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Chapter 0

A brief introduction*

The asterisk * will denote incompleteness of the chapter or section.

0.1 About these lecture notes

This manuscript is mostly based on the following books and papers: [Pon66, War83, CG90, Bel96,

Gro99, AFP00, BBI01, Hel01, Mon02, AKL09, Kna02, HN12, BL13, LD15]. It has been written

initially for a course entitled ‘Sub-Riemannian Geometry’ which was taught first at ETH in Zürich

(Switzerland) during Fall 2009 and then at the University of Jyväskylä (Finland) in Spring 2014.

Consequently, some parts were added after the author thought a course entitled ‘Carnot groups’ at

a summer school in Levico Terme (Trento, Italy) in 2015 and a course entitled ‘Riemannian and

subRiemannian geometry on Lie groups’ at the summer school in Neurogeometry in 2017 in Cortona

(Italy). These lecture notes were then expanded for the course ‘Sub-Riemannian Geometry’, which

was taught at the University of Fribourg (Switzerland) in Spring 2021.

0.2 What sub-Riemannian geometry is

Sub-Riemannian geometry is a generalization of Riemannian geometry. Roughly speaking, a sub-

Riemannian manifold is a Riemannian manifold together with a constrain on admissible directions

of movements. In Riemannian geometry every smoothly embedded curve has locally finite length.

In sub-Riemannian geometry, if a curve fails to satisfy the obligation of the constrain, then it has

infinite length.

One classical example one should carry in mind is coming from mechanics. Indeed, the stati of a

moving object are enclosed by its position in space and the speeds of its parts: the momenta. Thus

1
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Figure 1: A contact distribution on R3

in the manifold ‘positions times speeds’ the possible evolutions of the object should satisfy the fact

that the derivatives of the first coordinates are equal the second coordinates. In particular, some

trajectories are not allowed. As trivial examples, you cannot vary your speed without changing your

position or, similarly, you cannot move into another place at speed zero!

The 3D Heisenberg group is the most important sub-Riemannian geometry that is not in fact

a Riemannian one. It is also not difficult to visualize some of its features. Topologically it is R3.

The constrain on curves is given by what is called a ‘distribution of planes’. Similarly as a smooth

vector field smoothly assigns a tangent vector at each point of the manifold, a distribution of planes

smoothly assigns to each point a plane inside the 3D tangent space at that point. The curves that

we will called ‘admissible’ will be those curves that are tangent to one such a distribution.

The great feature of the Heisenberg group is that its distribution is curly enough in a way that

each pair of point can be connected by at least one admissible curve. From this fact one can define

a finite-valued distance similarly to the Riemannian case: the distance between two points p and q

is given by the infimum of the length of all those admissible curves from p to q,

d(p, q) = inf{Length(γ) : γ admissible, from p to q}. (0.2.1)

0.3 Structure of these lecture notes

In the first part of these lecture notes we will focus on the plane distribution on the 3D Heisenberg

group. We will consider the induces distance (0.2.1). In the specific we will discuss the following

2



0.3 Structure of these lecture notes May 16, 2021

polarization
bracket

generating
subRiemannian!–

manifold
admissible
horizontal
subRiemannian!–

distance
Carnot-

Carath“’eodory!–

metric

facts:

1) Such a distance d turns the space R3 into a metric space with the same standard topology.

Namely, nearby points can be connected with short admissible curves.

2) Between every two points there is in fact a geodesic curve. Namely, the distance of each two

points equals the length of some curve between them. Up to a multiplicative factor, the reader

could think that the length of such a curve is its Euclidean length if the curve is admissible. Non

admissible curves have infinite length.

3) This metric space is really new: it is not Riemannian. It is not even biLipschitz equivalent to

a Riemannian distance. In fact, the Heisenberg geometry resemble fractal geometry. Indeed, such

a metric on this topologically 3-dimensional object will have metric dimension (that is, Hausdorff

dimension) equal to 4.

The general definition of sub-Riemannian manifold follows as soon as we formalize the notion for

a distribution to be ‘curly enough’. We need that this notion would imply that each pair of points

are connected by an admissible curve.

By a distribution on M we mean a sub-bundle of the tangent bundle TM of M . Distributions are

also called polarizations. A distribution ∆ ⊆ TM is called bracket generating if, for every p ∈M , the

evaluation at p of the Lie algebra generated by sections of ∆ is the whole of TpM . In other words,

∆ is bracket generating if every tangent vector v ∈ TM can be presented as a linear combination of

vectors of the following types

X1, [X2, X3], [[X4, [X5, X6]]], . . . ,

where all vector fields X1, X2, X3, . . . are tangent to ∆.

A subRiemannian manifold is a triple (M,∆, g), where M is a differentiable manifold, ∆ is a

bracket generating distribution and g is a smooth section of positive-definite quadratic forms on ∆.

In fact, g can be considered as the restriction to ∆ of a Riemannian metric tensor on the manifold

M . A curve γ on M is called admissible, or horizontal, if it is absolutely continuous and γ̇(t) ∈ ∆γ(t)

for any t. Then the sub-Riemannian distance (also known as Carnot-Carathéodory metric) is defined

by (0.2.1). Most of the previously mentioned results on the Heisenberg group will be valid for every

general sub-Riemannian distance.

3
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The understanding of many of Riemannian geometric properties come from the fact that the

‘metric’ tangents of a Riemannian manifold are Euclidean spaces, and the Euclidean geometry is

enough understood. Such a notion of tangent is precisely defined in terms of limits of metric spaces,

and we call them the tangent cones or the metric tangents. What are the metric tangents in sub-

Riemannian geometry? The answer is not immediate. For 3-dimensional sub-Riemannian manifolds

we only have the Heisenberg group (another reason for it to be important). In general, alas, fixed a

topological dimension greater or equal than 7, the possible tangents are infinitely many. It may not

be the same one even for a given fixed sub-Riemannian manifold. The good news is that, analogously

as the Heisenberg structure has a group structure, the metric tangent of a sub-Riemannian manifold

has a Lie group structure at most points, and at every other point it is still a quotient of some Lie

group. The metric tangent at ‘regular’ points has even more structure: it has a dilation property.

Such metric Lie groups are those called Carnot groups.

The idea is that we should first understand the geometry of Carnot groups which are particular ex-

amples of sub-Riemannian manifolds. After this, we will consider the general case of sub-Riemannian

manifolds. There is hope to understand Carnot groups exactly because using the translations by

elements and the dilation property it is possible to extend the theory of calculus in such a setting.

The reader should notice how in the classical definition of derivative of a real function, we make use

of addition, multiplications, and limits:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

All this operations are present on Carnot groups. Thus we have a metric definition of derivative,

which is called nowadays Pansu derivative, in honor to the work that Pierre Pansu did on the subject,

[Pan89].

Let us enunciate one of the most celebrated theorem of Pansu, which afterwards has been ex-

pressed in its generality in [MM95].

Theorem 0.3.1 (Pansu’s Rademacher Theorem [Pan89, MM95]). Given a Lipschitz map between

sub-Riemannian manifolds, at almost all points its blow up differential exists, is a group homomor-

phism of the tangent cones, and is equivariant with respect to their dilations.

In fact the theorem holds also for quasi-conformal maps. The theory of quasi-conformal map-

pings has been used to prove rigidity theorems on hyperbolic spaces over the division algebras of real,

complex, or quaternionic numbers. Indeed, as we shall see in these lecture notes the ‘parabolic visual

4
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boundaries’ of rank-one symmetric spaces are Carnot groups. More generally, all negatively curved

homogenous Riemannian manifolds have graded groups as boundaries. This last fact is mostly based

on the work of Heintze. In harmonic analysis Carnot groups, and more generally graded groups and

Carnot-Carathéodory spaces, also appear in the study of hypoelliptic differential operators. In com-

plex analysis, they appear as boundaries of strictly pseudo-convex complex domains, see the books

[Ste93, CDPT07] as initial references.

Carnot groups, with Carnot-Carathéodory distances, appear in geometric group theory as asymp-

totic cones of nilpotent finitely generated groups, see [Gro96, Pan89]. Part of these notes are devoted

to the study of the coarse geometry of nilpotent groups. We will see how a geometric notion as the

polynomial growth of balls in the Cayley graph of a discrete group relates with the geometry of the

tangent cone at infinity of this graph, which in this case turns out to be a Carnot group endowed with

a Finsler-Carnot-Carathéodory metric, and eventually gives an algebraic consequence: the group is

(virtually) nilpotent.

The next part of the course will be focused on some topics of Geometric Measure Theory in the

setting of Carnot groups. Most of the presented results are valid in the case of nilpotent Lie groups

endowed with their Carnot-Carathéodory metric. In particular we focus on the following problems:

• Are sets that have finite perimeter rectifiable?

• How the theory of minimal surfaces differs from the Euclidean case?

• What is the regularity of geodesics?

The above questions have not complete answers yet. In fact they are leading most of the recent

research in sub-Riemannian geometry.

0.4 Sub-Riemannian geometries as models

Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Rie-

mannian geometry in Russia) has been a full research domain from the 80’s, with motivations and

ramifications in several parts of pure and applied mathematics. However, historically it was not clear

that such theories were heading into the same notions. Thus each source provided its own jargon

to the field. The non-expert reader will soon realize that some concepts have multiple terminology:

5
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a contact structure is a particular distribution of hyper-plane in an odd-dimensional manifold and

the concept of Carnot-Carathéodory metric is a generalization of a sub-Riemannian distance.

0.4.1 Many examples from Mathematics

Control theory

Control theory is an interdisciplinary branch of engineering and mathematics that deals with the

behavior of dynamical systems. The usual objective is to control a system, in the sense of finding,

if possible, the trajectories to reach a desired state and do it in an optimal way. Sub-Riemannian

geometry follows the same setting of considering systems that are controllable with optimal trajec-

tories and study this spaces as metric spaces. Many of the theorems in sub-Riemannian geometry

can be formulated and prove in the more general settings of control theory. For example, the sub-

Riemannian theorems by Chow, Pontryagin, and Goh have more general statement in geometric

control theory. The reader interested in this view point should consult the book [AS04].

Classical mechanics

Symplectic and contact geometry

Riemannian geometry

Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and

where sub-Riemannian metrics may appear as limit cases)

Diffusion on manifolds

Analysis of hypoelliptic operators

[Fol73, RS76, Cap97]

Geometric Group Theory

Cauchy-Riemann (or CR) geometry

Univalent Function Theory

There is a very remarkable application of sub-Riemmanian geometry to univalent function theory.

The application is very recent and so not still well known, it is why we prefered to expose this instead

of other beautiful application of sub-Riemmanian geometry to another branch of pure mathematics.

The following quick summary is based on the paper [MPV07] and on kind conversations with

Jeremy Tyson.

6
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Classical univalent function theory considers the class S of analytic univalent functions f defined

in the unit disc normalized by f(0) = 0 and f ′(0) = 1.

Basic (unsolved) problems are to describe the coefficient body

M = {(ak) : (ak) are the power series coefficients at z = 0 for a function in S}

or its finite-dimensional slices

Mn = {(a2, a3, . . . , an+1) : (ak) are the first n (undetermined) power series coefficients

at z = 0 for a function inS}.

The Bieberbach Conjecture (proved by de Branges in 1984) says |an| ≤ n for all n. This gives

information on the size of Mn and M . There is no explicit description of Mn except for the cases

n = 2 (trivial) and n = 3 (Schaeffer-Spencer, 1950).

One of the basic tools in the subject is the Loewner (or Loewner-Kufarev) parametric rep-

resentation, which embeds any function f ∈ S into an ODE flow within the class S. Loewner

parametrizations were used by de Branges in his proof. Nowadays there is a stochastic version of the

Loewner flow (SLE) which is a very hot topic at the intersection of probability, complex analysis,

stochastic PDE, math physics, etc.

Anyways, what Markina-Prokhorov-Vasilev show is that one can use the Loewner flow on S

to define a natural (partially integrable) Hamiltonian system on the coefficient bodies Mn. They

find certain first integrals of the flow and calculate all the relevant commutators. From there they

construct a complex sub-Riemannian structure on Mn which is naturally adapted to the underlying

univalent function theory. In fact, the Loewner parametrices become horizontal curves with restect

to this sub-Riemannian structure.

An interesting problem in the field is to extend Markina-Prokhorov-Vasilev’s setup to cover SLE

as well as the classical (deterministic) Loewner equation.

0.4.2 Many examples from Physics

Sub-Riemannian geometry models various structures, from finance to mechanics, from bio-medicine

to quantum phases, from robots to falling cats! We don’t want to enter in the details first because

of lack of time, second because of lack of competence. We will address the interested reader to other

papers.

7
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(a) A photo. (b) A sketch.

Figure 2: The cat spins itself around and right itself.

The geometry of principal bundles with connections

Theoretical physics defines most mechanical systems by a kinetic energy and a potential energy.

Gauge theory also know as the geometry of principal bundles with connections studies systems with

physical symmetries, i.e., when there is a group acting on the configuration space by isometries.

Most of the times it will be easier to understand the dynamics up to isometries, successively one has

to study the ‘lift’ of the dynamics into the initial configuration space. Such lifts will be subject to

a sub-Riemannian restriction.

Falling cats

The formalism of principal bundles with connections is well presented by the example of the fall of

a cat. A cat, dropped from upside down, will land on its self. The reason of this ability is the good

flexibility of the cat in changing its shape.

Let us fix some formalism. Let M be the set of all the possible configurations in the 3D space of

8
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a given cat. Let S be the set of all the shapes that a cat can assume. Both M and S are manifolds

of dimension quite huge. A position of a cat is just its shape plus its orientation in space. Otherwise

said, the group of isometries G := Isom(R3) of the Euclidean 3D space acts on M and the shape

space is just the quotient of the action:

π : M →M/G = S.

In fancy words, M is a principal G-bundle.

The key fact is that the cat has complete freedom in deciding its shape σ(t) ∈ S at each time

t. However, during the fall, each strategy σ(t) of changing shapes will give as a result a change in

configurations σ̃(t) ∈M . The curve σ̃(t) satisfies

π(σ̃) = σ.

Moreover the lifted curve is unique: it has to satisfy the constrain given by the ‘natural mechanical

connection’. What the cat is proving is that such connection has non-trivial holonomy. In other

words, the cat can choose to vary its shape from the standard normal shape into the same shape

giving as a result a change in configuration: the legs were initially toward the sky, then they are

toward the floor.

From mechanics: parking cars, rolling balls, moving robots, and satellites

Parking a car or riding a bike. The configuration space is 3-dimensional: the position in the 2-

dimensional street plus the angle with respect to a fixed line. However, the driver has only two

degree of freedom: turning and pushing. Using again non-trivial holonomy we can move the car to

any position we like.

Rolling a ball on the plane. A position of a ball lying on a plane requires five coordinates: two

reals to characterize the point in the plane where the ball is touching it, another two coordinates

to characterize the point of the ball which touches the plane, and the last one for spinning the ball

around its vertical axis. When one rolls the ball without sliding, there are only three admissible

control directions: two to choose a direction and then roll the ball and the third one for spinning it.

Still, one can get to any position regardless of the initial position.

9
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Figure 3: A ball rolling on the plane without sliding.

In robotics the mechanisms, as for example the arm of a robot, are subjected to constrain of

movements but do not decrease the manifold of positions. Similar is the situation of satellites.

One should really think about a satellite as a falling cat: it should choose properly its strategy of

modifying the shape to have the necessary change in configuration. Another similar example is the

case of an astronaut in outer space.

Vision

I became aware of the following application from conversations with S. Pauls and G. Citti. A

suggested-to-curious-readers paper is [SCP08].

Neuro-biologic research over the past few decades has greatly clarified the functional mechanisms

of the first layer (V1) of the visual cortex. Such layer contains a variety of types of cells, including

the so-called ‘simple cells’. Researchers found that simple cells are sensitive to orientation specific

brightness gradients.

Recently, this structure of the cortex has been modeled using a sub-Riemannian manifold. The

space is R2×S1 where each point (x, y, θ) represents a column of cells associated to a point of retinal

data (x, y) ∈ R2, all of which are attuned to the orientation given by the angle θ ∈ S1. In other

words, the vector (cos θ, sin θ) is the direction of maximal rate of change of brightness at point (x, y)

of the picture seen by the eye, such vector can be seen as the normal to the boundary of the picture.

The moral is that when the cortex cells are stimulated by an image, the border of the image gives

a curve inside this 3D space. Such curves are restricted to be tangent to the distribution spanned

10
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by the vector fields

X1 = cos(θ)∂x + sin(θ)∂y and X2 = ∂θ.

Researchers think that, if a piece of the contour of a picture is missing to the eye vision (or maybe

it is covered by an object), then the brain tends to ‘complete’ the curve by minimizing some kind

of energy, in other words, there is some sub-Riemannian structure on the space of visual cells and

the brain consider a sub-Riemannian geodesic between the endpoints of the missing data.

Quantum mechanical systems

I became aware of the following application from a discussion with Ugo Boscain and reading his

‘Habilitation à diriger des recherches’.

Let H be a complex separable Hilbert space. Let us denote by S the unit sphere in H.

The time evolution of quantum mechanical system (e.g., an atom, a molecule, or a system of

particles with spin) is described by a map ψ : R→ S, called wave function. The vector ψ(t) is called

the state of the system at time t.

The equation of evolution of the state is the so-called Schrödinger equation. If the system is

isolated, the equation has the form:

i
dψ

dt
(t) = H0ψ(t),

where H0 is a self-adjoint operator acting on H called free Hamiltonian.

Let us assume for simplicity of notation that the spectrum of H0 is discrete and non-degenerate,

with eigenvalues E1, E2, . . . (called energy-levels) and eigenvectors ψ1, ψ2, . . . ∈ S.

Assume now to act on the system with some external fields (e.g an electromagnetic field) whose

amplitude is represented by some functions u1, . . . , um ∈ L∞(R,R). In this case the Schrödinger

equation becomes

i
dψ

dt
(t) = H(t)ψ(t), where H(t) = H0 +

m∑
j=1

uj(t)Hj ,

and Hj are self-adjoint operators representing the coupling between the system and the external

fields. The time dependent operators H(t) and
∑m
j=1 uj(t)Hj are called respectively the Hamiltonian

and the control-Hamiltonian. The typical problem of quantum control is the so called population

transfer problem:

Assume that at time zero the system is in an eigenstate φj of the free Hamiltonian H0. Design

controls u1, . . . , um such that at a fixed time T the system is in another prescribed eigenstate φl of

11



0- A brief introduction* May 16, 2021

H0.

Nowadays quantum control has many applications in chemical physics, in nuclear magnetic reso-

nance (also in medicine) and it is central in the implementation of the so-called quantum gates (the

basic blocks of a quantum computer).

For a finite dimensional quantum mechanical system, if n is the number of energy levels we have

H = Cn and the state space S is the unit sphere S2n−1 ⊂ Cn. In this setting, problems of quantum

mechanics (being multilinear) can be formulated with matrices. The solution is of the form

ψ(t) = g(t)ψ(0), with g(t) ∈ SU(n).

The Schrödinger equation becomes
d

dt
g(t) = −iH(t)g(t), and now −iH(t) is a skew trace-zero

Hermitian matrix, i.e., belongs to the Lie algebra su(n).

The controllability problem (i.e., proving that for every couple of points in SU(n) one can find

controls steering the system from one point to the other) is nowadays well understood. Indeed, the

system is controllable if and only if the Hörmander’s condition holds:

Lie{iH0, iH1, . . . , iHm} = su(n).

Once that controllability is proved one would like to steer the system, between two fixed points

in the state space, in the most efficient way. Typical costs that are interesting to minimize in the

applications are:

• Energy transferred by the controls to the system (minimizing time with unbounded controls

is today well understood);

• Time of transfer (minimizing time with bounded controls or energy is very difficult in general).

Even more examples

In finance... I don’t know how! Talk with ETH professor Josef Teichmann.

Quantum Berry’s phases... I don’t know how! See references in the introduction in [Mon02].
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Chapter 1

The main example: the Heisenberg
group

The sub-Riemannian Heisenberg group is the main example of sub-Riemannian geometry that is

actually not Riemannian. Such a geometry is connected to the solution of the isoperimetric problem

on the plane and has a formulation in terms of contact geometry.

In this chapter we present the geometric models of the sub-Riemannian Heisenberg group and

identify some of the properties that will be later studied in general Carnot groups.

Since the topological dimension of the Heisenberg group is 3, we shall easily visualize its sub-

Riemannian geodesics and spheres.

1.1 An isoperimetric problem on the plane

The isoperimetric problem is the problem in which, given a length, one has to look for the maximal

area among those domains with that fixed length as perimeter. We will be interested in a variant of

the standard isoperimetric problem: the Dido’s problem.

Dido was, according to ancient Greek and Roman sources, the founder and first queen of Carthage

(in modern-day Tunisia). She is best known from the account given by the Roman poet Virgil in

his Aeneid. Indeed, in this epic poem it is narrated that King Jarbas was persuaded by Dido to

give her a piece of land on the African coast to settle. This land would have been as much as Queen

Dido would have encaptured with a leather string, using also the coastline. The solution is easy to

find: a half-circle.

Let us give a mathematical model of such problem. On R2 the area form is vol = dx∧ dy, which

13
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Figure 1.1: The lift of the curve is performed defining the third coordinate z(t) as the oriented area
of the region between the arc of the curve up to the point (x(t), y(t)) and the straight segment from
(0, 0) to (x(t), y(t)).

is the differential of the one-form

α :=
1

2
(xdy − ydx) =

1

2
r2dθ.

Applying Stoke’s Theorem we get that, if a closed smooth counterclockwise-oriented curve γ in R2

encloses a domain Dγ , then the area of Dγ is just the integral of α along γ:

Area(Dγ) :=

∫∫
Dγ

vol =

∫
γ

α.

Observe that at each point (x, y) ∈ R2, the vector (x, y) is in the kernel of α, thus, if L is a

line through the origin, we have that
∫
L
α = 0. This observation lets us conclude that, if γ is a

smooth curve starting from the origin that is not necessarily closed, then
∫
γ
α expresses the signed

area enclosed by γ and the segment connecting the origin to the final point of γ, see Figure 1.2.

Therefore, Dido’s problem rephrases as the problem of maximize the integral
∫
γ
α having fixed

the integral
∫
γ

ds, which expresses the length of the curve as integration of it with respect to the

element of arc length ds.

1.2 The contact-geometry formulation of the problem

One of the models of the Heisenberg geometry is constructed as follows and it has the property that

the projection π : R3 → R2 on the first two coordinates sends geodesics into those solutions of the

Dido’s isoperimetric problem.

14



1.2 The contact-geometry formulation of the problemMay 16, 2021

If we start from a curve σ(t) = (x(t), y(t)) in R2, with x(0) = y(0) = 0, we can lift it into a curve

in the 3D space where the third coordinate z(t) is the signed area encaptured by the arc σ[0,t] and

the segment from 0 to (x(t), y(t)), see Figure 1.2.

Therefore

z(t) :=

∫
σ[0,t]

α =

∫
σ[0,t]

1

2
(xdy − ydx) =

∫ t

0

1

2
(x(s)ẏ(s)− y(s)ẋ(s)) ds. (1.2.1)

Differentiating in t we get

ż =
1

2
(xẏ − yẋ). (1.2.2)

Set ξ = dz − 1

2
(xdy − ydx). Consider a curve γ = (γ1, γ2, γ3) : [0, 1] → R3 starting at 0. Then we

have that such lifted curves are exactly those satisfying γ̇ ∈ ker(ξ), i.e., ξ((γ̇1, γ̇2, γ̇3)) ≡ 0.

The differential one-form ξ can be written in cylindrical coordinates (r, θ, z) as dz − 1

2
r2dθ

Definition 1.2.3. We call the differential one-form

ξ := dz − 1

2
(xdy − ydx) = dz − 1

2
r2dθ (1.2.4)

the ‘standard contact’ form1.

As any never-vanishing differential one-form on R3, the standard contact form gives at any point

(x, y, z) ∈ R3 a 2D kernel inside the tangent space T(x,y,z)R3 ∼= R3 at (x, y, z):

∆(x,y,z) := ker(ξ(x,y,z)) =

{
(v1, v2, v3) ∈ R3 : v3 =

1

2
(xv2 − yv1)

}
.

Geometrically, ∆ is a field of 2D planes in the 3D space, also know as distribution. Now, given

vectors v = (v1, v2, v3) and w = (w1, w2, w3), consider the linear product given by

〈v, w〉 := v1w1 + v2w2. (1.2.5)

Notice that, since the planes ∆(x,y,z) never includes the z-axis, then the restriction of 〈·, ·〉 on

∆(x,y,z) is a positive-defined inner product. If one prefers, such restriction could be thought as a

1A contact form on a (2n+ 1)-dimensional differentiable manifold M is a 1-form α, with the property that

α ∧ (dα)n 6= 0,

with
(dα)n = dα ∧ · · · ∧ dα︸ ︷︷ ︸

n

.

Sometimes the contact forms dz − xdy + ydx = dz − r2dθ and dz + xdy are also called standard.

15
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Legendrian

Figure 1.2: Standard contact distribution on R3.

restriction of a Riemannian tensor on R3, i.e., a positive-defined inner product on the whole of the

tangent bundle of R3. Indeed, we can fix the following frame2 of R3:
X := ∂

∂x −
1
2y

∂
∂z ,

Y := ∂
∂y + 1

2x
∂
∂z ,

Z := ∂
∂z ,

(1.2.6)

and declare it orthonormal. Let us check that such Riemannian metric gives the linear product

(1.2.5) when restricted to the plane ∆(x,y,z). Since ∂
∂x = X + 1

2yZ and ∂
∂y = Y − 1

2xZ, then

v = v1X + v2Y + (
v1

2
y − v2

2
x+ v3)Z.

So, if v ∈ ∆(x,y,z), we have v = v1X + v2Y and thus (1.2.5) holds.

In contact geometry a curve γ is called Legendrian with respect to ξ if ξ(γ̇) ≡ 0. In other words,

if the tangent vector γ̇(t) lies in the plane ∆γ(t). Given a Legendrian curve γ, we define its length

L(γ) as the integral of the norm of γ̇ with respect to the scalar product (1.2.5). In other words,

L(γ) is exactly the Euclidean length of the projection of γ onto the first two components of R3.

At this point we introduce a new distance on R3 which we refer to it as the contact distance. For

any p and q in R3, define

dc(p, q) := inf{L(γ) : γ Legendrian between p and q}. (1.2.7)

The fact that ξ was obtained from the Dido’s problem tells us that for any pair of points in R3 there

are several Legendrian curves joining it:

2A frame is a set of vector fields on a differentiable manifold M that at each point p ∈M gives a basis of TpM .
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1.3 The Heisenberg group May 16, 2021

Figure 1.3: The horizontal bundle spanned by the vector fields X and Y .

A crucial fact: Every pair of points in R3 is connected by a curve that is Legendrian with respect

to ξ.

Indeed, to connect say (0, 0, 0) to (x, y, z), it is enough to take a curve σ on R2 from (0, 0) to (x, y)

with the property that the signed area enclosed by σ and the segment from (0, 0) to (x, y) is exactly

z. Then the lifted curve σ̃ will connected (0, 0, 0) to (x, y, z).

Moreover we also know that the length of σ̃ equals the planar Euclidean length of σ. Therefore,

there is a correspondence between geodesics with respect to the metric dc and solutions of the ’dual’

Dido’s isoperimetric problem: fixed a value for the area, minimize the perimeter. Since it is easy to

find solutions of Dido’s problem we will be able to write explicitly the geodesics of the metric space

(R3, dc). We will do this later in Section 1.4.1.

1.3 The Heisenberg group

1.3.1 The Heisenberg group structure and the invariance of the standard
contact structure

At this point we have introduced a geometry, which we will call contact geometry. Namely, we are

considering the plane distribution given by

X(x, y, z) :=
∂

∂x
− y

2

∂

∂z
= (1, 0,−y

2
), (1.3.1)

Y (x, y, z) :=
∂

∂y
+
x

2

∂

∂z
= (0, 1,

x

2
);

at each point (x, y, z) we are considering X(x, y, z) and Y (x, y, z) to be an orthonormal basis on

their span ∆(z, y, z); for each smooth curve γ : [a, b] → R3 for which γ̇(t) is in ∆(z, y, z) we define

its length. Namely, if u1(t), u2(t) are such that γ̇(t) = u1(t)Xγ(t) + u2(t)Yγ(t), then the length of γ

is defined as
∫ b
a

√
u1(t)2 + u2(t)2 dt. Such a length structure defined the contact distance (1.2.7).

A crucial property of the contact geometry is that the space is isometrically homogeneous. In

17
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fact, the space R3 can be endowed with a group structure (different from the Euclidean one) in such

a way that all of the above constructions are preserved by the action of the group onto itself.

Such a group structure is named after Heisenberg. Its the group law is

(x, y, z) · (x′, y′, z′) :=

(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − yx′)

)
. (1.3.2)

One can easily check that (1.3.2) gives a group structure and it turns R3 into a Lie group, i.e.,

multiplication and inversion are smooth maps. We will go back to the general theory of Lie groups

in Section ??. We shall refer to the group R3 equipped with group law (1.3.2) as the Heisenberg

group.

We claim that the left translations preserve the distribution ∆ and in fact preserve the orthonor-

mal frame X,Y, Z defined by (1.2.6). Let’s verify this claim for X. Call f a fixed left translation

f(x, y, z) := L(s,t,u)(x, y, z) = (s, t, u) · (x, y, z) =

(
x+ s, y + t, z + u+

1

2
(sy − tx)

)
. (1.3.3)

The differential is

df =

 1 0 0
0 1 0
−t/2 s/2 1

 . (1.3.4)

So dfX = ∂
∂x +

(
− t

2 −
y
2

)
∂
∂z . On the other hand, X ◦ f = ∂

∂x −
1
2 (t+ y) ∂

∂z . Therefore f∗X = X ◦ f ,

i.e., X is left-invariant. Analogously, f∗Y = ∂
∂y + 1

2 (s+ x) ∂
∂z = Y ◦ f and f∗Z = ∂

∂z = Z ◦ f .

As a consequence of the fact that each left translation by the product (1.3.2) preserves the

orthonormal frame X,Y we deduce that each such a translation preserves the length of Legendrian

curves and, consequently, preserves the contact distance as defined in (1.2.7).

The next proposition summarizes the above discussion.

Proposition 1.3.5. The Heisenberg geometry is isometrically homogeneous: the space has a Lie

group structure so that each left translation is an isometry with respect to the contact distance dc.

The above model of the Heisenberg group has the advantage that it is easy to compute and

visualize its 1-dimensional subgroups. Indeed, one-parameter subgroups for this group structure are

the standard Euclidean lines:

γv(t) = exp (t(v1, v2, v3)) = (tv1, tv2, tv3) .

In addition, we remark that all the lines through 0 in the xy-plane are curves that minimize the

contact distance (Exercise).
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1.3.2 The 3D nilpotent non-Abelian matrix group

The Heisenberg group has also a matrix model. It can be seen as a subgroup of the group of invertible

matrices. The Heisenberg group is the group of 3× 3 upper triangular matrices equipped with the

usual matrix product:

G =


1 a c

0 1 b
0 0 1

 : a, b, c ∈ R

 < GL(3,R).

Such a model is useful because (first, it is easy to remember the group structure! then) the Lie

algebra can be also seen as a matrix group and the exponential of the Lie group is the classical

exponential of matrices. Indeed, the Lie algebra is

g =


0 a c

0 0 b
0 0 0

 : a, b, c ∈ R

 .

A basis of the Lie algebra is

X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
0 0 1
0 0 0

 , Z =

0 0 1
0 0 0
0 0 0

 . (1.3.6)

One parameter subgroups are of the form:

γ(a,b,c)(t) = exp

t
0 a c

0 0 b
0 0 0


= I + t

0 a c
0 0 b
0 0 0

+
t2

2!

0 a c
0 0 b
0 0 0

2

+ . . .

= I + t

0 a c
0 0 b
0 0 0

+
t2

2

0 0 ab
0 0 0
0 0 0

+ 0

=

1 at ct+ abt2/2
0 1 bt
0 0 1

 .

We claim that the map

ϕ : (x, y, z) 7→

1 x z +
1

2
xy

0 1 y
0 0 1


is a Lie group isomorphism from the Lie group R3 with the product (1.3.2) to the Lie group of

3 × 3 upper triangular matrices with the usual matrix product. Indeed, the map ϕ is a group

homomorphism (straightforward calculation) and its differential at the identity send the left-invariant

vector fields X,Y, Z from (1.2.6) to X,Y, Z from (1.3.6), respectively. In fact, in the next section

we will see that more is true.
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1.3.3 The uniqueness of the Heisenberg algebra

The Lie algebra of the Heisenberg group has the property that it is spanned by three vectors X,Y, Z

whose only non-trivial Lie bracket relation is [X,Y ] = Z. In particular, the Lie bracket of any three

vectors X1, X2, X3 in this Lie algebra have the property that [X1, [X2, X3]] = 0. In other words,

the Heisenberg group is a group of nilpotency step 2. Recall that a Lie algebra is nilpotent and its

nilpotency step is s if, for all choice of more than s vectors in it, the iterated bracket of them is 0.

We claim that there are only two 3D simply-connected nilpotent Lie groups: the Euclidean

3-space and the Heisenberg group. Indeed, consider the Lie algebra g of the group. Since g is

nilpotent, one can take Z in the center of g which is non-trivial. Complete Z to a basis X,Y, Z of

g. Now, either X and Y commute, and so the algebra is commutative, or W := [X,Y ] 6= 0. write

W = aX + bY + cZ. Then [W,Y ] = aW and so, since g is nilpotent, we have a = 0. Analogously

b = 0. Thus c 6= 0, and, replacing Z with cZ, we have that the algebra of g is defined by the

relations:

[X,Y ] = Z and [X,Z] = [Y,Z] = 0.

We can conclude the proof recalling that there exists a unique simply-connected Lie group with a

fixed Lie algebra (see Section 6.0.6)

1.4 The subRiemannian Heisenberg group

Our preferred model for the Heisenberg group is R3 with the product law (1.3.2), which we saw

makes left invariant the following vector fields: ∂x − y
2∂z, ∂y + x

2∂z, ∂z. The reason why this is a

good model is because it canonically identifies the group with its Lie algebra (in other words, we

are working on exponential coordinates – this view point will be clarified in Section ??). However,

because of the uniqueness of the Heisenberg structure all the following models are equivalent via a

smooth group morphism.

Consider three linearly independent vector fields X,Y, Z on R3 such that

[X,Y ] = Z and [X,Z] = [Y,Z] = 0.

Then, (it is fact that) there is a group law that makes them left invariant.

We consider the subbundle ∆ ⊂ T (R3) such that for all p ∈ R3

∆p = span{Xp, Yp}.
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horizontal!–

curve
Carnot-

Carath“’eodory
distance

subRiemannian!–

Heisen-
berg
group

A curve γ such that γ̇ ∈ ∆ is called horizontal and, if γ̇(t) = u1(t)Xγ(t) + u2(t)Yγ(t), then its length

is defined as

L(γ) :=

∫ √
u1(t)2 + u2(t)2 dt.

We define the Carnot-Carathéodory distance between two points p, q ∈ R3 as

dCC(p, q) := inf {L(γ) : γ horizontal from p to q} .

Hence, we have generalized the term Legandrian as horizontal and the notion of contact distance

as Carnot-Carathéodory distance. The reason is that since subRiemannian geometry came from

different mathematical areas the jargon is multiple.

We say that (R3, dCC) is (a model for) the subRiemannian Heisenberg group. In the rest of this

section we will work in our favorite model: R3 with the product law (1.3.2) and orthonormal frame

(1.3.1).

1.4.1 The geodesics and the spheres in the Heisenberg group

From Section 1.2 and Section 1.3, we have that for a curve γ(t) = (x(t), y(t), z(t)) has the following

properties.

• γ is horizontal (i.e., γ̇ ∈ ∆) if and only if

ż =
1

2
(xẏ − yẋ),

and this is equivalent to say that z(t) is the area spanned by the curve (x(·), y(·)) until t.

• γ̇ ∈ ∆ if and only if γ̇ = u1X + u2Y where u1 = ẋ and u2 = ẏ. Indeed, if γ̇ = (ẋ, ẏ, ż), then

π(γ̇) = (ẋ, ẏ) and

π(γ̇) = π(u1X + u2Y ) = u1∂x + u2∂y = (u1, u2).

• If γ̇ ∈ ∆, then

L(γ) =

∫ √
ẋ2 + ẏ2 = LEucl(π ◦ γ).

Because of this previous discussion, we will obtain explicit formulae for the geodesics in the

subRiemannian Heisenberg group by using the fact that we know the solutions of the isoperimetric

problem (for which see Appendix A). In fact, we now know that for how the geometry in the

Heisenberg group has been constructed, the shortest curves with respect to the length structure

are the lifts of the solutions of a variant of the isoperimetric problem. Namely, we search for those
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shortest curves on the plane that enclose a fixed area and join two given points. We shall see that

such curves are arc of circles or pieces of lined. Therefore, the geodesics in the Heisenberg group are

lifts of circles.

Fact 1.4.1. Fixed (x(1), y(1), z(1)), the curve (x(t), y(t)) that encloses area z(1) and such that

(x(0), y(0)) = (0, 0) and minimizes LEucl(x(·), y(·)) is a piece of a circle or of a line.

Thus length-minimizing curves (from (0, 0, 0)) are lifts of circles if z(1) 6= 0 and straight lines if

z(1) = 0.

We want to parametrize the curves that are solutions of Dido’s problem. A circle of length 2π
|k| ,

with k 6= 0, passing through (0, 0) at time 0 is

(x0(t), y0(t)) =

(
cos(kt)− 1

k
,

sin(kt)

k

)
for 0 ≤ t ≤ 2π

|k| . Such a circle is parametrization by arc length and has center on the x-axis, on the

negative axis if k > 0 in the positive axis if k < 0.

Notice that if k > 0, then the circle (x0, y0) encloses positive area, if k < 0 it encloses negative

area. For k = 0, we can still consider the formula in the limit sense: the circles degenerate to the

line (0, t), defined for all t ∈ R.

We obtain any other circle by rotating by an angle θ ∈ R/2πZ:

Rθ(x0(t), y0(t)) :=

(
cos θ − sin θ
sin θ cos θ

)
·

(
cos(kt)−1

k
sin(kt)
k

)
=

(
cos θ cos(kt)−1

k − sin θ sin(kt)
k

sin θ cos(kt)−1
k + cos θ sin(kt)

k

)
We can calculate the third coordinate as in (1.2.1).

z(T ) =

∫ T

0

1

2
(xdy − ydx) =

1

2

∫ T

0

xẏ − yẋ

=
1

2

∫ T

0

(
cos θ

cos(kt)− 1

k
− sin θ

sin(kt)

k

)
(− sin θ sin(kt) + cos θ cos(kt)) +

−
(

sin θ
cos(kt)− 1

k
+ cos θ

sin(kt)

k

)
(− cos θ sin(kt)− sin θ cos(kt)) dt

=
1

2k

∫ T

0

− cos θ(cos(kt)− 1) sin θ sin(kt) + (cos θ)2(cos(kt)− 1) cos(kt) +

+(sin θ)2 (sin(kt))
2 − sin θ sin(kt) cos θ cos(kt) +

+ sin θ(cos(kt)− 1) cos θ sin(kt) + (sin θ)2(cos(kt)− 1) cos(kt) +

+(cos θ)2 (sin(kt))
2

+ cos θ sin(kt) sin θ cos(kt)dt

=
1

2k

∫ T

0

(cos(kt)− 1) cos(kt) + (sin(kt))
2
dt

=
1

2k

∫ T

0

1− cos(kt)dt =
1

2k2
(Tk − sin(kT )).
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(a) The top view (b) A front view

(c) A side view (d) A side view

Figure 1.4: A geodesic with non-zero curvature in the subRiemannian Heisenberg geometry

We conclude that length-minimizing curves starting from the origin 0 ∈ R3 are smooth curves

γ = (γ1, γ2, γ3) of the form


γ1(t) = cos θ cos(kt)−1

k − sin θ sin(kt)
k

γ2(t) = sin θ cos(kt)−1
k + cos θ sin(kt)

k

γ3(t) = kt−sin(kt)
2k2

(1.4.2)

for some θ ∈ R/2πZ and k ∈ R.

Such curves are defined for t ∈ [0, 2π
| k|] and have length 2π

|k| . When k = 0, these curve degenerate
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(a) A geodesic with zero curvature

(b) A geodesic with small curvature

(c) A geodesic with some curvature less than 1
2π

.

(d) A geodesic with some curvature equal to 1
2π

. It joins points that can be
connected with infinitely many geodesics.

Figure 1.5: Geodesics within the unit sphere in the subRiemannian Heisenberg geometry
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to lines: 
γ1(t) = −t sin θ

γ2(t) = t cos θ

γ3(t) = 0,

Indeed, lines through the origin in the xy-plane are geodesics.

We found all length-minimizing curves in the subRiemannian Heisenberg group. Some conse-

quences of the above characterization of the geodesics are the following facts.

1. If a point (x, y, z) ∈ R3 is such that (x, y) = (0, 0), i.e., on the z-axis, then there are infinitely

many length-minimizing curves between it and the origin. In fact, such curves form a one-

parameter family.

2. If (x, y) 6= (0, 0), then there is a unique length-minimizing curve from (x, y, z) to (0, 0, 0).

Since dCC is left-invariant and Z = ∂z is also left-invariant, we get that for all p, q ∈ R3 there exist

infinitely many length-minimizing curves between p and q if π(p) = π(q), i.e., p and q belong to the

same vertical line. On the other hand, if π(p) 6= π(q), then there is only one such a curve.

We deduce that this subRiemannian geometry is not a Riemannian geometry. However, we still

have that all the metric balls and metric spheres in the Heisenberg group are topological balls and

spheres, respectively, see Excercise 1.5.2.

1.4.2 Dilations on the Heisenberg group

For all λ ∈ R we define the map

δλ : R3 → R3

(x, y, z) 7→ (λx, λy, λ2z).
(1.4.3)

Notice the squared λ in the third component. For λ = 0 such a map is constantly equal to the origin

0 := (0, 0, 0), which is the identity element for the group law.

Lemma 1.4.4. For all λ, µ ∈ R and p, q ∈ R3

1. δλ(p · q) = δλ(p) · δλ(q);

2. δλ ◦ δµ = δλµ

3. δλ is a Lie group isomorphism, if λ 6= 0;

4. dCC(δλ(p), δλ(q)) = |λ|dCC(p, q).
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(a) The unit sphere has a singularity at the intersection with the z-axis.

(b) The portion of the unit sphere in the half-space {y > 0}.

(c) A section of the sphere as intersection with the xz-plane.

Figure 1.6: Balls in the subRiemannian Heisenberg group are not smooth surfaces. At the two
“poles” the sphere is not C1, there is no cusp, there is a corner. For a parametrization, see Excer-
cise 1.5.2.
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Proof. 1. From the group law 1.3.2, we get

δλ(p · q) = δλ

(
p1 + q1, p2 + q2, p3 + q3 +

1

2
(p1q2 − p2q1)

)
=

=

(
λp1 + λq1, λp2 + λq2, λ

2p3 + λ2q3 +
1

2
(λp1λq2 − λp2λq1)

)
=

= (λp1, λp2, λ
2p3) · (λq1, λq2, λ

2q3) = δλ(p) · δλ(q).

2. This is obvious from the definition (1.4.3).

3. From the previous points we get that each δλ is a group homomorphism and (δλ)−1 = δ 1
λ

, if

λ 6= 0.

4. Regarding the last point, we shall give three methods of proof, for educational reasons.

Method 1 We claim that the map δλ is such that (δλ)∗X = λX and (δλ)∗Y = λY , where X,Y are

the vector fields defining the subbundle ∆. (Check it!) Hence δλ preserves horizontal

curves and multiplies their length by λ.

Method 2 By (ii) and invariance of dCC , we have

dCC(δλ(p), δλ(q)) = dCC((δλ(p))−1 · δλ(q),0) = dCC(δλ(p−1q),0).

Hence it is enough to show that

dCC(δλ(p),0) = λdCC(p,0). (1.4.5)

Let γ be a length minimizing curve from 0 to an arbitrary p. Recall that we have an

explicit formula for such curves. An easy calculation shows that δλ ◦ γ is still of the same

form 3 (up to a linear reparametrization by λ). Hence, its length got multiplied by λ.

Method 3 Reasoning as at the beginning of Method 2, proving (1.4.5) is enough. Take any horizontal

curve γ = (x, y, z) from 0 to p. Notice that the linear map of R2 represented by the matrix(
λ 0
0 λ

)
multiplies length by λ and area by λ2. Therefore, the curve (λx, λy) spans areas

that are λ2 times the areas of (x, y) and has length λ times the length of (x, y). Thus

(λx, λy, λ2z) is horizontal and has length λL(γ). Hence dCC(δλ(p),0) ≤ λdCC(p,0).

3Indeed, if (γ1, γ2, γ3) is a geodesic arc of length 1 starting from the origin, then it is of the form (1.4.2) for some
k ∈ R with 2π/|k| ≥ 1, and the time of the parametrization of (1.4.2) is t ∈ [0, 1]. Now the curve (rγ1, rγ2, r2γ3) is(

cos θ(cos(kt)− 1)− sin θ sin(kt)

k/r
,

sin θ(cos(kt)− 1) + cos θ sin(kt)

k/r
,
kt− sin(kt)

2(k/r)2

)
, for t ∈ [0, 1],

which is a geodesic that is not parametrized by arc length, but by a multiple of it, namely r. Thus its length is r.
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We conclude by arguing similarly with any curve σ joining δλ(p) to 0 and considering the

curve δ 1
λ
◦ σ.

Corollary 1.4.6. In the subRiemannian Heisenberg group we have

1. BdCC (0, r) = δr(BdCC (0, 1));

2. BdCC (p, r) = Lp(δr(BdCC (0, 1))),

where 0 is the identity of the group.

Proof. ...

In other words, we deduce that that if BdCC ((0, r) is the ball of center 0 and radius r, then

(x, y, z) ∈ BdCC ((0, 1)⇐⇒ (rx, ry, r2z) ∈ BdCC (0, r). (1.4.7)

Notice that we did not use the homogeneous dilation v 7→ rv; the third coordinate has been mul-

tiplied by r2. Thus, such map (x, y, z) 7→ (rx, ry, r2z) multiplies the volume by a factor of r4, and

not r3 as the usual Euclidean dilations do!

We can now deduce how is the growth of the balls in the Heisenberg geometry.

Corollary 1.4.8. Let Vol be the 3D Lebesgue volume in R3. The Heisenberg subRiemannian distance

dCC satisfies

vol(BdCC (p, r)) = r4 vol(BdCC (0, 1)) ∀p ∈ R3 ∀r > 0. (1.4.9)

Proof. From (1.4.7) we know that Vol(B(0, r)) = r4 Vol(B(0, 1)). Now we can conclude the proof

using both the fact that left translations (1.3.3) in the Heisenberg group are isometries together with

the fact that they preserve the volume. This last fact can be checked noticing that the determinant

of the differential of a left translations is 1, see (1.3.4). Namely, any left translation Lp is such

that dLp =

1 0 0
∗ 1 0
∗ ∗ 1

 then Jac(Lp) = det( dLp) = 1. Notice that Jac(δλ) = det( dδλ) =

det

λ 0 0
0 λ 0
0 0 λ2

 = λ4. Then

vol(B(p, r)) = vol(Lp(B(e, r))) = vol(B(e, r)) = vol(δr(B(e, 1))) = r4 vol(B(e, 1).
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Figure 1.7: Balls of different sizes in the Heisenberg geometry. All the balls are with the origin as
center. From the left, there are the balls of radius 2, 1, 1/, 1/4.

The dimension of the Heisenberg group

Corollary 1.4.10. The Heisenberg group endowed with the standard Carnot-Carathéodory distance

has Hausdorff dimension equal to 4.

Proof. It is enough to prove that there are positive constants k1 and k2 such that the minimal

number Nε of balls of radius ε, with ε ∈ (0, 1), needed to cover the unit ball satisfies

k1ε
−4 < Nε < k2ε

−4.

For the lower bound, let B1, . . . , BNε be such balls. Then, using (1.4.9)

Vol(B(0, 1)) ≤
Nε∑
j=1

Vol(Bj) = Nεε
4 Vol(B(0, 1)).

For the upper bound, let x1, . . . , xN be a maximal set (which exists by Zorn’s Lemma) of points in the

unit ball such that the distance between each pair is at least ε/2. Hence, the ballsB(x1, ε/2), . . . , B(xN , ε/2)

are disjoint balls of radius ε/2 contained in the ball of radius 1 + ε/2. Then from (1.4.9) we infer

that

(1 + ε/2)4 Vol(B(0, 1)) = Vol(B(0, 1 + ε/2)) ≥
N∑
j=1

Vol(B(xj , ε/2) = N
( ε

2

)4

Vol(B(0, 1)).

Therefore, using that ε < 1, we get that

6 > (1 + ε/2)4 ≥ N ε4

16
.
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Now, since the set {xj}j is maximal, the balls B(xj , ε), with have same centers but radius ε, make

up a cover of the unit ball. Thus

Nε ≤ N ≤ 96ε−4.

A ball-box theorem

In this section we give an elementary explanation of why the balls in the subRiemannian Heisenberg

geometry behave as boxes with inhomogeneous sides. Namely, let

Box(r) := [−r, r]× [−r, r]× [−r2, r2] ⊆ R3. (1.4.11)

Proposition 1.4.12. In the subRiemannian Heisenberg group (in the standard coordinates as above)

the balls at the origin satisfy

Box(c1r)) ⊂ Bcc(1, r) ⊂ Box(c2r)), (1.4.13)

for come universal constants c1, c2 > 0 and for all r > 0.

Proof. In the following argument, we don’t aim at the best possible choices for c1, c2. Moreover,

using the dilations δr from the previous section, one can just prove the result for the unit ball and

then dilate. The existence of the two boxes (inside and outside) come from the fact that the unit

ball is an open bounded set. Nonetheless, we give next a direct proof without any use of the solution

of the isoperimetric problem.

First, observe that for all (x, y, z) ∈∈ Bcc(1, r) we have |x|, |y| < r since the length of a horizontal

curve is equal to its projection on the xy-plane, so actually ‖(x, y)‖ < r; and also we claim that

we have a bound on z as a function of r. Indeed, we should bound the oriented area enclosed by a

curve of length r. Now, we stress that the curve is not closed and the area is a signed area. In other

words, the coordinate z(t) satisfies (1.2.2). Hence, for the curve that we are considering (which we

might think it is parametrized on the interval [0, r] at unit speed, so that ẏ, ẋ ≤ 1) we bound

|z(r)| =
∣∣∣∣∫ r

0

1

2
(xẏ − yẋ)

∣∣∣∣ ≤ ∫ r

0

1

2
(|x| |ẏ|+ |y| |ẋ|) ≤

∫ r

0

1

2
(r1 + r1) = r2.

We then get

Bcc(1, r) ⊂ [−r, r]× [−r, r]× [−r2, r2], ∀r > 0.
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(a) The so-called Pansu sphere is C∞ outside of the poles, and C2 around them.
In the above picture the z-axis has been rescaled for aesthetics

(b) Another picture of the Pansu sphere with true axis. (c) The Pansu sphere is obtained rotating a complete
geodesic around the z-axis.

Figure 1.8: The (conjectured) isoperimetric sphere in the subRiemannian Heisenberg geometry

Second, we want to show that the r-ball contains some box. We claim that

[
−r

3
,
r

3

]
×
[
−r

3
,
r

3

]
×
[
− r2

100
,
r2

100

]
⊂ Bcc(1, r), ∀r > 0. (1.4.14)

Indeed, take a point (x, y, z) such that |x|, |y| ≤ r/3 and |z| ≤ r2/100. Then consider the following

planar curve: starting from (0, 0) follow a square of area z (clockwise if z < 0, counterclockwise

otherwise) then follow the segment from (0, 0) to (x, y). This curve encloses area z hence its lift

is an admissible curve reaching (x, y, z). The length of the curve is 4 times the side length of the

square plus the length of the segment. The square has area at most r2/100 so its side length is at

most r/10. The segment has length at most
√

2r/3. From these bounds we have 4 r
10 +

√
2r
3 < r.

Therefore the point (x, y, z) is in the r-ball, so (1.4.14) is verified.
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1.5 Exercises

1. Prove dido’s solution: the maximal area enclosed by a curve of length l on the plane together

with a fixed line is l2

2π and it is only obtained as an half disk.

2. Let vol = dx ∧ dy and α =
1

2
(xdy − ydx). Prove

(a) d(α) = vol;

(b) in polar coordinate, we have α =
1

2
r2dθ;

(c) if L is a line through the origin, then
∫
L
α = 0.

3. Let σ be a Lipschitz curve on the plane. Let σ[0,t] = (x(t), y(t)) be the arc up to time t. Let

f : R2 → R be a smooth function. Show that

d

dt

(∫
σ[0,t]

f(x, y)dx

)
= f(x(t), y(t))

dx

dt
(t), almost everywhere.

4. Show the relations

[X,Y ] = Z and [X,Z] = [Y, Z] = 0.

in the following cases:

(a) for the vector fields in (1.2.6),

(b) for the matrices (1.3.6).

5. Calculate the inverse of an element (x, y, z) with respect to the group structure given by (1.3.2).

6. Consider the group structure on R3 given by (1.3.2). Prove that the lines

γv(t) = (tv1, tv2, tv3) .

are one-parameter subgroups.

7. Let L be a line through 0 in the xy-plane of R3. Prove that L is a geodesic with respect to

the contact distance distance dc defined in (1.2.7).

8. Consider the map

ϕ : (x, y, z) 7→

1 x z +
1

2
xy

0 1 y
0 0 1


from R3 with the product (1.3.2) to the space of 3×3 upper triangular matrices with the usual

matrix product. Prove that
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(a) the map is a Lie group isomorphism,

(b) the map sends the standard basis X, Y , and Z (defined in (1.2.6)) of the first Lie algebra

to the standard basis X, Y , and Z (defined in (1.3.6)) of the second Lie algebra.

9. Prove that on the vertical z-axis the distance dc defined in (1.2.7) is a multiple of the square

root of the Euclidean one. Find this multiple.

Exercise 1.5.1. Denote by C ⊂ R3 the z-axis. The map

Φ :

{
(θ, k, t) : θ ∈ R/2πZ, k ∈ R, t ∈

(
0,

2π

|k|

)}
→ R3 \ C

given by

Φ(θ, k, t) =

(
cos θ(cos(kt)− 1)− sin θ sin(kt)

k
,

sin θ(cos(kt)− 1) + cos θ sin(kt)

k
,
kt− sin(kt)

2k2

)
is a homeomorphism.

Exercise 1.5.2. (i) Let Φ be the map defined in Exercise 1.5.1. Prove that the unit ball in the

Heisenberg geometry is given by

B(0, 1) = {Φ(θ, k, t)|θ ∈ R/2πZ, k ∈ R, t ∈ (0, 1)}

= {Φ(θ, k, t)|θ ∈ R/2πZ, k ∈ [−2π, 2π], t ∈ (0, 1)},

and the unit sphere is

S(0, 1) = {Φ(θ, k, 1)|θ ∈ R/2πZ, k ∈ [−2π, 2π]}.

(ii) Deduce that all the metric balls and metric spheres in the subRiemannian Heisenberg group are

topological balls and spheres, respectively.
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Chapter 2

A review of metric and differential
geometry

2.1 Metric geometry: lengths, geodesics spaces, and Haus-
dorff measures

An overview of the main notions is necessary to clarify the setting and the terminology. There

are several excellent books [Fed69, Gro99, AFP00, Hei01, BBI01, AT04] giving a clear and detailed

exposition of the material. The purpose here is to comment some facts for non-experts.

2.1.1 Metric Spaces

Let M be a set. A function

d : M ×M → [0,+∞]

is called a distance function (or just a distance, or a metric) on M if, for all x, y, z ∈M , it satisfies

(i) positiveness: d(x, y) = 0 ⇐⇒ x = y,

(ii) symmetry: d(x, y) = d(y, x),

(iii) triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

The pair (M,d) is called metric space. If it is clear what metric we are considering or if we do

not want to specify the name for the distance, we shall write just M as an abbreviation for (M,d).

We will use the term ‘metric’ as a synonym of distance function, and never as a shortening of

‘Riemannian metric’, which will be revised in Section 2.2.3.

A metric space has a natural topology which is generated by the open balls

B(p, r) := {q ∈M : d(p, q) < r},
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uniform

for p ∈M and r > 0.

In general, we also consider distance functions that may have value ∞. However, on each

connected component of the metric space the distance is finite (see Exercise 2.4.1).

A curve (or path, or trajectory) in a metric space M is a continuous map γ : I →M , where I ⊂ R

is an interval. The interval I may be open, close, half open, bounded or unbounded. When γ is

injective, the map might be conflated with its image γ(I). We will say that the curve γ : [a, b]→M ,

with a, b ∈ R, is a curve from p to q (or that joins p to q) if γ(a) = p and γ(b) = q.

2.1.2 Length of curves in metric spaces

Definition 2.1.1 (Length of a curve). Let M be a metric space with distance function d. The

length (with respect to d) of a curve γ : [a, b]→M is

L(γ) := Lengthd(γ) := sup

{
k∑
i=1

d(γ(ti−1), γ(ti)) : k ∈ N, a = t0 < t1 < · · · < tk = b

}
. (2.1.2)

A rectifiable curve is a curve with finite length. One might easily check that the length does not

depend on the parametrization, see Exercise 2.4.4. A curve γ : [a, b]→M is said to be parametrized

by arc length if

Length(γ|[t1,t2]) = |t2 − t1|, ∀t1, t2 ∈ [a, b].

Every rectifiable curve admits a reparametrization by arc length, see Exercise 2.4.5.

A partition P of an interval [a, b] is a k-tuple (t1, t2, · · · , tk) ∈ [a, b]k with k ∈ N such that

a = t1 < t2 < · · · < tk = b. We set

L(γ,P) :=

k−1∑
i=1

d(γ(ti+1), γ(ti)).

Hence, we have

L(γ) = sup{L(γ,P) : P partition of [a, b]}.

We recall the lower semicontinuity of length for sequences of curves that are converging pointwise.

Recall that a sequence of curves γj : [a, b]→M in a metric space M converges pointwise to a curve

γ : [a, b]→M in the same metric space (note that all such curves have the same interval of definition),

if, for all t ∈ [a, b], we have γj(t) → γ(t). Furthermore, we say that γj converges uniformly to γ if

supt∈[a,b] d(γj(t), γ(t))→ 0, as j →∞.
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Theorem 2.1.3 (Semicontinuity of length). If γj → γ pointwise, then L(γ) ≤ lim infj→∞ L(γj).

Proof. The result would follow from the fact that for each P the function L(γ,P) is sequentially

continuous in γ (see Exercise 2.4.7) and the general fact that the supremum of sequentially continuous

functions is a sequentially lower semicontinuous function (see Exercise 2.4.8). The argument for the

proof of the latter fact is the straightforward adaptation of the following argument.

We first assume that L(γ) <∞. Let ε > 0. Let P ∈ [a, b]k be a partition such that

L(γ)− L(γ,P) < ε.

Say P = (t1, t2, · · · , tk). Since the length k of P is finite, there exists N ∈ N such that, for all j > N ,

d(γj(ti), γ(ti)) < ε/k, for all i ∈ {1, . . . , k}. So

d(γ(ti+1), γ(ti)) ≤ d(γj(ti+1), γj(ti)) + 2ε/k.

Thus, for all j > N , we have

L(γ) < ε+ L(γ,P) ≤ ε+ L(γj ,P) + 2(ε/k) · k ≤ 3ε+ L(γj).

The proof in the case that L(γ) =∞ is very similar and is left to the reader (see Exercise 2.4.9).

For the purpose of showing the existence of length minimizing curves, we recall now Ascoli-Arzelà

Compactness Theorem.

Theorem 2.1.4 (Ascoli-Arzelà). In a compact metric space every sequence of curves with uniformly

bounded lengths contains a subsequence that, up to reparameterization, converges uniformly.

Proof. Let (M,d) be the compact metric space. If a sequence of curves γn in M has uniformly

bounded length, then the curves can be reparametrized with uniformly bounded constant speed

to be curves γn : [0, 1] → M that are uniformly Lipschitz, say L-Lipschitz, see Exercise (2.4.5)

and Exercise (2.4.6). Notice that now the family F = {γn : n ∈ N} is equi-uniformly continuous.

Moreover, it is equi-uniformly bounded, since M is bounded, being compact.

We shall show that F is precompact. It is an exercise in topology [Mun75] to show that in a

complete space a subset is precompact if and only if it is totally bounded. Namely, we need to show

that for all ε > 0 there exists a finite set of indices λ and, for all λ ∈ Λ, there exists Fλ ⊂ F such that

F = ∪λFλ and diamFλ ≤ ε, for all λ ∈ Λ. Here, the space F is considered with the sup-distance,

see Exercise 2.1.5.
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Since F s is equi-uniformly continuous, there is δ > 0 such that if |s−t| < δ then d(γ(t), γ(s)) < ε

for all γ ∈ F . Cover [0, 1] with kε balls of radius δ and center xi. Hence, [0, 1] ⊂
⋃kε
i=1B(xi, δ). In

addition, since M is compact, there exists hε ∈ N and points p1, . . . , phε ∈M such that

M ⊂
hε⋃
i=1

B(pi, ε).

Next define

Λ := {λ : {1, . . . , kε} → {1, . . . , hε}}

This set is finite, having hkεε elements. We will use it as index-set. Define

Fλ := {γ ∈ F : |γ(xi)− pλ(i)| < ε ∀i ∈ {1, . . . , kε}},

which is the set of those curves for which the centers of the intervals get mapped into the balls

according to λ. Clearly, F =
⋃
λ∈Λ Fλ, for how we choosed the points pj . We just need to bound

the diameter of Fλ Pick α, β ∈ Fλ and consider their distance, given by the sup-norm. For any

t ∈ [0, 1] take i so that t ∈ B(xi, δ). Then

dM (α(t), β(t)) ≤ dM (α(t), α(xi)) + dM (α(xi), pλ(i)) + dM (pλ(i), β(xi)) + dM (β(xi), β(t))

< 4ε,

where we used the equi-uniform continuity of α, β and that α, β ∈ Fλ.

Exercise 2.1.5. Let (M,d) be a complete metric space and let F be the family of all curves from

a fixed interval I into M . Endow F with the metric

dsup(σ, γ) = sup
t∈I
{dM (σ(t), γ(t))}, ∀σ, γ ∈ F .

Prove that (F , dsup) is a complete metric space.

Proposition 2.1.6 (Existence of shortest paths). Let M be a compact metric space. For all p, q ∈M

there exists a curve γ from p to q such that

L(γ) = inf{L(σ) : σ curve from p to q}, (2.1.7)

provided that the right-hand side of (2.1.7) is finite.

Proof. Set L to be the right-hand side of (2.1.7). We are assuming that L < ∞. Let γj curves

from p to q with L(γj) → L. By Ascoli-Arzelà Theorem 2.1.4, up to passing to a subsequence, we
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may assume that γj converges (uniformly and, hence, pointwise) to a curve γ joining p to q. By

semicontinuity of length (Theorem 2.1.3), we get L(γ) ≤ lim infj→∞ L(γj) = L. Hence, we conclude

that L(γ) = L.

2.1.3 Length Space, Intrinsic Metrics, and Geodesic Spaces

If a metric space (M,d) has the property that, for all p, q ∈M , d(p, q) is finite and

d(p, q) = inf{Lengthd(γ) : γ curve from p to q},

then (M,d) is called length space (or path metric space) and d is called an intrinsic metric. No-

tice that we made the choice of requiring intrinsic metrics to be finite, this decision might not be

supported by other authors.

If a metric space (M,d) is such that, for all p, q ∈M , there exists a curve γ from p to q with the

property that d(p, q) = Lengthd(γ), then (M,d) is called geodesic space, d is called a geodesic metric,

and every such a γ is called a length minimizing curve joining p to q. Length minimizing curves are

also called length minimizers or geodesics. Some authors use the term ‘geodesic’ to denote locally

length minimizing curves, in agreement with Riemannian geometry.

Every geodesic space is a length space (Exercise 2.4.11). Not all length spaces are geodesic

spaces, one reason can be lack of completeness. As we will recall shortly, for locally compact spaces

this is the only obstruction.

A metric space is said to be boundedly compact (or proper) if its bounded subsets are precompact.

Equivalently, a space is boundedly compact if its closed balls

B(p, r) := {q ∈M : d(p, q) ≤ r}

are compact for all p ∈M and r > 0.

Proposition 2.1.8. Assume that (M,d) is a boundedly compact length space. Then (M,d) is a

geodesic space.

Proof. Fix p, q ∈M . Since the distance is intrinsic, we can take a curve γ from p and q with L(γ) <

d(p, q) + 1. Notice that any other curve σ from p and q with L(σ) ≤ L(γ) is inside B(p, d(p, q) + 1),

which is compact. By Proposition 2.1.6, we have the existence of a shortest path and hence of a

geodesic joining p to q, since the distance is intrinsic.

39



2- A review of metric and differential geometry May 16, 2021

With a little bit more of topological arguments, one can actually prove the following stronger

result. An explicit proof can be found in [BBI01, Theorem 2.5.23].

Theorem 2.1.9 (Hopf-Rinow-Cohn-Vossen). If a length space (M,d) is complete and locally com-

pact then every two points in X can be joined by a geodesic.

2.1.4 Length as integral of metric derivative

Definition 2.1.10 (Metric derivative). Given a curve γ : [a, b]→ X on a metric space X, we define

the metric derivative of γ at the point t ∈ (a, b) as the limit

lim
h→0

d(γ(t+ h), γ(t))

|h|

whenever it exists and, in this case, we denote it by |γ̇| (t).

The following is the main result in this chapter:

Theorem 2.1.11. For each Lipschitz curve γ : [a, b]→ X on a metric space X, we have

(i) the metric derivative |γ̇| exists almost everywhere

(ii) Length(γ) =
∫ b
a
|γ̇| (t) dt.

Proof. For part (i), we start by noticing that by the triangle inequality

|d(γ(s), y)− d(γ(t), y)| ≤ d(γ(s), γ(t)), ∀s, t ∈ [a, b], ∀y ∈ X, (2.1.12)

with equality if y = γ(t). Fix a countable dense set {xn}n∈N in γ([a, b]) and define

ϕn(t) := d(γ(t), xn).

Consequently, from (2.1.12), we have

sup
n∈N
|ϕn(s)− ϕn(t)| = d(γ(s), γ(t)). (2.1.13)

Notice that each ϕn : [a, b] → R is Lipschitz with same Lipschitz constant as γ, and therefore

differentiable almost everywhere and absolutely continuous, by (the one-dimensional version of)

Rademacher Theorem. Let

m(t) := sup
n
|ϕ̇n(t)| .

We claim that

|γ̇| (t) = m(t), for almost all t. (2.1.14)
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For a first inequality, note that for each point t of differentiability for ϕn, we have from (2.1.13) that

|ϕ̇n| (t)
def
= lim

h→0

|ϕn(t+ h)− ϕn(t)|
|h|

(2.1.13)

≤ lim inf
h→0

d(γ(t+ h), γ(t))

|h|
.

Hence

m(t) ≤ lim inf
h→0

d(γ(t+ h), γ(t))

|h|
.

Regarding the other inequality, using the Fundamental Theorem of Calculus, we have for s ≤ t that

d(γ(t), γ(s))
(2.1.13)

= sup
n
|ϕn(t)− ϕn(s)|

= sup
n

∣∣∣∣∫ t

s

ϕ̇n(τ) dτ

∣∣∣∣
≤ sup

n

∫ t

s

|ϕ̇n(τ)| dτ

≤
∫ t

s

m(τ) dτ. (2.1.15)

Let us argue why the integral of m is finite. It is because the derivative of each ϕn is bounded from

above by the Lipschitz constant of ϕn, which in turn is bounded from above by the one of γ. From

Lebesgue’s Differentiation Theorem, at each Lebesgue point t for m we have that

lim sup
h→0

d(γ(t+ h), γ(t))

|h|
(2.1.15)

≤ lim sup
h→0

∣∣∣∣∣ 1h
∫ t+h

t

m(τ) dτ

∣∣∣∣∣ = m(t).

So (2.1.14) holds, and in particular |γ̇| exists almost everywhere. The first part is proven.

Regarding the second claim of the theorem, we first prove one inequality. We have

n−1∑
i=1

d(γ(ti+1), γ(ti))
(2.1.15)

≤
n−1∑
i=1

∫ ti+1

ti

m(τ) dτ
(2.1.14)

=

n−1∑
i=1

∫ ti+1

ti

|γ̇| (τ) dτ.

Taking the supremum over all partitions gives Length(γ) ≤
∫ b
a
|γ̇(t)| dt.

Regarding the other inequality, let ε > 0 and n ≥ 2 such that h := (b − a)/n ≤ ε. We set

ti := a+ ih, so that tn = b and b− ε < tn−1. Then∫ b−ε

a

d(γ(t), γ(t+ h)) dt ≤
n−1∑
i=1

∫ ti

ti−1

d(γ(t), γ(t+ h)) dt

=

∫ h

0

n−1∑
i=1

d(γ(τ + ti−1), γ(τ + ti)) dτ

≤
∫ h

0

Length(γ) dτ = hLength(γ). (2.1.16)

Using Fatou’s lemma:∫ b−ε

a

|γ̇| (t) dt
def
=

∫ b−ε

a

lim inf
h→0

d(γ(t+ h), γ(t))

h
dt

Fatou
≤ lim inf

h→∞

1

h

∫ b−ε

a

d(γ(t+ h), γ(t)) dt
(2.1.16)

≤ Length(γ).
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Letting ε→ 0+ gives the missing inequality.

Example 2.1.17. A first interesting example is given when (V, ‖·‖) is a normed space with the

metric d induced by ‖·‖. Let γ be an absolutely continuous curve. Up to reparametring, we can

assume that γ is a Lipschitz curve (either with respect to the distance d or with respect to any

other Euclidean distance). Hence, by Rademacher theorem, the curve γ is differentiable almost

everywhere. For every point of differentiability t0 for γ, we have

|γ̇| (t0)
def
= lim

h→0

‖γ(t0 + h)− γ(t0)‖
|h|

= lim
h→0

‖γ′(t0)(h) + o(h)‖
|h|

= ‖γ′(t0)‖ ,

where |γ̇| (t0) is the metric derivative and γ′(t0) denotes the (classical) derivative. By Rademacher’s

theorem almost every point is of differentiability. Consequently, from Theorem 2.1.11 we infer

Lengthd(γ) =

∫ b

a

‖γ′(t0)‖ . (2.1.18)

We deduce that for every two points p, q ∈ V and every rectifiable curve γ between p and q we have

‖p− q‖ def
= d(p, q) ≤ Lengthd(γ) =

∫ b

a

‖γ′(t0)‖ . (2.1.19)

Infimizing over γ we get

d ≤ d‖·‖.

Using the curve t ∈ [0, 1] 7→ tp+ (1− t)q, we get equality in (2.1.19). In conclusion, we have

d = d‖·‖.

2.1.5 Isometries and Lipschitz maps

Given two metric spaces (X, dX) and (Y, dY ), a map f : X → Y is called Lipschitz if there exists a

real constant K ≥ 0 such that, for all x1 and x2 in X,

dY (f(x1), f(x2)) ≤ KdX(x1, x2).

The value K (or many times the smallest value of such K’s) is called the Lipschitz constant of the

function f . A function is called locally Lipschitz if for every x ∈ X there exists a neighborhood U of

x such that f restricted to U is Lipschitz.

If there exists a K ≥ 1 with

1

K
dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2), ∀x1, x2 ∈ X,
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then f is called biLipschitz embedding (also written bi-Lipschitz or bilipschitz). Surjective biLipschitz

embeddings are called biLipschitz homeomorphisms (or biLipschitz maps). BiLipschitz homeomor-

phisms are the isomorphisms in the category of Lipschitz maps. To be more explicit on the value

of the constant K we would say that f is K-biLipschitz. BiLipschitz embeddings are injective and

in fact embeddings, i.e., they are homeomorphisms onto their image. We call 1-biLipschitz maps

isometries.

Two functions α, β defined on the same set X are biLipschitz equivalent if there exists K > 1

such that

1

K
α(x) ≤ β(x) ≤ Kα(x), ∀x ∈ X.

Two important examples of functions for which we will consider biLipschitz equivalence will be

distances and measures. Notice that in particular, two distances d1, d2 on the same set M are

biLipschitz equivalent if and only if the identity map (M,d1) to (M,d2) is biLipschitz.

2.1.6 Hausdorff Measures and Dimension

Recall that a collection F of subset of an arbitrary set X is called σ-algebra for X if

(i) ∅, X ∈ F ;

(ii) A,B ∈ F ⇒ A \B ∈ F ;

(iii) {An}n∈N ⊂ F ⇒
⋃
n∈NAn ∈ F .

If X is a topological space, the smallest σ-algebra containing the open sets is called Borel σ-

algebra.

Definition 2.1.20 (Measure). A measure on a σ-algebra F is a function µ : F → [0,+∞] such

that

(i) µ(∅) = 0;

(ii) {An}n∈N ⊂ F , pairwise disjoint ⇒ µ(
⋃
n∈NAn) =

∑∞
n=0 µ(An).

This last condition is called σ-additivity.

A measure is countably subadditive on arbitrary sets, i.e., if {An}n∈N ⊂ F then (see Exer-

cise 2.4.13)

µ

(⋃
n∈N

An

)
≤
∞∑
n=0

µ(An).
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A measure on a topological space is called a Borel measure if µ is defined on the Borel σ-algebra.

Hence, if µ is a Borel measure on a metric space M , then µ(BM (p, r)) is defined for all p ∈ M and

all r > 0.

Definition 2.1.21 (Hausdorff measures). Let M be a metric space. Let S ⊂ M be a subset,

Q ∈ [0,∞) and δ > 0. The Q-dimensional Hausdorff δ-content is defined as

HQδ (S) = inf

{ ∞∑
i=1

(diam(Ei))
Q

: S ⊂
∞⋃
i=1

Ei, diamEi < δ

}
.

Notice that the function δ 7→ HQδ (S) is non-increasing. The Q-dimensional Hausdorff measure of S

is defined as

HQ(S) := sup
δ>0
HQδ (S) = lim

δ→0+
HQδ (S).

Each measure HQ is an outer measure that restricted to the Borel σ-algebra gives a measure.

Exercise 2.1.22. If F : M1 →M2 is an L-Lipschitz map, Q ≥ 0 and S ⊂M1, then

HQ(F (S)) ≤ LQHQ(S).

Proposition 2.1.23. Let M be a metric space. Then there exists Q0 ∈ [0,+∞] such that

HQ(M) = 0 ∀Q > Q0 and HQ(M) =∞ ∀Q < Q0.

Proof. Set

Q0 := inf{Q ≥ 0 : HQ(M) 6=∞}.

Hence HQ(M) =∞ for all Q < Q0.

If Q0 = ∞, then there is nothing else to prove. If Q0 < ∞, then take Q > Q0. Then there is

Q′ ∈ [Q0, Q) with HQ′(M) = K <∞. Hence for all δ ∈ (0, 1) we have HQ
′

δ (M) ≤ K, i.e., there are

Ei ⊂M with M =
⋃
iEi, diam(Ei) < δ and

∑
i diam(Ei)

Q′ < K + 1. Notice that∑
diam(Ei)

Q ≤ δQ−Q
′∑

i

diam(Ei)
Q′ < (K + 1)δQ−Q

′
.

Thus HQδ (M) ≤ (K + 1)δQ−Q
′
. Since δQ−Q

′ → 0 as δ → 0+, we get HQ(M) = 0.

Definition 2.1.24 (Hausdorff dimension). The Hausdorff dimension of a metric space M is denoted

by dimH(M) and is defined as

dimH(M) = inf{Q ≥ 0 : HQ(M) = 0}

= inf{Q ≥ 0 : HQ(M) 6=∞}

= sup({Q ≥ 0 : HQ(M) =∞} ∪ {0}).
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Exercise 2.1.25. If F : M1 →M2 is biLipschitz, then dimHM1 = dimHM2.

Theorem 2.1.26. Let M be a metric space and µ a Borel measure on M . Assume that there are

Q > 0, C > 1 and R > 0 such that

∀p ∈M, ∀r ∈ (0, R]
1

C
rQ ≤ µ(B(p, r)) ≤ CrQ. (2.1.27)

Then for all p ∈M

(i) HQ(B(p,R)) ∈ (0,∞),

(ii) dimH B(p,R) = Q,

and, if in addition M admits a countable cover of balls of radius R, then dimHM = Q.

Proof. Fix p ∈ M . We first show that HQ(B(p,R)) < ∞. Fix r ∈ (0, R) and let 0 < δ < R − r.

Take a maximal family of points p1, . . . , pN ∈ B(p, r) such that d(pi, pj) > δ for all i 6= j. Note that

such a finite set of points exists, indeed if p1, . . . , pk ∈ B(p, r) are such that d(pi, pj) > δ, then the

balls B(pi,
δ
2 ) are disjoint and contained in B(p,R), hence

k
δQ

2QC
=

1

C

k∑
i=1

(
δ

2

)Q
≤

k∑
i=1

µ

(
B(pi,

δ

2
)

)
= µ

(
k⋃
i=1

B(pi,
δ

2
)

)
≤ µ(B(p,R)) ≤ CRQ.

Therefore the integer k has to be bounded and there is a finite maximal set of points as stated above.

Maximality implies that B(p1, δ), . . . , B(pN , δ) cover B(p, r). Hence

HQ2δ(B(p, r)) ≤
N∑
j=1

(diam(B(pj , δ)))
Q

≤ N(2δ)Q = 4QCN
1

C

(
δ

2

)Q
≤ 4QC

N∑
j=1

µ

(
B(pj ,

δ

2
)

)
≤ 4QCµ(B(p,R)),

where the last term is finite and independent on δ. Finally, for the ball of radius R we have

HQ(B(p,R)) = HQ(
⋃
r<RB(p, r)) ≤ 4QCµ(B(p,R)) <∞, where we have used that the measure is

continues with respect to the increasing union of sets.
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We then show that HQ(B(p,R)) > 0. Let δ ∈ (0, R). To bound from below the δ-Hausdorff

content take ε > 0 and sets Ei ⊂M such that diam(Ei) < δ, B(p,R) ⊂
⋃
iEi and

HQδ (B(p,R)) ≥
∑
i

(diamEi)
Q − ε.

Such a cover exists because HQ(B(p,R)) <∞. Take any pi ∈ Ei, so Ei ⊂ B(pi,diam(Ei)) and

µ(B(pi,diam(Ei))) ≤ C diam(Ei)
Q.

Thus, by the countably subadditivity of µ, we have, since
⋃
iB(pi,diam(Ei)) ⊃

⋃
iEi ⊃ B(p,R),

HQδ (B(p,R)) ≥ 1

C

∑
i

µ(B(pi,diamEi))− ε

≥ 1

C
µ

(⋃
i

B(pi,diam(Ei)

)
− ε

≥ 1

C
µ(B(p,R))− ε

≥ 1

C2
RQ − ε

Since ε was arbitrary, we get that HQδ (B(p,R)) is greater than a positive constant independent of δ.

So (i) is proved and (ii) is an immediate consequence. By countable subadditivity of the Hausdorff

measure, also the last statement of the theorem follows.

Remark 2.1.28. The above proof actually shows that the Q-dimensional Hausdorff measure HQ is

biLipschitz equivalent to the measure µ. In particular, the measure HQ satisfies equation (2.1.27),

with possibly some other choice for the constant C. We shall rephrase the last theorem using the

following definition.

Definition 2.1.29 (Ahlfors regularity for measures). A Borel measure µ a on a metric space for

which there are Q ∈ (0,∞), C > 1 and R > 0 such that

1

C
rQ ≤ µ(B(p, r)) ≤ CrQ, ∀p ∈M, ∀r ∈ (0, R], (2.1.30)

is said to be Ahlfors Q-regular up to scale R.

Corollary 2.1.31. If a metric space supports an Ahlfors Q-regular measure up to scale R than the

Q-dimensional Hausdorff measure HQ of the metric space is Ahlfors Q-regular up to scale R, and

the R-balls have Hausdorff dimension Q.
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Here is an equivalent formulation of the notion of length for injective curves.

Proposition 2.1.32. If γ : I →M is an injective curve on a metric space M , we have

H1(γ(I)) = Length(γ). (2.1.33)

Proof. If Length(γ) =∞, use Exercise 2.1.34, to say that also H1(γ(I)) =∞.

If Length(γ) <∞, then we reparametrize γ : [0, `]→M by arc length. For proving (2.1.33), we

shall consider one inequality at a time.

For the inequality ≤, for each δ > 0 divide the interval [0, `] into n disjoint intervals J1, . . . , Jn of

diameter at less than δ. Since γ is parametrized by arc length, then it is 1-Lipschitz and therefore

we have diam γ(Jj) < δ, for j = 1, . . . , n. Hence

H1
δ(γ([0, `])) ≤

n∑
j=1

diam γ(Jj)

≤
n∑
j=1

diam Jj = `,

where we have used in the first inequality that (γ(Jj))i is a admissible cover and in the second

inequality that γ is 1-Lipschitz. Taking the limit for δ → 0, we infer the desired inequality in

(2.1.33).

For the inequality ≥, we shall used Exercise (2.1.34). In fact, Take a partition t0 < t1 <≤< tk

of the interval I. Then we bound

k∑
i=1

d(γ(ti−1), γ(ti)) ≤
k∑
i=1

H1(γ([ti−1, ti]))

≤ H1(γ(I)),

where in the last inequality we have used that H1 is additive and that γ is injective.

Exercise 2.1.34 (to be generalized in Exercise 2.1.35). For every continuous curve γ : [a, b] → M

on a metric space M , we have

H1(γ([a, b])) ≥ d(γ(a), γ(b)).

[Solution. Consider φ(x) := d(x, γ(a), which is 1-Lipschitz. Then, using that on R the measure

H1 coincides with Lebesque one, bound H1(γ([a, b])) ≥ H1(φ(γ([a, b]))) ≥ diam(φ(γ([a, b]))) ≥

d(γ(a), γ(b)).]

Exercise 2.1.35. For every connected subset X of a metric space, we have

H1(X) ≥ diam(X).
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2.2 Differential geometry

2.2.1 Vector fields and Lie brackets

We will denote by M a smooth differentiable manifold with topological dimension n.

For x ∈ M , an element of the fiber TxM of the tangent bundle TM is a derivation of germs of

C∞ functions at x (i.e., an R-linear application from C∞(x) to R that satisfies the Leibnitz rule).

If F : M → N is smooth and x ∈ M , we shall denote by dFx : TxM → TF (x)N its differential,

defined as follows. The pull back operator u 7→ F ∗x (u) := u ◦ F maps C∞ (F (x)) into C∞(x); thus,

for v ∈ TxM we have that

dFx(v)(u) := v(F ∗x (u)) = v(u ◦ F ), u ∈ C∞(F (x))

defines an element of TF (x)N .

Any smooth curve σ : I →M gives a derivation at σ(t) for all t ∈ I by

σ′(t)(u) = lim
h→0

u(σ(t+ h))− u(σ(t))

h
, ∀u ∈ C∞(σ(t)).

We denote by Γ(TM) the linear space of smooth vector fields, i.e., smooth sections of the tangent

bundle TM ; we will typically use the notation X, Y, Z to denote them. We use the notation

[X,Y ]f := X(Y f)− Y (Xf) for the Lie bracket, that induces on Γ(TM) an infinite-dimensional Lie

algebra structure.

If F : M → N is a diffeomorphism and X ∈ Γ(TM), the push forward vector field F∗X ∈ Γ(TN)

is defined by the identity (F∗X)F (x) = dFx(Xx). Equivalently,

(F∗X)u := [X(u ◦ F )] ◦ F−1 ∀u ∈ C∞(M). (2.2.1)

The push-forward commutes with the Lie bracket, namely

[F∗X,F∗Y ] = F∗[X,Y ] ∀X, Y ∈ Γ(TM). (2.2.2)

If F : M → N is smooth and σ is a smooth curve on M , then

dFσ(t)(σ
′(t)) = (F ◦ σ)′(t), (2.2.3)

where σ′(t) ∈ Tσ(t)M and (F ◦ σ)′(t) ∈ TF (σ(t))N are the tangent vector fields along the two curves,

in M and N . If u ∈ C∞(M), identifying Tu(p)R with R itself, given X ∈ Γ(TM), we have

dup(Xp) = Xp(u).
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Let X ∈ Γ(TM) be a vector field and let σ : (a, b) → M be a smooth curve. The curve σ is an

integral curve, or a flow line, of X if

σ′(t) = Xσ(t), ∀t ∈ (a, b).

For all X ∈ Γ(TM) and all p ∈ M there are ε > 0 and σ : (−ε, ε) → M such that σ is an integral

curve of X and σ(0) = p. Moreover such σ is unique and has a unique maximal extension.

Let t 7→ ΦtX(p) be the integral curve of X starting at p. We call ΦtX(p) the flow at p at time t

with respect to X. Namely, we have Φ0
X(p) = 0 and

d

dt
(ΦtX(p)) = XΦtX(p).

2.2.2 Vector bundles

A simple example of vector bundle of rank r over a manifold M is the product space M × Rr with

the projection on the first component π1 : M × Rr →M .

Definition 2.2.4 (Vector bundle). A vector bundle of rank r on a manifold M is a manifold E

together with a smooth surjective map π : E →M such that, for all p ∈M , the following properties

hold:

1. The fiber Ep := π−1(p) has the structure of vector space of dimension r.

2. There is a neighborhood U of p in M and a diffeomorphism χ : π−1(U)→ U × Rr such that

(a) π1 ◦ χ = π

(b) ∀q ∈ U , χ|Eq : Eq → {q} × Rr is an isomorphism of vector spaces.

The space E is called total space, the manifold M is the base, the vector space Ep is the fiber over

p and the map χ is called a local trivialization.

Exercise 2.2.5. Show that dim(E) = dim(M) + r.

Exercise 2.2.6. Show that if π : E → M is a vector bundle and U ⊂ M is an open set, then

π|π−1(U) : π−1(U)→ U is a vector bundle.

Definition 2.2.7 (Section). A section of a vector bundle π : E →M is a smooth map σ : M → E

such that π ◦ σ = IdM . We will denote by Γ(E) the set of all sections of E.
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Definition 2.2.8 (Frames and local frames). A frame of a bundle π : E →M is a set {X1, . . . , Xn} ⊂

Γ(E) of sections on M such that, for all p ∈ M , (X1(p), . . . , Xn(p)) is a basis of the fiber Ep. A

local frame for π : E →M at a point p ∈M is a frame for the bundle π|π−1(U) : π−1(U)→ U where

U is some open neighborhood of p.

2.2.3 Riemannian and Finsler geometry

Let M be a differentiable manifold of dimension n. A Riemannian metric on M is a family of

(positive definite) inner products

ρp : TpM × TpM −→ R, p ∈M,

such that, for all differentiable vector fields X,Y on M ,

p 7→ ρp(Xp, Yp)

defines a differentiable function M → R. This smooth assignment of an inner product ρp to each

tangent space TpM is called a metric tensor. A metric tensor will also be denoted by 〈·, ·〉.

In a system of local coordinates on the manifold M given by n real-valued functions x1, . . . , xn,

the vector fields {
∂

∂x1
, . . . ,

∂

∂xn

}
give a basis of tangent vectors at each point ofM . Relative to this coordinate system, the components

of the metric tensor are, at each point p,

ρij(p) := ρp

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
.

Endowed with this metric tensor, the pair (M, 〈·, ·〉) is called a Riemannian manifold.

Finsler manifolds generalize Riemannian manifolds by no longer assuming that they are infinites-

imally Euclidean in the sense that the norm on each tangent space is necessarily induced by an inner

product. Two good references on Finsler geometry are [BCS00] and [AP94].
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Classically a Finsler structure on a differentiable manifold M is given by a function ‖·‖ : TM → R

that is smooth on the complement of the zero section of TM and such that the restriction of ‖·‖

to any tangent space TpM is a (symmetric) norm1. We will consider a more general definition for

Finsler structures allowing only the continuity as regularity.

Every Riemannian manifold (M, 〈·, ·〉) has an associated function TM → [0,∞), X 7→ ‖X‖ :=√
〈X,X〉. This is an example of a continuously varying norm.

Definition 2.2.9. A continuously varying norm on a differentiable manifold M is a continuous

function from TM to [0,∞) usually denoted by ‖ · ‖ with the property that for all p ∈ M the

restriction of ‖ · ‖ to TpM is a symmetric norm, i.e.,

1. ‖λX‖ = |λ|‖X‖, ∀X ∈ TM , ∀λ ∈ R;

2. ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖, ∀p ∈M and ∀X,Y ∈ TpM ;

3. ‖X‖ = 0⇒ X = 0.

Definition 2.2.10. In this lecture notes, we say that a Finsler manifold is a pair (M, ‖ · ‖) where

M is a differentiable manifold and ‖ · ‖ is a continuously varying norm on M . In this case, ‖ · ‖ is

also called Finsler structure.

Remark 2.2.11. A Riemannian manifold (M, 〈·, ·〉) has a natural structure of Finsler manifold.

2.3 Length structures for Finsler manifolds

Connected Riemannian and Finsler manifolds carry the structure of length metric spaces. Let us

recall the notion of absolutely continuous curve and its length with respect to a Finsler structure.

Definition 2.3.1. A curve γ : [a, b] → Rn is absolutely continuous if there exists a Lebesgue

integrable Rn-valued function g : [a, b]→ Rn such that

γ(t)− γ(a) =

∫ t

a

g(s) ds ∀t ∈ [a, b].

The function g is sometimes denoted by γ̇, however it is only defined almost everywhere with respect

to the Lebesgue measure on [a, b].

1The classical definition of Finsler structure is occasionally generalized allowing, for example, asymmetric norms
or not assuming linearity. Some authors also assume that a Finsler structure has strongly convex unit spheres, we do
not.
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A curve γ : [a, b]→M into a differentiable manifold is said absolutely continuous if it is so when

read in local coordinates, i.e., for all local coordinate map φ : U → Rn and for all a′, b′ ∈ [a, b] such

that γ([a′, b′]) ⊂ U , then φ ◦ γ|[a′,b′] is absolutely continuous.

For any absolutely continuous curve γ : [a, b] → M one can also define a derivative γ̇ : [a, b] →

M using local coordinates, which is defined almost everywhere as a measurable map (see Exer-

cise 2.4.16).

As usual in Differential Geometry, to check that a curve γ : [a, b]→ M is absolutely continuous

it is sufficient that the image of the curve admits a covering of coordinate systems for M on which

γ is absolutely continuous (see Exercise 2.4.15).

Definition 2.3.2 (Length of a curve in a Finsler manifold). Let (M, ‖ · ‖) be a Finsler manifold.

Let γ : [a, b]→M be an absolutely continuous curve. We set

Length‖·‖(γ) :=

∫ b

a

‖γ̇(t)‖ dt. (2.3.3)

We remark that the Finsler-length (2.3.3) of an absolutely continuous curve is finite.

By change-of-variables formula, the arc-length is independent of the chosen parametrization. In

particular, a curve γ : [a, b]→M can be parametrized by its arc length, i.e., in such a way that

Length‖·‖(γ|[t1,t2]) = |t2 − t1|, ∀t1, t2.

A curve is parametrized by arc-length if and only if ‖γ̇(t)‖ = 1, for all t ∈ [a, b].

The distance function d‖·‖ : M ×M → [0,+∞) is defined by

d‖·‖(p, q) = inf Length‖·‖(γ), (2.3.4)

where the infimum extends over all absolutely continuous curves γ in M joining p to q.

The function d‖·‖ satisfies the properties of a distance function for a metric space. The only

property which is not completely straightforward is that d‖·‖(p, q) = 0 implies p = q. For proving this

property, we claim that locally in a coordinate system every Finsler structure (as every Riemannian

structure) is biLipschitz equivalent to the Euclidean structure, i.e., for some c > 0, we have

c−1‖ · ‖ ≤ ‖ · ‖E ≤ c‖ · ‖, (2.3.5)

where ‖ · ‖E is the Euclidean norm. Indeed, let U ⊆ Rn be an open set parametrizing the manifold

and fix a compact set K ⊆ U , which we think having nonempty interior. Consider T 1K := {(x, v) :
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x ∈ K, v ∈ TxU, ‖v‖E = 1} the bundle of unit vectors on K. Notice that T 1K is compact. Hence, the

continuous function ‖ · ‖ on T 1K admits maximum and minimum, moreover the minimum cannot

be 0 since otherwise we would have a non zero vector with norm 0. We deduce that there exists a

constant c > 0 such that if x ∈ K and v is such that ‖v‖E = 1 then c−1 ≤ ‖v‖ ≤ c. By homogeneity

we have (2.3.5) on the interior of K.

Consequently, from (2.3.5) we get that the distance function d‖·‖ is biLipschitz equivalent to the

Euclidean distance function. In particular, we have that d‖·‖ induces the same the topology as the

manifold topology on M . Similarly, one realizes that every Finsler structure on a compact set is

biLipschitz equivalent to every other Riemannian structure.

On each Finsler manifold to every continuously varying norm, as defined in Definition 2.2.9, we

associated a length structure and a distance function as in (2.3.3) and Definition (2.3.4), respecively.

The distance function then induces a length structure, as in Definition (2.1.2). We show next that

the two lengths structures coincide.

Proposition 2.3.6. Assume M is a differentiable manifold equipped with a continuously varying

norm ‖·‖ : TM → R and induced length structure Length‖·‖ and distance function d‖·‖. If γ : [a, b]→

M is an absolutely continuous curve, then

Lengthd‖·‖(γ) = Length‖·‖(γ). (2.3.7)

Proof. To prove the ≤ inequality in (2.3.7), notice that for all t, s ∈ [a, b] we have

d‖·‖(γ(s), γ(t))
def
= inf

σ

∫ t

s

‖σ̇(t)‖ dt ≤
∫ t

s

‖γ̇(t)‖ dt
def
= Length‖·‖(γ|[s,t]),

where the infimum is taken over all AC curves σ from γ(s) to γ(t). Using the definition of length

we deduce that Lengthd‖·‖ ≤ Length‖·‖.

Regarding the other inequality, we shall use that the norm changes continuously. It is convenient

to work in coordinates, and it is enough to prove our claim locally. Parametrizing M with an open

subset U of Rn we write the norm as ‖v‖x =: F (x, v), for x ∈ U and v ∈ TxU ' Rn. Fix some

K > 1. Since F is continuous then at each point p ∈ U there exists a neighborhood Up of p such

that

1

K
F (q, v) ≤ F (p, v) ≤ KF (q, v), ∀q ∈ Up,∀v ∈ Rn. (2.3.8)

We find a partition a = a0 < a1 < · · · < an = b such that the restricted curve γ|[ai−1,ai] is valued

into Uγ(ai). Let us denote by di the distance induced by the (constant) norm F (γ(ai), ·). Since then
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we are in the case of a normed vector space (see Example 2.1.17) we have

LengthF (γ(ai),·) = Lengthdi . (2.3.9)

Moreover, as a consequence of (2.3.8), we have

di ≤ Kd. (2.3.10)

Thus, using (2.3.8),(2.3.9), and (2.3.10), we obtain that

Length‖·‖(γ) :=

∫ b

a

F (γ(t), γ̇(t))

=
n∑
i=1

∫ ai

ai−1

F (γ(t), γ̇(t))

(2.3.8)

≤ K

n∑
i=1

∫ ai

ai−1

F (γ(ai), γ̇(t))

(2.3.9)
= K

n∑
i=1

Lengthdi(γ|[ai−1,ai])

(2.3.10)

≤ K2
n∑
i=1

Length(γ|[ai−1,ai]) = K2 Length(γ).

As K can be chosen arbitrarily close to 1, we also deduce that Length‖·‖ ≤ Lengthd‖·‖ .

Remark 2.3.11. Let γ : [a, b]→M be a curve on a manifold equipped with a continuously varying

norm ‖·‖. With the following points, we shall clarify the relationship between absolute continuity

and having of finite length:

(i) In Proposition 2.3.6, we have shown that if γ is AC, then Length‖·‖(γ) = Lengthd‖·‖(γ) and

both this quantities are finite.

(ii) If γ is not AC, then Length‖·‖(γ) is not defined.

(iii) If Lengthd‖·‖(γ) is finite, then up to reparametrization γ is Lipschitz with respect to d‖·‖,

and thus with respect to any euclidean distance, in coordinates. Therefore, by Rademacher’s

Theorem γ is AC.

2.4 Exercises

Exercise 2.4.1. Let (M,d) be a metric space equipped with its natural topology.

(i) Show that if M is connected, then d is finite.

(ii) Show that in general d is finite on each connected component of M .
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Exercise 2.4.2. The mesh of a partition P = (t1, . . . , tk) is defined as

‖P‖ := max
j=1,...,k−1

|ti+1 − ti|.

Show that, if Pj are such that ‖Pj‖ → 0 as j →∞, then

L(γ) = lim
j→∞

L(γ,Pj).

Exercise 2.4.3. Show that, if P1 and P2 are partition of the same interval with P1 ⊂ P2, then

L(γ,P1) ≤ L(γ,P2).

Exercise 2.4.4. Show that the length of a curve is independent on its parameterization. Namely,

If γ : I → M is a curve in a metric space and h : J → I is a homeomorphism between intervals,

then L(γ) = L(γ ◦ h).

Exercise 2.4.5. If γ : [a, b]→ (M,d) is rectifiable, then can be reparametrized by arc length. [Hint:

consider the change of parametrization given by s→ Length(γ|[a,s]).]

Exercise 2.4.6. If γ : [a, b]→ (M,d) is parametrized with constant speed s, with s ∈ [0,∞), i.e.,

Length(γ|[t1,t2]) = s|t2 − t1|, ∀t1, t2 ∈ [a, b],

then L(γ) = s|a− b| and γ is s-Lipschitz.

Exercise 2.4.7. Prove that for each P, if a sequence (γn)n∈N of curves pointwise converges to γ

then L(γn,P) converges to L(γ,P).

Exercise 2.4.8. Let fn : X → R be a sequence of continuous functions on a topological space.

Prove that the function supn fn is lower semicontinuous. [Hint: adapt the proof of Theorem (2.1.3).]

Exercise 2.4.9. Following the proof of Theorem 2.1.3 that was done in case that L(γ) < ∞, give

a proof of the same theorem when L(γ) =∞.

Hint: The proof starts as “for all M > 0, there exists a partition P such that L(γ,P) > M ...” and

follows the same strategy.

Exercise 2.4.10. Let F : M1 →M2 a maps between two metric spaces that is K-Lipschitz. Show

that if γ is a curve in M1 then L(F ◦ γ) ≤ K · L(γ).

Exercise 2.4.11. Show that a geodesic space is a length space – what is not automatic is that the

distance is finite.
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Exercise 2.4.12. Find an homeomorphism F : M1 → M2 between two metric spaces with the

property that L(F ◦ γ) = L(γ), for all γ is a curve in M1, but F is not an isometry.

Exercise 2.4.13. Show that each measure is countably subadditive.

Hint: Given arbitrary {An}n∈N ⊂ F split them into disjoint sets in order to use property 2 of the

definition of measure.

Exercise 2.4.14. Let γ : [a, b]→ Rn be absolutely continuous. Show that γ̇ is unique up to measure

zero.

Exercise 2.4.15. Let γ : I → M be a curve. Show that γ̇ is absolutely continuous if for all t ∈ I

there exist ε > 0 and a local coordinate map φ : U → Rn with γ([t − ε, t + ε]) ⊂ U and such that

φ ◦ γ|[t−ε,t+ε] is absolutely continuous.

Exercise 2.4.16. Let γ : I → M be an absolutely continuous curve. Let φ1, φ2 : U → Rn be two

coordinate maps. Show that the derivative of φ1 ◦ γ is related to the derivative of φ2 ◦ γ by the

differential of φ1 ◦ φ−1
2 and hence one can define the derivative γ̇ up to measure zero.

Exercise 2.4.17. Prove that any absolutely continuous curve in Rn can be re-parametrized to be

a Lipschitz curve with respect to the Euclidean distance.
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Chapter 3

The general theory of
Carnot-Carathéodory spaces

We are at the point where we are ready to define our main object of study: namely, subRiemannian

manifolds, or more generally subFinsler manifolds, also called Carnot-Carathéodory spaces. We will

equip them with Carnot-Carathéodory distances. The first fundamental result that we will prove will

be Chow-Rashevsky’s theorem, which says that in each subFinsler manifold Carnot-Carathéodory

distances gives the same topology as the manifold structure. We stress that this fact will be a

consequence of the important assumption on the sub bundle to be bracket generating.

3.1 The definition of Carnot-Carathéodory spaces

In this chapter, we shall denote by M a differentiable manifold, whose dimension will mostly be

denoted by n. Thus the tangent bundle of M is TM and is a 2n-dimensional manifold with the

following local parametrization: if φ : U ⊂ Rn → M is a local parametrization for M , then it

induces vector fields ∂x1
, . . . , ∂xn and the map U ×Rn → TM , (x, v) 7→ v1∂x1

+ · · ·+vn∂xn is a local

parametrization for TM . In other words, ∂x1
, . . . , ∂xn form a local frame for TM .

3.1.1 Bracket-generating distributions

Definition 3.1.1 (Polarization, aka distributions or tangent bundle). A field of distributions on a

manifold M is a subset ∆ ⊆ TM such that for all p ∈M there exists smooth vector fields X1, . . . , Xm

on some neighborhood U of p such that

∆p := ∆ ∩ TpM = span{X1(p), . . . , Xm(p)}. (3.1.2)
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If moreover there exists r ∈ N such that r = dim ∆p, for all p ∈M , then we say that ∆ has constant

rank with rank equal to r. Fields of distributions are also simply called distributions. Constant rank

distributions are also called polarizations or tangent subbundles. Distributions of rank r are also

called distributions of r-planes or r-plane fields. The pair (M,∆) is called polarized manifold.

Notice that each tangent subbundle is indeed a subbundle of the tangent bundle: A subbundle

E of a vector bundle F on a topological space M is a collection of linear subspaces Ep of the fibers

Fp of F at p in M , that make up a vector bundle in their own right. Moreover, a tangent subbundle

of rank r on an n-manifold has dimension n+ r.

Here is a simple example of a polarization on the 3-dimensional manifold R3, with coordinates

x, y, z. Let f, g : R→ R be smooth functions. Then the two smooth vector fields

X1(x, y, z) := ∂x + f(x, y, z)∂z, (3.1.3)

X2(x, y, z) := ∂y + g(x, y, z)∂z (3.1.4)

are linearly independent at every point and define a rank-2 tangent subbundle ∆ on R3 as

∆(x,y,z) := {aX1(x, y, z) + bX2(x, y, z) : a, b ∈ R2} (3.1.5)

= {(a, b, af(x, y, z) + bg(x, y, z)) : a, b ∈ R2}. (3.1.6)

Definition 3.1.7. Here is some notation and terminology that is used for distributions and family

of vector fields:

• The set of smooth vector fields on a manifold M is denoted with Vec(M) or Γ(TM). Hence,

an element of Γ(TM) is a smooth section X : M → TM of the bundle TM →M .

• A vector filed X : M → TM is said to be tangent to a distribution ∆ ⊆ at a point p ∈ M if

X(p) ∈ ∆.

• Given a distribution ∆ ⊂ TM , we denote by Γ(∆) the set of smooth vector fields of M tangent

to ∆ at every point of M .

• Given a family F ⊂ Γ(TM) of vector fields on M and p ∈M , we set Fp := {Xp : X ∈ F}.

• Given a family F ⊂ Γ(TM) of vector fields on M , we denote by Lie(F ) the Lie algebra

generated by F with respect to the Lie bracket of vector fields within Γ(TM).
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We spell out that the set Lie(F ) is the smallest subset of Γ(TM) with F ⊂ Lie(F ) and the

property

X,Y ∈ Lie(F ), a, b ∈ R =⇒ [X,Y ], aX + bY ∈ Lie(F ).

We are ready to introduce the condition that will make us join points with curves tangent to

a polarization ∆. This following condition (3.1.9) has may names. It is also called Hörmander’s

condition or Chow’s condition.

Definition 3.1.8 (Bracket generating). A distribution ∆ on a manifold M is bracket generating if

(Lie(Γ(∆)))p = TpM, ∀p ∈M. (3.1.9)

Let us clarify what is the meaning of a curve tangent to a polarization:

Definition 3.1.10 (Horizontal curve). Given a polarized manifold (M,∆) a curve γ : [a, b] → M

is said to be ∆-horizontal if γ is absolutely continuous and γ̇(t) ∈ ∆γ(t) for almost every t ∈ [a, b].

Curves that are ∆-horizontal are also said to be horizontal with respect to ∆, or, simply, horizontal

or Legendrian. The terms admissible curve and controlled path are also used to refer to such a curve.

Remark 3.1.11. If X1, . . . , Xm are generating a distribution ∆ on M , in the sense that (3.1.2)

holds for all p ∈M , then ∆ is bracket generating if and only if

(Lie({X1, . . . , Xm}))p = TpM, ∀p ∈M. (3.1.12)

3.1.2 SubFinsler structures

Definition 3.1.13 (SubFinsler , subRiemannian manifold). A subFinsler manifold is a triple

(M,∆, ‖ · ‖) where M is a connected manifold, ‖ · ‖ is a continuously varying norm (recall Defi-

nition 2.2.9), and ∆ is a bracket-generating distribution on M . The pair (∆, ‖ · ‖) is said to be

a subFinsler structure on M . If the norm ‖·‖ is given by a Riemannian scalar product 〈·, ·〉, then

(M,∆, 〈·, ·〉) is called subRiemannian manifold.

We consider Riemannian and Finsler manifolds as particular cases of subRiemannian and sub-

Finsler manifolds, respectively, which is the case when ∆ is the whole tangent bundle.

Since in what follows only the values of ‖ · ‖ restricted to ∆ will be important, we sometime say

that (M,∆, ‖ · ‖|∆) is a subFinsler manifold with subFinsler structure (∆, ‖ · ‖|∆).
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Definition 3.1.14 (CC-distance). Given a subFinsler manifold (M,∆, ‖·‖) the Carnot-Carathéodory

distance between two points p, q ∈M is

dCC(p, q) = inf
{

Length‖·‖(γ) : γ is ∆-horizontal curve from p to q
}
. (3.1.15)

If the infimum is realized by a curve γ, then γ is length minimizing among the horizontal curves

joining the two points p, q, and in this case dCC(p, q) = Length‖·‖(γ).

For us a subFinsler manifold (M,∆, ‖ · ‖) is also equipped with a Finsler distance. If dF is the

Finsler distance associated to (M, ‖ · ‖), then we obviously have

dCC(p, q) ≥ dF (p, q), ∀p, q ∈M. (3.1.16)

We anticipate that the above dCC is indeed a finite distance. In fact, as a consequence of the fact

that ∆ is assumed bracket generating and that M is assumed connected, we will show the following

result.

Theorem 3.1.17 (Chow, see Section 3.2.2). If (M,∆, ‖ · ‖) is a subFinsler manifold, then dCC is

finite and the metric space (M,dCC) is homeomorphic to the manifold M .

Remark 3.1.18 (Terminology). The Carnot-Carathéodory distance is sometimes called CC-distance

or subFinsler distance. A subFinsler manifold equipped with its Carnot-Carathéodory distance is

called Carnot-Carathéodory space. If ‖ · ‖ is the norm coming from a Riemannian metric, then

(M,∆, ‖ · ‖) is called subRiemannian manifold, (∆, ‖ · ‖) is a subRiemannian structure and dCC is

called subRiemannian distance.

Some authors call dCC a Finsler-Carnot-Carathéodory distance to emphasize that in their context

dCC might not necessarily be subRiemannian. Sub-Riemannian metrics appeared in the literature

under a variety of names: ‘singular Riemannian metric’, ‘non-holonomic Riemannian metric’. They

were also used in the theory of hypo-elliptic PDE, but without a name.

3.1.3 The generalization of Control Theory

In Control Theory one is interested in systems of differential equations of the form

u̇ =

m∑
i=1

cj(t)X(u), (3.1.19)

where X1, . . . , Xm are given vector fields on M , and the c1, . . . , cm are variable L1 functions on

some bounded interval. These functions are called control functions or controls. Any path obtained

integrating (3.1.19) is called a controlled path.
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When the rank of the system of vector fields X1, . . . , Xm is constant, controlled paths coincide

with the absolutely continuous paths tangent to the distribution

∆ = R- span〈X1, . . . , Xm〉

generated by X1, . . . , Xm. Conversely, any rank m distribution ∆ can, locally, be written as ∆ =

〈X1, . . . , Xm〉. Observe that in the previous sentence, the adverb ‘locally’ is needed, for global

topological reasons, as for example for ∆ = T (S2).

However, for many systems of interest in Control Theory, the rank of X1, . . . , Xm is not constant,

but one can still define a related distance: for p ∈M and v ∈ TpM , set

gp(v) := inf{u2
1 + · · ·+ u2

m | u1X1 + · · ·+ umXm = v}.

We are using the notation that inf ∅ = +∞. We then have that gp is a positive definite quadratic

form on the subspace

∆p := R- span〈X1(p), . . . , Xm(p)〉.

The control distance associated to the system X1, . . . , Xm is defined as, for any p and q in M ,

d(p, q) = inf

{∫ 1

0

gp(γ̇(t))1/2dt
∣∣∣ γ absolutely continuous path γ(0) = p, γ(1) = q

}
. (3.1.20)

3.1.4 The general definition

Definition 3.1.21. A (smooth) sub-Finsler structure on a manifoldM is a function g : TM → [0,∞]

obtained by the following construction: Let E be a vector bundle over M endowed with a norm | · |

and let

σ : E → TM

be a morphism of vector bundles. For each p ∈M and v ∈ TpM , set

gp(v) := inf{|u| : u ∈ Ep, σ(u) = v}.

Analogously as before, one define the sub-Finsler distance associated to the bundle E, for any p

and q in M , as

d(p, q) = inf

{∫ 1

0

gp(γ̇(t))1/2dt
∣∣∣ γ absolutely continuous path γ(0) = p, γ(1) = q

}
.

One can check that, for the inclusion σ : ∆ ↪→ TM of a sub-bundle of the tangent bundle,

one recovers the Finsler-Carnot-Carathéodory distance (3.1.15). For E = M × Rm and σ(p, v) :=

u1X1 + · · ·+ umXm, one recovers the control distance (3.1.20).
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3.2 Chow’s Theorem and existence of geodesics

We want to motivate now the fact that since in a subFinsler manifold the distribution is bracket

generating, then the Carnot-Carathéodory distance is finite. The bracket-generating condition can

be considered as an infinitesimal transitivity. Chow’s theorem implies local transitivity:

Theorem 3.2.1 (Chow). If a subbundle ∆ of the tangent bundle of a manifold is bracket generating

at some point p (i.e., (3.1.9) holds at p), then any point q that is sufficiently close to p can be joined

to p by an absolutely continuous curve almost everywhere tangent to ∆.

In fact, close points in a subFinsler manifold can be joined by horizontal curves that are short

with respect to the Finsler length, i.e., Theorem 3.1.17 holds.

We first explain the validity of Theorem 3.2.1 taking for grant a theorem by Sussmann. We are

omitting the proof of Sussmann’s Theorem which is in fact the core of Theorem 3.2.1, but it is well

presented in [Bel96]. The reader can write a complete proof of the above Theorem 3.2.1 by following

the hits in Exercise 3.2.4. Later in the notes we will give a detailed proof of the result that for us

is of more interest: Theorem 3.1.17. Also, in the easier case of Carnot groups Theorem 3.1.17 is an

elementary fact.

Theorem 3.2.2 (Sussmann [Sus73, Ste74, Bel96]). Let M be a manifold, ∆ ⊆ TM a subbundle,

and p ∈ M . Let Σ ⊂ M be the set of points that can be joined to p with an absolutely continuous

curve almost everywhere tangent to ∆. Then Σ is an immersed sub-manifold of M .

Given a vector field X ∈ Γ(∆) and a point q ∈ Σ, the flow line t 7→ ΦtX(q) is tangent to ∆, lies

in Σ, and hence the vector Xq is tangent to the submanifold Σ. Therefore

Γ(∆) ⊆ F := {X ∈ Γ(TM) : Xq ∈ TΣ,∀q ∈ Σ}.

Being Σ a submanifold, F is involutive, i.e., Lie(F) = F . Then Lie(Γ(∆)) ⊆ F . By the bracket-

generating condition at p, we get

TpM = Lie(Γ(∆))p ⊆ Fp ⊆ TpΣ.

From this we have dimM = dim Σ, and thus Σ is a neighborhood of p.
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reachable
set

3.2.1 Reachable sets of bracket-generating distributions

Let F ⊂ Vec(M) be a family of smooth vector fields on a manifold M . Define the reachable set for

F from p at time less than T as

Φ<TF (p) :=

ΦtkXk ◦ · · · ◦ Φt1X1
(p) : k ∈ N, tj > 0,

k∑
j=1

tj < T,Xj ∈ F

 .

Theorem 3.2.3. Let F ⊂ Vec(M) such that −F = F . If for all p ∈ M (Lie(F ))p = TpM , then

for all T > 0 and for all p ∈M , the set Φ<TF (p) contains p in its interior.

Proof. Unless M = {p}, there is X1 ∈ F with X1(p) 6= 0. Hence there is ε1 ∈ (0, T ) such that

M1 := {ΦtX1
(p) : t ∈ (0, ε1)}

is a 1-dimensional submanifold of M .

If M is 1-dimentional, the proof is concluded. If dimM > 1, then there is X2 ∈ F that is not

tangent to M1 (Otherwise Lie(F ) would be tangent to M1 and not bracket-generating on points of

M1). Let t̂1 ∈ (0, ε1) such that

X2(Φt̂1X1
(p)) /∈ TM1.

The map (t1, t2) 7→ Φt2X2
◦ Φt1X1

(p) has maximal rank (i.e., rank 2) at every point of the form (t̂1, t2)

with t2 sufficiently small. We can also take t̂1 + t2 < T .

Proceeding in this way, for all k, we obtain vector fields X1, . . . , Xk ∈ F such that

Fk : (t1, . . . , tk) 7→ ΦtkXk ◦ · · · ◦ Φt1X1
(p)

has maximal rank k at a point (t̂1, . . . , t̂k) with t̂j > 0,
∑
j t̂j < T . By the Constant-Rank Theorem,

there is a neighborhood Uk of (t̂1, . . . , t̂k) such that Mk := Fk(Uk) is an embedded submanifold.

This procedure stops precisely when each element of F is tangent to Mk, i.e., when Mk is an open

subset of M . Take X1, . . . , Xk ∈ F such that the above defined Fk(t1, . . . , tk) covers a neighborhood

of a point q ∈M when tj > 0,
∑
j tj < T . Notice that if q is of the form Fk(t̄1, . . . , t̄k), with t̄j > 0,∑

j t̄j < T , then the map

q′ 7→ Φt̄1−X1
◦ · · · ◦ Φt̄k−Xk(q′)

is a diffeomorphism between any neighborhood of q and its image, which is a neighborhood of p.

Notice that −Xj ∈ −F = F by assumbtion. Therefore

(t1, . . . , tk) 7→ Φt̄1−X1
◦ · · · ◦ Φt̄k−Xk ◦ ΦtkXk ◦ · · · ◦ Φt1X1

(p)
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covers a neighborhood of p when tj > 0 and
∑
j tj < T . Thus Φ<2T

F (p) is a neighborhood of p.

Exercise 3.2.4. Use Theorem 3.2.3 and the fact that the points where (3.1.9) holds is open to give

a proof of Theorem 3.2.1.

3.2.2 The metric version of Chow’s theorem

We are now ready to prove Theorem 3.1.17. Namely we show that Carnot-Carathéodory distances

induce the manifold topology.

Proof of Theorem 3.1.17. Let τM be the manifold topology and τCC the topology induced by dCC .

Regarding the containment τCC ⊂ τM , let U ∈ τCC and p ∈ U . Then there is T > 0 such that

BdCC (p, T ) ⊂ U . Set

F := {X ∈ Γ(∆) : ‖X(p)‖ ≤ 1 ∀p ∈M} ⊂ Vec(M).

With the notation of Section 3.2.1, notice that

Φ<TF (p) ⊂ BdCC (p, T ).

By Theorem 3.2.3, the point p is in the τM -interior of Φ<TF (p). We deduce that p is in the τM -interior

of U as well.

Regarding the containment τM ⊂ τCC , let U ∈ τM . Together with the distance dCC we have a

Finsler distance dF for which we have (3.1.16). Let p ∈ U . Then there is r such that BdF (p, r) ⊂ U .

Since dF ≤ dCC , then BdCC (p, r) ⊂ BdF (p, r). Therefore p is in the τCC-interior of U as well.

3.2.3 Comparison of length structures

Proposition 3.2.5. Let (M,∆, ‖·‖) be a subFinsler manifold equipped with its Carnot-Carathéodory

distance dCC . Let γ : [a, b]→M be a curve.

1. If LengthdCC (γ) <∞, then the reparametrizion by arc length of γ is horizontal with respect to

∆.

2. If γ is horizontal with respect to ∆, then LengthdCC (γ) = Length‖·‖(γ); and γ is parametrized

by arc length if and only if ‖γ̇‖ = 1.

Proof. For part 2 recall that in every metric space every curve of finite length, can be reparametrized

by arc-length. (see Exercise 2.4.5).
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Let dF be the Finsler distance for which we have (3.1.16), recall that dF is locally biLipschitz

equivalent to any other Riemannian distance. Since dF ≤ dCC , we have

dF (γ(s), γ(t)) ≤ dCC(γ(s), γ(t)) ≤ LengthdCC (γ|[s,t]) = |t− s|. (3.2.6)

Thus γ : [a, b]→ (M,dF ) is 1-Lipschitz, so in coordinates γ is (Euclidean) Lipschitz. By Rademacher

Theorem, the curve γ is absolutely continuous and hence differentiable almost everywhere. Let t0 ∈ I

be a point of differentiability for γ. We shall prove that γ̇(t0) ∈ ∆γ(t0).

Assume by contradiction that γ̇(t0) /∈ ∆γ(t0). For simplicity we work in coordinates and assume

t0 = 0, γ(t0) = 0 ∈ Rn, ∆0 = Rk × {0}n−k, γ̇(t0) = en = (0, . . . , 0, 1). We then have

γn(t) > t/2, for t small enough, (3.2.7)

where γn(t) is the n-th component of γ.

We claim that for all ε > 0 there exists rε > 0 such that

p ∈ BdF (0, 2rε), X ∈ ∆p, ‖X‖ ≤ 1 =⇒ |〈∂n, X〉| < ε, (3.2.8)

where we use the Euclidean scalar product making ∂i ortonormal. Indeed, by contradiction, there

would exist ε > 0 and sequences (pj)j ∈ M and (Xj) ∈ ∆pj such that pj → 0, ‖Xj‖ ≤ 1, and

|〈∂n, Xj〉| ≥ ε. Let c > 0 be a constant for which we have (2.3.5) in some neighbourhood of 0.

Hence, eventually we have ‖Xj‖E ≤ c. Therefore, being the sequence Xj in a compact set, up to

subsequence, it converges to some Y . Since ∆ is a submanifold of TM and therefore it is closed,

and since pj → 0 we have that Y ∈ ∆0 so

0 = |〈∂n, Xj〉| = lim
j
|〈∂n, Xj〉| ≥ ε > 0.

We inferred a contradiction which gives the claim (3.2.8).

We then fix ε > 0 and rε with the above property (3.2.8). By definition of dCC , we shall take

a horizontal curve that almost realizes dCC(0, γ(rε)), which is not zero because of (3.2.7). In fact,

there is a horizontal curve σ : [0, bε]→M from 0 to γ(rε) such that ‖σ̇‖ = 1 almost everywhere and

bε = Length‖·‖(σ) ≤ 2dCC(0, γ(rε)) ≤ 2rε, where in the last inequality we used (3.2.6). Hence, first

we have

bε
rε
≤ 2, (3.2.9)

second, we have that the image of σ is in BdF (0, 2rε). Consequently, because σε is horizontal and

‖σ̇‖ = 1 almost everywhere, from (3.2.8) we have that |σ̇n| < ε, where σn is the n-th component of
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σ, so σ̇n = 〈∂n, σ̇〉. We then infer that

0 <
rε
2

(3.2.7)
< γn(rε) = σn(bε) =

∫ bε

0

σ̇n(s) d s ≤
∫ bε

0

|σ̇n(s)|d s ≤ εbε.

Thus

bε
rε
≥ 1

2ε
→∞ as ε→ 0,

which is in contradiction with (3.2.9). We deduce that γ is horizontal.

Regarding part 2, let γ be a horizontal curve. On the one hand, since dF ≤ dCC and since

Length‖·‖ = LengthdF by Theorem 2.3.6, then Length‖·‖ ≤ LengthdCC . On the other hand, since γ

is horizontal,

LengthdCC (γ) = sup
P=(t1,...,tn)

k∑
i=1

dCC(γ(ti+1), γ(ti))

≤ sup
P=(t1,...,tn)

k∑
i=1

Length‖·‖(γ|[ti,ti+1])

= Length‖·‖(γ)

Corollary 3.2.10. A Carnot-Carathéodory space is a length space.

3.2.4 Existence of geodesics in CC spaces

Theorem 3.2.11 (Hopf-Rinow Theorem for CC spaces). Let M be a CC space.

1. Every point in M has a neighborhood in which every two points can be joined with a curve that

is length minimizing with respect to the CC distance.

2. If M is boundedly compact, then it is a geodesic space.

Proof. By Chow’s theorem, since M is connected and ∆ bracket-generating, dCC is finite and

(M,dCC) is locally compact and is a length space, by Corollary 3.2.10. By Proposition 2.1.6, there

exists a shortest path between any two points sufficiently close.

If in addition (M,dCC) is boundedly compact, we can conclude by Proposition 2.1.8
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$“Deltaˆ[k]$3.3 Equiregular Distributions

Let ∆ ⊂ TM be a subbundle. For all p ∈M define

∆[0](p) := {0} ⊂ TpM

∆[1](p) := ∆p

∆[2](p) := ∆[1](p) + span {[X,Y ]p : X,Y ∈ Γ(∆)} ,

Then ∆[2] =
⋃
p∈M ∆[2](p) is a subset of TM . In general ∆[2] may not be a subbundle since its rank

may vary, i.e., the function p 7→ dim ∆[2](p) may not be constant.

Example 3.3.1 (Non-equiregular distribution). In R3 the Martinet distribution is the subbundle

∆ ⊂ TR3 spanned by

X1 = ∂x +
y2

2
∂z

X2 = ∂y.

Notice that

X3 := [X2, X1] = y∂z and X4 := [X2, X3] = ∂z.

Then

∆[2](p) =

{
TpR3 if p2 6= 0

∆[1](p) if p2 = 0.

Remark 3.3.2. If X1, . . . , Xr is a frame for ∆, then

{X1, . . . , Xr} ∪ {[Xi, Xj ] : i, j = 1, . . . , r}

span ∆[2] at every point. Indeed, if X,Y ∈ Γ(∆), then X =
∑
i a
iXi, Y =

∑
j b
jXj for some smooth

functions ai, bj . We have

[X,Y ] = [aiXi, b
jXj ] = aibj [Xi, Xj ] + ai(Xib

j)Xj − bj(Xja
i)Xi.

Definition 3.3.3. Given a distribution ∆, inductively define ∆[1] = ∆ and, for all k ≥ 2,

∆[k+1](p) := ∆[k](p) + span {[X1, [X2, . . . , [Xk, Xk+1] . . . ]](p) : X1, . . . , Xk+1 ∈ Γ(∆)} . (3.3.4)

Definition 3.3.5 (Regular point for ∆). If ∆ is a distribution on M and p ∈ M , we say that p is

regular for ∆ if for all k ∈ N the function

q 7→ dim ∆[k](q) (3.3.6)

is constant in a neighborhood of p.
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Notice that the functions (3.3.6) is N-valued. Hence, if it is locally constant, then it is constant

on connected components.

Definition 3.3.7 (Equiregular distributions). Let M be a connected manifold and ∆ ⊂ TM a

distribution on M . ∆ is said to be equiregular if every p ∈M is regular for ∆.

Remark 3.3.8. ∆ ⊂ TM is equiregular if and only if, for all k ∈ N, ∆[k] is a subbundle (Exercise).

Notice that if ∆ is bracket generating and equiregular, then there is s ∈ N such that ∆[s] = TM .

The minimal such s is called step of ∆.

Definition 3.3.9 (Equiregular subFinsler manifolds). A subFinsler manifold (M,∆, ‖ · ‖) is called

equiregular if ∆ is equiregular.

3.4 Ball-Box Theorem and Hausdorff dimension

3.4.1 Ball-Box Theorem

Let (M,∆, ‖ · ‖) be an equiregular subFinsler manifold. Let

∆ = ∆[1] ⊂ ∆[2] ⊂ · · · ⊂ ∆[s] = TM

be the flag of subbundles. Since next considerations will be of local nature, we assume that there

exists a frame X1, . . . , Xn for TM and there are m1, . . . ,ms such that X1, . . . , Xmk is a frame for

∆[k]. In this case we say that X1, . . . , Xn is an equiregular frame. Equiregular frames are also called

adapted frames.

Notice that, for all p ∈M ,

mj = dim ∆[j](p).

We also say that Xj has degree dj if, for all p ∈M ,

Xj(p) ∈ ∆[dj ] \∆[dj−1],

i.e., j ∈ {mdj−1
+ 1, . . . ,mdj}.

The plan is to parametrize the manifold M using the flow of linear sums of X1, . . . , Xn. To such

vector fields we associate an exponential coordinate map from a point p ∈M as

Φp : Rn →M(t1, . . . , tn) 7→ Φ1
p(t1X1 + · · ·+ tnXn)
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Box
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where Φ1
p(X) is the flow of X at time 1 starting from p. Such map might be defined only on a

neighborhood of 0 ∈ Rn. However, for the sake of simplicity and for the fact that this is the case for

groups, we assume that Φp is globally defined.

We define the box with respect to d1, . . . , dn as

Box(r) :=
{

(t1, . . . , tn) ∈ Rn : |tj | ≤ rdj
}

The following comparison theorem is due to many people (Mitchell, Gershkovich, Nagel-Stein-

Wainger, cf. [Gro99]) and is called ball-box theorem since compare the boxes Box(r) in Rn with the

balls B(p, r) with respect to the dCC distance.

Theorem 3.4.1 (Ball-Box Theorem). Let (M,∆, ‖ ·‖) a subFinsler manifold. Assume ∆ is equireg-

ular. Fix p̄ ∈M and an equiregular frame X1, . . . , Xn in a neighborhood of p̄ with degree d1, . . . , dn

and related boxes Box(·). Then there is a neighborhood U of p̄ in M and there is C > 1 and ρ > 0

such that for all p ∈ U and all r ∈ (0, ρ)

BdCC (p,
r

C
) ⊂ Φp(Box(r)) ⊂ BdCC (p, Cr).

The Ball-Box theorem will not be proved here in this generality. It will be proved later in the

easier case of Carnot groups, see Theorem 6.3.10.

Remark 3.4.2. The Ball-Box Theorem 3.4.1 gives a quantitative version of Chow’s Theorems 3.2.1

and 3.1.17.

As far as we know, nothing is known regarding the following natural question, except for contact

3-manifolds.

Question 3.4.3 (Open!). Are all sufficiently small sub-Finsler balls and spheres homeomorphic to

the usual Euclidean balls and spheres?

Here is a first consequence of the Ball-Box Theorem 3.4.1.

Corollary 3.4.4 (Hölder equivalence of CC and Euclidean metrics). Locally, each sub-Finsler man-

ifold is Hölder equivalent to a Riemannian manifold.

Proof. Let (M,∆, ‖·‖) be the sub-Finsler manifold. Let g be a Riemannian tensor whose norm is

smaller than ‖·‖ and denote by dRiem the induced Riemannian distance.
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Consider the identity map id : M →M . Obviously the map

id : (M,dCC)→ (M,dRiem)

is 1-Lipschitz, and so Hölder.

For the other direction, let s := maxj dj the maximum of the degree dj of the vector fields of

some equiregular basis {Xj}, i.e, s is the step of ∆. Notice that, for r ∈ (0, 1), one has that

BE(0, rs) ⊂
n∏
j=1

[−rs, rs] ⊂ Box(r),

where BE denotes the Euclidean ball in Rn. Therefore, using the second inclusion of the Ball-Box

Theorem 3.4.1 and the fact that the exponential maps Φp are biLipschitz (locally uniformly in p),

we get that

BdCC (p, Cr) ⊇ Φp(Box(r)) ⊇ Φp(BE(0, rs)) ⊇ BdRiem
(p, C ′rs).

Hence, the map

id : (M,dRiem)→ (M,dCC)

is 1/s-Hölder.

3.4.2 Dimensions of CC spaces

Definition 3.4.5 (Homogeneous dimension). If ∆ is equiregular, we define its homogeneous dimen-

sion as the natural number

Q := Q∆ =
n∑
j=1

j
(

dim ∆[j](p)− dim ∆[j−1](p)
)
, (3.4.6)

which is independent on p.

In other words,

Q = m1 + 2(m2 −m1) + 3(m3 −m2) + · · ·+ s(ms −ms−1) (3.4.7)

and

Ln(Box(r)) = rQ.

In terms of the degrees of the vector fields, we also have

Q =

n∑
j=1

dj . (3.4.8)
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Corollary 3.4.9. If a sub-Finsler manifold (M,∆, ‖ · ‖) has an equiregular distribution then the

Hausdorff dimension of (M,dCC) equals the homogeneous dimension Q. Moreover, the Q-dimensional

Hausdorff measure of (M,dCC) is locally biLipschitz equivalent to the Finsler volume form.

In particular, if TM 6= ∆, the Hausdorff dimension is strictly greater than the topological dimen-

sion.

Proof. Using notation of the Ball-Box Theorem 3.4.1, let k be the (locally uniform) biLipschitz

constant of the exponential map Φp with respect to the Finsler distance on the n-manifold M and

the Euclidean distance on Rn. Since the Finsler volume form vol (resp., the Lebesgue measure Ln)

is the n-dimensional Hausdorff measure of the Finsler manifold M (resp., of the Euclidean space

Rn), we have, for small r,

1

kn
Ln(Box(r)) ≤ vol(Φp(Box(r))) ≤ knLn(Box(r))

If Q is the homogeneous dimension, by the Ball-Box theorem then we get, for small r,

1

knCQ
rQ ≤ vol(BdCC (p, r)) ≤ knCQrQ.

By Theorem 2.1.26 and Remark 2.1.28, we conclude.

3.4.3 The problem of dimensions of submanifolds in CC spaces

Computing the Hausdorff dimension and Hausdorff measure of submanifolds in sub-Finsler manifolds

with respect to the Carnot-Carathéodory distance is a rather natural question.

In 0.6 B of [Gro99], Gromov has given a general formula for the Hausdorff dimension of smooth

submanifolds in equiregular Carnot-Carathéodory spaces and in [Mag08a] it is shown that this

formula coincides with the degree of the submanifold, recently introduced in [MV08].

Theorem 3.4.10 ([Gro99, page104]). Let (M,∆, ‖·‖) be a sub-Finsler manifold with an equiregular

distribution ∆ and Carnot-Carathéodory distance dCC . Let Σ ⊂ M a smooth sub-manifold. Then

the Hausdorff dimension of (Σ, dCC) is

dimH(Σ, dCC) = max


n∑
j=1

j · rank(TpM ∩∆[j](p))/(TpM ∩∆[j−1](p)) : p ∈ Σ

 .

Nevertheless, the question regarding Hausdorff measures of smooth submanifolds has not yet

an answer. In [MV08] Magnani and Vittone found an integral formula for the spherical Hausdorff
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measure of submanifolds in Carnot groups under a suitable ‘negligibility condition’. This negligibility

condition has been recently obtained in all two step groups, [Mag08a] using standard covering

arguments, and in the Engel group, using blow-up arguments [LM10]. However it is still open in

higher step groups and in general sub-Riemannian manifolds. We address the reader to the work of

Magnani [MV08, Mag08b, Mag08a] for more information on this problem and its connections with

the literature.

3.5 Exercises

Exercise 3.5.1. Show that a Finsler distance is a distance that induced the manifold topology.

Exercise 3.5.2. Show that two Finsler distances on a compact set are biLipschitz equivalent.

Exercise 3.5.3. Prove that Finsler-Carnot-Carathéodory distances, and in particular Riemannian

and Finsler distances, are length distances.

Exercise 3.5.4. The Hausdorff dimension of a Riemannian n-manifold is n.

Exercise 3.5.5. If γ : I → (M,dCC) is parametrized by arc-length, then ‖γ̇‖ = 1 a.e.

Exercise 3.5.6. Let (M,∆, ‖·‖) be a sub-Finsler manifold. We denote by LengthdCC and Length‖·‖

respectively the length with respect to the metric dCC and the length with respect to the Finsler

norm ‖·‖. Let γ be a horizontal curve. Show that

Length‖·‖(γ) = LengthdCC (γ).

Exercise 3.5.7. Let γ be any absolutely continuous curve in a sub-Finsler manifold. Prove that

γ is horizontal ⇐⇒ LengthdCC (γ) < +∞.

Exercise 3.5.8. Denote by ΦtiXi the flow at time i with respect to a vector field Xi. Calculate the

differential of

(t1, . . . , tk) 7→ ΦtkXk ◦ · · · ◦ Φt1X1
(p).

Exercise 3.5.9. Let ∆[j](p) the vector space defined in (3.3.4). Prove that ∆[j](p) can be equiv-

alently be defined as the subspace of TpM spanned by all commutators of the Xi’s of order ≤ j

(including, of course, the Xi’s). Namely, Xi(p) has order 1; [Xi, Xj ](p) has order 2; [Xi, [Xj , Xk]](p)

has order 3; but those of order 4 are those in one of the two forms:

[Xi, [Xj , [Xk, Xl]]](p) or [[Xi, Xj ], [Xk, Xl]](p).
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Exercise 3.5.10. Let ∆[j](p) the vector space defined in (3.3.4).

1. Show that ∆[j] might not be a sub-bundle of TM . [Hint: Try the distribution given by the

frame X1 = ∂1, X2 = ∂2 + x2
1∂3.]

2. Prove that, if ∆[j] is a sub-bundle and so make sense to consider smooth sections Γ(∆[j]) of

the bundle ∆[j], then

∆[j+1](p) = ∆[j](p) + R- span
{

[X,Y ](p) : X ∈ Γ(∆), Y ∈ Γ(∆[j])
}
.

Exercise 3.5.11. Recall that Γ(∆) denotes the smooth sections of the bundle ∆. Define span(∆) :=

Lie- span{Γ(∆)}. Show that the Hörmander’s condition is equivalent to span(∆) = TM . (What is

not immediately obvious is that elements of the form [[X1, X2], [X3, X4]], with X1, X2, X3, X4 ∈

Γ(∆), are contained in some ∆[j](p).)

Exercise 3.5.12. Show, without using Theorem 3.4.10, that each smooth surface in the Heisenberg

group has Haudorff dimension equal to 3.

Exercise 3.5.13. Give a proof of Theorem 3.4.10.
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Chapter 4

A review of Lie groups

In the following chapter we will revise the theory of Lie groups. The purpose for this revision is

twofold: First, subriemannian structures on Lie groups are very interesting: they appear in several

situations, even in mechanics, and they are in some sense easier to study than general manifolds.

Second, for arbitrary subriemannian manifolds we shall see that we have the property that these

metric spaces admit tangent spaces that are themselves special subRiemannian Lie groups.

The prerequisites regarding Lie groups and Lie algebras are mostly classical and are based on

[War83] and [CG90].

4.1 Lie groups and their Lie algebras

For completeness we recall that a group is a set G equipped with a binary operation, which we

shall call it product or group product, and denote it with the dot symbol ·, that is a function

(a, b) ∈ G×G 7→ a · b ∈ G that is associative, has an identity element and, an inversion map. The

inverse map is denoted as a 7→ a−1. The identity of a group G will be denoted by 1, or 1G, or e, or

eG.

Let G be a group and g ∈ G. The left translation by g is the bijection

Lg : G −→ G

h 7→ gh.

The right translation by g is the bijection

Rg : G −→ G

h 7→ hg.
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The conjugation by g is the bijection

Cg : G −→ G

h 7→ ghg−1.

We shall focus on Lie group, which are differentiables manifolds with a smooth group operation.

However, some of the remarks we will make hold in the general setting of topological groups: A

topological group is a group together with a Hausdorff topology for which the group product and the

inversion map are continuous. Lie groups are special topological groups:

Definition 4.1.1 (Lie group). A Lie group is a differentiable manifold (second countable, but not

necessarily connected) together with a group structure such both

the product G×G → G and the inverse G → G
(x, y) 7→ x · y g 7→ g−1 (4.1.2)

are C∞ maps.

As in any manifold, the set Γ(TG) of vector fields on G forms a Lie algebra. The general notion

of Lie algebra is the following:

Definition 4.1.3 (Lie algebra). A Lie algebra g (over R) is a vector space (over R) together with

a bilinear operation [·, ·] : g × g → g called bracket, such that for all X,Y, Z ∈ g the following two

properties hold:

[X,Y ] = −[Y,X] (called anti-commutativity),

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 (called Jacobi identity).

Lie algebras are usually denoted by gothic letters. The gothic letters for g, h, n, o, l, p, s are

g, h, n, o, l, p, s. Lie algebras can also be considered on other fields. However, in this text we shall

only consider those over the real numbers.

The importance of the concept of Lie algebras is that there is a special finite dimensional Lie

algebra intimately associated with each Lie group, and that properties of the Lie group are reflected

in properties of its Lie algebra. We shall recall, for example, that simply connected Lie groups are

completely determined (up to isomorphism) by their Lie algebras.

The Lie algebra associated to a group is, as a vector space, the tangent TeG at the identity. To

identify TeG as a subset of Γ(TG), we have to extend each vector to a vector field. Forced to make

a choice, we follow the majority of the literature focusing on the left invariant vector fields, i.e., the

vector fields X ∈ Γ(TG) such that (Lg)∗X = X, so that (dLg)xX = XLg(x) for all x ∈ G. Thanks
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to (2.2.2) with F = Lg, the class of left-invariant vector fields is easily seen to be closed under the

Lie bracket. In other words, the set of left-invariant vector fields form a Lie algebra.

Note that, after fixing a vector v ∈ TeG, we can construct a left-invariant vector field X defining

Xg := (Lg)∗v for any g ∈ G. This construction is an isomorphism between the set of all left-invariant

vector fields and TeG, and proves that left-invariant vector fields form an n-dimensional subspace of

Γ(TG). We denote by g the set TeG equipped with the Lie bracket coming from the identification

with the left-invariant vector fields. Such a g is called the Lie algebra of G and it is occasionally

denoted by Lie(G). We summarise next this definition:

Definition 4.1.4 (Lie algebra of a Lie group). Let G be a Lie group. The Lie algebra of G, denoted

by Lie(G), has two realizations:

Interpretation 1: Lie(G) is the linear space LIVF(G) of left-invariant vector fields on G endowed

with the bracket of vector fields.

Interpretation 2: Lie(G) is the tangent space T1GG equipped with the bracket

[X,Y ] := [X̃, Ỹ ]1G , ∀X,Y ∈ T1GG,

where X̃, Ỹ are the left-invariant vector fields such that X̃1G = X and Ỹ1G = Y . We shall use

alternatively both points of view.

A map F : G→ H between Lie groups is said a Lie group homomorphism is it is both C∞ and a

group homomorphism. A map φ : g→ h between Lie algebras is said a Lie algebra homomorphism

is it is both linear and preserves brackets

φ([X,Y ]) = [φ(X), φ(Y )], ∀X,Y ∈ g.

The first connection between Lie groups and their Lie algebras is that each Lie group homomorphism

induces a Lie algebra homomorphism: if ϕ : G → H is a Lie group homomorphism, note that

ϕ(1G) = 1H , and one can easily show that the differential at the identity

ϕ∗ := dϕ1G : T1gG→ T1HH (4.1.5)

preserves the bracket operation, see Exercise 4.4.13. Namely, ϕ∗ : Lie(G)→ Lie(H) is a Lie algebra

homomorphism, called the Lie algebra homomorphism induced by ϕ.

Viceversa, in the case when G is a Lie group that as a topological space is simply connected, then

each Lie algebra homomorphism come from a Lie group homomorphism. Recall that a topological
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space X is called simply connected if it is path-connected and every loop in X is homotopic to a

constant.

Theorem 4.1.6 ([War83, Theorem 3.27]). Let G and H two Lie groups with Lie algebras g and

h, respectively. Assume G simply connected. Let φ : g → h be a Lie algebra homomorphism. Then

there exists a unique Lie group homomorphism F : G→ H such that dF = φ.

Corollary 4.1.7. If simply connected Lie groups G and H have isomorphic Lie algebras, then G

and H are isomorphic.

There is a theorem [Jac79, page 199] due to Ado that states that every Lie algebra has a faithful

representation in gl(n,R) for some n. As a consequence, if g is a Lie algebra, then there exists a

simply connected Lie group G with Lie algebra g. We then have the following correspondence.

Theorem 4.1.8. There is a one-to-one correspondence between isomorphism classes of Lie algebras

and isomorphism classes of simply connected Lie groups.

4.2 Exponential map

Let M be any differentiable manifold. Let X ∈ Γ(M) be a vector field. Fix a point p ∈ M of

the manifold. Then there is a unique curve γ(t) satisfying γ(0) = p with tangent γ̇(t) = Xγ(t).

The corresponding exponential map is defined by expp(X) = γ(1). In general, the exponential map

is only locally defined, that is, it only takes a small neighborhood of the zero section of TM , to

a neighborhood of p in the manifold. This is because it relies on the theorem on existence and

uniqueness of ordinary differential equation which is local in nature.

In the theory of Lie groups the exponential map is a map from the Lie algebra g to the group G,

exp: g→ G.

Elements of the Lie algebra g are identified with left-invariant vector fields. Thus g ⊂ Γ(TG) and so

the previous definition make sense with p = e. Moreover, one can show that, for all X ∈ g, the ODE

γ̇(t) = Xγ(t) has global solutions. Indeed, the curves γ(t) are in this case homomorphisms from R

to the group. Such homomorphisms from R to G are called one-parameter subgroups. Let X ∈ g

define the Lie algebra homomorphism

ϕ : T0R→ TeG
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t∂t → tX.

Since R is simply connected, Theorem 4.1.6 asserts that there exists a one-parameter subgroup

γ : R→ G with dγ = ϕ. This last condition just mean that γ̇(t) = Xγ(t). Indeed,

γ̇(t) =
d

dh
γ(t+ h)

∣∣∣∣
h=0

=
d

dh
γ(t)γ(h)

∣∣∣∣
h=0

=
d

dh
Lγ(t)(γ(h))

∣∣∣∣
h=0

= (Lγ(t))∗γ̇(0)

= (Lγ(t))∗(dγ)0(∂t)

= (Lγ(t))∗ϕ(∂t)

= (Lγ(t))∗X

= Xγ(t).

We just proved the first part of point (iv) in the following theorem. In fact, the only non-trivial part

of the theorem is point (iii) and the proof of it can be found in [War83, Theorem 3.31].

Theorem 4.2.1 ([War83, Theorem 3.31]). Let X ∈ g an element of the Lie algebra g of a Lie group

G.

(i) exp ((s+ t)X) = exp(sX) · exp(tX), for s, t ∈ R;

(ii) exp(−X) = (exp(X))−1;

(iii) exp : g→ G is smooth and (d exp)0 is the identity map,

(d exp)0 = idg : g→ g,

so exp gives a diffeomorphism of a neighborhood of 0 in g onto a neighborhood of e in G;

(iv) The curve γ(t) := exp(tX) is the flow of X at time t starting from e, more generally, the curve

g exp(tX) = Lg(γ(t)) is the flow starting at g. As a particular consequence left-invariant vector

fields are always complete.

(v) The flow of X at time t is the right translation Rexp(tX).
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Proposition 4.2.2. Let F : G→ H be a Lie group homomorphism. If F∗ : Lie(G)→ Lie(H) is the

induced Lie algebra homomorphism, see (4.1.5), then

exp ◦F∗ = F ◦ exp,

i.e., the following diagram commutes.

Lie(G)

exp

��

F∗ // Lie(H)

exp

��
G

F
// H

Proof. We need to show that for every left-invariant vector field X

F (exp(X)) = exp( ˜( dF )eXe).

We plan to show that for all left-invariant vector field X and for all t ∈ R

σ(t) := F (exp(tX)) = exp(t ˜( dF )eXe).

Namely, we claim that the curve t 7→ σ(t) is the one-parameter subgroup in H generated by ( dF )eXe.

First, we check that σ is a one-parameter subgroup:

σ(s)σ(t) = F (exp(sX))F (exp(tX))

= F (exp(sX) exp(tX))

= F (exp((s+ t)X))

= σ(s+ t),

where we used that F is a homomorphism and that t 7→ exp(tX) is a one-parameter subgroup.

Second, the derivative at 0 of σ is

d

dt
σ(t)

∣∣∣∣
t=0

=
d

dt
F (exp(tX))

∣∣∣∣
t=0

= ( dF )exp(0·X)
d

dt
exp(tX)

∣∣∣∣
t=0

= ( dF )eXe.

The exponential map is in general different from the exponential map of Riemannian geometry.

However, if G is compact, it has a Riemannian metric invariant under left and right translations, and

the (Lie group) exponential map is the (Riemannian) exponential map of this Riemannian metric.
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4.3 The General Linear Group, its Lie algebra, and its ex-
ponential map

The general linear groups

GL(n,R) = {A n× n matrix with detA 6= 0}.

This is a Lie group when equipped with the row-column product of matrices.

Define

gl(n,R) = Matn×n(R) = {all n× n matrices with real entries}.

For A,B ∈ gl(n,R), set

[A,B] = AB −BA.

Such an operation is a bracket that makes gl(n,R) into a Lie algebra. And, as our choice of name

suggests, this Lie algebra is the Lie algebra of the general linear group:

Proposition 4.3.1. The Lie algebra of GL(n,R) is isomorphic to the Lie algebra gl(n,R).

Proof. There are natural identifications (i.e., linear isomorphisms) between

gl(n,R) = Matn×n(R),

Te(gl(n,R)),

Te(GL(n,R)),

Lie(GL(n,R)) = {LIVFs on GL(n,R)}.

We shall prove that such identifications preserve brackets. Regarding the identifications, gl(n,R)

is a vector space (isomorphic to Rn2

), so it is canonically identified with its tangent via the map

gl(n,R)→ Te(gl(n,R)),

A = (Aij)ij 7→
∑
i,j

Aij
δ

δxij

∣∣∣∣
e

,

with inverse Te(gl(n,R))→ gl(n,R),

X 7→ (X(xij))i,j ,

where xij : gl(n,R) → R is the coordinate function giving the entry of the matrix in the i-th row

and j-th column.

Moreover, note that as manifolds GL(n,R) is an open set of gl(n,R), since it is where det 6= 0.

Hence Te(GL(n,R)) = Te(gl(n,R)).
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Given a matrix M ∈ GL(n,R), the left translation by M in coordinates is

LM (N) = M ·N =

(
n∑
k=1

MikNkj

)
i,j

.

So LM is linear; hence, identifying the vector space gl(n,R) with its tangent Te(gl(n,R)), we identify

the differential ( dLM )e with the map LM . Every A ∈ gl(n,R), which in coordinates we write as

A = (Aij)i,j , is identified with
∑
i,j Aijδij |e as an element in Te(gl(n,R)) = Te(GL(n,R)), which in

turn is identified with the left-invariant vector field Ã such that Ãe =
∑
i,j Aijδij |e.

Thus for all M ∈ GL(n,R)

ÃM = ( dLM )eÃe

= ( dLM )e(
∑
i,j

Aijδij |e)

= LM (A)

= M ·A

=

(∑
k

MikAkj

)
i,j

=
∑
i,j

∑
k

MikAkjδij |M .

Hence, in coordinates xij :

Ã =
∑
i,j,k

xikAkjδij .

We claim now that this identification preserves the Lie brackets. Namely, for all A,B ∈ gl(n,R),

[Ã, B̃] = [
∑
i,j,k

xikAkjδij ,
∑
i′,j′,k′

xi′k′Bk′j′δi′j′ ]

=
∑
i,j,k

xikAkjδij(xi′k′Bk′j′)δi′j′ −
∑
i′,j′,k′

xi′k′Bk′j′δi′j′(xikAkj)δij

l=j′,j
=

∑
i,j,k,l

xikAkjBjlδil −
∑

i′,j′,k′,l

xi′k′Bk′j′Aj′lδi′l

=
∑
i,j,k,l

xik(AkjBjl −BkjAjl)δil

=
∑
i,k,l

xik((A ·B)kl − (B ·A)kl)δil

=
∑
i,k,l

xik([A,B])klδil

= [̃A,B].
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We recall the matrix exponential: For each matrix A ∈ Matn×n(R), define

eA = I +A+
1

2
A2 +

1

3!
A3 + · · · =

∞∑
k=0

1

k!
Ak.

We recall that eA is given by an absolutely convergent series, see Exercise 4.4.15. Consequently

A 7→ eA is a smooth map (in fact, analytic). Moreover, each matrix eA is invertible with inverse

e−A, see Exercise 4.4.16. Hence the map A 7→ eA maps Matn×n(R) = gl(nR) smoothly to GL(n,R).

Exercise 4.3.2. Show that the determinant function det : GL(n,R) → (R∗, ·) is a Lie group

morphism, that the trace function tr : gl(n,R)→ (R,+) is a Lie algebra morphism, and that

det(eA) = etr(A).

Proposition 4.3.3 (Derivative of etA). Let A ∈ Matn×n(R). The curve t 7→ etA is a one-parameter

subgroup of GL(n,R) such that

d

dt
etA = AetA

and

d

dt
(etA)

∣∣∣∣
t=0

= A.

Proof. It is easy to verify that A 7→ eA is smooth and that esA · etA = e(s+t)A. Therefore t 7→ etA is

a one-parameter subgroup of GL(n,R).

For the last two claims, we have

d

dt
(etA) =

d

dt

( ∞∑
k=0

1

k!
(tA)k

)

=

∞∑
k=0

1

k!

d

dt
(tkAk)

=

∞∑
k=1

1

k!
ktk−1Ak

= A

∞∑
k=1

1

(k − 1)!
tk−1Ak−1

= AetA.

Exercise 4.3.4. Define the following spaces

SL(n,R) := {g ∈ GL(n,R) : det g = 1}
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sl(n,R) := {x ∈ gl(n,R) : TrX = 0}

Show that

(i) the exponential map goes from sl(n,R) to SL(n,R);

(ii) sl(n,R) is the Lie algebra of the Lie group SL(n,R).

4.4 Exercises

Here are some more or less easy exercise on Lie groups, with some of their solutions.

Exercise 4.4.1. For all elements g, h in a group G we have

(i). Lh ◦ Lg = Lhg,

(ii). Rh ◦Rg = Rgh,

(iii). Lh ◦Rg = Rg ◦ Lh,

(iv). (Lg)
−1 = Lg−1 ,

(v). (Rg)
−1 = Rg−1 ,

(vi). Cgh = Cg ◦ Ch.

For the next two exercises, for a subset U of a group and an integer n ∈ N, set

Un := {g1 · · · · · gn : g1, . . . , gn ∈ U}.

Exercise 4.4.2. Let G be a Lie group (or more generally a topological group). If U ⊂ G is open,

then U2 is open.

Exercise 4.4.3. Connected groups are generated by neighborhoods of the identity: Let G be a

connected Lie group (or more generally a topological group) and U ⊂ G an open subset with 1 ∈ U .

Then G =
⋃∞
n=0 U

n. In other words, G is the smallest group containing U .

Proof. Let U−1 := {g−1 : g ∈ U} and V := U ∩ U−1. Then V is open, V −1 = V , e ∈ V . Let

H :=
⋃∞
n=1 V

n ⊂
⋃
n=1 U

n. Observe that H contains V and is a union of the open sets V n (see the

Exercise 4.4.2). Moreover, H is closed under multiplication and inversion, since V n · V m ⊂ V n+m

and V −n ⊂ V n. In other words, H is an open subgroup of G.

Note that gH is open for all g ∈ G, so
⋃
g/∈H gH is an open set.

Since G is connected, G = H t
⋃
g/∈H gH and H 6= ∅, we conclude that G = H.
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Exercise 4.4.4. Let G be a Lie group. Show that

(i) if H is a subgroup of G that is (topologically) open, then it is closed;

(ii) any neighborhood U ⊆ G of the identity element generates G◦, i.e., any element in the

identity component G◦ is the product of finitely many elements in U ;

(iii) if H is a subgroup of G that has nonempty interior, then it is open and closed.

Exercise 4.4.5. Argue that on a topological groups right translations and left translations are

homeomorphisms. While in a Lie group, they are smooth diffeomorphisms.

Exercise 4.4.6. The space of LIVFs is closed under Lie bracket. In other words, the Lie bracket

of two left-invariant vector fields is left invariant.

Proof. Let X,Y be left-invariant vector fields on a Lie group G and let g ∈ G. Then

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ].

Exercise 4.4.7 (Right translation of LIVF). Let X be a left invariant vector field on a Lie group G.

Let Rg be the right translation by an element g ∈ G. Prove that (Rg)∗X is a left-invariant vector

field.

Solution. Let h ∈ G. Then, using Exercise 4.4.1.iii and that X is left invariant, we have

dLh ◦ ((Rg)∗X) = dLh ◦ dRg ◦X ◦R−1
g

= d(Lh ◦Rg) ◦X ◦R−1
g

= d(Rg ◦ Lh) ◦X ◦R−1
g

= dRg ◦ dLh ◦X ◦R−1
g

= dRg ◦X ◦ Lh ◦R−1
g

= dRg ◦X ◦R−1
g ◦ Lh

= (Rg)∗X ◦ Lh.

Exercise 4.4.8 (Derivative of product of curves). Let G be a Lie group. Let γ : R → G and

σ : R→ G be two smooth curves into G. Consider the product of the two curves, i.e., the curve

t 7→ γ(t)σ(t)

and calculate the derivative of such a curve in terms of γ, σ, and their derivatives. In fact, the

formula is

d

dt
γ(t)σ(t) = ( dRσ(t))γ(t)γ

′(t) + ( dLγ(t))σ(t)σ
′(t). (4.4.9)
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Solution.

Derivating one variable at a time, we get

d

dt
γ(t)σ(t)

∣∣∣∣
t=t0

=
d

dt
γ(t)σ(t0)

∣∣∣∣
t=t0

+
d

dt
γ(t0)σ(t)

∣∣∣∣
t=t0

=
d

dt
(Rσ(t0)γ(t))

∣∣∣∣
t=t0

+
d

dt
(Lγ(t0)σ(t))

∣∣∣∣
t=t0

= ( dRσ(t0))γ(t0)γ
′(t0) + ( dLγ(t0))σ(t0)σ

′(t0).

Exercise 4.4.10. Let G be a Lie group. Let γ : R → G be a smooth curve into G. Consider the

curve

t 7→ γ(t)−1

and calculate the derivative at an arbitrary t of such a curve in terms of γ and γ′.

Solution. From the fact that e = γ(t)γ(t)−1, for all t, and formula (4.4.9), we have

0 = ( dRγ(t)−1)γ(t)γ
′(t) + ( dLγ(t))γ(t)−1

d

dt
(γ(t)−1).

Thus

d

dt
(γ(t)−1) = −

(
( dLγ(t))γ(t)−1

)−1
( dRγ(t)−1)γ(t)γ

′(t)

= −( dLγ(t)−1)e( dRγ(t)−1)γ(t)γ
′(t). (4.4.11)

Exercise 4.4.12. Let ϕ : G→ H be a group homomorphism, then

(i) ϕ ◦ Lg = Lϕ(g) ◦ ϕ, for all g ∈ G;

(ii) ϕ ◦Rg = Rϕ(g) ◦ ϕ, for all g ∈ G.

Exercise 4.4.13. Let ϕ : G→ H be a Lie group homomorphism. Given a left-invariant vector field

X on G, let ϕ∗X be the left-invariant vector field on H for which (ϕ∗X)1H = ( dϕ)1G(X1G).

(i) The vector fields X and ϕ∗X are ϕ-related, i.e., ( dϕ)gXg = (ϕ∗X)ϕ(g).

(ii) If g, g′ ∈ G are such that ϕ(g) = ϕ(g′) and X is a left-invariant vector field on G, then

( dϕ)gXg = ( dϕ)g′Xg′ .

(iii) For all g ∈ G, we have ( dϕ)g(Xg) = ( dLϕ(g))e( dϕ)eXe. Hence, ϕ∗X is the left-invariant

extension of the (a-priori-not-well-defined) vector field on H given as the push forward of X

via ϕ.
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(iv) ϕ∗ : Lie(G)→ Lie(H) is a Lie algebra homomorphism.

(v) ( dϕ)e : (TeG, [·, ·])→ (TeH, [·, ·]) is a Lie algebra homomorphism.

Hints. From Exercise 4.4.12.(i), we have

(ϕ∗X)ϕ(g) = ( dLϕ(g))e( dϕ)eXe

= ( d(Lϕ(g) ◦ ϕ))eXe

= ( d(ϕ ◦ Lg))eXe

= ( dϕ)g( dLg)eXe

= ( dϕ)gXg.

For X,Y ∈ Lie(G), on the one hand [X,Y ] ∈ Lie(G), on the other hand [X,Y ] and [ϕ∗X,ϕ∗Y ] are

ϕ-related. Thus ϕ∗[X,Y ] = [ϕ∗X,ϕ∗Y ].

Exercise 4.4.14. Show that if γ is a curve into a Lie group, then

d

ds
Adγ(s) = Adγ(s) ad

(
( dL−1

γ(s))γ(s)(
d

ds
γ(s))

)

Solution. Use twice that Adp ◦Adq = Adpq to obtain

∂s Adγ(s) = ∂ε Adγ(s+ε) |ε=0

= ∂ε Adγ(s) Adγ(s)−1 Adγ(s+ε) |ε=0

= Adγ(s) ∂ε Adγ(s)−1γ(s+ε) |ε=0

= Adγ(s) ad(∂ε(γ(s)−1γ(s+ ε))|ε=0)

= Adγ(s) ad
(
( dL−1

γ(s))γ(s)(∂sγ(s))
)
.

Exercise 4.4.15. For all A ∈ Matn×n(R), entry by entry the matrix exponential eA is an absolutely

convergent series.

Solution. Indeed, for each M ∈ Matn×n(R) set

‖M‖ = sup{|Mv| : |v| ≤ 1},

where | · | is the Euclidean norm in Rn. Then∥∥∥∥∥
N2∑
k=N1

1

k!
Ak

∥∥∥∥∥ ≤
N2∑
k=N1

1

k!
‖Ak‖ ≤

N2∑
k=N1

1

k!
‖A‖k N1,N2→∞−→ 0.
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Exercise 4.4.16. Let A,B ∈ gl(nR). Show that if AB = BA, then eA+B = eAeB = eBeA.

Solution.

eA · eB =

( ∞∑
k=0

1

k!
Ak

)
·

( ∞∑
l=0

1

l!
Bl

)

=
∑
k,l

1

k!

1

l!
AkBl

=

∞∑
m=0

m∑
j=0

1

j!(m− j)!
AjBm−j

=

∞∑
m=0

1

m!

m∑
j=0

(
m

j

)
AjBm−j

(AB=BA)
=

∞∑
m=0

1

m!
(A+B)m

= eA+B .

Exercise 4.4.17. Given a matrix A and an invertible matrix B, show that

eBAB
−1

= BeAB−1.

Hint: Notice that (BAB−1)k = BAkB−1, for all k ∈ N.

Exercise 4.4.18. Show that for all X,Y ∈ gl(n,R) the derivative of eX in the direction Y has the

formula:

lim
t→0

eX+tY − eX

t
=

∞∑
k=1

1

k!

k∑
i=1

Xi−1Y Xk−i.
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Chapter 5

SubFinsler Lie groups

5.1 Left-invariant polarizations on Lie groups

Let G a Lie group with Lie algebra g = Lie(G), seen setwise as the tangent space T1G at the identity

element 1 = 1G. There is a one-to-one correspondence between vector subspaces V ⊆ g of g and

left-invariant polarizations ∆, that is, V = ∆1G and

∆p =
{
v ∈ TpG : (dLp)

−1v ∈ V
}
.

In the following, given two subspaces U, V of g, we denote by

[U, V ] := span {[u, v] : u ∈ U, v ∈ V } .

For Lie groups with a polarization we define

∆(1) := ∆, ∆(k) := ∆(k−1) + [∆,∆(k−1)]

Observe that the vector subspace of g defined by ∆(2) = ∆ + [∆,∆], induces a polarization. In

manifolds the analogue is not true since it may happen that the rank of ∆(2) is not constant.

A standing assumption on geometry of Lie groups is, for example, that polarizations and sub-

Finsler structures are assumed left-invariant.

Theorem 5.1.1. If (G,∆) is a polarized Lie group of dimension n, then we have the following

dichotomy:

(a) either ∆(n−1) 6= g;

(b) or ∆ is bracket generating.
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Proof. Note that the function k ∈ N 7→ dim(∆(k)) is non-decreasing and it takes values in {1, 2, . . . , n}.

Thus, if ∆ is not bracket generating then there exists k < n such that ∆(k) = ∆(l) for every l ≥ k.

Proposition 5.1.2. If ∆ ia a bracket-generating polarization on a Lie group G, then every two CC

distances induced by left-invariant norms on ∆ are globally bi-Lipschitz.

Proof. Notice first that the notion of length of a horizontal curve γ (and hence the notion of the

associated CC distance) depends on the norm in the following way:

l(γ) =

∫ 1

0

∥∥∥∥∥
m∑
i=1

Xi(γ(t))

∥∥∥∥∥
γ(t)

dt =

∫ 1

0

∥∥∥(dL)−1
γ(t)(γ̇(t))

∥∥∥
e
dt.

Since G is finite dimensional every choice of ‖ · ‖e is equivalent to the others. This produces a

bi-Lipschitz equivalence for CC distances.

Theorem 5.1.3. The following facts hold.

(1) Every subRiemannian Lie group is complete.

(2) Every subRiemannian Lie group M is a geodesic space i.e. for every p, q ∈ M there exists

γ : [0, a]→ horizontal such that d(p, q) = l(γ).

5.1.1 Energy VS Length

The energy of a parametrized curve γ : [0, 1]→M with respect to sub-Finsler norm ‖·‖ is

E(γ) := Energy‖·‖(γ) :=
1

2

∫ 1

0

‖γ̇(t)‖2 dt.

One has the equality:

dCC(x, y) := inf{
√

2 · Energy‖·‖(γ) | γ horizontal, from x to y}. (5.1.4)

On the contrary of length, energy depends on the parametrization of the curve. However, by Jensen’s

inequality, we alway have

L(γ) ≤
√

2 · E(γ),

and equality in the case that the curve is parametrized by a multiple of the arc length.
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5.2 SubRiemannian extrema on subRiemannian groups

5.2.1 First order necessary conditions for length minimizers on subRie-
mannian groups

Let G be a Lie group, let V ⊆ g and let (e1, . . . , er) be an orthonormal basis for V . Define

Ω := L2([0, 1];V ) ∼= L2([0, 1];Rr) and equip it with the usual L2-norm

‖u‖ :=

(∫ 1

0

r∑
i=1

ui(t)
2 dt

) 1
2

.

We refer to Ω as the space of controls.

For every u ∈ Ω, let γu : [0, 1]→ G be the solution of the ODE{
γ(0) = 1G

γ̇u(t) =
(
dLγ(t)

)
u(t) for a.e. t ∈ [0, 1].

(5.2.1)

By Carathéodory Theorem on ODEs, the equation is well posed and in this way each u ∈ γ induces

a V -horizontal curve γu on G. Every V -horizontal curve is of the form γu for some u. We call u the

control of γu.

Define now the end-point map
End : Ω −→ G

u 7−→ γu(1);

and the energy function
E : Ω −→ R

u 7−→ 1

2
‖u‖2.

The extended end-point map is then

Ẽnd : Ω −→ G× R

u 7−→
(

End(u), E(u)
)
.

Given a point p ∈ G minimizing the energy between e and p rephrase as minimizing E(u) among

all u for which γu(1) = p. We shall say that γu is a minimizer for the energy, or for short that u is

a minimizer, if for all v ∈ Ω we have

End(v) = End(u) =⇒ E(v) ≥ E(v).

Remark 5.2.2. Minimizing the length or the energy is the same. Indeed, by Cauchy-Schwartz

inequality we easily get L(γu) ≤ 2E(u). On the other hand, if γu is parametrized by arclength we

get 2E(u) = L(γu). Actually, the infimum is the same even if u are taken to be in Lp with p ∈]1,∞[.
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Remark 5.2.3. If u0 is a minimizer for the energy then Ẽnd cannot be open at any neighborhood

of u0 and therefore u0 must be a singular point for Ẽnd. Indeed, if there were a subset U ⊆ Ω

for which Ẽnd(U) is a neighborhood of Ẽnd(u0) within G × R, then we can find ũ ∈ U such

that End(ũ) = End(u0) and E(ũ) < E(u0). This contradicts the minimality of u0. Moreover, if

the differential of dẼnd : Ω → T
Ẽnd(u)

(G × R) at u0 were surjective, then we can take a vector

subspace W ⊂ Ω for which dẼnd|W : W → T
Ẽnd(u)

(G × R) is an isomorphism. From the implicit

function theorem, we conclude that the map Ẽnd|W : W → G×R gives a diffeomorphism between a

neighborhood of u0 within W and a neighborhood of Ẽnd(u0) within G×R. Such a fact contradicts

the property that Ẽnd cannot be open at u0.

Because of this last remark, it’s useful if we calculate the differential of the extended endpoint

map Ẽnd.

Proposition 5.2.4. For every u ∈ Ω the differential of Ẽnd at u is

dẼndu : Ω −→ T
Ẽnd(u)

(G× R) = TEnd(u)G× R

v 7−→
((
dRγu(1)

)
e

∫ 1

0

Adγu(t)(v(t))dt, 〈u, v〉
)
,

where Adg : g→ g is defined by Adg = (Cg)∗ where Cgh = ghg−1.

Sketch of the proof. We sketch the proof for G ⊂ GLn(R), where we can interpret the Lie product

as a matrix product and work in the matrix coordinates. Let γu+εv be the curve with the control

u+εv and σ(t) be the derivative of γu+εv(t) with respect to ε at ε = 0. Then σ satisfies the following

ODE (which is the derivation with respect to ε of (5.2.1) for γu+εv)

dσ

dt
= γ(t) · v(t) + σ · u(t).

Now it is easy to see that
∫ t

0
Adγ(s)(v(s)) ds · γ(t) satisfies the above equation with the same initial

condition as σ, hence is equal to σ.

Assume now that γu is length minimizing for some u ∈ Ω that is energy minimizing. By Re-

mark 5.2.3, we deduce that u is a critical point for Ẽnd, that is dẼndu : Ω → TEnd(u)G × R is

not surjective. Since then dẼndu(Ω) is a strict subspace of TEnd(u)G × R, there exists (ξ, ξ0) ∈(
TEnd(u)G

)∗ × R =
(
TEnd(u)G× R

)∗
such that (ξ, ξ0) 6= (0, 0) and

〈(ξ, ξ0), dẼndu(v)〉 = 0, ∀v ∈ Ω.
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By Proposition 5.2.4, this is equivalent to say that

ξ

(
dRγu(1)

∫ 1

0

Adγu(t) v(t) dt

)
+ ξ0〈u, v〉 = 0 ∀v ∈ Ω. (5.2.5)

Since right translations are automorphisms, Equation (5.2.5) is true if and only if there exist λ ∈ g∗

and ξ0 ∈ R such that (λ, ξ0) 6= (0, 0) and

λ

(∫ 1

0

Adγu(t) v(t) dt

)
= ξ0〈u, v〉, ∀v ∈ Ω. (5.2.6)

We now consider two cases: either ξ0 6= 0 or ξ0 = 0. The first case is called normal, the second

one is called abnormal. We stress that in the case the codimension of dẼndu(Ω) within TEnd(u)G×R

is strictly larger than 1, then there would be other choices for (λ, ξ0). Hence, some particular u may

have an normal pair (λ, ξ0) and a (different) abnormal pair (λ′, ξ′0).

Firstly, we suppose that (λ, ξ0) as in (5.2.6) is such that ξ0 6= 0. Up to multiply the equation by

a constant we can assume that ξ0 = 1. Formally, for every Lebesgue point of u we have

γ̇u(t) = dLγu(t)u(t) = dLγu(t)

r∑
i=1

〈u, δtei〉ei

= dLγu(t)

r∑
i=1

(
λ

∫ 1

0

Adγu(s)(δtei)ds

)
ei

=

r∑
i=1

λ
(
Adγu(t)(ei)

)
Xi(γu(t)),

where in the last equality we have used the identity Xi(g) = (dLg) ei. We therefore say that a curve

γ satisfies the normal equation (or the sub-Riemannian geodesic equation) if there exists λ ∈ g∗ such

that

γ̇(t) =

r∑
i=1

λ
(
Adγu(t)(ei)

)
Xi(γu(t)), for almost every t ∈ [0, 1]. (5.2.7)

A solution to (5.2.7) is called normal curve. By bootstrapping using (5.2.7) we deduce that the

horizontal curve γ and its control u are C∞.

Recall that the curve γu is the solution of (5.2.1). Therefore, if we write u =
∑r
i=1 ui(t)ei,

another version of the normal equation is

ui = λ (Adγu(ei)) , for almost every t ∈ [0, 1] and for every i = 1, . . . , r. (5.2.8)

In particular, since in our case γ(0) = 1G, the last equation implies

ui(0) = λ(ei), i = 1, . . . , r. (5.2.9)

Fact: every normal curve is locally length minimizing. The converse is not true.
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Exercise 5.2.10. Prove that every solution of (5.2.7) is analytic and is parametrized by arclength.

Secondly, we suppose that (λ, ξ0) as in (5.2.6) is such that ξ0 = 0. The equations rephrases as

follows: There exists λ 6= 0 such that

λ

(∫ 1

0

Adγu(t) v(t)dt

)
= 0 ∀v ∈ Ω. (5.2.11)

Choosing formally v(t) = δt we obtain that

λ
(
Adγu(t) V

)
= {0}. (5.2.12)

If e1, . . . , er is a basis of V , then 5.2.12 rephrases as a linear system of equations: A horizontal curve

is abnormal if and only if there exists λ ∈ g such that λ 6= 0 and

λ
(
Adγ(t)(ei)

)
= 0, i = 1, . . . , r. (5.2.13)

In particular, since in our case γ(0) = 1G, the last equation implies

λ(ei) = 0, i = 1, . . . , r. (5.2.14)

Notice that, after we fix i and λ, the function g 7→ λ (Adg(ei)) is smooth and (5.2.13) says that γu(t)

lies in the zero level set of such a function. Moreover, notice that in a nilpotent Lie group we have

that, in exponential coordinates, Ad is polinomial, hence these functions are polynomials.

In Riemannian geometry V is everything and so such a nonzero λ cannot exists. Namely, all

minimizers are normal.

In subRiemannian structures it is possible to find length-minimizing curves that are not normal,

and so are abnormal.

Theorem 5.2.15. In contact structures, as for example SE(2), every abnormal curve is constant.

In every subRiemannian manifold of step 2 every length minimizer is normal.

5.2.2 A distinguished class of polynomials

For λ ∈ g and Y ∈ g define PλY : G→ R as

PλY (g) := λ (Adg(Y )) , ∀g ∈ G. (5.2.16)

A useful formula that these polynomials satisfy is the following:

XPλY = Pλ[X,Y ], ∀X,Y ∈ g,∀λ ∈ g∗. (5.2.17)
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Indeed, [see notes at page 6 in file attached image.0377 001.pdf]...

From (5.2.17), it is easy to deduce that normal equations are parametrized with constant speed.

Indeed, [see notes at page 5 in file attached image.0377 001.pdf]...

5.2.3 First derivative of the extremal equations

Both in (5.2.8) and in (5.2.13), the function t 7→ λ
(
Adγ(t)(ei)

)
is considered. Let us differentiate

such a function from [0, 1] into R.

d

dt

(
λAdγ(t)(ei)

)
=

d

ds

(
λAdγ(t+s)(ei)

)∣∣∣∣
s=0

=
d

ds

(
λAdγ(t) Adγ(t)−1γ(t+s)(ei)

)∣∣∣∣
s=0

= λAdγ(t) ad(dLγ(t))
−1
γ(t)−1γ̇u(t)

(ei)

= λAdγ(t)[u(t), ei], (5.2.18)

where we used that Adgh = Adg Adh, that λ and Adg are linear, and finally we used 5.2.1. From

this last calculation we draw two conclusions: If γu is a normal curve with covector λ ∈ g∗, then

u̇i = λAdγ(t)[u(t), ei], i = 1, . . . , r. (5.2.19)

If γu is an abnormal normal curve with covector λ ∈ g∗, with λ 6= 0, then

0 = λAdγ(t)[u(t), ei], i = 1, . . . , r. (5.2.20)

5.2.4 Extremals in rank-2 Carnot groups

Consider a horizontal curve γ : [0, 1] → G, where G is a Carnot groups of rank-2. Say that the

horizontal layer is spanned by e1 and e2. We use the notation e12 = [e1, e2].

Then u(t) = u1(t)e1 + u2(t)e2 and we have

[u(t), e1] = −u2e12 and [u(t), ei] = u1e12. (5.2.21)

From (5.2.20), we have that if γu is an abnormal normal curve with covector λ ∈ g∗, with λ 6= 0,

then

u2λ(Adγ(t)(e12)) = u1λ(Adγ(t)(e12)) = 0. (5.2.22)

In addition, notice that we may assume that γu is parametrized by arc length, so u has constant

nonzero norm, almost everywhere. In particular (u1, u2) 6= (0, 0) almost surely. Therefore we con
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conclude that for such an abnormal curve we have

λ(Adγ(t)(e12)) = 0. (5.2.23)

Viceversa, assume γ is a horizontal curve in a rank-2 Carnot group and that γ satisfies (5.2.23) for

some λ ∈ g∗ with λ 6= 0. Then it clearly satisfies (5.2.22) and, since we have r = 2 and we have

(5.2.21), we also have (5.2.20). Then look at each function λAdγ(t)(ei), for i = 1 and 2. On the one

hand, because of (5.2.18) we have that its derivative is 0. On the other hand, if γ(0) = 1G and if

λ satisfies (5.2.14), we have that the initial condition at time t = 0 for (5.2.13) is satisfied. Hence

such a curve is abnormal. Hence, (5.2.23) is equivalent to the abnormal equations, in rank 2. We

summarize this last proof in the following statement.

Proposition 5.2.24. In every Carnot group G whose horizontal layer is spanned by e1, e2, a hor-

izontal curve γ : [0, 1] → G with γ(0) = 1G is abnormal if and only if for some λ ∈ g∗ with λ 6= 0

and λ(e1) = λ(e2) = 0 it satisfies

λ(Adγ(t)([e1, e2])) = 0. (5.2.25)

Whereas, from (5.2.19) we have that if γu is a normal curve with covector λ ∈ g∗, then{
u̇1 = −u2λ(Adγ(t)(e12)),
u̇2 = u1λ(Adγ(t)(e12)).

(5.2.26)

We shall rephrase such condition in terms of a curvature. Let σ : [0, 1]→ R2 the planar curve such

that σ̇ = u. Then its oriented curvature, see [?, Equation (1.11)], is κ(t) = 1
‖σ′(t)‖3 det(σ′(t), σ′′(t)).

Hence, from (5.2.26), if γu is a normal curve with covector λ ∈ g∗, then its curvature satisfies

κ =
σ′1σ

′′
2 − σ′2σ′′1
‖σ′‖3

=
u1u̇2 − u2u̇1

‖u‖3
(5.2.26)

=
u2

1λ(Adγ(e12)) + u2
2λ(Adγ(e12))

‖u‖3
=

1

‖u‖
λ(Adγ(t)(e12)).

We observe that the element Adγ(t)(e12) is in [g, g], hence in the last equation we lost the information

of the value of λ on V1. Still, normal curves need to satisfy (5.2.14). Viceversa, let’s assume γ is a

horizontal curve in a rank-2 Carnot group and that for some λ ∈ [g, g]∗ we have that γ satisfies

κ =
1

‖u‖
λ(Adγ(t)(e12)). (5.2.27)

First we observe that by bootstrapping (5.2.27) we have that γ and its control u are smooth. Then

we can extend λ as an element of g∗ so that we also have (5.2.14). Now that we have λ ∈ g∗ we

consider the normal curve (which is unique) associated to λ with γ(0) = 1G, which we denote by

γλ. We shall show that γ = γλ. The reason is that both curves satisfy the ODE (5.2.27) with same

initial data. [EXPLAIN MORE]
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5.3 Regular abnormal extremals

We fix a (rank-2) Carnot group G whose horizontal layer is spanned by e1, e2.

Definition *to be verified*: A horizontal curve γ : [0, 1] → G, parameterized by arc length and

with γ(0) = 1G, is called a regular abnormal extremal if for some λ ∈ g∗ with λ 6= 0, λ(e1) = λ(e2) =

0, and

λ|V3
6= 0 (5.3.1)

it satisfies

λ(Adγ(t)([e1, e2])) = 0. (5.3.2)

Dubbio: è la stessa cosa se invece di (5.3.1) chiediamo che

λ(Adγ(t) V3) 6= {0}, ∀t ∈ [0, 1]

Liu and Sussmann [?, Theorem5] showed that regular abnormal extremals are length minimizers,

in rank-2 Carnot groups (in rank-2 subRiem manifolds?).
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Nilpotent Lie groups and Carnot
groups

Tangent spaces of a sub-Riemannian manifold are themselves sub-Riemannian manifolds. They can

be defined as metric spaces, using Gromov’s definition of tangent spaces to a metric space, and

they turn out to be sub-Riemannian manifolds. Moreover, they come with an algebraic structure:

nilpotent Lie groups with dilations. In the classical, Riemannian case, they are indeed vector spaces,

that is, Abelian groups with dilations. Actually, the above is true only for regular points. At singular

points, instead of nilpotent Lie groups one gets quotient spaces G/H of such groups G. Most of the

exposition on tangent spaces is taken from [Bel96].

6.0.1 Nilpotent Lie groups and nilpotent Lie algebras

This material is taken from the book [CG90]. The exposition does not pretend to be a better one.

We just extract for the book all those parts of importance for the following.

Let g be a Lie algebra over R. The lower (or descending) central series of g is defined inductively

by

g(1) = g;

g(i+1) := [g, g(i)] = R-span{[X,Y ] : X ∈ g, Y ∈ g(i)}.

Definition 6.0.1. (Nilpotent Lie algebra and Lie group). A Lie algebra g is nilpotent if there is an

integer s such that the (s + 1)-element g(s+1) of its lower central series is {0}. In this case, if s is

the minimal integer such that g(s+1) = {0}, then g is said to be s-step nilpotent and s is called the

nilpotency step of g. A connected Lie group is said to be nilpotent if its Lie algebra is nilpotent.
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For arbitrary group there is a general definition of nilpotency. For connected Lie groups this is

equivalent to saying that G itself is a nilpotent group, see [Hoc65, Thm. XII.3.1].

A Lie algebra g is s-step nilpotent if and only if all brackets of at least s+ 1 elements of g are 0

but not all brackets of order s are.

Remark 6.0.2. A nilpotent Lie algebra g has always non-trivial center; in fact, if g is s-step

nilpotent, g(s) is central, i.e., it is contained in the center of g.

Recall that the center of a Lie algebra g is

Center(g) := {X ∈ g : [X,Y ] = 0 for all Y ∈ g},

and the center of a (Lie) group G is

Center(G) := {g ∈ G : gh = hg for all h ∈ G}.

The two centers are related since the center of a connected Lie group is a closed sub-group with Lie

algebra the center of g, see [War83, page 116].

Be aware that the center might be strictly larger than g(s), see Exercise 6.4.9.

6.0.2 Examples

One common convention in describing nilpotent Lie algebras - and one that we shall often use - is

the following. Suppose that g = R-span{X1, . . . , Xn}. To describe the Lie algebra structure of g, it

suffices to give [Xi, Xj ] for all i < j. We can shorten this description considerably by giving only

the non-zero brackets; all others are assumed to be zero.

Heisenberg algebras

The (2n+1)-dimensional Heisenberg algebra is the Lie algebra with basis {X1, , . . . , Xn, Y1, , . . . , Yn, Z},

whose pairwise brackets are equal to zero expect for

[Xj , Yj ] = Z, for j = 1, . . . , n.

It is a two-step nilpotent Lie algebra. One way to realize it as a matrix algebra is to consider

(n+ 2)× (n+ 2) upper triangular matrices of the form
0 x1 . . . xn z
· 0 · 0 y1

· · ·
...

· 0 yn
0 · · · 0

 .
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The Lie group associated is called the n’th Heisenberg group and as matrix group it is

G =




1 x1 . . . xn z
· 1 · 0 y1

·
. . . ·

...
· 1 yn
0 · · · 1

 : x1, , . . . , xn, y1, , . . . , yn, z ∈ R


⊂ GL(n+ 2,R).

Filiform algebras of the first kind

The (n+1)-dimensional filiform algebra of the first kind is the algebra spanned by X,Y1, Y2, . . . , Yn,

with only non-trivial relations

[X,Yj ] = Yj+1, for j = 1, . . . , n− 1.

It is an n-step nilpotent Lie algebra and can be realized as a matrix algebra considering the matrices

of the form: 

0 x 0 · 0 yn

·
. . .

...

·
. . .

...
· x y2

· y1

0 0


.

Strictly upper triangular matrix algebras

The algebra of strictly upper triangular n × n matrices is an (n − 1)-step nilpotent Lie algebra of

dimension n(n− 1)/2, and its center is one-dimensional. Namely, let

g = nn :=


0 ∗ ∗

0
. . . ∗

0 0 0


 ⊂ gl(n,R)

and

G = Nn :=


1 ∗ ∗

0
. . . ∗

0 0 1


 ⊂ GL(n,R)

So nn is the Lie algebra of Nn and is nilpotent of step (n− 1).

Free-nilpotent algebras

The free nilpotent Lie algebra of step k and rank n (or on n generators) is defined to be the quotient

algebra fn/f
(k+1), where fn is the free Lie algebra on n generators. It is not hard to see that it is

finite-dimensional.
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For example the Lie algebra of rank 2 and step 3 is given by the diagram

X

��

  

Y

~~

��

Z

�� ��
U V,

which has to be read as [X,Y ] = Z, [X,Z] = U , and [Z, Y ] = V .

6.0.3 The BCH formula

The Baker-Campbell-Hausdorff formula allows us to reconstruct any Lie group G locally, with its

multiplication law, knowing only the structure of its Lie algebra g. The Baker-Campbell-Hausdorff

formula links Lie groups to Lie algebras, by expressing the logarithm log(eXeY ) of the product of

two Lie group elements as a Lie algebra element. The logarithm is by definition the inverse of

the exponential, in general it is only locally defined in a neighborhood of the identity, thanks to

Theorem 4.2.1(iii). However, for simply connected nilpotent Lie groups logarithm will be global by

Theorem 6.0.6.

The general Baker-Campbell-Hausdorff formula (BCH formula, for short) is given by:

log(expX expY ) =
∑
n>0

(−1)n−1

n

∑
ri+si>0
1≤i≤n

(
adr1X ◦ ads1Y ◦ adr2X ◦ ads2Y . . . ◦ adrnX ◦ adsn−1

Y

)
(Y )

r1!s1! · · · rn!sn!
∑n
i=1(ri + si)

,

where adX Y = [X,Y ], see (6.0.4). Thus

(
adr1X ◦ ads1Y ◦ adr2X ◦ ads2Y . . . ◦ adrnX ◦ adsn−1

Y

)
(Y )

= [X, [X, . . . [X︸ ︷︷ ︸
r1

, [Y, [Y, . . . [Y︸ ︷︷ ︸
s1

, . . . [X, [X, . . . [X︸ ︷︷ ︸
rn

, [Y, [Y, . . . Y︸ ︷︷ ︸
sn

]] . . .]].

The first terms of the series should1 be

log(expX expY ) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]]

− 1

24
[Y, [X, [X,Y ]]]

− 1

720
([[[[X,Y ], Y ], Y ], Y ] + [[[[Y,X], X], X], X])

+
1

360
([[[[X,Y ], Y ], Y ], X] + [[[[Y,X], X], X], Y ])

+
1

120
([[[[Y,X], Y ], X], Y ] + [[[[X,Y ], X], Y ], X]) + · · ·

1This calculations should be double checked!
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6.0.4 Matrix groups

For matrix Lie groups G ⊆ GL(n,R), the Lie algebra g ⊆ gl(n,R) is simply the tangent space at

the identity I with Lie bracket given by

[A,B] = AB −BA, ∀A,B ∈ gl(n,R).

Moreover, the exponential map coincides with the exponential of matrices and is given by the

ordinary series expansion:

exp(A) =

∞∑
j=0

1

j!
Aj = I +A+

1

2
A2 +

1

3!
A3 + · · · , ∀A ∈ gl(n,R). (6.0.3)

(here I is the identity matrix). In this situation the Baker-Campbell-Hausdorff formula is obtained

by formally solving for Z in eZ = eXeY , using that

log(I +A) =

∞∑
n=1

(−1)n+1

n
An.

Indeed,

Z = log(I + (eXeY − I))

=

∞∑
n=1

(−1)n+1

n
(eXeY − I)n

=

∞∑
n=1

(−1)n+1

n

 ∑
pi+qi>0,pi,qi≥0

XpiY qi

pi!qi!

n

=

∞∑
n=1

(−1)n+1

n

∑
pi+qi>0,pi,qi≥0

Xp1Y q1 · · ·XpnY qn

p1!q2! · · · pn!qn!
.

One will get the BCH formula using that adAB = AB−BA. Please, let me know if you find a clear

and simple calculation of this ending.

6.0.5 Adjoint operators

Each Lie group acts on itself by conjugation: for g ∈ G, the map

Cg : h 7→ ghg−1

is an inner automorphism of G. Its differential at the unit element is called the adjoin operator:

Adg = d(Cg)e : g→ g.
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The map Adg is a Lie algebra automorphism. For matrix groups we have the explicit formula:

AdA(X) = AXA−1, for A ∈ GL(n,R) and X ∈ gl(n,R).

The action

G× g → g

(g,X) 7→ (Adg)X

is called the adjoint action of G. The map

Ad(·) : G→ Aut(g)

is called the adjoint representation of G. Its differential ad := d(Ad)is the adjoint map on g. One

has that the following commutative diagram

g

exp

��

ad // End(g)

exp

��
G

Ad // Aut(g)

and the validity of the formula

adX Y = [X,Y ]. (6.0.4)

Such maps satisfies the following formulae:

exp((Adg)Y ) = Cg(exp(Y )), ∀g ∈ G, Y ∈ g,

Cexp(X)(exp(Y )) = exp(AdexpX(Y )), ∀X,Y ∈ g,

AdexpX(Y ) = eadX (Y ), ∀X,Y ∈ g,

where

eadX :=

∞∑
j=0

1

j!
(adX)j . (6.0.5)

When G is a simply connected nilpotent Lie group the series 6.0.3 and 6.0.5 are finite, giving

polynomial laws for the group multiplication and conjugation.
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6.0.6 Simply connected nilpotent Lie groups

Simply connected Lie groups are uniquely determined by their Lie algebras. Indeed, recall from

Corollary 4.1.7 that if two simply connected Lie groups have isomorphic Lie algebras, then they are

isomorphic. For nilpotent groups, the exponential map and the BCH formula provide a concrete

identification. We will see how one can completely work on the Lie algebra using such coordinates.

Theorem 6.0.6 ([CG90, Theorem 1.2.1]). Let G be a connected, simply connected nilpotent Lie

group.

a The exponential map exp : Lie(G)→ G is an analytic diffeomorphism.

b The Baker-Campbell-Hausdorff Formula holds globally.

Proof for the case of nilpotent matrix groups. If G is a matrix group of nilpotency step s, then for

all A ∈ G

exp(A) = eA =

s∑
j=0

1

j!
Aj .

So exp is a polynomial map.

Its (global) inverse is

log(B) =

s∑
k=1

(−1)k+1

k
(B − I)k.

Also the BCH series is finite and hence analytic.

Since it coincide on an open neighborhood of 0 with the analytic function log(exp(X) exp(Y )),

it coincide globally.

The following facts are consequences of Theorem 6.0.6 and its proof.

Fact 6.0.7. Every Lie sub-group H of a connected, simply connected nilpotent Lie group G is closed

and simply connected.

Let Nn be the group whose Lie algebra are the strictly upper triangular matrices. Namely, Nn

is the group of matrices that are upper triangular and have 1’s in the diagonal.

Fact 6.0.8. Every connected, simply connected nilpotent Lie group has a faithful embedding as a

closed subgroup of Nn for some n.

One important application of Theorem 6.0.6 involves coordinates on G. Since exp is a diffeo-

morphism of g onto G, we can use it to transfer coordinates from g to G. Some authors use exp to

105



6- Nilpotent Lie groups and Carnot groups May 16, 2021

identify g with G. Then the group multiplication can be calculated by the Baker-Campbell-Hausdorff

formula.

Definition 6.0.9 (Exponential coordinates: canonical coordinates of 1st kind). Let {X1, . . . , Xn}

be a basis for a nilpotent Lie algebra of a simply connected nilpotent group G. The coordinates

given by the map

Φ : Rn −→ G

Φ(t1, . . . , tn) := exp(t1X1 + . . .+ tnXn)

are called exponential coordinates. Exponential coordinates are also known as canonical coordinates

of the first kind.

With exp we are identifying Rn with Lie(G) and G. Moreover, the group law can be obtained

through the BCH formula

(s1, . . . , sn) ∗ (t1, . . . , tn) = log

exp

 n∑
j=1

sjXj

 exp

 n∑
j=1

tjXj


Definition 6.0.10. Let g be a nilpotent Lie algebra. An ordered basis {X1, . . . , Xn} for g is called

(strong) Malcev basis if, for each k ∈ {1, . . . , n}, the space

span{X1, . . . , Xk}

is an ideal of g, i.e.

[g, gk] ⊂ gk.

In general, a subspace I of a Lie algebra g is called an ideal of g if [g, I] ⊆ I. By anticommutativity,

there is no need of distinction between left and right ideals.

Fact 6.0.11. In the special class of Carnot groups, see next chapter, the existence of Malcev basis

will be a triviality. However, any nilpotent algebra has Malcev basis, see Theorem 1.1.13 in [CG90]

and the notes following it.

Lemma 6.0.12. If {X1, . . . , Xn} is a Malcev basis for a nilpotent Lie algebra g, then its ideals

gk := span{X1, . . . , Xk} are such that

[g, gk] ⊆ gk−1. (6.0.13)
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Proof. By definition of Malcev basis, we have [g, gk] ⊆ gk and also [g, gk−1] ⊆ gk−1. If the conclusion

of the lemma were not true, then there would be some j ∈ {1, . . . , n} and a1, . . . , ak with ak 6= 0

such that

[Xj , Xk] = akXk +

k−1∑
i=1

aiXi.

Now we iterate bracketing by Xj , i.e., we iterate the map adXi = [Xi, ·]. Thus, we get, for some

a
(l)
1 , . . . , a

(l)
k−1,

(adlXj )(Xk) = alXk +

k−1∑
i=1

a
(l)
i Xi,

which is never zero and so contradicts the nilpotency of g.

Definition 6.0.14 (Malcev coordinates: canonical coordinates of the 2nd kind). Let {X1, . . . , Xn}

be a (strong) Malcev basis for a nilpotent Lie algebra. Define the map

Ψ : Rn → G

Ψ(s) := exp(s1X1) · · · exp(snXn).

The coordinate system defined is called strong Malcev coordinates or also canonical coordinates of

the second kind.

If {X1, . . . , Xn} is a Malcev basis for a nilpotent Lie algebra, we can consider both canonical

coordinates; we have that the Malcev coordinates are related to the exponential coordinates by a

polynomial diffeomorphism whose Jacobian determinant is constantly equal to 1.

Proposition 6.0.15 ([CG90, Proposition 1.2.7]). Let {X1, . . . , Xn} be a Malcev basis for a nilpotent

Lie algebra g. Let Ψ : Rn → G the Malcev coordinate system and Φ : Rn −→ M the exponential

coordinate system associated to the basis. Then

(i) Ψ(s) = Φ(P (s)) where P : Rn → Rn is a polynomial diffeomorphism with polynomial inverse.

(ii) writing P = (P1, . . . , P, n), then Pj(s) = sj + P̂ (sj+1, . . . , sn).

In other words, we have the relation:

exp(s1X1) · · · exp(snXn) = exp(P1(s)X1 + . . .+ Pn(s)Xn).

Proposition 6.0.16 ([CG90, Proposition 1.2.9]). Assume that G is equipped with either exponential

or Malcev coordinates with respect to some basis. For any g ∈ G, left translation Lg and right

translation Rg are maps whose Jacobian determinants are identically equal to 1.
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Proof. We prove the statement for exponential coordinates and left translations. The case of right

translations is similar. For Malcev coordinates it will be true because of they differs from exponential

coordinates by a polynomial diffeomorphism whose Jacobian determinant is constantly equal to 1,

Proposition 6.0.15.

The proof is based on the BCH formula and (6.0.13). Indeed, we can assume that the basis

{X1, . . . , Xn} is a Malcev basis, since linear changes of basis preserve Jacobians. So, let Φ the

exponential coordinate system, and Lg the left translation by g. We need to calculate the Jacobian

of Φ−1 ◦ Lg ◦ Φ. Thus we consider the diagram

Rn Φ // G

(t1, . . . , tn) 7−→ exp(
∑
j tjXj)

Lg

��
(s1, . . . , sn) 7−→ g exp(

∑
j tjXj)

Rn Φ // G,

and we solve the dependence of the si’s from the tj ’s. Since the Malcev coordinates are surjective

we can find u1, . . . , un and write

g = exp(u1X1) . . . exp(unXn).

It is enough to consider the case g = exp(ukXk) and then conclude considering compositions. Thus

we need to consider the system

exp(
∑
j

siXi) = exp(ukXk) exp(
∑
j

tjXj).

By the BCH formula,

∑
j

siXi = ukXk +
∑
j

tjXj +
1

2
[ukXk,

∑
j

tjXj ] + . . . .

Since we have chosen a Malcev basis we have the property (6.0.13). Thus a bracket as [Xk, Xj ]

is only a combination of {X1, . . . , Xj−1}. In other words, the function sj is of the form tj plus a

polynomial that does not depend on the variables t1, . . . , tj . In coordinates, the map Φ−1 ◦ Lg ◦ Φ
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is of the form

Φ−1 ◦ Lg ◦ Φ =



t1 ∗ . . . . . . . . . . . . ∗

0
. . .

. . . ∗ . . . ∗
...

· · tk−1 ∗
. . .

...
...

· · 0 tk + uk ∗ ∗
...

· · · 0 tk−1
. . .

...

· · · · ·
. . . ∗

0 · · · · 0 tn


.

Thus the differential is of the form

d(Φ−1 ◦ Lg ◦ Φ) =



1 ∗ . . . . . . . . . . . . ∗

0
. . .

. . . ∗ . . . ∗
...

· · 1 ∗
. . .

...
...

· · 0 1 ∗ ∗
...

· · · 0 1
. . .

...

· · · · ·
. . . ∗

0 · · · · 0 1


.

Thus the Jacobian of a left translation in exponential coordinates with respect to a Malcev basis is

1 at every point.

Definition 6.0.17. If P : Rn → Rn is a diffeomorphism such that P and P−1 have polynomial

components, then

(s1, . . . , sn) 7→ exp(P1(s)X1 + · · ·+ Pn(s)Xn)

is called polynomial coordinate map.

Examples of polynomial coordinate maps are, obviously, exponential and, by Proposition 6.0.15,

Malcev coordinate maps.

Exercise 6.0.18. Show that Malcev coordinates are polynomial coordinates.

The key observation is that the Jacobian of any polynomial diffeomorphism with polynomial

inverse is a polynomial that is invertible inside the polynomial ring, so it is a constant. Thus,

changing of coordinates by a polynomial diffeomorphism with polynomial inverse preserves Lebesgue

measure preserving maps.

Corollary 6.0.19. In polynomial coordinates, left translations have Jacobian 1.
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Proof. If P is a polynomial map, then Jac(P ) is a polynomial. If P and P−1 are polynomial

diffeomorphisms, then 1 = Jac(Id) = Jac(P ◦ P 1) = (Jac(P ) ◦ P−1) · Jac(P−1).

Hence, Jac(P ) and Jac(P−1) are two polynomial whose product is constant. Thus they are

constant.

If Φ is an exponential coordinate map, then

Jac(P−1 ◦ Φ−1 ◦ LgΦ ◦ P )x =

= Jac(P−1)(Φ−1◦Lg◦P )(x) · Jac(Φ−1 ◦ Lg ◦ Φ)Φ(x) · Jac(Φ)x = 1.

Remark 6.0.20. If a map F : Rn → Rn has Jacobian 1, then it preserves the Lebesgue n-measure

(because of change of variables formula).

—————–

Any Lie group, as any locally compact group, has a natural class of measures: the Haar measures.

A Borel measure µ is called a left-Haar measure if it is left-invariant, i.e., if, for any left translation

Lg,

((Lg)#µ) (B) := µ
(
L−1
g (B)

)
= µ(B), for all Borel set B.

Similarly, a right-Haar measure is a Borel measure that is right invariant. A Borel measure is called

Haar measure if it is both right and left invariant.

Left-Haar measures, as right-Haar measures, are unique in the following sense.

Fact 6.0.21. Left-Haar measures and right-Haar measures that are finite and not zero on compact

sets with nonempty interior are unique up to multiplication by a constant.

A consequence of the previous proposition and the last observation above is the following theorem.

Theorem 6.0.22 ([CG90, Theorem 1.2.10]). Let G be an n-dimensional connected, simply con-

nected, and nilpotent Lie group. Any polynomial coordinate map pushes forward the Lebesgue mea-

sure on Rn to a Haar measure on G.

It is not always true that left-Haar measures are also right-Haar measures, groups with such

property are called unimodular. However in any nilpotent Lie group Haar measure are both left and

right-invariant. Theorem 6.0.22 shows such uniqueness for simply connected nilpotent Lie groups

and it is suffices for our cases of interest.
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6.0.7 Homogeneous manifolds

This part will probably will omitted in class.

Theorem 6.0.23 ([War83, Theorem 3.58]). Let [...]

Theorem 6.0.24 ([CG90, Theorem 1.2.12]). Let [...]

Theorem 6.0.25 ([CG90, Theorem 1.2.13]). Let [...]

read page 23 [CG90] remark 1 and 3.

6.1 Stratified Lie algebras

Let g be a Lie algebra. A stratification of g with step s is a direct sum decomposition

g = V1 ⊕ V2 ⊕ · · · ⊕ Vs

of g with the property that Vs 6= {0} and [V1, Vj ] = Vj+1, for all j = 1, . . . , s, where we set

Vs+1 = {0}. Here

[V,W ] := span{[X,Y ] : X ∈ V, Y ∈W}.

Example 6.1.1. An Abelian Lie algebra g admits a 1-step stratification with V1 = g.

Example 6.1.2. Let g be the Heisenberg Lie algebra spanned by X,Y, Z with relation [X,Y ] = Z.

Then V1 := span{X,Y } and V2 := span{Z} form a 2-step stratification.

Exercise 6.1.3. Show that a stratification is completely determined by V1.

Definition 6.1.4. We say that a Lie algebra is stratifiable if it admits a stratification. When we fix

a stratification of a Lie algebra g we say that g is stratified.

Not all Lie algebras are stratifiable: there are 6-dimensional Lie algebras that are nilpotent but

don’t admit any stratification, see [Goo76] and Exercise ??. Furthermore, a Lie algebra can have at

most one stratification up to isomorphism (see Exercise 6.1.12).

Remark 6.1.5. A stratifiable Lie algebra is nilpotent. In fact, if g admits an s-step stratification,

then g is s-step nilpotent, see Lemma ??.
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graded
algebra

Example 6.1.6.

[V2, V2] = [[V1, V1], [V1, V1]] = span {[[X1, X2], [X3, X4]] : Xi ∈ V1} ⊂
(Jacobi)
⊂ span {[X1, [X2, [X3, X4]]] : Xi ∈ V1} = [V1, [V1, [V1, V1]]] = V4

Remark 6.1.7. There exist nilpotent Lie algebras that are not stratifiable.

Exercise 6.1.8. Prove that every 2-step nilpotent Lie algebra is stratifiable.

Lemma 6.1.9. Any stratified Lie algebra admits a Malcev basis.

Proof. Let g = V1 ⊕ · · · ⊕ Vs be a stratification of a Lie algebra g. Let X1, . . . , Xn be a basis of g

such that Xn, . . . , X1 is adapted to the direct sum, i.e., there exist n1 > · · · > ns = 1 such that

Xn, . . . , Xn1
is a basis of V1, Xnj−1−1, . . . , Xnj is a basis of Vj , for all j = 2, . . . , s.

We claim that X1, . . . , Xn is a Malcev bais. Indeed, set gk := {X1, . . . , Xk}. Thus Xk ∈ Vj , then

Vj+1 ⊕ · · · ⊕ Vs ⊂ gk ⊂ Vj ⊕ · · · ⊕ Vs

and

[g, gk] ⊂ [V1 ⊕ · · · ⊕ Vs, Vj ⊕ · · · ⊕ Vs]

⊂ Vj+1 ⊕ · · · ⊕ Vs

⊂ gk

Definition 6.1.10 (Graded algebra). Let g be a Lie algebra that is nilpotent of step s. Let

g(i+1) := [g; g(i)] be the descending central series of g. The graded algebra of g is the Lie algebra g∞

given by the direct sum decomposition

g∞ :=

s⊕
i=1

g(i)/g(i+1),

endowed with the unique Lie bracket [·, ·]∞ that has the property that, if x ∈ g(i) and y ∈ g(j), the

bracket is defined, modulo g(i+j), as

[x̄, ȳ]∞ = [x, y].

Exercise 6.1.11. Show that a stratifiable algebra is isomorphic to its graded algebra (as definite

in Definition 6.1.10)
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Exercise 6.1.12. Show that if V1, . . . , Vs and W1, . . . ,Wt are two stratification of g, then s = t and

there exists an automorphism of Ψ of g such that Vi = Ψ(Wi), for all i. [Hint: Use Exercise 6.1.11]

6.1.1 Some elementary facts about stratifications

For a Lie algebra g define by iteration

g(1) = g, g(k+1) = [g, g(k)].

A Lie algebra g is nilpotent of step s if g(s) 6= 0 and g(s+1) = 0.

Lemma 6.1.13. Let g = V1 ⊕ · · · ⊕ Vs be a stratified Lie algebra of step s. Then

[Vi, Vj ] ⊂ Vi+j ,

for all i, j = 1, . . . , s, where we set Vk = {0} for k > s.

Proof. The proof is by induction on i. If i = 1 we already know that [V1, Vj ] ⊂ Vj+1 for all j. Now

suppose that [Vi, Vj ] ⊂ Vi+j for all j and a fixed i. We shall show that this implies [Vi+1, Vj ] ⊂ Vi+1+j

for all j. Indeed, Vi+1 is generated by the elements [v1, vi] where v1 ∈ V1 and vi ∈ Vi, and for these

elements we have for all vj ∈ Vj by the Jacobi identity

[[v1, vi], vj ] = −[[vi, vj ], v1]− [[vj , v1], vi],

where [vi, vj ] ∈ Vi+j by the inductive hypothesis and so −[[vi, vj ], v1] = [v1, [vi, vj ]] ∈ [V1, Vi+j ] =

Vi+1+j , and −[[vj , v1], vi] = [vi, [vj , v1]] ∈ [Vi, Vj+1] ⊂ Vi+1+j by the inductive hypothesis again.

All in all, [[v1, vi], vj ] ∈ Vi+1+j and therefore [Vi+1, Vj ] ⊂ Vi+1+j .

Lemma 6.1.14. If g = V1 ⊕ · · · ⊕ Vs is a stratified Lie algebra, then

g(k) = Vk ⊕ · · · ⊕ Vs.

In particular, g is nilpotent of step s.

Proof. The proof is by induction. For k = 1 is trivial. Suppose it is true for k, then

g(k+1) = [g, g(k)] = [V1 ⊕ · · · ⊕ Vs, Vk ⊕ · · · ⊕ Vs] =

=

s∑
i=1

s∑
j=k

[Vi, Vj ] =

s∑
j=k

[V1, Vj ] +

s∑
i=2

s∑
j=k

[Vi, Vj ] =

= Vk+1 ⊕ · · · ⊕ Vs +

s∑
i=2

s∑
j=k

[Vi, Vj ] = Vk+1 ⊕ · · · ⊕ Vs

where
∑s
i=2

∑s
j=k[Vi, Vj ] ⊂

∑s
i=2

∑s
j=k Vi+j ⊂ Vk+1 ⊕ · · · ⊕ Vs.
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Lemma 6.1.15. Let g be a stratifiable Lie algebra with two stratifications,

V1 ⊕ · · · ⊕ Vs = g = W1 ⊕ · · · ⊕Wt.

Then:

1. s = t,

2. Vk ⊕ · · · ⊕ Vs = Wk ⊕ · · · ⊕Ws for all k

3. there is a Lie algebra automorphism A : g→ g such that A(Vi) = Wi for all i.

Proof. The first two points are directly implied by lemma 6.1.14.

We have g(k) = Vk⊕· · ·⊕Vs = Wk⊕· · ·⊕Ws. Then the quotient mappings πk : g(k) → g(k)/g(k+1)

induces linear isomorphisms πk|Vk : Vk → g(k)/g(k+1) and πk|Wk
: Wk → g(k)/g(k+1), by a dimension

argument.

For v ∈ Vk define A(v) := (πk|Wk
)−1 ◦ πk|Vk(v). Notice that for v ∈ Vk and w ∈Wk we have

A(v) = w ⇐⇒ v − w ∈ g(k+1).

Extend A to a linear map A : g → g. This is clearly a linear isomorphism. We need now to show

that A is a Lie algebra morphism, i.e., [Aa,Ab] = A([a, b]) for all a, b ∈ g.

Let a =
∑s
i=1 ai and b =

∑s
i=1 bi with ai, bi ∈ Vi. Then

A([a, b]) =

s∑
i=1

s∑
j=1

A([ai, bj ])

[Aa,Ab] =

s∑
i=1

s∑
j=1

[Aai, Abj ],

therefore we can just prove A([ai, bj ]) = [Aai, Abj ] for ai ∈ Vi and bj ∈Wj .

Notice that A([ai, bj ]) and [Aai, Abj ] both belong to Wi+j . Therefore we have A([ai, bj ]) =

[Aai, Abj ] if and only if [ai, bj ]− [Aai, Abj ] ∈ g(i+j+1). And in fact

[ai, bj ]− [Aai, Abj ] = [ai −Aai, bj ]− [Aai, Abj − bj ] ∈ g(i+j+1)

because, on one hand, ai−Aai ∈ g(i+1) and bj ∈Wj , so [ai−Aai, bj ] ∈ g(i+j+1), on the other hand,

Aai ∈Wi and Abj − bj ∈ g(j+1), so [Aai, Abj − bj ] ∈ g(i+j+1). This concludes the proof.
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6.1.2 Dilation Structures

Definition 6.1.16 (Dilations on stratified algebras). Let g = V1⊕· · ·⊕Vs be a stratified Lie algebra

and λ > 0. The (inhomogeneous) dilation on g (relative to the stratification V1, . . . , Vs) of factor λ

is the linear map δλ : g→ g such that

δλv = λjv, ∀v ∈ Vj .

Lemma 6.1.17. The dilation δλ : g→ g is a Lie algebra automorphism, i.e.,

δλ([X,Y ]) = [δλX, δλY ], ∀X,Y ∈ g.

Proof. Take X,Y ∈ g and decompose them as X =
∑s
i=1Xi, Y =

∑s
i=1 Yi, with Xi, Yi ∈ Vi. Since

[Xi, Yi] ∈ [Vi, Vj ] ⊂ Vi+j , we get

[δλX, δλY ] =
∑
i,j

[λiXi, λ
jYj ] =

∑
i,j

λi+j [Xi, Yj ] =
∑
i,j

δλ([Xi, Yj ]) = δλ

∑
i,j

[Xi, Yj ]

 = δλ([X,Y ]).

Moreover, δλ is invertible with inverse δ1/λ.

Lemma 6.1.18. The dilation δλ : g→ g has determinant equal to λQ with

Q =

s∑
j=1

j · dim(Vj).

Proof. Fix a basis X1, . . . , Xn adapted to the stratification. Then in this basis δλ is represented by

the diagonal matrix with diagonal

(λ, . . . , λ︸ ︷︷ ︸
dimV1

, λ2, . . . , λ2︸ ︷︷ ︸
dimV2

, . . . , λs, . . . , λs︸ ︷︷ ︸
dimVs

).

Hence the determinant is λdimV 1 · (λ2)dimV2 · · · · (λs)dimVs = λQ.

6.2 Carnot groups

Let G be a simply connected Lie group. Assume Lie(G) = V1 ⊕ · · · ⊕ Vs is a stratification. Fix a

norm ‖·‖ on the vector space V1. The vector space V1 seen as a subset of TeG induces a left-invariant

subbundle ∆ of the tangent bundle TG:

∆g := (Lg)∗V1, ∀g ∈ G. (6.2.1)

The norm on V1 induces a norm on any ∆g as

‖v‖ := ‖(Lg)∗v‖, ∀v ∈ ∆g, ∀g ∈ G. (6.2.2)
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Remark 6.2.3. The triple (G,∆, ‖ · ‖) is a subFinsler manifold. Indeed, to see that ∆ is bracket

generating, take X ∈ Vj for an arbitrary j. Write X as
∑
i[Xi,1, [Xi,2, . . . , Xi,j ]] with Xi,k ∈ V1. If

X̃i,k are left-invariant vector fields extending Xi,k, then X̃i,k ∈ Γ(∆) and(∑
i

[X̃i,1, [X̃i,2, . . . , X̃i,j ]]

)
e

= X.

Definition 6.2.4 (Stratified Lie group). We say that a Lie group is stratified if it is simply connected

and its Lie algebra is stratified.

Definition 6.2.5 (Carnot group). Let G be a stratified group. Let V1 be the first stratum of the

stratification of Lie(G). Let ∆ and ‖·‖ be defined by (6.2.1) and (6.2.2), respectively. Let dCC be the

Carnot-Carathéodory distance associated to ∆ and ‖ · ‖. Both the subFinsler manifold (G,∆, ‖ · ‖)

and the metric space (G, dCC) are called Carnot groups.

If Lie(G) = V1 ⊕ · · · ⊕ Vs is the stratification of the Lie algebra of a Carnot group G, then the

topological dimension of G. is n =
∑
i dimVi and the homogeneous dimension of the subFinsler

manifold (G,∆, ‖ · ‖) can be expressed as the value

Q :=

s∑
i=1

i dimVi. (6.2.6)

A Carnot group (G,∆, ‖ · ‖) is indeed an equiregular Carnot-Carathéodory space. Indeed, one

has that, for each j, ∆[j] is the left-invariant subbundle for which

∆[j](e) = V1 ⊕ · · · ⊕ Vj .

One should observe that another choice of the norm would not change the biLipschitz equivalence

class of the sub-Finsler manifold. Namely, if ‖·‖2 is another left-invariant Finsler norm on G, then

id : (G, dCC,‖·‖)→ (G, dCC,‖·‖2)

is globally biLipschitz. So as a consequence of our interest to metric spaces up to biLipschitz

equivalence, we may assume that the norm ‖·‖ is coming from a scalar product 〈·|·〉.

In the definition of the Carnot-Carathéodory distance only the value of the scalar product on

V1, and not on all g, is important. Defining a scalar product on V1 is equivalent to specifying an

orthonormal basis of it. So, denoting by m the dimension of V1, we fix an inner product in V1 by

fixing an orthonormal basis X1, . . . , Xm of V1. This basis of V1 induces the Carnot-Carathéodory
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left-invariant distance d in G, which we recall can be defined as follows:

d(x, y) := inf


∫ 1

0

√√√√ m∑
i=1

|ai(t)|2 dt : γ(0) = x, γ(1) = y

 ,

where the infimum is among all absolute continuous curves γ : [0, 1] → G such that γ̇(t) =∑m
1 ai(t)(Xi)γ(t) for a.e. t ∈ [0, 1] (the so-called horizontal curves).

Definition 6.2.7 (Dilations on stratified groups). Let G be a stratified group. Let δλ : Lie(G) →

Lie(G) be the dilation of factor λ associated to the stratification. Then the dilation δλ : G → G of

the group of factor λ is the only group automorphism such that (δλ)∗ = δλ.

Such maps are also called the intrinsic dilations of the stratified group.

We have kept the same notation δλ for both dilations (in g and in G) because no ambiguity will

arise since the two maps have different domains.

Remark 6.2.8. From Theorem 4.1.6 the above map is well defined since by assumption a stratified

group is simply connected. Moreover, from Theorem 4.2.2 we have

δλ ◦ exp = exp ◦δλ.

In fact, since strtified groups have nilpotent Lie algebras, the map exp : g→ G is a diffeomorphism

by Theorem 6.0.6, so any element g ∈ G can represented as exp(X) for some unique X ∈ g, and

therefore uniquely written in the form

exp

(
s∑
i=1

vi

)
, vi ∈ Vi, 1 ≤ i ≤ s. (6.2.9)

This representation allows to have the formula:

δλ

(
exp

(
s∑
i=1

vi

))
= exp

(
s∑
i=1

λivi

)
.

We have the formula

δλ ◦ δη = δλη. (6.2.10)

We remark that the fact that one can use Baker-Campbell-Hausdorff formula to show that if one

defines δλ : G→ G by (6.2.10), then such maps are group homomorphisms, i.e.,

δλ(xy) = δλ(x)δλ(y) ∀x, y ∈ G. (6.2.11)
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The fact that by definition we have δλX = (δλ)∗X, for all X ∈ Lie(G), says that, for all functions

u ∈ C∞(G), we have

X(u ◦ δλ)(g) = (δλX)u(δλg) ∀g ∈ G, λ ≥ 0. (6.2.12)

Such relation (6.2.12) between dilations in G and dilations in g can also be directly shown using

(6.2.10) as definition for the group dilation:

X(u ◦ δλ)(g) =
d

dt
u ◦ δλ(g exp(tX))

∣∣∣∣
t=0

=
d

dt
u(δλgδλ exp(tX))

∣∣∣∣
t=0

=
d

dt
u(δλg exp(tδλX))

∣∣∣∣
t=0

= (δλX)u(δλg).

6.2.1 Dilations and CC distances

The Carnot-Carathéodory distance is well-behaved under the intrinsic dilations, in the sense that

such dilations multiply distances of a constant factor.

Proposition 6.2.13. If (G, dCC) is a Carnot group with dilations δλ, λ > 0. Then

dCC(δλp, δλq) = λdCC(p, q), ∀p, q ∈ G. (6.2.14)

for all p, q ∈ G.

Proof. Since δλ|V1
is the multiplication by λ, we have that ‖δλv‖ = λ‖v‖, for all v ∈ ∆. If γ in a

horizontal curve from x to y, then δλ ◦γ is a curve going from δλx to δλy whose tangent vectors are,

for almost all t,

(δλ)∗γ̇(t) = δλ(γ̇(t)) = λγ̇(t), (6.2.15)

which are horizontal since γ̇(t) is horizontal. Moreover, from (6.2.15), the length of δλ ◦ γ is λ times

the length of γ, i.e., for all horizontal curve γ,

L‖·‖(δλ ◦ γ) = λL‖·‖(γ).

Thus 6.2.14 has been shown.

Exercise 6.2.16. Show that for all p ∈ G, for all r > 0

BdCC (p, r) = Lp(δr(BdCC (e, 1))).
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6.3 A deeper study of Carnot groups

6.3.1 A good basis for a Carnot group

Let G be a Carnot group with stratification g = V1 ⊕ · · · ⊕ Vs. We want to construct a basis for g

that is structured with respect to the stratification, is a Malcev basis, and each element of the basis

that is not in V1, is the bracket of two vectors of such a basis.

Start by picking a basis X1, . . . , Xm of V1. Then consider all brackets [Xi, Xj ], for i, j = 1, . . . ,m.

Since [V1, V1] = V2, we can find among such brackets a basis for V2, cf. Exercise 9.7.1. Pick some such

basis and call the elements Xm+1, . . . , Xm2
. Iterate the method: extract a basis Xm2+1, . . . , Xm3

of V3 from the set [Xi, Xj ], for i = 1, . . . ,m, j = m + 1, . . . ,m2. And so on. In such a way we

constructed a basis X1, . . . , Xn of g such that

1. Xmj−1+1, . . . , Xmj is a basis of Vj ,

2. For any i = m+ 1, . . . , n, there exist di, li, and ki such that Xi ∈ Vdi , Xli ∈ V1, Xki ∈ Vdi−1,

and

Xi = [Xli , Xki ]. (6.3.1)

3. The order-reversed basis Xn, . . . , X1 is a (strong) Malcev basis; in other words,

[g, span{Xk, . . . , Xn}] ⊆ span{Xk+1, . . . , Xn}.

We would suggest the terminology ‘Carnot basis’ for such basis satisfying the above three conditions.

The reader should notice that the above property 1 implies the property 3. See Exercise 9.7.2.

To describe a Carnot algebra we prefer to give a Carnot basis as a hierarchical diagram as

V1 : X

��

Y

��
V2 : Z

for the 3D Heisenberg algebra,

V1 : X

��

��

Y

��
V2 : Z

��
V3 : W

for the Engel algebra,
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V1 : X

��

��

Y

��

��

V2 : Z

�� ��
V3 : U V.

for the rank 2 and step 3 algebra.

The j-th line in the diagram list the vectors that span Vj . The black lines express the non-trivial

brackets. However, one should notice that in the algebra structure might be more relations than

just those in (6.3.1). (Give an example!)

6.3.2 Local-to-global using dilations, and canonical coordinates

Since any Carnot group is nilpotent and simply connected, the map exp g → G is a global diffeo-

morphism, cf. Theorem 6.0.6. Therefore the exponential coordinates are global (and one-to-one)

coordinates. As a consequence, the dilations δλ : G→ G are well-defined. From them one has that

such self-similar homomorphisms extend properties that hold in a neighborhood of the identity to

the whole of G. As an example, let us show the fact that Malcev coordinates maps are injective and

surjective.

Proposition 6.3.2. On every Carnot group, Malcev coordinates exist.

Proof. The fact that a Malcev basis X1, . . . , Xn exist was shown in the previous subsection. Now

consider the coordinate map

Ψ : (s1 . . . , sn)→ exp(s1X1) · · · exp(snXn).

Obviously

(dΨ)0∂j =
d

dsj
exp(sjXj)

∣∣∣∣
sj=0

Xj ,

so (dΨ)0 is an invertible n× n matrix. Thus Ψ is open at zero, i.e., Ψ(Rn) is a neighborhood of the

identity e. Let us show that Ψ(Rn) = G. Take p ∈ G. Then there exists some λ ∈ R and some

s ∈ Rn such that

δ−1
λ (p) = Ψ(s).

120



6.3 A deeper study of Carnot groups May 16, 2021

Let s̃ = δλ(s). Then, since δλ on G is a group homomorphism, we have

Ψ(s̃) = exp(δλ(s1X1)) · · · exp(δλ(snXn))

= δλ(exp(s1X1)) · · · δλ(exp(snXn))

= δλ(exp(s1X1) · · · exp(snXn))

= δλΨ(s)

= p.

Let us show injectivity. Since (dΨ)0 is an invertible n × n matrix, then by the Inverse Function

Theorem there is a neighborhood U on which Ψ is injective. Assume now that there are s1, s2 ∈ Rn

such that

Ψ(s1) = Ψ(s2).

Then, for λ ∈ R small enough, we have δλ(s1), δλ(s2) ∈ U . By the above calculation, we have that

Ψ(δλ(s1)) = Ψ(δλ(s2)).

But, since Ψ is injective on U , we have δλ(s1) = δλ(s2), and therefore s1 = s2.

6.3.3 A direct, effective proof of Chow’s Theorem

We will give now an explicit construction of an horizontal path connecting an arbitrary point p in

a Carnot group to the origin e. The reader should remind the elementary fact, cf. Theorem 4.2.1,

that the curve petX is the integral curve of X starting at p.

The brackets as products of exponentials

The philosophy behind the following discussion is that to go in a direction given as a bracket of two

vector fields one can go along a quadrilateral constructed using the flows of the two vector fields. We

will give a generalization of the following formula with which the reader should be already familiar:

[X,Y ] =
d2

2d2t
e−tY ◦ e−tX ◦ etY ◦ etX

∣∣∣∣
t=0

=
d

dt
e−
√
tY ◦ e−

√
tX ◦ e

√
tY ◦ e

√
tX

∣∣∣∣
t=0

.

In the above formula, etX denotes the flow map of a general vector field on a manifold. So for

left-invariant vector fields in a Lie group we have

etX(p) = petX .

Thus the order might seems reversed.
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For X,Y ∈ g and t ∈ R define

Pt(X,Y ) := etXetY e−tXe−tY .

Using twice the BCH formula one has that, for t→ 0,

Pt(X,Y ) = et
2[X,Y ]+o(t2).

Suppose we have defined by induction the function Pt(X1, . . . , Xk), for k ≥ 2, define then

Pt(X1, . . . , Xk+1) := Pt(X1, . . . , Xk)etXk+1(Pt(X1, . . . , Xk))−1e−tXk+1 .

By induction we shall show that, as t→ 0,

Pt(X1, . . . , Xk) = et
k[...[[X1,X2],X3],...,Xk]+o(tk). (6.3.3)

The case k = 2 has been already mentioned above, and its proof is similar to the induction

step. Assume it true for an arbitrary k. Call ω(t) the o(tk) function such that Pt(X1, . . . , Xk) =

et
k[...[[X1,X2],X3],...,Xk]+ω(t). Then we have, by the BCH formula,

Pt(X1, . . . , Xk+1) = Pt(X1, . . . , Xk)etXk+1 (Pt(X1, . . . , Xk))
−1
e−tXk+1

= et
k[...[X1,X2],...,Xk]+ω(t)etXk+1

(
et
k[...[X2,X1],...,Xk]+ω(t)

)−1

e−tXk+1

= et
k[...[X1,X2],...,Xk]+ω(t)etXk+1e−t

k[...[X2,X1],...,Xk]−ω(t)e−tXk+1

= e(tXk+1+tk[...[X1,X2],...,Xk]+ω(t)+ 1
2 t
k+1[...[X1,X2],...,Xk+1]+o(tk+1)) ·

e(−tXk+1−tk[...[X1,X2],...,Xk]−ω(t)+ 1
2 t
k+1[...[X1,X2],...,Xk+1]+o(tk+1))

= et
k[...[[X1,X2],X3],...,Xk+1]+o(tk+1).

One should note that each Pt is in fact a product of element of the form e±tXi . Thus the following

properties are immediate:

Pλt(X1, . . . , Xk) = Pt(λX1, . . . , λXk), (6.3.4)

δλPt(X1, . . . , Xk) = Pt(δλX1, . . . , δλXk). (6.3.5)

We construct now a map that will help in constructing horizontal paths. Consider a Carnot

basis X1, . . . , Xn, so in particular property (6.3.1) holds. Iterating such property, we have that each

element Xj of the basis is such that

Xj = [. . . [[Xj,1, Xj,2], Xj,3], . . . , Xj,dj ],
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where the basis elements Xj,1, . . . , Xj,dj are in V1, and dj is such that Xj ∈ Vdj , in other words, it

is the degree of Xj .

For each j, we consider the expression

P (j)(t) := Pt(Xj,1, . . . , Xj,dj ).

In the following we will use the notation tα = sgn(t)|t|α, so for example we have
√
−4 = −2. We

finally define the map

E(t) := P (1)( d1
√
t1) · · ·P (n)( dn

√
tn).

E.g., for the standard basis in the Heisenberg group we get:

E(t) = et1Xet2Y e
√
t3Xe

√
t3Y e−

√
t3Xe−

√
t3Y .

For the standard basis in the Engel group we get:

E(t) = et2X et2Y e
√
t3Xe

√
t3Y e−

√
t3Xe−

√
t3Y

e
3√t4X e

3√t4Y e−
3√t4Xe−

3√t4Y e
3√t4Xe

3√t4Y e
3√t4Xe−

3√t4Y e−
3√t4X e−

3√t4X .

We will show in order that such a map E satisfies the following three properties.

Proposition 6.3.6. Let E be the map defined above.

1. E : Rn → G is open at 0.

2. E is surjective.

3. E gives a natural horizontal path from 0 to E(t).

The second property follows easily from the first one using dilations. The third is also very

elementary since flows of left-invariant vector fields are right multiplications by exponentials. The

first is a consequence of the interpretation of the bracket as product of exponential.

Proof of Property 1 of Proposition 6.3.6. We just need to show that (dE)0 is a non-singular matrix.
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From how E has been defined and from (6.3.3), we have

(dE)0∂j =
d

dtj
E(t)

∣∣∣∣
t=0

=
d

dtj
P (j)( dj

√
tj)

∣∣∣∣
tj=0

=
d

dt
P dj
√
t(Xj,1, . . . , Xj,dj )

∣∣∣∣
t=0

=
d

dt
et[...[[Xj,1,Xj,2],Xj,3],...,Xj,dj ]+o(t)

∣∣∣∣
t=0

=
d

dt
etXj+o(t)

∣∣∣∣
t=0

= Xj .

In other words, (dE)0 sends the basis ∂1, . . . , ∂n to the basis X1, . . . , Xn. Property 1 follows from

the Inverse Function Theorem.

Proof of Property 2 of Proposition 6.3.6. By Property 1, the set E(Rn) is a neighborhood of e. On

the other hand for each fixed point q ∈ G, the dilations δλ of the Carnot group have the property

that limλ→0 δλ(q) = e. From these two facts we have that, for each p ∈ G, there are λ ∈ R and

t ∈ Rn such that

δλ(E(t)) = p.

Now, let t̃ = δλ(t), i.e., t̃j = λdj tj . First by the properties (6.3.4) and (6.3.5) on Pt, and the fact

that Xj,1, . . . , Xj,dj are in V1, one has

P (j)( dj

√
t̃j) = P (j)( dj

√
λdj tj)

= P (j)(λ dj

√
tj)

= P
λ dj
√
tj

(Xj,1, . . . , Xj,dj )

= P dj
√
tj

(λXj,1, . . . , λXj,dj )

= P dj
√
tj

(δλ(Xj,1), . . . , δλ(Xj,dj ))

= δλ

(
P dj
√
tj

(Xj,1, . . . , Xj,dj )
)

= δλP
(j)( dj

√
tj).
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Then, since δλ on G is a group homomorphism, one get

E(t̃) = P (1)(
d1
√
t̃1) · · ·P (n)(

dn
√
t̃n)

= δλ(P (1)( d1
√
t1)) · · · δλ(P (n)( dn

√
tn))

= δλ

(
P (1)( d1

√
t1) · · ·P (n)( dn

√
tn)
)

= δλE(t)

= p.

Thus E(Rn) is in fact the whole of G, i.e., E is surjective.

Proof of Property 3 of Proposition 6.3.6. Recall, cf. Theorem 4.2.1, that the flow lines of a left-

invariant vector field X are the curves getX , fixed g ∈ G and varying t ∈ R. Now, since Pt is a

product of exponentials, then E is too. More explicitly, fixed t ∈ Rn, we have

E(t) = exp(ξ1t
α1
γ1
Xβ1) · · · exp(ξN t

αN
γN XβN ),

for ξi ∈ {1,−1}, α−1
i ∈ N, βi ∈ {1, . . . ,m}, γi ∈ {1, . . . n}, and N ∈ N. Now it is enough to observe

that, fixed K, the point

g := exp(ξ1t
α1
γ1
Xβ1

) · · · exp(ξKt
αK
γKXβK )

can be connected to the point

exp(ξ1t
α1
γ1
Xβ1

) · · · exp(ξKt
αK
γKXβK ) exp(ξK+1t

αK+1
γK+1

XβK+1
)

by the path

g exp(ξK+1sXβK+1
), for s ∈ [0, |tαK+1

γK+1
|],

which is tangent to ±XβK+1
, thus horizontal.

Corollary 6.3.7 (Chow’s Theorem for Carnot groups). Any point p ∈ G in a Carnot group can

be joined to the identity e by a horizontal path. Moreover, the CC-distance induces the manifold

topology.

Proof. Property 2 and 3 of Proposition 6.3.6 give the existence of a path from e to any given point

p. Thus dCC(e, p) < ∞, for all p ∈ G. By left invariance of dCC we have dCC(p, q) < ∞, for all

p, q ∈ G.

Since E is in fact open at 0, by Property 1 of Proposition 6.3.6, then points close to the origin

can be connected to the origin by short horizontal curves.
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6.3.4 A proof of the Ball-Box Theorem for Carnot groups

Let (G, dCC) be a Carnot group and let V1, . . . , Vs be a stratification of Lie(G),. Let X1, . . . , Xn be

a basis of Lie(G) adapted to the stratification i.e., for all j there exists dj such that Xj ∈ Vdj .

The the number dj is called degree of Xj and it may be denoted by deg(Xj). The box with

respect to the fixed basis X1, . . . , Xn is defined as

Box(r) := {(t1, . . . , tn) ∈ Rn : |tj | < rdj}

Let δλ : Rn → Rn be the map

δλ(t1, . . . , tn) = (λt1, . . . , λ
dj tj , . . . , λ

stn).

Exercise 6.3.8. Show that for all r, λ > 0

δλ(Box(r)) = Box(λr).

Let Φ : Rn → G be the exponential coordinate map with respect to the basis X1, . . . , Xn, i.e.,

Φ(t) = exp(
∑
j tjXj). Then we have that Φ(Box(1)) is a bounded neighborhood of e in G. (Notice

that this last fact holds since Φ is a diffeomorphism, however it is just a consequence of the fact that

the differential at 0 of Φ is the identity and hence Φ is a local diffeomorphism in a neighborhood of

the identity)

Let dCC be the Carnot-Carathéodory distance of the Carnot group G. Since V1 bracket generates

Lie(G), by Chow Theorem 6.3.7 the distance dCC induces the manifold topology. Hence, there is

C > 1 such that

B(e,
1

C
) ⊂ Φ(Box(1)) ⊂ B(e, C),

where B(e, r) is the CC-ball of center the origin e and radius r. Recalling that that δλ(B(e, r)) =

B(e, λr) and applying δλ, we get

B(e,
λ

C
) ⊂ δλΦ(Box(1)) ⊂ B(e, λC),
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where

δλ (Φ(Box(1))) = δλ (Φ {(t1, . . . , tn) : |tj | < 1})

= δλ

exp

∑
j

tjXj

 : |tj | < 1


=

exp

δλ∑
j

tjXj

 : |tj | < 1


=

exp

∑
j

λdj tjXj

 : |tj | < 1


=

exp

∑
j

sjXj

 : |sj | < λdj


= Φ(Box(λ)).

Therefore, we conclude that

B(e,
λ

C
) ⊂ Φ(Box(λ)) ⊂ B(e, λC), ∀λ > 0. (6.3.9)

Theorem 6.3.10 (Ball-Box for Carnot groups). Let G be a Carnot froup. Fix a basis adapted to

the stratification V1, . . . , Vs. Then there is C > 1 such that for all p ∈ G and all r > 0

B(p,
λ

C
) ⊂ Φp(Box(λ)) ⊂ B(p, λC), (6.3.11)

where Φp is the exponential coordinate map from p with respect to the fixed basis.

Proof. By the definition of Φp we have

Φp(t) = p exp(
∑

tjXj) = LpΦ(t).

Since dCC is left-invariant, applying Lp to (6.3.9), we obtain (6.3.11) for all p ∈ G and all λ > 0.

6.3.5 Haar, Hausdorff and Lebesgue measures

Carnot groups are nilpotent and so unimodular, therefore right- and left-Haar measures coincide,

up to constant multiples. We fix one of them and denote it by volG.

For every k > 0, the k-dimensional Hausdorff measure H k and the k-dimensional spherical

Hausdorff measure S k are left-invariant.

We shall see that for k = Q these measures are Radon measures, and therefore are Hausdorff

measures, so a multiple of volG. We shall actually show that in exponential coordinates, all these

measures are a constant multiple of the Lebesgue measure, which in Rn is denoted by Ln.
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Definition 6.3.12 (Homogeneous dimension for a Carnot group). If G is a stratified group and

V1, . . . , Vs is the stratification of its Lie algebra, we call

Q :=

s∑
j=1

j · dimVj

the homogeneous dimension of G.

Exercise 6.3.13. Show that this notion of homogeneous dimension agrees with the one on subFinsler

manifolds.

Proposition 6.3.14. Let G be a Carnot group of homogeneous dimension Q.

1. If vol is a Haar measure of G, then

vol(B(p, r)) = rQ vol(B(e)).

2. The Hausdorff dimension of G is Q.

3. In exponential coordinates, the Lebesgue measure is the Hausdorff Q-measure up to a multipli-

cation by a constant.

Proof. In exponential coordinates, the Lebesgue measure Ln is both left and right-invariant, so any

other Haar measure is a multiple of it. In exponential coordinate, the inhomogeneous dilations δλ

have Jacobian λQ, i.e., λQ · Ln(Box(1)) = Ln(Box(λ)). Hence

Ln(B(p, λ)) = Ln(B(1G, λ)) = Ln(δλ(B(1G, 1))) = λQLn(B(1G, 1))

By an early proposition, the Hausdorff dimension is Q. The last part follows since both Ln and the

Hausdorff Q-measure are both Haar measures.

Exercise 6.3.15. Show that, if Xi is a Carnot basis, then for some constant c we have

volG
(
{exp(

n∑
i=1

xiXi) : (x1, . . . , xn) ∈ A}
)

= cLn(A) for all Borel sets A ⊆ Rn.

Exercise 6.3.16. Prove that

volG(δλ(A)) = λQ volG(A) (6.3.17)

for all Borel sets A ⊆ G.
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6.4 Exercises

Exercise 6.4.1. Show that, if g(i) = g(i+1) for some i, then for all j > i g(j) = g(i).

Exercise 6.4.2. Show that g(i+1) ⊂ g(i) for all i.

Exercise 6.4.3. Show that N3 is the Heisenberg group.

Exercise 6.4.4. Let g be a Lie algebra with a step s stratification g = V1 ⊕ · · · ⊕ Vs. Denote by

g(k) the k-th element in the lower central series. Show that

g(k) = Vk ⊕ · · · ⊕ Vs.

Exercise 6.4.5. Show that if a Lie algebra g has a step s stratification, then g is nilpotent of step

s, thus the assumption of a Carnot group being nilpotent is superfluous.

Exercise 6.4.6. Let δλ be the dilation of factor λ as defined either at the group level in Defini-

tion 6.2.7 or at the algebra level in Definition 6.1.16. Show that (δλ)−1 = δ1/λ.

Exercise 6.4.7. Let g = V1 ⊕ · · · ⊕ Vs be a stratified algebra. For all λ ≥ 0, let δλ be the dilation

of factor λ as defined in Definition 6.1.16. Show that

δλ

(
s∑
i=1

vi

)
:=

s∑
i=1

λivi,

where X =
s∑
i=1

vi with vi ∈ Vi, 1 ≤ i ≤ s.

Exercise 6.4.8. Let h be the Heisenberg Lie algebra generated by the vectors X, Y , and Z with

only non-trivial relation [X,Y ] = Z. Show that the decomposition

h = span{X,Y } ⊕ span{Z}

is a step 2 stratification.

Exercise 6.4.9. Let g := R × h be the (commutative) product of R with the (above) Heisenberg

Lie algebra h. Show that

g = (R× span{X,Y })⊕ ({0} × span{Z})

is a step 2 stratification with center R× span{Z} which is stricly bigger than V2.

Exercise 6.4.10. Show that if a Lie algebra g has a step s stratification g = V1 ⊕ · · · ⊕ Vs, then

129



6- Nilpotent Lie groups and Carnot groups May 16, 2021

1. Vs is contained in the center of g;

2. Vk ⊕ · · · ⊕ Vs is normal in g; (Vk ⊕ · · · ⊕ Vs)/(Vk+1 ⊕ · · · ⊕ Vs) is contained in the center of

(V1 ⊕ · · · ⊕ Vs)/(Vk+1 ⊕ · · · ⊕ Vs).

Exercise 6.4.11. Show that if G is a Carnot group and ∆ is the left-invariant distribution with

∆e = V1, then (∆[j])e = V1 ⊕ · · · ⊕ Vj .

Exercise 6.4.12. Show that if G is a Carnot group and ∆ is the left-invariant distribution with

∆e = V1, then the three definitions (3.4.6), (3.4.7), (3.4.8), and (6.2.6) of Q coincide.

Exercise 6.4.13. Use the BCH formula to show (6.2.11).

Exercise 6.4.14. Use the definitions to prove (6.2.14).

Exercise 6.4.15. Show that is any Carnot groups there is a (strong) Malcev basis

Exercise 6.4.16. Prove that, if M is a Riemannian manifold, then the Carnot group structure that

any TpM inherits is Abelian.

Exercise 6.4.17. Prove that, if M is a contact 3-manifold, then the Carnot group structure that

any TpM inherits is the Heisenberg algebra.

Exercise 6.4.18. Prove that, if G is a Carnot group, then the Carnot group structure that any

TpG inherits is the Lie algebra Lie(G) itself.

Exercise 6.4.19. Give an example of Lie group G with a left-invariant bracket-generating distri-

bution such that Carnot group structure that TeG inherits is NOT isomorphic to the Lie algebra

Lie(G).

Exercise 6.4.20. [A nilpotent nonstratifiable algebra] Consider the 7-dimensional Lie algebra h

generated by X1, . . . , X7 with only nontrivial brackets

[X1, X2] = X3

[X1, X3] = 2X4

[X1, X4] = 3X5

[X2, X3] = X5

[X1, X5] = 4X6

[X2, X4] = 2X6

[X1, X6] = 5X7

[X2, X5] = 3X7

[X3, X4] = X7
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Show the following facts:

1) it is a Lie algebra

2) it is nilpotent

3) it does not admit any stratification.

Exercise 6.4.21. Fix a positive integer n ≥ 7, and consider the n-dimensional Lie algebra h

generated by X1, . . . , Xn with

[Xi, Xj ] =

{
(j − i)Xi+j , if i+ j ≤ n,

0, otherwise.

Show the following facts:

1) it is a Lie algebra

2) it is nilpotent

3) it does not admit any stratification.

Exercise 6.4.22 (Definition of grading of an algebra). A Lie algebra g is said to admit a grading if

there exists subspaces V1, . . . , Vs ⊂ g such that g = V1⊕. . .⊕Vs with the property that [Vi, Vj ] ⊆ Vi+j ,

for all i, j > 0, where Vj := {0} for j > s. Here, the elements in Vj are said to have degree j. Prove

that an algebra that admits a grading is nilpotent.

Exercise 6.4.23 (Suggested by E. Breuillard). Let g be a Lie algebra that admits a grading.

Assume that the elements of degree 1, namely V1, generate g, as a Lie algebra, then g is stratified

by V1, . . . , Vs.

Hint: If the bracket of V1 with itself were smaller than V2, then V1 would not generate, because

the Lie subalgebra it generates will not contain all of V2...

Exercise 6.4.24 (A graded nonstratifiable algebra). Let g be the algebra from Example 6.4.20.

Show that

1) g admits a grading. Hint: Vi = RXi.

2) For a given grading, the elements of degree 1, V1, do not generate g.

3) g does not admit any stratification.

Exercise 6.4.25 (A nontrivial filiform algebra). Consider the 6-dimensional Lie algebra g given by
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span{y0, y1, y2, y3, y4, y5} with only non-zero brackets

[y0, y1] = y2,

[y0, y2] = y3,

[y0, y3] = y4,

[y0, y4] = y5

[y1, y4] = −y5,

[y2, y3] = y5.

Show the following facts:

1) it is a Lie algebra, i.e., Jacobi identity is satisfied.

2) it admits a stratification.

3) it is a filiform algebra (i.e., the dimensions of the subspaces of the stratification are the smallest

possible, namely 2, 1, . . . , 1).

Exercise 6.4.26 (Suggested by E. Breuillard). Let g be the 3-step Lie algebra generated by e1, e2, e3

and with the relation [e2, e3] = 0.

Show that g is of dimension 10 and that the following is a stratification of g.

V1 :=< e1 > + < e2 > + < e3 >

V2 :=< [e1, e2] > + < [e1, e3] >

V3 :=< [e1, [e1, e2]] > + < [e2, [e1, e2]] > + < [e3, [e1, e2]] > + < [e3, [e3, e1]] > + < [e1, [e1, e3]] >

Check that this satisfies the Jacobi identity and is thus a legitimate Lie algebra.

Now let V ′1 :=< e1 > + < e2 + [e1, e2] > + < e3 >. Clearly V ′1 projects onto V1 modulo V2 + V3

and has dimension 3, so it is in direct sum with [g, g] = V2 + V3. However [V ′1 , V
′
1 ] is not in direct

sum with [g, [g, g]], because it contains [e3, e2 + [e1, e2]] = [e3, [e1, e2]], and in fact V ′2 := [V ′1 , V
′
1 ] has

dimension 3, not 2.
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Chapter 7

Limits of Riemannian and
subRiemannian manifolds

7.1 Limits of metric spaces

SubRiemannian Carnot groups appear as limiting metric spaces both as distinguished asymptotic

spaces and as tangent spaces. Mostly one can limit the study to distances that converge uniformly

on compact sets. However, it may be useful in consider such convergence as a particular case of

Gromov-Hausdoff convergence.

7.1.1 A topology on the space of metric spaces

Let X and Y be metric spaces, L > 1 and C > 0.

A map φ : X → Y is an (L,C)-quasi-isometric embedding if for all x, x′ ∈ X

1

L
d(x, x′)− C ≤ d(φ(x), φ(x′)) ≤ Ld(x, x′) + C.

If A,B ⊂ Y are subsets of a metric space Y and ε > 0, we say that A is an ε-net for B if

B ⊂ NbhdYε (A) := {y ∈ Y : d(x,A) < ε}.

Definition 7.1.1 (Hausdorff approximating sequence). Let (Xj , xj), (Yj , yj) be two sequences of

pointed metric spaces. A sequence of maps φj : (Xj , xj)→ (Yj , yj) is said to be Hausdorff approxi-

mating if for all R > 0 and all δ > 0 there exists εj such that

1. εj → 0 as j →∞;

2. φj |B(xi,R) is a (1, εj)-quasi isometric embedding;

3. φj(B(xj , R)) is an εj-net for B(yj , R− δ).

133



7- Limits of Riemannian and subRiemannian manifolds May 16, 2021

Definition 7.1.2. We say that a sequence of pointed metric spaces (Xj , xj) converges to a pointed

metric space (Y, y) if there exists an Hausdorff approximating sequence φj : (Xj , xj)→ (Y, y).

This notion of convergence was introduced by M. Gromov and it is also called Gromov-Hausdorff

convergence.

Proposition 7.1.3. Let dj be a sequence of distances on a set X that converge to a distance d∞

uniformly on bounded sets with respect to d∞. Let x0 ∈ X.

If

diamd∞

( ⋃
j∈N

Bdj (x0, R)
)
<∞, ∀R > 0, (7.1.4)

then id : (X, dj , x0) → (X, d∞, x0) is a Hausdorff approximating sequence and (X, d∞, x0) is the

limit of (X, dj , x0).

Proof. Exercise.

Example 7.1.5. The following example shows that condition (7.1.4) is necessary in the last Propo-

sition.

For n ∈ N define γn : R→ R2 by

γn(t) :=


(t, 0) t ≤ n
(n, t− n) n ≤ t ≤ n+ 1

(n− (t− n− 1), 1) n+ 1 ≤ t

These mappings induce metrics dn on R by

dn(x, y) := |γn(x)− γn(y)| ∀x, y ∈ R.

Define also d∞(x, y) := |x− y| for x, y ∈ R.

7.1.2 Asymptotic cones and tangent spaces

If X = (X, d) is a metric space and λ > 0, we set λX = (X,λd).

Definition 7.1.6. X,Y metric spaces, x ∈ X and y ∈ Y . We say that (Y, y) is the asymptotic cone

of X if for all λj → 0 (λjX,x)→ (Y, y).

we say that (Y, y) is the tangent space of X at x if for all λj →∞, (λjX,x)→ (Y, y).

Remark 7.1.7. The notion of asymptotic cone is independent from x.

Remark 7.1.8. In general, asymptotic cones and tangent spaces may not exists.
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Remark 7.1.9. In the space of boundedly compact metric spaces, limits are unique up to isometries.

Theorem 7.1.10. Let G be a nilpotent Lie group equipped with a left-invariant subFinsler distance.

Then the asymptotic cone of G exists and is a Carnot group.

Theorem 7.1.11. Let M be an equiregular subFinsler manifold and p ∈M . Then the tangent space

of M at p exists and is a Carnot group.

7.2 Limits of Carnot-Carathéodory distances

7.2.1 Carnot-Carathéodory bundle structures

Let M be a smooth manifold. Let

f : M × Rm → TM

be a smooth M -bundle morphism. Let

N : M × Rm → [0,+∞)

be a continuous function such that N(p, ·) is a norm for every p ∈M .

The couple (f,N) induces a CC-structure as follows. For a fixed o ∈ M and u ∈ L∞([0, 1];Rm)

we consider the following Cauchy problem{
γ′(t) = f(γ(t), u(t)),

γ(0) = o.

The solution of the previous problem will be denoted by γ(o,f,u). Hence one can define

d(f,N)(p, q) := inf

{∫ 1

0

N(γ(s), u(s)) ds : γ = γ(p,f,u), γ(1) = q

}
.

Notice that the set in the infimum above could be empty. In that case d(f,N)(p, q) = +∞. Any

couple (f,N) as above will be called a CC-bundle structure.

7.2.2 Continuously varying CC bundle structures.

Definition 7.2.1 (Continuosuly varying CC-bundle structure). Let Λ ⊆ R be a topological space.

Let M be a smooth manifold endowed with a Riemannian metric ρ. Endow TM with the bundle

metric induced by ρ.

Let f : Λ×M ×Rm → TM and N : Λ×M ×Rm → [0,+∞) be maps such that for every λ ∈ Λ

we have that (fλ, Nλ) is a CC-bundle structure, where fλ := f(λ, ·, ·) and Nλ := N(λ, ·, ·). We say

that the family {(fλ, Nλ)}λ∈Λ is a continuously varying CC-bundle structure if
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• f ∈ C0(Λ×M × Rm);

• N ∈ C0(Λ×M × Rm);

• For every compact K1 ⊆ M , and every compact K2 ⊆ Λ × Rm there exists L such that for

every (λ, v) ∈ K2 the vector field

K1 3 p 7→ f(λ, p, v) ∈ TM

is L-Lipschitz with respect to the Riemannian distances.

We shall prove the following theorem.

Theorem 7.2.2. Let Λ ⊆ R be compact, and let {(fλ, Nλ)}λ∈Λ be a continuously varying CC-

bundle structure on a smooth manifold M . Let dλ := d(fλ,Nλ) for every λ ∈ Λ. Let λ0 ∈ Λ be such

that f(λ0,M,Rm) is a bracket-generating distribution and the metric space (M,dλ0
) is boundedly

compact.1 Then dλ → dλ0 uniformly on compact sets of M as λ→ λ0.

We give the proof of the previous theorem using the following crucial lemma.

Lemma 7.2.3 (Equicontinuity of the distances). In the same assumptions of Theorem 7.2.2, let

K ⊆M be compact set and ρ Riemannian metric on M . Then there exists a neighborhood Iλ0
⊆ Λ

of λ0, and β homeomorphism of [0,+∞) such that

dλ(p, q) ≤ β(ρ(p, q)), for all p, q ∈ K and λ ∈ Iλ0
.

Proof. Let us fix a Riemannian metric ρ on Mn, where n denotes the dimension of the manifold.

Let us denote, for λ ∈ Λ and p ∈M ,

Xλ
i (p) := f(λ, p, ei),

where {e1, . . . , em} is a standard basis of Rm. Let us fix some x ∈ M from now on. We know

that {Xλ0
i }mi=1 is a bracket-generating set of vector fields. Hence, for every η > 0, there exist

Xλ0
i1
, . . . , Xλ0

in
, where {i1, . . . , in} ⊆ {1, . . . ,m} may depend on η, such that the following holds.

There exists t̂ := (t̂1, . . . , t̂n) with |t̂| < η such that the map

(t1, . . . , tn) 7→ Φtn
X
λ0
in

◦ · · · ◦ Φt1
X
λ0
i1

(x),

1These assumption is probably not necessary.
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has a regular point at t̂. Notice now that, since the map f is continuous, then the map

Ψ(i1,...,in) : (λ, s1, . . . , sn, t1, . . . , tn) 7→ Φs1
Xλi1
◦ . . .Φsn

Xλin
◦ Φtn

Xλin
◦ · · · ◦ Φt1

Xλi1
(x) (7.2.4)

is continuous and well defined on I(i1,...,in) × B(0, ξ(i1,...,in)), where B(0, ξ(i1,...,in)) is a sufficiently

small neighborhood of 0 in R2n, and I(i1,...,in) is a sufficiently small compact neighborhood of λ0. 2

Let Iλ0,x be the intersection of I(i1,...,in) over all the possible choices of {i1, . . . , in} ⊆ {1, . . . ,m},

and let B(0, ξ) be the intersection of B(0, ξ(i1,...,in)) over all the possible choices of {i1, . . . , in} ⊆

{1, . . . ,m}. Let K be the union of Ψ(i1,...,in)(Iλ0,x × B(0, ξ)), over all the possible choices of

{i1, . . . , in} ⊆ {1, . . . ,m}. Hence, by continuity of N , there exists L > 0 such that

N(λ, p, v) ≤ L|v|, for all λ ∈ Iλ0,x and p ∈ K. (7.2.5)

Let us prove the following claim. We recall that x ∈M is fixed.

Claim. For every ε > 0 there exists δ such that

Bρ(x, δ) ⊆ Bdλ(x, ε), for all λ ∈ Iλ0,x,

where Iλ0,x is defined above.

To prove the claim, take ν := min{ξ/4, ε/(4nL)}, where ξ is defined above. Hence there exists t̂

with |t̂| < ν and {i1, . . . , in} ⊆ {1, . . . ,m} such that the map Ψ(i1,...,in)(λ0,−t̂1, . . . ,−t̂n, t1, . . . , tn)

is a diffeomorhpsim between a neighborhood Û of t̂ (that can be taken contained in B(0, 2ν) ⊆ Rn)

and a neighborhood of x ∈M . By the continuity of the map Ψ(i1,...,in) we get that the convergence

Ψ(i1,...,in)(λ,−t̂, t1, . . . , tn)→ Ψ(i1,...,in)(λ0,−t̂, t1, . . . , tn), for λ→ λ0,

is uniform on (t1, . . . , tn) ∈ Û . Hence, applying ?? and ??, we have that there exists δ > 0 such that

Bρ(x, δ) ⊆ Ψ(i1,...,in)(λ, t̂, Û), for all λ ∈ Iλ0,x.

Since Û ⊆ B(0, ξ/(2nL)) we get that for every (s1, . . . , sn) ∈ Û we have

|s1|+ · · ·+ |sn| ≤ ε/(2L).

Moreover, also |t̂1|+ . . . |t̂n| ≤ ε/(2L), and then from the explicit expression (7.2.4) and the estimate

(7.2.5), we get that the endpoint of the concatenation of the curves associated to Ψ(i1,...,in)(λ, t̂, s1, . . . , sn)

for any (s1, . . . , sn) ∈ Û has length ≤ ε for every λ ∈ Iλ0,x. Hence

Bρ(x, δ) ⊆ Bdλ(x, ε), for all λ ∈ Iλ0,x,

2GA:Magari spendere due parole in più su questo, conseguenza di Gronwall.
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which is the sought claim.

Now a routine compactness argument based on Claim 1. shows that, given a compact K ⊆ M ,

there exists a compact interval Iλ0,K ⊆ Λ of λ0 such that for every ε > 0 there exists δ such that

Bρ(x, δ) ⊆ Bdλ(x, ε), for all λ ∈ Iλ0,K , for all x ∈ K.

From the previous conclusion, the proof of the lemma follows.

Proof of Theorem 7.2.2. We embed M isometrically into some RN , on which we denote with | · | the

standard norm. Let us fix a compact set K and a Riemannian metric ρ on M . Notice that on every

compact set of M , ρ and | · | are biLipschitz equivalent. Let us fix 0 < ε < 1.

By continuity, there exists a constant C > 0 such that dλ0
(p, q) ≤ C for every p, q ∈ K. Let

K ′ := Bλ0
(K,C + 1) the closed tubular neighborhood of K of radius C + 1. Since (M,dλ0

) is

boundedly compact, we deduce that K ′ is compact.

Let β be the functions, and Iλ0
be the compact neighborhood of λ0, associated to K ′ given from

Lemma 7.2.3. Notice that for every p, q ∈ K and for every λ ∈ Iλ0
we have that

dλ(p, q) ≤ β(|p− q|) ≤ β(diam|·|K).

Since N(λ, p, ·) is a norm for every λ ∈ Iλ0
and every p ∈M , and since N is continuous, we get that

there exists a compact set K ′′ ⊆ Rm such that

if N(λ, x, v) ≤ β(diam|·|K) + 1 for some λ ∈ Iλ0 and x ∈ K ′, then v ∈ K ′′. (7.2.6)

Moreover, by definition of continuously varying CC-structures, we have that there exists L > 0 such

that for every λ ∈ Iλ0
and v ∈ K ′′ the map

K ′ 3 p 7→ f(λ, p, v),

is L-lipschitz.

Because of continuity of the functions N and f we get that there exist 0 < δ2 < δ1 < ε such that

B(λ0, δ2) ⊆ Iλ0 and

|N(λ0, x, v)−N(λ, y, v)| < ε, for all λ ∈ B(λ0, δ2), x ∈ K ′, v ∈ K ′′, y ∈ B|·|(x, δ1), (7.2.7)

and

|f(λ0, x, v)− f(λ, x, v)| < a, for all λ ∈ B(λ0, δ2), x ∈ K ′, v ∈ K ′′, (7.2.8)
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where a is chosen such that a e
L−1
L < δ1.

We claim that for every λ ∈ B(λ0, δ2) and every p, q ∈ K, we have

dλ0(p, q) ≤ dλ(p, q) + 2ε+ β(ε). (7.2.9)

Indeed, fix p, q, λ as in the claim. Up to reparametrization, we can take a curve γλ connecting p and

q such that γ′λ = f(λ, γλ, uλ) and

N(λ, γλ(t), uλ(t)) ≤ dλ(p, q) + ε, for a.e. t ∈ [0, 1]. (7.2.10)

Let B := Bλ0
(p, dλ0

(p, q)). Notice that B ⊆ K ′. Define

t := max{t ∈ [0, 1] : γλ(s) ∈ B ∀s ∈ [0, t]}.

Denote q′λ := γλ(t) and notice that dλ0(p, q′λ) = dλ0(p, q). Moreover notice that (γλ)|[p,q′λ] ⊆ K ′.

Take now γλ,0 such that γ′λ,0 = f(λ0, γλ,0, uλ) and γλ,0(0) = p. Call qλ := γλ,0(t).3

We shall estimate |qλ − q′λ|. From (7.2.10), (7.2.6), and the fact that γλ([0, t]) ∈ K ′ we get that

uλ(t) ∈ K ′′ for a.e. t ∈ [0, t]. Hence we estimate, for every x, y ∈ K ′ and a.e. t ∈ [0, t],

|f(λ, x, uλ(t))− f(λ0, y, uλ(t))| ≤ |f(λ, x, uλ(t))− f(λ0, x, uλ(t))|

+ |f(λ0, x, uλ(t))− f(λ0, y, uλ(t))|

≤ a+ L|x− y|.

(7.2.11)

Hence Gronwall Lemma in ?? applied on K ′ directly implies that4

|γλ(t)− γλ,0(t)| ≤ ae
Lt − 1

L
< δ1 < ε, for a.e. t ∈ [0, t], (7.2.12)

and morevoer that (γλ,0)|[0,t] ⊆ K ′. Now let us conclude the estimate of the Claim 1. We have

dλ0
(p, q) = dλ0

(p, q′λ) ≤ dλ0
(p, qλ) + dλ0

(qλ, q
′
λ)

≤
∫ t

0

N(λ0, γλ,0(s), uλ(s)) ds+ β(|qλ − q′λ|)

≤
∫ t

0

N(λ, γλ(s), uλ(s)) ds+ ε+ β(ε)

≤
∫ 1

0

N(λ, γλ(s), uλ(s)) ds+ ε+ β(ε)

≤ dλ(p, q) + ε+ β(ε) + ε,

(7.2.13)

3GA:Questa frase richiede un minimo di giustificazione, precisamente nella parte in cui sostanzialmente usiamo
che la curva γλ,0 vive anche essa fino a tempo t. Basta usare una variante degli argomenti di ??, ?? e prendere δ2
sufficientemente piccolo.

4GA:Piccolo accorgimento. Dire due parole in più sul fatto che stiamo usando Gronwall per dire che la curva γλ,0
continua sempre a stare in K′.
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where we are using (7.2.12), (7.2.7), and (7.2.10).

We claim that for every λ ∈ B(λ0, δ2) and every p, q ∈ K, we have

dλ(p, q) ≤ dλ0
(p, q) + 2ε+ β(ε). (7.2.14)

Indeed, fix p, q, λ as in the claim. Up to reparametrization, we can take a curve γ connecting p and

q such that γ′ = f(λ0, γ, u) and

N(λ0, γ(t), u(t)) ≤ dλ0
(p, q) + ε, for a.e. t ∈ [0, 1]. (7.2.15)

Notice that γ ⊆ K ′. Take now γλ such that γ′λ = f(λ, γλ, u) and γλ(0) = p. Call qλ := γλ(1).5

We now want to estimate |qλ − q|. Arguing verbatim as before we obtain

|γλ(t)− γ(t)| ≤ ae
Lt − 1

L
< δ1 < ε, for a.e. t ∈ [0, 1], (7.2.16)

and moreover γλ ⊆ K ′. Now let us conclude the estimate of the Claim 2. We have

dλ(p, q) ≤ dλ(p, qλ) + dλ(qλ, q)

≤
∫ 1

0

N(λ, γλ(s), u(s)) ds+ β(|qλ − q|)

≤
∫ 1

0

N(λ0, γ(s), u(s)) ds+ ε+ β(ε)

≤ dλ(p, q) + ε+ β(ε) + ε,

(7.2.17)

where we are using (7.2.16), (7.2.7), and (7.2.15).

From (7.2.9) and (7.2.14) jointly with the fact that β(ε) → 0 as ε → 0 we get the proof of the

theorem.

7.3 Asymptotic cones

7.3.1 SubRiemannian Carnot group as Riemannian limits

We start with a simple observation that shows to the inexpert reader how a subRiemannian Carnot

group can appear as limit of Riemannian metrics on the same Lie group.

Lemma 7.3.1. Let G be a stratified group, with Lie algebra stratification Lie(G) = V1⊕· · ·⊕Vs. Let

X1, . . . , Xn be a basis adapted to the stratification. For all λ > 0 let dλ be the Riemannian distance

associated to the Riemannian metric that makes

X1, . . . ,
λdeg(Xj)

λ
Xj , . . . λ

s−1Xn

orthonormal. Then the metric space (G,λd1) is isometric to (G, dλ) via the map δλ.
5GA:Stessa osservazione di prima.
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Proof. The distance λd1 associated to the Riemannian metric gλ that makes 1
λX1, . . . ,

1
λXn orthonor-

mal. The map δλ : (G,λd1) → (G, dλ) is a Riemannian isometry since it sends the orthonormal

vector 1
λXj to the orthonormal vectors (δλ)∗(

1
λXj) = 1

λλ
deg(Xj)Xj .

7.3.2 More general limits of Riemannian manifolds

SubRiemannian manifolds appear as limiting objects of Riemannian manifolds.

Proposition 7.3.2. Let M be a manifold, ∆ ⊂ TM a bracket-generating subbundle. Let (gn)n∈N

be a sequence of Riemannian metrics on M . Assume that

gn|∆ = g1|∆ ∀n ∈ N

and for all X /∈ ∆

gn(X,X)→ +∞ as n→∞.

Then for all p, q ∈M

lim
n→∞

dgn(p, q) = dCC(p, q)

where dCC is the subRiemannian distance associated to ∆ and g1|∆.

7.3.3 Preparatory example: The Riemannian Heisenberg group

Theorem 7.3.3. Let X,Y, Z be a basis of the Lie algebra of the Heisenberg group G with only

relation [X,Y ] = Z. For all n ∈ N, let dn be the Riemannian distance for which X,Y, 1
nZ are

orthonormal. Let dCC be the subRiemannian distance for which X,Y are orthonormal.

Then for all R > 0 there is a sequence εn → 0 as n→ 0 such that for all p, q ∈ BCC(e,R),

dn(p, q) ≤ dCC(p, q) ≤ dn(p, q) + εn.

In other words, dn → d∞ and the limit is uniform on compact sets.

Hence if d is the Riemannian distance for which X,Y, Z are orthonormal, then (G, 1
nd), which is

isometric to (G, dn) converge to (G, dCC). In other words, the asymptotic cone of the Riemannian

Heisenberg group is the subRiemannian Heisenberg group.

Exercise 7.3.4. Show that (G, 1
nd) and (G, dn) are isometric.

Proof of the Theorem. The fact that dn ≤ dCC is clear, since every horizontal curve for dCC has

exactly the length with respect to dn.

141



7- Limits of Riemannian and subRiemannian manifolds May 16, 2021

For the other inequality, take p, q ∈ BCC(e,R). Let γn : [0, 1] → G be a curve from p to q that

minimizes the length with respect to dn. Decompose γ̇ as

γ̇(t) = a1(t)X + a2(t)Y + a3(t)Z

with a3(t) not necessarily 0. Let σ : [0, 1] → G be the curve such that σ(0) = p and σ̇(t) =

a1(t)X+a2(t)Y . Let q̄ := σ(1). Let η : [0, 1]→ G be the curve such that η(0) = q̄ and η̇(t) = a3(t)Z.

We claim that

η(t) = (Lq̄ ◦ L−1
σ(t))(γ(t)), ∀t ∈ [0, 1]. (7.3.5)

Since

(Lq̄ ◦ L−1
σ(0))(γ(0)) = Lq̄ ◦ L−1

p (p) = q̄ = η(0),

it is enough to show that

d

dt

(
Lq̄ ◦ L−1

σ(t) ◦ γ(t))
)

= η̇(t).

For doing this, lets consider exponential coordinate so

γ̇ = a1X + a2Y + a3Z =
(
a1, a2, a3 −

γ2

2
a1 +

γ1

2
a2

)
and

σ̇ =
(
a1, a2,−

σ2

2
a1 +

σ1

2
a2

)
.

Thus γ1 = σ1 = p1 +
∫ t

0
a1 and γ2 = σ2 = p2 +

∫ t
0
a2.

σ(t)−1γ(t) = (γ1 − σ1, γ2 − σ2, γ3 − σ3 −
1

2
(σ1γ2 − σ2γ1) =

= (0, 0, γ3 − σ3)

Thus

d

dt
σ(t)−1γ(t) = (0, 0, γ̇3 − σ̇3) = a3Z.

The claim (7.3.5) is proved and, in particular, we have that

η(1) = q̄q̄−1q = q.

We need to bound the length Ld1(η). Since X,Y, Z are orthogonal and ‖ 1
nZ‖n = 1, we have

∫ 1

0

n · |a3| =

∫ 1

0

‖a3Z‖n ≤
∫ 1

0

‖a1X + a2Y + a3Z‖n = Ldn(γ) = dn(p, q) ≤ dCC(p, q) ≤ 2R
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Then

Ld1
(η) =

∫ 1

0

‖a3Z‖1 =

∫ 1

0

|a3| ≤
2R

n

Thus, as n → ∞, d1(q̄, q) goes to 0 uniformly on p, q ∈ BCC(e,R). In fact, using the ball-box

theorem,

dCC(q̄, q) ≤ Kd1(q̄, q)1/2 ≤ (Ld1
(η))1/2 ≤ K

(
2R

n

)1/2

= O(
1√
n

).

Since dCC(p, q̄) ≤ LCC(σ) ≤ Ldn(γ) = dn(p, q), we conclude that

dCC(p, q) ≤ dCC(p, q̄) + dCC(q̄, q) ≤ dn(p, q) +O(
1√
n

).

7.3.4 Toward the general setting: Gronwall Lemma

For a general stratified group, the proof of the analogue result is slightly more involved since it may

not be true that the analogue of the curve η ends at q.

However, we still have the property that, since γ and σ have very similar tangents, then their

endpoints are close. The precise statement is the following, for which we use the notation that if

ξ is a curve on a Lie group G and ξ̇(t) is it tangent vector at time t, which is a vector at ξ(t), we

denote by ξ′(t) := (Lξ(t))
∗ξ̇(t) its representative in the Lie algebra.

Lemma 7.3.6 (Gronwall Lemma). Let G be a Lie group, ‖ · ‖ a norm on TeG, d a Riemannian

distance on G, ν > 0. Then there is C such that for all ε > 0, for all γ, σ : [0, 1] → G absolutely

continous curves such that γ(0) = σ(0), ‖γ′‖, ‖σ′‖ ≤ ν a.e., and ‖γ′ − σ′‖ < ε a.e., then

d(γ(1), σ(1)) ≤ Cε.

Proof. Notice that the image of γ and σ are in a bounded set determined by d and ν. For simplicity,

we assume that we are in exponential coordinates and that the distance d is given by the norm ‖ · ‖.

Since the map (g, v) 7→ (Lg)∗v is smooth, then it is Lipschitz on bounded sets. Hence there is K > 0

such that

‖γ̇ − σ̇‖ = ‖(Lγ)∗γ
′ − (Lσ)∗σ

′‖ ≤

≤ ‖(Lγ)∗γ
′ − (Lγ)∗σ

′‖+ ‖(Lγ)∗σ
′ − (Lσ)∗σ

′‖ ≤

≤ K · ‖γ′ − σ′‖+K · ‖γ − σ‖.
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Set f(t) := ‖γ(t)− σ(t)‖2. Then, using that 2ab ≤ a2 + b2, we get

d

dt
f = 2〈γ − σ, γ̇ − σ̇〉 ≤ 2‖γ − σ‖ · ‖γ̇ − σ̇‖ ≤

≤ 2K‖γ − σ‖ · ‖γ′ − σ′‖+ 2K‖γ − σ‖2 ≤

≤ K(‖γ − σ‖2 + ‖γ′ − σ′‖2) + 2K‖γ − σ‖2 = 3Kf +Kε2

Then

d

dt
(e−3Ktf(t)) = −3Ke−3Ktf ′(t) = e−3kt(f ′(t) − 3Kf(t)) ≤ e−3KtKε2

Therefore

e−3Kf(1) = e−3Ktf(t)|1t=0 =

∫ 1

0

d

dt
(e−3Ktf(t)) dt ≤

≤
∫ 1

0

e−3KtKε2 dt =
e−3KtKε2

−3K

∣∣∣∣1
t=0

=
e−3KKε2

−3K
− Kε2

−3K

Thus

f(1) ≤ e3K(
1

3
− e−3K

3
)ε2

and

‖γ(1)− σ(1)‖ ≤
√
e3K/2 − 1

3
ε.

Exercise 7.3.7. Let d1, d2 be two left-invariant boundedly compact distances on a Lie group G

inducing the manifold topology. Then the increasing function ξ : (0,∞)→ (0,∞) defined by

ξ(r) = diamd1

(
Bd2

(e, r)
)

is such that ξ(r)→ 0, as r → 0, and d1(p, q) ≤ ξ(d2(p, q)).

7.3.5 Asymptotic cones of Riemannian stratified groups

Theorem 7.3.8. Let G be a Lie group and let ∆ ⊂ TG be a bracket generating left-invariant

distribution. Let ∆⊥ be a left-invariant distribution complementary to ∆, i.e., for all p ∈ G,

∆p ⊕∆⊥p = TpG.

Let 〈·, ·〉n be a sequence of left-invariant Riemannian metrics on G such that
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1. all p ∈ G ∆p is orthogonal to ∆⊥p with respect to 〈·, ·〉n,

2. ‖ · ‖n coincide with ‖ · ‖1 on ∆p,

3. for all X ∈ ∆⊥p , ‖X‖n ≥ n · ‖X‖1 for all n ∈ N.

Let dCC be the subRiemannian distance associated to ∆ and 〈·, ·〉1, and dn the Riemannian distance

associated to 〈·, ·〉n. Then for all R > 0 there exists a sequence εn → 0 as n → ∞ such that for all

p, q ∈ BCC(e,R) one has

dn(p, q) ≤ dCC(p, q) ≤ dn(p, q) + εn.

Proof. Obviously, dn ≤ dCC .

Take p, q ∈ BCC(e,R), so p, q ∈ Bdn(e,R). Let γ = γn : [0, 1] → G be a curve from p to q such

that Ldn(γ) = dn(p, q) and ‖γ̇‖n ≤ 2R.

Decompose γ′ = (Lγ)∗γ̇ as γ′(t) = X(t) + Z(t) with X(t) ∈ ∆e and Z(t) ∈ ∆⊥e for all t ∈ [0, 1].

Let σ : [0, 1]→ G be such that σ(0) = p and σ′(t) = X(t). Then

n · ‖Z‖1 ≤ ‖Z‖n ≤ ‖X + Z‖n
∆⊥∆⊥

= ‖γ̇‖n < 2R.

Let ξ(t) := diamdCC (Bd1
(e, r)) as in Exercise 7.3.7. Then we are going to use Lemma 7.3.6 since

‖γ′‖1, ‖σ′‖1 ≤ ‖γ′‖n < 2R and ‖γ′ − σ′‖1 = ‖Z‖1 < 2R
n and get

dCC(p, q) ≤ dCC(p, σ(1)) + dCC(σ(1), γ(1))

≤ LCC(σ) + ξ(d1(σ(1), γ(1)))

≤ Ldn(γ) + ξ

(
C · 2R

n

)
= dn(p, q) + o(1) as n→∞.

Corollary 7.3.9. Let G be a stratified group equipped with a Riemannian structure for which the

stratification is orthogonal. Then the asymptotic cone of G is a Carnot group. In fact, if d is the

Riemannian distance, then there exist Riemannian distances dλ on G such that dλ → dCC uniformly

on compact sets and (G, 1
λd) is isometric to (G, dλ), and (G, dCC) is a Carnot group.
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7.4 Tangent spaces

Carnot groups are the tangents of subRiemannian manifolds at regular points. Such as result,

originally attributed to Mitchell, is quite technical and involved, see [?, Jea14]. We shall give a

complete proof in a specific example, in which the reader can already observe the strategy. Later we

shall give the proof of the general result, but without enter too much in the details of the argument.

7.4.1 Preparatory example: The subRiemannian rototranslation group

From the neurogeometry point of view, the most important subRiemannian manifold that is not a

Carnot group is the rototranslation group. We begin by proving Mitchell’s theorem for such a space.

Theorem 7.4.1. The tangent space of the subRiemannian rototranslation group is the subRieman-

nian Heisenberg group.

Quantitative Chow’s theorem

The following proposition gives an explicit proof of Chow’s theorem and Ball-Box theorem. Moreover,

it gives a uniform estimate for sequences of structures. We denote by p exp(X) = Φ1
X(p) the flow at

time 1 from p along X, and, for t < 0, we denote by
√
t the value −

√
−t.

Proposition 7.4.2. Let Xλ, Yλ be a pair of vector fields in R3 that depend smoothly on λ ∈ [0, 1].

Assume Xλ, Yλ, [Xλ, Yλ] is a frame of R3 for all λ. Consider the map (composition of flows)

Φpλ(t1, t2, t3) := p exp(t1Xλ) exp(t2Yλ) exp(
√
t3Xλ) exp(

√
t3Yλ) exp(−

√
t3Xλ) exp(−

√
t3Yλ)

Then

1. Φpλ is smooth and ( dΦpλ)0 has maximal rank.

2. The biLipschitz constant of ( dΦpλ)0 is bounded when λ ∈ [0, 1] and p is in a compact set.

3. There exist C > 0 and R > 0 such that for all λ ∈ [0, 1] and for all r ∈ (0, R), for all

p ∈ BE(0, R)

Φpλ(BE(0, Cr)) ⊃ BE(p, r).

4. If dλ is the subRiemannian distance for which Xλ, Yλ are orthonormal, then there are C > 0

and R > 0 such that for all p, q ∈ BE(0, R) and all λ ∈ [0, 1]

dλ(p, q) ≤ C
√
dE(p, q).
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Proof. One has that (∂t1Φpλ)(0) = Xλ(p), (∂t2Φpλ)(0) = Yλ(p), and (∂t3Φpλ)(0) = [Xλ, Yλ](p).

Hence, ( dΦpλ)(0) has rank 3. Moreover, there is C > 0 such that any nonzero vector v ∈ R3 is

such that

‖( dΦpλ)(x)(v)‖ ≥ C‖v‖

for x in a compact set.

By continuity in λ, we can take C uniform when λ ∈ [0, 1]. In other words, (Φpλ)−1 is C−1-

Lipschitz in a neighborhood of p for all λ ∈ [0, 1].

Part (iii) follows from the Inverse Mapping Theorem.

Regarding (iv), notice that

dλ(p,Φpλ(t1, t2, t3)) ≤ |t1|+ |t2|+ 4
√
|t3|

≤ K
√
‖(t1, t2, t3)‖E

for some K > 0 and for all t1, t2, t3 ∈ (0, 1).

Let R as in (iii), take p, q ∈ BE(0, R2 ) so for r = dE(p, q)

q ∈ BE(p, r) ⊂ Φpλ(BE(0, Cr))

i.e., there are t1, t2, t3 with ‖(t1, t2, t3)‖E < Cr such that q = Φpλ(t1, t2, t3). Hence,

dλ(p, q) ≤ K
√
‖(t1, t2, t3)‖E ≤ K

√
Cr = K

√
C
√
dE(p, q)

Proof of Theorem 7.4.1

An explicit restatement of Theorem 7.4.1 is the following.

Theorem 7.4.3. In R3 with coordinates x, y, θ let

X = cos θ∂x + sin θ∂y Y = ∂θ

X∞ = ∂x + θ∂y Y∞ = ∂θ

Xn = cos
θ

n
∂x + n sin

θ

n
∂y Yn = ∂θ ∀n ∈ N

Let d (resp. dn, resp d∞) be the subRiemannian distance for which X,Y (resp. Xn, Yn, resp.

X∞, Y∞) are orthonormal. Then

1. (R3, nd) is isometric to (R3, dn).
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2. For all R > 0 there exists εn → 0 such that for all p, q ∈ Bd∞(0, R)

|dn(p, q)− d∞(p, q)| < εn,

i.e., dn → d∞ uniformly on compact sets.

Proof. The distance nd is the subRiemannian distance associated to the orthonormal frame 1
nX,

1
nY .

Let

δn : (x, y, θ) 7→ (nx, n2y, xθ).

Then

dδn(
1

n
X) = cos θ∂x + n sin θ∂y = Xn ◦ δn

dδn(
1

n
Y ) = · · · = Yn ◦ δn.

So δn is an isometry between (R3, nd) and (R3, dn).

Take p, q ∈ Bd∞(0, R). Let σ be a d∞-geodesic from p to q, σ : [0, 1]→ R3, ‖σ̇‖∞ < 2R .

σ̇ = aX∞ + bY∞

with |a|, |b| < 2R.

Let γ such that γ̇ = aXn + bYn. Then

|σ̇ − γ̇| ≤ |a||X∞ ◦ σ −Xn ◦ γ|+ |b||Y∞ ◦ σ − Yn ◦ γ|

≤ 2R(K|σ − γ|+ ‖X∞ −Xn‖L∞(Bd∞ (0,R)))

≤ 2RK|σ − γ|+ 2RKε̄n

where ε̄n = supBd∞ (0,R) |Xn −X∞|. Notice that ε̄n → 0, because Xn → X∞ uniformly on compact

sets.

From Gronwall Lemma (see TakeHome exam), we get

|γ(1)− σ(1)| = o(1)

Then, by Proposition 7.4.2

dn(p, q) ≤ dn(p, γ(1)) + dn(γ(1), σ(1))

≤ Ldn(γ) + C
√
γ(1)− σ(1)

≤ Ld∞(σ) + o(1)

= d∞(p, q) + o(1).
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In particular, dn(p, 1) ≤ 3R for n large enough.

Let γ be a dn-geodesic from p to q, γ : [0, 1]→ R3 with ‖γ̇‖n < 3R.

γ̇ = aXn + +bYn,

with |a|, |b| < 3R. Let σ be such that σ̇ = aX∞ + bY∞, then as before |γ(1)− σ(1)| = o(1).

d∞(p, q) ≤ d∞(p, γ(1)) + d∞(γ(1), σ(1))

≤ Ld∞(γ) + C
√
γ(1)− σ(1)

≤ Ldn(σ) + o(1)

= dn(p, q) + o(1).

7.4.2 Nilpotization

We explain now what is the Carnot group which appear as tangent to a given equi-regular distribu-

tion. Let ∆ be a bracket-generating and equi-regular distribution in a manifold M , i.e.,

∆ = ∆[1] ⊂ ∆[2] ⊂ . . . ⊂ ∆[s] = TM

is a flag of sub-bundles of TM , where ∆[j+1] = ∆[j] + [∆,∆[j]]. Note that in the last sum is not

necessarily a direct sum. The simple but crucial fact is that

[∆[k],∆[l]] ⊆ ∆[k+l]. (7.4.4)

Equation (7.4.4) is obvious for k = 1 and can be proved by induction using Jacobi identity:

[∆[k+1],∆[l]] =
[
∆[k] + [∆,∆[k]],∆[l]

]
= [∆[k],∆[l]] +

[
[∆,∆[k]],∆[l]

]
⊆ ∆[k+l] +

[
[∆[k],∆[l]],∆

]
+
[
[∆[l],∆],∆[k]

]
⊆ ∆[k+l] + [∆[k+l],∆] + [∆[l+1],∆[k]]

⊆ ∆[k+l] + ∆[k+l+1] + ∆[k+l+1]

⊆ ∆[k+l+1]

Define H1 := ∆ and Hj := ∆[j]/∆[j−1], for j = 2, . . . , n. Still Hj is a bundle over M , but not a

sub-bundle of the tangent bundle TM . We obviously have the following isomorphism

TM ' H1 ⊕H2 ⊕ . . .⊕Hs.
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In this notes we also assume that the equi-regular distributions have the further property of having a global framing X1, . . . , Xn of M such
that, for some m1, . . . ,ms,

∆
[j]

(p) = R- span{X1(p), . . . , Xmj
(p)}, ∀p ∈ M.

Fact 7.4.5. For each point p ∈M , the vector space TpM inherits the structure of a Carnot group,

with respect the stratification Hj(p). Such Carnot group is sometimes called the nilpotization of TpM

with respect to ∆.

The following proof is incomplete - a new proof will be given in the future - for now see [Bul02]. Let

Vj := Hj(p). Obviously TpM and V1 ⊕ · · · ⊕ Vs are isomorphic vector spaces. We need to define a

Lie algebra product and then show that [Vj , V1] = Vj+1. Take x, y ∈ TpM , with x ∈ Vj and y ∈ Vl.

Since Vj = Hj(p) = ∆[j](p)/∆[j−1](p), we have that there exist X ∈ ∆[j] and Y ∈ ∆[l], such that

x = X(p) + ∆[j−1](p) and y = Y (p) + ∆[l−1](p).

We define, naturally,

[x, y] := [X,Y ](p) + ∆[j+l−1](p).

The definition is well posed because of (7.4.4): if u ∈ ∆[j−1], then [X + u, Y ] = [X,Y ] + [u, Y ],

with [u, Y ] ∈ [∆[j−1],∆[l]] ⊆ ∆[j+l−1]. Thus [X + u, Y ](p) and [X,Y ](p) are equal mod ∆[j+l−1](p).

NEED TO SHOW INDEPENDENCE FROM THE REPRESENTATIVE X.

Again, if y ∈ V1, from (7.4.4) we immediately have that [x, y] ∈ ∆[j+1](p)/∆[j](p) = Vj+1. Thus

[Vj , V1] ⊆ Vj+1. To show the reverse inclusion, let z ∈ Vj+1. Consider a representative Z ∈ ∆[j+1]

such that z = Z(p)+∆[j](p). By definition ∆[j+1] = ∆[j]+[∆[j],∆], so there are W ∈ ∆[j], Xl ∈ ∆[j],

and Yl ∈ ∆ such that Z = W +
∑
l[Xl, Yl]. Take xl = Xl(p) (mod ∆[j−1]) and yl = Yl(p). We have

then

∑
l

[xl, yl] =
∑
l

[Xl, Yl](p) (mod ∆[j](p))

= (Z −W )(p) (mod ∆[j](p))

= Z(p) (mod ∆[j](p)).

Therefore we have shown that [Vj , V1] = Vj+1.
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7.4.3 Mitchell’s Theorem on tangent cones

Given a metric space (X, d), one defines the dilated metric space (X,λd) dilated by a factor of λ ∈ R

as the same set X endowed with the dilated distance (λd)(p, q) := λd(p, q). Gromov has defined the

notion of tangent space to a metric space as limit of such objects.

We say that a metric space (Z, ρ) is a tangent of (X, d) at the point p ∈ X if there exists p̄ ∈ Z

and a sequence λj →∞ such that

lim
j

(X, p, λjd) = (Z, p̄, ρ).

It signifies 6 that for each r > 0, there is a sequence of εj → 0 such that the ball of radius r + εj in

(X,λjd) about the base point p converges to the ball of radius r about p̄. Namely, the infimum of the

Gromov-Hausdorff distance between these compact abstract metric spaces approach 0 as λj →∞.

The Gromov-Hausdorff distance GH(B1, B2) between two compact metric spaces B1 and B2 is

infimum infψ1,ψ2
H(ψ1B1, ψ2B2) over all isometric embeddings ψ1, ψ2 of B1 and B2 into the same

metric space C of the Hausdorff distance H(ψ1B1, ψ2B2) of the images as subset of C.

A distribution is said to be generic if, for each j, dim ∆[j](p) is independent of the point p in M .

Theorem 7.4.6 (Mitchell). For a generic distribution ∆ on M , the tangent cone of a sub-Riemannian

manifold (M,dCC) at p ∈M is isometric to (G, d∞) where G is a Carnot group with a left-invariant

Carnot-Carathéodory metric. In fact, the group G is the nilpotization of TpM with respect to ∆.

Remark 7.4.7. The simple fact that we would like the reader to observe is that the tangent cone

of a Carnot group G is G itself. Indeed, dilations δλ provide isometries between (G, dCC) and

(G,λdCC).

Remark 7.4.8. Differently from the Riemannian case, it is NOT true that a sub-Riemannian

manifold is locally biLipschitz equivalent to its tangent cone. It is however true for contact manifolds

because of Darboux Theorem.

7.5 A metric characterization of Carnot groups

The purpose of this section is to give a more axiomatic presentation of Carnot groups from the view

point of Metric Geometry. In fact, we shall see that Carnot groups are the only locally compact and

6In the case when the metric space (X, d) is geodesic, the limit should be easier to understand. Look at [BBI01,
page 272].
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geodesic metric spaces that are isometrically homogeneous and self-similar. Such a result follows the

spirit of Gromov’s approach of ‘seeing Carnot-Carathéodory spaces from within’, [Gro96].

Let us recall and make explicit the above definitions. A topological space X is called locally

compact if every point of the space has a compact neighborhood. A metric space is geodesic if, for

all p, q ∈ X, there exists an isometric embedding ι : [0, T ] → X with T ≥ 0 such that ι(0) = p and

ι(T ) = q. We say that a metric space X is isometrically homogeneous if its group of isometries acts on

the space transitively. Explicitly, this means that, for all p, q ∈ X, there exists a distance-preserving

homeomorphism f : X → X such that f(p) = q. In this section, we say that a metric space X is

self-similar if it admits a dilation, i.e., there exists λ > 1 and a homeomorphism f : X → X such

that d(f(p), f(q)) = λd(p, q), for all p, q ∈ X.

Theorem 7.5.1. The subFinsler Carnot groups are the only metric spaces that are

1. locally compact,

2. geodesic,

3. isometrically homogeneous, and

4. self-similar (i.e., admitting a dilation).

Theorem 7.5.1 provides a new equivalent definition of Carnot groups. Obviously, (1) can be

slightly strengthened assuming that the space is boundedly compact (the term proper is also used),

i.e., closed balls are compact.

We point out that each of the four conditions in Theorem 7.5.1 is necessary for the validity of

the result. Indeed, let us mention examples of spaces that satisfy three out of the four conditions

but are not Carnot groups: any infinite dimensional Banach space; any snowflake of a Carnot group,

e.g., (R,
√
‖·‖); many cones such as the usual Euclidean cone of cone angle in (0, 2π) or the union

of two spaces such as {(x, y) ∈ R2 : xy ≥ 0}; any compact homogeneous space such as S1.

Other papers focusing on metric characterizations of Carnot groups are [LD11b], [Bul11], [Fre12]

(which is based on [LD11a]), and [BS14].

7.5.1 Proof of the characterization

The proof of Theorem 7.5.1 is an easy consequence of three hard theorems. We present now these

theorems, before giving the proof.
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The first theorem is well-known in the theory of locally compact groups. It is a consequence

of a deep result of Dean Montgomery and Leo Zippin, [MZ52, Corollary on page 243, Section 6.3],

together with the work [Gle52] of Andrew Gleason. An explicit proof can be found in Cornelia Drutu

and Michael Kapovich’s lecture notes, [DK11, Chapter 14].

Theorem 7.5.2 (Gleason-Montgomery-Zippin). Let X be a metric space that is connected, locally

connected, locally compact and has finite topological dimension. Assume that the isometry group

Isom(X) of X acts transitively on X. Then Isom(X) has the structure of a Lie group with finitely

many connected components, and X has the structure of an analytic manifold.

Notice that an isometrically homogeneous space that is locally compact is complete.

Successively, Berestovskii’s work [Ber88, Theorem 2] clarified what are the possible isometrically

homogeneous distances on manifolds that are also geodesic. They are subFinsler metrics.

Theorem 7.5.3 (Berestovskii). Under the same assumptions of Theorem 7.5.2, if in addition the

distance is geodesic, then the distance is a subFinsler metric, i.e., the metric space X is a ho-

mogeneous Lie space G/H and there is a G-invariant subbundle ∆ on the manifold G/H and a

G-invariant norm on ∆, such that the distance is given by the same formula (3.1.15).

Tangents, in the Gromov-Hausdorff sense, of subFinsler manifolds have been studied.

Theorem 7.5.4 (Mitchell). The metric tangents of an equiregular subFinsler manifold are sub-

Finsler Carnot groups.

Proof of Theorem 7.5.1. Let us verify that we can use Theorem 7.5.2. A geodesic metric space

is obviously connected and locally connected. Regarding finite dimensionality, we claim that a

locally compact, self-similar, isometrically homogeneous space X is doubling. Namely, there exists

a constant C > 0 such that any ball of radius r > 0 in X can be covered with less than C balls

of radius r/2. Since X is locally compact, there exists a ball B(x0, r0) that is compact. Let λ > 1

be the factor of the dilation. Hence, the balls B(x0, sr0) with s ∈ [1, λ] form a compact family of

compact balls. Hence, there exists a constant C > 1 such that each ball B(x0, sr0) can be covered

with less than C balls of radius sr0/2. By self-similarity and homogeneity, any other ball can be

covered with less than C balls of half radius. Doubling metric spaces have finite Hausdorff dimension

and hence finite topological dimension. Therefore, by Theorem 7.5.2 the isometry group G is a Lie

group.
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Since the distance is geodesic, Theorem 7.5.3 implies that our metric space is a subFinsler homo-

geneous manifold G/H. Since the subFinsler structure is G invariant, in particular it is equiregular.

Hence, on the one hand, because of Theorem 7.5.4 the tangents of our metric space are subFinsler

Carnot groups. On the other hand, the space admits a dilation, hence, iterating the dilation, we

have that there exists a metric tangent of the metric space that is isometric to our original space.

Then the space is a subFinsler Carnot group.
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Chapter 8

Visual boundaries of hyperbolic
spaces*

In this chapter we show that to every Riemannian symmetric space one can associate a ‘visual

boundary’ that has a structure of Carnot group. Visual boundaries are associated to spaces with

negative curvature. We have that every homogeneous negatively curved manifold has the structure

of semidirect product of the for N oR with a graded nilpotent group N that canonically represent

the visual boundary.

A Riemannian symmetric space is a connected Riemannian manifold M where for each point

p ∈ M there exists an isometry σp of M such that σp(p) = p and the differential of σp at p is the

multiplication by −1. Simple examples of symmetric spaces are round spheres, Euclidean spaces

and real hyperbolic. The rank of a symmetric space is the largest dimension of a flat subspace of

M , where a flat of dimension n in M is a local isometry γ : Rn → M . For example, spheres and

hyperbolic spaces have rank 1, whereas Euclidean n-space has rank n. A symmetric space is of

non-compact type if it is not the product of two symmetric spaces one of which is either compact

or Euclidean. Symmetric spaces were first introduced by Élie Cartan in 1926, see [Car26], [Car27].

In particular, he gave a complete description of these spaces by means of the classification of simple

Lie algebras.

In this chapter we first prove that every rank-one symmetric space of non-compact type admits a

group structure of a semidirect product with a precise formula for a left-invariant distance. The fact

that such spaces admit semidirect-product structures has been known at least since Ernst Heintze’s

work in the 1970’s, see [Hei74]. However, the formula for the left-invariant distances cannot be

easily traced in literature. To study these spaces we will need the following result: Let M be a
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rank-one symmetric space of non-compact type, then M is one of the following spaces, which we call

K-hyperbolic spaces KHn, with n ∈ N: real hyperbolic n-space RHn, complex hyperbolic n-space

CHn, quaternionic hyperbolic n-space HHn or the octonionic plane OH2. The proof of such last fact

was indicated by Cartan, but completely established in this form in the 1950’s, see Arthur Besse’s

1978 book [Bes78, Section 3.G] and see Heintze’s 1974 paper [Hei74, Section 5] for a geometric proof.

We shall introduce K-hyperbolic spaces as metric spaces. Initially, we restrict to the real, com-

plex, and quaternionic case, which share a similar approach and we shall give a treatment as unified

as possible. Following Felix Klein’s construction, we shall describe the K-hyperbolic space KHn of

dimension n as an open subset of the projectivization of the space Kn+1 equipped with a Hermitian

form of type (n, 1). We shall recall the distance function on KHn, referring to Martin Bridson and

André Häfliger’s 1999 book [BH99, Part II, Chapter 10].

To recall the Lie group structure on each KHn, we revise the continuous n-th Heisenberg group

Gn,K modelled on K and its intrinsic dilations, see [Ste93, Chapter XII, Section 1] . We shall

prove that the semidirect product of Gn,K with R acts simply transitively and by isometries on

KHn. We will double check that, after the identification of KHn with Gn,K o R, the hyperbolic

distance is invariant under left translations on Gn,K o R. We shall write explicitly the distance on

the K-hyperbolic n-space modelled as Gn,K oR in terms of elementary functions of the coordinates.

Theorem 8.0.1. For every K ∈ {R,C,H} and every n ∈ N \ {0}, the K-hyperbolic n-space KHn is

isometric to the manifold Kn−1 × Im(K)× R equipped with the multiplication law given by

(u, s; a) · (v, t; b) = (u+ eav, s+ e2at+ Im(ueav); a+ b)

and the left-invariant distance d such that

4 cosh2 d(0, (v, t; b)) = 4 cosh2(b) + 2e−b cosh(b)|v|2 + e−2b

(
|v|4

4
+ |t|2

)
.

There is a remaining case: the octonionic hyperbolic plane. It cannot be treated as described

above due to the non-associativity of the octonions, and therefore the impossibility to define a notion

of a vector space over the octonions. However, in the last section, we will give some basic ideas on

how to deal with this case and build the octonionic hyperbolic plane.

8.1 CAT(-1) spaces and visual boundary*

[...] As we shall see, the K-hyperbolic n-space KHn has sectional curvature less or equal than −1.

From the pure metric view point one says that it is a CAT(−1) metric space. The definition of
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CAT (−1), together with an explicit proof of this last statement, can be found in [BH99, Part II,

Chapter 10].

...

Definition 8.1.1. Let ξ∞, η∞ ∈ ∂∞KHn, the Gromov product of ξ∞, η∞ with respect to ω and o

is defined as follows:

(ξ∞, η∞)(ω,o) :=
1

2
lim

t→+∞
(2t− d(ξt, ηt)) .

The visual distance on ∂∞KHn \ {ω} can be defined as

dvis(ξ∞, η∞) := e−(ξ∞,η∞)(ω,o) . (8.1.2)

The proof that the visual distance as defined in (8.1.2) is a distance won’t be discuss here.

However, this fact follows from a more general theorem by Bourdon [Bou95] about the conditions

in which the visual distance is a distance. This theorem can be applied on CAT(−1) spaces, and

therefore can be applied to K-hyperbolic n-space.

8.2 Preliminary notions for rank-one symmetric spaces

8.2.1 Quaternionic numbers

In this section we define some notations that will be used in this work. We denote by R,C,H the

Real, Complex and Quaternion number sets, respectively. Throughout all the work K will denote one

of the above number sets. We shall only recall the quaternions. The quaternions are a 4-dimensional

algebra over R with basis {1, i, j, k}, where 1 is central, and i, j, k follow the rules:

ij = k, jk = i, ki = j

and

i2 = j2 = k2 = −1.

If x ∈ K we write x to denote the K-conjugate of x. Conjugation on R is trivial. For quaternions,

one defines the conjugate of u = a+bi+cj+dk as u = a−bi−cj−dk. We also recall how conjugation

works with multiplication, that is, given u, v ∈ K it is true that uv = v u. The real part of x is the

number <(u) = u+u
2 . The norm of |u| of u ∈ K is the non-negative real number

√
uu. Observe that

if u ∈ H the product uu is equal to uu. This is a simple fact to prove. Let u ∈ H then u = x + y

where x ∈ R and y ∈ H such that <(y) = 0. We compute uu that is

(x+ y)(x− y) = x2 − xy + yx− y2 = x2 − y2
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and uu that is

(x− y)(x+ y) = x2 + xy − yx− y2 = x2 − y2,

because x ∈ R therefore it can commute with every element of H.

We now recall the imaginary part of u ∈ K written as Im(u). If u ∈ H is written as u =

a+ bi+ cj + dk, then

Im(u) =

bc
d

 ∈ R3

and Imi(u) denotes the i-component of Im(u). The product on the quaternions is non commutative,

so one must be careful while defining a vector space structure. We define the left multiplication and

the right multiplication to be respectively λu and uλ where u ∈ Kn and λ ∈ K. For our purpose we

say that x, y ∈ Kn are linearly dependent if there exists λ ∈ K such that x = yλ. Note that if K = R

or C then the definitions above are equivalent.

8.2.2 Hermitian forms

Let M(K, k, l) be the group of the k × l matrices over the number set K. Let A ∈ M(K, k, l) be

in the form A = (aij), the Hermitian transpose of A is A∗ ∈ M(K, l, k) that satisfies A∗ = (aji).

As with ordinary transpose operation for C, the Hermitian transpose of a product is the product of

the Hermitian transposes in the reverse order, that is (AB)∗ = B∗A∗. A matrix H ∈ M(K, n) :=

M(K, n, n) is said to be Hermitian if it equals its own Hermitian transpose, i.e., H = H∗. We claim

that if H is Hermitian and µ is an eigenvalue of H with eigenvector x ∈ Kn then µ is real. In order

to see this, observe that

x∗µx = x∗Hx = x∗H∗x = (Hx)∗x = (µx)∗x = x∗µx.

Next by multiplying the RHS (Right-Hand Side) and the LHS (Left-Hand Side) on the left by x and

on the right by x∗ we obtain

xx∗µxx∗ = xx∗µxx∗.

Then we observe that xx∗ is a row vector with real elements, therefore it commutes with µ and µ.

We therefore infer that

µxx∗xx∗ = µxx∗xx∗

that is

µ|x|4 = µ|x|4.
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By the definition of eigenvector we know that x is not the zero vector and therefore |x|4 6= 0 leading

to µ = µ, that is, µ ∈ R.

To each Hermitian matrix H ∈ M(K, n) we associate a Hermitian form 〈·, ·〉H : Kn × Kn → K

given by 〈z, w〉H = z∗Hw. Hermitian forms are sesquilinear, that is they are conjugate linear in the

first factor and linear in the second factor. In other words, for z, z1, z2, w ∈ Kn and λ ∈ K, we have

〈z1 + z2, w〉H = (z1 + z2)∗Hw = z∗1Hw + z∗2Hw = 〈z1, w〉H + 〈z2, w〉H , (8.2.1)

〈zλ,w〉H = (zλ)∗Hw = λz∗Hw = λ〈z, w〉H , (8.2.2)

〈z, wλ〉H = z∗Hwλ = 〈z, w〉Hλ, (8.2.3)

〈z, w〉H = z∗Hw = z∗H∗w = (w∗Hz)∗ = 〈w, z〉H . (8.2.4)

The latter property leads to another observation: for every z ∈ Kn we have 〈z, z〉H ∈ R.

Let 〈·, ·〉H be a Hermitian form associated to some Hermitian matrix H. Recalling that the

eigenvalues of H are real, we say that

• 〈·, ·〉H is non-degenerate if all the eigenvalues of H are non-zero;

• 〈·, ·〉H is positive definite if all the eigenvalues of H are strictly positive;

• 〈·, ·〉H is negative definite if all the eigenvalues of H are strictly negative;

• 〈·, ·〉H is indefinite if some eigenvalues of H are positive and some negative.

We say that 〈·, ·〉H has signature (p, q), if H has p strictly positive eigenvalues and q strictly negative

eigenvalues, counted with multiplicity. We write Kp,q for Kp+q equipped with a non-degenerate

Hermitian form of signature (p, q).

8.2.3 Hermitian forms of signature (n, 1)

There are a lot of models for the K-hyperbolic space KHn. In this work we will focus on one

particular models. Let 〈x, y〉 be the Hermitian form of signature (n, 1) on the space Kn+1, given by

〈x, y〉 := −x1yn+1 − xn+1y1 +

n∑
λ=2

xλyλ, (8.2.5)
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where x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1). We observe that this form is associated to the

matrix

K :=

 0 0 −1
0 In−1 0
−1 0 0

 . (8.2.6)

The matrix K is a Hermitian matrix that has n positive eigenvalues, and 1 negative eigenvalue.

There are many more Hermitian forms that one could consider, which all lead to the construction

of what is the same space up to isometries. The reason why we chose K as in (8.2.6) is to express

some isometries of the hyperbolic space in a way that suits our needs.

Note that, thanks to the property (8.2.4) we have 〈x, x〉 = 〈x, x〉, i.e, 〈x, x〉 ∈ R. The orthogonal

complement of x ∈ Kn,1, denote by x⊥, is {u ∈ Kn+1|〈x, u〉 = 0}.

Lemma 8.2.7 (Reverse Schwartz Inequality). If 〈x, x〉 < 0 and 〈y, y〉 < 0, then

〈x, y〉〈y, x〉 ≥ 〈x, x〉〈y, y〉

with equality if and only if x and y are linearly dependent over K.

Proof. If x and y are linearly dependent then there exist λ ∈ K such that x = yλ. We rewrite the

inequality as follow

〈yλ, y〉〈y, yλ〉 ≥ 〈yλ, yλ〉〈y, y〉.

The LHS, thanks to the properties (8.2.2) and (8.2.3) of the Hermitian forms, is equivalent to

λ〈y, y〉〈y, y〉λ = |λ|2〈y, y〉2.

The RHS of the inequality consist of, thanks to the same properties,

〈yλ, yλ〉〈y, y〉 = |λ|2〈y, y〉2,

where λ commute with 〈y, y〉 due the fact that 〈y, y〉 is real. This prove the linearly dependent case.

Suppose now that x and y are linearly independent. The restriction of 〈·, ·〉 to x⊥ is positive

definite and since 〈y, y〉 < 0 we have 〈x, y〉 6= 0. Let λ = −〈x, x〉〈x, y〉−1, then x + yλ ∈ x⊥. Due

the fact that x and y are linearly independent we have x + yλ 6= 0, therefore 〈x + yλ, x + yλ〉 =

〈x+ yλ, yλ〉 > 0. By expanding this inequality we get

−〈x, x〉+ 〈x, x〉2〈y, y〉〈y, x〉−1〈x, y〉−1 > 0.
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After diving by 〈x, x〉 < 0, this can be rearrange to give the inequality

〈x, y〉〈y, x〉 ≥ 〈x, x〉〈y, y〉,

thus completing the proof.

8.3 The K-hyperbolic n-space KHn

8.3.1 Definition and properties

Let Kn,1 be equipped with the Hermitian form 〈·, ·〉 defined in (8.2.5). We defined the n-dimensional

K-projective space KPn, as the quotient of Kn+1 \ {0} by the equivalence relation that identifies

x = (x1, . . . , xn+1) with xλ = (x1λ, . . . , xn+1λ) for all λ ∈ K \ {0}. The class of x is denoted by [x]

and [x1, . . . , xn+1] are called homogeneous coordinates for [x]. We finally give the definition of KHn.

Definition 8.3.1. We define the K-hyperbolic n-space as the set

KHn := {[x] ∈ KHn : 〈x, x〉 < 0}

equipped with the distance d such that

cosh2 d([x], [y]) =
〈x, y〉〈y, x〉
〈x, x〉〈y, y〉

. (8.3.2)

For the formula of the distance we give as reference [BH99, Part II, Chapter 10].

Namely, a point [x] of the n-dimensional K-projective space is in KHn if and only if

−x1xn+1 − xn+1x1 +

n∑
λ=2

|xλ|2 < 0.

First of all we want to check that KHn is well defined, and that the distance formula does not

depend on the representative chosen.

Proposition 8.3.3. Let x ∈ Kn,1, if 〈x, x〉 < 0 then 〈xλ, xλ〉 < 0 for every λ ∈ K\{0}. Furthermore,

for every [x], [y] ∈ KHn the right hand side of (8.3.2) is bigger than 1 and for every λ1, λ2 ∈ K\{0}

is true that

〈x, y〉〈y, x〉
〈x, x〉〈y, y〉

=
〈xλ1, yλ2〉〈yλ2, xλ1〉
〈xλ1, xλ1〉〈yλ2, yλ2〉

.

Proof. Thanks to the properties (8.2.2) and (8.2.3) of Hermitian forms, we can write

〈xλ, xλ〉 = λ〈x, x〉λ = |λ|2〈x, x〉 < 0.
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For the second point, thanks to Lemma 8.2.7 we know that

〈x, y〉〈y, x〉
〈x, x〉〈y, y〉

≥ 1.

Recalling the properties (8.2.4), (8.2.3) and (8.2.2) of the Hermitian form we obtain that

〈xλ1, yλ2〉〈yλ2, xλ1〉 = |〈xλ1, yλ2〉|2 = |λ1|2|〈x, y〉|2|λ2|2,

and

〈xλ1, xλ1〉〈yλ2, yλ2〉 = |λ1|2〈x, x〉〈y, y〉|λ2|2.

Therefore

〈xλ1, yλ2〉〈yλ2, xλ1〉
〈xλ1, xλ1〉〈yλ2, yλ2〉

=
|λ1|2|〈x, y〉|2|λ2|2

|λ1|2〈x, x〉〈y, y〉|λ2|2
=
〈x, y〉〈y, x〉
〈x, x〉〈y, y〉

.

The last proposition ensures the well definition of KHn and the independence of the distance

from the chosen representative.

8.4 The K-Heisenberg groups

Let K ∈ {R,C,H}. We recall the definition of imaginary part given in Chapter 1: if u ∈ R or

u ∈ C then Im(u) = u−u
2 , while if u ∈ H then u = a+ bi+ cj + dk, with suitable a, b, c, d ∈ R, and

Im(u) =

bc
d

 ∈ R3.

Definition 8.4.1. The n-th K-Heisenberg group KHn, with n ≥ 1, is the set

Kn−1 × Im(K) = {(u, s)|u ∈ Kn−1, s ∈ Im(K)}

endowed with the multiplication law

(u, s)(v, t) = (u+ v, s+ t+ Im(utv)). (8.4.2)

Proposition 8.4.3. The set Kn−1 × Im(K) is a group with the multiplication law given by (8.4.2).

Proof. The set is clearly closed under such an operation. The identity element is given by (0, 0), as

a matter of fact, for all u ∈ Kn−1 and all s ∈ Im(K)

(0, 0)(u, s) = (0 + u, 0 + s+ Im(0u)) = (u, s),

(u, s)(0, 0) = (u+ 0, s+ 0 + Im(u0)) = (u, s).
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The inverse element (u, s)−1 is given by (−u,−s):

(u, s)(−u,−s) = (u− u, s− s+ Im(−|u|2)) = (0, 0),

(−u,−s)(u, s) = (−u+ u,−s+ s+ Im(−|u|2)) = (0, 0).

And finally the associativity is given by

((u, s)(v, t))(w, r) = (u+ v, s+ t+ Im(utv))(w, r)

= (u+ v + w, s+ t+ Im(utv) + r + Im((u+ v)tw))

= (u+ v + w, s+ t+ r + Im(utv + utw + vtw))

= (u+ v + w, s+ t+ r + Im(zt(v + w)) + Im(vtw))

= (u, s)(v + w, t+ r + Im(vtw)))

= (u, s)((v, t)(w, r)).

We define an Heisenberg homothety of ratio a on the group KHn, by

δa(u, s) = (au, a2s) ∀a ∈ R \ {0}. (8.4.4)

Proposition 8.4.5. The Heisenberg homothety satisfies the following properties:

1. δa((u, s)(v, t)) = (δa(u, s))(δa(v, t)) for all a ∈ R \ {0};

2. δ−1
a = δa−1 for all a ∈ R \ {0}.

Proof. All the equalities are simple application of the definition of δa or the multiplication law

defined in (8.4.2). Regarding the first claim, we have:

δa((u, s)(v, t)) = δa(u+ v, s+ t+ Im(utv))

= (au+ av, a2s+ a2t+ a2Im(utv))

= (au+ av, a2s+ a2t+ Im(autav))

= (au, a2s)(av, a2t)

= (δa(u, s))(δa(v, t)).

Regarding the second claim, we have:

δaδa−1(u, s) = δa(a−1u, a−2s) = (u, s),

δa−1δa(u, s) = δa−1(au, a2s) = (u, s).
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We point out that if K = R then RHn ∼= Rn−1 as group, where Rn−1 has the standard abelian

group structure. As a matter of fact, following Definition 8.4.1, the n-th R-Heisenberg group is the

set Rn−1 × {0} endowed with the multiplication law (u, 0)(v, 0) = (u + v, 0) for all u, v ∈ Rn−1.

Eliminating the last coordinate, which is always 0, we obtain the group isomorphism.

8.5 Isometries of hyperbolic spaces

We start by recalling how we defined the Hermitian form 〈·, ·〉 in Kn+1. This Hermitian form is the

form associated to the Hermitian matrix K, given by

K :=

 0 0 −1
0 In−1 0
−1 0 0

 , (8.5.1)

so

〈x, y〉 := 〈x, y〉K = x∗Ky.

Consider the group GL(n+1,K) that is the group of invertible (n+1, n+1) matrices with coefficients

in K. There is a natural left action of GL(n+ 1,K) on Kn,1 by K-linear automorphism: the matrix

A = (aij) sends x = (x1, . . . , xn+1) ∈ Kn,1 to

Ax :=


∑n+1
j=1 a1jxj

...∑n+1
j=1 an+1jxj

 . (8.5.2)

Definition 8.5.3. Let OK(n, 1) denote the subgroup of GL(n+ 1,K) that preserves the form 〈·, ·〉

induced by (8.5.1), that is

OK(n, 1) := {A ∈ GL(n+ 1,K)|〈Ax,Ay〉 = 〈x, y〉 ∀x, y ∈ Kn,1}.

We start by characterizing the element of OK(n, 1).

Proposition 8.5.4. A ∈ OK(n, 1)⇔ A∗KA = K.

Proof. We firstly prove the left implication. Let A ∈ OK(n, 1). For every x, y ∈ Kn,1 we have

〈Ax,Ay〉 = 〈x, y〉. Therefore 〈Ax,Ax〉 = 〈x, x〉 for all x ∈ Kn,1, which can be written as

(Ax)∗KAx = x∗Kx ∀x ∈ Kn,1.
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This is equivalent to

x∗A∗KAx = x∗Kx ∀x ∈ Kn,1.

By choosing x as the elements of the canonical base we can conclude that A∗KA = K.

To prove the other implication, let A ∈ GL(n+ 1,K) such that A∗KA = K then

〈Ax,Ay〉 = (Ax)∗KAy = x∗A∗KAy = x∗Ky = 〈x, y〉.

Proposition 8.5.5. The set OK(n, 1) with the matrix multiplication is a group.

Proof. Let A,B ∈ OK(n, 1) then

(AB)∗KAB = B∗A∗KAB = B∗KB = K,

and

(A−1)∗KA−1 = (A−1)∗A∗KAA−1 = (AA−1)∗KAA−1 = K,

so AB,A−1 ∈ OK(n, 1) thanks to Proposition 8.5.4. The identity matrix obviously belong to

OK(n, 1). The properties of the multiplication follow from the properties of the classic row-column

multiplication between matrices.

We now note that there is an induced action of GL(n+ 1,K) on KPn, and this is the action we

shall focus on.

Lemma 8.5.6. The induced action of GL(n + 1,K) on KPn given by A[x] = [Ax], for all A ∈

GL(n+ 1,K) is well defined.

Proof. We need to prove that the induced action does not depend on a representative, that is

[A(xλ)] = [Ax] for every A ∈ GL(n + 1,K), for every [x] ∈ KPn and for every λ ∈ K \ {0}. Let

[x] = [x1, · · · , xn+1]t and let A = (aij) with aij ∈ K for all i, j ∈ {1, · · · , n + 1}. The fact follows

from:

[A(xλ)] =

A
 x1λ

...
xn+1λ




=



∑n+1
j=1 a1jxjλ

...∑n+1
j=1 an+1jxjλ




=



∑n+1
j=1 a1jxj

...∑n+1
j=1 an+1jxj

λ

 = [(Ax)λ] = [Ax],
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where the first equality follows from the hypothesis on [x]; the second, the third and the forth one

follows from (8.5.2); and the last one holds thanks to the definition of KPn+1.

Proposition 8.5.7. The induced action of OK(n, 1) on KPn preserves the subset KHn and act by

isometries on KHn

Proof. Let [x] ∈ KHn and A ∈ OK(n, 1), by definition A preserves the form 〈·, ·〉 and therefore

〈Ax,Ax〉 = 〈x, x〉 < 0 so [Ax] ∈ KHn. The fact that this action is by isometries follows directly by

the definition (8.3.1) of the distance.

We shall focus on two particular subgroups of OK(n, 1):

Definition 8.5.8. We denote by A and N the following subsets of the group OK(n, 1):

• A denotes the 1-parameter set, formed by the elements

A(a) :=

ea 0 0
0 In−1 0
0 0 e−a

 , a ∈ R;

• N denotes the set of matrices of the form

ν(M,M13) :=

1 M M13

0 In−1 M∗

0 0 1

 , (8.5.9)

where M is a (1, n− 1)-matrix with elements in K and M13 is in K and satisfies

|M |2 = M13 +M13.

The following is a simple lemma that characterizes how the product works between elements of

A and N .

Lemma 8.5.10. For all t ∈ R and all ν(M,M13) ∈ N , we have

ν(M,M13)A(t) = A(t)ν(e−tM, e−2tM13),

and

A(t)ν(M,M13) = ν(etM, e2tM13)A(t).
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Proof. Let A(t) ∈ A and ν(M,M13) ∈ N , we compute the matrix product ν(M,M13)A(t).

ν(M,M13)A(t) =

1 M M13

0 In−1 M∗

0 0 1

et 0 0
0 In−1 0
0 0 e−t


=

et M e−tM13

0 In−1 e−tM∗

0 0 e−t


=

et 0 0
0 In−1 0
0 0 e−t

1 e−tM e−2tM13

0 In−1 e−tM∗

0 0 1


= A(t)ν(e−tM, e−2tM13).

The other case follows from a change of variables: N = e−tM N13 = e−2tM13. Noting that both

ν(e−tM, e−2tM13) and ν(etM, e2tM13) satisfies the condition of being in N ends the proof.

Theorem 8.5.11.

1. A and N are subgroups of OK(n, 1);

2. NA is a subgroup of OK(n, 1);

3. N is normal in NA;

4. The group A is isomorphic to R.

Proof.

1. Firstly we prove that A and N are subset of OK(n, 1). Thanks to Proposition 8.5.4 we only

have to prove that given ν(M,M13) ∈ N and t ∈ R is true that A(t)∗KA(t) = K and

ν(M,M13)∗Kν(M,M13) = K. For the first case we have:

A(t)∗KA(t) =

et 0 0
0 In−1 0
0 0 e−t

 0 0 −1
0 In−1 0
−1 0 0

et 0 0
0 In−1 0
0 0 e−t


=

 0 0 −et
0 In−1 0
−e−t 0 0

et 0 0
0 In−1 0
0 0 e−t


=

 0 0 −1
0 In−1 0
−1 0 0

 = K.
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For the second case we have:

ν(M,M13)∗Kν(M,M13)

=

 1 0 0
M∗ In−1 0
M13 M∗ 1

 0 0 −1
0 In−1 0
−1 0 0

1 M M13

0 In−1 M∗

0 0 1


=

 0 0 −1
0 In−1 −M∗12

−1 M∗23 −M13

1 M M13

0 In−1 M∗

0 0 1


=

 0 0 −1
0 In−1 M23 −M∗12

−1 −M12 +M∗23 −M13 + |M23|2 −M13

 .

Thanks to the definition of N , it’s true that

M23 = M∗12,

and

|M23|2 = M13 +M13,

so the last matrix is equal to K.

Now let A(t), A(s) ∈ A, a simple check shows that A(t)A(s) = A(s+ t) and A(t)−1 = A(−t).

To prove A is a subgroup of OK(n, 1) we only need to show that A(t)A(s)−1 ∈ A for all t, s ∈ R:

A(t)A(s)−1 = A(t)A(−s) = A(t− s) ∈ A.

In a similar way let ν(M,M13), ν(N,N13) ∈ N , a simple check shows that

ν(M,M13)ν(N,N13) = ν(M +N,N13 +MN∗ +M13)

and

ν(M,M13)−1 = ν(−M,M13).

As above we next prove that given ν(M,M13), ν(N,N13) ∈ N the product ν(M,M13)ν(N,N13)−1

belongs to N:

ν(M,M13)ν(N,N12)−1 = ν(M,M13)ν(−N,N13)

=

1 M M13

0 In−1 M∗

0 0 1

1 −N N13

0 In−1 −N∗
0 0 1


=

1 M −N N13 −MN∗ +M13

0 In−1 M∗ −N∗
0 0 1


= ν(M −N,N13 −MN∗ +M13).
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The fact that M −N and N13−MN∗+M13 satisfy the needed condition ends the proof that

both A and N are subgroups of OK.

2. Let ν(M,M13)A(t), ν(N,N13)A(s) ∈ NA. Thanks to Lemma 8.5.10

ν(M,M13)A(t)ν(N,N13)A(s) = ν(M,M13)ν(etN, e2tN13)A(−t)A(s) (8.5.12)

= ν(M + etN, e2tN13 + etMN∗ +M13)A(s− t).

We observe that A(s − t) ∈ A and ν(M + etN, e2tN13 + etMN∗ + M13) ∈ N thus proving

the closure of NA. The identity matrix I = A(0)ν(0, 0), where the zeros refers accordingly, is

the neutral element. Given ν(M,M13)A(t) ∈ NA, the calculation (8.5.12) shows also that the

inverse element (ν(M,M13)A(t))−1 is ν(−e−tM,−e2tM13)A(−t).

3. Lemma 8.5.10 also let us prove this point, as a matter of fact

ν(M,M13)A(t)ν(N,N13)(ν(M,M13)A(t))−1 = ν(M,M13)A(t)ν(N,N13)ν(M−1, (M−1)13)A(−t)

= ν(M,M13)ν(P, P13)A(t)A(−t)

= ν(M,M13)ν(P, P13) ∈ N.

where ν(M−1, (M−1)13) denotes the inverse of ν(M,M13) and ν(P, P13) is obtain from Lemma 8.5.10.

4. Let φA : A→ R defined as follow

φA : A→ R

φA(A(a)) 7→ a.

Obviously φA(I) = 0 and

φA(A(a)A(b)) = φA(A(ab)) = ab = φA(A(a))φA(A(b)).

The definition of A ensures that the homomorphism is bijective. The inverse homomorphism

is given by

φ−1
A : R→ A

a 7→ A(a)
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8.6 Hyperbolic spaces as semidirect products

In this section we prove the following result:

Theorem 8.6.1. For every K ∈ {R,C,H} and every n ∈ N \ {0}, the K-hyperbolic n-space KHn is

isometric to the manifold Kn−1 × Im(K)× R equipped with the multiplication law given by

(u, s; a) · (v, t; b) = (u+ eav, s+ e2at+ Im(uteav); a+ b) (8.6.2)

and the left-invariant distance d such that

4 cosh2 d(0, (v, t; b)) = 4 cosh2(b) + 2e−b cosh(b)|v|2 + e−2b

(
|v|4

4
+ |t|2

)
.

In order to prove this theorem we will discuss the real, complex and quaternion case separately.

All three case follows the same structure of proof. First we characterize the groups N and A,

previously discussed in Chapter 5. Then we prove that NA acts simply transitively on KHn thus

obtaining the wanted identification. Then we express the distance on the group NA and check

that it is left-invariant. While in the case of the Real Hyperbolic space, the proofs undergo some

simplification, in the complex case and the quaternionic case the proofs are essentially the same. So

in this work we will only deal with the real case and the quaternionic case, in which one must be a

little more careful, and the complex case follows along.

8.6.1 The real case

Our aim is to prove that RHn, with n ≥ 1, admits a group structure for which the distance is

left-invariant and such structure is Rn−1 o R, where R acts on Rn−1 by standard dilations. In

this section we work with the group A and N as in Definition 8.5.8. We already know that A is

isomorphic to R as proved in Lemma 8.5.11. Next we better characterize the group structure of

N = {ν(M,M13) : M ∈M(1, n− 1,K),M13 ∈ K, |M |2 = M13 +M13}, where ν is defined in (8.5.9).

Lemma 8.6.3. When K = R the group N is isomorphic to Rn−1.

Proof. Let u ∈ Rn−1 and let u := M t. From the relations in the definition of N , recalled above,

follows that M13 = |u|2
2 , therefore we can write

N = {h(u) : u ∈ Rn−1},
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where

h(u) := ν

(
ut,
|u|2

2

)
=

1 ut |u|2
2

0 In−1 u
0 0 1

 . (8.6.4)

We claim that the mapping h : Rn−1 → N is a group isomorphism. The injectivity follows

from the fact that, if u, v ∈ Rn−1 and u 6= v, then the first row of h(u) differs from the first row

of h(v). The surjectivity follows from the observation at the beginning of the proof. The only

thing left is prove is that h(u)h(v) = h(u + v), which follows from the simple observation that

|u+ v|2 = |u|2 + |v|2 + 2utv.

For the sequel we shall need the following identities.

Lemma 8.6.5. Let u, v ∈ Rn−1 and let a, b ∈ R then

A(a)h(v) = h(eav)A(a),

h(u)A(a)h(v)A(b) = h(u+ eav)A(a+ b),

and

(h(u)A(a))−1 = h(−e−au)A(−a).

Proof. The first equality follows from Lemma 8.5.10 and Lemma 8.6.3. The second one follows from

the calculation

h(u)A(a)h(v)A(b) = h(u)h(eav)A(a)A(b) = h(u+ eav)A(a+ b).

The last one follows from the properties of the matrix inverse and the first equality proved in this

lemma.

Theorem 8.6.6. The group NA acts simply transitively on RHn, that is, for every x, y ∈ RHn

there exists a unique g ∈ NA such that g · x = y.

Proof. We consider the point o := [1, 0, . . . , 0, 1]t ∈ RHn and we want to show that given an arbitrary

point x ∈ RHn with homogeneous coordinates [x1, . . . , xn, 1], there exists a unique (u; a) ∈ Rn−1×R

such that x is the image under h(u)A(a) of the point o, where h is defined in (8.6.4) and A in

Definition 8.5.8. We first compute h(u)A(a)

h(u)A(a) =

ea ut e−a |u|
2

2
0 In−1 e−au
0 0 e−a

 .
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Therefore

h(u)A(a) · o =

ea + e−a |u|
2

2
e−au
e−a

 =

e2a + |u|2
2

u
1

 .
So h(u)A(a) · o = x becomes the system of equations:{

x1 = e2a + |u|2
2

X2 = u
,

where Xt
2 = (x2, . . . , xn). Thus X2 uniquely determines u hence u. We know that if [x] ∈ RHn x

must satisfies 〈x, x〉 < 0, that is

−x1xn+1 − xn+1x1 +

n∑
i=2

xixi < 0,

which, in our case, is equivalent to

−x1 − x1 +

n∑
i=2

|xi|2 = |X2|2 − 2x1 < 0⇔ |X2|2 < 2x1.

We can conclude that

x1 >
|X2|2

2
=
|u|2

2
.

There therefore exists a unique a ∈ R such that x1 = e2a + |u|2
2 . Thus the above system of equation

has a unique solution (u; a) ∈ Rn−1 × R.

Let now x ∈ RHn be an arbitrary element, we want to prove that given y ∈ RHn there exists a

unique (u; a) ∈ Rn−1×R such that h(u)A(a)x = y. We now know that there exists a unique gy and

a unique gx ∈ NA such that x = gx · o and y = gy · o. We claim that the wanted element is gyg
−1
x .

As a matter of fact

gyg
−1
x · x = gyg

−1
x gx · o = gy · o = y.

Let gx = h(v)A(b) and gy = h(w)A(c). Then

gyg
−1
x = h(w)A(c)(h(v)A(b))−1

= h(w)A(c)h(−e−bv)A(−b)

= h(w − ec−bv)A(c− b),

where the equalities hold thanks to Lemma 8.6.5. From this calculation follow that u = w − ec−bv

and a = c− b, thus the proof is completed.
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From Theorem 8.6.6 we get the following consequence.

Corollary 8.6.7. The mapping (u, a) 7→ h(u)A(a) ·o gives a smooth identification between Rn−1×R

and RHn, as manifolds.

We have therefore obtained an identification between RHn and Rn−1oR with the multiplication

given by, thanks to Lemma 8.6.5,

(u; a)(v; b) = (u+ eav; a+ b). (8.6.8)

We are left to find the distance on the group and prove the left-invariance.

Given the identifications (u; a), (v; b) ∈ Rn−1 × R of x, y ∈ RHn, respectively, we want to write

the distance between x and y as a function of u, v, a, b. The hyperbolic distance d(·, ·), as in Defi-

nition 8.3.1, is written as a function of 〈·, ·〉 so we need to express the Hermitian form in these new

coordinates. The Hermitian form can be applied only on elements of Rn+1, so we define x̂ ∈ x such

that x̂ := h(u)A(a)ô where ô = (1, 0, . . . , 0, 1)t ∈ Rn+1. We observe that we can make this calcula-

tion with a representative because, while the Hermitian form depends on the chosen representative,

the distance does not, as proved in Proposition 8.3.3.

Lemma 8.6.9. Given x ∈ RHn, we have 〈x̂, x̂〉 = −2.

Proof. Thanks to the identification we know that there exists (u, a) ∈ Rn−1 × R such that x =

h(u)A(a) · o. The lemma follows from the calculation

〈x̂, x̂〉 = 〈h(u)A(a)ô, h(u)A(a)ô〉 = 〈ô, ô〉 = −2.

Note that the second equality holds because NA ⊂ OK(n, 1), as proved in Theorem 8.5.11.

To deal with the general case |〈x̂, ŷ〉|2, we first look at the case when x̂ = ô:

Lemma 8.6.10. Let y ∈ RHn be identified with (v; b) ∈ Rn−1 × R, we have

|〈ô, ŷ〉|2 = 4 cosh2(b) + 2e−b cosh(b)|v|2 + e−2b |v|4

4
.
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Proof. The proof consists in a simple computation of 〈o, y〉: We have

〈ô, ŷ〉 = 〈ô, h(v)A(b)ô〉

= ô∗Kh(v)A(b)ô

= ô∗K

1 vt |v|2
2

0 In−1 v
0 0 1

eb 0 0
0 In−1 0
0 0 e−b

 ô

= ô∗K

eb + e−b |v|
2

2
e−bv
e−b


= ô∗

 −e−b
e−bv

−eb − e−b |v|
2

2

 = −e−b − eb − e−b |v|
2

2

= −2 cosh(b)− e−b |v|
2

2
,

where by definition cosh b = eb+e−b

2 . Thus we conclude

|〈ô, ŷ〉|2 = 4 cosh2(b) + 2 cosh(b)e−b|v|2 + e−2b |v|4

4
.

Thanks to the previous lemma we can now deal with the general case:

Proposition 8.6.11. Let x, y ∈ RHn be identified with (u; a), (v; b) ∈ Rn−1 × R respectively, then

|〈x̂, ŷ〉|2 = 4 cosh2(b− a) + 2e−a−b cosh(b− a)|v − u|2 + e−2(a+b) |v − u|4

4
.

Proof. We recall that 〈x̂, ŷ〉 is the Hermitian form associated to the Hermitian matrix K defined in

(8.2.6). That is 〈x̂, ŷ〉 = x̂∗Kŷ. We compute

〈x̂, ŷ〉 = 〈h(u)A(a)ô, h(v)A(b)ô〉

= ôtA(a)h(u)∗Kh(v)A(b)ô

= ôtKA(−a)h(−u)h(v)A(b)ô

= ôtKA(−a)h(v − u)A(b)ô

= ôtKh(e−a(v − u))A(b− a)ô

= 〈ô, h(e−a(v − u))A(b− a)ô〉,

where the equalities are obtained by the following reasoning: the first equality follows from the

definition of Hermitian form. The second one is a consequence of the fact that NA ⊂ OK(n, 1) as

proved in Theorem 8.5.11. The third one holds thanks to the isomorphism, proved in Theorem 8.6.3,
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between N and Rn−1. The fourth one follows from Lemma 8.6.5 and the last one is simply the

definition. Now using Lemma 8.6.10 we continue:

|〈x̂, ŷ〉|2 = |〈ô, h(e−a(v − u))A(b− a)ô〉|2

= 4 cosh2(b− a) + 2ea−b cosh(b− a)|e−a(v − u)|2 + e−2(b−a) |e−a(v − u)|4

4

= 4 cosh2(b− a) + 2e−a−b cosh(b− a)|v − u|2 + e−2(a+b) |v − u|4

4
.

We are now ready to write the function of the distance in these new coordinates:

Corollary 8.6.12. After the identification of RHn with Rn−1 o R as done in Corollary 8.6.7, the

distance on Rn−1 oR reads as

cosh2 d((u; a), (v; b)) =
4 cosh2(b− a) + 2e−a−b cosh(b− a)|v − u|2 + e−2(a+b) |v−u|4

4

4
.

Such a distance is left-invariant with respect to the product structure of Rn−1 oR, as in (8.6.2).

Proof. The distance function follows from the definition of d(·, ·) on RHn, given in Definition 8.3.1,

Lemma 8.6.10, and Proposition 8.6.11. We know that the distance is left-invariant because the

multiplication in Rn−1 oR acts by isometries. A simple calculation can check this fact: let (w; c) ∈

Rn−1 oR then

(w; c)(u; a) = (w + ecu; c+ a)

and

(w; c)(v; b) = (w + ecv; c+ b).

Then we have the left-invariance:

cosh2(d((w; c)(u; a), (w; c)(v; b)))

=
4 cosh2(b− a) + 2e−a−b−2c cosh(b− a)e2c|v − u|2 + e−2(a+b+2c) e

4c|v−u|4
4

4

=
4 cosh2(b− a) + 2e−a−b cosh(b− a)|v − u|2 + e−2(a+b) |v−u|4

4

4

= cosh2 d((u; a), (v; b)).

8.6.2 The quaternionic case

Our aim is to prove that the quaternionic n- hyperbolic space HHn admits a group structure for

which the distance is left-invariant and such a structure is HHn o R, where HHn is the n-th K-

Heisenberg groups defined in Definition 8.4.1, and the action of R on HHn is by standard dilations.
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In this section we work with the group A and N as in Definition 8.5.8. We already know that A

is isomorphic to R as proved in Lemma 8.5.11. Next we better characterize the group structure of

N = {ν(M,M13) : M ∈ GL(1, n−1,K),M13 ∈ K, |M |2 = M13 +M13}, where ν is defined in (8.5.9).

Lemma 8.6.13. When K = H the group N is isomorphic to HHn.

Proof. To prove this isomorphism we need to write explicitly what form the matrices in the group

N have. As we have recalled, the set N consists of the matrices of the form

ν(M,M13) =

1 M M13

0 In−1 M∗

0 0 1

 ,

where M ∈M(1, n− 1,H) and M13 ∈ H satisfy |M |2 = M13 +M13. Let u := M t. We note that

M13 +M13 = 2<(M13),

therefore

<(M13) =
|u|2

2
.

The matrices in N can be written in the form

h(u, s) :=

1 ut |u|2
2 + s1i+ s2j + s3k

0 In−1 u
0 0 1

 . (8.6.14)

So if K = H the group N can be defined as follows:

N = {h(u, s) : u ∈ Hn−1, s ∈ R3}.

We claim that the mapping h : HHn → N defined as

h : HHn → N

(u, s) 7→ h(u, s),

is a group isomorphism. It follows directly that h(0, 0) = I. We observe that for all x, y ∈ Hn−1

|x+ y|2 = |x|2 + |y|2 + 2<(xty). (8.6.15)
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By computing the product and using the relation (8.6.15) we obtain

h(u, s)h(v, r) =

1 ut |u|2
2 + s1i+ s2j + s3k

0 In−1 u
0 0 1

1 vt |v|2
2 + r1i+ r2j + r3k

0 In−1 v
0 0 1


=

1 ut + vt |v|2
2 + utv + |u|2

2 + (r1 + s1)i+ (r2 + s2)j + (r3 + s3)k
0 In−1 u+ v
0 0 1


=

1 ut + vt |u+v|2
2 + I1i+ I2j + I3k

0 In−1 u+ v
0 0 1


= h(u+ v, s+ r + Im(utv)),

where Iλ := rλ + sλ + Imλ(utv) for λ ∈ {1, 2, 3}. This let us to prove that

h(u, s)h(v, r) = h(u+ v, s+ r + Im(utv)) = h((u, s)(v, t)).

The bijectivity follows from the definition and the inverse of h is given by

h−1 : N → HHn

h(u, s) 7→ (u, s).

For the sequel we shall need the following identities.

Lemma 8.6.16. Let u, v ∈ Hn−1, s, t ∈ R3 and a, b ∈ R then

A(a)h(v, t) = h(eav, e2at)A(a),

h(u, s)A(a)h(v, t)A(b) = h(u+ eav, s+ e2at+ Im(uteav))A(a+ b),

and

(h(u, s)A(a))−1 = h(−e−au,−e−2as)A(−a).

Proof. Thanks to Lemma 8.5.10 and Lemma 8.6.13 we know that

A(a)h(v, t) = h(eav, e2at)A(a).

Therefore

h(u, s)A(a)h(v, t)A(b) = h(u, s)h(eav, e2at)A(a)A(b)

= h(u+ eav, s+ e2at+ Im(uteav))A(a+ b),
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where the last equality follows from Lemma 8.6.13. The formula for the inverse element follows from

the properties of the matrix inverse and the first equality proved in this lemma.

We next prove that NA acts simply transitively on HHn.

Theorem 8.6.17. The group NA acts simply transitively on HHn, that is, for every x, y ∈ HHn

there exists a unique g ∈ NA such that g · x = y

Proof. We consider the point o := [1, 0, . . . , 0, 1]t ∈ HHn and we want to show that given an arbitrary

point x ∈ HHn with homogeneous coordinates [x1, . . . , xn, 1], there exists a unique (u, s; a) ∈ Hn−1×

R3 ×R such that x is the image under h(u, s)A(a) of the point o, where h is defined in (8.6.14) and

A in Definition 8.5.8. Since

h(u, s)A(a) =

ea ut e−a
(
|u|2

2 + s1i+ s2j + s3k
)

0 In−1 e−au
0 0 e−a

 ,

we have

h(u, s)A(a) · o =

ea + e−a
(
|u|2

2 + s1i+ s2j + s3k
)

e−au
e−a


=

e2a + |u|2
2 + s1i+ s2j + s3k

u
1

 .
So h(u, s)A(a) · o = x becomes the system of equations:{

x1 = e2a + |u|2
2 + s1i+ s2j + s3k

X2 = u
,

where Xt
2 = (x2, . . . , xn). Thus X2 uniquely determines u, and hence u. We now observe that

the number x1 ∈ H is equal to ax + bxi + cxj + dxk for suitable ax, bx, cx, dx ∈ R. Noting that

e2a + |u|2
2 ∈ R leads the conclusion that s1 = bx, s2 = cx, s3 = dx. The fact that [x] ∈ HHn means

x must satisfies 〈x, x〉 < 0. We recall that 〈·, ·〉 = 〈·, ·〉K , where K is the matrix as in (8.2.6), so

−x1xn+1 − xn+1x1 +

n∑
i=2

xixi < 0

which, in our case, is equivalent to

−x1 − x1 +

n∑
i=2

|xi|2 = |X2|2 − x1 − x1 < 0⇔ |X2|2 < x1 + x1 = 2<(x1).
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We now conclude that, if B := |u|2
2 + s1i+ s2j + s3k, then

<(x1) >
|X2|2

2
=

1

2

(
B +B

)
= <(B) =

|u|2

2
.

Therefore, there exists a unique a ∈ R such that <(x1) = e2a + |u|2
2 . Thus the above system of

equation has a unique solution (u, s; a) ∈ Hn × R3 × R.

Let now x ∈ HHn be an arbitrary element, we want to prove that given y ∈ HHn there exists

a unique (u, s; a) ∈ Hn−1 × R3 × R such that h(u, s)A(a)x = y. We now know that there exist a

unique gy and a unique gx ∈ NA such that x = gx · o and y = gy · o. We claim that the wanted

element is gyg
−1
x . As a matter of fact

gyg
−1
x · x = gyg

−1
x gx · o = gy · o = y.

Let gx = h(v, t)A(b) and gy = h(w, r)A(c). Then

gyg
−1
x = h(w, r)A(c)(h(v, t)A(b))−1

= h(w, r)A(c)h(−e−bv,−e−2bt)A(−b)

= h(w − ec−bv, r − e2c−2bt− Im((wec−b − e2c−2bv)tv))A(c− b),

where the equalities hold thanks to Lemma 8.6.16. From this calculation follow that u = w− ec−bv,

s = r − e2c−2bt− Im((wec−b − e2c−2bv)tv) and a = c− b, thus the proof is completed.

From Theorem 8.6.17 we get the following consequence.

Corollary 8.6.18. The mapping (u, s; a) 7→ h(u, s)A(a) · o gives a smooth identification between

HHn × R and HHn, as manifolds.

We have therefore obtain an identification between HHn and HHn o R with the multiplication

given by Lemma 8.6.16

(u, s; a)(v, t; b) = (u+ eav, s+ e2at+ Im(uteav); a+ b). (8.6.19)

We are left to find the distance on the group and prove the left-invariance.

Given the identifications (u, s; a), (v, t; b) ∈ HHn × R of x, y ∈ HHn, respectively, we want to

write the distance between x and y as a function of u, v, s, t, a, b. The hyperbolic distance d(·, ·),

as in Definition 8.3.1, is written as a function of 〈·, ·〉 so we need to express the Hermitian form in

these new coordinates. The Hermitian form can be applied only on elements of Hn+1, so we define
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x̂ ∈ x such that x̂ := h(u, s)A(a)ô where ô = (1, 0, . . . , 0, 1)t ∈ Hn+1. We observe that we can make

these calculations with a representative because, while the Hermitian form depends on the chosen

representative, the distance does not, as proved in Proposition 8.3.3.

Lemma 8.6.20. Given x ∈ HHn we have 〈x̂, x̂〉 = −2.

Proof. Given x ∈ HHn identified with (u, s; a) ∈ HHn × R we have

〈x̂, x̂〉 = 〈h(u, s)A(a)ô, h(u, s)A(a)ô〉 = 〈ô, ô〉 = −2.

To deal with the general case |〈x̂, ŷ〉|2, we first look at the case when x̂ = ô:

Lemma 8.6.21. Let y ∈ HHn identified with (v, t; b) ∈ HHn × R then

|〈ô, ŷ〉|2 = 4 cosh2(b) + 2e−b cosh(b)|v|2 + e−2b

(
|v|4

4
+ |t|2

)
.

Proof. The proof consist in a simple computation of 〈ô, ŷ〉. We have

〈ô, ŷ〉 = (ô, h(v, t)A(b)ô) = ôtKh(v, t)A(b)ô

= ôtK

eb + e−b
(
|v|2
2 + t1i+ t2j + t3k

)
e−bv
e−b


= ôt

 −e−b
e−bv

−
(
eb + e−b

(
|v|2
2 + t1i+ t2j + t3k

))


= −e−b − eb − e−b
(
|v|2

2
+ t1i+ t2j + t3k

)
= −2 cosh(b)− e−b

(
|v|2

2
+ t1i+ t2j + t3k

)
,

where by definition cosh b = eb−e−b
2 . By taking the squared norm of the number we conclude

|〈ô, ŷ〉|2 = 4 cosh2(b) + 2e−b cosh(b)|v|2 + e−2b

(
|v|4

4
+ |t|2

)
.

Thanks to the previous lemma we can now deal with the general case.

Proposition 8.6.22. Let x, y ∈ HHn identified with (u, s; a), (v, t; b) ∈ HHn×R, respectively, then

|〈x̂, ŷ〉|2 = 4 cosh2(b−a)+2e−a−b cosh(b−a)|v−u|2 +e−2(a+b)

(
|v − u|4

4
+ |t− s− Im(uv)|2

)
.
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Proof. We recall that 〈·, ·〉 is the Hermitian form associated to the Hermitian matrix K as defined

in (8.2.6). That is 〈x̂, ŷ〉 = 〈x̂, ŷ〉K . We have the following calculations, which we will subsequently

explain:

〈x̂, ŷ〉 = 〈h(u, s)A(a)ô, h(v, t)A(b)ô〉

= ôtA(a)h(u, s)∗Kh(v, t)A(b)ô

= ôtKA(a)−1h(−u,−s)h(v, t)A(b)ô

= ôtKA(−a)h(w, r)A(b)ô

= ôtKh(ε−1
a (w, r))A(b− a)ô

= 〈ô, h(ε−1
a (w, r))A(b− a)ô〉,

where HHn 3 (w, r) = (−u,−s)(v, t) and ε−1
a := δ−1

ea is the Heisenberg homothety of ratio e−a, as

in (8.4.4). The equalities are obtained by the following reasoning: the first one follows from the

identification in the hypothesis of the proposition. The second equality follows from the definition

of the Hermitian form. The third one is a consequence of the fact that NA ⊂ OH, as proved in

Theorem 8.5.11, and the characterization of the elements of OH, proved in Lemma 8.5.4. The fourth

one holds thanks to the isomorphism between A and R, Lemma 8.5.11, and the isomorphism between

N and HHn, proved in Lemma 8.6.13. The fifth one follows from Lemma 8.6.16 and the last one is

simply the definition. Computing ε−1
a (w, r) we obtain

ε−1
a (w, r) = δ−1

ea (w, r) = δe−a(v − u, t − s + Im(−utv)) = (e−a(v − u), e−2a(t − s − Im(utv))).

Now using Lemma 8.6.21, we continue.

|〈x̂, ŷ〉|2 = |〈ô, h(ε−1
a (w, r))A(b− a)ô〉|2

= 4 cosh2(b− a) + 2ea−b cosh(b− a)|e−a(v − u)|2+

+ e−2(b−a)

(
|e−a(v − u)|4

4
+ |e−2a(t− s− Im(utv))|2

)
= 4 cosh2(b− a) + 2e−a−b cosh(b− a)|v − u|2+

+ e−2(a+b)

(
|v − u|4

4
+ |t− s− Im(utv)|2

)
.

We are now ready to write the function of the distance in these new coordinates:

Corollary 8.6.23. After the identification of HHn with HHnoR3 as done in Corollary 8.6.18, the
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distance on HHn oR3 reads as

cosh2 d((u, s; a), (v, t; b))

= 4 cosh2(b− a) + 2e−a−b cosh(b− a)|v − u|2 + e−2(a+b)

(
|v − u|4

4
+ |t− s− Im(utv)|2

)
.

This distance is left-invariant with respect to the product structure of HHn oR3, as in (8.6.2).

Proof. The formula of the distance follows from the definition of d(·, ·) on HHn, Lemma 8.6.21, and

Proposition 8.6.22. We know that the distance is left-invariant because the operation in HHn o R

acts by isometries. A simple check can prove this fact: let (w, r; c) ∈ HHn oR then

(w, r; c)(u, s; a) = (w + ecu, r + e2cs+ ecIm(wtu); c+ a)

and

(w, r; c)(v, t; b) = (w + ecv, r + e2ct+ ecIm(wtv); c+ b).

Then we get the left-invariance:

4 cosh2(d((w, r; c)(u, s; a), (w, r; c)(v, t; b)))

= 4 cosh2(b− a) + 2e−a−b−2c cosh(b− a)e2c|v − u|2+

+ e−2(a+b+2c)

(
e4c|v − u|4

4
+ |e2c(t− s) + ec(Im(wtv)− Im(wtu)) −

−Im(|w|2 + ecwtv + ecutw + e2cutv)|2
)

= 4 cosh2(b− a) + 2e−a−b cosh(b− a)|v − u|24+

+ e−2(a+b+2c)

(
e4c|v − u|4

4
+ |e2c(t− s)− ecIm(utw + wtu))−

−Im(e2cutv)|2
)

= 4 cosh2(b− a) + 2e−a−b cosh(b− a)|v − u|2+

+ e−2(a+b+2c)

(
e4c|v − u|4

4
+ |e2c(t− s)− Im(e2cutv)|2

)
= 4 cosh2(b− a) + 2e−a−b cosh(b− a)|v − u|2+

+ e−2(a+b)

(
|v − u|4

4
+ |t− s− Im(utv)|2

)
= cosh2 d((u, s; a), (v, t; b)).

Most of the equalities are simple calculation, the only thing to note is that for all w, u ∈ Hn is true

that wtu + utw ∈ R. As a matter of fact wtu+ utw = utw + wtu, thanks to the properties of the

conjugation described in the first chapter.
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8.6.3 The complex case

Out for completeness we write the theorem for the complex case, that we remember follows the same

exact reasoning of the quaternionic case.

Theorem 8.6.24. The complex hyperbolic space CHn admits a group structure with a left invariant

distance and such structure is CHn oR with the operation given by

(u, s; a)(v, t; b) = (u+ eav, s+ e2at+ Im(uteav); a+ b).

The distance on CHn oR reads as

4 cosh2 d((u, s; a), (v, t; b))

= 4 cosh2(b− a) + 2e−a−b cosh(b− a)|v − u|2 + e−2(a+b)

(
|v − u|4

4
+ |t− s− Im(utv)|2

)
.

This distance is left-invariant with respect to the product structure of CHn oR.

Another way to prove Theorem 8.6.24 is to observe that CHn embeds isometrically into HHn

by embedding a copy of Cn+1 in Hn+1.

8.7 The visual distance for K-hyperbolic spaces

Thanks to the way we defined the K-hyperbolic n-space KHn, in Definition 8.3.1, there is a natural

way to realize its boundary. We recall that setwise

KHn = {[x] ∈ KPn|〈x, x〉 < 0},

where KPn is the n-dimensional K-projective space and 〈·, ·〉 is the Hermitian form associated to

the Hermitian matrix K given by (8.2.6).

Definition 8.7.1. We define the boundary at infinity of KHn as the set

∂∞KHn := {[x] ∈ KPn|〈x, x〉 = 0}.

Let ω, o ∈ KPn where ω := [1, 0, . . . , 0]t and o := [1, 0, . . . , 0, 1]t. A simple calculation checks

that ω ∈ ∂∞KHn while o ∈ KHn. We recall the subgroups A and N of OK(n, 1), that is, the group

of isometries that preserve the Hermitian form 〈·, ·〉, which were defined in Definition 8.5.8. The set

A is the group of matrices in the form

A(a) =

ea 0 0
0 In−1 0
0 0 e−a

 ,
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while N is the group of matrices in the form1 M M13

0 In−1 M∗

0 0 1

 ,

where M ∈ Kn−1 and M13 ∈ R satisfy M13 +M13 = |M |2. We also remind that N was proved to be

isomorphic to the n-th K-Heisenberg group KHn, Theorem 8.6.3 and Theorem 8.6.13, so we write

h(u, s) with u ∈ Kn−1 and s ∈ Im(K) to denote the elements of N , as in (8.6.14).

For every ξ0 ∈ N · o we consider the map

ξ : R→ KHn (8.7.2)

t 7→ ξt = h(u, s)A(−t) · o,

where u ∈ Kn−1 and s ∈ Im(K) such that h(u, s) is the unique element of N that satisfies ξ0 =

h(u, s) · o. The following lemma allows to extend ξ to R ∪ {−∞,+∞}.

Lemma 8.7.3. For all ξ0 ∈ N · o the following facts are true for the curve (8.7.2):

1. ξ is a geodesic;

2. lim
t→−∞

ξt = ω;

3. ξ∞ := lim
t→+∞

ξt ∈ ∂∞KHn \ {ω}.

Before starting the proof we want to point out that these are limits taken with respect to the

topology on KPn, which is the quotient topology from Kn+1.

Proof. To prove that ξ is a geodesic we need to prove that d(ξt1 , ξt2) = |t1−t2| for all t1, t2 ∈ R, where

d is the distance in Definition 8.3.1. By definition ξt1 = h(u, s)A(−t1) · o and ξt2 = h(u, s)A(−t2) · o.

Let ô = (1, 0, . . . , 0, 1)t ∈ Kn+1 then, thanks to Theorem 8.6.1, we get

cosh2(d(ξt1 , ξt2)) = cosh2(d((u, s;−t1)ô, (u, s;−t2)ô))

= cosh2(d((0, 0;−t1)ô, (0, 0;−t2)ô))

= cosh2(t1 − t2),

where, in particular, the first equality follows from the identification between KHn and KHn o R;

the second equality from the left-invariance of d and the last one follows from the explicit formula

of d on KHn o R. We obtain, thanks to the injectivity of cosh on the nonnegative real numbers,

that d(ξt1 , ξt2) = |t2 − t1|.
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To prove the second and the third point we suppose K = H so

h(u, s) =

1 ut |u|2
2 + s1i+ s2j + s3k

0 In−1 u
0 0 1

 .

If K = R or K = C one can simply consider s1 = s2 = s3 = 0 or s2 = s3 = 0, respectively. A simple

calculation proves that

ξt = h(u, s)A(−t) · o =

e−t + et( |u|
2

2 + s1i+ s2j + s3k)
etu
et

 .
So, on one side, we get

lim
t→−∞

ξt = lim
t→−∞

e−t + et( |u|
2

2 + s1i+ s2j + s3k)
etu
et



= lim
t→−∞

1 + e2t( |u|
2

2 + s1i+ s2j + s3k)
e2tu
e2t

 =


1
0
...
0

 = ω.

On the other side, we get

lim
t→+∞

ξt = lim
t→+∞

e−t + et( |u|
2

2 + s1i+ s2j + s3k)
etu
et


= lim
t→+∞

e−2t + |u|2
2 + s1i+ s2j + s3k

u
1


=

 |u|22 + s1i+ s2j + s3k
u
1

 = ξ∞.

It follows that ξ∞ 6= ω for all ξ, and simple calculations can prove that ξ∞ ∈ ∂∞KHn thus concluding

the proof.

Theorem 8.7.4. The set N · o can be identified with ∂∞KHn \ {ω}.

Proof. Let φ : N · o → ∂∞KHn \ {ω} such that φ(ξ0) = ξ∞ for all ξ0 ∈ N · o, where ξ∞ is defined

as in Lemma 8.7.3. The injectivity of φ follows from the proof of Lemma 8.7.3, while the surjetivity

follows from simple calculations.

We now know that ∂∞KHn \ {ω} can be identified with Kn−1 × Im(K)× {0} endowed with the

product

(u1, s1; 0)(u2, s2; 0) = (u1 + u2, s1 + s2 + Im(ut1u2); 0).
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Our next aim is to explicitly write the visual distance for the K-hyperbolic n-space in the new

coordinates given by Theorem 8.7.4.

Lemma 8.7.5. The visual distance defined as in (8.1.2) is left-invariant, when ∂∞KHn is identified

with K× Im(K)× {0}.

Proof. Let (u1, s1; 0), (u2, s2; 0),(u3, s3; 0) ∈ Kn−1 × Im(K)× {0} the identification of ξ∞, η∞, µ∞ ∈

∂∞KHn\{ω}, respectively. We can therefore identify, thanks to Theorem 8.6.1, the points ξt, ηt, µt ∈

KHn, respectively, with (u1, s1;−t),(u2, s2;−t),(u3, s3;−t) ∈ Kn−1 × Im(K)× R. Thanks to Theo-

rem 8.6.1 we also know that d is left-invariant so

((u3, s3; 0)(u1, s1; 0), (u3, s3; 0)(u2, s2; 0))(ω,o)

=
1

2
lim

t→+∞
(2t− d((u3, s3; 0)(u1, s1;−t), (u3, s3; 0)(u2, s2;−t)))

=
1

2
lim

t→+∞
(2t− d((u1, s1;−t), (u2, s2;−t)))

= ((u1, s1; 0), (u2, s2; 0))(ω,o),

where the first and last equalities are definitions and the last one follows from the fact that d is

left-invariant. We have therefore obtained

dvis((u3, s3; 0)(u1, s1; 0), (u3, s3; 0)(u2, s2; 0)) = dvis((u1, s1; 0), (u2, s2; 0)).

Theorem 8.7.6. The visual distance on Kn−1 × Im(K)× {0} reads as

dvis(0, (u, s; 0)) =
4

√
|u|4
4

+ |s|2.

Proof. We need to calculate (0, (u, s; 0))(ω,o). By definition

(0, (u, s; 0))(ω,o) =
1

2
lim

t→+∞
(2t− d((0, 0;−t), (u, s;−t))) .

Thanks to Theorem 8.6.1 we know that

d((0, 0;−t), (u, s;−t)) = arccosh

√
e2t
|u|2
2

+ e4t

(
|u|4
16

+
|s|2
4

)
= arccosh

(
e2t
√
β(u, s, t)

)
,

where

β(u, s, t) :=

√
e−2t
|u|2
2

+

(
|u|4
16

+
|s|2
4

)
.
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We recall that

x ≥ 1 =⇒ arccoshx = ln
(
x2 +

√
x2 − 1

)
,

so

d((0, 0;−t), (u, s;−t)) = arccosh
(
e2t
√
β(u, s, t)

)
= ln

(
e2tβ(u, s, t) +

√(
e2t
√
β(u, s, t)

)2

− 1

)
= ln

(
e2tβ(u, s, t) +

√
e4tβ(u, s, t)2 − 1

)
= ln

(
e2t

(
β(u, s, t) +

√
β(u, s, t)2 − 1

e4t

))

= 2t+ ln

(
β(u, s, t) +

√
β(u, s, t)2 − 1

e4t

)
,

where the second equality follows from the definition of arccosh, the last one follows from the

properties of logarithms, and the other ones are simple calculations. We can now write the Gromov

product as follows:

(0, (u, s; 0))(ω,o) =
1

2
lim

t→+∞
(2t− d((0, 0;−t), (u, s;−t)))

=
1

2
lim

t→+∞

(
2t− 2t− ln

(
β(u, s, t) +

√
β(u, s, t)2 − 1

e4t

))

=
1

2
lim

t→+∞

(
− ln

(
β(u, s, t) +

√
β(u, s, t)2 − 1

e4t

))
.

By observing that

lim
t→+∞

β(u, s, t) =

√
|u|4
16

+
|s|2
4
,

we obtain

(0, (u, s; 0))(ω,o) =
1

2
lim

t→+∞

(
− ln

(
β(u, s, t) +

√
β(u, s, t)2 − 1

e4t

))

= −1

2
ln

(
2

√
|u|4
16

+
|s|2
4

)
= − ln

(
4

√
|u|4
4

+ |s|2
)
.

Thanks to the definition (8.1.2) of dvis we can conclude

dvis(0, (u, s; 0) = e−(0,(u,s;0))(ω,o) =
4

√
|u|4
4

+ |s|2.

8.8 The octonionic hyperbolic plane

One case still remains: the octonionic hyperbolic plane. In this chapter we explain why it can not

be treated like the other cases, and provide some ideas on how to deal with it. We first start by
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introducing the Octonions.

The octonion number set O are the 8-dimensional algebra over R with base {ij : j = 1, . . . , 7},

where

1ij = ij1 = ij , i2j = −1, ijik = −ikij ∀j, k ∈ {1, . . . , 7},

and

ijik = il

precisely when (j, k, l) is a cyclic permutation of one of the triples:

(1, 2, 4), (1, 3, 7), (1, 5, 6) (2, 3, 5), (2, 6, 7), (3, 4, 6), (4, 5, 7).

An octonion z has the form z = z0 +
∑7
j=1 zjij . The conjugate z of z is defined to be z =

z0−
∑7
j=1 zjij . Conjugation has the property that zw = w z for all z, w ∈ O. In a similar way to the

complex and quaternionic case one define the real part and the imaginary part as <(z) = 1
2 (z + z)

and Im(z) = 1
2 (z − z). The norm |z| of an octonion is the non-negative real number defined by

|z| = zz = zz =
∑7
j=0 z

2
j . It’s easy to see that the product in O is not associative, for example

i1((1 + i4)i3) = i1(i3 − i6) = i7 + i5,

while

(i1(1 + i4))i3 = (i1 − i2)i3 = i7 − i5.

The lack of associativity make O lose the notion of a vector space. This is the point that does not

let us to work with the Octonion as with the other numbers. While for the Quaternion we simply

have to consider right and left multiplication as different things, there is no way to build a vector

space on O. The idea here is to use the fact that two generators subalgebras of O are associative,

this result is due to Artin, see [Sch95, Section III.1].

Proposition 8.8.1. For any octonions x and y the subalgebra with unit generated by x and y is

associative. In particular, any product of octonions that may be written in terms of just two octonions

is associative.

Consider z = (z1, z2) where z1, z2 ∈ O, we define the standard lift of z as

z =

z1

z2

1

 .
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Suppose that λ is an octonion in the same associative subalgebra of O as z1 and z2, then we can let

λ act on z by right multiplication:

zλ =

z1λ
z2λ
λ

 .

We therefore define

O3
0 =

{
z =

z1

z2

z3

 : z1, z2, z3 all lie in some associative subalgebra of O

}
.

We now work on O3
0 in a similar way we have done on Kn+1.

Definition 8.8.2. We define an equivalence relation on O3
0 by z ∼ w if w = zλ for some λ in an

associative subalgebra of O containing the entries of z. We denote the set of equivalence classes as

OP2
0.

Let H be a Hermitian matrix of signature (2, 1), for example in the form of K, as (8.2.6). Given

z ∈ O3
0, we define Z := zz∗H. This is a 3× 3 matrix whose entries lie in an associative subalgebra

of O.

Lemma 8.8.3. Right multiplication of z by λ lying in the same associative subalgebra as the entries

of z, leads to multiplication of Z by |λ|2.

Proof. The proof is a simple calculation:

(zλ)(zλ)∗H = zλλ∗z∗ = |λ|2zz∗H.

We consider M(O, 3) to be the real vector space of 3 × 3 octonionic matrices. Let X∗ the

conjugate transpose of a matrix X in M(O, 3). We define

J =
{
X ∈M(O, 3) : HX = X∗H

}
.

Then J is closed under Jordan multiplication, that is

X ∗ Y :=
1

2
(XY + Y X) . (8.8.4)

We call J the Jordan algebra associated to H. Real numbers act on M(O, 3) by multiplication of

each entry of X. So we define an equivalence relation on J by X ∼ Y if and only if Y = kX for

some non-zero real number k. Then JP is defined to be the set these of equivalence classes.

Let Z : O3
0 →M(O, 3) such that Z(z) = Z, then Z(z) ∈ J for all z ∈ O3

0, as a matter of fact

HZ(z) = HZ = Hzz∗H = (zz∗H)∗H = Z∗H = Z(z)∗H.
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Hence the map Z defines an embedding O3
0 → J . Moreover, the two projection maps are compatible

and so there is a well defined map OP3
0 → JP, thanks to Lemma 8.8.3. The Hermitian form in this

case is provided by tr(Z) = tr(zz∗H), which is real thanks to the fact that

tr(Z) = tr(Z) = tr(zz∗H) = tr(zz∗H∗) = tr(zz∗H) = tr(Z).

On M(3,O) we define a bilinear form by

〈X,Y 〉 := <(tr(X ∗ Y )) =
1

2
<(tr(XY + Y X)),

where X ∗ Y is defined in (8.8.4).

We can finally give the definition of the octonionic hyperbolic plane:

Definition 8.8.5. Let V− := {z ∈ O3
0 : tr(zz∗H) < 0} and let V−P be its projectivization as in

Definition 8.8.2. We define the octonionic hyperbolic plane OH2 to be the set V−P endowed with

the distance

cosh2

(
d([z], [w])

2

)
=

〈Z,W 〉
tr(Z)tr(W )

.

The octonionic hyperbolic plane OH2 and its distance are well defined thanks to Lemma 8.8.3.

We leave the study of the group structure of OH2 for the reader.

8.9 Heintze groups*
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Chapter 9

Analysis on nilpotent groups

9.1 Rademacher Theorem

We would like to observe that the classical Rademacher Theorem states not only the existence almost

everywhere of a tangent map (called the differential), but also its realizability as a linear map, in

other word, as a group homomorphism which is compatible with the respective groups of dilations.

Stated in this terms, the theorem holds for general equiregular sub-Finsler manifolds as well. The

aim of this section is to explain the content of such a differentiability result and to give a complete

proof of it in the case of Carnot groups

9.1.1 Margulis-Mostow’s theorem

The Rademacher-type theorem for manifolds is attributed to Margulis and Mostow [MM95], who

however, extended the proof by Pansu for the case of Carnot groups [Pan89].

Theorem 9.1.1 (SubRiemannian Rademacher Theorem). At almost all points, the tangent map of

a Lipschitz map between sub-Finsler equiregular manifolds exists, is unique, and is a group homo-

morphism of the tangent cones equivariant with respect to their dilations.

Let us clarify what is the meaning of tangent map. Each map f : (X, d) → (X ′, d′) induces a

map fλ : (X,λd) → (X ′, λd′), for each λ > 0, which set-wise is the same map f(x) = fλ(x). Fix a

point x ∈ X and assume that (Z, ρ) and (Z ′, ρ′) are tangent spaces respectively to (X, d) at x and to

(X ′, d′) at f(x). One says that f̂ : (Z, ρ)→ (Z ′, ρ′) is a tangent map of f at x if, for some sequence

λj →∞, fλj converges to f̂ in what sense?

Let us warn the reader about a possible confusion. Each sub-Riemannian manifold is in particular

a differentiable manifold. However, the notion of the differential of a smooth map does not coincide
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with the tangent map which is defined in geometric terms. However, there is a link between the two

tangent maps, see Exercise ??.

9.1.2 Pansu’s theorem

We shall prove Pansu’s version of Rademacher Theorem.

Definition 9.1.2 (Pansu differentiability). Let G1 and G2 be Carnot groups. We denote by δh the

dilations of factor h in both of the groups. If f : G1 → G2 is a map, then its Pansu differential at a

point x ∈ G1 is the limit

Dfx := lim
h→0+

δ1/h ◦ L−1
f(x) ◦ f ◦ Lx ◦ δh,

where the limit is with respect to the convergence on compact sets. Moreover, we say that f is

Pansu differentiable if Dfx exists and is a homogeneous group homomorphism.

The value Dfx(v) may be called partial Pansu derivative of f at x along v. Notice that Dfx is a

map from G1 to G2, which may not be continuous, even if it exists. Notice that if Df(x; v) exists,

then Df(x; δλv) exists for all λ > 0 and Df(x; δλv) = δλDf(x; v).

Theorem 9.1.3 (Pansu’s generalization of Rademacher Theorem). Let f : G → Ḡ be a Lipschitz

map between sub-Finsler Carnot groups. Then for almost every x ∈ G the map f is Pansu differen-

tiable at x.

Preliminaries to the proof of Pansu’s theorem

In the proof of the above theorem, we will only take for granted few classical results to which we

give hints to the proofs and references in the exercise section.

Theorem 9.1.4 (Rademacher Theorem in 1D). If γ : [0, 1] → Rn is Lipschitz with respect to the

Euclidean distance on Rn, then the derivative γ̇(t) exists for almost every t and

γ(t) = γ(0) +

∫ t

0

γ̇(s) d s, for all t ∈ [0, 1].

Theorem 9.1.5 (Egorov Theorem for metric spaces, see Exercise 9.7.5). Let (X,µ) be a measure

space with µ(X) < ∞ and let Y be a separable metric space. Let (ft)t>0 be a family of measurable

functions from X to Y depending on a real parameter t ∈ (0,∞). Suppose that (ft)t converges

almost everywhere to some f , as t → 0. Then for every η > 0, there exists a measurable subset

K ⊂ X such that the µ(Ω \K) < η and (ft)t converges to f uniformly on K.
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Theorem 9.1.6 (Consequence of Lebesgue Differentiation Theorem for doubling metric spaces, see

Exercise 9.7.6). If (X, d, µ) is a doubling measure metric space and K is a measurable set in X then

µ-almost every point of K has density 1.

A proof of Pansu’s theorem

As in Pansu’s original proof, we first deal with the case of curves. We shall prove that every Lipschitz

curve into a Carnot group is Pansu differentiable almost everywhere.

Proposition 9.1.7 (Case of curves). Let γ : [0, 1] → G be a Lipschitz curve. Then γ is Pansu

differentiable almost everywhere and for almost every x ∈ [0, 1] we have that for all v ∈ R

Dγ(x; v) := lim
t→0

δ1/t
(
γ(x)−1γ(x+ tv)

)
= exp

(
v(Lγ(x))

∗γ̇(x)
)
.

Here are few remarks before the proof. First we notice that the above curve γ is in particular

Euclidean Lipschitz, so the tangent vector γ̇(x) exists for almost every x by Theorem 9.1.4. We also

stress that Pansu differentiability for curves is stronger than Euclidean differentiability. Namely, if

we consider the curve in coordinates γ(t) = (γ1(t), . . . , γn(t)) and x is a point of Euclidean differ-

entiability (we may assume x = 0 and γ(x) = 0), then γ̇(0) = lim γ(t)/t = (γ1(t)/t, . . . , γn(t)/t) →

(h1, . . . , hr, 0, . . . , 0). However, we have to consider

δ1/tγ(t) = (γ1(t)/t, . . . , γn(t)/ts)

and we need to prove that each coordinate γj(t), with j greater than the rank, in fact vanishes not

just faster than t but faster than t to the power of the degree of the coordinate.

Proof of Proposition 9.1.7. For simplicity, we take v = 1. We take X1, . . . , Xr a basis of the first

layer of the stratification of Lie(G). Let h1, . . . , hr ∈ L∞([0, 1];R) be such that

γ̇(t) =

r∑
j=1

hj(t)Xj(γ(t)), for almost all t ∈ [0, 1]. (9.1.8)

Since γ is L-Lipschitz, we may take |hj(t)| ≤ L, for all t. Let x ∈ [0, 1] be both a point of Euclidean

differentiability for γ and a Lebesgue point for all hj , i.e.,

1

|t− x|

∫ t

x

|hj(s)− hj(t)|ds→ 0, as t→ x.

Up to replacing γ with the curve t 7→ γ(x)−1γ(t+ x) we may assume that x = 0 and γ(x) = 0.
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We identify the group G with its Lie algebra via the exponential map. Our aim is now to show

that

lim
t→0

δ1/tγ(t) = γ̇(0),

where the latter equals
∑r
j=1 hj(0)Xj(0) since 0 is a Lebesgue point for all hj .

Set ηt(s) := δ1/tγ(t s), so each ηt : [0, 1]→ G is a curve starting at 0 that is L-Lipschitz:

d(ηt(s), ηt(s
′)) = d(δ1/tγ(t s), δ1/tγ(t s′)) ≤ L

t
|ts− ts′| = L|s− s′|.

Consequently, every sequence (ηtk)k has a uniformly converging subsequence. Moreover, we claim

we have the equality

η̇t(s) =

r∑
j=1

hj(ts)Xj(ηt(s)). (9.1.9)

Indeed,

η̇t(s) =
d

ds
δ1/tγ(t s) = (δ1/t)∗(tγ̇(t s)) = γ̇(t s),

which gives (9.1.9) from (9.1.8).

We claim that ηt uniformly converges to η0, as t → 0, where η0(t) := tγ̇(0). This claim will

complete the proof since in particular, ηt(1) = δ1/tγ(t) → γ̇(0). For proving the claim we shall

show that for all sequences tk → 0 there exists a subsequence tki such that ηtki → γ̇(0). Indeed,

by Ascoli-Arzela, there exists a subsequence tki and there exists ξ : [0, 1] → G such that ηtki → ξ

uniformly. We want to show that

ξ̇(s) =

r∑
j=1

hj(0)Xj(ξ(s)), for almost every s ∈ [0, 1].

Let σ be the curve such that σ(0) = 0 and σ̇(s) =
∑r
j=1 hj(0)Xj(ξ(s)). Let us integrate from 0 to

an arbitrary v ∈ (0, 1):

σ(v)− ηtki (v) =

∫ v

0

r∑
j=1

hj(0)Xj(ξ(s)) ds−
∫ v

0

η̇tki (s) ds

=

∫ v

0

r∑
j=1

hj(0)Xj(ξ(s)) ds−
∫ v

0

r∑
j=1

hj(tkis)Xj(ηtki (s)) ds

≤
∫ v

0

r∑
j=1

|hj(0)− hj(tkis)|Xj(ξ(s)) ds+

+

∫ v

0

r∑
j=1

|hj(tkis)||Xj(ξ(s))−Xj(ηtki (s)) ds,
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where we used (9.1.9). As i → ∞, by continuity of Xi we have that the last summand goes to 0.

Regarding the one before the last, we observe that∫ v

0

r∑
j=1

|hj(0)− hj(tkis)|ds ≤
∫ 1

0

r∑
j=1

|hj(0)− hj(tkis)|ds

=
1

t

∫ t

0

|hj(0)− hj(u)|du→ 0,

since 0 was a Lebesgue point.

Proof of Theorem 9.1.3. Let F : G→ H be a Lipschitz map. Define

Fp,ε(x) := δ1/ε(F (p)−1F (pδεx)), for p, x ∈ G and ε > 0.

Fix X1, . . . Xm a basis of V1. For the entire proof, j ∈ {1, . . . ,m} and Rj := exp(RXj).

Let F̃ jp,ε be the restriction Fp,ε|Rj : Rj → H. By Proposition 9.1.7, for every p ∈ G the maps

F ◦Lp|Rj are almost everywhere differentable on Rj . By Fubini’s theorem, there is a subset E ⊂ G

of full measure such that, for all p ∈ E, the limit F̃ jp,0 = limε→0+ F̃ jp,ε exists and is a Lipschitz group

morphism Rj → H. The limit is uniform on compact subsets of Rj .

Let L is a Lipschitz constant of F . We shall consider the space LipL(Rj ;H) of L-Lipschitz

functions from Rj toH, with a separable distances that metrizes the uniform convergence on compact

sets, see Exercise 9.2.1 .

We have F̃ jp,ε ∈ LipL(Rj ;H) for every p ∈ G and ε ≥ 0. We can apply Egorov’s Theorem 9.1.5

to the functions p ∈ G 7→ F̃ jp,ε ∈ LipL(Rj ;H). Therefore, for every τ, r > 0 there exists a set

Eτ,r ⊂ E ∩B(1G, r) such that |B(1G, r) \ Eτ,r| < τ and

{pε}ε ⊂ Eτ,r
limε→0 pε = p ∈ Eτ,r

⇒ F̃ jpε,ε → F̃ jp,0
uniformly on compact sets of Rj .

(9.1.10)

Finally, let E◦τ,r ⊂ Eτ,r be the set of density points of Eτ,r. Since we are in a doubling metric space,

E◦τ,r has full measure within Eτ,r.

For the next few paragraphs we fix p ∈ E◦τ,r. We notice that for all v ∈ G, since p is a point of

density of E◦τ,r there exists qε ∈ E◦τ,r such that limε→0 δ1/ε(p
−1qε) = v.

Then define

Dp :=

{
v ∈ G : ∀qε ∈ E◦τ,r

if δ1/ε(p
−1qε)

ε→0→ v
then δ1/ε(F (p)−1F (qε)) converges

}
.

Therefore, for all v ∈ Dp there exists an element in H, which we denote by Fp,0(v), such that if

qε ∈ E◦τ,r are such that limε→0 δ1/ε(p
−1qε) = v, then

Fp,0(v) := lim
ε→0

δ1/ε(F (p)−1F (qε).
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Notice that if v ∈ Dp, then for every sequence εm ↘ 0 such that Fp,εm converges uniformly, as

m→∞, we have

Fp,0(v) = lim
m→∞

Fp,εm(v). (9.1.11)

We claim that for all v ∈ Rj , and pε, qε ∈ E◦τ,r

limε→0 δ1/ε(p
−1
ε qε) = v

limε→0 pε = p
⇒ lim

ε→0
δ1/ε(F (pε)

−1F (qε)) = F̃ jp,0(v). (9.1.12)

Indeed, (9.1.12) is a consequence of pε → p in Eτ,r:

d(δ1/ε(F (pε)
−1F (qε)), F̃

j
p,0(v)) = d(Fpε,ε(δ1/ε(p

−1
ε qε)), F̃

j
p,0(v))

≤ d(Fpε,ε(δ1/ε(p
−1
ε qε)), Fpε,ε(v)) + d(Fpε,ε(v), F̃ jp,0(v))

≤ Ld(δ1/ε(p
−1
ε qε), v) + d(F̃ jpε,ε(v), F̃ jp,0(v))→ 0,

where at the end we used the first assumption of (9.1.12) and (9.1.10).

Our next claim about Dp is

g ∈ Dp, v ∈ Rj ⇒ gv ∈ Dp, (9.1.13)

and in fact

Fp,0(gv) = Fp,0(g)F̃ jp,0(v). (9.1.14)

To show these last two claims, let {qε}ε ⊂ E◦τ,r be such that limε→0 δ1/ε(p
−1qε) = gv. Since p ∈ E◦τ,r

then there is {pε}ε ⊂ E◦τ,r such that limε→0 δ1/ε(p
−1
ε qε) = v. So,

lim
ε→0

δ1/ε(F (p)−1F (qε)) = lim
ε→0

δ1/ε(F (p)−1F (pε))δ1/ε(F (pε)
−1F (qε))

(9.1.12)
= Fp,0(g)F̃ jp,0(v).

Next we observe the easy fact 1G ∈ Dp, and therefore from (9.1.13) we infer

R1, . . . , Rm ⊂ Dp. (9.1.15)

From (9.1.15) and (9.1.13), together with the assumption that R1 ∪ . . . ∪ Rm finitely generates

G we get that Dp = G. From (9.1.11) and (9.1.14), we conclude that every blowup of F at p, which

exists by Ascoli-Arzelá, coincides with the map F0,p : G→ H and moreover it is a group morphism.

Since
⋃
τ,r>0E

◦
τ,r has full measure in G, the map F is differentiable almost every-where on G.
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Original proof of Pansu’s theorem

We mostly shall follow the original proof by Pansu together with some extra explanation from

Monti’s thesis. For the proof, we introduce the difference quotients:

R(x; v, t) := δ̄1/t
(
f(x)−1f(xδtv)

)
,

so that Df(x; v) := limt→0R(x; v, t).

We start with a preliminary result. It said that if almost everywhere we have partial derivatives

in two directions, then we also have it at the product of the directions.

Proposition 9.1.16. Let f : G → Ḡ be a Lipschitz map between sub-Finsler Carnot groups. If

Df(x; v) and Df(x;w) exists for almost every x ∈ G, then Df(x; vw) exists for almost every x ∈ G

and Df(x; vw) = Df(x; v)Df(x;w) .

Proof of Proposition 9.1.16. Let Ω ⊂ G open with finite measure. Let η > 0. By Egorov’s theorem

for metric spaces (see Theorem 9.1.5) there exists a measurable subset K ⊂ Ω such that the measure

of Ω \K is less than η and R(x;w, t) → Df(x;w), as t → 0, uniformly on K. Moreover, since the

measure is regular, we may assume that K is compact.

We claim that to conclude the proof it is enough to show

R(xδtv;w, t)→ Df(x;w), for almost every x ∈ K. (9.1.17)

Indeed, in this case, for x ∈ K, we have

R(x; vw, t) = δ̄1/t
(
f(x)−1f(xδt(vw))

)
= δ̄1/t

(
f(x)−1f(xδtv)

)
δ̄1/t

(
f(xδtv)−1f(xδtvδtw)

)
= R(x; v, t)R(xδtv;w, t)→ Df(x; v)Df(x;w).

Then on concludes taking the union of the sets K = K(η) when η varies in N, which form a full

measure set.

For showing (9.1.17) take as x a point of density for K, recall that from Theorem 9.1.6 these

points are of full measure in K. For t > 0, let xt ∈ K be one projection of xδtv on K, i.e., such that

d(xδtv, xt) = d(xδtv,K) =: rt. Then rt ≤ d(xδtv, x) = td(v, 0). We claim that rt/t→ 0. Indeed,

rQt
(2td(v, 0))Q

=
|Bd(xδtv, rt)|

|Bd(x, 2d(x, xδtv))|
≤ |Bd(x, 2d(x, xδtv)) \K|

|Bd(x, 2d(x, xδtv))|
→ 0.
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We now calculate

R(xδtv, w, t) = δ̄1/t
(
f(xδtv)−1f(xδtvδtw)

)
= δ̄1/t

(
f(xδt(v))−1f(xt)

)︸ ︷︷ ︸
At

δ̄1/t
(
f(xt)

−1f(xtδtw)
)︸ ︷︷ ︸

Bt

δ̄1/t
(
f(xtδtw)−1f(xδtvδtw)

)︸ ︷︷ ︸
Ct

.

We claim that At → 0 as t→ 0. Indeed,

d̄(0, At) =
1

t
d̄(f(xt), f(xδtv)) ≤ L

t
d(xt, xδtv) = Lrt/t→ 0.

We then notice that, since xt ∈ K, xt → x, and on K the convergence is uniform, we have that

Bt = R(xt;w, t)→ Df(x;w) as t→ 0. We then claim that Ct → 0 as t→ 0. Indeed,

d̄(0, Ct) =
1

t
d̄(f(xtδtw), f(xδtvδtw))

≤ L

t
d(xtδtw, xδtvδtw)

= Ld(δ1/t(xt)w, δ1/t(xδtv)w)→ 0,

where we used that that d(δ1/t(xt), δ1/t(xδtv)) =
d(xt, xδtv)

t
→ 0.

Another Proof of Theorem 9.1.3. Let X1, . . . , Xr be a basis of the first layer of the stratification of

Lie(G).

We first claim that the set E := {p ∈ G : Df(p; exp(Xi)) and Df(p; exp(−Xi)) exists for all i}

has full measure. Indeed, complete to a basis X1, . . . , Xn of Lie(G). For j ∈ {1, . . . , r}, define

φj : Rn → G as φj(x1, . . . , xn) = exp(
∑
i 6=j xiXi) exp(xjXj). Then φj is a diffeo and for all x ∈ R

the curve t 7→ φj(x+ tej) is the flowline of Xj starting at φj(x). Set

Ẽj := {x ∈ Rn : t 7→ f(φj(x1, . . . , xj−1, t, xj+1, . . . , xn)) is P-diff in t = xj}.

By Fubini’s theorem for Lebesgue measure and by Proposition 9.1.7, Ẽj has full measure. Then

E = ∩rj=1φj(Ẽj) has full measure.

Then let S = {v ∈ G : d(0, v) = 1} be the unit sphere in G. For all m ∈ N there exists vm1 , . . . , v
m
jm

such that S ⊆ ∪jmi=1Bd(v
m
i , 1/m). We then claim that each set

Em := {p ∈ E : Df(p; vmi ) exists for all i = 1, . . . , jm}

has full measure. Indeed, since G := {exp(λXi) : λ ∈ R, i = 1, . . . , r} generates G, then for all i

and all m there exists w1, . . . , wk ∈ G such that vmi = w1 . . . wk. Hence, from Proposition 9.1.16 for

almost every p ∈ G we have that Df(p; vmi ) exists. Thus Em has full measure.
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We finally claim that if p ∈ ∩m∈NEm, then R(p; v, t) converges uniformly in v ∈ S, as t → 0.

Indeed, we want to show that for all m ∈ N there exists δ > 0 such that for all s, t ∈ (0, δ) and all

v ∈ S

d̄(R(p; v, t), R(p; v, s)) ≤ 1 + 2L

m
.

Let m ∈ N. Then there exists δ > 0 such that for all i ∈ {1, . . . , im} and all s, t ∈ (0, δ)

d̄(R(p; vmi , t), R(p; vmi , s)) ≤
1

m
.

Let v ∈ S. Then there exists i such that d(v, vmi ) ≤ 1

m
. Then for all s, t ∈ (0, δ)

d̄(R(p; v, t), R(p; v, s)) ≤ d̄(R(p; v, s), R(p; vmi , s), ) + d(R(p; vmi , s), R(p; vmi , t)) + d̄(R(p; vmi , t), R(p; v, t))

≤ 1

s
d̄(f(pδsv

m
i ), f(pδsv)) +

1

m
+

1

t
d̄(f(pδtv

m
i ), f(pδtv))

≤ L

s
sd(vmi , v) +

1

m
+
L

t
td(vmi , v) ≤ L+ 1 + L

m
.

9.1.3 Applications to non-embeddability

It was observed by Semmes, [Sem96, Theorem 7.1], that Pansu’s differentiation Theorem 9.1.1 implies

that a Lipschitz embedding of the Heisenberg group with its CC distance into an Euclidean space,

cannot be bi-Lipschitz.

Theorem 9.1.18. There is no bi-Lipschitz embedding from an open set in a Heisenberg group to

an Euclidean space Rn.

Proof. Suppose that such an embedding f exists. The Pansu Rademacher Theorem 9.1.1 would

imply that there exists at least one point at which f is differentiable and whose tangent map is

a group homomorphism. The blowing-up procedure used to define the tangent map scales in the

natural way, i.e., if f is L-bi-Lipschitz, then each rescaled fλ is L-bi-Lipschitz and so the tangent map

is bilipschitz too. In particular, the tangent map is injective. We now get a contradiction, because

we considered a tangent map which is a group homomorphism between tangents spaces which are

the 3-dimensional Heisenberg group and the Abelian Rn. However, any homomorphism from the

Heisenberg group into Rn must have a kernel which is at least 1-dimensional (all commutators in the

Heisenberg group must be mapped to 0 by the homomorphism) and hence cannot be injective.
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Corollary 9.1.19. Let M1 an M2 be sub-Riemannian manifolds with tangents the Carnot groups

G1, respectively G2. If no subgroup of G2 is isomorphic to G1 then there is no bi-Lipschitz embedding

of M1 in M2.

Corollary 9.1.20. The Heisenberg group, or any other non-commutative Carnot group, is purely

unrectifiable.

A consequence of the proof of Theorem 9.1.18 is that each Lipschitz map from the Heisenberg

group to an Euclidean space has to compress points in the direction of the center of the group.

Proposition 9.1.21 (Center collapse). If U ⊂ H is an open subset, and f : U → Rn is a Lipschitz

map, then for almost every point x ∈ H, the map collapses in the direction of the center of H, i.e.,

lim
g→e

‖f(xg)− f(x)‖
d(xg, x)

= 0 , g ∈ Center(H) . (9.1.22)

This last theorem has been generalized by J. Cheeger and B. Kleiner to maps with values in the

Banach space L1. Such a result gave a proof of the following theorem which has been conjectured

by J. Lee and A. Naor.

Theorem 9.1.23 (Lee-Naor-Cheeger-Kleiner). The Heisenberg group equipped with its CC metric

does not admit a bi-Lipschitz embedding into L1.

This conjecture arose from the work of J. Lee and A. Naor, in which it is shown that the nonex-

istence of such an embedding provides a natural counter-example to the Goemans-Linial conjecture

of theoretical computer science; S. Khot and N. Vishnoi gave a first such counterexample. Very

roughly, the point is that in some instances, questions in algorithm design, such as the sparsest

cut problem, could be solved if it were possible to embed a certain class of finite metric spaces

(those with metrics of negative type) into `1 with universally bounded bi-Lipschitz distortion, i.e.,

distortion independent of the particular metric and the cardinality.

9.2 Exercises

Exercise 9.2.1 (The space of L-Lipschitz functions). LetG andH be Carnot groups. Let LipL(G;H)

be the set of Lipschitz functions G→ H of Lipschitz constant at most L. Consider the function

dL(f, g) := sup

{
dH(f(x), g(x))

n2
: n ∈ N, x ∈ B(1G, n)

}
.

Show that
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(i). The function dL is a distance function on LipL(G;H).

(ii). Convergence with respect to dL is equivalent to uniform convergence on compact sets.

(iii). The space (LipL(G;H), dL) is separable.

Solution. (i). The axioms to check that dL is a distance function are easy to verify.

(ii). Let {fk}k ⊂ LipL(G;H) and f ∈ LipL(G;H).

Suppose that limk→∞ dL(fk, f) = 0. If E ⊂ G is compact, then there is N ∈ N such that

E ⊂ B(eG, N). Since

sup{dH(fk(x), f(x)) : x ∈ B(eG, N)} ≤ N2dL(fk, f)→ 0,

then fk → f uniformly on E. Since E is an arbitrary compact set, fk → f uniformly on compact

sets.

Suppose now that fk → f uniformly on compact sets and let ε > 0. Since {eG} is compact, there

is C > 0 such that dH(fk(e), f(e)) ≤ C for all k ∈ N. Notice that, for all n ∈ N≥1 and x ∈ B(eG, n),

we have

dH(fk(x), f(x))

n2
≤ dH(fk(x), fk(eG)) + dH(fk(eG), f(eG)) + dH(f(eG), f(x))

n2

≤ 2L

n
+
C

n2
.

Therefore, there is N ∈ N such that dH(fk(x),f(x))
n2 < ε for all n ≥ N and x ∈ B(eG, n). Let K ∈ N

be such that

sup{dH(fk(x), f(x)) : x ∈ B(eG, N)} ≤ ε

for all k > K. Then, for k > K, we have dL(fk, f) ≤ ε. We conclude that limk→∞ dL(fk, f) = 0.

(ii). The topology of uniform convergence on compact sets is equivalent to the compact-open

topology. Moreover, by Ascoli-Arzelà, for every n ∈ N the set

K (n) := {f ∈ LipL(G;H) : f(eG) ∈ B̄(eH , n)}

is compact, hence separable. Since LipL(G;H) =
⋃
n∈N K (n) is a countable union of separable sets,

then it is also separable.
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9.3 Regularity problems

We will discuss the following issues:

- smoothness of geodesic curves;

- smoothness of metric spheres;

- smoothness (and existence) of minimal surfaces;

- smoothness (and existence) of solution of the isoperimetric problem.

Comments regarding geodesics

1. The existence is ensured by Ascoli-Arzelà Theorem, as a priori just Lipschitz curves, so differ-

entiable almost everywhere.

2. People expect that when (M,∆, 〈·, ·〉) is a sub-Riemannian manifold, then any geodesic is C1,

or, in fact, C∞. The question is still open.

3. People expect that when ‖·‖ is a norm coming from a polytope, i.e., the unit ball of ‖·‖ is the

convex hull of finitely many points, then there exists a constant N ∈ N such that each pair of

points can be connected with a geodesic made of N smooth pieces. The question is still open.

4. The query cannot be solved using the standard arguments from geometric analysis (e.g., Cal-

culus of Variation or differential geometry) as in Riemannian geometry.

Comments regarding metric spheres

1. In Carnot groups, metric spheres are topological spheres. (In general, the conjecture is that

small metric spheres are topological spheres.)

2. In the Heisenberg geometry, spheres are not smooth at the pole. See the picture of the section

of the ball.

3. The expectation is that small metric spheres (at least in Carnot groups) should be piecewise

smooth.

4. The regularity of geodesics is linked (at least philosophically) to the regularity of metric spheres.

Comments regarding minimal surfaces and isoperimetric solutions

1. They do exists in an extended sense.

2. Regularity is a tricky issue.
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9.3.1 Common general philosophical strategy for regularity

Step 1 Consider the geometric objects as special elements inside a wider class of analytical objects.

Step 2 Prove that such analytical objects are in fact ‘rectifiable’, e.g., ‘piece-wise Lipschitz’. (Here

there will be an issue since Carnot groups are purely unrectifiable.)

Step 3 Rectifiability should be first improved as low (e.g., C1) regularity, for example in the case

of minimal objects.

Step 4 Minimal C1 (or C2) objects are in fact C∞, or even analytic.

9.4 Generalized hyper-surfaces: sets with finite perimeter

Both metric spheres and (n−1)-dimensional minimal surfaces inside an n-dimensional Carnot group

have codimension 1. We can see them as boundary of an n-dimensional domain Ω. We then think

about studying Ω instead ∂Ω. The idea is to consider the characteristic function χΩ of Ω:

χΩ(x) = 1 if x ∈ Ω, χΩ(x) = 0 if x /∈ Ω.

We consider the wide class of all measurable sets Ω, in other words, we have χΩ ∈ L1
loc.

Which are the good χΩ? Clearly, even a request of continuity is too strong. The feeling is that

if Ω is a hyper-space, then χΩ should be good. As an toy example, let us consider the I-don’t-

remember-the-name function, i.e., χR>0
. A nice property of such a function is that its derivative

exists in the generalized sense, it is the delta measure δ0.

We arrive at the conclusion that “our good sets are those whose characteristic functions have

measures as generalized derivatives.” We should explain in the following what is this generalized

derivative.

9.4.1 A review of divergence and distributions

Let M be any smooth differentiable manifold with topological dimension n, endowed with an n-

differential volume form volM . For example, volM could be a Riemannian volume form; however,

eventually, M will be a Lie group G, and volM a right Haar measure.

We use the volume form to define the divergence as follows:

Definition 9.4.1. For any vector field X ∈ Γ(M) define the function divX : M → R implicitly as∫
M

Xud volM = −
∫
M

udivX d volM ∀u ∈ C∞c (M). (9.4.2)
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We say that X is divergence-free if divX ≡ 0.

For example the vector fields
∂

∂j
in Rn are divergence-free, because of the Fundamental Theorem

of Calculus and the fact that the test functions have compact support.

When (M, g) is a Riemannian manifold and volM is the volume form induced by g, then an explicit

expression of this differential operator can be obtained in terms of the components of X, and (9.4.2)

corresponds to the divergence theorem on manifolds. We won’t need either a Riemannian structure

or an explicit expression of divX in the sequel, and for this reason we have chosen a definition based

on (9.4.2): this emphasizes the dependence of divX on volM only.

Note that by Leibniz rule X(uv) = uXv + vXu, integrating over the manifold when X is a

divergence-free vector field, one obtains∫
M

uXv d volM = −
∫
M

vXud volM ∀u, v ∈ C∞c (M). (9.4.3)

This last identity motivates the following classical definition.

Definition 9.4.4 (X-distributional derivative). Let u ∈ L1
loc(M) and let X ∈ Γ(TM) be divergence-

free. The generalized derivative of u in the direction of X is the operator Xu ∈ (C∞c (M))
∗

defined

as

〈Xu, v〉 := −
∫
M

uXv d volM , v ∈ C∞c (M).

If f ∈ L1
loc(M), we write Xu = f if 〈Xu, v〉 =

∫
M
vf d volM for all v ∈ C∞c (M). Analogously, if µ is

a Radon measure in M , we write Xu = µ if 〈Xu, v〉 =
∫
M
v dµ for all v ∈ C∞c (M).

SinceX is divergence-free and so (9.4.3) holds (it is still valid when u ∈ C1(M)), the distributional

definition of Xu is equivalent to the classical one whenever u ∈ C1(M).

Proposition 9.4.5. (i) Let G be a nilpotent Lie group, and let volG be a right Haar measure.

Then each left invariant vector field is divergence-free.

(ii) More generally, for any manifold M , any volume form volM ), and any X ∈ Γ(M), one has

that if the flows of X are volM -preserving, then divX ≡ 0.

Proof. The first assertion is consequence of the second one, since, as we saw, flows of left invariant

vector fields are right translations, g 7→ getX . Regarding (ii), let ΦtX(·) be the flow of X at time t.

Thus we know that, for any t, we have

(
ΦtX
)

#
volM = volM .
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Therefore, for any test function u,
∫
M
u ◦ΦtX d volM =

∫
M
u d volM . Such independence of t implies

that

−
∫
M

udivX d volM =

∫
M

Xud volM

=

∫
M

(Xu) ◦ ΦtX d volM

=

∫
M

d

dt

(
u ◦ ΦtX

)
d volM

=
d

dt

∫
M

u ◦ ΦtX d volM

= 0.

Therefore
∫
M
udivX d volM = 0 for all u ∈ C1

c (M), and X is divergence-free.

One can prove the inverse implication: the flows are volM -measure preserving if divX is equal

to 0, cf. the proof of Theorem 2.12 in [AKL09].

9.4.2 Caccioppoli sets: sets of locally finite perimeter

Definition 9.4.6 (Sets of locally finite perimeter). A Borel set E in a Carnot group, with stratifi-

cation g = V1 ⊕ · · · ⊕ Vs, is said a Caccioppoli set or to have locally finite perimeter if, for any left

invariant horizontal vector field X ∈ V1, the distribution XχE is a Radon measure.

Now that we generalized the object of study, we should first understand how to obtain back our

hyper-surfaces.

Pick X1, . . . , Xm a basis of V1. We form the Rm-valued Radon measure

DχE := (X1χE , . . . , XmχE), (9.4.7)

and call it the perimeter vector measure. One can write

DχE = νE |DχE |,

where |DχE | is the (positive) measure given by the variation of DχE : if A is any Borel set, then

|DχE |(A) = sup
π

∑
B∈π
‖DχE(B)‖ ,

where the supremum is taken over all partitions π of A into a finite number of disjoint measurable

subsets. And νE is the vector measurable function obtained as

νE(x) := lim
r↓0

DχE(Br(x))

|DχE |(Br(x))
,
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which exists |DχE |-almost everywhere.

The terminology is that |DχE | is the perimeter measure, and νE is the normal of the set. Finally,

Per(E) := |DχE |(G) (9.4.8)

is the perimeter of E. More generally, if Ω is a Borel set, then Per(E,Ω) := |DχE |(Ω) is the perimeter

of E inside Ω.

All such objects depend on the choice of X1, . . . , Xm. The choice of such a basis is in correspon-

dence to the choice of a sub-Riemannian metric on the Carnot group G, for which X1, . . . , Xm is an

orthonormal basis.

Definition 9.4.9 (De Giorgi’s reduced boundary). Let E ⊆ G be a set of locally finite perimeter.

Define the reduced boundary FE as the set of points x ∈ supp |DχE | where:

(i) the limit defining νE exists and

(ii) |νE(x)| = 1.

E.g., the reduced boundary of a square on the (Euclidean) plane is formed by its four edges with

the four vertices removed.

Why it is better to consider such sets? Because in such class minima always exist.

Theorem 9.4.10 (Compactness [GN96] + Lower semicontinuity for BV functions [FSS96]). Let G

be a Carnot group and let Ej be a sequence of locally finite perimeter sets such that their perimeters

in some Borel set Ω converge to a value c ∈ R, i.e.,

|DχEj |(Ω)→ c.

Then there exists a locally finite perimeter set F such that, up to passing to a subsequence,

1. χEj → χF in L1
loc(Ω) and

2. |DχF |(Ω) ≤ c.

9.4.3 Notions of rectificability

In general metric spaces the classical definition of ‘good’ surfaces goes back at least to Federer (see

[Fed69, 3.2.14]). The ‘good’ surfaces are those that are images of open subsets in Euclidean spaces

via Lipschitz maps.
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However, there is a problematic fact: in the Heisenberg group there are no Lipschitz embedding

of an open set U ⊂ R2 into the group. Indeed, differentiability theorems implies that the Heisenberg

group is 2-purely unrectifiable, cf. [AK00, Theorem 7.2]. This means that each Lipschitz map

f : U ⊂ R2 → G is such that H2(f(U)) = 0. Roughly speaking, since the 3D Heisenberg group

has Hausdorff dimension equal to 4, then the metric dimension of a hyper-surface is espected to

be 4 − 1 = 3. But the image by a Lipschitz map of a 2-dimensional Euclidean set has Hausdorff

dimension no greater than 2.

There is a second notion (cf. [FSS03, FSS01]) of good surfaces which is only valid for hyper-

surfaces: being (locally) the zero set of a ‘intrinsically’ C1 real-valued function with non-vanishing

gradient:

Definition 9.4.11 (G-regular functions and hyper-surfaces). Let G be a Carnot group with V1 as

horizontal layer. Let U be an open subset of G and f : U → R. We say that f belongs to C1
G(U)

if f and Xf are continuous functions in U , for all X ∈ V1. We say that S ⊂ G is a G-regular

hyper-surface if for any p ∈ S there is an neighborhood U of p in G and there is f ∈ C1
G(U) with

(Xf)(q) 6= 0, for all q ∈ U and all X ∈ V1 \ {0}, such that

S ∩ U = f−1(0).

Notice that if f is in C1 then it is clearly in C1
G. However, the hyper-surface f−1(0) is G-regular

only if ∇f is never orthogonal to V1.

Definition 9.4.12 (G-rectifiable hyper-surface). Let G be a Carnot group of Hausdorff dimension

Q. A set Σ ⊂ G is said ((Q − 1)-dimensional) G-rectifiable if there exist a countable collection of

G-regular hyper-surfaces Sj such that

HQ−1
cc (Σ \ ∪jSj) = 0.

The following theorem is due to De Giorgi in the Euclidean setting and to Franchi, Serapioni,

and Serra Cassano in Carnot groups of step 2, cf. [DG54, DG55, FSS03, FSS01].

Theorem 9.4.13 (Structure of finite perimeter sets). Let G be either the Euclidean space or a step-2

Carnot group. If E has locally finite perimeter, then its reduced boundary FE is G-rectifiable.

Question 9.4.14. Is the above theorem true in Carnot groups of arbitrarily step?

A partial answer to the above question has been obtained in [AKL09].
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9.4.4 Notions of surface measures

We reach the conclusion that the problem of studying hyper-surfaces can be rephrased as the study

of characteristic functions χE , focusing on their perimeter measures |DχE | and their reduce bound-

aries FE. The reason for doing so is that perimeters have properties of compactness and lower

semicontinuity, cf. Theorem 9.4.10.

For hyper-surfaces then we have that there are two natural notions of measures: HQ−1
cc restricted

to the hyper-surface or the perimeter of one of the side domains determined by the hyper-surface.

People expect that the two notions should be related. For doing so, one should first prove rectifiability

of reduced boundaries, cf. Question 9.4.14.

However, if S = f−1(0) is given as level set of a C1 function f , the two measures are equal.

Indeed, let E = f−1((−∞, 0)), so ∂E = S. Then

Per(E) =

= ...

= HQ−1
cc x∂E

9.5 Partial regularity results and open questions

9.5.1 Results on geodesics

The following theorem can be found in [Str86], however, in that paper the claim was wrongly stated

in more generality. In fact, the proof was valid only for step-2 distributions. The paper has been

corrected in [Str89].

Theorem 9.5.1 (Strichartz [Str89]). If (M,∆, 〈·, ·〉) is a sub-Riemannian manifold of step-2, then

each geodesic for the CC-distance is C∞.

The following theorem is proved more generally in [LM08], however the assumptions of step ≤ 4

and rank 2 are deeply used.

Theorem 9.5.2 (Leonardi-Monti). [LM08] If G is a Carnot group of step ≤ 4 and with 2-dimensional

horizontal layer V1, then each geodesic for the CC-distance is C∞.

The next result is proved in these notes.

208



9.5 Partial regularity results and open questions May 16, 2021

Proposition 9.5.3. Let G be a connected, simply connected, and nilpotent Lie group. Let ∆ ⊂ g be

a left-invariant sub-bundle such that

∆⊕ [g, g] = g.

E.g., G could be a Carnot group. Then, if X is a left-invariant vector field in ∆, then t 7→ etX is a

(smooth) geodesic with respect to any CC-distance of (G,∆, ‖·‖), for any left-invariant norm ‖·‖.

The following theorem should be found in [Bre14].

Theorem 9.5.4 (Breuillard 2007). Let G be the 3D Heisenberg group. Let ‖·‖1 be the `1 norm on

V1. Then the geodesics with respect to the CC-distance of (G,V1, ‖·‖1) are made of at most 4 pieces

of horizontal lines, i.e., each geodesic is the concatenation of at most 4 curves of the form t 7→ getX ,

with g ∈ G and X ∈ V1.

Conjecture 9.5.5 (Regularity conjecture for sub-Reimannian manifolds). If (M,∆, 〈·, ·〉) is a sub-

Riemannian manifold, then each geodesic for the CC-distance is C∞.

Conjecture 9.5.6 (Weak regularity conjecture for sub-Reimannian Carnot groups). If G is a Carnot

group, then each pair of points can be connected by a C1 geodesic.

Conjecture 9.5.7 (Regularity Conjecture for sub-Finsler Carnot groups). If (G, V1, ‖·‖1) is a

Carnot group where ‖·‖1 is the `1 norm, then there exists a constant K such that each pair of

points can be connected by a geodesic that is the concatenation of at most K horizontal lines.

There are several statements that are true but for possibly a measure-zero collection of distribu-

tions. Compare the following result with Theorem 9.5.12.

Theorem 9.5.8 (Chitour-Jean-Trélat [CJT06]). For generic sub-Riemannian structures (M,∆, 〈·, ·〉)

of rank greater than or equal to 3, i.e., dim ∆p ≥ 3, for all p ∈M , all geodesics for the CC-distance

are C∞.

9.5.2 Results on metric spheres

Proposition 9.5.9. If G is the 3D Heisenberg group, then each metric sphere ∂B(e, r), r > 0, is

an (Euclidean) Lipschitz manifolds, and there are two points pN and pS (the two poles) such that

∂B(e, r) \ {pN , pS} is a C∞ manifold.
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In the Carnot group setting, one can uses the dilations and the standard proof of the fact that

open sets that are star-shaped are topological balls, to prove that metric balls in Carnot groups are

topological balls. Moreover, the spheres can be written as graphs using ‘inhomogeneous’ spherical

coordinates with respect to the dilations. Since metric spheres in CC-metrics are closed, one get

the following result.

Proposition 9.5.10. If G is a Carnot group, then each metric sphere ∂B(e, r), r > 0, is topologically

a sphere.

The following theorem should be found in [Bre14].

Theorem 9.5.11 (Breuillard 2007). Let G be the 3D Heisenberg group. Let ‖·‖1 be the `1 norm

on V1. Then the metric spheres of the sub-Finsler geometry of (G,V1, ‖·‖1) are piece-wise analytical

sub-variety.

The work of Agracev and Gauthier [AG01] gives an piece-wise analytic answer in generic cases:

Theorem 9.5.12 (Agrachev-Gauthier). Generically, small balls in a sub-Riemannian manifold

(M,∆, 〈·, ·〉) are sub-analytic if the rank of the distribution is ≥ 3.

Conjecture 9.5.13. If (M,∆, ‖·‖) is any sub-Finsler manifold, then small metric spheres are piece-

wise smooth.

Proposition 9.5.14. Metric balls in Carnot groups are sets of finite perimeter and metric spheres

are G-rectifiable hyper-surfaces.

9.5.3 Results on the isoperimetric problem

In studying minimal problems for hyper-surfaces inside a Carnot group G of Hausdorff dimension

Q, it is more convenient to minimize the intrinsic perimeter of a class of sets E ⊂ G than the

(Q− 1)-dimensional Hausdorff measure of their boundaries.

Theorem 9.5.15 (Existence of isoperimetric sets). In any Carnot group, there exist solutions of

the isoperimetric problem, i.e., sets minimizing the intrinsic perimeter among all measurable sets

with prescribed volume measure.

The above theorem is due, in the Carnot group setting to Leonardi and Rigot in [LR03], and it

has been then generalized by Danielli, Garofalo, and Nhieu.
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Proposition 9.5.16. Metric spheres ∂B(e, r), r > 0, in the Heisenberg group are not solutions of

the isoperimetric problem.

In [Pan82, Pan83b], Pierre Pansu draw attention on a class of sets which are called today Pansu

spheres. Denote by Sλ the compact embedded surface of revolution, which is homeomorphic to a

sphere, obtained considering a geodesic between two points in the center of the group at distance

π/λ and rotating such a curve around the center. Any left traslation of an Sλ is called a Pansu

sphere.

Ritoré and Rosales arrived at a characterization of complete, oriented, connected C2 immersed

volume preserving area-stationary surfaces in the 3D Heisenberg group [RR08, Theorems 6.1, 6.8,

6.11], which led to a proof of the Pansu conjecture (cf. [Pan83b, page 172]) for the isoperimetric

profile of the Heisenberg group in the C2-smooth category [RR08, Theorem 7.2].

Theorem 9.5.17 (Ritoré and Rosales [RR08]). In the 3D Heisenberg group, C2 isoperimetric sets

are Pansu spheres.

Theorem 9.5.18 (Monti-Rickly [MR09]). (Euclidean) convex isoperimetric sets are Pansu spheres.

9.5.4 Results on minimal surfaces

Let S be a hyper-surface inside a Carnot group G of Hausdorff dimension Q. The first two natural

surface measures on S are the (Q− 1)-Hausdorff measure HQ−1
cc xS or the perimeter measure of one

of the side regions determined by S, i.e., Per(E) with ∂E = S, where the perimeter has been defined

in (9.4.8). The perimeter measure Per(E) has a better behavior and, at least when ∂E is a C2

hyper-surface, it coincides with HQ−1
cc x∂E

Let us clearify now the terminology of ‘minimal surface’.

Definition 9.5.19. If Σ ⊂ G is such that for all Σ′ such that there exists R > 0 such that

[...] then we say that Σ is globally area-minimizing

Definition 9.5.20 (...). then we say that Σ is (locally) area-minimizing

Definition 9.5.21 (...).

−∇G ·
∇GF

|∇GF |
≡ 0, where ∇Gf = (X1f, . . . ,Xmf), (9.5.22)

then we say that Σ has zero mean curvature or that it is a solution of the minimal surface equation.
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Definition 9.5.23 (...). then we say that Σ is area-stationary.

With the term ‘minimal surface’ authors can reefer to any of the 4 above definitions.

Theorem 9.5.24 (Existence of area-minimizing sets [GN96]). In sub-Riemannian manifolds, area-

minimizing sets exist.

Explicitly, let Ω be a bounded open set in a Carnot group G. Let L be a locally finite perimeter

set. Then the above theorem guarantees the existence of a locally finite perimeter set E such that

i) (E∆L) \ Ω = ∅, and

ii) (F∆L) \ Ω = ∅ =⇒ Per(E ∩ Ω) ≤ Per(F ∩ Ω).

In other words, the (reduced) boundary of E is the area minimizing (generalized) hyper-surface

inside Ω with boundary data L outside Ω.

Cheng, Hwang and Yang [CHY07] have studied the weak solutions of the minimal surface equa-

tion for intrinsic graphs in the Heisenberg group and have proven existence and uniqueness results.

Fact: The minimal surface equation is a sub-elliptic PDE: a priori, neither existence, not unique-

ness, nor regularity can be deduced.

Theorem 9.5.25 (Non-uniqueness of minimal surfaces [Pau04]). There are loops in the Heisenberg

group that admit more than one filling by zero-mean curvature disks.

N.B. This happens in the Euclidean case too.

The main difference between Euclidean and sub-Riemannian geometry is the existence of low-

regular minimal surfaces.

Theorem 9.5.26 (Existence of low-regular area minimizing surfaces [Rit09, CHY07, Pau04]). There

are area-minimizing surfaces in the 3D Heisenberg group that are not C2.

This is due to the fact that not all area-minimizing surfaces have zero-mean curvature. On

the other hand, there are examples of zero-mean curvature surfaces that are not area-minimizing,

cf. [DGN08]. Does this happen in Euclidean geometry?

Moreover, the condition of having zero mean curvature is not enough to guarantee that a given

surface of class C2 is area-stationary [RR08].
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Theorem 9.5.27 (Regularity of zero mean curvature surfaces [Pau06, CHY09, CCM08]). Let S be

a surface in the Heisenberg group that is either C1 or a Lipschitz intrinsic graphs. If S have zero

mean curvature (in an extended sense), then it is smooth.

Theorem 9.5.28 (Bernstein problem). In the Euclidean 3D space, any entire minimizing graph

{(x, y, f(x, y) : x, y ∈ R} is a plane.

One would expect that such a fact would be true for any n-dimensional graph in Rn+1, but

Bombieri, De Giorgi and Giusti established the surprising result that the Bernstein property fails if

n ≤ 8.

Theorem 9.5.29 (Counterexample in R9, [BDGG69]). If n ≤ 8 there exist complete minimal

graphs in Rn+1 that are not hyper-planes: For m ≥ 4, a Simons cone, i.e., the set E ⊂ R4 defined

by x1
2 + x2

2 + · · ·+ xm
2 = x2

m+1 + x2
m+2 + · · ·+ x2m

2 is a minimal surface.

Theorem 9.5.30 (Counterexample in Heisenberg-Garofalo and Pauls). Let G ∼ R3 be the Heisen-

berg group. The real analytic surface

S = {(x, y, t) ∈ G|y = −x tan(tanh(t))},

is an entire graph with zero mean curvature.

9.5.5 More results on regularity

The work of Agracev and Gauthier [AG01] gives an analytic answer in generic cases:

Theorem 9.5.31 (Agrachev-Gauthier). Generically, the germ at a point q0 of the function q 7→

ρ(q)
def→= dist(q, q0) is subanalytic if the dimension n of the manifold and the dimension k of the

distribution satisfy n ≤ (k − 1)k + 1.

Theorem 9.5.32 (Agrachev-Gauthier). Generically (and, in fact, on the complement of a set of

distributions of infinite codimension), small balls {q : ρ(q) ≤ r} are subanalytic if k ≥ 3.

Theorem 9.5.33 (Agrachev-Gauthier). Generically, the germ of ρ at q0 is not subanalytic if n ≥

(k − 1)
(
k2

3 + 5k
6 + 1

)
.

(Monti, 2000, 2003), (Leonardi-Masnou, 2005): There is no direct counterpart of the Brunn-

Minkowski inequality in Euclidean space
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(Ritor´ -Rosales, 2005), (Danielli-Garofalo-Nhieu, 2006): The sets bounded by Sλ are isoperi-

metric regions in restricted classes of sets (C2 rotationally symmetric and C1 unions of two graphs

over a ball in the xy-plane t = 0 divided by t = 0 into two regions of equal volumes)

Bonk-Capogna: flow by mean curvature of a C2 convex surface which is the union of two radial

graphs, converges to Sλ

9.6 Translations and flows

Given X ∈ Γ(TM) we can consider the associated flow, i.e., the solution ΦX : M × R → M of the

following ODE 
d

dt
ΦX(p, t) = XΦX(p,t)

ΦX(p, 0) = p.

(9.6.1)

Notice that the smoothness of X ensures uniqueness, and therefore the semigroup property

ΦX(x, t+ s) = ΦX(ΦX(x, t), s) ∀t, s ∈ R, ∀x ∈M (9.6.2)

but not global existence; it is guaranteed, however, for left-invariant vector fields in Lie groups. We

obviously have

d

dt
(u ◦ ΦX)(p, t) = (Xu)(ΦX(p, t)) ∀u ∈ C1(M). (9.6.3)

An obvious consequence of this identity is that, for a C1 function u, Xu = 0 implies that u is

constant along the flow, i.e., u ◦ ΦX(·, t) = u for all t ∈ R. A similar statement holds even for

distributional derivatives along vector fields: for simplicity let us state and prove this result for

divergence-free vector fields only.

Theorem 9.6.4. Let u ∈ L1
loc(M) be satisfying Xu = 0 in the sense of distributions. Then, for all

t ∈ R, u = u ◦ ΦX(·, t) volM -a.e. in M .

Proof. Let g ∈ C1
c (M); we need to show that the map t 7→

∫
M
gu ◦ΦX(·, t) d volM is independent of

t. Indeed, the semigroup property (9.6.2), and the fact that X is divergence-free yield∫
M

gu ◦ ΦX(·, t+ s) d volM −
∫
M

gu ◦ ΦX(·, t) d volM

=

∫
M

ug ◦ ΦX(·,−t− s) d volM −
∫
M

ug ◦ ΦX(·,−t) d volM

=

∫
M

ug ◦ ΦX(ΦX(·,−s),−t) d volM −
∫
M

ug ◦ ΦX(·,−t) d volM

= −s
∫
M

uX(g ◦ ΦX(·,−t)) d volM +o(s) = o(s).

214



9.6 Translations and flows May 16, 2021

Remark 9.6.5. We notice also that the flow is volM -measure preserving (i.e. volM (ΦX(·, t)−1(A)) =

volM (A) for all Borel sets A ⊆M and t ∈ R) if and only if divX is equal to 0. Indeed, if f ∈ C1
c (M),

the measure preserving property gives that
∫
M
f(ΦX(x, t)) d volM (x) is independent of t. A time

differentiation and (9.6.3) then give

0 =

∫
M

d

dt
f(ΦX(x, t)) d volM (x) =

∫
M

Xf(ΦX(x, t)) d volM (x) =

∫
M

Xf(y) d volM (y).

Therefore
∫
M
f divX d volM = 0 for all f ∈ C1

c (M), and X is divergence-free. The proof of the

converse implication is similar, and analogous to the one of Theorem 9.6.4.

Let G be a Lie group with Lie algebra g. We shall also consider as volume form volG a right-

invariant Haar measure.

Let X ∈ g and let us denote, as usual in the theory, by exp(tX) the flow of X at time t starting

from e (that is, exp(tX) := ΦX(e, t) = ΦtX(e, 1)); then, the curve g exp(tX) is the flow starting at

g: indeed, since X is left-invariant, setting for simplicity γ(t) := exp(tX) and γg(t) := gγ(t), we

have

d

dt
γg(t) =

d

dt
(Lg(γ(t))) = (dLg)γ(t)

d

dt
γ(t) = (dLg)γ(t)X = Xγg(t).

This implies that ΦX(·, t) = Rexp(tX) and so the flow preserves the right Haar measure, and the

left translation preserves the flow lines. By Remark 9.6.5 it follows that all X ∈ g are divergence-free,

and Theorem 9.6.4 gives

f ◦Rexp(tX) = f ∀t ∈ R ⇐⇒ Xf = 0 (9.6.6)

whenever f ∈ L1
loc(G).

9.6.1 X-derivative of nice functions and domains

If u is a C1 function in Rn, then Xu can be calculated as the scalar product between X and the

gradient of u:

Xu = 〈X,∇u〉. (9.6.7)

Assume that E ⊂ Rn is locally the sub-level set of the C1 function f and that X ∈ Γ(TRn) is

divergence-free. Then, for any v ∈ C∞c (Rn) we can apply the Gauss–Green formula to the vector

field vX, whose divergence is Xv, to obtain∫
E

Xv dx =

∫
∂E

〈vX, νeuE 〉 dH n−1,
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where νeuE is the unit (Euclidean) outer normal to E. This proves that

XχE = −〈X, νeuE 〉H n−1x∂E .

However, we have an explicit formula for the unit (Euclidean) outer normal to E, it is νeuE (x) =

∇f(x)/|∇f(x)|, so, by (9.6.7),

〈X, νeuE 〉 = 〈X, ∇f
|∇f |

〉

=
〈X,∇f〉
|∇f |

=
Xf

|∇f |
.

Thus

XχE = − Xf

|∇f |
H n−1x∂E . (9.6.8)

9.7 Exercises

Exercise 9.7.1. Let V and W ⊂ g be two sub-vector spaces with X1, . . . , Xl and Y1, . . . , Ym basis

of V and W respectively. Then show that the vectors [Xi, Yj ], for i = 1, . . . , l, j = 1, . . . ,m span

[V,W ], thus one can extract a basis among such brackets.

Exercise 9.7.2. Let g = V1⊕· · ·⊕Vs be a stratification of a Lie algebra. Assume thatXmj+1, . . . , Xmj

is a basis of Vj , then show that the order-reversed basis Xn, . . . , X1 is a (strong) Malcev basis.

Exercise 9.7.3. Considering the horizontal path constructed in the proof of Property 3 in Propo-

sition 6.3.6, give a lower bound on dCC(e, E(t)).

Exercise 9.7.4. Let G be a simply connected nilpotent Lie group and let V1 be a sub-space such

that

g = V1 ⊕ [g, g].

Denote by g(i) the i-th term in the lower (or descending) central series of g, Show first that

g(2) = [V1, V1] + g(3).

Then, by induction, show

g(i) = [V1, [V1, [. . . , [V1, V1] . . .]] + g(i+1),

where in the above bracket there are i many V1’s. Finally deduce that such a V1 generates the whole

Lie algebra.
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Exercise 9.7.5. Fill in the details in the following argument to prove Theorem 9.1.5. Without loss

of generality we may assume that ft → f everywhere on X. For k ∈ N and t ∈ (0,∞), let

Et(k) := ∪s∈(t,∞){x : |fs(x)− f(x)| > k−1}.

Then, for fixed k, Et(k) decreases as t decreases, and ∩t∈(0,∞)Et(k) = 0, so since µ(X) < ∞

we conclude that µ(Et(k)) → 0 as t → 0. Given η > 0 and k ∈ N, choose tk so large that

µ(Etk(k)) < η2−k and let E = ∩k∈NEtk(k). Then µ(E) < η, and we have |ft(x) − f(x)| < k−1 for

t ∈ (0, tk) and x /∈ E. Thus (ft)t converges to f uniformly on X \ E.

Exercise 9.7.6 (Lebesgue Differentiation Theorem for doubling metric spaces). If (X, d, µ) is a

doubling measure metric space and f ∈ L1(X,µ), then for µ-almost every x ∈ X we have

1

µ(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dµ(y)→ 0, as r → 0.

In particular, if K ⊆ X is measurable, then µ-almost every point of K has density 1.
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Chapter 10

Large-scale geometry of nilpotent
groups

10.1 Elements of Geometric Group Theory

A discrete group Γ is a topological group that as topological space is discrete.

A set S inside a group Γ is said to be generating if there is no proper subgroup of Γ containing

S. In other words, every element in the group Γ can be written as a finite product of elements in S.

If one interprets the elements in S as words of an alphabet, then one can use the expression: ‘each

element in Γ is represented by a word with letters in S’.

A group is said to be finitely generated if it admits a finite generating set.

After having fixed such a set S, one can construct a geometric graph related to the group Γ.

Definition 10.1.1 (Cayley graph). Let Γ be a discrete group and let S be a generating set. The

(colored and directed) Cayley graph G = G(Γ, S) is the colored directed graph constructed as follows:

The vertex set Vertex(G) of G is identified with Γ. Each generator s of S determines a color cs and

the directed edges of color cs consists of the pairs of the form (g, gs), with g ∈ Γ.

Geometric Group Theory mostly studies finitely generated groups considering the large scale

geometry (or coarse geometry) of the Cayley graph. In such case, the set S is usually assumed to

be finite, symmetric, i.e., S = S−1, and not containing the identity element of the group. In this

case, the (uncolored) Cayley graph is an ordinary graph: its edges are not oriented and it does not

contain loops.

Definition 10.1.2 (Word metric). Let Γ be a discrete group and let S be a generating set. For

any two elements g and h ∈ Γ, their word distance with respect to S, is denoted by dS(g, h) and is

219



10- Large-scale geometry of nilpotent groups May 16, 2021

defined as the minimum number of elements (=letters) in S whose product (=word) equals g−1h.

Analogously, the word metric dS on the whole Cayley graph G(Γ, S) is the length metric that gives

length 1 to each edge of G(Γ, S). We have then an isometry between (Γ, dS) and the vertex set of

the graph (Vertex (G(Γ, S)) , dS)

The group Γ acts naturally on its Cayley graph G(Γ, S) sending the vertex h to the vertex gh,

for each fixed g ∈ Γ. One can easily check that such left translations preserve the graph structure

of G.

Proposition 10.1.3 (Isometry of the left action). The left translation of a group Γ are isometries

with respect to the word metric. Analogously, the left translations induce an isometric action of the

group Γ on the metric space (G(Γ, S), dS), and such action is transitive on the vertex set.

The word metric on a group Γ is not unique, because different symmetric generating sets give

different word metrics. However, finitely generated word metrics are unique up to biLipschitz equiv-

alence.

Proposition 10.1.4 (Bilipschitz invariants of a group). If S and S′ are two symmetric, finite

generating sets for Γ with corresponding word metrics dS and dS′ , then there is a constant K such

that the identity map from (Γ, dS) to (Γ, dS′) is a K-biLipschitz map. In fact, K is just the maximum

of the dS word norms of elements of S′ and the dS′ word norms of elements of S.

Definition 10.1.5 (Quasi-isometry). Suppose (M1, d1) and (M2, d2) are metric spaces, and f :

M1 → M2 is a function (not necessarily continuous). Then f is called a (A,L)- quasi-isometric

embedding, with L ≥ 1 and A ≥ 0, if

1

L
d2(f(x), f(y))−A ≤ d1(x, y) ≤ L d2(f(x), f(y)) +A for all x, y ∈M1.

Moreover, a quasi-isometric embedding is called a quasi-isometry if there exists a constant C ≥ 0

such that to every u ∈M2 there exists x ∈M1 with

d2(u, f(x)) ≤ C.

The spaces M2 and M2 are called quasi-isometric if there exists a quasi-isometry between them.

Theorem 10.1.6 (Fundamental observation of Geometric Group Theory). Let X be a metric space

which is geodesic and proper, let Γ be a group acting on X by isometries. Assume that the action is

proper and the quotient space X/Γ is compact.
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Then the group Γ is finitely generated and quasi-isometric to X.

More precisely, for any x0 ∈ X, the orbit mapping

Γ→ X

γ 7→ γ(x0)

is a quasi-isometry.

Such fact was known in the 50’s. A proof can be essentially re-contructed from [Lemma 2]Milnor.

A detailed proof is in [Theorem 23]delaharpe.

From the above fundamental observation we deduce that Geometric Group Theory links the

study of fundamental groups of compact manifolds and their Riemannian universal covers. Namely,

let M be a compact differentiable manifold. Let π1(M) the fundamental group of M . By the above

observation, such discrete group is finitely generated. We endow the group with a word metric. Fix

now a Riemannian metric g on M . Then there is a unique Riemannian metric g̃ on the universal

cover M̃ of M such that the universal projection

(M̃, g̃)� (M, g)

is a local isometry. We refer to such g̃ as the lifted Riemannian metric. The crucial result is that

the coarse geometry of M̃ is the same that the coarse geometry of π1(M). A prove of the following

proposition can be found in the lecture notes of M. Kapovich on GGT, use his Lemma 1.31.

Proposition 10.1.7. Assume M is a Riemannian manifold that is compact.

(i) The fundamental group π1(M) is finitely generated.

(ii) The universal cover M̃ , endowed with the lifted Riemannian distance, is quasi-isometric to

π1(M), endowed with any word metric.

Proposition 10.1.8. Assume G is a finitely generated group and H < G a subgroup.

(i) If H has finite index in G, then G and H are quasi-isometric.

(ii) If H is a finite group and it is normal in G, then G and G/H are quasi-isometric.

Definition 10.1.9. We say that a group G is virtually nilpotent if there exists a sub-group H < G

of finite index in G that is nilpotent.
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10.2 The growth rate of balls

The bilipschitz equivalence of word metrics implies in turn that the growth rate of a finitely generated

group is a well-defined isomorphism invariant of the group Γ, independent of the choice of a finite

generating set S. This implies in turn that various properties of growth, such as polynomial growth,

the degree of polynomial growth, and exponential growth, are isomorphism invariants of groups.

Given a finitely generated group Γ, we fix a finite symmetric generating set S. For each R > 0,

let BS(e,R) be the metric ball in Γ with respect the distance dS with center the origin e and radius

R. We then denote by #(BS(e,R)) the cardinality of the finite set BS(e,R).

Definition 10.2.1. The growth rate of a finitely generated group Γ is the growth rate of the function

R 7→ #(BS(e,R)).

10.2.1 Invariance of the growth rate

Proposition 10.2.2. If two metric spaces are quasi isometric, then they have the same growth rate.

Corollary 10.2.3. Assume M is a Riemannian manifold that is compact. Then the grow rate of

the group π1(M) is the same as the grow rate of the volume function on the universal cover of M .

Namely, consider the Riemmanian structure on M̃ lifted from the structure on M . Let B̃(p, r)

be the metric ball in M̃ . Let volM̃ be the Riemmanian volume form on M̃ . Then the above corollary

states that there exist constants k, c such that, for all R > 1, one has the bounds

k−1 #(BS(e, c−1R)) ≤ volM̃ (B̃(p,R)) ≤ k #(BS(e, cR)).

Now, if a group Γ is virtually nilpotent, then by definition it has a nilpotent sub-group Γ′ of finite

index. Then Γ and Γ′ are quasi-isometric and thus have the same growth rate. We will describe the

fact that the groups that are virtually nilpotent are exactly those that have a polynomial growth

rate.

10.2.2 Polynomial growth and virtual nilpotency

Definition 10.2.4 (Polynomial growth). A discrete group Γ is said to have polynomial growth if,

for some (and thus for any) generating set S, there exist C > 0 and k > 0 such that for any integer

R ≥ 1

#(BS(e,R)) ≤ C ·Rk.
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Another choice for S would only change the constant C, but not the polynomial nature of the

bound, because of Proposition 10.2.2. Actually one only requires that the growth of the balls are

bounded by a polynomial function. However, a result of Pansu states that, in fact, the above

equation can be improved saying that there exists c(S) > 0 and an integer d(Γ) ≥ 0 depending on

Γ only such that the following holds:

#(BS(e,R)) = c(Γ)Rd(Γ) + o(Rd(Γ)), as R→∞.

The condition of polynomial growth can be further weakened, cf. [vdDW84, Kle10].

A result of J. Wolf is that a group has polynomial growth if it is nilpotent. A deep result of

Gromov is the equivalence of polynomial growth and virtual nilpotency.

Theorem 10.2.5 (Gromov’s polynomial growth). A finitely generated group has polynomial growth

rate if and only if it is virtually nilpotent.

The original proof in [Gro81] is based on Gleason-Montgomery-Zippin-Zippin-Yamabe structure

theory of locally compact groups. A new short proof has been given by Kleiner in [Kle10].

A non trivial consequence of Gromov’s Theorem is that if a group has polynomial growth then

the exponent of the growth rate is an integer. The plan of this chapter is to give an exposition

of how sub-Riemannian geometry plays a role in the polynomial growth theorem and observe that

such integer exponent is in fact the Hausdorff dimension of a Carnot group associated to the finitely

generated group.

10.3 Asymptotic cone

Theorem 10.3.1 (Wolf-Bass-Gromov-Pansu). The degree of growth of a finitely generated group Γ

of polynomial growth is an integer and equals the Hausdorff dimension of the Carnot group that is

the asymptotic cone of Γ.

The asymptotic cone, also known as the tangent cone at infinity, is similar to the tangent cone

(at a point), except that instead of performing a blow-up procedure, we ‘blow down’.

Definition 10.3.2 (Asymptotic cone). An asymptotic cone of a metric space (X, d) is a metric

space (Z, ρ) with the property that there is x̄ ∈ Z and, for each j ∈ N, there are xj ∈ X and εj > 0,

with εj → 0 as j →∞, such that for each R > 0 there are δj ≥ 0, with δj → 0 as j →∞, with the
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property that

GH lim
j→∞

B(X,εjd)(xj , R+ δj) = B(Z,ρ)(x̄, R),

i.e., the sequence of balls in X with respect to the ‘compressed’ metric εjd with centers xj and radii

R+ δj converges, in the Gromov Hausdorff sense, to the ball in (Z, ρ) with center x̄ and radius R.

Proposition 10.3.3. Two quasi-isometric spaces have the same class of asymptotic cones.

Theorem 10.3.4 (Pansu [Pan83a]). The asymptotic cone of a nilpotent Lie group G, endowed with

a left-invariant geodesic distance, is a Carnot group G∞ endowed with a left-invariant sub-Finsler

structure. The Hausdorff dimension of G∞ is the exponent of the growth rate of Γ.

10.4 The Malcev closure

We shall explain now the connection between polynomial growth and sub-Riemannian geometry.

We shall see how a nilpotent finitely generated discrete group is coarsely equivalent to a sub-Finsler

Lie group. First we need to understand how such a discrete group is coarsely seen as a Lie group.

Malcev Theorem 10.4.4 is the core of the argument.

Briefly, a lattice is a discrete subgroup with finite covolume. Here is the formal definition:

Definition 10.4.1 (Lattice). Let G be a locally compact topological group. A subgroup Γ < G is

a lattice if it is discrete (as topological subspace) and has the property that on the quotient space

G/Γ there is a finite G-invariant1 measure.

Proposition 10.4.2. Let G be a Lie group endowed with a left-invariant Riemannian metric. Let

Γ be a lattice in G. Then the quotient G/Γ is in fact compact and thus Γ is quasi-isometric to G.

Theorem 10.4.3 ([Rag72, Theorem 2.18]). A group Γ is isomorphic to a lattice in a simply con-

nected nilpotent Lie group if and only if

1. Γ is finitely generated,

2. Γ is nilpotent, and

3. Γ has no torsion.

1Recall that the quotient on G/Γ is on the right, so G acts naturally on the left.
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Corollary 10.4.4 (Malcev Theorem [Mal51]). If Γ is a finitely generated group which is nilpotent

and has no torsion then it is isomorphic to a discrete cocompact subgroup of a simply connected

nilpotent Lie group G.

Some useful facts:

1. Every subgroup of a nilpotent group is nilpotent. (easy!)

2. Every subgroup of a finitely generated nilpotent group is finitely generated, cf. [Theorem

9.16]Macdonalds-theory of groups or [Rag72, Theorem 2.7].

3. Every nilpotent group generated by finitely many elements of finite order is finite, cf. [Theorem

9.17]Macdonalds.

These facts implies the following:

Lemma 10.4.5 (on torsion of finitely generated nilpotent groups). The elements of finite order in

a nilpotent group G form a normal sub-group Tor(G), called the torsion sub-group of G. If G is

finitely generated, Tor(G) is finite. The quotient G/Tor(G) is torsion-free, that is, its only element

of finite order is the identity.

Proposition 10.4.6. Let Γ be a finitely generated discrete group Γ of polynomial growth, then Γ is

quasi-isometric to a connected, simply connected, and nilpotent Lie group G.

If a group Γ has polynomial growth, then, by Gromov Theorem 10.2.5, there is a subgroup Γ1 < Γ

that is nilpotent and [Γ,Γ1] < ∞. Let Tor(Γ1) be the torsion of Γ1, which is a finite and normal

subgroup, by Lemma 10.4.5. Define Γ2 := Γ1/Tor(Γ1). Then Γ2 is nilpotent and has no torsion,

thus, by Malcev Theorem 10.4.4, there is a connected, simply connected, and nilpotent Lie group G

and a discrete cocompact subgroup Γ′ < G, such that Γ2 is isomorphic to Γ′.

The groups Γ, Γ1, Γ2, Γ′, and G are quasi-isometric.

10.5 The limit CC metric

Let Γ′ be a discrete cocompact sub-group in a connected, simply connected, and nilpotent Lie group

G. Let G∞ be the unique connected, simply connected Lie group whose Lie algebra is the graded

algebra g∞ of g.

Let ‖·‖ := dS(e, ·) be a ‘norm’ on Γ′ induced by a finite generating set S. We shall describe the

CC metric induced on the Carnot group G∞.
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Consider the two sets:

A := Γ′/[Γ′,Γ′] and B := G/[G,G].

Both A and B are Abelian groups. Moreover, B is a (finite dimensional) vector space.

A is a subgroup of B. (?!?)

‖·‖ induces a norm on A. (?!?)

One defines

‖a‖∞ := lim
k→∞

1

k
‖ka‖ .

Such norm extends to B. (?!?)

Recall that, as in any Carnot group, V1 ' g/[g, g]. Thus we consider the projection

π : G∞ � G∞/[G∞, G∞].

Therefore we can transport the norm on V1, using the isomorphism between V1 and B := G/[G,G].

(?!?)
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Appendix A

Dido’s problem

For a better understanding of how in Section 1.4.1 we obtained formulas for the geodesics in the

subRiemannian Heisenberg group, we discuss in this section the solutions of the isoperimetric prob-

lem. We then solve Dido’s problem. The proof will be done under the nontrivial assumption that

the minimizers of the problems are curves that are smooth enough. For the general case, we refer

the reader to [].

A.1 A proof of the isoperimetric problem

We shall use the formalism of Calculus of Variations for proving that any of the shortest closed

curves in the plane that encloses a fix amount of area is a circle. We will not need to show any

preliminary on the curve such as the fact that it is locally a graph or that the enclosed domain is

convex. We prove that the only critical points of the variational integral functional

L(σ) := Length(σ),

subjected to the bond

A(σ) := Area enclosed by σ = A0, for some A0,

are circles. However, we shall assume that such a σ is a C1 curve with Lipschitz derivative.

A.1.1 The variation of length

A necessary condition for σ being a critical point, is the vanishing of the first variation of L.

Let σ : [0, l]→ R2 be any Lipschitz curve with coordinates (σ1, σ2). Its length is given by

L(σ) =

∫ l

0

√
σ̇2

1(t) + σ̇2
2(t) d t.
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The fact that σ is a critical point with respect to a variation h is expressed in Calculus of Variations

by the equation

δL(σ, h) = 0.

More explicitly, h is a curve h : [0, l]→ R2 with h(0) = h(l) = 0 and

δL(σ, h) :=
d

dε
L(σ + εh)

∣∣∣∣
ε=0

= 0.

Let us calculate such variation δL in the case when σ is parametrized by arc length. So |σ̇| = 1 and

l = Length(σ). The variation in this case is

δL(σ, h) :=
d

dε
L(σ + εh)

∣∣∣∣
ε=0

=
d

dε

∫ l

0

√(
σ̇1(t) + εḣ1(t)

)2

+
(
σ̇2(t) + εḣ2(t)

)2

d t

∣∣∣∣∣
ε=0

=

∫ l

0

d

dε

√
σ̇1(t)2 + 2εσ̇1(t)ḣ1(t) + ε2ḣ1(t)2 + σ̇2(t)2 + 2εσ̇2(t)ḣ2(t) + ε2ḣ2(t)2

∣∣∣∣
ε=0

d t

=

∫ l

0

2σ̇1(t)ḣ1(t) + 2εḣ1(t)2 + 2σ̇2(t)ḣ2(t) + 2εḣ2(t)2

2
√
σ̇1(t)2 + 2εσ̇1(t)ḣ1(t) + ε2ḣ1(t)2 + σ̇2(t)2 + 2εσ̇2(t)ḣ2(t) + ε2ḣ2(t)2

∣∣∣∣∣∣
ε=0

d t

=

∫ l

0

σ̇1(t)ḣ1(t) + σ̇2(t)ḣ2(t)√
σ̇1(t)2 + σ̇2(t)2

d t

=

∫ l

0

〈σ̇(t), ḣ(t)〉
|σ̇(t)|

d t

=

∫ l

0

〈σ̇(t), ḣ(t)〉d t.

We conclude the following:

Lemma A.1.1. A planar curve σ, parametrized by unit speed, is a critical point of the length

functional with respect to a variation h if and only if∫ l

0

〈σ̇, ḣ〉d t = 0.

A.1.2 The area functional and its variation

The area enclosed by a Lipschitz curve σ can be computed (because of Stokes’ Theorem) by the

formula

A(σ) =
1

2

∫ l

0

σ1(t)σ̇2(t)− σ2(t)σ̇1(t) d t.
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For convenience of notation let us define the ‘cross product’ on R2 as the real number

v × w := v1w2 − w1v2 =

〈0
0
1

 ,

v1

v2

0

×
w1

w2

0

〉 , for v = (v1, v2), w = (w1, w2) ∈ R2.

Obviously we have linearity in v and w and w × v = −v × w. Thus the area enclosed by σ is

A(σ) =
1

2

∫ l

0

σ × σ̇ d t.

Let h be a variation. The new area would be

A(σ + h) =
1

2

∫ l

0

(σ + h)× (σ̇ + ḣ) d t

=
1

2

∫ l

0

σ × σ̇ + σ × ḣ+ h× σ̇ + h× ḣd t

= A(σ) +
1

2
h× σ|l0 +

1

2

∫ l

0

−σ̇ × h+ h× σ̇ + h× ḣd t

= A(σ) +

∫ l

0

h× σ̇ d t+
1

2

∫ l

0

h× ḣd t.

We conclude the following:

Lemma A.1.2. A variation h of a curve σ is area-preserving if and only if∫ l

0

h× σ̇ +
h× ḣ

2
d t = 0.

Definition A.1.3. We say that a variation h of a curve σ tangentially preserves the area if

A(σ + εh) = A(σ) + o(ε).

In other words, h tangentially preserves the area if

d

dε
A(σ + εh)

∣∣∣∣
ε=0

= 0.

Thus, by the above calculation, such h satisfies

0 =
d

dε

∫ l

0

εh× σ̇ +
εh× εḣ

2
d t

∣∣∣∣∣
ε=0

=

∫ l

0

h× σ̇ d t.

Proposition A.1.4. Let σ : [0, l] → R2 be a curve parametrized by arc length. If σ is a critical

curve for the length functional under an area constrain, then σ has zero first variation of length with

respect to all tangentially area-preserving variations. In particular,∫ l

0

〈σ̇|ḣ〉d t = 0,

for all h : [0, l]→ R2 with h(0) = h(l) = 0 and∫ l

0

h× σ̇ d t = 0.
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Proof. Set aε := A(σ + εh), hence
d

dε
aε

∣∣∣∣
ε=0

= 0. Consider the curves

σε :=

√
a0

aε
(σ + εh).

Then σ0 = σ and the area enclosed by σε is independent on ε. Since σ is critical for the length

functional under the area constraint, we have that
d

dε
L(σε)

∣∣∣∣
ε=0

= 0. Therefore,

0 =
d

dε
L(σε)

∣∣∣∣
ε=0

=
d

dε

√
a0

aε
L(σ + εh)

∣∣∣∣
ε=0

=
d

dε

√
a0

aε

∣∣∣∣
ε=0

L(σ) +

√
a0

a0

d

dε
L(σ + εh)

∣∣∣∣
ε=0

= −1

2

√
a0a
−3/2
ε

d

dε
aε

∣∣∣∣
ε=0

L(σ) + 1 · δL(σ, h)

= 0 +

∫ l

0

〈σ̇, ḣ〉d t,

where we used the calculation to get to Lemma A.1.1.

A.1.3 The conclusion

Proposition A.1.5. If σ is a C1,1 closed curve in the plane that is one of the shortest among all

Lipschitz curves that enclose a fixed amount of area, then σ is a circle.

Proof. Assume, without loss of generality that σ has unit speed. Let φ : [0, l] → R be any C∞

function with φ(0) = φ(1) = 0 and
∫ l

0
φ(t) d t = 0. Take h(t) = φ(t)(σ̇2(t),−σ̇1(t)), which, since σ is

C1,1, is Lipschitz. Such h is an admissible variation since clearly h(0) = h(l) = 0 and also∫ l

0

h× σ̇ d t =

∫ l

0

φ(t) (σ̇2(t),−σ̇1(t))× (σ̇1(t), σ̇2(t)) d t

=

∫ l

0

φ(t)(σ̇2(t)2 + σ̇1(t)2) d t

=

∫ l

0

φ(t)|σ̇|2 d t

=

∫ l

0

φ(t) · 1 d t

=

∫ l

0

φ(t) d t = 0.

Then, since ḣ(t) = φ̇(t)(σ̇2(t),−σ̇1(t)) + φ(t)(σ̈2(t),−σ̈1(t)), the vanishing of the first variation of
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length becomes

0 =

∫ l

0

〈σ̇, ḣ〉d t

=

∫ l

0

〈
(σ̇1, σ̇2), φ̇(t)(σ̇2(t),−σ̇1(t)) + φ(t)(σ̈2(t),−σ̈1(t))

〉
d t

=

∫ l

0

φ̇(t) 〈(σ̇1, σ̇2), (σ̇2(t),−σ̇1(t))〉+ φ(t) 〈(σ̇1, σ̇2), (σ̈2(t),−σ̈1(t))〉d t

=

∫ l

0

φ̇(t)(σ̇1(t)σ̇2(t)− σ̇2(t)σ̇1(t)) + φ(t)(σ̇1(t)σ̈2(t)− σ̇2(t)σ̈1(t)) d t

=

∫ l

0

φ(t)(σ̇1(t)σ̈2(t)− σ̇2(t)σ̈1(t)) d t.

the conclusion is that the function κ(t) := σ̇1(t)σ̈2(t)− σ̇2(t)σ̈1(t), which is in fact the curvature of

the curve σ, is such that∫ l

0

φ(t)κ(t) d t = 0 for all φ ∈ C∞([0, l]) such that φ(0) = φ(1) and

∫ l

0

φ(t) d t = 0.

By the (second) Fundamental Lemma of Calculus of Variations (due to DuBois and Reymond) we

deduce that κ is constant. The only planar curves of constant curvature are circles (and lines).

The assumption that the curve is C1,1 can be dropped, but the proof of the result would not

be as brief. We refer to other texts for the more general result. For examples, a complete proof,

based on Poincare-Wirtinger inequality, can be found in [?, pp. 1183-1185]. The following general

statement of the isoperimetric solution is for curves that are absolutely continuous.

Theorem A.1.6 (Isoperimetric solution). If σ is a closed absolutely continuous curve in the plane

that is one of the shortest among all absolutely continuous curves that enclose a fixed amount of

area, then σ is a parametrization of a circle.

From the solution of the isoperimetric problem, Dido’s problem has an immediate solution.

Theorem A.1.7 (Dido’s solution). Given two points p and q on the plane and a number A ∈ R,

the shortest curve from p to q that, together with the segment from p to q encloses area A is an arc

of a circle.

Proof. Assume by contradiction that there is a shortest curve σ that is not as arc of a circle. Let

γ be the arc of circle enclosing area A. (Notice that such an arc is unique). Let γ̂ be the circle of

which γ is an arc. Let γ̃ be the complementary arc of γ, i.e., γ followed by γ̃ is γ̂. Observe that the

curve σ̂ obtained following γ̃ after σ is such that

A(σ̂) = A(γ̂) and L(σ̂) < L(γ̂).
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Hence we get a contradiction with Theorem A.1.6.
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Appendix B

Curves in sub-Finsler nilpotent
groups

B.0.1 A special sub-Finsler geometry on nilpotent groups

Let G be a simply connected nilpotent Lie group. Let V1 ⊆ TeG be a sub-vector space. Let ∆ be

the left-invariant distribution with ∆e = V1. Considering V1 as a sub-space of the Lie algebra g of

G, assume that the algebra generated by V1 is the whole of g. In other words, assume that ∆ is

bracket generating. Thus we have the flag of left-invariant bundles

∆ = ∆[1] ⊆ ∆[2] = ∆ + [∆,∆] ⊆ . . . ⊆ ∆[s] = TG.

There is a one-to-one correspondence between vectors in V1 and vector fields in the intersection

g ∩ Γ(∆) of the Lie algebra of G and the sections of ∆. We will confuse the two notions without

problems.

Fix a norm ‖·‖ on V1. It extends to a left-invariant norm on ∆. The triple (G,∆, ‖·‖) is a

sub-Finsler manifold.

In the sequel, whenever we speak of the FCC metric on the simply connected nilpotent Lie group

G, we mean one that is associated to a norm ‖·‖ on a sub-space V1 such that g = V1 ⊕ [g, g] where

g = Lie(G).

One can easily check that any such V1 generates the Lie algebra, cf. Exercise 9.7.4.

Assume that G is a simply connected nilpotent Lie group with a left-invariant distribution ∆

such that

g = ∆e ⊕ [g, g], (B.0.1)

as, for example, a Carnot group.
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Question B.0.2. If G is a simply connected nilpotent Lie group and V1 and W1 are sub-spaces such

that

g = V1 ⊕ [g, g] = W1 ⊕ [g, g],

then, does exist a Lie algebra isomorphism φ : g → g such that φ(V1) = W1? The aswer should be

no, however, see Exercise 9.7.4.

Definition B.0.3 (The projection π1). Let proj : TeG → V1 = ∆e be the projection onto V1 with

kernel [g, g]. Define

π1 : G→ V1

p 7→ π1(p) := proj(exp−1(p)). (B.0.4)

Lemma B.0.5. The following properties hold:

(i) The map π1 : (G, ·)→ (V1,+) is a group homomorphism.

(ii) The differential of π1 is the identity when restricted to V1:

dπ1|V1 = idV1 .

Proof of (i). By Theorem 6.0.6, since G is a simply connected and nilpotent, for all p and q ∈ G,

exist X and Y ∈ g such that exp(X) = p and exp(Y ) = q. Then, by BCH formula and assumption

(B.0.1)

π1(p · q) = proj(exp−1(pq)) = proj
(
exp−1(exp(X) exp(Y ))

)
= proj

(
X + Y +

1

2
[X,Y ] + . . .

)
= proj(X + Y ).

On the other hand,

π1(p) + π1(q) = proj(exp−1(p)) + proj(exp−1(q)) = proj(exp−1(p) + exp−1(q)) = proj(X + Y ).

Proof of (ii). Since Theorem 4.2.1(iii), dπ1|V1
= d(proj|V1

) = d(id |V1
) = idV1

.

The “development” of a curve

The map π1 is useful since it gives a second link between the tangents of an horizontal curves

and vector at the identity. Let γ(t) be an absolute continuous curve with γ̇(t) horizontal, i.e.,
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γ̇(t) ∈ ∆γ(t) ⊆ Tγ(t)G for almost every t. The vector γ̇(t) can be identified with a vector in V1, so

as a tangent vector at the identity. We define γ′(t) ∈ V1 ⊆ TeG as

γ′(t) := (Lγ(t))
−1
∗ γ̇(t).

We then have the following formula

γ′(t) =
d

dt
(π1 ◦ γ) (t) (B.0.6)

Proof of Formula (B.0.6). Using Lemma B.0.5, and that π1(e) = 0, we get

d

dt
(π1 ◦ γ) (t) = lim

h→0

π1(γ(t+ h))− π1(γ(t))

h

= lim
h→0

π1(γ(t)−1) + π1(γ(t+ h))

h

= lim
h→0

π1(γ(t)−1γ(t+ h))

h

= lim
h→0

π1(L−1
γ(t)γ(t+ h))

h

= lim
h→0

π1(L−1
γ(t)γ(t+ h))− π1(L−1

γ(t)γ(t))

h

=
d

dh

(
(π1 ◦ L−1

γ(t) ◦ γ
)

(t+ h)

∣∣∣∣
h=0

= (π1)∗ ◦ (L−1
γ(t))∗γ̇(t)

= id(γ′(t)) = γ′(t)

B.0.2 Horizontal lines as geodesics

Definition B.0.7. Let X ∈ V1. The curve γ(t) := exp(tX) is the one-parameter sub-group of the

horizontal vector X, and it is called the horizontal line in the direction of X.

The curve γ(t) is obviously horizontal with respect to ∆, since

γ̇(t) = Xγ(t) ∈ ∆γ(t).
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The length of γ(t), for t ∈ [0, T ], with respect to the CC metric of (M,∆, ‖·‖) is T ‖X‖. Indeed,

Length(γ) =

∫ T

0

‖γ̇(t)‖ dt

=

∫ T

0

∥∥Xγ(t)

∥∥ dt
=

∫ T

0

∥∥(Lγ(t)

)
∗Xe

∥∥ dt
=

∫ T

0

‖X‖ dt

= T ‖X‖ ,

where we used that both X and the norm are left-invariant. Thus we get the formula

Length
(
exp(tX)|t∈[0,T ]

)
= T ‖X‖ . (B.0.8)

In a Lie group endowed with a left-invariant Riemannian metric, the one-parameter subgroups

are NOT always geodesics.

For instance in SL(2,R) the upper triangular unipotent one parameter subgroup(
1 t
0 1

)
is not a geodesic, because it’s distance to Id is roughly log(t), not t.

In a non-compact simple Lie group only the one-parameter groups coming from the p part of the

Cartan decomposition will be geodesics.

Also in the Heisenberg group, if you consider the vertical line, then it is a one-parameter group,

but not a geodesic in Riemannian left-invariant metrics.

Proposition B.0.9. Let G be any Lie group endowed with a left-invariant Riemannian metric.

Then the one-parameter subgroups in the direction of X is geodesic if and only if X is orthogonal to

[X, g].

Proposition B.0.10. Consider a nilpotent Lie group G endowed with a left-invariant sub-Finsler

distance with respect to some distribution ∆ such that

∆⊕ [g, g] = g.

Then one-parameter subgroups of horizontal vectors are geodesics.
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Proof. What we need to show is that

‖π1(g)‖ ≤ dCC(e, g), (B.0.11)

where dCC is the Finsler-Carnot-Carathéodory distance and π1 is the projection defined in (B.0.4).

Restricting (B.0.11) to g belonging to exp(V1) will finish the proof because of calculation (B.0.8).

Indeed, if now X ∈ V1 then the curve t 7→ exp(tX) is a geodesic since

dCC(e, exp(TX)) ≤ Length
(
exp(tX)|t∈[0,T ]

)
= T ‖X‖ = ‖TX‖ ≤ dCC(e, exp(TX)).

Now inequality (B.0.11) is true because, by definition of the metric on G, there is a sequence

of piece-wise linear (or piece-wise smooth) horizontal curves joining e and g whose length tends to

dCC(e, g). But if γ(t) : [0, 1]→ G is such a curve, then, by Formula (B.0.6),

‖π1(g)‖ = ‖π1(γ(1))− π1(γ(0))‖

=

∥∥∥∥∫ 1

0

d

dt
(π1 ◦ γ) (t)dt

∥∥∥∥
≤

∫ 1

0

∥∥∥∥ ddt (π1 ◦ γ) (t)

∥∥∥∥ dt
=

∫ 1

0

‖γ′(t)‖ dt

=

∫ 1

0

∥∥(Lγ(t))
−1
∗ γ̇(t)

∥∥ dt
=

∫ 1

0

‖γ̇(t)‖ dt

= Length(γ).

B.0.3 Lifts of curves

Lemma B.0.12. Let φ : g→ h a Lie algebra homomorphism.

(i) If φ has the property that φ(V
(G)
1 ) ⊆ V (H)

1 , then

projH ◦ φ = φ ◦ projG,

where projG : g→ g and projH : h→ h are the projections onto V G1 and V H1 respectively with

kernels [g, g] and [h, h] respectively.

(ii) If φ has the property that φ(V
(G)
1 ) ⊇ V (H)

1 , then φ is surjective.
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(iii) If

ϕ∗|V (G)
1

: V
(G)
1 → V

(H)
1

is an isometry of normed spaces, then ϕ : G→ H is a 1-Lipschitz, with respect to the respective

FCC metrics.

Proof of (i). If X ∈ V (G)
1 , then (φ ◦ proj)(X) = φ(X). Since by assumption we also have φ(X) ∈

V
(H)
1 , then (proj ◦φ)(X) = φ(X). So proj ◦φ and φ ◦ proj are two homomorphisms that coincide on

V
(G)
1 . Since V

(G)
1 generates the algebra g, then the two homomorphisms are equal.

Proof of (ii). It is obvious since φ(g) is a Lie algebra that contains the generating sub-space V
(H)
1 .

Proof of (iii). It is enough to observe that if γ : [0, 1]→ G is a geodesic, then

d(γ(0), γ(1)) = Length(γ)

=

∫ 1

0

‖γ̇(t)‖ dt

=

∫ 1

0

‖γ′(t)‖V1(G) dt

=

∫ 1

0

‖ϕ∗(γ′(t))‖V1(H) dt

=

∫ 1

0

∥∥∥∥ ddt (ϕ(γ(t)))

∥∥∥∥
V1(H)

dt

= Length(ϕ ◦ γ)

≥ d(ϕ(γ(0)), ϕ(γ(1))).

Lemma B.0.13. The projection map π1 : G→ V1 has the following properties.

(i) For any Lipschitz curve σ in V1 with σ(0) = 0, there exists a unique Lipschitz horizontal curve

γ with π1(γ) = σ and γ(0) = e, and such a curve is the solution of the ODE{
γ̇(t) = (Lγ(t))∗σ̇(t)
γ(0) = e.

(B.0.14)

(ii) The length of the horizontal curves equals the length of their projections:

Length(γ) = Length(π1 ◦ γ),

for all horizontal curves γ, with γ(0) = e, where the first length is with respect to the FCC

metric and the second one is in the normed space (V1, ‖·‖).
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(iii) If ϕ : G→ H is a Lie group homomorphism with ϕ∗(V
(G)
1 ) ⊆ V (H)

1 , then

π
(H)
1 ◦ ϕ ◦ γ = ϕ∗ ◦ π(G)

1 ◦ γ,

for all horizontal curves γ, with γ(0) = e.

Proof of (i). The existence of a solution of the ODE is a consequence of the general Carathéodory’s

theorem, cf. cite[page 43]Coddington-Levinson (1955). The uniquesess can be shown proving that,

if γ1(t) and γ2(t) are two solutions, then

d

dt

(
γ1(t)γ2(t)−1

)
≡ 0.

Let γ(t) be the solution of the ODE. Then

γ′(t) = (Lγ(t))
∗γ̇(t) =

d

dt
(σ(t)).

Since Formula (B.0.6), we have that π1 ◦ γ and σ are two curves in V1 with same starting point

π1(γ(0)) = 0 = σ(0) and same derivative

d

dt
(π1 ◦ γ) =

d

dt
σ.

Therefore π1 ◦ γ = σ.

Proof of (ii). By Formula (B.0.6), one has

Length(π◦γ) =

∫ 1

0

∥∥∥∥ ddt (π1 ◦ γ) (t)

∥∥∥∥ dt
=

∫ 1

0

‖γ′(t)‖ dt

=

∫ 1

0

∥∥(Lγ(t))
−1
∗ γ̇(t)

∥∥ dt
=

∫ 1

0

‖γ̇(t)‖ dt

= Length(γ).

Proof of (iii). By Theorem 4.2.2 and Lemma B.0.12(i), one has

π
(H)
1 ◦ ϕ ◦ γ = proj ◦ exp−1 ◦ϕ ◦ γ

= proj ◦ ϕ∗ ◦ exp−1 ◦γ

= ϕ∗ ◦ proj ◦ exp−1 ◦γ

= ϕ∗ ◦ π(G)
1 ◦ γ.
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We have the following formula combining (i) and (iii):

(dϕ)γ(t)γ̇(t) =
(
(Lϕ(γ(t)))∗ ◦ ϕ∗

)( d

dt
(π ◦ γ)(t)

)
.

B.0.4 Curves in free nilpotent Lie groups

Proposition B.0.15. Assume that each pair of points in G can be joined by a smooth geodesic. If

there is a homomorphism ϕ : G→ H such that

ϕ∗|V (G)
1

: V
(G)
1 → V

(H)
1

is an isometry of normed spaces, then each pair of points in H can be joined by a smooth geodesic.

In the proposition, the word smooth can be replaced by Ck, Cω, or piece-wise linear, since the

good geodesics in H will be images under ϕ of good geodesics in G.

Proof. Now pick a point p ∈ H and a geodesic ξ : [0, 1] → H connecting the identity.to p. Then

Push the curve on V
(H)
1 and then back to V

(G)
1 , i.e., consider the curve

(ϕ∗)
−1 ◦ π1 ◦ ξ.

By Lemma B.0.13(i) consider a/the curve ξ̃ such that

π
(G)
1 ◦ ξ̃ = (ϕ∗)

−1 ◦ π(H)
1 ◦ ξ.

Note that ϕ(ξ̃(1)) = p. In fact ϕ ◦ ξ̃ = ξ. Indeed, ϕ ◦ ξ̃ and ξ are the unique lift of π
(H)
1 ◦ ξ under

π
(H)
1 , since

π
(H)
1 ◦ ϕ ◦ ξ̃ = ϕ∗ ◦ π(G)

1 ◦ ξ̃ = ϕ∗ ◦ (ϕ∗)
−1 ◦ π(H)

1 ◦ ξ = π
(H)
1 ◦ ξ,

where we initially used Lemma B.0.13(iii). Let γ̃ be a smooth geodesic joining e to ξ̃(1). We claim

that ϕ◦γ̃ is the desired geodesic. Indeed, using, in order, that ϕ is 1-Lipschitz (cf. Lemma B.0.12(iii)),
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Lemma B.0.13(ii), the assumption ϕ∗|V (G)
1

isometry, and Lemma B.0.13(ii) again, we get

L(ϕ ◦ γ̃) ≤ L(γ̃)

≤ L(ξ̃)

= L(π
(G)
1 ◦ ξ̃)

= L((ϕ∗)
−1 ◦ π(H)

1 ◦ ξ)

= L(π
(H)
1 ◦ ξ)

= L(ξ)

= d(e, p).

Let G and H two nilpotent Lie groups, with horizontal layers V
(G)
1 and V

(H)
1 , respectively. Consider

a homomorphism

ϕ : G→ H,

such that

ϕ∗|V (G)
1

: V
(G)
1 → V

(H)
1

and it is an isomorphism. Notice that such ϕ is surjective.

Endow just H with a (left-invariant) FCC-metric with V
(H)
1 as horizontal bundle. In other words,

we have fixed a norm ‖·‖H on V
(H)
1 .

Considering that ϕ∗|V (G)
1

is an isomorphism, we might consider the following norm ‖·‖G on V
(G)
1 :

‖v‖G := ‖ϕ∗(v)‖H , for v ∈ V (G)
1 .

Such a norm induces a (left-invariant) FCC-metric with V
(G)
1 as horizontal bundle.

Then our surjective homomorphism ϕ : G→ H becomes 1-Lipschitz (cf. Lemma B.0.12(iii)).

Now suppose we know that the problem has a positive answer for G, i.e., that any point in G

can be joined to the identity by a piece-wise linear geodesic.

Now pick a point in H and a geodesic connecting this point to the identity. This geodesic lifts to a

rectifiable path in G with the same length (because of the choice of lifted FCC on G). Of course here

I’m using the fact that since the homomorphism is surjective, the dimension of the abelianisation of

M is at least that of N.
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Now observe that this new path on G is a geodesic, because otherwise there would be another

path joining the endpoints of strictly smaller length ; however its projection to H will also be of

strictly smaller length, because we said out projection map was 1-Lipschitz, thus contradicting that

we had started with a geodesic in H.

Ok, so now we have this lifted path in G and we know it’s a geodesic. By assumption we may now

find another geodesic, piece-wise linear this time, joining the two points. Then its projection will

also be piece-wise linear of course and it will again be a geodesic because once again the projection

is 1-Lipschitz.

B.0.5 Open questions

Question B.0.16. If ρ is a FCC metric w.r.t. a polyhedral unit ball on G, then does there exist a

constant K such that for any p and q there exists a geodesic for ρ joining p and q that has less than

K breack points?

Question B.0.17. Let G be a free nilpotent Lie group. If ρ is a FCC metric w.r.t. a stricly convex

unit ball on G, then, for any p and q, does there exist a smooth geodesic for ρ joining p and q?

Question B.0.18. Let G be a connected simply connected nilpotent Lie group. If ρ is a G-invariant

metric which is coarsely geodesic, i.e.,

d(x, y) ≥ L(γx,y) + C.

Is ρ at bounded distance from a FCC metric.
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Appendix C

Parking motorbikes and cars*

In coordinates (x, y, θ1, θ2) on R2 × S1 × S1.

Rotational movement: θ̇1 = 1 and ẋ = ẏ = θ̇2 = 0, therefore

X = ∂θ1 = (0, 0, 1, 0).

Forward movement: (ẋ, ẏ) = (cos θ1, sin θ1), θ̇1 = 0, θ̇2 = sin(θ1 − θ2), therefore

Y = cos θ1∂x + sin θ1∂y + sin(θ1 − θ2)∂θ2

We want to show that the system of the car is controllable, i.e., the subbundle spanned by X and

Y s bracket generating.

[X,Y ] = ... = (− sin θ1, cos θ1, 0, cos(θ1 − θ2)).

[[X,Y ], Y ] = · · · = (0, 0, 0,−1).

The vector fields X,Y, [X,Y ], [[X,Y ], Y ] span the tangent space at every point since ...1

1to be finished
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∆[k], 67

GL(n,R), 81

Γ(∆), 58

Lie(F ), 58

SL(n,R), 83

gl(n,R), 81

sl(n,R), 83

Fp, 58

absolutely continuous, 51

adapted

– frame, 68

admissible, 3

admissible path, 59

algebra

– σ-algebra, 43

anti-commutativity, 76

associativity, 75

balls

– closed, 39

– open, 35

base of a bundle, 49

biLipschitz

– equivalent distances, 43

– equivalent functions, 43

biLipschitz embedding, 43

biLipschitz homeomorphisms, 43

biLipschitz map, 43

Borel

– σ-algebra, 43

– measure, 44

boundedly compact, 39

Box, 68

bracket, 76

bracket generating, 3, 59

Carnot group, 116

Carnot-Carathéodory

– distance, 59

– metric, 3

– space, 60

Carnot-Carathéodory distance, 21

CC-distance, see Carnot-Carathéodory distance

Chow Theorem, 60

closed subgroup, 85

conjugation, 76

continuously varying norm, 51

controlled path, 59

convergence

– pointwise, 36

– uniform, 36

countably subadditive, 43
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curve, 36

– horizontal, 59

– length minimizing, 39

– rectifiable, 36

degree

– of a vector field, 68

derivative of etA, 83

derivative of product of curves, 85

dilation

– in stratified algebra, 115

– in stratified group, 117

distance, see distance function

– subFinsler, 60

– subRiemannian, 60

Carnot-Carathéodory –, 59

distance function, 35

distribution, 58

equiregular

– frame, 68

exponential

– of a matrix, 83

exponential coordinate map, 68

fiber of a bundle, 49

field of distributions, 58

Finsler

– manifold, 51, 59

– structure, 51

Finsler-Carnot-Carathéodory distance, 60

flow, 49

flow line, 49

frame, 50

general linear group

Lie algebra of the –, 81

general linear group, GL, 81

generating subgroup, 84

geodesic, 39

– metric, 39

– space, 39

graded algebra, 112

group, 75

– product, 75

general linear –, GL, 81

Lie –, 76

Hörmander’s condition, 59

Hausdorff

– content, 44

– dimension, 44

– measure, 44

Homogeneous

– dimension, 70

homogeneous dimension, 116

horizontal, 3

– curve, 21, 59

identity

– element, 75

induced Lie algebra homomorphism, 77, 80

integral curve, 49

intrinsic dilations, 117

intrinsic metric, 39

inversion, 75
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isometry, 43

Jacobi identity, 76

left

– translation, 75

Legendrian, 16

length minimizer, 39

length of a curve, 36

length space, 39

Lie algebra, 76

gl(n,R), 81

– of a Lie group

g, Lie(G), 77

– of the general linear group, 81

Lie group, 76

Lipschitz

– constant, 42

– map, 42

local frame, 50

local trivialization of a bundle, 49

manifold

– Finsler, see Finsler manifold

– Riemannian, see Riemannian manifold

– subFinsler, 59

– subRiemannian, see subRiemannian man-

ifold

matrix

exponential of a –, 83

measure, 43

Mesh of a partition, 55

metric, see distance function

– geodesic, 39

– intrinsic, 39

metric space, 35

Metric tensor, 50

nilpotency step, 99

nilpotent

– Lie algebra, 99

– Lie group, 99

non-holonomic Riemannian metric, 60

norm

– continuously varying, 51

open subgroup, 85

parametrization by arc length, 36, 52

partition, 36

path, 36

path metric space, 39

polarization, 3, see distribution

product

group –, 75

product of curves

derivative of –, 85

proper (metric space), see boundedly compact

rank

– of a vector bundle, 49

reachable set, 62

rectifiable curve, 36

Riemannian

– manifold, 50, 59

– metric, 50
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right translation, 75

– of LIVF, 85

section, 49

singular Riemannian metric, 60

smallest subgroup, 84

space

– geodesic, 39

Special linear group SL(n,R), 83

step, see nilpotency step

stratified

– Lie group, 116

subbundle, 58

subFinsler

– distance, 60

– manifold, 59

– structure, 59

subgroup

smallest, 84

closed –, 85

open –, 85

subRiemannian

– Heisenberg group, 21

– distance, 3, 60

– manifold, 3, 59, 60

– structure, 60

tangent subbundle, 58

tangent to a distribution– vector filed, 58

Theorem

Ball-Box –, 69

Topological group, 76

total space of a bundle, 49

trace, 83

trajectory, 36

translation

left –, 75

right –, 75

vector bundle, 49
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