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Abstract. We study the regularity of the interface for optimal energy con-

figurations of functionals involving bulk energies with an additional perimeter
penalization of the interface. It is allowed the dependence on (x, u) for the

bulk energy. For a minimal configuration (E, u), the Hölder continuity of u

is well known. We give an estimate for the singular set of the boundary ∂E.
Namely we show that the Hausdorff dimension of the singular set is strictly

smaller than n− 1.

2010 Mathematics Subject Classification: 49Q10, 49N60, 49Q20

1. Introduction and statements

In this paper we will deal with energy functionals of the type

F(E, u; Ω) =

�
Ω

[
F (x, u,∇u) + 1EG(x, u,∇u)

]
dx+ P (E,Ω) , (1)

where u ∈ H1(Ω) and 1E denotes the characteristic function of a set E ⊂ Ω
with finite perimeter in Ω, denoted as P (E,Ω). In mathematical and physical
literature, the problem of finding the minimal energy configuration of a mixture of
two materials in a bounded connected open set Ω ⊂ Rn has been widely investigated
(see for instance [1], [2], [10], [13], [16], [17]). The energy functional employed in
such problems involves both bulk and interface energies in order to describe a large
class of phenomenon in many applied sciences, such as non linear elasticity, material
sciences and image segmentations in the computer vision. A relevant case deeply
studied by several authors is the following model functional,�

Ω

σE(x)|∇u|2 dx+ P (E,Ω), (2)

where u = u0 is prescribed on ∂Ω and σE(x) = β1E + α1Ω\E , with 0 < α < β
given constant.

In 1993 L. Ambrosio and G. Buttazzo in [1] proved that, if (E, u) is a minimizer
of the functional (2), then u is locally Hölder continuous in Ω and E is relatively
open in Ω. In the same year F.H. Lin proved the regularity of the interface (see
[17]), that is ∂E is regular outside a relatively closed set of vanishingHn−1-measure.
To be more precise, we define the set of regular points of ∂E as follows:

Reg(E) :=
{
x ∈ ∂E ∩ Ω : ∂E is a C1,γ hypersurface in some I(x)

}
(3)
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where I(x) denotes a neighborhood of x. Accordingly, we define the set of singular
points of ∂E

Σ(E) := (∂E ∩ Ω) \ Reg(E). (4)

In the paper by F.H. Lin (see [17]) it was proved that Hn−1(Σ(E)) = 0 for minimal
configurations of the functional (2). More recently G. De Philippis and A. Figalli
in [7], Fusco and Julin in [11], independently and by different approaches, were able
to improve this result indeed proving that

dimH(Σ(E)) ≤ s, (5)

for some s < n− 1 depending only on α, β. Regarding this dependence, it is worth
noticing that in [8] it has been proven, assuming α = β and β ≤ γ with γ = γ(n),

that u ∈ C0, 12 +ε, ∂∗E is a C1,ε−hypersurface andHs(∂E\∂∗E) = 0 for all s > n−8.
In 1999 F.H. Lin and R.V. Kohn in [LK] treated a more general quadratic bulk

energy of the type (1) actually proving the same regularity they proved for the
model case (2). As a matter of fact they proved that the singular part Σ(E) has
vanishing Hn−1-measure for minimal configurations (E, u).

In this paper we address the issue of improving the dimensional estimate for the
singular part Σ(E) of optimal configurations for the class of functionals treated by
Lin and Kohn. As a matter of fact we prove, for a wide class of quadratic functional
depending also on x and u, the same kind of regularity proved in the model case
(2) by [DF] and [FJ] namely, dimH(Σ(E)) ≤ s for some s < n− 1.

Our path to prove the aforementioned result basically follows the same strategy
used in [FJ]. As we will point out later in more detail, our technique relies on the
linearity of the Euler equation of the functional (1). For this reason we need a linear
structure condition for the bulk energy. In the rest of the paper we will assume
that the density energies F and G in (1) satisfy the following assumptions:

F (x, s, z) =

n∑
i,j=1

aij(x, s)zizj +

n∑
i=1

ai(x, s)zi + a(x, s), (6)

G(x, s, z) =

n∑
i,j=1

bij(x, s)zizj +

n∑
i=1

bi(x, s)zi + b(x, s). (7)

Concerning the coefficients we assume that

aij , bij , ai, bi, a, b ∈ C0,1(Ω× R).

We will denote by LD the greatest lipschitz constant of the data aij , bij , ai, bi, a, b,
that is

|∇aij | ≤ LD, |∇bij | ≤ LD in Ω× R, (8)

and the same holds true for ai, bi, a, b.
Moreover to ensure the existence of minimizers we assume the boundedness of the
coefficients and the ellipticity of the matrices aij and bij ,

ν|ξ|2 ≤ aij(x, s)ξiξj ≤ N |ξ|2, ν|ξ|2 ≤ bij(x, s)ξiξj ≤ N |ξ|2 (9)
n∑
i=1

|ai(x, s)|+
n∑
i=1

|bi(x, s)|+ |a(x, s)|+ |b(x, s)| ≤ L (10)

We are interested in the regularity of minimizers of the following constrained prob-
lem.
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Definition 1.1. In the sequel we shall denote by (Pc) the constrained problem

min
E∈A(Ω)

v∈u0+H1
0 (Ω)

{F(E, v; Ω) : |E| = d} (Pc)

where u0 ∈ H1(Ω), 0 < d < |Ω| are given and A(Ω) is the class of all subsets of Ω
with finite perimeter.

The problem of handling with the constraint |E| = d is overtaken using an argu-
ment introduced in [8], ensuring that every minimizer of the constrained problem
(Pc) is also a minimizer of a penalized functional of the type

FΛ(E, v; Ω) = F(E, v; Ω) + Λ
∣∣|E| − d∣∣, (11)

for some suitable Λ > 0 (see Theorem 2.4 below). Therefore we give in addition
the following definition.

Definition 1.2. In the sequel we shall denote by (P ) the penalized problem

min
E∈A(Ω)

v∈u0+H1
0 (Ω)

FΛ(E, v; Ω) (P )

where u0 ∈ H1(Ω), is given, and A(Ω) is the class of all subsets of Ω with finite
perimeter in Ω.

From the point of view of regularity, the extra term Λ
∣∣|E|−|F |∣∣ is a higher order

negligible perturbation. The main result of the paper is contained in the following
theorem.

Theorem 1.3. Let (E, u) be a minimizer of either problem (Pc) or problem (P ),
under assumptions (6)− (10). Then

a) there exists a relatively open set Γ ⊂ ∂E such that Γ is a C1,µ hypersurface
for all 0 < µ < 1

2 ,
b) there exists ε > 0 depending on ν,N,L, n, such that

Hn−1−ε((∂E \ Γ) ∩ Ω) = 0.

For reader convenience the paper is structured in sections which reflect the proof
strategy. Section 2 collects known results and preliminary definitions. As in the
case of minimizers of the Mumford-Shah functional the proof of regularity is based
on the study of interplay between the perimeter and the bulk energy. We point out
that the Hölder exponent 1

2 is critical for solutions u of either (P ) or (Pc), in the

sense that whenever u ∈ C0, 12 , under appropriate scaling the bulk term locally have
the same dimension n− 1 as the perimeter term. In this regard, our starting point
is to prove suitable energy decay estimates for the bulk energy. These estimates
are contained in section 3. The key point of this approach is contained in Lemma
3.9, where it is proved that the bulk energy decay faster than ρn−1, that is, for any
δ > 0, �

Bρ(x0)

|∇u|2 dx ≤ Cρn−δ, (12)

either in the case that

min{|E ∩Bρ(x0)|, |Bρ(x0) \ E|} < ε0|Bρ|,
or in the case that, there exists an half space H such that

|(E∆H) ∩Bρ(x0)| ≤ ε0|Bρ|.
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The latter case is the hardest to handle because it relies on the regularity properties
of solutions of a transmission problem which we study in subsection 3.1. Let us
notice that, for any given E ⊂ Ω, local minimizers u of the functional�

Ω

[
F (x, u,∇u) + 1EG(x, u,∇u)

]
dx (13)

are Hölder continuous, u ∈ C0,α
loc (Ω), but the needed bound α > 1

2 cannot be
expected in the general case without any information on the set E. In section 3.1
we prove, in the case E is an half space, that minimizers of the functional (13) are
in C0,α for every α > 0. In this context the linearity of the equation strongly come
in to play ensuring that the derivatives of the Euler equation are again solutions of
the same equation. For the proof in section 3 we readapt a technique depicted in
the book [3] in the context of the Mumford and Shah functional and recently used
in a paper by E. Mukoseeva and G. Vescovo, [22]. Once the estimates of section
3 are obtained, we are ready to prove in section 4 that, if in a ball Bρ(x0) the
perimeter of E is sufficiently small, then the total energy�

Br(x0)

|∇u|2 dx+ P (E,Br(x0)), 0 < r < ρ,

decays as rn (see Lemma 4.1). Making use of the latter energy density estimate
we are in position to deduce in section 4 the density lower bound for the perimeter
of E as well. In the subsequent sections the proof strategy follows the path traced
from the regularity theory for perimeter minimizers. In section 5 it is proved the
compactness for sequences of minimizers which more or less follows in a standard
way from the density lower bound. Section 6 is devoted to prove some additional
consequences of the density lower bound which involve the excess

e(x, r) = inf
ν∈Sn−1

e(x, r, ν) := inf
ν∈Sn−1

1

rn−1

�
∂E∩Br(x)

|νE(y)− ν|2

2
dHn−1(y).

Actually we prove the height bound Lemma and the Lipschitz approximation The-
orem. In this section we also compute the Euler equation for F(E, u) involving the
variation of the set E. Section 7 is devoted to prove the excess improvement which
follows from the fact that whenever the excess e(x, r) goes to zero for r → 0 the
Dirichlet integral

�
Bρ(x0)

|∇u|2 dx decays as in (12). In section 8 we give the proof

of Theorem 1.3 that is a consequence of the excess improvement proved before.

2. Preliminary notations and definitions

In the rest of the paper we will write 〈ξ, η〉 for the inner product of vectors

ξ, η ∈ Rn, and |ξ| := 〈ξ, ξ〉 12 will denote the corresponding Euclidean norm. If u is
integrable in BR(x0) we set:

uR =
1

ωnRn

�
BR(x0)

u dx =

 
BR(x0)

u dx

The following definition is standard.

Definition 2.1. Let v ∈ H1
loc(Ω), and assume that E ⊂ Ω is fixed. We say that v

is a local minimizer of the integral functional F defined in (1) iff

F(E, v;BR(x0)) = min
{
F(E,w;BR(x0)) : w ∈ v +H1

0 (BR(x0))
}

for all BR(x0) ⊂⊂ Ω.
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It is clear that any minimizer u of problem (Pc) is a local minimizer of the
functional (1) and therefore satisfies the Euler equation

n∑
i=1

∂

∂xi

[
Fzi(x, u,∇u) + 1EGzi(x, u,∇u)

)]
(14)

= Fu(x, u,∇u) +Gu(x, u,∇u)

Lemma 2.2. Let Z(t) be a bounded non-negative function in the interval [ρ,R] and
assume that for ρ ≤ t < s ≤ R we have

Z(t) ≤ θZ(s) +
A

(s− t)2
+B, (15)

with A,B ≥ 0, and 0 ≤ θ < 1. Then

Z(ρ) ≤ c(θ)
[ A

(R− ρ)2
+B

]
, (16)

for some c(θ) depending only on θ.

Proof. The proof of this lemma is standard and can be found in [12]. Inspecting
the proof in [12] one can also obtain an explicit expression of the constant c(θ). An
admissible value for c(θ), but not the best, is c(θ) = 1/(1− θ1/3)3. �

The next lemma can be found in [3, Lemma 7.54].

Lemma 2.3. Let f : (0, a]→ [0,∞) be an increasing function such that

f(ρ) ≤ A
[( ρ
R

)p
+Rs

]
f(R) +BRq whenever 0 < ρ < R ≤ a

for some constants A,B ≥ 0, 0 < q < p, s > 0. Then there exist R0(p, q, s, A) and
c(p, q, A) such that

f(ρ) ≤ c
( ρ
R

)q
f(R) + cBρq whenever 0 < ρ < R ≤ min{R0, a}.

2.1. From constrained to penalized problem. The next theorem allows to
overcome the difficulty of handling with the constraint |E| = d. As a matter of
fact it can be proved that every minimizer of the constrained problem (Pc) is also
a minimizer of a suitable unconstrained problem with a volume penalization of the
type (P ).

Theorem 2.4. Let 0 < d < |Ω|. There exists Λ0 > 0 such that if (F, v) is a
minimizer of the functional

FΛ(A,w) =

�
Ω

(
F (x, u,∇u) + 1AG(x, u,∇u) dx

)
dx+ P (A,Ω) + Λ

∣∣|A| − d∣∣ (17)

for some Λ ≥ Λ0, among all configurations (A,w) such that w = v0 on ∂Ω, then
|F | = d and (F, v) is a minimizer of problem (Pc). Conversely, if (E, u) is mini-
mizer of problem (Pc), then it is a minimizer of (17), for all Λ ≥ Λ0.

Proof. The proof can be carried out as [8, Theorem 1]. For the convenience of the
reader we give here its sketch, emphasizing main ideas and minor differences with
respect to the case treated in [8].
The first part of the theorem can be proved by contradiction. Assume that there
exists a sequence (λh)h∈N such that λh → +∞ as h → +∞ and a sequence of
configurations (E, uh) minimizing Fλh and such that uh = u0 on ∂Ω and |Eh| 6= d
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for all h. Le us choose now an arbitrary fixed E0 ⊂ Ω with finite perimeter and
such that |E| = d. Let us point out that

Fλh(Eh, uh) ≤ F(E0, u0) := Θ. (18)

Without loss of generality we can assume that |Eh| < d. As a matter of fact the
case |Eh| > d can be treated in the same way considering the complement of E in Ω.

Our aim is to show that for h sufficiently large, there exists a configuration (Ẽh, ũh)

such that Fλh(Ẽh, ũh) < Fλh(Eh, uh), thus proving the result by contradiction.
By condition (18), it follows that the sequence {uh} is bounded in H1(Ω), the
perimeters of the sets Eh in Ω are bounded and |Eh| → d. Therefore, possibly
extracting a not relabelled subsequence, we may assume that there exists a
configuration (E, u) such that uh → u weakly in H1(Ω), 1Eh → 1E a.e. in Ω,
where the set E is of finite perimeter in Ω and |E| = d. The couple (E, u) will be

used as reference configuration for the definition of (Ẽh, ũh).

Step 1. Construction of (Ẽh, ũh). Proceeding exactly as in [8], we take a point
x ∈ ∂∗E ∩Ω and observe that the sets Er = (E − x)/r converge locally in measure
to the half space H = {z · νE(x) > 0}, i.e., χEr → χH in L1

loc(Rn), where νE(x) is
the generalized inner normal to E at x (see [3, Definition 3.54]). Let y ∈ B1(0) \H
be the point y = −νE(x)/2. Given ε (to be chosen at the end of the proof), since
χEr → χH in L1(B1(0)) there exists 0 < r < 1 such that

|Er ∩B1/2(y)| < ε, |Er ∩B1(y)| ≥ |Er ∩B1/2(0)| > ωn
2n+2

,

where ωn denotes the measure of the unit ball of Rn and xr = x+ry ∈ Ω. Therefore
we have

|E ∩Br/2(xr)| < εrn, |E ∩Br(xr)| >
ωnr

n

2n+2
.

Let us assume, without loss of generality, that xr = 0 and from now on let us denote
the balls centered at the origin by Br. From the convergence of Eh to E we have
that for all h sufficiently large

|Eh ∩Br/2| < εrn, |Eh ∩Br| >
ωnr

n

2n+2
. (19)

Let us now define the following bi-Lipschitz map used in [8] which maps Br into
itself

Φ(x) =


(
1− σ(2n − 1)

)
x if |x| < r

2
,

x+ σ
(

1− rn

|x|n
)
x if

r

2
≤ |x| < r,

x if |x| ≥ r ,

(20)

for some fixed 0 < σ < 1/2n such that, setting

Ẽh = Φ(Eh), ũh = uh ◦ Φ−1 ,

we have |Ẽh| < d. We obtain

Fλh(uh, Eh)−Fλh(ũh, Ẽh) =

[�
Br

[
F (x, uh,∇uh) + 1EhG(x, uh,∇uh)

]
dx

−
�
Br

[
F (x, ũh,∇ũh) + 1Ẽh

G(x, ũh,∇ũh)
]
dx

]
(21)

+
[
P (Eh, Br)− P (Ẽh, Br)

]
+ λh

(
|Ẽh| − |Eh|

)
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= I1,h + I2,h + I3,h .

Step 2. Estimate of I1,h. In order to estimate the bulk energy I1,h we write
down two preliminary estimates for the map Φ that can be easily obtained by
direct computation (see [8] for the explicit calculation). There exists a constant
C1 = C1(n) depending only on n such that, for σ < 1/4n(n− 1)2 − 1,∥∥∇Φ−1

(
Φ(x)

)∥∥ ≤ (1− (2n − 1)σ
)−1 ≤ 1 + 2nnσ for all x ∈ Br, (22)

1 + C1(n)σ ≤ JΦ(x) ≤ 1 + 2nnσ for all x ∈ Br. (23)

We can now perform the change of variables y = Φ(x), and observing that
1Ẽh

(Φ(x)) = 1Eh(x), we get

I1,h =

�
Br

[
F (x, uh,∇uh)− JΦ(x)F (Φ(x), uh(x),∇uh(x) ◦ ∇Φ−1(Φ(x)))

]
dx

+

�
Br∩Eh

[
G(x, uh,∇uh)− JΦ(x)G(Φ(x), uh(x),∇uh(x) ◦ ∇Φ−1(Φ(x)))

]
dx (24)

:= J1,h + J2,h

The two terms J1,h and J2,h, involving F and G in Br and Br ∩ Eh respectively,
can be treated in the same way. Therefore we just perform the calculation for J1,h.
To make the exposition more clear when using the structure conditions (6) and
(7) we introduce the following notations. A2(x, s) denotes the quadratic form and
A1(x, s) denotes the linear form defined as follows

A2(x, s)[ξ] := aij(x, s)ξiξj for all ξ ∈ Rn,
A1(x, s)[ξ] := ai(x, s)ξi for all ξ ∈ Rn,

analogously A0(x, s) = a(x, s). Accordingly we can write down

J1,h =�
Br

{
A2(x, uh(x))[∇uh(x)]−A2(Φ(x), uh(x))[∇uh(x)◦∇Φ−1(Φ(x))]JΦ(x)

}
dx

+

�
Br

{
A1(x, uh(x))[∇uh(x)]−A1(Φ(x), uh(x))[∇uh(x)◦∇Φ−1(Φ(x))]JΦ(x)

}
dx

+

�
Br

{
A0(x, uh(x))−A0(Φ(x), uh(x))JΦ(x)

}
dx (25)

We proceed estimating the first difference in the previous inequality, being the other
similar and indeed easier to handle.�

Br

{
A2(x, uh(x))[∇uh(x)]−A2(Φ(x), uh(x))[∇uh(x)◦∇Φ−1(Φ(x))]JΦ(x)

}
dx

=

�
Br

{
A2(Φ(x), uh(x))[∇uh(x)]−A2(Φ(x), uh(x))[∇uh(x)◦∇Φ−1(Φ(x))]JΦ(x)

}
dx

+

�
Br

{
A2(x, uh(x))[∇uh(x)]−A2(Φ(x), uh(x))[∇uh(x)]

}
dx = H1,h +H2,h.

The first term H1,h can be estimated observing that, in consequence of (9) we have,

|A2[ξ]−A2[η]| ≤ N |ξ + η||ξ − η| ∀ξ, η ∈ Rn.
We apply the last inequality to the vectors

ξ := ∇uh(x), η :=
√
JΦ(x)[∇uh(x)◦∇Φ−1(Φ(x))],
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and use estimates (22) and (23) to get-

|ξ − η| ≤ σC(n)|∇uh(x)| |ξ + η| ≤ C(n)|∇uh(x)|,
for some constant C(n) depending only on n. From the previous estimates we
deduce that

|H1,h| ≤ σNC2(n)

�
Br

|∇uh(x)|2 dx ≤ σNC2(n)Θ. (26)

The second term H2,h can be estimated using the Lipschitz assumption of ai,j and
observing that |x− Φ(x)| ≤ σr2n. As a matter of fact we deduce that

|H2,h| ≤ σr2n sup
i,j

[ai,j ]0,1

�
Br

|∇uh(x)|2 dx ≤ σC(n, [ai,j ]0,1)Θ. (27)

In conclusion, since the other terms in (25) can be estimated in the same way,
collecting estimates (26) and (27) we get

|J1,h| ≤ σC(n,N,LD)Θ.

The same estimate holds true for J2,h then we conclude that

I1,h ≥ −σC2(n,N,LD)Θ (28)

for some constant C2(n,N, [ai,j ]0,1) depending on n,N, supi,j [ai,j ]0,1.
Step 3. Estimate of I2,h. In order to estimate I2,h we can use the area formula
for maps between rectifiable set. If we denote by Th,x the tangential gradient of Φ
along the approximate tangent space to ∂∗Eh in x and T ∗h,x is the adjoint of the

map Th,x, the (n− 1)-dimensional jacobian of Th,x is given by

Jn−1Th,x =
√

det
(
T ∗h,x ◦ Th,x

)
.

Thereafter we can estimate

Jn−1Th,x ≤ 1 + σ + 2n(n− 1)σ. (29)

We address the reader to [8] where explicit calculations are given. To estimate I2,h,
we use the area formula for maps between rectifiable sets ([3, Theorem 2.91]), thus
getting

I2,h = P (Eh, Br)− P (Ẽh, Br) =

�
∂∗Eh∩Br

dHn−1 −
�
∂∗Eh∩Br

Jn−1Th,x dHn−1

=

�
∂∗Eh∩Br\Br/2

(1− Jn−1Th,x) dHn−1 +

�
∂∗Eh∩Br/2

(1− Jn−1Th,x) dHn−1 .

Notice that the last integral in the above formula is non-negative since Φ is a
contraction in Br/2, hence Jn−1Th,x < 1 in Br/2, while from (29) we have�

∂∗Eh∩Br\Br/2
(1− Jn−1Th,x) dHn−1 ≥ −2nnP (Eh, Br)σ ≥ −2nnΘσ ,

thus concluding that
I2,h ≥ −2nnΘσ . (30)

Step 4. Estimate of I3,h. To estimate I3,h we recall (19), (20), (23), thus getting

I3,h = λh

�
Eh∩Br\Br/2

(JΦ(x)− 1) dx+ λh

�
Eh∩Br/2

(JΦ(x)− 1) dx

≥ λhC1(n)
( ωn

2n+2
− ε
)
σrn − λh

[
1−

(
1− (2n − 1)σ

)n]
εrn
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≥ λhσr
n
[
C1(n)

ωn
2n+2

− C1(n)ε− (2n − 1)nε
]
.

Therefore, if we choose 0 < ε < ε(n), with ε(n) depending only on the dimension,
we have that

I3,h ≥ λhC3(n)σrn ,

for some positive C3(n). From this inequality, recalling (21), (28) and (30) we
obtain

Fλh(uh, Eh)−Fλh(ũh, Ẽh) ≥ σ
(
λhC3r

n −Θ(C2(n,N,LD) + 2nn)
)
> 0

if λh is sufficiently large. This contradicts the minimality of (uh, Eh), thus conclud-
ing the proof.

�

The previous theorem motivates the following definition.

Definition 2.5 (Λ-minimizers). The energy pair (E, u) is a Λ-minimizer in Ω of
the functional F , defined in (1), iff for every Br(x0) ⊂ Ω

F(E, u;Br(x0)) ≤ F(F, v;Br(x0)) + Λ|F∆E|,

whenever (F, v) is an admissible test pair, namely, F is a set of finite perimeter
with F∆E ⊂⊂ Br(x0) and v − u ∈ H1

0 (Br(x0)).

3. Decay of the bulk energy

In the first part of this section we collect some preliminary results concerning
the decay estimates for local minimizers u of the functional (1) when E is fixed.
We start quoting higher integrability results both for local minimizers of functional
(1) and for comparison functions that we will use later in the paper. It is worth
mentioning that the following lemmata can be applyed in general to minimizers of
integrals functionals of the type

H(u; Ω) :=

�
Ω

F (x, u,∇u) dx, (31)

assuming that the energy density only satisfies the structure condition (6) and the
growth conditions (9) and (10), without assuming any continuity on the coefficients.
Therefore functionals of the type (1) belong to this class and in addition the involved
estimates only depend on the constants appearing in (9) and (10) but don’t depend
on E accordingly.

Lemma 3.1. Let u ∈ H1(Ω) be a local minimizer of the functional H defined in
(31), where F satisfies the structure condition (6) and the growth conditions (9)
and (10). Then for every B2R(x0) ⊂⊂ Ω it holds

 
BR(x0)

|∇u|2 dx ≤ C1

(
1 +

 
B2R(x0)

|∇u|2m dx
) 1
m

, (32)

where m = n
n+2 , C1 = C1(ν,N,L, n) is a constant depending only on ν,N,L, n.

Proof. Whithout loss of generality we can assume that x0 = 0. Let R < t < s < 2R
and choose η ∈ C∞0 (Qs) such that η ≡ 1 in Qt and |∇η| ≤ 2/(s− t). We choose a
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test function v = u − φ, where φ = η(u − us) and us denotes the average of u in
Qs, us =

�
Qs
u dx. From the growth conditions (9) and (10) we can deduce that

ν

2
|z|2 − L2

ν
≤ F (x, s, z) ≤ (N + 1)|z|2 + L(L+ 1), (33)

then testing the minimality of u with v we deduce that

ν

2

�
Qs

[|∇u|2 − L2

ν2
] dx

≤ 2

�
Qs

[
(N + 1)|∇u(1− η)−∇η(u− us)|2 + L(L+ 1)

]
dx

≤ 4(N + 1)

�
Qs\Qt

|∇u|2 dx+ 4(N + 1)

�
Qs

|u− us|2|∇η|2 dx+ 2

�
Qs

L(L+ 1) dx.

Adding to both sides 4(N + 1)
�
Qt
|∇u|2 dx we deduce

[4(N + 1) + ν/2]

�
Qt

|∇u|2 dx

≤ 4(N + 1)

�
Qs

|∇u|2 dx+ 4(N + 1)

�
Qs

|u− us|2|∇η|2 dx+

�
Qs

C(L, ν) dx.

Eventually we get�
Qt

|∇u|2 dx ≤ θ
�
Qs

|∇u|2 dx+
C(ν,N,L, n)

(s− t)2

�
Qs

|u− us|2 dx+ C(ν,N,L, n).

Where θ = 4(N + 1)/4(N + 1 + ν/2) < 1 and the constant C(ν,N,L, n) depends
only on ν,N,L, n. We can iterate the previous estimate using 2.2 to deduce that
there exist C = C(θ) = C(ν,N) depending only on ν,N such that�

QR

|∇u|2 dx ≤ C(ν,N)

[
C(ν,N,L, n)

(s− t)2

�
Q2R

|u− us|2 dx+ C(ν,N,L, n)

]
.

Finally we use Sobolev-Poincaré inequality�
B2R

|u− u2R|2 dx ≤ C(n)
(�

B2R

|∇u|2m
) 1
m

,

to conlude (32). �

Starting from the previous lemma the higher integrability can be obtained in a
standard way by means of the Gehring’s Lemma (see [12, Proposition 6.1]).

Lemma 3.2. Let u ∈ H1(Ω) be a local minimizer of the functional H defined in
(31), where F satisfies the structure condition (6) and the growth conditions (9)
and (10). There exists an s > 1 such that, for every ball B2R(x0) ⊂⊂ Ω it holds 

BR(x0)

|∇u|2s dx ≤ C2

( 
B2R(x0)

(1 + |∇u|2) dx
)s
,

where s and C2 depend only on ν,N,L, n.

In the next section we will prove some energy density estimates by using a
standard comparison argument. For this purpose we will need a reverse Hölder
inequality for the comparison function defined below.
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Definition 3.3 (Comparison). Let u ∈ H1(Ω) be a local minimizer of the functional
(1) and B2R ⊂⊂ Ω. We shall denote by v the solution of the following problem

v := arg min

{�
BR

F̃ (x,∇w) dx : w ∈ u+H1
0 (BR)

}
, (34)

where F̃ (x, z) := F (x, u(x), z) satisfies the structure condition (6) and the growth
conditions (9) and (10).

For the comparison function v defined in (34) we can state the following reverse
Hölder inequality up to the boundary of BR.

Lemma 3.4. Let u ∈ H1(Ω) be a local minimizer of the functional (1), v the
comparison function defined above and B2R ⊂⊂ Ω. Let us consider the following
extension of v:

V (x) :=

{
v(x) for x ∈ BR
u(x) for x ∈ Ω \BR.

Denote by Bρ(x0) a generic ball centered in x0 ∈ BR with ρ < R
2 . Then: 

Bρ(x0)

|∇V |2 dx ≤ C
( 

B2ρ(x0)

(|∇V |2m + |∇u|2m + 1) dx
) 1

2

, (35)

where m = n
n+2 and C = C(n, ν,N,L).

Proof. Let x0 ∈ BR and ρ ≤ s < t ≤ r < 2ρ < R, where r = 3
2ρ; then, the following

alternative holds, {
i) Br(x0) ⊂⊂ BR
ii) Br(x0) ∩ (Ω \BR) 6= ∅.

In the case i) we can proceed exactly as in Lemma 3 to get the desired estimate. Let
us then consider the case ii) which is slightly different. Choose η ∈ C∞0 (Bt(x0)),
such that 0 ≤ η ≤ 1, η ≡ 1 in Bs and |∇η| ≤ 2/(t − s). Now we can use the
following function ϕ := η(V − u) to test the minimality of v with the aim of
estimating the difference

�
Bs
|∇(V − u)|. Using the growth conditions (9) and (10)

and the minimality of v we obtain

ν

2

�
Bt

(
|∇ϕ|2 − 2L2

ν2

)
dx ≤

�
Bt∩BR

F̃ (x,∇ϕ) dx = (36)

=

�
Bt∩BR

F̃ (x,∇v) dx+

�
Bt∩BR

(
F̃ (x,∇ϕ)− F̃ (x,∇v)

)
dx

≤
�
Bt∩BR

F̃ (x,∇(v − ϕ)) dx+

�
Bt∩BR

n∑
i,j=1

aij(x)∇i(ϕ− v)∇j(ϕ− v) dx

− 2

�
Bt∩BR

n∑
i,j=1

aij(x)∇iϕ∇j(ϕ− v) +

�
Bt∩BR

n∑
i=1

ai(x)(∇iϕ−∇iv) dx

≤ ν

4

�
Bt

|∇ϕ|2 dx+ (3N +
8N2

ν2
)

�
Bt

|∇(V − ϕ)|2 dx+

�
Bt

L2 dx

Where we used Young’s inequality in the last estimate. We can summarize the
previous estimate as follows

ν

4

�
Bt

|∇ϕ|2 dx ≤ C(ν,N,L)

�
Bt

(
1 + |∇(V − ϕ)|2

)
dx. (37)
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Now we observe that |∇(V − ϕ)| ≤ |∇u|+ (1− η)|∇(V − u)|+ 1
(t−s) |V − u|; then

by (37) we deduce�
Bs

|∇(V − u)|2 dx ≤ C(ν,N,L)

�
Bt\Bs

|∇(V − u)|2 dx (38)

+
C(ν,N,L)

(t− s)2

�
Bt

|(V − u)|2 dx+ C(ν,N,L)

�
Bt

(
1 + |∇u|2

)
dx.

Now we use the “hole filling” technique adding C(ν,N,L)
�
Bs
|∇(V − u)|2 dx on

both sides of (38) to get�
Bs

|∇(V − u)|2 dx ≤ θ
�
Bt

|∇(V − u)|2 dx

+ C(ν,N,L)

[
1

(t− s)2

�
Bt

|(V − u)|2 dx+

�
Bt

(
1 + |∇u|2

)
dx

]
,

where θ = C(ν,N,L)/(C(ν,N,L) + 1). Using Lemma 2.2 we obtain�
Bρ

|∇(V − u)|2 dx ≤ C(ν,N,L)

(r − ρ)2

�
Br

|(V − u)|2 dx+C(ν,N,L)

�
Br

(
1 + |∇u|2

)
dx.

Therefore, having chosen r = 3
2ρ and by condition ii), we have

|B2ρ(x0) \BR)| ≥ C|Bρ(x0)|,

for some universal constant C = C(n). We can now use Sobolev-Poincaré’s inequal-
ity for functions vanishing on a set of positive measure (see [12, Inequality (3.29)])
to deduce
 
Bρ(x0)

|∇(V−u)|2 dx ≤ C(ν,N,L)

[( 
B2ρ(x0)

(|∇(V−u)|2m dx
) 1
m

+

 
B2ρ

(
1+|∇u|2

)
dx

]
Finally we can apply reverse Hölder inequality (32) for u in the last estimate to get
(35). �

Reasoning in a similar way as above, the higher integrability for v can be obtained
by means of the Gehring’s Lemma (see [12, Proposition 6.1]).

Lemma 3.5. Let u ∈ H1(Ω) be a local minimizer of the functional (1), v ∈
H1(BR(x0)) the comparison function defined in (34). Denoting by s > 1 the same
exponent given in Lemma 3.2, it holds 

BR(x0)

|∇v|2s dx ≤ C3

( 
B2R(x0)

(
1 + |∇u|2

)
dx

)s
,

where C3 depend only on ν,N,L, n.

3.1. Decay estimates for elastic minima. In this section we prove a decay
estimate for elastic minima that will be crucial for the proof strategy. As a matter
of fact we show that if (E, u) is a Λ minimizer of the functional (1) and x0 is a point
in Ω, where either the density of E is close to 0 or 1, or the set E is asymptotically
close to a hyperplane, then for sufficiently small ρ we have�

Bρ(x0)

|∇uE |2 dx ≤ Cρn−δ,



REGULARITY RESULTS FOR AN OPTIMAL DESIGN PROBLEM . . . 13

for any δ > 0. A preliminary result we want to mention, that we will use later,
provides an upper bound for F . It is rather standard and is related to the thresh-
old Hölder exponent 1

2 of the function u, when (E, u) is either a solution of the
constrained problem (Pc) or a solution of the penalized problem (P ) defined in
section 1. For the proof we address the reader too [19, Lemma 2.3] and [11]. A de-
tailed proof in the case of costrained problems and for functionals satisfying general
p-polinomial growth is contained in [5].

Theorem 3.6. Let (E, u) be a Λ-minimizers of the functional F defined in (1). For
every open set U ⊂⊂ Ω there exists a constant C1, depending on U and ‖∇u‖L2(Ω),

such that for every Br(x0) ⊂ U it holds

F(E, u;Br(x0)) ≤ C1r
n−1.

As a consequence of the previous theorem we can infer, using Poincaré’s inequal-
ity and the characterization of Campanato spaces (see for example [12, Theorem

2.9]), that u ∈ C0, 12 . We deduce the following remark.

Remark 3.7. Let (E, u) be a Λ-minimizers of the functional F defined in (1). For
every open set U ⊂⊂ Ω there exists a constant C, depending on U and ‖∇u‖L2(Ω),

such that

sup
x,y∈U

|u(x)− u(y)|
|x− y| 12

≤ C ‖∇u‖L2(Ω) . (39)

Notation 3.8. In the sequel E ⊂ Ω will denote any given subset of Ω with finite
perimeter. We denote by uE, or simply by u if no confusion arises, any local
minimizers of the functional F(E, v; Ω).

• If x ∈ Rn we write x = (x′, xn), where x′ ∈ Rn−1 and xn ∈ R.
Accordingly we denote ∇′ = (∂x1

, . . . , ∂xn−1
) the gradient with respect to

the first n− 1 components.
• We will denote H = {x ∈ Ω : xn > 0},

In order to prove the main lemma of this section we introduce the following
preliminary result. For reader convenience we give here a sketch of the proof which
can be found in [22]. Actually we state here a weaker version that is suitable for
our aim.

Lemma 3.9. Let v ∈ H1(B1) be a solution of

−div(A∇u) = divG, in D′(B1),

where

G+ := 1HG ∈ C0,α(H ∩B1), G− := 1HcG ∈ C0,α(Hc ∩B1),

for some α > 0 and A is an elliptic matrix satisfying

ν|ξ|2 ≤ Aij(x)ξiξj ≤ N |ξ|2,

and

A+ := 1HA ∈ C0,α(H ∩B1), A− := 1HcA ∈ C0,α(Hc ∩B1),

for some ν,N > 0. Let us denote

CA = max{
∥∥A+

∥∥
C0,α ,

∥∥A−∥∥
C0,α}, CG = max{

∥∥G+
∥∥
C0,α ,

∥∥G−∥∥
C0,α}.
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Then v ∈ L2,n
loc (B1). Moreover, there exist two constants C = C(n, ν,N,CA, CG)

and r0 = r0(n, ν,N, ‖G‖L∞ , CA, CG) such that, for any r < r0 with Br(x0) ⊂ B1,�
Bρ(x0)

|∇v|2 dx ≤ C
(ρ
r

)n �
Br(x0)

|∇v|2 dx+ Cρn, ∀ ρ < r

4
. (40)

Proof. Fix x0 ∈ B1 and let r be such that Br(x0) ⊂ B1. Let us denote by a+ and
a− the averages of A in H ∩Br(x0) and Hc ∩Br(x0) respectively. In an analogous
way we define g+ and g− the averages of G. For x ∈ Br(x0) we define

A := a+
1H + a−1Hc , G := g+

1H + g−1Hc .

Notice that by assumption

|A(x)−A(x)| ≤ CArα and |G(x)−G(x)| ≤ CGrα, (41)

Let w be the solution of {
−div(A∇w) = divG

w = v on ∂Br(x0).

The last equation can be rewritten as
−div(a+∇w+) = 0 in Br(x0) ∩H,
−div(a−∇w−) = 0 in Br(x0) ∩Hc,

w+ = w− on Br(x0) ∩ ∂H,
a+∇w+ · en − a−∇w− · en = g+ · en − g− · en, on Br(x0) ∩ ∂H

(42)

where w+ := w1Br(x0)∩H , w− := w1Br(x0)∩Hc . Set

Dcw :=

n∑
i=1

Ain∇iw +G · en

We notice that Dcw has no jumps on the boundary thanks to the transmission
condition in (42). This allows to prove that the distributional gradient of Dcw
coincides with the point-wise one.
Step 1: Tangential derivatives of w. Let us denote with τ the general direction tan-
gent to the hyperplane ∂H. Since A and G are both constant along the tangential
directions, the classical difference quotient method gives that ∇τw ∈W 1,2

loc (Br(x0))
and

div(A∇(∇τw)) = 0 in Br(x0).

Hence, Caccioppoli’s inequality holds,�
Bρ(x)

|∇(∇τw)|2 dy ≤ c(n, ν,N)

ρ2

�
B2ρ(x)

|∇τw − (∇τw)x,2ρ|2 dy, (43)

for all balls B2ρ(x) ⊂ Br(x0) and, by De Giorgi’s regularity theorem, ∇τw is Hölder
continuous and there exists γ = γ(n, ν,N) > 0 such that if Bs(x) ⊂ Br(x0)�

Bρ(x)

|∇τw − (∇τw)x,ρ|2 dy (44)

≤ c(n, ν,N)

(
ρ

s

)n+2γ �
Bs(x)

|∇τw − (∇τw)x,s|2 dy,
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for any ρ ∈
(
0, s2
)

and

max
B ρ

2
(x)
|∇τw|2 ≤

c(n, ν,N)

ρn

�
Bρ(x)

|∇τw|2 dy. (45)

Step 2: Regularity of Dcw. First of all observe that ∇τ (Dcw) = Dc(∇τw)−G ·en.
This imply by Step 1 that the tangential derivatives of Dcw belong to L2

loc(Br(x0)).

Furthermore we can estimate directly by definition of Dcw

|∇n(Dcw)| ≤ c(n,N)|∇∇τw|,

which implies again by Step1

|∇Dcw| ≤ c(n,N)|∇∇τw|.

We can conclude that Dcw ∈ W 1,2
loc (Br(x0)). Using Poincaré’s inequality and (43),

we have �
Bρ(x)

|Dcw − (Dcw)x,ρ|2 dy ≤ c(n)ρ2

�
Bρ(x)

|∇(Dcw)|2 dy

≤ c(n,N)ρ2

�
Bρ(x)

|∇(∇τw)|2 dy

≤ c(n, ν,N)

�
B2ρ(x)

|∇τw − (∇τw)x,2ρ|2 dy,

for any B2ρ(x) ⊂ Br(x0). By (44) and (45) we infer
�
Bρ(x)

|Dcw − (Dcw)x,ρ|2 dy

≤ c(n, ν,N)

(
ρ

r

)n+2γ �
B r

2
(x)

|∇τw − (∇τw)x, r2 |
2 dy

≤ c(n, ν,N)

(
ρ

r

)n+2γ �
Br(x0)

|∇τw|2 dy,

for any x ∈ B r
4
(x0), ρ ≤ r

4 . Hence by Lemma 4.2 in [22] (see also [3, Lemma 7.51]),

Dcw is Hölder continuous and

max
B r

4
(x0)
|Dcw|2 ≤ c(n, ν,N)

�
Br(x0)

|∇τw|2 dy +

∣∣∣∣  
B r

4
(x0)

Dcw(y) dy

∣∣∣∣2
≤ c(n, ν,N)

rn

�
Br(x0)

|∇w|2 dy + 2 ‖G‖2L∞ .
(46)

Step 3: Comparison between v and w. Subtracting the equation for w from the
equation for v we get�

Br(x0)

Aij(x)
(
∇iv −∇iw

)
∇jϕdx (47)

=

�
Br(x0)

(
Aij(x)−Aij(x)

)
∇iv∇jϕdx+

�
Br(x0)

(
Gi −Gi

)
∇iϕdx
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for any ϕ ∈W 1,2
0 (Br(x0)). Choosing ϕ = v−w in the previous equation and using

assumption (41) we have�
Br(x0)

|∇v −∇w|2 dx ≤ CArα
�
Br(x0)

|∇v|2 dy + CGr
n+α, (48)

Finally we can estimate�
Bρ(x0)

|∇v|2 dy ≤ 2

�
Bρ(x0)

|∇w|2 dy + 2

�
Bρ(x0)

|∇v −∇w|2 dy

≤ 2ωnρ
n sup
B r

4

|∇w|2 + 2

�
Bρ(x0)

|∇v −∇w|2 dy,

for any ρ ≤ r
4 and observing that

sup
B r

4
(x0)

|∇w|2 = sup
B r

4
(x0)

|∇τw|2 + sup
B r

4
(x0)

|∇nw|2

≤ c(n, ν,N) sup
B r

4
(x0)

|∇τw|2 + c(ν) sup
B r

4
(x0)

|Dcw|2 + c(ν, ‖G‖∞),

by (45), (46), minimality of w and Young’s inequality we gain�
Bρ(x0)

|∇v|2 dy

≤ c(n, ν,N)

(
ρ

r

)n �
Br(x0)

|∇w|2 dy + c(n, ν, ‖G‖∞ , CA, CG)

[
rα

�
Br(x0)

|∇v|2 dy + rn
]

≤ C(n, ν,N, ‖G‖∞ , CA, CG)

{[(
ρ

r

)n
+ rα

] �
Br(x0)

|∇v|2 dy + rn

}
which leads to our aim if we apply Lemma 2.3. �

The next lemma is inspired by [11, Proposition 2.4] and is the main result of this
section.

Lemma 3.10. Let (E, u) be a Λ-minimizers of the functional F defined in (1).
There exists 0 < τ0 < 1 such that the following statement is true: for all τ ∈ (0, τ0)

there exists ε0 = ε0(τ) > 0 such that if Br(x0) ⊂⊂ Ω with r
1
2n < τ and one of the

following conditions holds:

(i) |E ∩Br(x0)| < ε0|Br|,
(ii) |Br(x0) \ E| < ε0|Br|,

(iii) There exists a halfspace H such that |(E∆H)∩Br(x0)|
|Br| < ε,

then �
Bτr(x0)

|∇u|2 dx ≤ C0τ
n

�
Br(x0)

|∇u|2 dx+ C0r
n,

for some constant C0 depending only on n, ν,N,L, LD, ‖∇u‖L2(Ω).

Proof. Let us fix Br(x0) ⊂⊂ Ω and 0 < τ < 1. Without loss of generality, we may
assume that τ < 1/4 and x0 = 0. We start proving (i), being the proof of (ii)
similar. Let us define

A0
ij := aij(x0, ur/2(x0)), B0

i := ai(x0, ur/2(x0)), f0 := a(x0, ur/2(x0)),

F0(ξ) := (A0ξ; ξ) + (B0; ξ) + f0.
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Let us denote by v the solution of the following problem

min
{
F0(w;Br/2) : w = u on ∂Br/2

}
,

where

F0(w;Br/2) :=

�
Br/2

F0(∇w) dx

We use now the following identity

(A0ξ; ξ)− (A0η; η) = (A0(ξ − η); (ξ − η)) + 2(A0η; ξ − η),

in order to deduce that

F0(u)−F0(v)

=

�
Br/2

[
(A0∇u;∇u)− (A0∇v;∇v)

]
dx+

�
Br/2

(B0;∇u−∇v) dx

=

�
Br/2

(A0(∇u−∇v); (∇u−∇v)) dx (49)

+2

�
Br/2

(A0∇v;∇u−∇v) dx+

�
Br/2

(B0;∇u−∇v) dx

By the Euler-Lagrange equation for v we deduce that the sum of the last two
integrals in the previous identity is zero being also u = v on ∂Br/2. Therefore,

using the ellipticity assumption of A0 we finally achieve that

ν

�
Br/2

|∇u−∇v|2 dx ≤ F0(u)−F0(v). (50)

We prove now that u is an ω-minimizer of F0. We start writing

F0(u) = F(E, u) + [F0(u)−F(E, u)]

≤ F(E, v) + [F0(u)−F(E, u)] (51)

= F0(v) + [F0(u)−F(E, u)] + [F(E, v)−F0(v)].

Estimate of F0(u)−F(E, u). We use (10), (39) and (39) to infer

F0(u)−F(E, u) =

�
Br/2

(
aij(x0, ur/2(x0))− aij(x, u(x))

)
∇iu∇ju dx

+

�
Br/2

(
ai(x0, ur/2(x0))− ai(x, u(x))

)
∇iu dx

+

�
Br/2

(
a(x0, ur/2(x0))− a(x, u(x))

)
dx−

�
Br/2∩E

G(x, u,∇u) dx

≤ 2LD ‖∇u‖L2(Ω)

(
r

1
2

�
Br/2

|∇u|2 dx+ rn+ 1
2

)
+ C(N,L)

�
Br/2∩E

|∇u|2 dx+ 2Lrn

(52)

where we denoted LD the greatest lipschitz constant of the data aij , bij , ai, bi, a, b
defined in (8). Now we use Lemma 3.2 to estimate

�
Br/2∩E

|∇u|2 dx ≤ |E ∩Br|1−1/s|Br|1/s
( 

Br/2

|∇u|2s
)1/s
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≤ C1/s
2

(
|E ∩Br|
|Br|

)1−1/s �
Br

(
1 + |∇u|2

)
dx. (53)

Merging the last estimate in (52) we deduce

F0(u)−F(E, u) ≤
(
LD ‖∇u‖L2(Ω) + C(N,L)C

1/s
2

)(
r

1
2 + ε

1−1/s
0

) �
Br

|∇u|2 dx

+
(
C

1/s
2 + 2L+ LD ‖∇u‖L2(Ω)

)
rn (54)

Estimate of F(E, v)−F0(v).

F(E, v)−F0(v) =

�
Br/2

(
aij(x, v(x))− aij(x0, ur/2(x0))

)
∇iv∇jv dx

+

�
Br/2

(
ai(x, v(x))− ai(x0, ur/2(x0))

)
∇iv dx (55)

+

�
Br/2

(
a(x, v(x))− a(x0, ur/2(x0))

)
dx+

�
Br/2∩E

G(x, v,∇v) dx.

If we choose now z ∈ ∂Br/2, recalling that u(z) = v(z) we deduce∣∣aij(x, v(x))− aij(x0, ur/2(x0))
∣∣

=
∣∣aij(x, v(x))− aij(x, v(z)) + aij(x, u(z))− aij(x0, ur/2(x0))

∣∣
≤ LD

(
|v(x)− v(z)|+ r

1
2 ‖∇u‖L2(Ω) + r

)
≤ LD

(
osc(u, ∂Br/2) + C(n, ν,N,L)r + r

1
2 ‖∇u‖L2(Ω) + r

)
≤ C(n, ν,N,L, LD, ‖∇u‖L2(Ω))r

1
2

where we used the fact that osc(v,Br/2) ≤ osc(u, ∂Br/2) +C(n, ν,N,L)r, (see [12,
Lemma 8.4]). Analogously we can estimate the other difference in (55), deducing

F(E, v)−F0(v) ≤ C(n, ν,N,L, LD, ‖∇u‖L2(Ω))r
1
2

(�
Br/2

|∇v|2 dx+ rn
)

+C(N,L)

(�
Br/2∩E

|∇v|2 dx+ rn
)
,

Reasoning in a similar way as in (53), we can apply the higher integrability for v
given by Lemma 3.5 and infer�

Br/2∩E
|∇v|2 dx ≤ C(n, ν,N,L)ε

1−1/s
0

(�
Br

|∇u|2 dx+ rn
)
.

Therefore we obtain

F(E, v)−F0(v) (56)

≤ C(n, ν,N,L, LD, ‖∇u‖L2(Ω))

[(
r

1
2 + ε

1−1/s
0

) �
Br

|∇u|2 dx+ rn
]
.

Finally, collecting (50), (51), (54) and (56), if we choose ε0 such that ε
1− 1

s
0 = τn we

conclude that �
Br/2

|∇u−∇v|2 dx ≤ Cτn
�
Br

|∇u|2 dx+ Crn, (57)
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for some constant C = C(n, ν,N,L, LD, ‖∇u‖L2(Ω)). On the other hand v is the

solution of a uniform elliptic equation with constant coefficients, so we have�
Bτr

|∇v|2 dx ≤ C1(n, ν,N)τn
�
Br/2

|∇v|2 dx ≤ C2(n, ν,N)τn
�
Br/2

|∇u|2 dx.

(58)
Hence we may estimate, using (57) and (58)�

Bτr

|∇u|2 dx ≤ 2

�
Bτr

|∇v −∇u|2 dx+ 2

�
Bτr

|∇v|2 dx (59)

≤ C0τ
n

�
Br

|∇u|2 dx+ C0r
n, (60)

for some constant C0 = C0(n, ν,N,L, LD, ‖∇u‖L2(Ω)).

We are left with the case (iii). Let H be the half space from the assumption and
let us denote accordingly

A0
ij(x) := aij(x, u(x)) + 1Hbij(x, u(x)),

B0
ij(x) := ai(x, u(x)) + 1Hbi(x, u(x)),

f0(x) := a(x, u(x)) + 1Hb(x, u(x)),

F0(x, ξ) := (A0(x)ξ; ξ) + (B0(x); ξ) + f0(x).

Let us denote by vH the solution of the following problem

min
{
F0(w;Br/2) : w = u on ∂Br/2

}
,

where

F0(w;Br/2) :=

�
Br/2

F0(x,∇w) dx.

Let us point out that vH solves the Euler-Lagrange equation

− 2div(A0∇vH) = divB0 in D′(Br/2). (61)

Therefore we are in position to apply Lemma 3.8 to the function vH . As a
matter of fact, from the Hölder continuity of u(x) (see Remark 3.1) we deduce
that the restrictions of A0 and B0 onto H ∩ Br and Br \ H respectively, are
Hölder continuous. We can conclude using also (39) that there exist two constants
C = C(n, ν,N,L, LD, ‖∇u‖L2(Ω)) and τ0 = τ0(n, ν,N,L, LD, ‖∇u‖L2(Ω)) such that

for τ < τ0, �
Bτr

|∇vH |2 dx ≤ Cτn
�
Br/2

|∇vH |2 dx+ Crn. (62)

In addition, using the ellipticity condition of A0 we can argue as in (49) to deduce
using also the fact that vH satisfies (61),

ν

�
Br/2

|∇u−∇vH |2 dx ≤ F0(u)−F0(vH). (63)

One more time we can prove that u is an ω- minimizer of F0. We start as above
writing

F0(u) = F(E, u) + [F0(u)−F(E, u)]

≤ F(E, vH) + [F0(u)−F(E, u)] (64)

= F0(vH) + [F0(u)−F(E, u)] + [F(E, vH)−F0(vH)].
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We can estimate the differences F0(u) − F(E, u) and F(E, vH) − F0(vH) exactly
as before using this time the higher integrability given in Lemma 3.5. We conclude
that �

Br/2

|∇u−∇vH |2 dx ≤ Cτn
�
Br

|∇u|2 dx+ Crn, (65)

for some constant C = C(n, ν,N,L, LD, ‖∇u‖L2(Ω)). From the last estimate we

can conclude the proof as before using (62) and (63). �

4. Energy density estimates

This section is devoted to prove a lower bound esimate for the functional
F(E, u;Br(x0)). Lemma 3.9 is the main tool to achieve such result. We shall
prove that the energy F decays “fast” if the perimeter of E is “small”.

Lemma 4.1. Let (u,E) be a Λ-minimizer of the functional F defined in (1).
For every τ ∈ (0, 1) there exists ε = ε1(τ) > 0 such that, if Br(x0) ⊂ Ω and
P (E;Br(x0)) < ε1r

n−1, then

F(E, u;Bτr(x0)) ≤ C1τ
n
(
F(E, u;Br(x0)) + rn

)
, (66)

for some constant C1 = C1(n, ν,N,L, LD, ‖∇u‖L2(Ω)) independent of τ and r.

Proof. Without loss of generality we may assume that τ < 1
2 . We can also assume

that x0 = 0, r = 1 by introducing the following rescaling, Er = E−x0

r , ur =

r−
1
2u(x0 + ry) and replacing Λ with Λr. Thus, we have that (Er, ur) is a Λr-

minimizer of F in Ω−x0

r . For simplicity of notation we can still denote Er by E, ur
by u and then we have to prove that, given 0 < τ < 1

2 , there exists ε1 = ε1(τ) such
that, if P (E;B1) < ε1, then

F(E, u;Bτ ) ≤ C1τ
n
(
F(E, u;B1) + r

)
.

Note that, since P (E;B1) is small, holds, by the relative isoperimetric inequality
|B1 ∩ E| or |B1 \ E| is small. Thus Lemma 3.9 holds. Assuming that |B1 \ E| is
small and using the relative isoperimetric inequality we can deduce that,

|B1 \ E| ≤ c(n)P (E;B1)
n
n−1 .

If we choose as a representative of E the set of points of density one, we get, by
Fubini’s theorem,

|B1 \ E| ≥
� 2τ

τ

Hn−1(∂Bρ \ E) dρ.

Combining these inequalities we can choose ρ ∈ (τ, 2τ) such that

Hn−1(∂Bρ \ E) ≤ c(n)

τ
P (E;B1)

n
n−1 ≤ c(n)ε

1
n−1

1

τ
P (E;B1). (67)

Now we set F = E ∪Bρ and observe that

P (F ;B1) ≤ P (E;B1 \Bρ) +Hn−1(∂Bρ \ E).

If we choose (u, F ) to test the Λr-minimality of (u,E) we get

P (E;B1) +

�
B1

(
F (x, u,∇u) + 1EG(x, u,∇u)

)
dx ≤
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≤ P (F ;B1) +

�
B1

(
F (x, u,∇u) + 1FG(x, u,∇u)

)
dx+ Λr|F \ E|

≤ P (E;B1 \Bρ) +Hn−1(∂Bρ \ E) +

�
B1

(
F (x, u,∇u) + 1FG(x, u,∇u)

)
dx+ Λr|Bρ|.

Then getting rid of the common terms we obtain

P (E;Bρ) ≤ Hn−1(∂Bρ \ E) +

�
Bρ

G(x, u,∇u) dx+ Λr|Bρ|.

Now if we choose ε1 such that c(n)ε
1

n−1

1 ≤ τn+1 we have from (67)

P (E;Bρ) ≤ τnP (E;B1) +

�
Bρ

G(x, u,∇u) dx+ Λr|Bρ|.

Then we choose ε1 satisfying c(n)ε
n
n−1

1 ≤ ε0(2τ)|B1| to obtain using Lemma 3.9
and growth conditions (9), (10),�

Bρ

G(x, u,∇u) dx ≤ C(N,L)

�
Bρ

(1 + |∇u|2) dx

≤ C(n, ν,N,L, LD, ‖∇u‖L2(Ω))τ
n

�
B1

(1 + |∇u|2) dx

≤ C(n, ν,N,L, LD, ‖∇u‖L2(Ω))τ
n

�
B1

G(x, u,∇u) dx.

Finally, we recall that ρ ∈ (τ, 2τ) to get

P (E;Bτ ) ≤ τnP (E;B1)+C(n, ν,N,L, LD, ‖∇u‖L2(Ω))τ
n

�
B1

G(x, u,∇u) dx+Λr|B2τ |.

From this estimate the result easily follows. �

Theorem 4.2 (Density lower bound). Let (u,E) be a Λ-minimizer of F and U ⊂⊂
Ω. There exists a costant C depending only on n, ν,N,L, LD, ‖∇u‖L2(Ω), such that

for every x0 ∈ ∂E and Br(x0) ⊂ U ,

P (E,Br(x0)) ≥ Crn−1.

Moreover, Hn−1((∂E \ ∂∗E) ∩ Ω) = 0.

Proof. The proof follows from Lemma 3.9 and Lemma 4.1 in a standard way, see
[11, Proposition 4.4] or [3, Theorem 7.21]. �

5. Compactness for sequences of minimizers

In this section we basically follow the route given in [20, Part III]. We start
proving a standard compactness result.

Lemma 5.1 (Compactness). Let (Eh, uh) be a sequence of Λh-minimizers of F
in Ω such that suph F(E, uh; Ω) < +∞ and Λh → Λ ∈ R+. There exists a (not
relabelled) subsequence and a Λ-minimizer of F , (u,E), such that for every open
set U ⊂⊂ Ω, it holds

Eh → E in L1(U), uh → u in H1(U), P (Eh, U)→ P (E,U).

In addition,

if xh ∈ ∂Eh ∩ U and xh → x ∈ U, then x ∈ ∂E ∩ U, (68)
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if x ∈ ∂E ∩ U there exists xh ∈ ∂Eh ∩ U such that xh → x. (69)

Finally if we assume also ∇uh ⇀ 0 weakly in L2
loc(Ω,Rn) and Λh → 0, then E is a

local minimizer of the perimeter, that is

P (E,Br(x0)) ≤ P (F,Br(x0)),

for every F such that F∆E ⊂⊂ Br(x0) ⊂ Ω.

Proof. We start observing that, by the boundedness condition on F(E, uh; Ω), we
can assume that, uh weakly converges to u in H1(U) and strongly in L2(U), and
1Eh converges to 1E in L1(U). Using lower semicontinuity we are going to prove
the Λ-minimality of (u,E). Let us fix Br(x0) ⊂⊂ Ω and assume for simplicity
of notation that x0 = 0. Let (v, F ) be a test pair such that F∆E ⊂⊂ Br and
supp(u − v) ⊂⊂ Br. We can handle the perimeter term as in [20], eventually
passing to a subsequence and using Fubini’s theorem, we can choose ρ < r such
that, once again, F∆E ⊂⊂ Bρ and supp(u− v) ⊂⊂ Bρ, and in addition,

Hn−1(∂∗F ∩ ∂Bρ) = Hn−1(∂∗Eh ∩ ∂Bρ) = 0,

and

lim
h→0
Hn−1(∂Bρ ∩ (E∆Eh)) = 0. (70)

Now we choose a cut-off function ψ ∈ C1
0 (Br) such that ψ ≡ 1 in Bρ, and define

vh = ψv+ (1−ψ)uh, Fh := (F ∩Bρ)∪ (Eh \Bρ) to test the minimality of (uh, Eh).
Thanks to the Λh-minimality of (uh, Eh) we have�

Br

(
F (x, uh,∇uh) + 1EhG(x, uh,∇uh)

)
dx+ P (Eh, Br) ≤ (71)

≤
�
Br

(
F (x, vh,∇vh) + 1FhG(x, vh,∇vh)

)
dx+ P (Fh, Br) + Λh|Fh∆Eh|

≤
�
Br

(
F (x, vh,∇vh) + 1FhG(x, vh,∇vh)

)
dx+ P (F,Bρ) + Λh|Fh∆Eh|

+P (Eh, Br \Bρ) + εh.

The mismatch term εh = Hn−1(∂Bρ ∩ (F (1)∆E
(1)
h )) appears because F is not in

general a compact variation of Eh. Nevertheless we have that εh → 0 because of
the assumption (70) (see also [20, Theorem 21.14]).
Now we use the convexity of F and G with respect to the z variabile to deduce�

Br

(
F (x, vh,∇vh) + 1FhG(x, vh,∇vh)

)
dx

≤
�
Br

(
F (x, vh, ψ∇v + (1− ψ)∇uh) + 1FhG(x, vh, ψ∇v + (1− ψ)∇uh)

)
dx

+

�
Br

〈∇zF (x, vh,∇vh),∇ψ(v − uh)〉 dx

+

�
Br

1Fh 〈∇zG(x, vh,∇vh),∇ψ(v − uh)〉 dx

where last two terms in the previous estimate tend to zero for h→∞. As a matter
of fact the term ∇ψ(v−uh) strongly converges to zero in L2, being u = v in Br \Bρ
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and the first part in the scalar poduct weakly converges in L2. Then using again
the convexity of F and G in the z variable we obtain, for some infinitesimal σh,�

Br

(
F (x, vh,∇vh) + 1FhG(x, vh,∇vh)

)
dx (72)

≤
�
Br

ψ
(
F (x, vh,∇v) + 1FhG(x, vh,∇v)

)
dx

+

�
Br

(1− ψ)
(
F (x, vh,∇uh) + 1FhG(x, vh,∇uh)

)
dx+ σh.

Finally, we connect (71) and (72) and pass to the limit with respect to h using the
lower semicontinuity on the left hand side. For the right hand side we observe that
1Eh → 1E and 1Fh → 1F in L1(Br) and use also the equi-integrability of {∇uh}
to conclude,�

Br

ψ
(
F (x, u,∇u) + 1EG(x, u,∇u)

)
dx+ P (E,Bρ) ≤

≤
�
Br

ψ
(
F (x, v,∇v) + 1FG(x, v,∇v)

)
dx+ P (F,Bρ) + Λ|F∆E|.

Letting ψ ↓ 1Bρ we finally get�
Bρ

(
F (x, u,∇u) + 1EG(x, u,∇u)

)
dx+ P (E,Bρ) ≤ (73)

≤
�
Bρ

(
F (x, v,∇v) + 1FG(x, v,∇v)

)
dx+ P (F,Bρ) + Λ|F∆E|,

and this proves the Λ-minimality of (u,E).
To prove the strong convergence of ∇uh to ∇u in L2(Br) we start observing that
by (71) and (72) applied using (u,Eh) to test the minimality of (uh, Eh) we get�

Br

ψ
(
F (x, uh,∇uh) + 1EhG(x, uh,∇uh)

)
dx

≤
�
Br

ψ
(
F (x, u,∇u) + 1EhG(x, u,∇u)

)
dx+ σh

Then from equiintegrability of {∇uh} in L2(U) and recalling that 1Eh → 1E in
L1(U), we obtain

lim sup
h→+∞

�
Br

ψ
(
F (x, uh∇uh) + 1EhG(x, uh,∇uh)

)
dx

≤
�
Br

ψ
(
F (x, u,∇u) + 1EG(x, u,∇u)

)
dx.

The opposite inequality can be obtained by semicontiuity then we can deduce,

lim
h→+∞

�
Br

ψ
(
F (x, uh,∇uh) + 1EhG(x, uh,∇uh)

)
dx (74)

=

�
Br

ψ
(
F (x, u,∇u) + 1EG(x, u,∇u)

)
dx.

Now from ellepticity condition (9) we infer, for some σh → 0,

ν

�
Br

ψ|∇uh −∇u|2 dx ≤
�
Br

ψ
(
F (x, uh,∇uh)− F (x, u,∇u)

)
dx
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+

�
Br

ψ1E

(
G(x, uh,∇uh)−G(x, u,∇u)

)
dx+ σh (75)

Passing to the limit we obtain

lim
h→+∞

�
Br

ψ|∇uh −∇u|2 dx = 0.

Finally testing the minimality of (uh, Eh) with the pair (u,E) we also get

lim
h→+∞

P (Eh, Bρ) = P (E,Bρ).

With an usual argument we can deduce uh → u in W 1,2(U) and P (Eh, U) →
P (E,U) for every open set U ⊂⊂ Ω. The topological information stated in (68)
and (69) follows as in [20, Theorem 21.14] because doesn’t depend on the presence
of the integral bulk part. �

6. Decay of the excess

6.1. Excess and height bound. Now we introduce the usual quantities involved
in regularity theory. Given x ∈ ∂E, a scale r > 0 and a direction ν ∈ Sn−1 we
define the spherical excess

e(x, r, ν) :=
1

rn−1

�
∂E∩Br(x)

|νE(y)− ν|2

2
dHn−1(y),

and

e(x, r) := min
ν∈Sn−1

e(x, r, ν).

In addition we define the rescaled Dirichlet integral of u

D(x, r) :=
1

rn−1

�
Br(x)

|∇u|2dy.

The following height bound lemma is a standard step in the proof of regularity.

Lemma 6.1 (Height bound). Let (u,E) be a Λ-minimizer of F in Br(x0). There
exist two positive constants C and ε, depending on ‖∇u‖L2(Br(x0)), such that if

x0 ∈ ∂E and

e(x, r, ν) < ε

for some ν ∈ Sn−1 then

sup
y∈∂E∩Br/2(x0)

|〈ν, y − x0〉|
r

≤ Ce(x, r, ν)
1

2(n−1)

Proof. The proof of this lemma is almost equal to the one of [20, Theorem 22.8].
As a matter of fact it follows from the density lower bound (see Theorem 4.2), the
relative isoperimetric inequality and the compactness result proved above. �

Proceeding as in [20] we give the following Lipschitz approximation lemma which
is a consequence of the height bound lemma. Its proof follows exactly as in [20,
Theorem 23.7].

Theorem 6.2 (Lipschitz approximation). Let (u,E) be a Λ-minimizer of F in
Br(x0). There exist two positive constants C3 and ε3, depending on ‖∇u‖L2(Br(x0)),

such that

if x0 ∈ ∂E and e(x0, r, en) < ε3
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then there exists a Lipschitz function f : Rn−1 → R such that

sup
x′∈Rn−1

|f(x′)|
r

≤ C3e(x0, r, en)
1

2(n−1) , ‖∇′f‖L∞ ≤ 1

and

1

rn−1
Hn−1((∂E∆Γf ) ∩Br/2(x0)) ≤ C3e(x0, r, en),

where Γf is the graph of f . Moreover f is “almost harmonic” in the sense that

1

rn−1

�
Bn−1
r/2

(x′0)

|∇′f |2 dx′ ≤ C3e(x0, r, en).

Finally we shall need the following reverse Poincaré inequality which can be
proved exactly as in the case of Λ-minimizers of the perimeter (see [20, Theorem
24.1] ).

Theorem 6.3 (Reverse Poincaré). Let (u,E) be a Λ-minimizer of F in Br(x0).
There exist two positive constants ε4 and C4 such that if x0 ∈ ∂E and e(x0, r, ν) <
ε4 then

e(x0, r/2, ν) ≤ C4

(
1

rn+1

�
∂E∩Br(x0)

| 〈ν, x− x0〉 − c|2dHn−1 +D(x0, r) + r

)
,

for every c ∈ R.

6.2. Weak Euler-Lagrange equation. The last ingredient to prove the ex-
cess improvement is the following Euler-Lagrange equation that we state for Λr-
minimizers of the rescaled functional Fr defined below. For the sake of simplicity
we will denote A1(x, s) the matrix whose entries are ahk(x, s), A2(x, s) the vector of
components ah(x, s), A3(x, s) = a(x, s) and similarly for Bi, i = 1, 2, 3. Accordingly
we define

Fr(w,D) :=

�
B1

[
Fr(x, u,∇u) + 1DGr(x, u,∇u)

]
dx

=

�
B1

[
〈(A1r + 1DB1r)∇w,∇w〉+

√
r〈A2r + 1DB2r,∇w〉+ r(A3r + 1DB3r)

]
dx,

where r > 0, x0 ∈ Ω, Air := Ai(x0 + ry,
√
rw), Bir := Bi(x0 + ry,

√
rw), for

i = 1, 2, 3. The argument used to prove the next result is similar to the one in [3,
Theorem 7.35].

Theorem 6.4 (Weak Euler-Lagrange equation). Let (u,E) be a Λr-minimizer of
Fr in B1. For every vector field X ∈ C1

0 (B1,Rn) and for some constant C =
C(N,LD, sup |X|, sup |∇X|) > 0 it holds

�
∂E

divτX dHn−1 ≤ C
�
B1

(
|∇u|2 + r

)
dx+ Λr

�
∂E

|X| dHn−1, (76)

where LD is the greatest Lipschitz constant of the data aij , bij , ai, bi, a, b, and divτ
denotes the tangential divergence on ∂E.
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Proof. Let us fix X ∈ C1
0 (B1,Rn). We set Φt(x) = x + tX(x), for any t > 0,

Et = Φt(E) and ut = u ◦ Φ−1
t . From the Λr-minimality it follows

[P (Et, B1)− P (E,B1)] + Λr|Et∆E|

+

�
B1

[Fr(y, ut,∇ut) + 1Et(y)Gr(y, ut,∇ut)] dy

−
�
B1

[Fr(x, u,∇u) + 1E(x)Gr(x, u,∇u)] dx ≥ 0.

(77)

In order to obtain (76) we will divide by t and pass to the upper limit as t → 0+.
Let us study these terms separately. The first variation of the area gives

lim
t→0+

1

t
[P (Et, B1)− P (E,B1)] =

�
∂E

divτX dHn−1. (78)

We can deal with the second term observing that

lim
t→0+

|Et∆E|
t

≤
�
∂E

|X · νE | dHn−1, (79)

(see for instance [14, Theorem 3.2]). In the first bulk term we make the change of
variables y = Φt(x) with x ∈ B1 and t > 0, taking into account that

∇Φ−1
t (Φt(x)) = I − t∇X(x) + o(t), JΦt(x) = 1 + tdivX(x) + o(t).

Thus we gain�
B1

[
Fr(y, ut,∇ut) + 1Et(y)Gr(y, ut,∇ut)

]
dy

=

�
B1

[
Fr(Φt(x), u,∇u) + 1E(x)Gr(Φt(x), u,∇u)

]
(1 + tdivX) dx

− t
�
B1

[
2
〈
C1∇u∇X,∇u

〉
+
√
r
〈
C2,∇u∇X

〉]
dx+ o(t),

where we set

Ci := Ãir + 1EB̃ir = Air(Φt(x), u) + 1E(x)Bir(Φt(x), u),

for i = 1, 2, 3. By simple calculations we obtain�
B1

[
Fr(y, ut,∇ut) + 1Et(y)Gr(y, ut,∇ut)

]
dy

−
�
B1

[
Fr(x, u,∇u) + 1E(x)Gr(x, u,∇u)

]
dx

=

�
B1

{
Fr(Φt(x), u,∇u) + 1E(x)Gr(Φt(x), u,∇u)− [Fr(x, u,∇u) + 1E(x)Gr(x, u,∇u)]

}
dx

+ t

[ �
B1

[
Fr(Φt(x), u,∇u) + 1E(x)Gr(Φt(x), u,∇u)

]
divX dx

−
�
B1

[
2
〈
C1∇u∇X,∇u

〉
+
√
r
〈
C2,∇u∇X

〉]
dx

]
+ o(t).

(80)
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Let us estimate the first of the three terms. By Lipschitz continuity and Young’s
inequality we get�
B1

{〈
Fr(Φt(x), u,∇u) + 1E(x)Gr(Φt(x), u,∇u)− [Fr(x, u,∇u) + 1E(x)Gr(x, u,∇u)]

}
dx

≤ c(LD)t

�
B1

|X|[|∇u|2 +
√
r|∇u|+ r] dx ≤ c(LD)t

�
B1

|X|[|∇u|2 + r] dx.

Finally, dividing by t and passing to the upper limit as t→ 0+ we infer

lim sup
t→0+

1

t

[ �
B1

[Fr(y, ut,∇ut) + 1Et(y)Gr(y, ut,∇ut)] dy

−
�
B1

[Fr(x, u,∇u) + 1EGr(x, u,∇u)] dx

]
≤ c(LD)

�
B1

|X|[|∇u|2 + r] dx+

�
B1

[Fr(x, u,∇u) + 1EGr(x, u,∇u)]divX dx

−
�
B1

[
2
〈
(A1r + 1EB1r)∇u∇X,∇u

〉
+
√
r
〈
(A2r + 1EB2r),∇u∇X

〉]
dx.

(81)

Passing to the upper limit as t→ 0+ and putting (78), (79), (81) together we get�
∂E

divτX dHn−1

≤ c(LD)

�
B1

|X|[|∇u|2 + r] dx+

∣∣∣∣ �
B1

[Fr(x, u,∇u) + 1EGr(x, u,∇u)]divX dx

∣∣∣∣
+

�
B1

∣∣2〈(A1r + 1EB1r)∇u∇X,∇u
〉

+
√
r
〈
(A2r + 1EB2r),∇u∇X

〉∣∣ dx+ Λr

�
∂E

|X| dHn−1

≤ C
�
B1

(
|∇u|2 + r

)
dx+ Λr

�
∂E

|X| dHn−1,

where C = C(N,LD, sup |X|, sup |∇X|).
�

7. Excess improvement

Theorem 7.1 (Excess improvement). For every τ ∈
(
0, 1

2

)
and M > 0 there exists

a constant ε5 = ε5(τ,M) ∈ (0, 1) such that if (u,E) is a Λ-minimizer of F in
Br(x0) with x0 ∈ ∂E and

e(x0, r) ≤ ε5 and D(x0, r) + r ≤Me(x0, r) (82)

then there exists a positive constant C5, depending on ‖∇u‖L2(Br(x0)), such that

e(x0, τr) ≤ C5(τ2e(x0, r) +D(x0, 2τr) + τr).

Proof. Without loss of generality we may assume that τ < 1
8 . Let us rescale and

assume by contradiction that there exists an infinitesimal sequence {εh}h∈N ⊆ R+,
a sequence {rh}h∈N ⊆ R+ and a sequence {(uh, Eh)}h∈N of Λrh-minimizers of Frh
in B1, with equibounded energies, such that, denoting by eh the excess of Eh and
by Dh the rescaled Dirichlet integral of uh, we have

eh(0, 1) = εh, Dh(0, 1) + rh ≤Mεh
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and

eh(0, τ) > C5(τ2e(0, 1) +D(0, 2τ) + τrh),

with some positive constant C5 to be chosen. Up to rotating each Eh we may also
assume that for all h ∈ N

eh(0, 1) =
1

2

�
∂Eh∩B1

|νEh − en|2 dHn−1.

Step 1. Thanks to the Lipschitz approximation theorem, for h sufficiently large,
there exists a 1-Lipschitz function fh : Rn−1 → R such that

sup
Rn−1

|fh| ≤ C3ε
1

2(n−1)

h , Hn−1((∂Eh∆Γfh)∩B 1
2
) ≤ C3εh,

�
Bn−1

1
2

|∇′fh|2 dx′ ≤ C3εh.

(83)
We define

gh(x′) :=
fh(x′)− ah√

εh
, where ah =

�
Bn−1

1
2

fh dx
′

and we assume up to a subsequence that {gh}h∈N converges weakly in H1(Bn−1
1
2

)

and strongly in L2(Bn−1
1
2

) to a function g.

We prove that g is harmonic in Bn−1
1
2

. It’s enough show that

lim
h→+∞

1
√
εh

�
Bn−1

1
2

〈∇′fh,∇′φ〉√
1 + |∇′fh|2

dx′ = 0, (84)

for all φ ∈ C1
0 (Bn−1

1
2

); indeed, if φ ∈ C1
0 (Bn−1

1
2

), by weak convergence we have

�
Bn−1

1
2

〈∇′g,∇′φ〉 dx′ = lim
h→+∞

1
√
εh

�
Bn−1

1
2

〈∇′fh,∇′φ〉 dx′

= lim
h→+∞

1
√
εh

{�
Bn−1

1
2

〈∇′fh,∇′φ〉√
1 + |∇′fh|2

dx′ +

�
Bn−1

1
2

[
〈∇′fh,∇′φ〉 −

〈∇′fh,∇′φ〉√
1 + |∇′fh|2

]
dx′
}
.

Using the lipschitz-continuity of fh and the third equation in (83) we infer that the
second term in the previous equality is infinitesimal:

lim sup
h→+∞

1
√
εh

∣∣∣∣ �
Bn−1

1
2

[
〈∇′fh,∇′φ〉 −

〈∇′fh,∇′φ〉√
1 + |∇′fh|2

]
dx′
∣∣∣∣

≤ lim sup
h→+∞

1
√
εh

�
Bn−1

1
2

|∇′fh||∇′φ|
√

1 + |∇′fh|2 − 1√
1 + |∇′fh|2

dx′

≤ lim sup
h→+∞

1

2
√
εh

�
Bn−1

1
2

|∇′φ||∇′fh|2 dx′ ≤ lim
h→+∞

C3 ‖∇′φ‖∞
√
εh

2
= 0.

Therefore, we can prove (84). We fix δ > 0 so that sptφ× [−2δ, 2δ] ⊆ B 1
2
, choose a

cut-off function ψ : R→ [0, 1] with sptψ ⊆ (−2δ, 2δ), ψ = 1 in (−δ, δ) and apply to
Eh the weak Euler-Lagrange equation with X = φψen. By the height bound, for h
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sufficiently large it holds that ∂Eh ∩B 1
2
⊆ Bn−1

1
2

× (−δ, δ). Plugging X in the weak

Euler-Lagrange equation and using the assumption in (82), we have

− γ
�
∂Eh∩B 1

2

〈νEh , en〉〈∇′φ, ν′Eh〉 dH
n−1

≤ c(N,LD, φ, ψ)

�
B 1

2

(
|∇uh|2 + rh

)
dx+ Λrh

�
∂Eh∩B 1

2

|φψ| dHn−1

≤ c(n,N,Λ, LD, φ, ψ)εh.

Therefore, if we replace φ by −φ, we infer

lim
h→+∞

1
√
εh

�
∂Eh∩B 1

2

〈νEh , en〉〈∇′φ, ν′Eh〉 dH
n−1 = 0. (85)

Decomposing ∂Eh ∩B 1
2

=
(
[Γfh ∪ (∂Eh \ Γfh)] \ (Γfh \ ∂Eh)

)
∩B 1

2
, we deduce

− 1
√
εh

�
∂Eh∩B 1

2

〈νEh , en〉〈∇′φ, ν′Eh〉 dH
n−1 =

1
√
εh

[
−
�

Γfh∩B 1
2

〈νEh , en〉〈∇′φ, ν′Eh〉 dH
n−1

−
�

(∂Eh\Γfh )∩B 1
2

〈νEh , en〉〈∇′φ, ν′Eh〉 dH
n−1 +

�
(Γfh\∂Eh)∩B 1

2

〈νEh , en〉〈∇′φ, ν′Eh〉 dH
n−1

]
.

(86)

Since by the second inequality in (83) we have

∣∣∣∣ 1
√
εh

�
(∂Eh\Γfh )∩B 1

2

〈νEh , en〉〈∇′φ, ν′Eh〉 dH
n−1

∣∣∣∣ ≤ C3
√
εh sup

Rn−1

|∇′φ|,

∣∣∣∣ 1
√
εh

�
(Γfh\∂Eh)∩B 1

2

〈νEh , en〉〈∇′φ, ν′Eh〉 dH
n−1

∣∣∣∣ ≤ C3
√
εh sup

Rn−1

|∇′φ|,

then by (85) and the area formula, we infer

0 = lim
h→+∞

−1
√
εh

�
Γfh∩B 1

2

〈νEh , en〉〈∇′φ, ν′Eh〉 dH
n−1 = lim

h→+∞

1
√
εh

�
Bn−1

1
2

〈∇′fh,∇′φ〉√
1 + |∇′fh|2

dx′.

This proves that g is harmonic.
Step 2. The proof of this step now follows exactly as in [FJ] using the eight bound
lemma and the revers Poincaré inequality. We give it here to be thorough. By the
mean value property of harmonic functions, Lemma 25.1 in [20], Jensen inequality,
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semicontinuity and the third inequality in (83) we deduce that

lim
h→+∞

1

εh

�
Bn−1

2τ

|fh(x′)− (fh)2τ − 〈(∇′fh)2τ , x
′〉|2 dx′

=

�
Bn−1

2τ

|g(x′)− (g)2τ − 〈(∇′g)2τ , x
′〉|2 dx′

=

�
Bn−1

2τ

|g(x′)− g(0)− 〈∇′g(0), x′〉|2 dx′

≤ c(n)τn−1 sup
x′∈Bn−1

2τ

|g(x′)− g(0)− 〈∇′g(0), x′〉|2

≤ c(n)τn+3

�
Bn−1

1
2

|∇′g|2 dx′ ≤ c(n)τn+3 lim inf
h→+∞

�
Bn−1

1
2

|∇′gh|2 dx′

≤ C̃(n,C3)τn+3.

On one hand, using the area formula, the mean value property, the previous in-
equality and setting

ch :=
(fh)2τ√

1 + |(∇′fh)2τ |2
, νh :=

(−(∇′fh)2τ , 1)√
1 + |(∇′fh)2τ |2

,

we have

lim sup
h→+∞

1

εh

�
∂Eh∩Γfh∩B2τ

|〈νh, x〉 − ch|2 dHn−1

= lim sup
h→+∞

1

εh

�
∂Eh∩Γfh∩B2τ

|〈−(∇′fh)2τ , x
′〉+ fh(x′)− (fh)2τ |

1 + |(∇′fh)2τ |2
2√

1 + |∇′fh(x′)|2 dx′

≤ lim
h→+∞

1

εh

�
Bn−1

2τ

|fh(x′)− (fh)2τ − 〈(∇′fh)2τ , x
′〉|2 dx′ ≤ C̃(n,C3)τn+3.

On the other hand, arguing as in Step 1, we immediately get from the height bound
and the first two inequalities in (83) that

lim
h→+∞

1

εh

�
(∂Eh\Γfh )∩B2τ

|〈νh, x〉 − ch|2 dHn−1 = 0.

Hence we conclude that

lim sup
h→+∞

1

εh

�
∂Eh∩B2τ

|〈νh, x〉 − ch|2 dHn−1 ≤ C̃(n,C3)τn+3. (87)
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We claim that the sequence {eh(0, 2τ, νh)}h∈N is infinitesimal; indeed, by the defi-
nition of excess, Jensen’2 inequality and the third inequality in (83) we have

lim sup
h→+∞

�
∂Eh∩B2τ

|νEh − νh|2 dHn−1

≤ lim sup
h→+∞

[
2

�
∂Eh∩B2τ

|νEh − en|2 dHn−1 + 2|en − νh|2Hn−1(∂Eh ∩B2τ )

]
≤ lim sup

h→+∞

[
4εh + 2Hn−1(B2τ )

|((∇′fh)2τ ,
√

1 + |(∇′fh)2τ |2 − 1)|2

1 + |(∇′fh)2τ |2

]
≤ lim sup

h→+∞

[
4εh + 4Hn−1(B2τ )|(∇′fh)2τ |2

]
≤ lim sup

h→+∞

[
4εh + 4

�
Bn−1

1
2

|∇′fh|2 dx′
]
≤ lim
h→+∞

[4εh + 4C3εh] = 0.

Therefore applying the reverse Poicaré’s inequality and (87) we have for h large
that

eh(0, τ) ≤ eh(0, τ, νh) ≤ C4(C̃τ2eh(0, 1) +D(0, 2τ) + 2τrh),

which is a contradiction if we choose C5 > C4 max{C̃, 2}. �

8. Proof of the main theorem

The proof works exactly as in [11]. We give here some details to emphasize the
dependence of ε appearing in the statement of Theorem 1.3 from the structural
data of the functional. The proof is divided in four steps.
Step 1. For every τ ∈ (0, 1) there exists ε6 = ε6(τ) > 0 such that if e(x, r) ≤ ε6

then

D(x, τr) ≤ C0τD(x, r),

where C0 is from Lemma 3.9. Assume by contradiction that for some τ ∈ (0, 1) there
exist two positive sequences εh and rh and a sequence (uh, Eh) of Λrh− minimizers
of Frh in B1 with equibounded energies, such that, denoting by eh the excess of
Eh and by Dh the rescaled Dirichlet integral of uEh , we have that 0 ∈ ∂Eh,

eh(0, 1) = εh → 0 and Dh(0, τ) > C0τDh(0, 1). (88)

Thanks to the energy upper bound (Theorem 3.6) and the compactness lemma
(Lemma 5.1) we may assume that Eh → E in L1(B1) and 0 ∈ ∂E. Since, by lower
semicontinuity, the excess of E at 0 is null, E is a half space in B1, say H. In
particular, for h large it holds

|(Eh∆H) ∩B1| < ε0(τ)|B1|,

where ε0 is from Lemma 3.9, which gives a contradiction with the inequality (88).
Step 2. Let U ⊂⊂ Ω be an open set. Prove that for every τ ∈ (0, 1) there exist
two positive constants ε = ε(τ, U) and C6 such that if x0 ∈ ∂E, Br(x0) ⊂ U and
e(x0, r) +D(x0, r) + r < ε then

e(x0, τr) +D(x0, τr) + τr ≤ C6τ(e(x0, r) +D(x0, r) + r). (89)

Fix τ ∈ (0, 1) and assume without loss of generality that τ < 1
2 We can distinguish

two cases.
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Case 1: D(x0, r) + r ≤ τ−ne(x0, r). If e(x0, r) < min{ε5(τ, τ−n), ε6(2τ)} it follows
from Theorem 7.1 and Step 1 that

e(x0, τr) ≤ C5(τ2e(x0, r) +D(x0, 2τr) + τr) ≤ C5(τ2e(x0, r) + 2C0D(x0, τr) + τr).

Case 2: e(x0, r) ≤ τn(D(x0, r) + r). By the property of the excess at different
scales, we infer

e(x0, τr) ≤ τ1−ne(x0, r) ≤ τn(D(x0, r) + r).

We conclude that choosing ε = min{ε5(τ, τ−n), ε6(2τ), ε6(τ)}, inequality (89) is
verified.
Step 3. Fix σ ∈ (0, 1

2 ) and choose τ0 ∈ (0, 1) such that C6τ0 ≤ τ2σ
0 . Let U ⊂⊂ Ω

be an open set. We define

Γ ∩ U :={x ∈ ∂E ∩ U : e(x, r) +D(x, r) + r < ε(τ0, U)

for some r > 0 such that Br(x0) ⊂ U}.

Note that Γ∩U is relatively open in ∂E. We show that Γ∩U is a C1,σ-hypersurface.
Indeed inequality (89) implies via standard iteration argument that if x0 ∈ Γ ∩ U
there exist r0 > 0 and a neighborhood V of x0 such that for every x ∈ ∂E ∩ V it
holds

e(x, τk0 r0) +D(x, τk0 r0) + τk0 r0 ≤ τ2σk
0 , for k ∈ N0.

In particular e(x, τk0 r0) ≤ τ2σk
0 and, arguing as in [11], we obtain that for every

x ∈ ∂E ∩ V and 0 < s < t < r0 it holds

|(νE)s(x)− (νE)t(x)| ≤ ctσ,
for some constant c = c(n, τ0, r0), where

(νE)t(x) =

 
∂E∩Bt(x)

νE(y) dHn−1.

The previous estimate first implies that Γ ∩ U is C1. By a standard argument
we then deduce again from the same estimate that Γ ∩ U is a C1,σ-hypersurface.
Finally we define Γ := ∪i(Γ ∩ Ui), where (Ui)i is an increasing sequence of open
sets such that Ui ⊂⊂ Ω and Ω = ∪iUi.
Step 4. Finally we prove that there exists η > 0 such that

Hn−1−η(∂E \ Γ) = 0.

Setting Σ = {x ∈ ∂E \Γ : lim
r→0
D(x, r) = 0}, by Lemma 3.2, ∇u ∈ L2s

loc(Ω) for some

s > 1, depending only on ν,N,L, n, and we have that

dimH
(
{x ∈ Ω : lim sup

r→0
D(x, r) > 0}

)
≤ n− s.

The conclusion follows as in [11] showing that Σ = ∅ when n ≤ 7 and dimH(Σ) ≤
n− 8 for n ≥ 8.
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