > 0, L > 0, and c > 0. Then, we can estimate the Lyapunov functional (3.2) as follows:

Jν(t) ≤ e−(cν−εν2)tJν(0).

This yields

‖uε(t, ·)‖L2(0,L) ≤ e−(cν−εν2)t+Lν‖u0‖L2(0,L),
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which only implies an exponential stabilization result:

‖uε(t, ·)‖L2(0,L) ≤ e−ν(c−εν)(t− L
c−εν ) =: C1e

−C2t‖u0‖L2(0,L),

with C1 = eLν and C2 = cν − εν2 (C2 > 0 for νε < c).
As expected, the effect of viscosity prevents from controlling exactly the state to zero by simply using

null boundary data; instead, at the time t ≥ L/c, still a small exponential tail remains. More precisely,
we let α ∈ (0, 1) and ν = − cα2ε and compute

‖uε(t, ·)‖L2(0,L) ≤ e−
cα
2ε ((1−α2 )ct−1)‖u0‖L2(0,L).

For t > 1
c(1−α) , we deduce

‖uε(t, ·)‖L2(0,L) ≤ e−
cα2

4ε(1−α) ‖u0‖L2(0,L).

This estimate is motivated by [4, Lemma 2.1]: it is consistent with the decay of the free solution of
advection-diffusion equations first used in [35] to prove a uniform controllability result.

The same point can be made when considering the controllability/stabilization of numerical approx-
imations of (2.1) that introduce artificial viscosity.

Proof of Theorem 1.2. Let ~uε = (uε,1, . . . , uε,n+m) and ~vε = (vε,1, . . . , vε,n+m) be classical solutions of
(1.2) and let us consider the following Lyapunov functional:

∀t ≥ 0, Jν(t) :=

n∑
i=1

∫ 0

−Li
|uε,i(t, x)− vε,i(t, x)|e−νx dx+

n+m∑
j=n+1

∫ Lj

0

|uε,j(t, x)− vε,j(t, x)|e−νx dx,

for a fixed ν > 0. Then, as in the proof of Theorem 1.1, but using the junction condition of (1.2)
similarly to [12, Eq. (89)], we compute, for t̄ > 0,

0 ≤−
n∑
i=1

∫ 0

−Li
|uε,i(t̄, x)− vε,i(t̄, x)|e−νx dx−

n+m∑
j=n+1

∫ Lj

0

|uε,j(t̄, x)− vε,j(t̄, x)|e−νx dx

+

n∑
i=1

∫ 0

−Li
|uε,i(0, x)− vε,i(0, x)|e−νx dx+

n+m∑
j=n+1

∫ Lj

0

|uε,j(0, x)− vε,j(0, x)|e−νx dx

− ν
n∑
i=1

∫ t̄

0

∫ 0

−Li
sign

(
uε,i(t, x)− vε,i(t, x)

)(
fi(uε,i(t, x))− fi(vε,i(t, x))

)
e−νx dxdt

− ν
n+m∑
j=n+1

∫ t̄

0

∫ Lj

0

sign
(
uε,j(t, x)− vε,j(t, x)

)(
fj(uε,j(t, x))− fj(vε,j(t, x))

)
e−νx dxdt

− εν2
n∑
i=1

∫ t̄

0

∫ 0

−Li
|uε,i(t, x)− vε,i(t, x)|e−νx dxdt

− εν2
n+m∑
j=n+1

∫ t̄

0

∫ Lj

0

|uε,j(t, x)− vε,j(t, x)|e−νx dxdt,

where we got rid of an extra boundary term

εν(n−m)

∫ t̄

0

|uε,1(t, 0)− vε,1(t, 0)|dt

thanks to the assumption n ≤ m.
This yields

Jν(t̄) ≤ Jν(0) + εν2

∫ t̄

0

Jν(t) dt
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− ν
∫ t̄

0

n∑
i=1

ci

∫ 0

−Li
|uε,i(t, x)− vε,i(t, x)|e−νx dx dt

− ν
∫ t̄

0

n+m∑
j=n+1

cj

∫ Lj

0

|uε,j(t, x)− vε,j(t, x)|e−νx dxdt.

Taking c = min`∈{1,...,n+m} c`, we get

Jν(t̄) ≤ Jν(0)− (cν − εν2)

∫ t̄

0

Jν(t) dt,

which, by Gronwall’s inequality, gives, for all t ≥ 0,

Jν(t) ≤ e−(cν−εν2)tJν(0).

This implies the claimed exponential stabilization result for a sufficiently small ν > 0. More precisely,
it gives

n∑
i=1

‖uε,`(t, ·)− vε,`(t, ·)‖L1(I`) ≤ e
−(cν−εν2)t+Lν

n∑
i=1

‖uε,0,` − vε,0,`‖L1(I`),

where L := maxi∈{1,...,n} Li+maxj∈{n+1,...,n+m} Lj . Therefore, by choosing ν = − cα2ε for any α ∈ (0, 1],
we compute

n+m∑
`=1

‖uε,`(t, ·)− vε,`(t, ·)‖L1(I`) ≤ e
− cα2ε ((1−α2 )ct−L)

n+m∑
`=1

‖uε,0,` − vε,0,`‖L1(I`).(3.8)

�

4. Numerical illustrations

In this section, we present some numerical simulations to illustrate our main result. We consider a
star-shaped graph with n = 2 incoming edges of length 1 and m = 3 outgoing edges of length 1 and
let f`(ξ) := ξ

1+ξ for ` ∈ {1, . . . , 5}. We shall apply the Godunov numerical scheme proposed in [63]

(and implemented by M. Musch in [62]). We simulate the evolution of the dynamics corresponding to
the following sets of initial and boundary data.

• Example 1. Oscillatory initial data vs. edge-wise constant entropy solution:

~u0 = (| sin(16x)|, | sin(16x)|, | cos(16x)|, | cos(16x)|, | cos(16x)|);
~v0 = (2, 1, 7/11, 7/11, 7/11);

ub,1 = vb,1 = 2, ub,2 = vb,2 = 1.

• Example 2. Initial data containing one shock in an incoming edge vs. edge-wise constant
entropy solution:

~u0 = (2χ(−1,−0.2) + 3χ(−0.2,0), 1, 1/2, 1/2, 1/2);

~v0 = (2, 1, 7/11, 7/11, 7/11);

ub,1 = vb,1 = 2, ub,2 = vb,2 = 1.

As discussed in the previous section, the effect of numerical viscosity prevents finite-time exact
controllability with these boundary controls; but, for sufficiently refined meshes, the exponential error
tail is not distinguishable in Figure 2. After sufficiently long time, we get ~u(T, ·) = ~v(T, ·) = ~v0 for
both examples (~v0 being, in both examples, an edge-wise constant entropy-admissible solution, i.e.
~v0 ∈ GV V ).
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Figure 2. First row: Simulation of Example 1 at times t = 0 and t = 10. Second
row: Simulation of Example 2 at times t = 0 and t = 10. In both cases, the CFL
(Courant–Friedrichs–Lewy) number is C = 0.5 and the space mesh size is ∆x = 2−6

(for each edge). We refer to [62] for the code which can be used to produce the figures
and videos of the evolution.

5. Conclusions

In the present contribution, we extended the result in [39] to the case of hyperbolic conservation
laws on a network (without loops) and remarked on the effect of viscosity. Interesting questions for
forthcoming works include:

• the study of the cost of controllability in the vanishing viscosity singular limit (see [23] for the
linear case) – possibly also replacing assumption (F3) with a convexity/concavity condition as
in [57], which would require acting on all boundary nodes with a control;
• the study of the competing effect of dissipation and dispersion for the cost of controllability in

the singular limit (cf. [49]);
• a detailed numerical estimation of the cost of boundary controls in the vanishing viscosity limit

(see [61, 4, 5, 3]);
• the study of different types of entropy condition at the junction (namely, not the one arising

from the vanishing viscosity approximation).
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