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Abstract. We consider integral area-minimizing 2-dimensional currents T in U ⊂ R2+n

with ∂T = Q JΓK, where Q ∈ N \ {0} and Γ is sufficiently smooth. We prove that, if q ∈ Γ

is a point where the density of T is strictly below Q+1
2 , then the current is regular at q.

The regularity is understood in the following sense: there is a neighborhood of q in which
T consists of a finite number of regular minimal submanifolds meeting transversally at Γ
(and counted with the appropriate integer multiplicity). In view of well-known examples,
our result is optimal, and it is the first nontrivial generalization of a classical theorem of
Allard for Q = 1. As a corollary, if Ω ⊂ R2+n is a bounded uniformly convex set and
Γ ⊂ ∂Ω a smooth 1-dimensional closed submanifold, then any area-minimizing current T
with ∂T = Q JΓK is regular in a neighborhood of Γ.

Contents

0. Introduction 2
0.1. Acknowledgments 5
1. Outline of the proof 5
2. Convex hull property and local statement 8
3. Tangent cones 10
4. Uniqueness of tangent cones and first decomposition 12
4.1. Decay towards the cone 13
4.2. From Theorem 4.7 to Theorem 4.3 14
4.3. From Theorem 4.6 to Theorem 2.5 16
5. Multi-valued functions 17
5.1. Monotonicity of the frequency function 18
5.2. Classification of tangent functions 19
5.3. Proof of Theorem 5.5 21
6. First Lipschitz approximation 21
7. Harmonic approximation 25
7.1. Technical lemmas 31
8. Higher integrability estimate 36
8.1. Higher integrability for Dir-minimizers 36
8.2. Improved excess estimates 38
8.3. Proof of Theorem 8.1 39
9. Strong Lipschitz approximation 39

1



2 C. DE LELLIS, S. NARDULLI, AND S. STEINBRÜCHEL
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0. Introduction

Consider an area-minimizing integral current T of dimension m ≥ 2 in Rm+n and assume
that ∂T is a smooth submanifold, namely ∂T =

∑
iQi JΓiK, where Qi are (positive) integer

multiplicites and Γi finitely many pairwise disjoint oriented smooth and connected sub-
manifolds of dimension m− 1. The present paper is focused on understanding how regular
T can be at points p ∈ ∪iΓi and our primary interest is that the integer multiplicities
are allowed to be larger than 1 and the codimension n is at least 2. Indeed, when the
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codimension is 1 the situation is completely understood (cf. [1, Problem 4.19]): first of
all the coarea formula for functions of bounded variation allows to decompose, locally, the
current T into a sum of area minimizing integral currents which take the boundary with
multiplicity 1; hence we can apply to each piece of the decomposition the celebrated the-
orem by Hardt and Simon [20], which guarantees full regularity at the boundary, namely
the absence of any singularity.

A quite general boundary regularity theory was developed by Allard in the pioneer-
ing fundamental work [4], which covers any dimension and codimension and is valid for
more general objects, namely stationary varifolds. In [4] Allard restricts his attention to
boundary points where the density, namely the limit of the mass ratio

Θ(T, q) := lim
r↓0

‖T‖(Bρ(q))

ρm
,

is sufficiently close to 1
2
. His Boundary Regularity Theorem guarantees then that, under

such assumption, q is always a regular point. Indeed this generalizes a similar statement
in his PhD thesis [2], which covered the case of area minimizing currents in codimension 1.

In the introduction to [2] Allard points out that when the multiplicity of the boundary
Γ is allowed to be an arbitrary natural number Q > 1, the assumption Θ(T, q) < 1

2
+ ε is

empty and should be replaced by Θ(T, q) < Q
2

+ ε. However he quotes a possible extension
of his theorem as a very challenging problem. This basic question was raised again by
White in the collection of open problems [1], cf. Problem 4.19, where he also explains that
the nontrivial situation is in higher codimension, given the decomposition through the
coarea formula already explained a few paragraphs above. Our paper gives the very first
result in that direction and solves Allard’s “higher multiplicity” question for 2-dimensional
integral currents. Before stating it we wish to discuss what we mean by “regularity at the
boundary”.

Definition 0.1. Assume T is an area minimizing 2-dimensional integral current in U ⊂
R2+n such that ∂T U = Q JΓK for some integer Q ≥ 1 and some C1 embedded arc Γ. p is
called a regular boundary point if T consists, in a neighborhood of p, of the union of
finitely many smooth submanifolds with boundary Γ, counted with appropriated integer
multiplicities, which meet at Γ transversally. More precisely, if there are:

(i) a neighborhood U of p;
(ii) a finite number Λ1, . . . ,ΛJ of C1 oriented embedded 2-dimensional surfaces in U ;

(iii) and a finite number of positive integers k1, . . . , kJ

such that:

(a) ∂Λj ∩ U = Γ ∩ U = Γi ∩ U (in the sense of differential topology) for every j;
(b) Λj ∩ Λl = Γ ∩ U for every j 6= l;
(c) for all j 6= l and at each q ∈ Γ the tangent planes to Λj and Λl are distinct;
(d) T U =

∑
j kj JΛjK (hence

∑
j kj = Qi).

The set Regb(T ) of boundary regular points is a relatively open subset of Γ and its com-
plement in Γ will be denoted by Singb(T ).
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Our main Theorem reads as follows.

Theorem 0.2. Let U ⊂ Rn+2 be an open set, Γ ⊂ U be a C3,α0 embedded arc for some
α0 > 0, and T be a 2-dimensional area-minimizing integral current such that ∂T = Q JΓK.
If q ∈ Γ and Θ(T, q) < Q+1

2
, then T is regular at q in the sense of Definition 0.1.

Remark 0.3. Note that it is well known that there are smooth curves (counted with mul-
tiplicity 1) in the Euclidean space, even in R3, which span more than one area-minimizing
current. In particular, if Γ ⊂ R3 is such a curve and T1, T2 two area minimizing currents
with ∂Ti = JΓK, i = 1, 2, then T := T1 + T2 is an area minimizing current with ∂T = 2 JΓK
(this follows because any area-minimizing current S with boundary ∂S = 2 JΓK must have
mass which doubles that of Ti, and hence equals that of T ). Let us analyze the above
example more accurately. In view of the interior and boundary regularity theory, both
T1 and T2 are smooth submanifolds up to the boundary, i.e. a standard argument using
Allard’s boundary regularity theorem [4] (cf. [5, Section 5.23]) implies that Ti = JΛiK for
two connected smooth submanifolds such that ∂Λi = Γ in the classical sense of differential
topology. Since any integral area-minimizing 2-dimensional current in R3 is an embedded
submanifold (with integer multiplicity) away from the boundary, we also conclude that Λ1

and Λ2 do not intersect except at their common boundary Γ. The Hopf boundary lemma
then implies that at every point p ∈ Γ the two currents have distinct tangents, i.e. Λ1 and
Λ2 meet at their common boundary transversally.

In view of the above remark we cannot expect, in general, a “better” conclusion than the
one of Theorem 0.2 or, in other words, we cannot expect that the number J in Definition
0.1 is 1. However, an obvious corollary of Theorem 0.2 is the following.

Theorem 0.4. Let U, T,Γ and q be as in Theorem 0.2. Then there is a neighborhood U ′

of q in which T = Q JΛK for some smooth minimal surface Λ if and only if one tangent
cone to T at q is “flat”, i.e. contained in a 2-dimensional linear subspace of R2+n.

Even though the assumption that Θ(T, q) is sufficiently close to Q
2

seems, at a first glance,
very restrictive, we can either follow a lemma of Allard in [4] (valid in any dimension and
codimension) or a simple classificaton of the boundary tangent cones (cf. [9]) to show that
it holds when spt(∂T ) is contained in the boundary of a bounded C2 uniformly convex set
Ω. For this reason, complete regularity can be achieved when there is a “convex barrier”.
Since this is an assumption which will be used often in some sections of the work, we wish
to isolate its statement.

Assumption 0.5. Ω ⊂ R2+n is a bounded C3,α0 uniformly convex set for some α0 > 0,
Γ ⊂ ∂Ω is the disjoint union of finitely many C3,α0 simple closed curves {Γi}i=1,...,N . T is
a 2-dimensional area-minimizing integral current in R2+n such that ∂T =

∑
iQi JΓiK.

Theorem 0.6. Let Γ, Ω and T be as in Assumption 0.5. Then Singb(T ) is empty.

In fact we can give a suitable local version of the above statement from which Theorem
0.6 can be easily concluded, cf. Theorem 2.5.
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In the next section we will outline the arguments to prove Theorem 0.2, 0.4, and 0.6.
Before coming to it we wish to point two things. We are confident that the methods used in
this work generalize to cover the same statement as in Theorem 0.2 in an arbitrary smooth
(i.e. C3,α0) complete Riemannian manifold, but in order to keep the technicalities at bay we
have decided to restrict our attention to Euclidean ambient spaces. Even though the basic
ideas behind this work are quite simple, the overall proof of the theorems is quite lengthy.
For instance before the recent paper [8] of the first author, joint with De Philippis, Hirsch,
and Massaccesi, not even the existence of a single boundary regular point was known,
without some convex barrier assumption and in a general Riemannian manifold. Part of
the challenge is that several crucial PDE ingredients are absent in codimension higher than
1. Let us in particular mention three facts:

(a) There is no “soft” decomposition theorem which allows to reduce the general case
to that of multiplicity 1 boundaries;

(b) Boundary singularities occur even in the case of multipliciy 1 smooth boundaries;
(c) There is no maximum principle (and in particular no Hopf boundary lemma) avail-

able even if we knew apriori that the minimizing currents are completely smooth.

0.1. Acknowledgments. C.D.L. acknowledges support from the National Science Foun-
dation through the grant FRG-1854147. The second author would like to thank Fapesp for
financial support via the grant “Bolsa de Pesquisa no Exterior” number 2018/22938-4.

1. Outline of the proof

In the first step (cf. Section 2), we use the classical convex hull property to reduce the
statement of Theorem 0.6 to a local version, cf. Theorem 2.5. The latter statement will
then focus only on a portion of the boundary, but under the assumption that the support of
the current is contained in a suitable convex region, cf. Assumption 2.4. The crucial point
is that this convex region forms a “wedge” at each point of the boundary, cf. Definition
2.2.

In the second step (cf. Section 3) we recall the classical Allard’s monotonicity formula
and we appeal to a classification result for 2-dimensional area-minimizing integral cones
with a straight boundary (see [9]) to conclude that, in all the cases we are dealing we can
assume, without loss of generality, that all the tangent cones to T at every boundary point
p consist of a finite number of halfplanes with common boundary TpΓ, counted with a
positive integer multiplicity, cf. Theorem 3.5.

At this point, taking advantage of pioneering ideas of White, cf. [24], and of a recent
paper by Hirsch and Marini, cf. [22], the tangent cone can be shown to be unique at
each point p ∈ Γ. We need, strictly speaking, a suitable generalization of [22], but the
simple technical details are given in the shorter paper [9]. This uniqueness result has two
important outcomes:

(a) At any point p ∈ Γ where the tangent cone is not flat (i.e. it is not contained in a
single half-plane) we can decompose the current into simpler pieces, cf. Theorem
4.3;
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(b) the convergence rate of the current to the cone is polynomial (cf. also Corollary
15.1.

Point (a) reduces all our regularity statement to Theorem 0.4. In fact we will focus on a
slightly more technical version of it, cf. Theorem 4.6 Point (b) gives one crucial piece of
information which will allow us to conclude Theorem 4.6. The remaining part of this work
will in fact be spent to argue for Theorem 4.6 by contradiction: if a flat boundary point
p is singular, then the convergence rate to the flat tangent cone at p must be slower than
polynomial, contradicting thus (b).

We first address a suitable linearized version of Theorem 4.6: we introduce multivalued
functions and define the counterpart of flat boundary points in that context, which are
called contact points. In Theorem 5.5, we then prove an analog of Theorem 4.6 in the case
of multivalued functions minimizing the Dirichlet energy using a version of the frequency
function (see Definition 5.6) first introduced by Almgren. However, while the proof of
Theorem 5.5 might be instructive to the reader because it illustrates, in a very simplified
setting, the idea behind the “slow decay” at singular points, the crucial fact which will
be used to show Theorem 4.6 is contained in Theorem 5.3: the latter states that, if a
multi-function vanishes identically at a straight line and it is I-homogeneous, either it is a
multiple copy of a single classical harmonic function, or the homogeneity equals 1.

The overall idea is that, if p is a singular flat point, then it can be efficiently approxi-
mated at small scales by an homogeneous harmonic (i.e. Dirichlet minimizing) multivalued
function as above (not necessarily unique), which however cannot be a multiple copy of a
single classical harmonic function. Since the homogeneity of the latter will be forced to
be 1, we will infer from it the slow decay of the “cylindrical excess” (cf. Definition 6.1).
However, the work to accomplish the latter approximation proves to be quite laborious
and it will pass through a series of more and more refined approximations.

First of all, in the Sections 6, 7, 8, and 9 we prove that the current can be efficiently
approximated by multivalued Lipschitz functions when sufficiently flat (cf. Theorem 9.1)
and that the latter approximation almost minimizes the Dirichlet energy (cf. Theorem
7.3). These sections take heavily advantage of the tools introduced in [12, 11] and of some
ideas in [8]. However these approximations are not sufficient to carry on our program.

A new refined approximation is then devised in Section 10. At every sufficiently small
scale we can construct a “center manifold” (i.e. a classical C3 surface with boundary Γ)
and a multivalued Lipschitz approximation over its normal bundle (called normal approx-
imation), which approximates the current as efficiently as the “straight” approximation in
Theorem 9.1, cf. Theorem 10.16 and Theorem 10.21 for the relevant statements. This new
normal approximation has however two important features:

(i) It approximates the current well not only at the “starting scale” but also across
smaller scales as long as certain decay conditions are ensured.

(ii) At all such scales the normal approximation has average close to 0 (namely it is
never close to a multiple copy of a single harmonic function, compared to its own
Dirichlet energy).
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The Sections 11, 12, and 13 provide a proof of Theorem 10.16 and Theorem 10.21. While
the first center manifold was introduced in the monograph [5] by Almgren, our construc-
tions borrows from the ideas and tools introduced in [13] and [8].

Our proof would be at this point much easier if the validity of (ii) above would hold,
around the given singular flat point p, at all scales smaller than the one where we start the
construction of the center manifold. Unfortunately we do not know how to achieve this.
We are therefore forced to construct a sequence of center manifolds which cover different
sets of scales, cf. again Section 15.1. At certain particular scales we need therefore to
change approximating maps, i.e. to pass from one center manifold to the next. Section 14
provides then important information about the latter “exchange scales”. Both sections are
heavily influenced by similar considerations made in the papers [13, 14].

The remaining parts of the paper are thus focused to show that, at a sufficiently small
scale around the flat point p, all these normal approximations are close to some homo-
geneous Dir-minimizing function (not necessarily the same across all scales), which by
Theorem 5.3 will then result to be 1-homogeneous. The key ingredient to show this homo-
geneity is the almost monotonicity of the frequency function of the normal approximation
(a celebrated quantity introduced by Almgren in his pioneering work [5]). In order to deal
with the boundary we resort to an important variant introduced in [8]. The key point is to
show that, as r ↓ 0, the frequency function I(r) of the approximation at scale r converges
to a limit. However, since our approximation might change at some particular scales, the
function I undergoes a possibly infinite number of jump discontinuities, while it is almost
monotone in the complement of these discontinuities. In order to show that the limit exists
we thus need:

(1) a suitable quantification of the monotonicity on each interval delimited by two
consecutive discontinuities;

(2) a suitable bound on the series of the absolute values of such jumps.

The relevant estimates, namely (15.13) and (15.14), are contained in Theorem 15.5. While
the proof of (15.13) takes advantage of similar cases handled in [14] and [8], (15.14) is
entirely new and we expect that the underlying ideas behind it will prove useful in other
contexts. The Sections 16 and 17 are dedicated to prove the respective estimates.

Finally, in Section 18 we carry on the (relatively simple) argument which, building upon
all the work of the previous sections, shows that the rate of convergence to the tangent cone
at a singular flat point must to be slower than any polynomial rate. As already mentioned,
since the convergence rate has to be polynomial at every point, this shows that a singular
flat point cannot exist.
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2. Convex hull property and local statement

We start recalling the following well known fact:

Proposition 2.1. Assume T is an area minimizing m-dimensional current in Rm+n with
spt(∂T ) compact. Then spt(T ) is contained in the convex hull of spt(∂T ).

Proof. The statement can be concluded from much stronger ones, for instance we can
use that ‖T‖ is an integral stationary varifold in Rm+n \ spt(T ) and invoke [23, Theorem
19.2]. �

We then take advantage of a simple and elementary fact which combines the regularity
of Γ with the uniform convexity of the barrier Ω. We will state this fact in higher generality
than we actually need in this manuscript.

Definition 2.2. First of all, given an (m− 1)-dimensional plane V ⊂ Rm+n we denote by
pV the orthonogonal projection onto V . Given additionally a unit vector ν normal to V
and an angle ϑ ∈ (0, π

2
) we then define the wedge with spine V , axis ν and opening

angle ϑ as the set

W (V, ν, ϑ) :=
{
y : |y − pV (y)− (y · ν)ν| ≤ (tanϑ)y · ν

}
. (2.1)

Figure 1. An illustration of the wedge where V is the tangent TqΓ to Γ
at some boundary point q, whereas ν the interior unit normal ν(q) to the
convex barrier Ω at q.

In particular we have the following lemma.

Lemma 2.3. Let Ω ⊂ Rm+n be a C2 bounded open set with uniformly convex boundary and
Γ a C2 (m−1)-dimensional submanifold of Ω without boundary. Then there is a 0 < ϑ < π

2
(which depends only on Γ and Ω) such that the convex hull of Γ satisfies

ch (Γ) ⊂
⋂
q∈Γ

(q +W (TqΓ, ν(q), ϑ)) .



AN ALLARD-TYPE BOUNDARY REGULARITY THEOREM 9

We postpone the proof of the lemma to the end of the section Using Proposition 2.1 and
Lemma 2.3 we can reduce Theorem 0.6 to a suitable local statement. In particular we will
replace Assumption 0.5 with the following one:

Assumption 2.4. Q ≥ 1 is an arbitrary integer and ϑ a given positive real number smaller
than π

2
. Γ is a C3,α arc in U = B1(0) ⊂ R2+n with endpoints lying in ∂B1(0)1. Moreover

ν : Γ → Sn+1 is a C2,α map such that ν(q) ⊥ TqΓ. T is a 2-dimensional area-minimizing
integral current in U such that:

(∂T ) U = Q JΓK , (2.2)

spt(T ) ⊂
⋂
q∈Γ

(q +W (TqΓ, ν(q), ϑ)) . (2.3)

Moreover,
A := ‖κ‖L∞ + ‖ν̇‖L∞ ≤ 1 , (2.4)

where κ denotes the curvature of Γ and ν̇ is the derivative, in the arclength parametrization,
of ν.

Theorem 2.5. Let Γ and T be as in Assumption 2.4. Then Singb(T ) is empty.

Proof of Lemma 2.3. Since q+W (V, ν, ϑ) is a convex set, we just need to show the existence
of a 0 < ϑ < π

2
such that Γ ⊂ (q + W (TqΓ, ν, ϑ)) for every q ∈ Γ. The latter is equivalent

to show the existence of a constant C > 0 such that

|(p− q)− ((p− q) · ν(q))ν(q)− pV (p− q)| ≤ C((p− q) · ν(q)) ∀p, q ∈ Γ . (2.5)

The strict convexity of ∂Ω ensures that for every ε > 0 there is a constant C such that (2.5)
holds if additionally |p− q| ≥ ε. Thus we just have to show the inequality for a sufficiently
small ε. In order to do that, fix q and assume w.l.o.g. that it is the origin, while at the
same time we assume that TqΓ = T0Γ = {xm = . . . = xm+n = 0} and ν = ∂

∂xm+n
. We

will use accordingly the coordinates (y, z, w), with y ∈ Rm−1, z ∈ Rn, and w ∈ R. By the
C2 regularity of Ω and Γ, in a sufficiently small ball Bε(q) = Bε(0) the points p in Γ are
described by

p = (y, z, w) = (y, f(y), g(y, f(y))) (2.6)

for some f and g which are C2 functions. Observe that f(0) = 0, Df(0) = 0, g(0) = 0,
and Dg(0) = 0. Moreover ‖D2f‖C0 ≤ C0 and D2g ≥ c0Id for constants c0 > 0 and C0,
which depend only on Γ and Ω. Similarly, the size of the radius ε in which the formula
(2.6) and the estimates are valid depends only on Ω and Γ and not on the choice of the
point q. Next, compute

((p− q) · ν(q)) = g(y, f(y)) ≥ c0(|y|2 + |f(y)|2) ≥ c0|y|2

and
|(p− q)− ((p− q) · ν(q))ν(q)− pV (p− q)| = |f(y)| ≤ C0|y|2 .

The desired inequality is then valid for C := C0

c0
. �

1I.e. Γ = γ̂([0, 1]) where γ̂ : [0, 1]→ B1(0) is a C3,α diffeomorphism onto its image.
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3. Tangent cones

We start recalling Allard’s boundary monotonicity formula. More specifically, we first
define

Definition 3.1. For every point p ∈ B1, we define the density of T at the point p

Θ(T, p) := lim
r↓0

‖T‖(Br(p))

πr2
,

whenever the latter limit exists.

Next, we introduce the notation κ for the curvature of Γ and we consider the functions
Θi(T, p, r) and Θb(T, p, r) given by

Θi(T, p, r) :=
‖T‖(Br(p))

πr2
, (3.1)

Θb(T, p, r) := exp (C0‖κ‖0r)
‖T‖(Br(p))

πr2
, (3.2)

where C0 = C0(n) is a suitably large constant.

Theorem 3.2. Let T be as in Assumption 2.4.

(a) If p ∈ B1 \ Γ, then r 7→ Θi(T, p, r) is monotone on (0,min{dist(p,Γ), 1− |p|}),
(b) if p ∈ B1 ∩ Γ, then r 7→ Θb(T, p, r) is monotone on (0, 1− |p|).

Thus the density exists at every point of B1. Moreover, the restrictions of the map p 7→
Θ(T, p) to Γ ∩B1 and to B1 \ Γ are both upper semicontinuous.

If X ∈ C1
c (B1,R2+n), then the first variation of T with respect to X satisfies

δT (X) = Q

∫
Γ

X · ~n(x) dH1(x) (3.3)

where ~n is a Borel vector field with |~n| ≤ 1.
Moreover, if p ∈ Γ and 0 < s < r < 1 − |p|, we then have the following precise

monotonicity identity

r−2‖T‖(Br(p))− s−2‖T‖(Bs(p))−
∫

Br(p)\Bs(p)

|(x− p)⊥|2

|x− p|4
d‖T‖(x)

= Q

∫ r

s

∫
Γ∩Bρ(p)

(x− p) · ~n(x) dH1(x) dρ , (3.4)

where Y ⊥(x) denotes the component of the vector Y (x) orthogonal to the tangent plane of

T at x (which is oriented by ~T (x)).

Note that δT (X) = 0 for X ∈ C1
c (B1 \ Γ) follows in a straightforward way from the

minimality property of T . In particular ‖T‖ is a stationary integral varifold in B1 \ Γ and
(a) and (b) are consequences of the celebrated works of Allard, cf. [3] and [4]. Next note
that (3.3) follows from (3.4) arguing, for instance, as in [7] for [7, Eq. (31)] (see [3, 4]
as well). Coming to (3.3), note first that the derivation of [8, (3.8)] is valid under our
assumptions, with the additional information δT = δTs (following the terminology and
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notation of [8, Section 3]). We then just need to show that ‖δTs‖ ≤ Q · H1 Γ. The latter
follows easily arguing as in [8, Section 3.4] once we have shown that Θ(T, p) = Q

2
at every

p ∈ Γ, see below.
As in [8, Section 3] we introduce the following notation and terminology.

Definition 3.3. Fix a point p ∈ spt(T ) and define for all r > 0

ιp,r(q) :=
q − p
r

.

We denote by Tp,r the currents
Tp,r := (ιp,r)]T .

We call the current Tp,r the blow up at the point p and scale r of T . Let T0 be a
current such that there exists a sequence rk → 0 of radii such that Tp,rk → T0, we say that
T0 is a tangent cone to T at p.

We recall the following consequence of the Allard’s monotonicity formula, cf. [4].

Theorem 3.4. Let T be as in Assumption 2.4 or as in Theorem 0.2. Fix p ∈ spt(T ) and
take any sequence rk ↓ 0. Up to subsequences Tp,rk is converging locally in the sense of
currents to an area-minimizing integral current T0

(a) T0 is a cone with vertex 0 and ‖T0‖(B1(0)) = πΘ(T, p);
(b) if p ∈ spt (T ) \ Γ, then ∂T0 = 0;
(c) if p ∈ Γ, then ∂T0 = Q JTpΓK.

Moreover ‖Tp,rk‖ converges, in the sense of measures, to ‖T0‖.

We next show the following elementary fact:

Theorem 3.5. Let T be as in Assumption 2.4 and p ∈ Γ. Any tangent cone T0 at p ∈ Γ
has then the following properties:

(a) spt(T0) is contained in W (TpΓ, ν(p), ϑ) (where ν(p) and ϑ are the vector and the
constant given in Assumption 2.4);

(b) There are k1, . . . kN ∈ N \ {0} and 2-dimensional distinct oriented half-planes
V1, . . . , VN with ∂ JViK = JTpΓK such that

T0 =
∑
i

ki JViK . (3.5)

Note in particular that 2Θ(T, p) = Q =
∑

i ki, and thus 1 ≤ N ≤ Q.
Conclusion (b) holds under the assumptions of Theorem 0.2 provided we choose p suffi-

ciently close to q.

The first part of the theorem is in fact at the same time a particular case of a more
general theorem of Allard in higher dimensions (under Assumption 2.3) and of a general
classification of all 2-dimensional area-minimizing cones with ∂T0 = Q J`K, where ` is a
straight line, given [9]. In particular since point (a) is obvious, point (b) is a direct corollary
of [9, Proposition 4.1] and of (a). As for the second part of the statement, observe that,
by [9, Proposition 4.1], 2Θ(T, p) is always an integer no smaller than Q. Recalling that
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Γ 3 p 7→ Θ(T, p) is upper semicontinuous, under the assumptions of Theorem 0.2 we must
necessarily have Θ(T, P ) = Q

2
for every p sufficiently close to q. Then conclusion (b) follows

again from [9, Proposition 4.1]. Since it will be useful later, we introduce a notation for
the cones as in (3.5).

Definition 3.6. Let ` ⊂ R2+n be a 1- dimensional line passing through the origin and
let Q ∈ N \ {0}. We denote by BQ(`) the set of area minimizing cones of the form

T =
∑N

i=1 ki JViK, for any finite collection of distinct half-planes Vi such that ∂ JViK = J`K
and any finite collection of positive integers {ki}Ni=1 such that

∑N
i=1 ki = Q. Moreover we

will call such cones open books.

4. Uniqueness of tangent cones and first decomposition

In this section we appeal to [9, Theorem 1.1], which follows the ideas of Hirsch and
Marini in [22], in order to claim that the tangent cone to T at p ∈ Γ is unique.

Theorem 4.1. Let T and Γ be as in Assumption 2.4. Then the tangent cone at each p ∈ Γ
is unique and from now on will be denoted by Tp,0. The same conclusion holds under the
assumptions of Theorem 0.2 provided q is sufficiently close to p.

In fact such a uniqueness theorem comes with a power-law decay (cf. [9, Theorem 2.1]),
which in turn allows us to decompose the current at any point p ∈ Γ where the tangent
cone is not contained in a single half-plane. Before coming to its statement, we introduce
the following terminology.

Definition 4.2. Let T and Γ be as in Assumption 2.4. If the tangent cone Tp,0 to T at
p ∈ Γ is of the form Q JV K for some 2-dimensional half-plane V , then p is called a flat
boundary point.

Theorem 4.3 (Decomposition). Let T and Γ be:

• either as in Assumption 2.4,
• or either as in Theorem 0.2.

Assume that p ∈ Γ is not a flat boundary point and in the second case assume further
that p is sufficiently close to q. Then there is ρ > 0 with the following property. There
are two positive integers Q1 and Q2 and two area-minimizing currents T1 and T2 in Bρ(p)
such that:

(a) T1 + T2 = T Bρ(p) (thus Q1 +Q2 = Q),
(b) ∂Ti Bρ(p) = Qi JΓ ∩Bρ(p)K,
(c) spt(T1) ∩ spt(T2) = Γ ∩Bρ(p),
(d) at each point q ∈ Bρ(p) the tangent cones to T1 and T2 have only the line TqΓ in

common, i.e., (T1)q,0 ∈ Cmin,Q1(TqΓ) and to (T2)q,0 ∈ Cmin,Q2(TqΓ).

At flat points we are not able to decompose the current further and in fact the final
byproduct of the regularity theory of this paper is that in a neighborhood of each flat
point, the current is supported in a single smooth minimal sheet. For the moment the
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uniqueness of the tangent cones (and the corresponding decay from which we derive it)
allows us to draw the following conclusion.

Theorem 4.4. Let T and Γ be as in Assumption 2.4 or as in Theorem 0.2. Assume that
p ∈ Γ is a flat boundary point, that Q JV K is the unique tangent cone of T at p, and, in the
case of Theorem 0.2 that p is sufficiently close to q. Let n(p) ∈ V be the unit normal to Γ
at p and define in a neighborhood of p

n(q) =
n(p)− n(p) · τ(q)τ(q)

|n(p)− n(p) · τ(q)τ(q)|
(4.1)

where τ is the unit tangent vector to Γ orienting it.
Then, for every θ > 0 there is a ρ > 0 such that

spt(T ) ∩Bρ(p) ⊂
⋂

q∈Bρ(p)∩Γ

(q +W (TqΓ, n(q), θ)) . (4.2)

The previous two theorems allow us to reduce both Theorem 2.5 and Theorem 0.2 to
the following simpler statement. We postpone the proof to Section 4.3.

Assumption 4.5. Q ≥ 1 is an arbitrary integer and ϑ a given positive real number
smaller than π

2
. Γ is a C3,α arc in B1(0) ⊂ R2+n with endpoints lying in ∂B1(0). T is a

2-dimensional area-minimizing integral current in U such that (∂T ) U = Q JΓK. 0 ∈ Γ
is a flat point, Q JV K is the unique tangent cone to T at 0 and we let n be as in (4.1).
Moreover

spt(T ) ⊂
⋂

q∈B1(0)∩Γ

(q +W (TqΓ, n(q), ϑ)) , (4.3)

where ϑ is a small constant.

Theorem 4.6. Let T and Γ be as in Assumption 4.5. Then there is a neighborhood U of
0 and a smooth minimal surface Σ in U with boundary Γ such that T U = Q JΣK.

Obviously the latter theorem implies as well Theorem 0.4.

4.1. Decay towards the cone. We first state a more precise version of Theorem 4.1. To
that end we recall the flat norm F and the definition of spherical excess. Given an integral
2-dimensional current S we set

F(S) := inf{M(P ) + M(R) : S = ∂P +R, R ∈ I2, P ∈ I3} .

Moreover, for T as in Assumption 2.4 and p ∈ Γ we define the spherical excess e(p, r) at
the point p and with radius r by

e(p, r) :=
‖T‖(Br(p))

πr2
−Θ(T, p) =

‖T‖(Br(p))

πr2
− Q

2
. (4.4)

We are now ready to state the main decay theorem. Its proof follows the ideas of [22],
but it is in fact a consequence of a more general result, which is proved separately in our
work [9], cf. [9, Theorem 2.1].
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Theorem 4.7. Let T and Γ be as in Theorem 4.1. Then there are positive constants ε0,
C and α with the following property. If p ∈ Γ and e(p, r) ≤ ε2

0 for some r ≤ dist(p, ∂B1),
then:

(a) |e(p, ρ)| ≤ C|e(p, r)|
(
ρ
r

)2α
+ Cρ2α for every ρ ≤ r,

(b) There is a unique tangent cone Tp,0 to T at p,
(c) The following estimates hold for every ρ ≤ r

F(Tp,ρ B1, Tp,0 B1) ≤ C(r)|e(p, r)|1/2
(
ρ
r

)α
+ Cρα, (4.5)

distH(spt(Tp,ρ) ∩B1, spt(Tp,0) ∩B1) ≤ C
(
ρ
r

)α
. (4.6)

4.2. From Theorem 4.7 to Theorem 4.3. We fix a point p as in the statement of
Theorem 4.3, we choose a radius r0 so that B2r0(p) ⊂ B1(0). We fix thus ε0, α and C given
by Theorem 4.7. Moreover, in order to simplify the notation, we write Tp rather than Tp,0
for the unique tangent cone to T and p.

First of all we observe that

e(q, r0) =
‖T‖(Br0(q))

πr2
0

− Q

2
≤
‖T‖(Br0+|p−q|(p))

πr2
0

− Q

2

=

(
r0 + |p− q|

r0

)2

e(p, r0 + |p− q|) +

((
r0 + |p− q|

r0

)2

− 1

)
Q

2

In particular, if r0 is chosen sufficiently small, we can assume that e(q, r0) ≤ 5ε2
0 for every

point q ∈ Γ ∩Br0(p). The rest of the proof is divided into three steps
In a first step we compare tangent cones between different points and prove

F(Tq B1, Tp B1) ≤ C|q − p|α ∀q ∈ Br0(p) . (4.7)

Next, since Tp is not flat by assumption and because of the classification of tangent cones,
we can find half-planes V and V1, . . . VN all distinct, such that

Tp = Q1 JV K +
∑
i

Q̄i JViK , (4.8)

where Q1 < Q and Q2 := Q − Q1 =
∑

i Q̄i > 0. Let n be the unit vector in V which is
orthogonal to TpΓ. We then infer the existence of a positive ϑ0 with the property that⋃

i

Vi ⊂ R2+n \W (TpΓ, n, 8ϑ0) =: W c(TpΓ, n, 8ϑ0) . (4.9)

For every point q ∈ Γ sufficiently close to p we project n onto the orthogonal complement
of TqΓ and normalize it to a unit vector n(q). (4.7) will then be used to show the existence
of r > 0 such that

spt(Tq) ⊂ W (TqΓ, n(q), 2ϑ0) ∪W c(TqΓ, n(q), 7ϑ0) ∀q ∈ Γ ∩Br(p) . (4.10)

Hence we use (4.5) to show the existence of r̄ > 0 such that

spt(T ) ∩Br̄(q) ⊂ (q +W (TqΓ, n(q), 3ϑ0)) ∪ (q +W c(TqΓ, n(q), 6ϑ0)) . (4.11)



AN ALLARD-TYPE BOUNDARY REGULARITY THEOREM 15

(4.11) allows us to define

T1 := T

(
Br̄(p) ∩

⋂
q

(q +W (TqΓ, n(q), 3ϑ0))

)
, (4.12)

T2 := T

(
Br̄(p) ∩

⋂
q

(q +W c(TqΓ, n(q), 6ϑ0))

)
, (4.13)

and to show that T1 +T2 = T Br̄(p) and that each of the Ti is area-minimizing. The final
step is then to prove that

∂T1 Br̄(p) = Q1 JΓ ∩Br̄(p)K . (4.14)

Step 1. Proof of (4.7) In order to prove (4.7) set ρ0 := |p − q| and observe that, it
suffices to show the estimate

F(Tp B1, Tq,ρ B1) ≤ Cρα

for some ρ ∈ [ρ0, 2ρ0], whose choice will be specified later. For v ∈ R2+n, denote by
τv the translation by the vector v. If we choose v := (q − p)/ρ it is easy to see that
Tq,ρ B1 = (τ−v)](Tp,ρ B1(v)) and since the flat norm is invariant under translations, we
get

F(Tp B1, Tq,ρ B1) = F((τv)](Tp B1(0)), Tp,ρ B1(v)) .

On the other hand, observe that Tp is invariant by translation along TpΓ and that, if we
write v = w + pTpΓ(v) =: w + z, then |w| ≤ Cρ. Hence we have

F(Tp B1, Tq,ρ B1) = F((τw)](Tp B1(z)), Tp,ρ B1(v))

≤ F((τw)](Tp B1(z)), Tp B1(z)) + F(Tp B1(z), Tp B1(v))

+ F(Tp B1(v), Tp,ρ B1(v)) .

The first two summands can be easily estimated with Cρ. Indeed for the first term we
write

(τw)](Tp B1(z))− Tp B1(z) = ∂((Tp B1(z))× J[0, w]K) =: ∂Z

and we estimate M(Z) ≤ C|w| ≤ Cρ, whereas for the second term we can estimate directly

M(Tp B1(z)− Tp B1(v)) ≤ C|w| .

It remains to bound the third summand. To that end we employ the fact that we are free
to choose ρ ∈ [ρ0, 2ρ0] appropriately. Note that the point v depends on ρ: we will therefore
write v(ρ) from now on and use v0 for v(ρ0), while we define σ := ρ

ρ0
. By a simple rescaling

argument we observe that

F(Tp B1(v(ρ)), Tp,ρ B1(v(ρ)) ≤ CF(Tp Bσ(v0), Tp,ρ0 Bσ(v0)) for all σ ∈ [1, 2] .

We complete the proof by showing that, if σ is chosen appropriately, then

F(Tp Bσ(v0), Tp,ρ0 Bσ(v0)) ≤ CF(Tp B3(0), Tp,ρ0 B3(0)) , (4.15)
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since, again using a simple scaling argument, we can estimate F(Tp B3(0), Tp,ρ0 B3(0)) ≤
CF(Tp B1(0), Tp,3ρ0 B1(0)) and take advantage of (4.5). In order to show (4.15), fix
currents R and S such that (Tp − Tp,ρ0) B3(0) = R + ∂S with

M(R) + M(S) ≤ 2F(Tp B3(0), Tp,ρ0 B3(0)) .

Let now d(x) := |x− v0| and for every σ we can then use the slicing formula [23, Lemma
28.5] to write

(Tp − Tp,ρ0) Bσ(v0) = R Bσ(v) + ∂(S Bσ(v0))− 〈S, d, σ〉 .
Since ∫ 2

1

M(〈S, d, σ〉) dσ ≤M(S B2(v0)) ≤M(S) ,

it suffices to choose a σ for which M(〈S, d, σ〉) ≤ 2M(S).

Step 2. Proof of (4.11) The latter is a simple consequence of the estimates proved in
the previous two steps and of (4.6) and is left to the reader.

Step 3. Proof of (4.14) Observe that ∂T1 Br̄(p) is supported in Γ ∩ Br̄(p) and is a
flat chain without boundary in Br̄(p). By the Constancy Lemma of Federer [19, 4.1.7], it
follows that ∂T1 Br̄(p) = Θ JΓ ∩Br̄(p)K for some constant Θ. In particular T1 is integral
and thus Θ is an integer. Since it is area minimizing, it follows from our analysis that T1

has a unique tangent cone (T1)p at p and that πΘ equals twice the mass of (T1)p in B1(0).
On the other hand the latter cone is the restricion of Tp to W (TpΓ, n(p), 3ϑ0), which by
assumption is Q1 JV K for a fixed half-plane V with boundary TpΓ. Thus Θ = Q1, which
completes the proof.

4.3. From Theorem 4.6 to Theorem 2.5. In this subsection we show how to conclude
Theorem 2.5 from Theorem 4.6 and Theorem 4.3. We argue by induction on Q. We start
observing that for Q = 1 there are no boundary singular points, as it can be concluded
by [4]. Assume therefore that Theorem 2.5 holds for all Q strictly smaller than some fixed
positive integer Q̄: our aim is to show that it holds for Q = Q̄. First of all observe that
by Theorem 4.3 we know that the set F := {p ∈ Γ : p is a flat boundary point} is closed
in Γ. If F = Γ, then T has no boundary singularities. Otherwise, by Theorem 4.6(a), it
suffices to show that the dimension of Singb(T ) \ F is 0. It then suffices to show that for
every p ∈ Γ \ F there is a radius ρ such that Singb(T ) ∩Bρ(p) has dimension 0. Fix ρ as
in Theorem 4.3 and let T1 and T2 satisfy the conclusion of that theorem. We claim that

Singb(T ) ∩Bρ(p) ⊂ Singb(T1) ∪ Singb(T2) . (4.16)

Since by the induction hypothesis each Singb(Ti) has dimension 0, the latter claim would
conclude the proof. In order to show (4.16), consider a point q which is a boundary regular
point for both T1 and T2: we aim to prove that q is a regular point for T as well. By the
very definition of boundary regular point, for each i there is a neighborhood Ui ⊂ Bρ(p)
of p, minimal surfaces Λi

j, and integer coefficients kij such that:

• Ti Ui =
∑

j k
i
j

q
Λi
j

y
;

• Λi
j ∩ Λi

k ⊂ Γ for every j 6= k;
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• the tangents of Λi
j at every point q̄ ∈ Γ ∩ U are all distinct.

Now, in U := U1 ∩ U2 we clearly have

T U =
2∑
i=1

∑
j

kij
q
Λi
j ∩ U

y
.

Note that, by Theorem 4.3(c) Λ1
j ∩ Λ2

k ⊂ spt(T1) ∩ spt(T2) ⊂ Γ for every j 6= k. Moreover,

if q̄ ∈ Γ ∩ U , then (T1)q̄,0 =
∑

j k
1
j

q
Tq̄Λ

1
j

y
and (T2)q̄,0 =

∑
k k

2
k JTq̄Λ2

kK. We conclude from

Theorem 4.3(d) that for every j and k the half planes Tq̄Λ
1
j and Tq̄Λ

2
k are distinct, i.e.

intersect only in Tq̄Γ. This shows that q is then a boundary regular point of T .

5. Multi-valued functions

The next step of our proof is a detailed study of the boundary behaviour of Dir-
minimizing multi-valued functions. In this section we consider maps u : Bρ(x) ∩ D →
AQ(Rn) where D ⊂ R2 is a planar domain such that ∂D is C2. We will be interested
in maps which take a preassigned value Q JfK at ∂D ∩ Bρ(x). Since by subtracting the
average η ◦ u we still get a Dir-minimizer, we can without loss of generality, assume that
f vanishes identically. We summarize the relevant assumptions in the following

Assumption 5.1. D ⊂ R2 is a C2 open set, U is a bounded open set and u ∈ W 1,2(D ∩
U,AQ(Rn)) a multivalued function such that u|∂D∩U ≡ Q J0K and η ◦ u ≡ 0. u is Dir
minimizing in the sense that, for every K ⊂ U compact and for every v ∈ W 1,2(D ∩
U,AQ(Rn)) which coincides with u on (U \K) ∩D and vanishes on ∂D ∩ U , we have

Dir (u) ≤ Dir (v) .

Observe that under our assumptions, we can apply the regularity theory of [10] and [21]
to conclude that u is Hölder continuous in K ∩ D for every compact set K ⊂ U . More
precisely we have the following

Theorem 5.2. There is a geometric constant α(Q) > 0 and a constant C which depends
only on Q and D such that, if u and D are as in Assumption 5.1, then

[u]0,α,Bρ(x)∩D ≤ Cρ−α (Dir(u,B2ρ(x) ∩D))
1
2

for every B2ρ(x) ⊂ U .

In the final blow-up in Section 18, we will prove that the limit of a suitable approximating
sequence is a homogeneous Dir-minimizer. The following theorem will then exclude the
existence of singular boundary points. It is a consequence of the classification of tangent
functions (Theorem 5.9).

Theorem 5.3. Assume D = {x2 > 0}, U = B1(0) and u : D ∩ U → AQ(Rn) is a Dir-
minimizing I-homogeneous map such that u|∂D = Q J0K. Either u is a single harmonic
function with multiplicity Q (i.e. u = Q Jη ◦ uK) or I = 1.
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Observe that under the additional information that η ◦u ≡ 0, the first alternative would
imply that u vanishes identically.

In case that the approximating sequence consisted of Dir-minimizers (which it does not
in our case), we mention for completeness here the analouge definition of singular boundary
points for Dir-minimizers (i.e. points at the boundary where the order of “vanishing” of
the Dir-minimizer is larger than 1) and prove its absence. Even though we will not need
Definition 5.4 nor Theorem 5.5 for our analysis, it illustrates the ideas of our argument.

Definition 5.4. Let D, u and U be as in Assumption 5.1. x ∈ ∂D will be called a contact
point if there is a positive δ > 0 such that

lim inf
ρ↓0

1

ρ2+δ

∫
Bρ(x)∩D

|Du|2 = 0 . (5.1)

In section 5.3 we will show the following multi-valued counterpart of Theorem 4.6.

Theorem 5.5. Let D, u and U be as in Assumption 5.1. If x ∈ ∂D is a contact point,
then u vanishes identically on the connected component of D∩U whose boundary contains
x.

5.1. Monotonicity of the frequency function. We introduce here the basic tool of
our analysis, the frequency function, pioneered by Almgren. The version of the Almgren’s
frequency function used here is an extension introduced for the first time in the literature
in [8] to deal with boundary regularity. One of the outcomes of our analysis is that the limit
of the frequency function exists at every boundary point x unless u vanishes identically in
a neighborhood of it.

We recall the definition of the frequency function as in [8, Definition 4.13].

Definition 5.6. Consider u ∈ W 1,2
loc (D,AQ(Rn)) and fix any cut-off φ : [0,∞[→ [0,∞]

which equals 1 in a neighborhood of 0, it is non increasing and equals 0 on [1,∞[. We next
fix a function d : R2 → R+ which is C2 on the punctured space R2\{0} and satisfies the
following properties:

(i) d(x) = |x|+O (|x|2),
(ii) ∇d(x) = x

|x| +O(|x|),
(iii) D2d(x) = |x|−1 (Id − |x|−2x⊗ x) +O(1).

By [8, Lemma 4.25], we deduce the existence of such a d satisfying also that ∇d is tangent
to ∂D. We define the following quantities:

Dφ,d(u, r) :=

∫
D

φ

(
d(x)

r

)
|Du|2(x)dx,

Hφ,d(u, r) := −
∫
D

φ′
(
d(x)

r

)
|∇d(x)|2 |u(x)|2

d(x)
dx.

The frequency function is then the ratio

Iφ,d(u, r) :=
rDφ,d(u, r)

Hφ,d(u, r)
.
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This quantity is essentially monotone.

Theorem 5.7. Let D, U and u be as in Assumption 5.1. Then there is a function d
satisfying the requirements of Definition 5.6 such that the following holds for every φ as in
the same definition. Either u ≡ Q J0K in a neighborhood of 0, or Dφ,d(u, r) is positive for
every r (hence Iφ,d(u, r) is well defined) and the limit

0 < lim
r↓0

Iφ,d(u, r) < +∞

exists and it is a positive finite number. In fact, there is an r0 > 0 and C such that
r 7→ eCrIφ,d(u, r) is monotone for all 0 < r < r0.

We first recall the following identities (compare [8, Proposition 4.18]).

Proposition 5.8. Let φ and d be as in Definition 5.6 and assume in addition that φ is
Lipschitz. Let Ω, D, U and u be as in Assumption 5.1. Then, for every 0 < r < 1, we
have

D′(r) = −
∫
D

φ′
(
|d(x)|
r

)
|d(x)|
r2
|Du|2dx, (5.2)

H ′(r) =

(
1

r
+O(1)

)
H(r) + 2E(r), (5.3)

where

E(r) := −1

r

∫
D

φ′
(
d(x)

r

)∑
i

ui(x) · (Dui(x) · ∇d(x)) dx, (5.4)

and the constant O(1) appearing in (5.3) depends on the function d but not on φ.

Theorem 5.7 follows as in [8], as soon as we can show the validity of the above identi-
ties. In turn the latter can be proved following also the computations in [8], provided we

prove that both the outer variations gε(x) :=
∑

i

r
ui(x) + εϕ

(
d(x)
r

)
ui(x)

z
and the inner

variations u ◦ ψt, with ψt being the flow of Y (x) := ϕ
(
d(x)
r

)
d(x)∇d(x)
|∇d(x)|2 , are competitors to

our problem. This is however obvious. Clearly the outer variations are well defined and
preserve the condition that u|∂D∩U ≡ Q J0K. As for the inner variations note that, since
∇d is tangent to ∂D, so is Y and thus its flow maps ∂D onto itself and D into itself. This
shows that the inner variations are well defined and provide admissible competitors too.

5.2. Classification of tangent functions. Following a common path which started with
Almgren’s monumental work (see [8], but also [10, 12, 11, 13, 17, 18, 16, 15]) we use the
monotonocity of the frequency function to define tangent functions to u. Let D, u, U and
f be as in Assumption 5.1. Let x ∈ ∂D and denote by n(x) the interior unit normal to
∂D. If we denote by V + the half space {y : n(x) · y > 0}, the tangent functions to u at x
are multivalued functions defined on V +, which turn out to be locally Dir-minimizing and
in fact satisfy Assumption 5.1 with D = V + for any bounded open set U .

The central result is the following theorem of which Theorem 5.3 is a direct corollary.
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Theorem 5.9. Let D, U and u be as in Assumption 5.1. Let x ∈ ∂D and assume that,
for some ρ > 0, D ∩ Bρ(x) is connected and u does not vanish identically on Bρ(x) ∩D.
Define

ux,ρ(y) :=
∑
i

s
ui(x+ ρy)

Dir(u,Bρ(x))1/2

{
.

Then I0(x) := limr→0 I(u(·−x), r) = 1 and, for every sequence ρk ↓ 0, there is a subsequence
(not relabeled) such that ux,ρk converges locally uniformly on V + to a Dir-minimizer ux,0 =∑

i JviK satisfying the following properties:

(a) each vi : V + → Rn is a linear function that vanishes at ∂V +;
(b) for every i 6= j, either vi ≡ vj, or vi(y) 6= vj(y) for every y ∈ V +;
(c) Dir(ux,0, B1) = 1 and η ◦ ux,0 = 0.

Proof. First of all we let I := I0(x). It follows from the same arguments of [8, Lemma 4.28]
that a subsequence, not relabeled, of ux,ρk converges to a Dir-minimizer ux,0 =

∑
i JviK

which has the property (c) and which is I-homogeneous. Up to a rotation of the system of
coordinates we can assume that V + = {x1 > 0} (and hence ∂V + is the x2-axis). From now
on we use polar coordinates on V + and in particular we identify ∂B1 ∩ V + with (−π

2
, π

2
).

Let g =
∑

i JgiK be the restriction of ux,0 on ∂B1 ∩ V +. We can then use [10, Proposition
1.2] to conclude the existence of Hölder maps g1, . . . , gQ : (−π, π)→ Rn such that

g(θ) =
∑
i

Jgi(θ)K .

In particular

ux,0(θ, r) =
∑
i

q
rIgi(θ)

y
,

and each ui(θ, r) = rIgi(θ) is an harmonic polynomial. In particular I must be an integer.
Since however ux.0 ≡ Q J0K on {x1 = 0} and Dir(ux,0, B1) > 0, it must be a positive integer.

Observe that, if i 6= j and θ0 ∈ (−π
2
, π

2
) is a point where gi(θ0) = gj(θ0), then gi and

gj must coincide in a neighborhood of θ0, otherwise the whole halfline {(r cos θ0, r sin θ0)}
consists of singularities of ux,0, contradicting [10, Theorem 0.11]. In particular by the
unique continuation principle for harmonic functions we have

(Alt)’ either ui(r, θ) 6= uj(r, θ) for every (r, θ) ∈]0,+∞[×(π
2
, π

2
), or ui(r, θ) = uj(r, θ) for

every (r, θ) ∈]0,+∞[×(π
2
, π

2
),

so

(Alt) either gi(θ) 6= gj(θ) for every θ ∈ (−π
2
, π

2
), or gi(θ) = gj(θ) for every θ ∈ (−π

2
, π

2
).

Next, using the classification of 2-dimensional harmonic polynomials, we know that there
are coefficients ai, bi ∈ Rn such that

gi(θ) = ai cos(Iθ) + bi sin(Iθ) .

If I were even, since gi(
π
2
) = gi(−π

2
) = 0, we conclude that ai = 0. But then all the gi’s

would vanish at θ = 0 and (Alt) would imply that they all coincide everywhere. This
would however contradict (c). Likewise, if I were odd and larger than 1, then we would
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have bi = 0 and all the gi’s would vanish at θ = π
2I

. We thus conclude that I is necessarily
equal to 1. This proves then (a), while (Alt) shows (b). �

5.3. Proof of Theorem 5.5. Fix a point x ∈ ∂D and assume that u does not vanish in
any neighborhood of x. Then Theorem 5.9 implies that the frequency function I0(x) is
1. Arguing as in [8, Corollary 4.27] we conclude however that, for every δ > 0, there is a
radius ρ > 0 such that

D(r)

r2+δ
≥ (1− δ)D(ρ)

ρ2+δ
> 0 ∀r < ρ .

This shows that x cannot be a contact point.

6. First Lipschitz approximation

In this section we consider a neighborhood of a flat point and we introduce the cylin-
drical excess E(T,Cr(p, V )) as in [8, Definition 5.1]. Then, under the assumption that
E(T,Cr(p, V )) is sufficiently small, we produce an efficient approximation of the current
with a multivalued graph. One important point is that the graph of such approximation,
considered as an integral current, will also have boundary Q JΓK. From now on, given a
point p and a plane V through the origin, Br(p, V ) will denote the disk Br(p) ∩ (p + V ),
V ⊥ the orthogonal complement of V and Cr(p, V ) the cylinder Br(p, V ) + V ⊥. We then
denote by pV and p⊥V the orthogonal projections respectively on V and its orthogonal
complement.

Definition 6.1. For a current T in a cylinder Cr(p, V ) we define the cylindrical excess
E(T,Cr(p, V )) and the excess measure eT of a set F ⊂ B4r(pV (p), V ) as

E(T,Cr(p, V )) :=
1

2πr2

∫
Cr(p,V )

|~T − ~V |2 d‖T‖,

eT (F ) :=
1

2

∫
F+V ⊥

|~T − ~V |2 d‖T‖ .

The height in a set G ⊂ R2+n with respect to a plane V is defined as

h(T,G, V ) := sup{|p⊥V (q − p)| : q, p ∈ spt(T ) ∩G} . (6.1)

If p and V are omitted, then we understand that V = R2×{0} and Cr = Cr(0,R2×{0}).

Assumption 6.2. Let Γ and T be as in Assumption 4.5. q is a fixed point, which without
loss of generality we assume to be the origin, r an arbitrary radius such that (∂T ) C4r =
Q JΓK C4r and

(i) q = (0, 0) ∈ Γ and TqΓ = R× {0} ⊂ V0 = R2 × {0};
(ii) γ = p(Γ) divides B4r in two disjoint open sets D and B4r \D;

(iii) p#T C4r = Q JDK.
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Observe that thanks to (iii) we have the identities

E(T,C4r) =
1

2π(4r)2
(‖T‖(C4r)−Q|D|) , (6.2)

eT (F ) = ‖T‖(F × Rn)−Q|D ∩ F | . (6.3)

Following a classical terminology we define noncentered maximal functions for Radon
measures µ and (Lebesgue) integrable functions f : U → R+ by setting

mf(z) := sup
z∈Bs(y)⊂U

1

πs2

∫
Bs(y)

f ,

mµ(z) := sup
z∈Bs(y)⊂U

µ(Bs(y))

πs2
.

Remark 6.3. Observe that by our assumptions there is an interval I ⊂ R containing
(−5r, 5r) and function ψ : I → Rn+1 with the property that C5r ∩ Γ = {(t, ψ(t)) : t ∈ I}.
Moreover ψ(0) = 0, ψ̇(0) = 0 and ‖ψ̈‖C0 ≤ CA for a geometric constant C(n). In

particular |ψ(t)| ≤ CAt2 and |ψ̇(t)| ≤ CAt. Finally observe that, if we write ψ = (ψ1, ψ̄),
then ∂D = (t, ψ1(t)) and Γ can be written as the graph of a function g on ∂D defined by
g(t, ψ1(t)) = ψ̄(t).

Figure 2. An illustration of the maps describing the boundary.
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Proposition 6.4 (First Lipschitz approximation). There are positive constants C and c0

(depending only on Q and n) with the following properties. Assume T satisfies Assumption
6.2, E := E(T,C4r) ≤ c0. Then, for any δ∗ ∈ (0, 1), there are a closed set K ⊂ D ∩ B3r

and a Q-valued function u on D ∩B3r with the following properties:

u|∂D∩B3r = Q JgK (6.4)

Lip(u) ≤ C(δ
1/2
∗ + rA) (6.5)

osc(u) ≤ Ch(T,C4r) + CrE
1/2 + Cr2A (6.6)

K ⊂ B3r ∩ {meT ≤ δ∗} (6.7)

Gu [K × Rn] = T [K × Rn] (6.8)

|(D ∩Bs) \K| ≤
C

δ∗
eT
(
{meT > 4−1δ∗} ∩Bs+r1r

)
+ C

A2

δ∗
s2 ∀s ≤ 3r + r1r (6.9)

‖T −Gu‖(C2r)

r2
≤ C

δ∗
(E + A2r2) (6.10)

where r1 = c
√

E+A2r2

δ∗
and c is a geometric constant.

Proof. Since the statement is invariant under dilations we assume w.l.o.g. that r = 1.
Consider the extension ĝ of the function g defined in Remark 6.3 which is simply given
by ĝ(x1, x2) = ψ̄(x1). In order to simplify our notation, we drop the hat symbol and

denote the extension by g as well. Consider next the current T̂ ∈ I2(C4) which consists of

T̂ = T C4 + QGg ((B4 \D)× Rn), where we use notation Gg for the integer rectifiable
current naturally associated to the graph of a function g : B4 → Rn. More formally, if
ḡ(x) = (x, g(x)), then

Gg ((B4 \D)× Rn) = ḡ](JB4 \DK). (6.11)

In particular from (6.11) and the classical theory of currents we see that

(∂T̂ ) C4 =Q JΓK C4 −Qḡ](J∂D ∩B4K) = Q JΓK C4 −Q JΓK C4 = 0 , (6.12)

p]T̂ =Q JDK +Q JB4 \DK = Q JB4K . (6.13)

Moreover, we can use [12, Corollary 3.3] to estimate

‖T̂‖(C4)−Qπ42 = E(T,C4) +Q(‖Gg‖((B4 \D)× Rn)− |D|)

≤ E(T,C4) +Q

∫
B4\D

|Dg|2 ≤ E + CA2 . (6.14)

Similarly, we can define for F ⊂ B4

eT̂ (F ) = ‖T̂‖(F × Rn)−Q|F |

and the same considerations give

eT̂ (F ) ≤ eT (F ∩D) + CA2|F \D| .
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Moreover, we can apply [11, Proposition 3.2] to T̂ to obtain a closed set K̂ ⊂ B3 and
û ∈ Lip (B3,AQ (Rn)) which satisfy all the estimates (6.5)-(6.10), with the only relevant
differences in (6.9), which becomes

|Bs \ K̂| ≤
C

δ∗
eT
(
{meT > 4−1δ∗} ∩Bs+r1r(x)

)
+ C

A2

δ∗
s2 for every s ≤ 3r . (6.15)

In order to show (6.4), we define an “almost reflection” h on the boundary ∂D in the
following way:

h(x1, x2) = (x1, 2ψ1(x1)− x2)

and set K := h(K̂)∩ K̂. We now take the map û, restrict it to K̂ and then extend it again
to a Lipschitz map u with the additional property that (6.4) holds. In fact we first define
u : K ∪ (∂D ∩B2)→ AQ(Rn) as

u(y) =

{
Q Jg(y)K , if y ∈ ∂D
û(y) , else.

Note that in principle a point y could belong to both K and ∂D: in that case we are
ignoring the value given by û and force such value to be the one given by Q JgK. However
a byproduct of the next elementary argument is that in fact û(y) = Q Jg(y)K for every
y ∈ ∂D.

We now wish to show that the bound on Lip(u) and osc(u) becomes worse only by a
geometric factor. In fact, since the oscillation of Q JgK is controlled by A, we just need to
focus on the Lipschitz bound. Consider p ∈ ∂D, q ∈ K. By construction of h, let σ be the
vertical segment joining q and h(q) and let q̃ be the only intersection of σ with ∂D. Thus

G(u(p), u(q)) ≤ G(u(q), u(h(q))) + G(u(h(q)), u(p))

≤ G(u(q), u(h(q))) + CG(u(q̃), u(p))

≤ G(u(q), u(h(q))) + CQ|g(p)− g(q̃)|
≤ 2|q − p|Lip(û) + CQA|p− q|.

Now we can use the Lipschitz Extension Theorem [10, Theorem 1.7] to extend u to the
whole domain B2, while enlarging the Lipschitz constant and the oscillation by a geometric
factor.

So far our map satisfies (6.4), (6.5), and (6.6). However, (6.7) and (6.8) are obvious

because K ⊂ K̂.
Next we show (6.9) holds with a slightly larger constant. First of all notice that, provided

A is sufficiently small, h is a diffeomorphism and that h−1(Bs) ⊂ Bs+CAs2 , because h(0) = 0
and ‖Dh− Id‖C(Bs) = ‖Dh−Dh(0)‖C(Bs) ≤ CAs. In particular we can estimate

|(Bs ∩D) \K| ≤ |Bs \ K̂|+ |Bs \ h(K̂)|

≤ |Bs \ K̂|+ C|h−1(Bs) \ K̂| ≤ C|h(Bs+CAs2 \ K̂)| .



AN ALLARD-TYPE BOUNDARY REGULARITY THEOREM 25

Finally we conclude

‖T −Gu‖(C2) ≤ ‖T −Gû‖(C2) + ‖Gu −Gû‖(C2).

For the first summand, we already have the desired estimate from [11, Proposition 3.2].
For the second we observe

‖Gu −Gû‖(C2) = ‖Gu −Gû‖((B2 \K)× Rn) ≤ C|B2 \K| ,
and we then use (6.9). This shows (6.10).

The proof would be complete, except that our approximation and estimates hold on
slightly smaller balls than claimed. It can however easily be checked that in [11, Proposition
3.2], we just need to reduce slightly the size of the radius from 4 to a fixed smaller one,
while the argument is literally the same: the price to pay are just worse constants in the
estimates. �

7. Harmonic approximation

Definition 7.1 (Eβ-Lipschitz approximation). Let β ∈ (0, 1) and T be as in Proposition
6.4. After setting δ∗ = (E + A2)2β, the corresponding map u given by the proposition will
be called the Eβ-Lipschitz approximation of T in C3r and will be denoted by f .

In this section we use the minimimizing assumption on T to show that the Eβ-Lipschitz
approximation is close to a Dir-minimizing function w. We first introduce some notation.

Assumption 7.2. D ⊂ R2 is a C2 open set, U is a bounded open set and u ∈ W 1,2(D ∩
U,AQ(Rn)) a multivalued function such that u|∂D∩U ≡ Q JgK, where g is as in Remark
6.3. u is Dir-minimizing in the sense that, for every K ⊂ U compact and for every
v ∈ W 1,2(D ∩ U,AQ(Rn)) which coincides with u on (U \K) ∩D and v|∂D∩U ≡ Q JgK we
have

Dir (u) ≤ Dir (v) .

Theorem 7.3 (First harmonic approximation). For every η > 0 and every β ∈ (0, 1),
there exist a constant ε = ε(η, β) > 0 with the following property. Let T and Γ be as in
Assumption 6.2 in C4r (in particular T is area minimizing in C4r). If E = E(T,C4r) ≤ ε

and rA ≤ εE
1
2 , then the Eβ-Lipschitz approximation f in C3r satisfies∫

B2r∩D\K
|Df |2 ≤ ηEπ(4r)2 = η eT (B4r). (7.1)

Moreover, there exists a Dir-minimizing function w such that w|∂D∩B2r = Q JgK and

r−2

∫
B2r∩D

G(f, w)2 +

∫
B2r∩D

G(Df,Dw)2 ≤ ηE π (4 r)2 = η eT (B4r) , (7.2)∫
B2r∩D

|D(η ◦ f)−D(η ◦ w)|2 ≤ ηEπ(4r)2 = ηeT (B4r) . (7.3)

The following proposition provides a Taylor expansion of the mass of the current associ-
ated to the graph of a Q-valued function. It is proven in [12, Corollary 3.3] (although the
corollary is stated for V open, the proof works obviously when V is merely measurable).
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Proposition 7.4. (Taylor expansion of the mass, see [12, Corollary 3.3]). There are
dimensional constants c, C > 0 such that the following holds. Let V ⊂ R2 be a bounded
measurable set and let u : V → AQ (Rn) be a Lipschitz function with Lip(u) ≤ c. Denote
by Gu the integer rectifiable current associated to the graph of u as in [12, Definition 1.10].
Then, the following Taylor expansion of the mass of Gu holds:

M (Gu) = Q|V |+
∫
V

|Du|2

2
+

∫
V

∑
i

R (Dui) ,

where R : Rn×2 → R is a C1 function satisfying |R(D)| = |D|3L(D) for some positive
function L such that L(0) = 0 and Lip(L) ≤ C.

Remark 7.5. We write here the analog of ([11, Remark 5.5]). There exists a dimensional
constant c > 0 such that, if E ≤ c, then the Eβ -Lipschitz approximation satisfies the
following estimates:

Lip(f) ≤ C(E + CA2)β, (7.4)∫
B3s(x)∩D

|Df |2
(6.9)

≤ C(E + A2)s2. (7.5)

Indeed (7.4) follows from Proposition 6.4, by the choice of β and the scaling of A. While
(7.5) follows from Proposition 7.4 since for E sufficiently small∫

B3s(x)∩D

∑
i

R (Dfi) ≤ CE2β

∫
B3s(x)∩D

|Df |2 < 1

4

∫
B3s(x)∩D

|Df |2,

and therefore∫
B3s(x)∩D

|Df |2 ≤ C (M (Gf C3s(x) ∩ (D × Rn)−Q|D|)

≤ C (M (T C3s(x))−Q|D|) + CM (Gf (B3s(x) ∩D \K)× Rn)

≤ CEs2 + C(E + A2)2β |B3s(x) ∩D \K| ≤ C(E + A2)s2.

Proof of Theorem 7.3. By rescaling, it is not restrictive to assume that r = 1. The proof
of (7.1) is by contradiction. Assume there exist a constant c1 > 0, a sequence of currents

(Tk)k∈N satisfying Assumption 6.2 and corresponding Eβ
k -Lipschitz approximations (fk)k∈N

which violate (7.1) for η = c1 > 0. At the same time ∂T C4(0) = Q JΓkK, where Γk is
a sequence of C2 curves. For the latter we have T0Γk = R × {0} and a parametrization
ψk : R→ Rn+1 of the form

ψk(t) = (ψk1(t), ψ̄k(t)) .

Moreover we assume ‖ψk‖C2 ≤ CAk ≤ CεkE
1
2
k . The domain of definition of the map fk is

a set Dk which can be explicitly written as

Dk = {(x1, x2) ∈ B3 : x2 > ψk1(x1)} .
Summarizing, our currents satisfy the following:

E (Tk,C4) ≤ εk → 0, Ak ≤ εkE
1
2
k and

∫
Dk\Kk

|Dfk|2 ≥ c1Ek (7.6)
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where Kk :=
{
x ∈ B3 : meTk(x) < E2β

k

}
. Set Λk :=

{
x ∈ Dk : meTk(x) ≤ 2−2E2β

k

}
and

observe that Λk ∩B3 ⊂ Kk. From Proposition 6.4 it follows that

Lip (fk) ≤ CEβ
k (7.7)

|Br ∩Dk \Kk| ≤ CE−2β
k eTk

(
Br+r0(k) \ Λk

)
+ Cε2

kE
2(1−β)
k for every r ≤ 3 (7.8)

where r0(k) = 16E
(1−2β)/2
k < 1

2
. Then, (7.6), (7.7), and (7.8) give

c1Ek ≤
∫
B2∩Dk\Kk

|Dfk|2 ≤ CeTk (Bs \ Λk) + Cε2
kE

2
k for every s ∈

[
5

2
, 3

]
. (7.9)

Setting c2 := c1/(2C), we have

2c2Ek ≤ eTk (Bs ∩Dk \ Λk) = eTk (Bs ∩Dk)− eTk (Bs ∩ Λk) ,

implying

eTk (Λk ∩Bs) ≤ eTk (Dk ∩Bs)− 2c2Ek . (7.10)

Next observe that 2π42Ek = eTk (B4 ∩Dk) ≥ eTk (Bs ∩Dk). Therefore, by the Taylor
expansion in [11, Remark 5.4], (7.10) and the fact that Ek ↓ 0, it follows that for every
s ∈ [5/2, 3] and k large enough so that CE2βk ≤ c2, we have∫

Λk∩Bs

|Dfk|2

2

Taylor

≤
(

1 + CE2β
k

)
eTk (Λk ∩Bs)

(7.10)

≤
(

1 + CE2β
k

)
(eTk (Bs ∩Dk)− 2c2Ek)

≤ eTk (Bs ∩Dk)− c2Ek . (7.11)

Our aim is to show that (7.11) contradicts the minimality of Tk. To construct a com-

petitor, we write fk(x) =
∑

iJf
i
k(x)K ∈ AQ (Rn). We consider hk := E

−1/2
k fk. Observe that

hk|∂Dk = QJE−1/2
k ψ̄kK and that in turn ‖ψ̄k‖C2 ≤ CεkE

1
2
k . In particular E

−1/2
k ψ̄k converges

strongly to 0 in C2. Extend ψ̄k to B3 ∩Dk by keeping it constant in the variable x2. Thus

G(hk, QJE−1/2
k ψ̄kK) is a classical W 1,2 function that vanishes on ∂Dk. Since by [11, Remark

5.5(5.5)] we have supk Dir (hk, B3 ∩D) <∞, the Poincaré inequality gives

‖G(hk, QJE−1/2
k ψ̄kK)‖L2(Dk∩B3) ≤ C ,

which in turn implies ‖G(hk, Q J0K)‖L2(Dk∩B3) ≤ C. Hence {hk} is bounded in W 1,2. Even
though the domains of the hk depend on k, we can extend the maps identically equal to
Q{ψ̄k} on their complement, and thus treat them as maps on B3. Up to a subsequence,
not relabeled, we can thus assume that the maps converge to some h ∈ W 1,2. Observe that
h vanishes identically on the lower half disk B−3 := {(x1, x2) ∈ B3 : x2 < 0} and thus we
will also consider it as a map defined on the upper half disk B+

3 , taking the value Q J0K on
the x1-axis.

Since

‖G (hk, h)‖L2(B3) → 0 (7.12)
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and the following inequalities hold for every open Ω′ ⊂ B3 and any sequence of measurable
sets Jk with |Jk| → 0,

lim inf
k→+∞

(∫
Ω′\Jk

|Dhk|2 −
∫

Ω′
|Dh|2

)
≥ 0, (7.13)

lim sup
k→+∞

∫
Ω

(|Dhk| − |Dh|)2 ≤ lim sup
k→+∞

∫
Ω

(
|Dhk|2 − |Dh|2

)
. (7.14)

Applying the first inequality with Jk being the complement of Λk we reach the following
inequality

1

2

∫
B+
s

|Dh|2 ≤ lim inf
k→∞

E−1
k eTk(Bs ∩Dk)− c2 for every s < 3. (7.15)

Now we wish to find a radius r ∈ [5
2
, 3] and a competitor function Hk such that

• Hk|(B3\Br)∩Dk = hk|(B3\Br)∩Dk ;

• Hk|∂Dk∩B3
= hk|∂Dk∩B3

;
• The following estimates hold for a subsequence (not relabeled)

lim
k→∞

Dir (Hk, Br) ≤ Dir (h,Br) +
c2

4
, (7.16)

Lip (Hk) ≤ C∗E
β−1/2
k , (7.17)

‖G(Hk, hk)‖L2(B+
r ) ≤ CDir(hk, B

+
r ) + CDir(Hk, B

+
r ) ≤M < +∞, (7.18)

where C∗ is a constant independent of k.

After proving that such a function exists, we can then follow the proof of [11, Theorem
5.2] mutatis mutandis.

In order to show our claim we will use (7.12), the Lipschitz bound Lip(hk) ≤ CE
β−1/2
k ,

the bound supk Dir(hk, B3) ≤ C, and (7.15). Note next that, since ‖ψ̄k/E1/2‖C2 ↓ 0, all
these facts remain true if we replace hk with the map

h̄k(x) :=
∑
i

q
(hk)i − ψ̄k

y
.

The advantage of the latter is that h̄k|∂Dk = Q J0K. Assuming that we find corresponding
maps H̄k satisfying all the properties above, we can then simply get Hk by adding back
ψ̄k:

Hk(x) =
∑
i

q
(H̄k)i + ψ̄k

y

(because the difference in the Dirichlet energies of Hk and H̄k and the difference in the
Lipschitz constants are both infinitesimal).

The next issue is that the domains Dk ∩Bs are curved compared to B+
s . To resolve this,

we invoke Lemma 7.6 below. For each k we apply the lemma to ψk1 and get a corresponding
diffeomorphism Φk which maps each Bs ∩Dk diffeomorphically onto B+

s . Observe that

lim
k→∞

(
‖Φk − Id‖C1 + ‖Φ−1

k − Id‖C1

)
= 0 (7.19)
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because ‖ψk1‖C1 → 0. For this reason the maps h̃k := h̄k ◦Φ−1
k satisfy the same assumptions

as h̄k (and hence as hk). Indeed, after having built the corresponding competitors H̃k, we
can then define H̄k := H̃k ◦Φk. Again the desired conclusion follows because the difference
of the Lipschitz constants and Dirichlet energies are infinitesimal.

Summarizing, we have reduced the proof of the proposition to showing that the com-
petitor Hk can be constructed, without loss of generality, under the additional assump-
tions that all hk’s are defined on the same domain B+

3 and that they all vanish on
{(x1, x2) ∈ B+

3 : x2 = 0}. This is accomplished in Proposition 7.7 below. Now that
we have illustrated how to construct suitable competitors we can proceed with the proof
of the theorem. We restart observing that, when k is large enough, (7.13) implies the
following inequalities

Dir (h,Br) ≤ Dir (hk, Br ∩ Γk) +
c2

4

(5.11)

≤ eTk (Br)

Ek
− 3c2

4
Ek . (7.20)

Note that (7.17) follows from (7.27) as E
β−1/2
k ↑ ∞. Thus C∗ depends on c2 and on

the choice of the two sequences, but not on k. From now on, although this and similar
constants are not dimensional, we will keep denoting them by C, with the understanding
that they do not depend on k. Note that, from (7.7) and (7.8), one gets

‖Tk −Gfk‖ (C3) ≤ ‖Tk‖ ((B3 \Kk)× Rn) + ‖Gfk‖ ((B3 \Kk)× Rn)

≤ Q |B3 \Kk|+ Ek +Q |B3 \Kk|+ C |B3 \Kk|Lip (fk)

≤ Ek + CE1−2β
k ≤ CE1−2β

k .

Let (z, y) denote the coordinates on R2 × Rn and consider the function ϕ(z, y) = |z| and
the slice 〈Tk −Gfk , ϕ, r〉 . Observe that, by the coarea formula and Fatou’s lemma,∫ 3

r

lim inf
k

E2β−1
k M (〈Tk −Gfk , ϕ, s〉) ds ≤ lim inf

k
E2β−1
k ‖Tk −Gfk‖ (C3) ≤ C.

Therefore, for some r̄ ∈ (r, 3), up to subsequences (not relabeled) M (〈Tk −Gfk , ϕ, r̄〉)
≤ CE1−2β

k . Let now vk := E
1/2
k Hk|Br̄ and consider the current Zk := Gvk Cr̄. Since

(vk)|∂Br̄ = fk|∂Br̄ , one gets ∂Zk = 〈Gfk , ϕ, r̄〉 and hence, M (∂ (Tk Cr̄ −Zk)) ≤ CE1−2β
k .

We define

Sk = Tk (C4 \Cr̄) + Zk +Rk , (7.21)

where (cp. [11, Remark 5.3]) Rk is an integral current such that

∂Rk = ∂ (Tk Cr̄ − Zk) and M (Rk) ≤ CE
(1−2β)2
k .

In particular, we have ∂Sk = ∂ (Tk C4). We now show that, since β < 1
4
, for k large

enough, the mass of Sk is strictly smaller than the one of Tk. To this aim we write

Dir (vk, Br̄)−Dir (fk, Br̄ ∩ Λk) =

∫
Br̄

|Dvk|2 −
∫
Br̄∩Λk

|Dfk|2 =: I1 .
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The first term is estimated by (7.16) and (7.13). Indeed, recall that vk = E
1/2
k Hk and

fk = E
1/2
k hk (but also that the two functions coincide on Br̄ \ Br ). We thus deduce that

I1 ≤ c2
2
Ek for k large enough. Hence,

M (Sk)−M (Tk) ≤M (Zk) + CM (Rk)−M (Tk Cr̄)

≤ Q |Br̄|+
∫
Br̄

|Dvk|2

2
+ CE1+2β

k + CE
(1−2β)2
k −Q |Br̄| − eTk (Br̄)

≤
∫
Br̄∩Λk

|Dfk|2

2
+

1

2
c2Ek + CE1+2β

k + CE
(1−2β)2
k − eTk (Br̄)

(7.11)

≤ −c2Ek
2

+ CE1+β
k + CE

(1−2β)2
k < 0, (7.22)

as soon as Ek is small enough, i.e., k large enough. This gives the desired contradiction
and proves (7.1).

Now, we come to the proof of (7.2) and (7.3). To this aim, we argue again by contra-
diction using similar constructions of competitors. Without loss of generality, we assume
x = 0 and s = 1. Suppose (Tk)k is a sequence with Ek := E (Tk,C4) satisfying

E (Tk,C4) ≤ εk → 0, Ak ≤ εkE
1
2
k , (7.23)

but contradicting (7.2) or (7.3). Let us denote by fk the Eβ
k -Lipschitz approximation of

Tk. We know that, for any sequence of Dir-minimizing functions ūk which we might choose,
we will have by the contradiction assumption that

lim inf
k

E−1
k

∫
B2

(
G (fk, ūk)

2 + (|Dfk| − |Dūk|)2 + |D (η ◦ fk − η ◦ ūk)|2
)

︸ ︷︷ ︸
=:I(k)

> 0. (7.24)

As in the previous argument, we introduce the auxiliary normalized functions hk = E
−1/2
k fk

and, after extraction of a subsequence, the function h satisfies (7.13) and (7.14). Moreover
‖G (hk, h)‖L2(B3) → 0. We next claim (and prove)

(i) limk

∫
B2
|Dhk|2 =

∫
B2
|Dh|2,

(ii) h is Dir-minimizing in B2.

Indeed, if (i) were false, then there is a positive constant c2 such that, for any r ∈ [5/2, 3],∫
Br

|Dh|2

2
≤
∫
Br

|Dhk|2

2
− c2 ≤

eTk (Br)

Ek
− c2

2
, (7.25)

provided k is large enough (where the last inequality is again an effect of the Taylor
expansion of [11, Remark 5.4]). We next define the competitor currents Sk as in the
argument leading to (7.22). Replacing in the argument above (7.11) and (7.20) by (7.25),
we deduce again (7.22). On the other hand (7.22) contradicts the minimality of Tk. So we
conclude that (i) is true.
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If (ii) were false, then h is not Dir-minimizing in B2. Thus, we can find a competitor

h̃ ∈ W 1,2(B3,AQ(Rn)) with less energy in the ball B2 than h and such that h̃ = h on

B3 \B5/2. So for any r ∈ [5/2, 3], the function h̃ satisfies∫
Br

∣∣Dh̃∣∣2
2
≤
∫
Br

|Dh|2

2
− c2 = lim

k→∞

∫
Br

|Dhk|2

2
− c2 ≤

eT (Br)

Ek
− c2

2
, (7.26)

provided k is large enough (here c2 > 0 is some constant independent of r and k). On

the other hand, h̃ = h on B3 \ B5/2 and therefore
∥∥∥G (h̃, hk)∥∥∥

L2(B3\B5/2)
→ 0. We then

construct the competitor current Sk of (7.21). This time however, we use the map h̃ in place
of h to construct Hk via Proposition 7.7 and we reach the contradiction (7.22) using (7.26)

in place of (7.11) and (7.20). We next set ūk := E
1/2
k h and we will show that I(k) → 0,

violating (7.24). Observe first that as ‖G (hk, h)‖L2 → 0, we have D (ξ ◦ hk)−D (ξ ◦ h)→ 0
weakly in L2 (recall the definition of ξ = ξBW in [11, Section 2.5]). So, (i) and the identities
|D (ξ ◦ hk)| = |Dhk|, |D (ξ ◦ h)| = |Dh| imply thatD (ξ ◦ hk)−D (ξ ◦ h) converges strongly

to 0 in L2. If we next set ĥ =
∑

iJh
i−η ◦ hK and ĥk =

∑
iJh

i
k−η ◦ hkK, we obviously have∥∥∥G (ĥ, ĥk)∥∥∥

L2
+ ‖η ◦ h− η ◦ hk‖L2 → 0. Recall however that the Dirichlet energy enjoys

the splitting

Dir (hk) = Q

∫
|D (η ◦ hk)|2 + Dir

(
ĥk

)
, Dir (h) = Q

∫
|D (η ◦ h)|2 + Dir

(
ĥ
)
.

So (i) implies that the Dirichlet energy of η◦hk and ĥk converge, respectively, to the one of

η ◦ h and ĥ (which, we recall again, are independent of k because the hk ’s are translating
sheets). We thus infer that D (η ◦ h) −D (η ◦ hk) converges to 0 strongly in L2. Coming
back to ūk we observe that ūk is Dir-minimizing and

E−1
k

∫
B2

G (ūk, fk)
2 =

∫
B2

G (h, hk)
2 → 0.

So,

lim sup
k

I(k) ≤ lim sup
k

∫
B2

(|Dhk| − |Dh|)2 + |D (η ◦ hk − η ◦ h)|2 .

Thus I(k)→ 0, which contradicts (7.24). �

7.1. Technical lemmas.

Lemma 7.6. There is a positive geometric constant c > 0 with the following property.
Consider a C1 function ψ1 : [0, 4]→ R such that ψ1(0) = ψ′1(0) = 0 and ‖ψ1‖C1 ≤ c. Then
there is a map Φ : B4 → B4 such that

• Φ maps Bs diffeomorphically onto itself for every s ∈ (0, 4];
• if we set D := {(x1, x2) : |x1| ≤ 4, x2 > ψ1(x1)} then Φ maps D ∩Bs diffeomorphi-

cally onto B+
s for every s ∈ (0, 4];

• ‖Φ−1 − Id‖C1 + ‖Φ− Id‖C1 ≤ C‖ψ1‖C1.
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Proof. We use polar coordinates (θ, r) and let the angle θ vary from −π
2

(included) to
3π
2

(excluded). It is in fact easier to define the map Φ−1. If c is sufficiently small, each
circle ∂Bs intersects the graph of ψ1 in exactly two points, given in polar coordinates by
(θr(s), s) and (θl(s), s), with θl(s) > θr(s). Furthermore, again assuming c is sufficiently
small, |θr(s)| ≤ π

4
and |θl(s) − π| ≤ π

4
. In polar coordinates the map Φ−1 is then defined

on B+
4 by the formula

Φ−1(θ, s) =

(
θr(s)(π − θ) + θl(s)θ

π
, s

)
.

The verification that ‖Φ−1 − Id‖C1 ≤ C‖ψ1‖C1 is left to the reader.
We then need to extend the map to the lower half disk keeping the same estimate. This

could be reached for instance by the formula

Φ−1(θ, s) =

(
2π − (θl − θr)

π
θea(θ−π)(θ−2π) + 2θl − θr, s

)
for π < θ < 2π,

where a = a(s) := π−2(1− θl(s)−θr(s)
2π−(θl(s)−θr(s))

). �

In the next proposition we want to “patch” functions defined on the upper half disk
B+
s which vanish on the x1-axis. For convenience we introduce the notation Hs horizontal

boundary for Hs = {(x1, 0) : |x1| < s}.

Proposition 7.7. Consider two radii 1 ≤ r0 < r1 < 4 and maps hk, h ∈ W 1,2(B+
r1
,AQ(Rn))

satisfying

sup
k

Dir(hk, B
+
r1

) < +∞ and ‖G(hk, h)‖L2(B+
r1
\Br0 ) → 0

and hk|Hr1 = h|Hr1 = Q J0K. Then for every η > 0, there exist r ∈]r0, r1[, a subsequence of

{hk}k (not relabeled) and functions Hk ∈ W 1,2(B+
r1
,AQ(Rn)) such that:

• Hk|B+
r1
\B+

r
= hk|B+

r1
\B+

r
;

• Hk|Hs = Q J0K and
• Dir(Hk, B

+
r1

) ≤ Dir(h,B+
r1

) + η.

Moreover, there is a dimensional constant C and a constant C∗ (depending on η and the
two sequences, but not on k) such that

Lip(Hk) ≤ C∗ (Lip(hk) + 1) , (7.27)

‖G(Hk, hk)‖L2(B+
r ) ≤ CDir(hk, B

+
r ) + CDir(Hk, B

+
r ) , (7.28)

‖η ◦Hk‖L1(B+
r1

) ≤ C∗ ‖η ◦ hk‖L1(B+
r1

) + C‖η ◦ h‖L1(B+
r1

) . (7.29)

Before coming to the proof of the proposition we state the following variant of the
Lipschitz approximation in [11, Lemma 4.5]. Observe that the only difference is that our
functions are defined on the upper half disks and vanish on the horizontal boundary. We
need the Lipschitz approximation fε to satisfy the same requirement.
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Lemma 7.8 (Lusin type Lipschitz approximation). Let f ∈ W 1,2(B+
r ,AQ) be such that

f |Hr = Q J0K. Then for every ε > 0 there exists fε ∈ Lip(B+
r ,AQ) satisfying fε|Hr = Q J0K

and ∫
B+
r

G(f, fε)
2 +

∫
B+
r

(
|Df | − |Dfε|

)2
+

∫
B+
r

(
|D(η ◦ f)| − |D(η ◦ fε)|

)2 ≤ ε . (7.30)

If in addition f |∂B+
r \Hr ∈ W

1,2(∂Br,AQ), then fε can be chosen to satisfy also∫
∂B+

r \Hr
G(f, fε)

2 +

∫
∂B+

r \Hr

(
|Df | − |Dfε|

)2 ≤ ε. (7.31)

Now we need the following interpolation lemma.

Lemma 7.9 (Interpolation). There exists a constant C0 = C0(n,Q) > 0 with the fol-
lowing property. Assume r ∈]1, 3 [, f ∈ W 1,2 (Br,AQ) satisfies f |Hr = Q J0K and f |∂Br ∈
W 1,2 (∂Br,AQ), and g ∈ W 1,2 (∂B+

r ,AQ) is such that g|Hr∩∂B+
r

= Q J0K. Then, for every

ε ∈] 0, r[, there exists a function hε ∈ W 1,2 (Br,AQ) such that hε|∂Br = g, hε|Hr = Q J0K
and ∫

B+
r

|Dhε|2 ≤
∫
B+
r

|Df |2 + ε

∫
∂B+

r

(
|Dτf |2 + |Dτg|2

)
+
C0

ε

∫
∂B+

r

G(f, g)2 , (7.32)

Lip(hε) ≤ C0

{
Lip(f) + Lip(g) + ε−1 sup

∂B+
r

G(f, g)

}
, (7.33)∫

B+
r

|η ◦ hε| ≤ C0

∫
∂B+

r

|η ◦ g|+ C0

∫
B+
r

|η ◦ f | , (7.34)

where Dτ denotes the tangential derivative.

Proof. The proof is the same as in [11, Lemma 4.6], because the map constructed there
by the linear interpolation on the annulus and taking f in the interior disk vanishes on
Hr1 . �

Proof of Lemma 7.8. We can apply directly [8, Lemma 5.5] to obtain a Lipschitz function

f̃ε satisfying (f̃ε)|Hr = Q J0K and (7.30). �

Proof of Proposition 7.7. The proof goes along the same lines as the proof of [11, Propo-
sition 4.4] using Lemmas 7.8 and 7.9 instead of [11, Lemma 4.5, Lemma 4.6], taking into
account that the situation here is simpler because we do not have translating sheets. For the
sake of completeness we report here the details. Set for simplicityAk := ‖G (hk, h)‖L2(B+

r1
\B+

r0)
and Bk := ‖η ◦ hk‖L1(B+

r1) . If for any k large enough Ak ≡ 0, then there is nothing to prove

and so we can assume that, for a subsequence (not relabeled) Ak > 0. In case that for yet
another subsequence (not relabeled) Bk > 0, we consider the function

ψk(r) :=

∫
∂Br

(
|Dhk|2 + |Dh|2

)
+ A−2

k

∫
∂Br

G (hk, h)2 +B−1
k

∫
∂Br

|η ◦ hk| . (7.35)
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By assumption lim infk
∫ r1
r0
ψk(r)dr <∞. Hence by Fatou’s Lemma, there is an r ∈] r0, r1[

and a subsequence (not relabeled) such that limk ψk(r) < ∞. Thus, for some M > 0 we
have ∫

∂B+
r

G (hk, h)2 → 0 , (7.36)

Dir
(
h, ∂B+

r

)
+ Dir

(
hk, ∂B

+
r

)
≤M , (7.37)∫

∂B+
r

|η ◦ hk| ≤M ‖η ◦ hk‖L1(Br1) . (7.38)

In case Bk = 0 for all k large enough, we define ψk by dropping the last summand in
(7.35) and reach the same conclusion. We apply Lemma 7.8 with f = h, r = r1 and find
a Lipschitz function hε̄1 satisfying the conclusion of the lemma with ε̄1 = ε̄1(η,M) > 0
(which will be chosen later). In particular we have

‖G (hk, hε̄1)‖L2(B+
r1
\B+

r0
) ≤ ‖G (hk, h)‖L2(B+

r1
\B+

r0
) + ‖G (h, hε̄1)‖L2(B+

r1
\B+

r0
) ≤ o(1) + ε̄1 ,

Dir
(
hε̄1 , ∂B

+
r

)
≤ Dir

(
h, ∂B+

r

)
≤M + ε̄1 .

To obtain also the estimate (7.29), which will be required in the construction of the center

manifold, we argue along the same lines of [11, Proposition 4.4]. For hε̄1 =
∑Q

i=1 J(hε̄1)iK
we set h̄ε̄1 :=

∑Q
i=1 J(hε̄1)i − η ◦ hε̄1 + (η ◦ h) ∗ ϕρK, where ϕρ(x) := 1

ρn
ϕ(x

ρ
), and ϕ(x) =

ϕ̄(x − z0) with ϕ̄ being the standard bump function with support in B1(0), z0 := (0,−2)
and ρ will be chosen small enough later. Observe that spt(ϕρ) = Bρ(ρz0) ⊆ B−r for
every ρ small enough and spt(ϕ) = B1(z0). The reason to introduce this convolution
kernel ϕρ with support contained in B−r is that we need to preserve the zero boundary
condition on Hr. Indeed, we claim that such an h̄ε̄1 satisfies (h̄ε̄1)|Hr = Q J0K in addition
to all the other conclusion of the proposition. The fact that (h̄ε)|Hr = Q J0K is a simple
consequence of the definitions and we leave it to the reader. Observe that the standard
approximation properties of mollifiers reinterpreted suitably extends to this new kind of
kernel. In particular, we can choose ρ small enough to have

Q2‖η ◦ h− (η ◦ h) ∗ ϕρ‖2
L2 ≤ ε̄1 , (7.39)

‖D(η ◦ h)−D((η ◦ h) ∗ ϕρ)‖2
L2 ≤ ε̄1 , (7.40)

for some small ε̄1. These last two inequalities combined with (7.36), (7.37), (7.38) imply

•
∥∥G (hk, h̄ε̄1)∥∥L2

(7.39)

≤ ‖G (hk, h)‖L2 + 2
∥∥G (h, h̄ε̄1)∥∥L2 + ε̄1 ≤ o(1) + 3ε̄1 ,

• Dir
(
h̄ε̄1 , ∂Br

)
≤ 2M + 2ε̄1 ,
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• Dir
(
h̄ε̄1 , Br

)
=
∑
i

∫
Br

∣∣D (h̄ε̄1)i −D (η ◦ h̄ε̄1)+D ((η ◦ h) ∗ ϕρ̄)
∣∣2

=

∫
Br

(∣∣Dh̄ε̄1∣∣2 −Q ∣∣D (η ◦ h̄ε̄1)∣∣2 +Q |D ((η ◦ h) ∗ ϕρ̄)|2
)

= Q

∫
Br

(
|D (η ◦ h)|2 −

∣∣D (η ◦ h̄ε̄1)∣∣2 + |D (η ◦ h ∗ ϕρ̄)|2 − |D (η ◦ h)|2
)

+ Dir
(
h̄ε̄1 , Br

)
≤ Dir (hε̄1 , Br) + 2Qε̄1 ,

where we used (7.30),(7.40) in the last inequality. We can then apply the interpolation
Lemma 7.9 with f = h̄ε̄1 and g = hk |∂B+

r
, and ε = ε̄2 = ε̄2(η,M) > 0 to get maps Hk

satisfying Hk|∂B+
r

= hk|∂B+
r

, Hk|B+
r1
\B+

r
= hk|B+

r1
\B+

r
. Now, we use (7.36), (7.37), (7.38)

(7.30) and (7.31) to deduce

Dir
(
Hk, B

+
r

) (7.32)

≤ Dir
(
h̄ε̄1 , B

+
r

)
+ ε̄2 Dir

(
h̄ε̄1 , ∂B

+
r

)
+ ε̄2 Dir

(
hk, ∂B

+
r

)
+
C0

ε̄2

∫
∂B+

r

G
(
h̄ε̄1 , hk

)2

(7.31)

≤ Dir
(
h,B+

r

)
+ ε̄1 + 2Qε̄1 + 3ε̄2

[
Dir
(
h, ∂B+

r

)
+ ε̄1

]
+ ε̄2M

+
C0

ε̄2

[∫
∂B+

r

G (h, hk)
2 +

∫
∂B+

r

G (hε̄1 , h)2

]
≤ Dir

(
h,B+

r

)
+ ε̄1(1 + 2Q) + ε̄2(4M + 3ε̄1) + C0ε̄

−1
2 [o(1) + ε̄1] .

An appropriate choice of the parameters ε̄1 and ε̄2 gives the desired bound Dir (Hk, Br) ≤
Dir (h,Br) + η for k large enough. Observe next that, by construction, Lip

(
h̄ε̄1
)

depends
on η and h, but not on k. Moreover, we have

∥∥G (h̄ε̄1 , hk)∥∥L∞(∂Br)
≤ C

∥∥G (h̄ε̄1 , hk)∥∥L2(∂Br)
+ C Lip (hk) + C Lip

(
h̄ε̄1
)
.

To prove the last inequality put F (x) := G
(
h̄ε̄1(x), hk(x)

)
and observe that F (x) ≤ F (y)+

Lip(F )|x − y|, then integrate in y and use the Cauchy-Schwarz inequality combined with
the fact that Lip(F ) ≤ C(Lip(h̄ε̄1) + Lip(hk)). Thus (7.27) follows from (7.33). Finally,
(7.28) follows from the Poincar inequality applied to G (Hk, hk) (which vanishes identically
on ∂B+

r ), in fact we have

‖G (Hk, hk) ‖2
L2(B+

r1
)
≤ C‖∇G (Hk, hk) ‖2

L2(B+
r1

)
≤ CDir(hk, B

+
r1

) + CDir(Hk, B
+
r1

).
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(7.29) follows from (7.34), because of (7.38) and
∥∥η ◦ h̄ε̄1∥∥L1(Br)

= ‖(η ◦ h) ∗ ϕρ̄‖L1(Br)
≤

‖η ◦ h‖L1(Br1) if ρ̄ is also chosen small enough such that r + ρ̄ < r1. Indeed, observe that

‖η ◦Hk‖L1(B+
r1

) = ‖η ◦Hk‖L1(B+
r ) + ‖η ◦ hk‖L1(B+

r1
\B+

r )

(7.34)

≤ C0

∫
∂B+

r

|η ◦ hk|+ C0

∫
B+
r

|η ◦ h̄ε̄1|+ ‖η ◦ hk‖L1(B+
r1
\B+

r )

(7.38)

≤ C0‖η ◦ hk‖L1(B+
r ) + C0

∫
B+
r

|(η ◦ h) ∗ ϕρ|+ ‖η ◦ hk‖L1(B+
r1
\B+

r )

(7.39)

≤ C0‖η ◦ hk‖L1(B+
r ) + C‖η ◦ h‖L1(B+

r ) + ‖η ◦ hk‖L1(B+
r1
\B+

r )

≤ C‖η ◦ hk‖L1(B+
r1

) + C‖η ◦ h‖L1(B+
r1

),

provided ρ is chosen so small that r̄ + ρ < r. �

8. Higher integrability estimate

We consider the density dT of the measure eT with respect to the Lebesgue measure | · |,
i.e.

dT (y) = lim sup
s→0

eT (Bs(y))

πs2
.

We will drop the subscript T when the current in question is clear from the context. Clearly,
under the assumptions of Proposition 6.4, ‖dT‖L1 ≤ CE. Now, following the approach of
[11], we wish to prove an Lp estimate for a p > 1, which is just a geometric constant.

Theorem 8.1. There exist constants p > 1, C, and ε > 0 (depending on n and Q) such
that, if T is as in Proposition 6.4, then∫

{d≤1}∩B2

dp ≤ C
(
E + A2

)p
. (8.1)

8.1. Higher integrability for Dir-minimizers. We start with an analogous estimate
for the gradient of Dir-minimizers.

Proposition 8.2. There are constants q > 1, δ > 0 and C (depending only on Q and n)
with the following property. Consider a connected domain D in R2 such that:

• the curvature κ of ∂D enjoys the bound ‖κ‖∞ ≤ δ;
• ∂D ∩B16(x) is connected for every x.

Let 0 < ρ ≤ 1 and u : B8ρ(x) ∩ D → AQ(Rn) be a Dir-minimizing function such that
u|∂D∩Bρ(x) = Q JgK for some C1 function g. Then(

−
∫
Bρ(x)∩D

|Du|2q
) 1

q

≤ C−
∫
B8ρ(x)∩D

|Du|2 + C‖Dg‖2
∞ . (8.2)
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Proof. First of all, the claim follows from [11, Theorem 6.1] when B2ρ(x) ⊂ D, while it is
trivial if B2ρ(x) ⊂ int (Dc). We can thus assume, without loss of generality, that B2ρ(x)
intersects ∂D. Let y be a point in such intersection and observe that Bρ(x) ⊂ B4ρ(y). The
claim thus follows if we can show(

−
∫
Br(y)∩D

|Du|2q
) 1

q

≤ C−
∫
B2r(y)∩D

|Du|2 + C‖Dg‖2
∞ , (8.3)

for every y ∈ ∂D and every r ≤ 4. We now define

ū(z) =
∑
i

Jui(z)− η ◦ u(z)K ,

and observe that |Du| ≤ |Dū| + Q|Dη ◦ u|, while η ◦ u is a classical harmonic function
such that η ◦ u|∂D∩B2 = g, and ū is a Dir-minimizing function such that ū|∂D∩B2 = Q J0K.
Observe that (

−
∫
Br(y)∩D

|Dη ◦ u|2q
) 1

q

≤ C−
∫
B2r(y)∩D

|Dη ◦ u|2 + C‖Dg‖2
∞

is a classical estimate for (single-valued) harmonic functions and that |Dη ◦ u| ≤ |Du|.
Hence, it suffices to prove (8.3) when g = Q J0K. Moreover without loss of generality we
can assume that y = 0 and r = 1. Our goal is thus to show

‖|Du|‖L2q(B1∩D) ≤ C‖|Du|‖L2(B2∩D) ,

under the assumption that u|∂D∩B2 = Q J0K. If we extend |Du| trivially to the complement
of D, by setting it identically equal to 0, the inequality is just an higher integrability
estimate for the function |Du| on B1. By Gehring’s lemma, it suffices to prove the existence
of a constant C such that

‖|Du|‖L2(Bρ(x)) ≤ C‖|Du|‖L1(B8ρ(x)) (8.4)

whenever B8ρ(x) ⊂ B2. However, in the “interior case” B2ρ(x) ⊂ D, the stronger

‖|Du|‖L2(Bρ(x)) ≤ C‖|Du|‖L1(B2ρ(x))

is already proved in [11, Proposition 6.2]. Hence, arguing as above, it suffices to prove (8.4),
with the ball B4ρ(x) replacing Bρ(x) in the left hand side, under the additional assumption
x ∈ ∂D. Again by scaling, we are reduced to prove the following estimate

‖|Du|‖L2(B1∩D) ≤ C‖|Du|‖L1(B2∩D) if 0 ∈ ∂D. (8.5)

First of all observe that, by our assumptions, if δ is sufficiently small, for every r ∈ (1, 2)
the domain D ∩ Br is biLipschitz equivalent to the half disk Br ∩ {(x1, x2) : x2 > 0},
with uniform bounds on the Lipschitz constants of the homeomorphism and its inverse. In
particular, we recall that, by classical Sobolev space theory, we have

min
c∈R
‖f − c‖H1/2(∂(Br∩D)) ≤ C‖Df‖L1(∂(Br∩D))
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for every classical function f ∈ W 1,1(∂Br,R). Moreover there is an extension F ∈
W 1,2(Br ∩D) of f such that

‖DF‖L2(Br∩D) ≤ C‖f − c‖H1/2(∂(Br∩D)) ≤ C‖Df‖L1(∂(Br∩D)) . (8.6)

Thus, using Fubini and (8.6), under our assumptions on u, we find a radius r ∈ (1, 2) and
an extension v of the classical function ξ ◦ u|∂(Br∩D) to Br ∩D such that

‖Dξ ◦ u‖L2(Br∩D) ≤ C‖Dξ ◦ u‖L1(∂(Br∩D)) ≤ C‖Dξ ◦ u‖L1(B2∩D) ≤ C|Du|‖L1(D∩B2) . (8.7)

If we consider the multivalued function ξ−1 ◦ ρ ◦ v, the latter has trace w := ξ−1 ◦ ξ ◦ u on
∂(Br ∩D). Therefore, by minimality of u,

‖|Du|‖L2(Br∩D) ≤ ‖Dw‖L2(Br∩D) ≤ C‖Dv‖L2(Br∩D) .

Combining the latter inequality with (8.7) we achieve (8.5). �

8.2. Improved excess estimates.

Proposition 8.3 (Weak excess estimate). For every η > 0, there exists ε > 0 with the
following property. Let T be area minimizing and assume it satisfies Assumption 6.2 in
C4s(x). If E = E (T,C4s(x)) ≤ ε, then

eT (A) ≤ η10Es
2 + CA2s4 (8.8)

for every A ⊂ Bs(x) ∩D Borel with |A| ≤ ε |Bs(x)|.
Proof. Without loss of generality, we can assume s = 1 and x = 0. We distinguish the two
regimes: E ≤ A2 and A2 ≤ E. In the former, clearly eT (A) ≤ CE ≤ CA2. In the latter,

we let f be the E
1
8 -Lipschitz approximation of T in C3 and, arguing as for the proof of

[11, Theorem 5.2] we find a radius r ∈ (1, 2) and a current R such that

∂R = 〈T −Gf , ϕ, r〉
and

M(R) ≤
(
C

δ∗
(E + A2r2)

)2

≤ CE2− 1
2 .

Therefore, by the Taylor expansion in Remark 5.4, we have:

‖T‖ (Cr)
minimality

≤ M (Gf Cr +R)
triangular

≤ ‖Gf‖ (Cr) + CE
3
2

Taylor

≤ Q |Br|+
∫
Br

|Df |2

2
+ CE

5
4 . (8.9)

On the other hand, using again the Taylor expansion for the part of the current which
coincides with the graph of f, we deduce as well that

‖T‖ ((Br ∩K)× Rn) ≥ Q |Br ∩K|+
∫
Br∩K

|Df |2

2
− CE

5
4 . (8.10)

Subtracting (8.10) from (8.9), we deduce

eT (Br ∩D \K) ≤
∫
Br∩D\K

|Df |2

2
+ CE

5
4 . (8.11)
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If ε is chosen small enough, we infer from (8.11) and (7.1) in Theorem 7.3 that

eT (Br ∩D \K) ≤ η̄E + CE1+γ,

for a suitable η̄ > 0 to be chosen. Let now A ⊂ B1 be such that |A| ≤ επ. If ε is small
enough, we can again apply Theorem 7.3 and so by (8.2) there is a Dir-minimizing w such
that |Df | is close in L2 (with an error η̄E) to |Dw| and by [11, Remark 5.5] Dir(w) ≤ CE.

By Proposition 8.2 we have ‖|Dw|‖Lq(B1) ≤ CE
1
2 . Therefore we can deduce

eT (A)
(7.1),(7.2)

≤
∫
A

|Dw|2 + 3ηE + CE1+γ

≤ C‖Dg‖2
∞|A|1−2/q + C

(
|A|1−2/q + η̄

)
E + CE1+γ

≤ C
(
|A|1−2/q + η̄

)
E + CE

5
4 . (8.12)

Hence, if ε and η are suitably chosen, (8.8) follows from (8.12). �

8.3. Proof of Theorem 8.1. The proof follows from Proposition 8.3 arguing exactly as
in [11, Section 6.3].

9. Strong Lipschitz approximation

In this section we show how Theorem 8.1 gives a simple proof of the following approxi-
mation result analogous to [11, Theorem 2.4].

Theorem 9.1 (Boundary Almgren Strong Approximation). There are geometric constants
γ1 > 0, εA > 0, and C > 0 with the following properties. Let T and Γ be as in Assumption
6.2 with ε = εA, let f be the Eγ-Lipschitz approximation and K ⊂ B3r the corresponding
set where Gf and T coincide. Then:

Lip(f) ≤ C(E + r2A2)γ1 (9.1)

osc (f) ≤ Ch(T,C4r) + Cr(E + r2A2)
1
2 (9.2)

|Br \K|+ eT (Br \K) ≤ Cr2(E + r2A2)1+γ1 (9.3)∣∣∣∣‖T‖(A× Rn)−Q|A ∩D| − 1

2

∫
A

|Df |2
∣∣∣∣ ≤ Cr2(E + r2A2)1+γ1 (9.4)

for every closed set A ⊂ Br.

We postpone the proof till the end of this section however we anticipate that it goes
along the same line of [11, Theorem 2.4] using Theorems 9.2 and 9.4 below instead of
[11, Theorem 7.1] and [11, Theorem 7.3] respectively. The substantial changes necessary
to adapt the argument of the interior case, i.e., [11, Theorem 2.4] concerns mainly the
proof of Theorem 9.4 while the proof of Theorem 9.2 is essentially the same as that of [11,
Theorem 7.1]. So we start by stating the Almgren’s boundary strong excess estimate.
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Theorem 9.2 (Almgren’s boundary strong excess estimate). There are constants ε11, γ11, C >
0 (depending on n,Q) with the following property. Assume T satisfies Assumption 6.2 in
C4 and is area minimizing. If E = E (T,C4) < ε11, then

eT (A) ≤ C
(
(E + A2)γ11 + |A|γ11

) (
E + A2

)
, (9.5)

for every Borel set A ⊂ B 9
8
.

This estimate complements (8.1) enabling to control the excess also in the region where
d > 1. We call it boundary strong Almgren’s estimate because a similar formula in the
interior case can be found in the big regularity paper (cf. [6, Sections 3.24-3.26 and 3.30(8)])
and is a strengthened version of Proposition 8.3 that we called weak excess estimate. To
prove (9.5) we construct a suitable competitor to estimate the size of the set K̃ where the
graph of the Eβ Lipschitz approximation f differs from T . Following Almgren, we embed
AQ(Rn) in a large Euclidean space, via a bilipschitz embedding ξ. We then regularize ξ ◦f
by convolution and project it back onto Q = ξ (AQ(Rn)) . To avoid loss of energy we need
a rather special ”almost projection” ρ?δ that preserves zero boundary data, i.e., ρ?δ(0) = 0.

Proposition 9.3. ([11, Proposition 7.2]) For every n,Q ∈ N \ {0} there are geometric
constants δ0, C > 0 with the following property. For every δ ∈]0, δ0 [ there is ρ?δ : RN(Q,n) →
Q = ξ (AQ(Rn)) such that ρ?δ(0) = 0, |ρ?δ(P )− P | ≤ Cδ8−nQ for all P ∈ Q and, for every
u ∈ W 1,2

(
Ω,RN

)
, the following holds:∫

|D (ρ?δ ◦ u)|2 ≤
(

1 + Cδ8−nQ−1
)∫
{dist(u,Q)≤δnQ+1}

|Du|2+C

∫
{dist(u,Q)>δnQ+1}

|Du|2. (9.6)

Proof. ρ?δ is the projection obtained in [11, Proposition 7.2]. �

Here we show the Strong Excess Approximation of Almgren in our version that takes
into account the non-homogeneous boundary value problem, concluding in this way the
proof of Theorem 9.1. Theorem 8.1 enters crucially in the argument when estimating the
second summand of (9.6) for the regularization of ξ ◦ f .

9.1. Regularization by convolution with a non centered kernel. Here we construct
the competitor preserving the boundary conditions.

Proposition 9.4. Let β1 ∈
(
0, 1

4

)
and T be an area minimizing current satisfying As-

sumption 6.2 in C4. Let f be its Eβ1-Lipschitz approximation. Then, there exist con-
stants ε̄12, γ12, C > 0 and a subset of radii B ⊂ [9/8, 2] with |B| > 1/2 with the fol-
lowing properties. If E (T,C4) ≤ ε̄12, for every σ ∈ B, there exists a Q-valued function
h ∈ Lip (Bσ ∩D,AQ(Rn)) such that

h|Bσ∩∂D = g,

h|∂Bσ∩D = f |∂Bσ∩D,
Lip(h) ≤ C(E + A2)β1 ,
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and ∫
Bσ∩D

|Dh|2 ≤
∫
Bσ∩K∩D

|Df |2 + C
(
E + A2

)1+γ12 . (9.7)

Proof. Since |Df |2 ≤ CdT ≤ CE2β1 ≤ 1 on K, by Theorem 8.1 there is q1 = 2p1 > 2 such
that

‖|Df |‖2
Lq1 (K∩B2) ≤ C

(
E + A2

)
. (9.8)

Given two (vector-valued) functions h1 and h2 and two radii 0 < r̄ < r, we denote by
lin (h1, h2) the linear interpolation in Br \ B̄r̄ between h1|∂Br and h2|∂Br̄ . More precisely,

if (θ, t) ∈ Sm−1
+ × [0,∞) are spherical coordinates, then

lin (h1, h2) (θ, t) =
r − t
r − r̄

h2(θ, t) +
t− r̄
r − r̄

h1(θ, t).

Next, let δ > 0 and ε > 0 be two parameters and let 1 < r1 < r2 < r3 < 2 be three radii,
all to be chosen suitably later. First of all extend the function g to the whole disk B3 by
making it coinstant in the direction x2, i.e. g(x1, x2) = g(x1, ψ1(x1)). We then extend the
Eβ1-Lipschitz approximation to a function f ∗ defined on the entire B3 by setting

f ∗(x) =

{
f(x) if x ∈ B3 ∩D
Q Jg(x)K if x ∈ B3 ∩D− .

From now to keep our notation simpler we denote f ∗ as well by f . Observe moreover that

(η ◦ f)|D− = g .

We next define a translation operator ⊕ : AQ
(
RN
)
× RN → AQ

(
RN
)

setting

T ⊕ t =

Q∑
i=1

Jti + tK for T =

Q∑
i=1

JtiK .

We then introduce f̃ := f ⊕ (−η ◦ f), so that f̃ |D− = Q J0K and η ◦ f̃ = 0.
Next we define, as in the proof of Proposition 7.7, ϕε(x) := 1

εn
ϕ(x

ε
), and ϕ(x) = ϕ̄(x−z0)

with ϕ̄ being the standard bump function with support in B1(0) and z0 := (0,−2). We
therefore set

h̃ε := (η ◦ f) ∗ ϕε − g ∗ ϕε + g .

We easily see that (h̃ε)|∂D∩Br3 = g|∂D∩Br3 , and

Lip(h̃ε) ≤ C(E + A2)β1 .

Recall the maps ρ?δ and ξ of [LS11 b, Theorem 2.1] and observe that ξ(Q J0K) = 0 and

ρ?δ(0Rn) = 0Rn . We then set f̃ ′1 := ξ ◦ f̃

g̃′δ,ε,s :=


√
E + A2ρ ◦ Φ ◦ lin

(
f̃ ′1◦Φ−1
√
E+A2 ,ρ

?
δ

(
f̃ ′1◦Φ−1
√
E+A2

))
, in (Br3 \Br2) ∩D,

√
E + A2ρ ◦ Φ ◦ lin

(
ρ?δ

(
f̃ ′1◦Φ−1
√
E+A2

)
,ρ?δ

(
(
f̃ ′1∗ϕε)◦Φ−1
√
E+A2

))
, in (Br2 \Br1) ∩D,

√
E + A2ρ?δ

(
f̃ ′1∗ϕε√
E+A2

)
, in Br1 ∩D,
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where Φ is the diffeomorphism constructed in Proposition 7.6. Now, we define

ĥδ,ε,s :=

Q∑
i=1

r(
ξ−1 ◦ g̃′δ,ε,s

)
i
− η ◦

(
ξ−1 ◦ g̃′δ,ε,s

)z
, in Br3 ∩D, (9.9)

and

hδ,ε,s :=

Q∑
i=1

r(
ξ−1 ◦ g̃′δ,ε,s

)
i
− η ◦

(
ξ−1 ◦ g̃′δ,ε,s

)
+ h̃ε

z
, in Br3 ∩D. (9.10)

Notice that the convolution of any function u satisfying u|B3\D ≡ 0 with ϕε for ε small
enough always produces smooth function u ∗ ϕε satisfying (u ∗ ϕε)|B3\D ≡ 0, because we
have assumed that ∂D is the graph of a Lipschitz function and so it stays inside a cone
with fixed angles. With this last fact in mind it is easy to see that (g̃′δ)|∂D = 0, and

(hδ)|∂D = g, η ◦ ĥδ,ε,s = 0. We will prove that, for σ := r3 in a suitable set B ⊂ [9/8, 2]
with |B| > 1/2, we can choose r2 = r3− s and r1 = r2− s so that h satisfies the conclusion
of the proposition. Our choice of the parameters will imply the following inequalities:

δ2·8−nQ ≤ s, ε ≤ s, and E1−2β1 ≤ ε2. (9.11)

We estimate the Lipschitz constant of g̃′δ. This can be easily done observing that

• in Br1 ∩D, we have

Lip (g̃′δ) ≤ C Lip
(
f̃ ′1 ∗ ϕε

)
≤ C Lip

(
f̃ ′1

)
≤ C(E + A2)β1 ,

• in (Br2 \Br1) ∩D, we have

Lip (g̃′δ) ≤ C Lip
(
f̃ ′1

)
+ C

∥∥∥f̃ ′1 − f̃ ′1 ∗ ϕε∥∥∥
L∞

s
≤ C

(
1 +

ε

s

)
Lip

(
f̃ ′1

)
≤ C(E + A2)β1 ,

• in (Br3 \Br2) ∩D, we have

Lip (g̃′δ) ≤ C Lip
(
f̃ ′1

)
+ C(E + A2)

1/2 δ
8−nQ

s
≤ CEβ1 + C(E + A2)

1/2 ≤ C(E + A2)β1 .

(9.12)

In the first inequality of the last line we have used that, sinceQ is a cone, (E+A2)−1/2f̃ ′1(x) ∈
Q for every x, hence ∣∣∣∣∣ρ?δ

(
f̃ ′1√

E + A2

)
− f̃ ′1√

E + A2

∣∣∣∣∣ ≤ Cδ8−nQ .

From (9.12) and (9.11) we deduce easily that g̃′δ is continuous and piecewise Lipschitz and
so globally Lipschitz and furthermore that

Lip(hδ,ε,s) ≤ C(E + A2)β1 . (9.13)

In the following Steps 1-3 we estimate the Dirichlet energy of hδ,ε,s and finally in Step 4
we obtain the desired estimate (9.7) of Theorem 9.4 for a suitable choice of δ, ε, s depending
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on some powers of the infinitesimal quantity E (see (9.39) below). Before we realize this
program, we recall that for every f ∈ W 1,2(Ω,AQ(Rn)) we have

0 ≤ Dir(f ⊕ (−η ◦ f)) = Dir(f)−QDir(η ◦ f). (9.14)

We write here the estimate of the Dirichlet energy of h̃ε which will be useful in combination
with (9.14). ∫

|Dg ∗ ϕε −Dg|2 ≤ CA2ε2, (9.15)

‖Dg ∗ ϕε −Dg‖∞ ≤ C‖D2g‖∞ε ≤ CAε,∣∣∣∣∫ (Dg ∗ ϕε −Dg) (D(η ◦ f) ∗ ϕε)
∣∣∣∣ ≤ CAε

∫
|D(η ◦ f) ∗ ϕε|

Rem.7.5

≤ CAε(E + A2)
1
2

Young

≤ Cε(E + A2) . (9.16)

Summing (9.16), (9.15), we obtain∫
|Dh̃ε|2 =

∫
|D(η ◦ f) ∗ ϕε|2 +

∫
|Dg ∗ ϕε −Dg|2 − 2

∫
(Dg ∗ ϕε −Dg) (D(η ◦ f) ∗ ϕε)

≤
∫
|D(η ◦ f)|2 + CA2ε2 + Cε(E + A2)

≤ C

∫
|Df |2 + Cε(E + A2) .

Step 1. Energy in Br3 \ Br2 . By Proposition 9.3, we have |ρ?δ(P )− P | ≤ Cδ8−nQ for
all P ∈ Q := ξ(AQ(Rn)). Thus, elementary estimates on the linear interpolation give∫

(Br3\Br2 )∩D
|Dg̃′δ|

2 ≤ C(E + A2)

(r3 − r2)2

∫
(Br3\Br2 )∩D

∣∣∣∣∣ f̃ ′1√
E + A2

− ρ?δ

(
f̃ ′1√

E + A2

)∣∣∣∣∣
2

+C

∫
(Br3\Br2 )∩D

∣∣Df̃ ′1∣∣2 + C

∫
(Br3\Br2 )∩D

∣∣∣D (ρ?δ ◦ f̃ ′1)∣∣∣2
≤ C

∫
(Br3\Br2 )∩D

∣∣Df̃ ′1∣∣2 + C(E + A2)s−1δ2·8−nQ . (9.17)

Hence, using that Lip(ξ) ≤ 1 and (9.14), we estimate∫
(Br3\Br2 )∩D

|Dhδ,ε,s|2 =

∫
(Br3\Br2 )∩D

∣∣∣Dĥδ,ε,s∣∣∣2 +Q

∫
(Br3\Br2 )∩D

∣∣∣Dh̃ε∣∣∣2
≤
∫

(Br3\Br2 )∩D
|Dg̃′δ|

2 −Q
∫
η + C

∫
(Br3\Br2 )∩D

∣∣∣Dh̃ε∣∣∣2
≤ C

∫
(Br3\Br2 )∩D

|Df |2 + C(E + A2)
(
ε+ s−1δ2·8−nQ

)
. (9.18)
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Step 2. Energy in Br2 \ Br1 . Here, using the same interpolation inequality and a
standard estimate on convolutions of W 1,2 functions, we get∫

(Br2\Br1 )∩D
|Dg̃′δ|

2 ≤ C

∫
(Br2+ε\Br1−ε)∩D

∣∣∣Df̃ ′1∣∣∣2 +
CCΦ

(r2 − r1)2

∫
Br2\Br1

∣∣∣f̃ ′1 − ϕε ∗ f̃ ′1∣∣∣2
≤ CCΦ

∫
(Br2+ε\Br1−ε)∩D

∣∣Df̃ ′1∣∣2 + CCΦε
2s−2

∫
B3∩D

∣∣Df̃ ′1∣∣2
≤ C

∫
(Br2+ε\Br1−ε)∩D

∣∣Df̃ ′1∣∣2 + Cε2(E + A2)s−2

≤ C

∫
(Br2+ε\Br1−ε)∩D

|Df |2 + Cε2(E + A2)s−2.

So coming back to the energy estimate on hδ,ε,s we get∫
(Br2\Br1 )∩D

|Dhδ,ε,s|2 =

∫
(Br2\Br1 )∩D

∣∣∣Dĥδ,ε,s∣∣∣2 +Q

∫
(Br2\Br1 )∩D

∣∣∣Dh̃ε∣∣∣2
≤
∫

(Br2\Br1 )∩D
|Dg̃′δ|

2
+ C

∫
(Br2\Br1 )∩D

∣∣∣Dh̃ε∣∣∣2
≤ C

∫
(Br2+ε\Br1−ε)∩D

|Df |2 + Cε2(E + A2)s−2 + Cε(E + A2) .

(9.19)

Step 3. Energy in Br1 . Define Z :=
{

dist
(

f̃ ′1√
E
∗ ϕε,Q

)
> δnQ+1

}
⊆ D and use (9.6)

to get∫
Br1∩D

|Dg̃′δ|
2 ≤

(
1 + Cδ8−n̄Q−1

)∫
(Br1∩D)\Z

∣∣∣D (f̃ ′1 ∗ ϕε)∣∣∣2 + C

∫
Z

∣∣∣D (f̃ ′1 ∗ ϕε)∣∣∣2 (9.20)

=: I1 + I2.

We consider I1 and I2 separately. For I1 we first observe the elementary inequality∥∥∥D (f̃ ′1 ∗ ϕε)∥∥∥2

L2
≤
∥∥∥(Df̃ ′1) ∗ ϕε

∥∥∥2

L2

≤
∥∥∥(∣∣Df̃ ′1∣∣1K) ∗ ϕε∥∥∥2

L2
+
∥∥∥(∣∣Df̃ ′1∣∣1Kc

)
∗ ϕε

∥∥∥2

L2

+ 2
∥∥∥(∣∣Df̃ ′1∣∣1K) ∗ ϕε∥∥∥

L2

∥∥∥(∣∣Df̃ ′1∣∣1Kc

)
∗ ϕε

∥∥∥
L2
, (9.21)

where Kc is the complement of K in D. Recalling r1 + ε ≤ r1 + s = r2 we estimate the
first summand in (9.21) as follows:∥∥∥(∣∣Df̃ ′1∣∣1K) ∗ ϕε∥∥∥2

L2(Br1∩D)
≤
∫
Br1+ε∩D

(∣∣Df̃ ′1∣∣1K)2

≤
∫
Br2∩K

∣∣Df̃ ′1∣∣2. (9.22)
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In order to treat the other terms, recall that Lip
(
f̃ ′1

)
≤ C(E + A2)β1 and |Kc| ≤ C(E +

A2)1−2β1 . Thus, we have∥∥∥(∣∣Df̃ ′1∣∣1Kc

)
∗ ϕε

∥∥∥2

L2(Br1∩D)
≤ C(E + A2)2β1 ‖1Kc ∗ ϕε‖2

L2

≤ C(E + A2)2β1 ‖1Kc‖2
L1 ‖ϕε‖2

L2 ≤
C(E + A2)2−2β1

ε2
. (9.23)

Putting (9.22) and (9.23) in (9.21) and recalling (E + A2)1−2β1 ≤ ε2 and
∫ ∣∣Df̃ ′1∣∣2 ≤

C(E + A2), we get

I1 ≤
∫
Br2∩K

∣∣Df̃ ′1∣∣2 + Cδ8−n̄Q−1

(E + A2) + Cε−1(E + A2)3/2−β1 . (9.24)

For what concerns I2, first we argue as for I1, splitting in K and Kc, to deduce that

I2 ≤ C

∫
Z

((∣∣Df̃ ′1∣∣1K) ∗ ϕε)2

+ Cε−1(E + A2)3/2−β1 . (9.25)

Then, regarding the first summand in (9.25), we note that

|Z|δ2nQ+2 ≤
∫
Br1∩D

∣∣∣∣∣ f̃ ′1√
E + A2

∗ ϕε −
f̃ ′1√

E + A2

∣∣∣∣∣
2

≤ Cε2. (9.26)

Next, we recall that q1 = 2p1 > 2 and use (9.8) to obtain∫
Z

((∣∣Df̃ ′1∣∣1K) ∗ ϕε)2

≤ |Z|
p1−1
p1

∥∥∥(∣∣Df̃ ′1∣∣1K) ∗ ϕε∥∥∥2

L4

≤ C
( ε

δnQ+1

) 2(p1−1)
p1

∥∥∥∣∣Df̃ ′1∣∣∥∥∥2

Lq1 (K)

≤ C
( ε

δnQ+1

) 2(p1−1)
p1

(
E + A2

)
. (9.27)

Gathering all the estimates together (9.20), (9.24), (9.25) and (9.27) gives∫
Br1∩D

|Dg̃′δ|
2 ≤

∫
Br1∩K

∣∣Df̃ ′1∣∣2 + C(E + A2)δ8−nQ−1

+ C
(E + A2)3/2−β1

ε

+ C(E + A2)
( ε

δnQ+1

) 2(p1−1)
p1

=

∫
Br1∩K

|Df |2 −Q
∫
Br1∩K

|D(η ◦ f)|2 + C(E + A2)δ8−nQ−1

+ C
(E + A2)3/2−β1

ε
+ C(E + A2)

( ε

δnQ+1

) 2(p1−1)
p1 (9.28)
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Define Z :=
{

dist ((η ◦ f) ∗ ϕε,Q) > δnQ+1
}

to get∫
Br1∩D

|D(η ◦ f) ∗ ϕε|2 ≤
∫
Br1∩D\Z

|D ((η ◦ f) ∗ ϕε)|2 +

∫
Z

|D ((η ◦ f) ∗ ϕε)|2 (9.29)

=: Î1 + Î2.

We consider Î1 and Î2 separately. For Î1 we first observe the elementary inequality

‖D ((η ◦ f) ∗ ϕε)‖2
L2 ≤ ‖(D(η ◦ f)) ∗ ϕε‖2

L2

≤ ‖(|D(η ◦ f)|1K) ∗ ϕε‖2
L2 + ‖(|D(η ◦ f)|1Kc) ∗ ϕε‖2

L2

+ 2 ‖(|D(η ◦ f)|1K) ∗ ϕε‖L2 ‖(|D(η ◦ f)|1Kc) ∗ ϕε‖L2 . (9.30)

Recalling r1 + ε ≤ r1 + s = r2, we estimate the first summand in (9.30) as follows

‖(|D(η ◦ f)|1K) ∗ ϕε‖2
L2(Br1∩D) ≤

∫
Br1+ε∩D

(|D(η ◦ f)|1K)2 ≤
∫
Br2∩K

|D(η ◦ f)|2 .

(9.31)
In order to treat the other terms, recall that Lip (η ◦ f) ≤ C(E + A2)β1 and |Kc| ≤
C(E + A2)1−2β1 . We thus have

‖(|D(η ◦ f)|1Kc) ∗ ϕε‖2
L2(Br1∩D) ≤ C(E + A2)2β1 ‖1Kc ∗ ϕε‖2

L2

≤ C(E + A2)2β1 ‖1Kc‖2
L1 ‖ϕε‖2

L2

≤ C(E + A2)2−2β1

ε
. (9.32)

Putting (9.31) and (9.32) in (9.30), and recalling E1−2β1 ≤ ε2 and
∫
|D(η ◦ f)|2 ≤ CE we

get

Î1 ≤
∫
Br2∩D∩K

|D(η ◦ f)|2 + Cε−1(E + A2)3/2−β1 . (9.33)

For what concerns Î2, first we argue as for Î1 (splitting in K and Kc) to deduce that

Î2 ≤ C

∫
Z

((|D(η ◦ f)|1K) ∗ ϕε)2 + Cε−1(E + A2)3/2−β1 . (9.34)

Then, regarding the first summand in (9.34), we note that

|Z|δ2nQ+2 ≤
∫
Br1∩D

∣∣∣∣ (η ◦ f)√
E + A2

∗ ϕε −
(η ◦ f)√
E + A2

∣∣∣∣2 ≤ Cε2. (9.35)
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Recalling that q1 = 2p1 > 2, we use (9.8) to obtain∫
Z

((|D(η ◦ f)|1K) ∗ ϕε)2 ≤ |Z|
p1−1
p1 ‖(|D(η ◦ f)|1K) ∗ ϕε‖2

L4

≤ C

(
ε

δn̄Q+ 1

) 2(p1−1)
p1

‖|D(η ◦ f)|‖2
Lq1 (K)

≤ C

(
ε

δnQ+ 1

) 2(p1−1)
p1 (

E + A2
)
. (9.36)

Gathering all the estimates together, (9.29), (9.33), (9.34) and (9.36) gives∫
Br1∩D

|D(η ◦ f) ∗ ϕε|2 ≤
∫
Br1∩K

|D(η ◦ f)|2 + C
(E + A2)3/2−β1

ε

+ C(E + A2)
( ε

δnQ+1

)2− 1
p1 . (9.37)

So combining (9.28) and (9.37) yields∫
Br1∩D

|Dhδ,ε,s|2 =

∫
Br1∩D

∣∣∣Dĥδ,ε,s∣∣∣2 +Q

∫
Br1∩D

∣∣∣Dh̃ε∣∣∣2
≤
∫
Br1∩D

|Dg̃′δ|
2

+Q

∫
Br1∩D

∣∣∣Dh̃ε∣∣∣2
≤
∫
Br1∩K

|Df |2 −Q
∫
Br1∩K

|D(η ◦ f)|2 +Q

∫
Br1∩K

|Dη ◦ f |2 + Cε(E + A2)

+ C

(
(E + A2)δ8−nQ−1

+
(E + A2)3/2−β1

ε
+ (E + A2)

( ε

δnQ+1

) 2(p1−1)
p1

)

≤
∫
Br1∩K

|Df |2 + C(E + A2)δ8−nQ−1

+ C
(E + A2)3/2−β1

ε

+ C(E + A2)
( ε

δnQ+1

) 2(p1−1)
p1 + Cε(E + A2). (9.38)

Step 4. Final estimate. This part is analogue to [11, Step 4 of Proposition 7.3].
Summing (9.18), (9.19), (9.38), and recalling that ε < s, we conclude∫

Br3∩D
|Dhδ,ε,s|2 ≤

∫
Br1∩K

|Df |2 + C

∫
(Br1+3s\Br1−s)∩D

|Df ′|2 + C(E + A2)
(
ε+ δ8−nQ−1

)
+ C(E + A2)

(
ε2

s2
+
δ2·8−nQ

s
+

(E + A2)1/2−β1

ε
+
( ε

δnQ+1

) 2(p1−1)
p1

)
.
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We set ε = (E + A2)a, δ = (E + A2)b and s = (E + A2)c, where

a =
1− 2β1

4
, b =

1− 2β1

8(nQ+ 1)
, and c =

1− 2β1

8nQ8(nQ+ 1)
(9.39)

and we finally let h be the corresponding function hδ,ε,s. This choice respects (9.11).
Assume (E + A2) is small enough so that s ≤ 1

16
. Now, if C > 0 is a sufficiently large

constant, there is a set B′ ⊂
[

9
8
, 29

16

]
with |B′| > 1/2 such that,∫

(Br1+3s\Br1−s)∩D
|Df ′|2 ≤ Cs

∫
B2∩D

|Df ′|2 ≤ C(E + A2)1+c for every r1 ∈ B′.

For σ = r3 ∈ B = 2s+B′ we then conclude the existence of a γ̄ (β1, n,Q) > 0 such that∫
Bσ∩D

|Dh|2 ≤
∫
Bσ∩K

|Df |2 + C
(
E + A2

)1+γ̄
.

�

Proof of Theorem 9.2. Here we proceed as in the proof of [11, Theorem 7.1]. Choose β1 = 1
8

and consider the set B ⊂ [9/8, 2] given in Proposition 9.4. Using the coarea formula and
the isoperimetric inequality (the argument and the map ϕ are the same in the proof of
Theorem 7.3 and that of Proposition 8.3), we find s ∈ B and an integer rectifiable current
R such that

∂R = 〈T −Gf , ϕ, s〉 and M(R) ≤ CE
3
2 .

Since h|∂(D∩Bs) = f |∂(D∩Bs) we can use h in place of f in the estimates and, arguing as
before (see e.g. the proof of Proposition 8.3), we get, for a suitable γ > 0

‖T‖ (Cs) ≤ Q |Bs ∩D|+
∫
Bs∩D

|Dg|2

2
+ C(E + A2)1+γ̄

(9.7)

≤ Q |Bs ∩D|+
∫
Bs∩K

|Df |2

2
+ C

(
E + A2

)1+γ̄
. (9.40)

On the other hand, by Taylor’s expansion in [11, Remark 5.4],

‖T‖ (Cs) = ‖T‖ ((Bs ∩D \K)× Rn) + ‖Gf‖ ((Bs ∩K)× Rn)

≥ ‖T‖ ((Bs ∩D \K)× Rn) +Q |K ∩Bs|

+

∫
K∩Bs

|Df |2

2
− C(E + A2)1+γ̄. (9.41)

Hence, from (9.40) and (9.41), we get eT (Bs ∩D \K) ≤ C (E + A2)
1+γ̄

. This is enough to
conclude the proof. Indeed, let A ⊂ B9/8∩D be a Borel set. Using the higher integrability
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of |Df | in K (see (9.8)) and possibly selecting a smaller γ̄ > 0, we get

eT (A) ≤ eT (A ∩K) + eT (A \K)

≤
∫
A∩K

|Df |2

2
+ C

(
E + A2

)1+γ̄

≤ C|A ∩K|
p1−1
p1

(∫
A∩K
|Df |q1

)2/q1

+ C
(
E + A2

)1+γ̄

≤ C|A|
p1−1
p1

(
E + A2

)
+ C

(
E + A2

)1+γ̄
.

�

Proof of Theorem 9.1. Here we proceed exactly as in the proof of [11, Theorem 2.4]. As-

sume r = 1 and x = 0. Choose β11 < min
{

1
4
, γ11

2(1+γ11)

}
, where γ11 is the constant in Theo-

rem 9.4. Let f be the Eβ11 -Lipschitz approximation of T . Clearly (9.1) and (9.2) follow
directly from Proposition 6.4, if γ < β11. Set next A :=

{
meT > 2−m(E + A2)2β11

}
∩B9/8.

By Proposition 6.4 we have |A| ≤ C(E + A2)1−2β11 . If εA > 0 is sufficiently small, apply
(6.9) and the estimate (9.5) to A in order to conclude

|B1 ∩D \K| ≤ C(E + A2)−2β11eT (A) ≤ C(E + A2)γ11−2β11(1+γ11)
(
E + A2

)
.

By our choice of γ11 and β11, this last inequality gives (9.3) for some positive γ1. Finally,
set S = Gf . Recalling the strong Almgren estimate (9.5) and the Taylor expansion in [11,
Remark 5.4] we conclude for every 0 < σ ≤ 1∣∣∣∣‖T‖ (Cσ)−Q|D| −

∫
Bσ∩D

|Df |2

2

∣∣∣∣ (9.42)

≤ eT (Bσ ∩D \K) + eS (Bσ ∩D \K) +

∣∣∣∣eS (Bσ ∩D)−
∫
Bσ∩D

|Df |2

2

∣∣∣∣ (9.43)

≤ C
(
E + A2

)1+γ11 + C |Bσ ∩D \K|+ C Lip(f)2

∫
Bσ∩D

|Df |2 (9.44)

≤ C
(
E + A2

)1+γ11 . (9.45)

The L∞ bound follows from Proposition 6.4 and we finish the proof. �

10. Center manifold and normal approximation

This section is devoted to prove an analog of [8, Theorem 8.13], namely to construct,
in a neighborhood of a flat point p, a smooth C3,α submanifold with boundary Γ and a
normal multivalued map N on it. The first is, roughly, an approximation of the average of
the sheets lying over the unique tangent plane V to T at p. The second is a more accurate
approximation of the current T , which compared to the one in Section 6 has the additional
property of having (almost) zero average.

We start by introducing the spherical excess and the cylindrical excess with respect to
a general plane.
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Definition 10.1. Given a current T as in Assumption 4.5 and 2-dimensional planes V, V ′,
we define the excess of T in balls and cylinders with respect to planes V, V ′ as

E(T,Br(x), V ) :=
(
2π r2

)−1
∫

Br(x)

|~T − ~V |2 d‖T‖,

E(T,Cr(x, V ), V ′) :=
(
2π r2

)−1
∫

Cr(x,V )

|~T − ~V ′|2 d‖T‖ .

Definition 10.2 (Optimal planes). For the case of balls we define the spherical excess as
follows. The optimal spherical excess at some x ∈ spt(T ) \ Γ is given by

E(T,Br(x)) := min
V

E(T,Br(x), V ), (10.1)

but in the case of x ∈ Γ we define the optimal boundary spherical excess as

E[(T,Br(x)) := min{E(T,Br(x), V ) : V ⊃ TxΓ}.

The plane V which minimizes E, resp. E[, is not unique but since for notational purposes
it is convenient to define a unique “height” h(T,Br(x)) we set

h(T,Br(x)) := min
{
h(T,Br(x), V ) : V optimizes E (resp. E[)

}
. (10.2)

In the case of cylinders we denote by E(T,Cr(x, V )) = E(T,Cr(x, V ), V ) and h(T,Cr(x, V )) =
h(T,Cr(x, V ), V ).

We recall that under the above assumptions C5R0 = C5R0(0, V0) and p]T C5R0 = Q JDK,
where D ⊂ B5R0 is one of the two connected components in which B5R0 is subdivided by
the curve γ = p(Γ). Moreover T0Γ = R × {0} and in particular Γ ∩C5R0 = {(t, ψ(t))} =
{(t, ψ1(t), ψ̄(t))}, where ψ1 : (−5R0, 5R0) → R and ψ̄ : (−5R0, 5R0) → Rn. In particular
γ is the graph of ψ1 and without loss of generality we assume that D = {(x1, x2) ∈ B5R0 :
x2 > ψ1(x1)}, namely it is the upper half of B5R0 \ γ.

In this section we will then work under the following assumptions.

Assumption 10.3. p = q = (0, 0), V = V0 = R2×{0}, Q, T , and Γ are as in Assumption
6.2 in the cylinder C5R0 , where R0 ≥ 1+

√
2 is a sufficiently large geometric constant which

will be specified later. Moreover Q JV0K is the (unique) tangent cone to T at 0.
We moreover assume in the sequel that

E(T,C5R0(0, V0)) + A2 ≤ εCM , (10.3)

for some small positive parameter εCM = εCM(n,Q,R0).

Under the above assumptions we show now that the height of T in C4R0 is also under
control.

Lemma 10.4. There are constants εCM , C depending on Q, n and R0 such that, if As-
sumption 10.3 holds, then for all p ∈ Γ and r > 0 such that C5r(p, V0) ⊂ C5R0, we have

h(T,C4r(p, V0)) ≤ Cr(E(T,C5r(p, V0)) + rA)
1
2 . (10.4)
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Proof. We divide the proof into two steps.

Step 1: sup
z∈spt(T )∩C4r(p,V0)

|p⊥V0
(z − p)|2 ≤ Cr−2

∫
C9r/2(p,V0)

|p⊥V0
(z − p)|2d‖T‖(z) + C0A

2r4.

This is shown in [8, Lemma 6.6] and carries over word by word to our setting as the
only part where the stationarity of the associated integral varifold is needed, is for the
harmonicity of the coordinate functions. This however is true, as we test with functions
which are supported away from the boundary of T . We use this to apply a Moser iteration
scheme and estimate the L∞ norm by the limsup of the Lp norms as p→∞.

Step 2: r−2

∫
C9r/2(p,V0)

|p⊥V0
(z − p)|2d‖T‖(z) ≤ C E(T,C5r(p, V0))r2 + CAr3.

Also for this, the proof of [8, Lemma 6.7] carries over as the difference to our situation
is a factor Q in the monotonicity formula (Theorem 3.2). From there, we estimate the
remainder term by r2(E(T,C5r(0, V0)) + A). �

10.1. Whitney decomposition. We specify next some notation which will be recurrent
when dealing with squares inside V0. For each j ∈ N, Cj denotes the family of closed
squares L of V0 of the form

[a1, a1 + 2`]× [a2, a2 + 2`]× {0} ⊂ V0 (10.5)

which intersect D, where 2 ` = 21−j =: 2 `(L) is the side-length of the square, ai ∈ 21−jZ
∀i and we require in addition −4 ≤ ai ≤ ai + 2` ≤ 4. To avoid cumbersome notation,
we will usually drop the factor {0} in (10.5) and treat each squares, its subsets and its
points as subsets and elements of R2. Thus, for the center xL of L we will use the notation
xL = (a1 + `, a2 + `), although the precise one is (a1 + `, a2 + `, 0, . . . , 0). Next we set
C :=

⋃
j∈N Cj. If H and L are two squares in C with H ⊂ L, then we call L an ancestor

of H and H a descendant of L. When in addition `(L) = 2`(H), H is a child of L and
L the parent of H. Moreover, if H ∩ L 6= ∅ but they are not contained in each other, we
call them neighbours.

Definition 10.5. A Whitney decomposition of D ∩ [−4, 4]2 ⊂ V0 consists of a closed
set ∆ ⊂ [−4, 4]2 ∩D and a family W ⊂ C satisfying the following properties:

(w1) ∆ ∪
⋃
L∈W L ∩D = [−4, 4]2 ∩D and ∆ does not intersect any element of W ;

(w2) the interiors of any pair of distinct squares L1, L2 ∈ W are disjoint;
(w3) if L1, L2 ∈ W have nonempty intersection, then 1

2
`(L1) ≤ `(L2) ≤ 2 `(L1).

Remark 10.6. Because of (w1) we will assume that any L ∈ W intersects D.

Observe that (w1) - (w3) imply

sep (∆, L) := inf{|x− y| : x ∈ L, y ∈∆} ≥ 2`(L) for every L ∈ W , (10.6)

since there is an infinite chain of neighbouring squares {Li}i∈N with L0 = L, dist(∆, Li)→
0 and `(Li) ≥ 2`(Li+1) for all i. However, we do not require any inequality of the form
sep (∆, L) ≤ C`(L), although this would be customary for what is commonly called a
Whitney decomposition in the literature.
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Assumption 10.7. In the rest of this section we will use several different parameters:

(a) δ1 and β1 are two small geometric constants which depends only on Q, n, the
constant γ1 of Theorem 9.1, in fact they will be chosen smaller than γ1

8
and δ1 ≤ β1

2
;

(b) M0 is a large geometric constant which depends only on δ1, while N0 ≥ ln(132
√

2)
ln(2)

is

a large natural number which will be chosen depending on β1, δ1, and M0;
(c) C[

e is a large constant C[
e(β1, δ1,M0, N0), while C\

e is larger and depends also on C[
e;

(d) Ch is large and depends on β1, δ1,M0, N0, C
[
e and C\

e;
(e) the small threshold εCM is the last to be chosen, it depends on all the previous

parameters and also on the constant εA of Theorem 9.1.

Definition 10.8. For each square L ∈ C we set rL :=
√

2M0`(L) and we say that L is an
interior square if dist(xL, γ) ≥ 64rL, otherwise we say that L is a boundary square
and we use, respectively, the notation C \ for the interior squares contained in D and C [

for the boundary squares. Next, we define a corresponding (n + 2)-dimensional balls BL,
resp. B[

L, for such L’s:

(a) If L ∈ C \, we pick a point pL = (xL, yL) ∈ spt(T ) ∩ ({xL} × Rn) and we set
BL := B64rL(pL);

(b) If L ∈ C [, we pick x[L = (t, ψ1(t)) ∈ γ such that dist(xL, γ) = |x[L − xL|, define
p[L = (t, ψ(t)) ∈ Γ ∩ ({x[L} × Rn) and set B[

L = B2764rL(p[L).

We are now ready to prescribe N0: we require the inequality

2764rL ≤ 2764
√

2M02−N0 ≤ 1 , (10.7)

so that, in particular, all the balls BL and B[
L considered above are contained in the

cylinder C4R0 .
The following remark will be useful in the sequel.

Remark 10.9. If L ∈ C [ and J is the parent of L, then J ∈ C [, while if L ∈ C \, then
every child of L is an element of C \. In fact, if H and L are two squares with nonempty
intersection, `(H) < `(L) and H is a boundary cube, then necessarily L is a boundary
cube too.

Remark 10.10. Fix L ∈ C [ and subdivide it into the canonical four squares M with half
the sidelength. For M any of the following three cases can occur: M might be a boundary
square, an interior square, or might simply not belong to C [ ∪ C \ (i.e. M ∩ D = ∅).
However, because of the enlarged radius for boundary squares, it still holds that the ball
of a child is contained in the ball of its parent (compare to Proposition 11.1(i)). Moreover,
B[
L ⊃ L for any boundary square L.

We are now ready to define the refining procedure leading to the desired Whitney de-
composition.

Definition 10.11. First of all we set m0 := E(T,C5R0) + ‖ψ‖2
C3,α(]−5R0,5R0[). We start

with all L ∈ C [ ∪C ] with `(L) = 2−N0 and we assign all of them to S . Next, inductively,
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for each j > N0 and each L ∈ C [
j ∪ C \

j such that its parent belongs to S we assign to S

or to W = W e ∪W h ∪W n in the following way:

(EX) L ∈ W e if E(T,BL) > C\
em0`(L)2−2δ1 , resp. if E[(T,B[

L) > C[
em0`(L)2−2δ1 ;

(HT) L ∈ W h if L 6∈ W e and h(T,BL) ≥ Chm
1
4
0 `(L)1+β1 , resp. h(T,B[

L) ≥ Chm
1
4
0 `(L)1+β1 ;

(NN) L ∈ W n if L 6∈ W h∪W e but there is a J ∈ W such that `(J) = 2`(L) and L∩J 6= ∅;
(S) L ∈ S if none of three conditions above are satisfied.

We denote by C [
j := C [∩Cj, C ]

j := C ]∩Cj, Sj := S ∩Cj, Wj := W ∩Cj, W e
j := W e∩Cj,

W h
j := W h ∩ Cj and W n

j := W n ∩ Cj. Finally, we set

∆ := ([−4, 4]2 ∩D) \
⋃
L∈W

L =
⋂
j≥N0

⋃
L∈Sj

L . (10.8)

A simple consequence of our refining procedure is the following proposition which we
will prove in the next section.

Proposition 10.12. Let V0, Q, T , and Γ be as in Assumption 10.3 and assume the pa-
rameter N0 satisfies (10.7). Then (∆,W ) is a Whitney decomposition of D ∩ [−4, 4]2.
Moreover, for any choice of M0 and N0, there is C?(M0, N0) such that, if C[

e, and C\
e/C

[
e,

Ch/C
\
e, are larger than C?, then

(a) WN0 = ∅;
(b) if L ∈ C \ ∩W e then the parent of L belongs to C \.

Moreover, the following estimates hold for some geometric constant C depending on β1 and
δ1, provided εCM is sufficiently small (depending on all the previous parameters as detailed
in Assumption 10.7):

E[(T,B[
L) ≤ CC[

em0`(L)2−2δ1 , and h(T,B[
L) ≤ CChm

1
4
0 `(L)1+β1 , ∀L ∈ W ∩ C [ , (10.9)

E(T,BL) ≤ CC\
em0`(L)2−2δ1 and h(T,BL) ≤ CChm

1
4
0 `(L)1+β1 , ∀L ∈ W ∩ C \ . (10.10)

10.2. Construction of the center manifold. First of all for each BL and B[
L, we let

VL be the choice of optimal plane for the excess and the height in the sense of Definition
10.2: note that for boundary squares, namely in B[

L, the plane VL optimizes the excess E[,
and thus it is constrained to contain the line Tp[LΓ. The following key lemma allows us to

apply Theorem 9.1 (and its interior version [11, Theorem 2.4]) to corresponding cylinders.

Lemma 10.13. For any choice of the other parameters, if εCM is sufficiently small, the
following holds for every L ∈ S ∪W .

(a) If L ∈ C \, then T satisfies the assumptions of [11, Theorem 2.4] in C32rL(pL, VL).
(b) If L ∈ C [, then T satisfies the assumptions of Theorem 9.1 in C2732rL(p[L, VL).

The corresponding Q-valued strong Lipschitz approximations will be denoted by fL and will
be called VL-approximations.

Given a square L ∈ C [ which belongs to S ∪ W , we denote by DL ⊂ B2724rL(p[L, V
[
L)

the domain of the function fL, which coincides with the orthogonal projection on p[L + V [
L
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of spt(T )∩C2724rL(p[L, V
[
L). Note in particular that ∂DL ∩B2724rL(p[L, V

[
L) is the projection

of Γ ∩C2724rL(p[L, V
[
L) onto p[L + V [

L, which we will denote by γL. Likewise, we denote by
gL the function over γL whose graph gives Γ ∩C2724rL(p[L, V

[
L). In particular, Theorem 9.1

implies that fL|γL = Q JgLK. We now regularize the averages η ◦ fL to suitable harmonic
functions hL in the following fashion.

Definition 10.14. We denote by hL the harmonic function on B16rL(pL, VL), resp. DL ∩
B2716rL(p[L, VL), for L ∈ C \, resp. L ∈ C [, such that the boundary value of hL on the
respective domain is given by η ◦ fL (in particular it coincides with gL on γL). hL will be
called tilted harmonic interpolating function.

In order to complete the description of our algorithm we need a second important tech-
nical lemma.

Lemma 10.15. Consider L ∈ S ∪W . For every L ∈ C [, resp. L ∈ C \, there is a smooth
function uL : D ∩B278rL(p0(p[L), V0)→ V ⊥0 , resp. uL : B8rL(p0(pL), V0)→ V ⊥0 , such that

GuL C8rL(p[L, V0) = GhL C8rL(p[L, V0), resp. (10.11)

GuL C8rL(pL, V0) = GhL C8rL(pL, V0). (10.12)

The function uL will be called interpolating function.

The center manifold is the result of gluing the interpolating functions appropriately. To
that we fix a bump function ϑ ∈ C∞c ((−3

2
, 3

2
)2) which is identically 1 on [−1, 1]2 and define

ϑL(x) := ϑ

(
x− xL
`(L)

)
.

Hence, for any fixed j ≥ N0 we define

Pj := Sj ∪
⋃
i≤j

Wi (10.13)

and the following function ϕj, defined over D ∩ [−4, 4]2 ⊂ V0 and taking values in V ⊥0

ϕj(x) :=

∑
L∈Pj ϑL(x)uL(x)∑

H∈Pj ϑH(x)
. (10.14)

The center manifold is the graph of the function ϕ which is the limit of ϕj as explained
in the statement of the next theorem.

Theorem 10.16 (Center manifold). Let T be as in Assumption 10.3 and assume that the
parameters satisfy the conditions of Assumption 10.7. Then there is a positive ω (depending
only on δ1 and β1), with the following properties:

(a) ϕj|γ = g for every j;

(b) ‖ϕj‖C3,ω ≤ Cm
1
2
0 for some constant C which depends on β1, δ1,M0, N0, C

\
e, C

[
e, and

Ch, but not on εCM ;
(c) For every k, k′ ≥ j + 2, ϕk = ϕk′ on every cube L ∈ Wj;
(d) ϕj converges uniformly to a C3,ω function ϕ.
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Definition 10.17. The graph of the function ϕ will be called center manifold and
denoted by M. We will define Φ(x) := (x,ϕ(x)) as the graphical parametrization of M
over [−4, 4]2 ∩ D̄. The set Φ(∆) will be called the contact set, while for every L ∈ W
the corresponding L := Φ(L ∩D) will be called Whitney region.

10.3. The M-normal approximation and related estimates. In what follows we
assume that the conclusions of Theorem 10.16 apply. For any Borel set V ⊂ M we will
denote by |V| its H2-measure and will write

∫
V f for the integral of f with respect to

H2. Br(q) denotes the geodesic balls in M. Moreover, we refer to [12] for all the relevant
notation pertaining to the differentiation of (multiple valued) maps defined onM, induced
currents, differential geometric tensors and so on.

Assumption 10.18. We fix the following notation and assumptions.

(U) U :=
{
x+ y : x ∈M, |y| < 1, and y ⊥M

}
.

(P) p : U→M is the map defined by (x+ y) 7→ x.
(R) For any choice of the other parameters, we assume εCM to be so small that p

extends to C2,κ(Ū) and p−1(y) = y +B1(0, (TyM)⊥) for every y ∈M.
(L) We denote by ∂lU := p−1(∂M) the lateral boundary of U.

The following is then a corollary of Theorem 10.16 and the construction algorithm.

Corollary 10.19. Under the hypotheses of Theorem 10.16 and of Assumption 10.18 we
have:

(i) spt(∂(T U)) ⊂ ∂lU, spt(T [−7
2
, 7

2
]2 × Rn) ⊂ U and p](T U) = Q JMK;

(ii) spt(〈T,p,Φ(q)〉) ⊂
{
y : |Φ(q)− y| ≤ Cm

1/4
0 `(L)1+β1

}
for every q ∈ L ∈ W , where

C depends on all the parameters except εCM ;
(iii) 〈T,p, p〉 = Q JpK for every p ∈ Φ(∆) ∪ (Γ ∩ ∂M).

The main reason for introducing the center manifold of Theorem 10.16 is that we are
able to pair it with a good approximating map defined on it.

Definition 10.20 (M-normal approximation). AnM-normal approximation of T is
given by a pair (K, F ) such that

(A1) F : M → AQ(U) is Lipschitz (with respect to the geodesic distance on M) and
takes the special form F (x) =

∑
i Jx+Ni(x)K, with Ni(x) ⊥ TxM.

(A2) K ⊂M is closed and TF p−1(K) = T p−1(K).
(A3) K contains Φ

(
∆∩ [−7

2
, 7

2
]2
)

and Γ∩Φ(D̄∩ [−7
2
, 7

2
]2), and on the latter two sets the

map N equals Q J0K.
The map N =

∑
i JNiK :M→AQ(R2+n) is the normal part of F .

Theorem 10.21 (Existence and local estimates for the M-normal approximation). Let
γ2 := γ1

4
, with γ1 the constant of Theorem 9.1. Under the hypotheses of Theorem 10.16 and

Assumption 10.18, if εCM is suitably small (depending upon all other parameters but not
the current T ), then there is an M-normal approximation (K, F ) such that the following
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estimates hold on every Whitney region L associated to a cube L ∈ W , with constants
C = C(β1, δ1,M0, N0, C

\
e, C

[
e, Ch) > 0 :

Lip(N |L) ≤ Cmγ2

0 `(L)γ2 and ‖N |L‖C0 ≤ Cm
1/4
0 `(L)1+β1 , (10.15)

|L \ K|+ ‖TF − T‖(p−1(L)) ≤ Cm1+γ2

0 `(L)4+γ2 , (10.16)∫
L
|DN |2 ≤ Cm0 `(L)4−2δ1 . (10.17)

Moreover, for any a > 0 and any Borel V ⊂ L, we have (for C = C(β1, δ1,M0, N0, C
[
e, C

\
e, Ch))∫

V
|η ◦N | ≤ Cm0

(
`(L)5+β1/3 + a `(L)2+γ2/2|V|

)
+
C

a

∫
V
G
(
N,Q Jη ◦NK

)2+γ2 . (10.18)

From (10.15) - (10.17) it is not difficult to infer analogous “global versions” of the
estimates.

Corollary 10.22 (Global estimates for the M-normal approximation). Let M′ be the
domain Φ

(
D ∩ [−7

2
, 7

2
]2
)

and N the map of Theorem 10.21. Then, (again with C =

C(β1, δ1,M0, N0, C
\
e, C

[
e, Ch))

Lip(N |M′) ≤ Cmγ2

0 and ‖N |M′‖C0 ≤ Cm
1/4
0 , (10.19)

|M′ \ K|+ ‖TF − T‖(p−1(M′)) ≤ Cm1+γ2

0 , (10.20)∫
M′
|DN |2 ≤ Cm0 . (10.21)

In addition, since N = Q J0K on Γ ∩M′, we also get∫
M′
|N |2 ≤ Cm0 . (10.22)

10.4. Additional L1 estimate. While the estimates claimed so far have all appropriate
counterparts in the papers [13] and [8], we will need an additional important estimate
which is noticed here for the first time, even though it is still a consequence of the same
arguments leading to Theorem 10.16 and Theorem 10.21.

Proposition 10.23. Consider the function f : B3 → AQ(Rn) with the property that
Gf = TF C3. For every L ∈ W e we then have the estimate

‖ϕ− η ◦ f‖L1(L) ≤ Cm
3/4
0 `(L)4 (10.23)

and in particular, as long as r ≤ 3 is a radius such that `(L) ≤ r for every L ∈ W with
L ∩Br 6= ∅, we have the estimate

‖ϕ− η ◦ f‖L1(Br) ≤ Cm
3/4
0 r4 . (10.24)
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11. Tilting of optimal planes

We estimate the changes of excess and height when tilting the reference planes of nearby
squares.

Proposition 11.1 (Tilting of optimal planes). Let Q, T and Γ be as in Assumption 10.3
and recall the parameters of Assumption 10.7. There are constants C = C(β1, δ1,M0, N0,
C\
e, C

[
e) > 0 and C = C(β1, δ1,M0, N0, C

\
e, C

[
e, Ch) > 0 such that, if εCM = εCM(Q, n,R0, Ch)

> 0 is small enough, for any H,L ∈ S ∪W with H being equal or a descendant of L we
have

(i) B�
H ⊂ B�

L ⊂ B4R0,

(ii) |VH − VL| ≤ Cm
1/2
0 `(L)1−δ1,

(iii) |VH − V0| ≤ Cm
1/2
0 ,

(iv)\ if H ∈ C \, then

h(T,C36rH (pH , V0)) ≤ Cm
1/4
0 `(H) and spt(T ) ∩C36rH (pH , V0) ⊂ BH ,

(iv)[ if H ∈ C [, then

h(T,C2736rH (p[H , V0)) ≤ Cm
1/4
0 `(H) and spt(T ) ∩C2736rH (p[H , V0) ⊂ BH ,

(v)\ if H,L ∈ C \, then

h(T,C36rL(pL, VH)) ≤ Cm
1/4
0 `(L)1+β1 and spt(T ) ∩C36rL(p, VH) ⊂ BL,

(v)[ if L ∈ C [, then

h(T,C2736rL(p[L, VH)) ≤ Cm
1/4
0 `(L)1+β1 and spt(T ) ∩C2736rL(p[L, VH) ⊂ BL.

where � = or � = [ depending on whether the square is a boundary square or not.
Moreover, (ii)− (v) also hold if H and L are neighbours with 1

2
`(L) ≤ `(H) ≤ `(L).

Proof. In this proof we will use mainly the following two estimates.

E(T,Br(p), V ) = (2πr2)−1

∫
Br(p)

|
→
T (x)−

→
V |2d‖T‖(x)

≤ 2(2πr2)−1

∫
Br(p)

|
→
T (x)−

→
W |2d‖T‖(x) + C|V −W |2

= 2E(T,Br(p),W ) + C|V −W |2,

h(T,Cr(p, V ), V ′)
(10.4)

≤ h(T,Cr(p, V ),W ) + Cr|V ′ −W |,

where in the first one we used the monotonicity formula of Theorem 3.2 to see that the
mass of a ball is comparable to r2 and in the second one we used the height estimate (10.4)
of Lemma 10.4.

We argue by induction on i = − log2(`(H)). The base step is when i = N0 and H = L
while we pass to children squares in the induction step. By the choice of M0 and N0, we
notice that there are no squares with side length 2−N0 in W .

The second inclusion of (i), we already observed in (10.7) while the first inclusion of (i)
and the inequality in (ii) is redundant for H = L. Thus, we show now (iii). We use (i),
the optimality of VH , the monotonicity formula of Theorem 3.2 and the definition of m0



58 C. DE LELLIS, S. NARDULLI, AND S. STEINBRÜCHEL

to deduce

|VH − V0|2 ≤ Cr−2
H

∫
B�
H

|~T − ~VH |2d‖T‖(x) + Cr−2
H

∫
B�
H

|~T − ~V0|2d‖T‖(x)

≤ 2CE(T,B�
H , V0) ≤ CE(T,B5R0 , V0) ≤ Cm0. (11.1)

For (iv) we use the height estimate (10.4) of Lemma 10.4. Notice that C36rH (p�H , V0) ⊂
C4R0(0, V0) and hence,

h(T,C36rH (p�H , V0)) ≤ h(T,C4R0(0, V0)) ≤ Cm
1/4
0 = Cm

1/4
0 `(H).

Then also the inclusion spt(T )∩C36rH (p�H , V0) ⊂ B�
H holds, as long as εCM is small enough.

For (v) we observe that as B�
H ⊂ C4R0(0, V0) we can estimate

|p�H |2 ≤ 9R2
0 + h(T,C(4R0, V0))2 ≤ 9R2

0 + Cm0.

Thus if εCM (and thus m0) is small enough, then C36rH (p�H , VH) ∩ B4R0 ⊂ C4R0(0, V0).
Hence, also spt(T ) ∩C36rH (p�H , VH) ⊂ C4R0(0, V0) and we can estimate

h(T,C36rH (p�H , VH)) ≤ h(T,C4R0(0, V0)) + C|VH − V0|

≤ Cm
1/4
0 = Cm

1/4
0 `(H)1+β1 ,

where we used (iii) and (iv).

Figure 3. An illustration of the various relevant points in the Whitney square.

Induction step: H ∈ Si+1 ∪Wi+1 for some i ≥ N0. Thus there is a chain of squares such
that Hi+1 := H ⊂ Hi ⊂ · · · ⊂ HN0 with Hj ∈ Sj for each j ≤ i. Assume the validity of
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(i) − (v) for Hl and Hk with N0 ≤ l ≤ k ≤ i. We want to show (i) − (v) for H = Hi+1

and L = Hj with N0 ≤ j ≤ i. For (i), we notice that it is enough to show the inclusion for

j = i. Then we have |xHi − xH | ≤
√

2`(Hi) and hence, if εCM is small enough, we use the
induction hypothesis for (iv) to estimate

|p�Hi − p
�
H |2 ≤ (

√
2`(Hi) + 96rHi)

2 + h(T,C2rHi
(p�Hi , V0))2

≤ `(Hi)
2(
√

2(1 + 96M0))2 + Cm
1/2
0 `(Hi)

2 ≤ 216M2
0 `(Hi)

2.

Now we check that B�
H ⊂ B�

Hi
. Indeed, we have

2764rH + |p�Hi − p
�
H | ≤ 2732

√
2M0`(Hi) + 28M0`(Hi)

≤ 2732
√

2M0`(Hi) + 2732
√

2M0`(Hi) = 2764rHi .

For (ii), we first show the special case where j = i. We notice that by (i), the fact that
2rH = rHi and Hi ∈ Si, we have

|VH − VHi |2 ≤ C
r2
H

‖T‖(B�
H)

(E�(T,B�
H) + E�(T,B�

Hi
)) (monotonicity formula)

≤ C(E(T,B�
H , VHi) + E�(T,B�

Hi
)) ≤ 2CE�(T,B�

Hi
) ≤ CC�

em0`(H)2−2δ1 .

Now for a general j ∈ {N0, . . . , i}, we use the geometric series to conclude

|VH − VHj | ≤
i∑
l=j

|VHl+1
− VHl | ≤ CC�

em0

i∑
l=j

`(Hl)
1−δ1

≤ CC�
em0

∞∑
l=j

(2−l+j`(Hj))
1−δ1 ≤ CC�

em0`(Hj)
1−δ1 .

(iii) follows by (ii) and (11.1). To prove (iv)\, we observe that by the induction hypothesis,
we already know spt(T )∩C36rHi

(p�Hi , VHi) ⊂ B�
Hi

. Now we want to see that C36rH (p�H , V0) ⊂
C36rHi

(p�Hi , V0). In case where Hi ∈ C \, we have |xH − xHi | ≤
√

2`(Hi), hence

36rH + |xH − xHi | ≤ 36rHi .

On the other hand, if Hi ∈ C [, then we recall |pH − p[Hi | ≤ 28M0`(Hi) which implies

36rH + |xH − x[Hi | ≤ 36rH + |pH − p[Hi | ≤ 2736rHi .

Thus the desired inclusion of the cylinders holds. We deduce

h(T,C36rH (pH , V0)) ≤ h(T,B�
Hi
, V0) ≤ h(T,B�

Hi
) + CrHi |VHi − V0|

≤ Chm
1/4
0 `(Hi)

1+β1 + C`(Hi)m
1/2
0 ≤ CCh`(Hi)m

1/4
0 ,

where we used the induction hypothesis and that Hi ∈ Si. The previous estimate shows
also that spt(T ) ∩C36rH (pH , V0) ⊂ BH assuming that εCM is small enough. The proof of
(iv)[ is analogous because if H ∈ C [, then also Hi ∈ C [ and so as before

2736rH + |x[H − x[Hi| ≤ 2736rH + |p[H − p[Hi| ≤ 2736rHi .
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Now we show (v)\, (v)[ for H = Hi+1 and L = Hj for some j ∈ {N0, . . . , i} by induction
on j. For j = N0, we use the estimate on |VH − VHN0

| to deduce(
C2736rHN0

(p�HN0
, VH) ∩B4R0

)
⊂
(
C2736rHN0

(p�HN0
, VHN0

) ∩B5R0

)
⊂ C4R0(0, V0)

provided that εCM is small enough. Therefore, we have

h(T,C2736rHN0
(p�HN0

, VH)) ≤ h(T,C4R0(0, V0)) + C|VH − V0| ≤ Cm
1/2
0 .

Again if εCM is small, this also implies that spt(T ) ∩C2736rHN0
(p�HN0

, VH)) ⊂ B�
HN0

. Now

assume that (v)\, (v)[ hold for some j ≥ N0 and denote L = Hj+1. We first consider the
case where L ∈ C \. Then its parent Hj is still unknown, but in any case, BL ⊂ B�

Hj

and thus, C36rL(pL, VH) ⊂ C36rHj
(pHj , VH) or C36rL(pL, VH) ⊂ C2736rHj

(p[Hj , VH) respec-

tively. Using the induction hypothesis, we find h(T,C36rHj
(pHj , VH)) ≤ h(T,BHj , VH) or

h(T,C2736rHj
(p[Hj , VH)) ≤ h(T,B[

Hj
, VH) respectively. Moreover, using (ii), we deduce

h(T,B�
Hj
, VH) ≤ h(T,B�

Hj
) + CrHj |VH − VHj |

≤ CChm
1/4
0 `(Hj)

1+β1 + Cm
1/2
0 `(Hj)

2−δ1 ≤ CChm
1/4
0 `(Hj).

Thus, we have also spt(T ) ∩C36rL(pL, VH)) ⊂ BL and finally

h(T,C36rL(p, VH)) ≤ h(T,BL) + CrL|VH − VL| ≤ CChm
1/4
0 `(L)1+β1 .

On the other hand, if L ∈ C [, then also Hj ∈ C [ and we can perform the same argument
since B[

L ⊂ B[
Hj

and C2736rL(p[L, VH) ⊂ C2736rHj
(p[Hj , VH). This shows both (v)\ and (v)[.

For neighbor squares, the argument works exactly the same as everything follows from
the smallness of |p�L − p�H | and the fact that B�

L ∪B�
H ⊂ B�

J , where J is the parent of L.
�

Very similarly we now prove the excess estimates using the fact, that the parent of any
square belongs to S .

Proof of Proposition 10.12. For squares L of side length 2−N0 , we know by Proposition 11.1
(i) that B�

L ⊂ B4R0 and so we can choose C\
e and C[

e large enough such that

E�(T,BL) ≤ C(R0, N0)E(T,B4R0 , V0) ≤ C(R0, N0)m0 ≤ C�
em0`(L)2−2δ1 .

Hence, L /∈ W e. Similarly we see that L /∈ W h. Indeed, we use Proposition 11.1 (ii) and
the height estimate of Lemma 10.4

h(T,B�
L) ≤ h(T,B4R0 , V0) + C(R0, n,Q)|V �

L − V0| ≤ C(R0, n,Q)m
1/4
0 .

Thus, we can choose Ch large enough such that h(T,B�
L) ≤ Chm

1/4
0 `(L)1+β1 . This shows

(a).
We claim that (b) holds as long as C\

e ≥ 16C[
e. Let L ∈ C \ and assume its parent

H ∈ C [. We want to show that L /∈ W e. Recall that |pL − p[H | ≤ 28M0`(L) and thus
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BL ⊂ B[
H . Moreover, as H is a parent, it belongs to S , thus

E[(T,B[
H) ≤ C[

em0`(H)2−2δ1 .

This then implies

E(T,BL) ≤ E(T,BL, VH) ≤ 4E[(T,B[
H) ≤ 16C[

em0`(L)2−2δ1 .

Now let L ∈ W ∩ C [ and denote by H ∈ S the parent of L. As L is a boundary square,
so is H. By Proposition 11.1 (i) and (ii), we know that B[

L ⊂ B[
H and

E[(T,B[
L) ≤ 4E[(T,B[

H) ≤ CC[
em0`(L)2−2δ1 ,

h(T,B[
L) ≤ h(T,B[

H) + CrL|VL − VH | ≤ CChm
1/4
0 `(L)1+β1 .

On the other hand, for L ∈ W ∩C \, the parent H of L could be either a boundary square
or an interior square. So we estimate

E(T,BL) ≤ 4E�(T,B�
H) ≤ C(C[

e + C\
e)m0`(L)2−2δ1 ,

h(T,BL) ≤ h(T,B�
H) + CrL|VL − V �

H | ≤ CChm
1/4
0 `(L)1+β1 .

�

12. Estimates on the interpolating functions

We notice that our construction fulfills the estimates needed for the strong Lipschitz
approximation.

Proposition 12.1. Suppose that Assumption 10.3 holds true, recall the constants from
Assumption 10.7 and assume that εCM is small enough. Let either H,L ∈ S ∪ W be
neighbors with 1

2
`(L) ≤ `(H) ≤ `(L) or let H be a descendant of L. Then we have

spt(T ) ∩C32rL(pL, VH) ⊂ BL, if L ∈ C \,

spt(T ) ∩C2732rL(p[L, VH) ⊂ B[
L, if L ∈ C [,

and [11, Theorem 2.4] can be applied to T in the cylinder C32rL(pL, VH) and Theorem 9.1
in C2732rL(p[L, VH) respectively. The resulting strong Lipschitz approximation we call fHL.

Proof. The proof of Proposition 12.1 is completely analogous to [13, Proposition 4.2] for
interior squares and to [8, Proposition 8.25] for boundary squares. �

Remark 12.2. Observe that if `(H) < `(L) and H is a boundary square, then L is
necessarily also a boundary square, since either H and L are neighbors or H ⊂ L. When
`(H) = `(L), in case H is a boundary square and L is an interior square, we can simply
swap their roles. In particular, without loss of generality, we will in the sequel ignore the
case in which H is a boundary square and L is an interior square.

Definition 12.3. We denote by fHL the strong Lipschitz approximation produced by
Proposition 12.1. We will however consider the domain of the function fHL a subset of
pH +VH , resp. p[H +VH . More precisely, for interior squares the domain is C24rL(pL, VH)∩
(pH + VH), while for boundary squares it is DHL := DH ∩C2724rL(p[L, VH), where we recall
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that DH is the projection on p[H + VH of spt(T ). Observe that C24rL(pL, VH) ∩ (pH + VH)
and C2724rL(p[L, VH) ∩ (p�H + VH) are discs, whose centers are given by

pHL := pH + pVH (pL), resp. (12.1)

p[HL := p�H + pVH (p[L). (12.2)

(Note that, when L is a boundary square, H might be a boundary square but it might also
be an interior square).

Definition 12.4. We then let hHL be the harmonic function on B16rL(pHL, VH), resp.
DH ∩ C2716rL(p[HL, VH), such that the boundary value of hHL on the respective domain
is given by η ◦ fHL, in particular it coincides with gH on γH . hHL will be called the
(H,L)-tilted harmonic interpolating function.

Lemma 10.15 will then be a particular case of the following more general lemma.

Lemma 12.5. Consider H and L as in Proposition 12.1. Then there is a smooth function
uHL : D ∩B278rL(p0(p[L), V0)→ V ⊥0 , resp. uHL : B8rL(p0(pL), V0)→ V ⊥0 , such that

GuHL C8rL(pL, V0) = GhHL C8rL(pL, V0), (12.3)

GuHL C278rL(p[L, V0) = GhHL C278rL(p[L, V0), respectively. (12.4)

The function uHL will be called interpolating function.

12.1. Linearization and first estimates on hHL.

Proposition 12.6. Under the Assumptions of Proposition 12.1 the following estimates
hold for every pair of squares H and L as in Proposition 12.1. First of all∫

D(η ◦ fHL) : Dζ ≤ Cm0r
4+β1

L ‖Dζ‖0, (12.5)

for every function ζ in C∞c (B8rL(pHL, VH), V ⊥H ), resp. C∞c (DH ∩ B278rL(p[HL, VH), V ⊥H ),
depending on whether L ∈ C \ or L ∈ C [. Moreover,

‖hHL − η ◦ fHL‖L1(B8rL
(pHL,VH)) ≤ Cm0r

5+β1

L , if L ∈ C \; (12.6)

‖hHL − η ◦ fHL‖L1(DH∩B278rL
(p[HL,VH)) ≤ Cm0r

5+β1

L , if L ∈ C [; (12.7)

‖DhHL‖L∞(B7rL
(pHL,VH)) ≤ Cm

1
2
0 r

1−δ1
L , if L ∈ C \; (12.8)

‖DhHL‖L∞(DH∩B277rL
(p[HL,VH)) ≤ Cm

1
2
0 r

1−δ1
L , if L ∈ C [. (12.9)

Proof. Proof of (12.5). Without loss of generality consider a system of coordinates (x, y)
with the property that p�HL is the origin, (x, 0) ∈ VH and (0, y) ∈ V ⊥H . Fix ζ as in the
statement of the proposition and in the cylinder C ∈ {C32rL(pHL, VH),C2732rL(p[HL, VH)}
we consider the vector field χ(x, y) = (0, ζ(x)). Observe that, by assumption, the vector
field vanishes on Γ. Observe that, though χ is not compactly supported, since the height
of the current in the cylinder C is bounded, we can multiply χ by a cut-off function in the
variable y but keeping its values the same on spt(T ). The latter vector field is a valid first



AN ALLARD-TYPE BOUNDARY REGULARITY THEOREM 63

variation for the area-minimizing current T and thus we have δT (χ) = 0. Thus we can use
Theorem 9.1 and Proposition 11.1 to estimate

|δGfHL(χ)| = |δ(T −GfHL)(χ)| ≤ ‖Dζ‖0‖T −GfHL‖(C)

≤ C‖Dζ‖0r
2
L(E�(T,C, VH) + A2r2

L)1+γ1

≤ C‖Dζ‖0r
2
L(E�(T,B�

L) + |VH − VL|2 + A2r2
L)1+γ1

≤ C‖Dζ‖0r
2
L(m0r

2−2δ1
L )1+γ1 ≤ C‖Dζ‖0m0r

4+β1

L ,

provided δ1 and β1 are chosen small enough to satisfy (2− 2δ1)(1 + γ1) ≥ 2 + β1.
Next we use the Taylor expansion [12, Theorem 4.1] to estimate

∣∣∣∣δGfHL(χ)−Q
∫
η ◦DfHL : Dζ

∣∣∣∣ ≤ C‖Dζ‖0

∫
|DfHL|3

≤C‖Dζ‖0Lip(fHL)

∫
|DfHL|2

≤C‖Dζ‖0(E�(T,C, VH) + A2r2
L)γ1r2

L(E�(T,C, VH) + A2r2
L)

≤C‖Dζ‖0r
2
L(m0r

2−2δ1
L )1+γ1 .

Proof of (12.6)-(12.7). Consider v := hHL − η ◦ fHL on its respective domain Ω which
equals either B8rL(pHL, VH) or DH ∩ B278rL(p[HL, VH). Observe that v vanishes on the
boundary of Ω. For every w ∈ L2 we denote by ζ = P (w) the unique solution of ∆ζ = w in
Ω with ζ|∂Ω = 0, which is an element of the Sobolev space W 1,2

0 (Ω). Next notice that by a
simple density argument, the estimate (12.5) remains valid for any test function ζ ∈ W 1,2

0

and recall also the standard estimate

‖D(P (w))‖0 ≤ Cr‖w‖0 .

Therefore we can write

‖v‖L1 = sup
w:‖w‖0≤1

∫
Ω

v · w = sup
w:‖w‖0≤1

∫
Ω

v ·∆(P (w))

= sup
w:‖w‖0≤1

(
−
∫

Ω

Dv : D(P (w))

)
= sup

w:‖w‖0≤1

∫
Ω

Dη ◦ fHL : D(P (w))

≤ C sup
w:‖w‖0≤1

m0r
4+β1

L ‖DP (w)‖0 ≤ Cm0r
5+β1

L .
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Proof of (12.8). Using the mean-value inequality for harmonic functions we simply get

‖DhHL‖L∞(B7rL
(pHL,VH)) ≤

C

r2
L

∫
B8rL

(pHL,VH)

|DhHL|

≤ C

rL

(∫
B8rL

(pHL,VH)

|DhHL|2
)1/2

≤ C

rL

(∫
B8rL

(pHL,VH)

|Dη ◦ fHL|2
)1/2

≤ C

rL

(
r2
L(E(T,C, VH) + A2r2

L)
) 1

2 ≤ Cm
1
2
0 r

1−δ1
L .

Proof of (12.9). Using standard Schauder estimates for harmonic functions, we get

‖DhHL‖L∞(DH∩B277rL
(p[HL,VH)) ≤

C

r2
L

∫
DH∩B278rL

(p[HL,VH)

|DhHL|+ C(‖DgH‖0 + r−αL [gH ]α) ,

where we recall that gH : ∂DH ∩ B278rL(p[HL, VH) is the graphical parametrization of our
boundary curve Γ and α is a positive number smaller than 1, to be chosen later. The
first summand on the right hand side is estimated as in the proof above of (12.8). As for
the second summand, recall that Tp[LΓ is contained in the plane VL and that |VL − VH | ≤
Cm

1/2
0 r1−δ1

L . This implies that

|DgH(p[HL)| ≤ Cm
1/2
0 r1−δ1

L .

In particular we have

‖DgH‖L∞(∂DH∩B278rL
(p[HL,VH)) ≤ |DgH(p[HL)|+ CArL ≤ Cm

1/2
0 r1−δ1

L .

On the other hand,

r−αL [gH ]α ≤ Cr1−2α
L A ≤ Cm

1/2
0 r1−2α

L ,

and thus it suffices to choose 2α < δ1. �

12.2. Tilted estimate. We follow here [8, Section 8.5] almost verbatim to establish a
suitable comparison between tilted interpolating functions which are defined in different
system of coordinates.

Definition 12.7. Four cubes H, J, L,M ∈ C make a distant relation between H and L
if J,M are neighbors (possibly the same cube) with same side length and H and L are
descendants respectively of J and M .

Lemma 12.8 (Tilted L1 estimate). Under the Assumptions of Theorem 10.16 the following
holds for every quadruple H, J, L and M in S ∪W which makes a distant relation between
H and L.
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• If J ∈ C \, then there is a map ĥLM : B4rJ (pHJ , VH)→ V ⊥H such that

GĥLM
= GhLM C4rJ (pHJ , VH)

and
‖hHJ − ĥLM‖L1(B2rJ

(pHJ ,VH)) ≤ Cm0`(J)5+β1/2 . (12.10)

• If both J and M belong to C [, then there is a map ĥLM : DHJ ∩B274rJ (p[HJ , VH)→
V ⊥H such that

GĥLM
= GhLM C274rJ (p[HJ , VH)

and
‖hHJ − ĥLM‖L1(DHJ∩B272rJ

(p[HJ ,VH)) ≤ Cm0`(J)5+β1/2 . (12.11)

The proof follows verbatim the arguments given in [8, Section 8.5]. The only difference is
the absence of the “ambient Riemannian” manifold which in [8, Lemma 8.31] is the graph
of a function Ψ. The case needed for our arguments is the clearly simpler situation in
which the linear subspaces $ and $̄ in [8, Lemma 8.31] are given by the trivial subspace
{0}. The proof of this version of the lemma (which is in fact [13, Lemma 5.6]) is even less
complicated. However there is a direct way to conclude it directly from the more general
statement of [8, Lemma 8.31]: we can consider R2+n as a subspace of R2+n+1 and apply [8,
Lemma 8.31] to a generic choice of κ, κ̄, π, π̄ and the specific choice of $ = $̄ = {0} × R
and Ψ = Ψ̄ : π × κ = π̄ × κ̄ → $ = $̄ given by the trivial map Ψ ≡ 0.

13. Final estimates and proof of Theorem 10.16

Proposition 13.1. There is a constant ω depending upon δ1 and β1 such that, under the
assumptions of Theorem 10.16, the following holds for every pair of squares H,L ∈ Pj

(cf. (10.13)).

(a) ‖uH‖C3,ω(B4rH
(xH) ≤ Cm

1/2
0 , resp. ‖uH‖C3,ω(D∩B274rH

(x[H)) ≤ Cm
1/2
0 , for H ∈ C \,

resp. H ∈ C [;
(b) If H and L are neighbors then for any i ∈ {0, 1, 2, 3}, we have

‖uH − uL‖Ci(BrH (xH)) ≤ Cm
1/2
0 `(H)3+ω−i when H ∈ C \, (13.1)

‖uH − uL‖Ci(D∩B27rH
(x[H)) ≤ Cm

1/2
0 `(H)3+ω−i when H,L ∈ C [; (13.2)

(c) |D3uH(x�H) − D3uL(x�L)| ≤ Cm
1/2
0 |x�H − x�L|ω, where � = if the corresponding

square is a non-boundary square and � = [ if it is a boundary square;

(d) if H ∈ C \, then ‖uH − p⊥V0
(pH)‖C0(B4rH

(xH)) ≤ Cm
1/2
0 `(H) and if H ∈ C [, then

uH |∂D∩B274rH
(x[H)) = g ;

(e) |VH − T(x,uH(x))GuH | ≤ Cm
1/2
0 `(H)1−δ1 for every x ∈ B4rH (xH), resp. x ∈ D ∩

B274rH (x[H);
(f) If H ′ is the square concentric to H ∈ Wj with `(H ′) = 9

8
`(H), then

‖ϕi − uH‖L1(H′) ≤ Cm0`(H)5+β1/2 ∀i ≥ j + 1 . (13.3)
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13.1. Proof of Proposition 13.1.

Proof. We follow the proof of [8, Proposition 8.32] and often we drop here for simplicity
the domains where we estimate the norm in.

(a) By [11, Lemma B.1], it is enough to make the estimates on hH instead of uH . Fix any
square H ∈Pj and consider the family tree H = Hi ⊂ Hi−1 ⊂ · · · ⊂ HN0 . We estimate

‖hH‖C3,ω ≤
i∑

j=N0+1

‖hHHj − hHHj−1
‖C3,ω + ‖hHHN0

‖C3,ω .

As these are all harmonic functions, by the mean value property, it is enough to estimate
the L1 norms. Again using the harmonicity we see that

‖hHHj − hHHj−1
‖L1(Ωj) ≤ ‖η ◦ fHHj − η ◦ fHHj−1

‖L1(Ωj) + Cm0r
5+β1

Hj−1
,

where Ωj either is B7rHj
(pHj , VH) if Hj ∈ C \ or DH ∩ B277rHj

(p[Hj , VH) if Hj ∈ C [. Using

Theorem 9.1, we see that both fHHj and fHHj−1
describe spt(T ) on a large set K, thus

their average agree on K. Together with the oscillation estimate we then deduce

‖η ◦ fHHj − η ◦ fHHj−1
‖L1(Ωj) ≤ C`(Hj−1)2

(
m0`(Hj−1)2−2δ1

)1+γ1
m

1/4
0 `(Hj−1)1+β1

≤ Cm0`(Hj−1)5+β1 .

For ‖hHHN0
‖C3,ω we argue similarly and use Proposition 12.6.

(b) By [11, Lemma C.2], we have

‖Dj(uH − uL)‖C0 ≤ CCr−2−j
L ‖uH − uL‖L1 + Cr3+ω−j

L ‖D3(uH − uL)‖Cω .
The second term is already bounded in (a), thus we are left with showing the L1 estimate.
To do so, we again use [11, Lemma B.1] to replace uL and uH with functions which have
the same graph. It is enough to notice that, by Lemma 12.8

‖hH − ĥL‖L1 ≤ Cm
1/2
0 `(H)5+δ1/2.

(c) Let H,L ∈Pj. In case that |xH − xL| ≥ 2−N0 , the statement follows from (a). Other-
wise, we can find ancestors J,M such that H,L are in a distant relation where `(J) = `(M)
is comparable to |x�H − x�L|. Then we estimate

|D3uH(x�H)−D3uL(x�L)| ≤ |D3uH(x�H)−D3uHJ(x�J )|+ |D3uLM(x�M)−D3uL(x�L)|
+ |D3uHJ(x�J )−D3uLM(x�M)|.

The bound on the last term is already shown in (b), while for the first two we argue similarly
as before. Consider the family tree H ⊂ Hi−1 ⊂ · · · ⊂ J . By the previous arguments, we
deduce

‖uHHi − uHHi−1
‖C3 ≤ Cm

1/2
0 `(Hi−1)ω.

(d) The claim is obvious by construction for boundary cubes. For non-boundary cubes,
consider that the height bound for T and the Lipschitz regularity for fH give that∥∥p⊥VH (pH)− η ◦ fH

∥∥
∞ ≤ Cm

1/4
0 `(H).
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We also get
∥∥p⊥VH (pH)− η ◦ fH

∥∥
∞ ≤ Cm

1/4
0 `(H). On the other hand the Lipschitz regu-

larity of the tilted H -interpolating function hH and the L1 estimate on hH −η ◦ fH easily

gives
∥∥p⊥VH (pH)− hH

∥∥
∞ ≤ Cm

1/4
0 `(H). The estimate claimed in (d) follows then from

[13, Lemma B.1].
(e) follows from the estimates on DhHL of Lemma 12.8.
(f) By definition of ϕj, it is enough to estimate that for L a neighbour square of H, we
have

‖uH − uL‖L1 ≤ Cm0`(H)5+δ1/2.

�

13.2. Proof of Theorem 10.16.

Proof. (a) is an immediate consequence of the definition of ϕj and the fact that uL satisfies
the correct boundary condition (for L ∈ C [). (b) follows exactly as in the proof of [11,
Theorem 1.17] and from Proposition 13.1. In fact, we are in the simpler situation where
our ”ambient manifold” is just Rn+2 and thus, we can choose Ψ ≡ 0. (c) and (d) are
consequences of (b). �

13.3. Proof of Corollary 10.19 and Theorem 10.21.

Proof. We extend ϕ to all of [−4, 4]2 changing the C3,ω-norm only by geometric constant
and call this extension ϕ̃. Then consider

T̃ := T +Q ·Gϕ̃|[−4,4]2\D
.

Then as ∂M = Γ, so ∂T̃ = 0. We cannot directly apply the corresponding interior paper,
[13, Corollary 2.2], to T̃ because the latter is not area-minimizing. However, the argument
given in [13, Proof of Corollary 2.2] does not use the area-minimizing assumption. It uses
only the height estimates of Proposition 11.1 (which can be trivially extended to T̃ since
the portion added to T is regular) and the constancy theorem (which is valid in our case,
since T̃ has no boundary).

As for the existence and estimates on the normal approximation, we also can follow the
same argument as in [13, Section 6.2] substituting the current T̃ to the current T in there
and the map ϕ̃ to the map ϕ in there. First of all notice that the extension is done locally
on each square and the ones surrounding it, and thus, even though the union of the squares
in our W and the set ∆ does not cover [−4, 4]2, this does not prevent us from applying
the same procedure. Next, the construction algorithm and the estimates performed in [13,
Section 6.2] depend only on the following two facts:

(a) The map ϕ in [13, Section 6.2] has, on every L ∈ W , the same control on the C3,ω

norm that we have for the map ϕ̃ (up to a constant).
(b) For each square L ∈ W (which in the case of [13, Section 6.2] corresponds to

an interior square for us) we have a Lipschitz approximation fL of the current
T C8rL(pL, VL), which in turn coincides with the current T on a set KL × V ⊥L ,
where |B8rL \ KL| is small and the Lipschitz constant and the height of fL are
both suitably small too. This is literally the case with the very same estimates for
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our interior squares, because T̃ C8rL(pL, VL) = T C8rL(pL, VL). In the case of
boundary squares, we apply Theorem 9.1 and we extend the corresponding fL to
a map F̃L on the whole disk B278rL(p[L, VL) by setting it equal to Q copies of the
graph of ϕ̃ outside of the domain DL ∩ B278rL(p[L, VL). We then notice that such
extension satisfies the same estimates on the Lipschitz constant and the height.
Moreover, over the new region, by construction the extension coincides with the
current T . Hence, if we denote by K̃L the complement of the projection on VL of
the difference set spt(T̃ )∆spt(GL(fL)), then

B278rL(p[L, VL) \ K̃L = (B278rL(p[L, VL) ∩DL) \KL .

In particular |B278rL(p[L, VL) \ K̃L| has the desired estimate.

Finally, observe the following. By the construction of [13, Section 6.2] we have a specific
description of the set K consistsing of those points p in the center manifold for which we
know that the slice 〈T,p, p〉 coincides with the slice of the multivalued approximation,
namely

∑
i JFi(p)K. First of all, K contains Φ(∆). Secondly, for every Whitney region L

corresponding to some square L ∈ W , K ∩ L is defined in the following fashion. First of
all, we denote by D(L) the family of squares M ∈ W which have nonempty intersection
with L (i.e. its neighbors), hence we consider in each CM := C8rM (pM , VM), resp. CM :=
C278rM (pM , VM), the corresponding Lipschitz approximation fL and define

K ∩ L :=
⋂

M∈D(L)

p(spt(T ) ∩ gr (fM)) .

Since for boundary cubes Γ ∩ CM ⊂ spt(T ) ∩ gr (fM), we conclude that Γ ∩ L ⊂ K. On
the other hand every point of Γ ∩M which does not belong to some Whitney region is
necessarily contained in the contact set Φ(∆). Thus we conclude that Γ ⊂ K. Observe,
moreover, that by construction the map N vanishes identically on the contact set, while
we also know that for each fM as above fM coincides with the function gM on pVM (Γ).
In particular this implies that N vanishes identically on the intersection of Γ with any
Whitney region. �

13.4. Proof of Proposition 10.23. (10.24) is an ovious consequence of (10.23) since on
the complement of the squares L ∈ W e the two functions ϕ and f coincide.

We now turn to (10.23) Observe next that, by Proposition 13.1(f), it suffices to show
the claim for the function uH in place of ϕ. Observe also that we already know from
the above argument that, if we replace uH with the tilted interpolating function hH and
f with the Lipschitz approximation fH = fHH , the estimate holds, as it is in fact just a
special case of (12.7) and (12.6). Fix now a point x ∈ H and the corresponding point let
y(x) := pVH (uH(x)) be the corresponding projection on the plane VH . We can use [13,
(5.4)] (where we identify the manifold M in there with the affine plane VH + ϕ(p)) to
compute

|η ◦ f(x)− uH(x)| ≤ C|η ◦ fH(y)− hH(y)|+ C|VH − V0|Lip(f)h(T,BH) .
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In particular we conclude

|η ◦ f(x)− uH(x)| ≤ C|η ◦ fH(y)− hH(y)|+ Cm
1/2
0 `(H)1−δ1mγ2

0 `(L)γ2m
1/4
0 `(L)1+β1 .

Observing that x 7→ y(x) is a Lipschitz function with Lipschitz constant bounded by |Dϕ|,
i.e. by Cm

1/2
0 and integrating in x, we easily conclude the claimed estimate.

14. Local lower bounds for the Dirichlet energy and the L2 norm of N

As in [13, Section 3] the aim of this section is to conclude suitable lower bounds for∫
|DN |2 and |N | over regions of the center manifold which are close (and sizable) enough

to some Whitney region L. Depending on the reason why the refinement was stopped,
we will either bound |N | from below in terms of `(L)1+β1 or we will bound

∫
|DN |2 from

below in terms of the excess of the current in BL

14.1. Lower bound on |N |. We start with the following conclusion.

Proposition 14.1 (Separation because of the height). If L ∈ W h then L is necessarily an
interior square. Moreover, there is constant C̃ > 0 depending on M0 such that whenever
(Ch)

4 ≥ C̃C\
e and εCM > 0 is small enough, then every L ∈ W h fulfills

(S1) Θ(T, p) ≤ Q− 1
2

for all p ∈ B16rL(pL),

(S2) L ∩H = ∅ for all H ∈ W n with `(H) ≤ 1
2
`(L),

(S3) G(N(x), Q Jη ◦N(x)K) ≥ 1
4
Chm

1/4
0 `(L)1+β1 for all x ∈ Φ(B2

√
2`(L)(xL)).

Proof. We only have to prove that L ∈ C \ as the rest follows from the interior theory in
[13, Section 3]. We show that any boundary square H which did not stop because of the
excess, also did not stop because of the height. Fix such an H ∈ C [ \W e. Then we know
that its parent M ∈ C [ ∩S satisfies

E(T,B[
M) ≤ C[

em0`(H)2−2δ1

and we want to show that

h(T,B[
H) ≤ Chm

1/4
0 `(H)1+β1 .

To do so, we apply the height bound of Lemma 10.4 to a suitable rotated current T̃ := O]T ,
where O is a rotation which maps V0 onto VH . Notice that the proof of this lemma is based
on the first variation and thus on the minimality of T . As T̃ is area minimizing (with
respect to the tilted boundary O(Γ)), we can directly deduce

h(T,B[
H) ≤ h(T,C2764rH (p[H , VH)) ≤ CrH

(
E(T,C2780rH (p[H , VH) + ArH

)1/2

≤ CrH
(
E(T,B[

M) + C|VM − VH |2 + ArH
)1/2

≤ Cm
1/2
0 r

3/2
H

≤ Chm
1/4
0 `(H)1+β1 ,

where we also used Proposition 11.1 and the sufficient small choice of εCM . �
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A simple corollary of the above proposition is that if a square stopped because of the
neighbor condition, then this originated from a larger nearby square which stopped because
of the excess.

Corollary 14.2. For every H ∈ W n, there is a chain of squares L0, L1, . . . , Lj = H such
that

(a) Li ∈ W n for all i > 0 and L0 ∈ W e,
(b) they are all neighbors, i.e. Li ∩ Li−1 6= ∅ and `(Li) = 1

2
`(Li−1).

In particular, H ⊂ B3
√

2`(L0)(xL0 , V0).

Accordingly, we can collect all the squares H which have such a chain relating H to
a specific square L ∈ W e. The latter square is not necessarily unique, but it will be
convenient to fix a consistent choice of L.

Definition 14.3 (Domains of influence). First, let us fix an ordering {Ji}i∈N of W e such
that the side length is non-increasing. For J0, we define its domain of influence by

W n(J0) := {H ∈ W n : there is a chain as in Corollary 14.2 with L0 = J0 and Lj = H}.

Inductively, we define for k > 0 the domain of influence W n(Jk) of Jk by all H ∈ W n \⋃
i<k W n(Ji) which have a chain as in Corollary 14.2 with L0 = Jk and Lj = H. As it is

easy to check using Corollary 14.2 we have W n =
⋃̊
k∈NW n(Jk).

14.2. Lower bound on the Dirichlet energy. Having handled the case of “height
stopped” squares we turn to squares which were stopped because they exceed the excess
bound.

Proposition 14.4. (Splitting) There are constants C1(δ1), C2(M0, δ1), C3(M0, δ1) such
that, if M0 ≥ C1(δ1), C\

e ≥ C2(M0, δ1), C[
e ≥ C3(M0, δ1), if the hypotheses of Theorem 10.21

hold and if εCM is chosen sufficiently small, then the following holds. If L ∈ W e, q ∈ V0

with dist(L, q) ≤ 4
√

2 `(L), B`(L)/4(q, V0) ⊂ D and Ω = Φ(B`(L)/4(q, V0)), then (with

C,C4 = C(β1, δ1,M0, N0, C
\
e, C

[
e, Ch)):

C�
em0`(L)4−2δ1 ≤ `(L)2E(T,B�

L) ≤ C

∫
Ω

|DN |2 , (14.1)∫
L
|DN |2 ≤ C`(L)2E(T,B�

L) ≤ C4`(L)−2

∫
Ω

|N |2 . (14.2)

Before coming to the proof of the Proposition, let us first observe an important point.
Fix L as in the statement of the Proposition and consider its parent H and its ancestor J
6 generations before. If L is a boundary square, then H and J are both boundary squares.
On the other hand, if L is an interior square, since C\

e is chosen much larger than C[
e,

we can ensure that both L and J are also interior squares. Indeed, when BL ⊂ B[
J and

J 6∈ W e, we have the obvious estimate

E(T,BL) ≤ 226E(T,B[
J) ≤ 226C[

em0`(J)2−2δ1 ≤ 238C[
em0`(L)2−2δ1 ,
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which therefore, by choosing C\
e ≥ 238C[

e implies that L does not satisfy the excess stopping
condition.

Hence we can invoke [13, Proposition 3.4] to cover the case in which L ∈ W e ∩C \, since
the proof given in [13, Section 7.3] just uses the fact that all squares L,H and J are interior
squares (i.e. the repsective balls BL,BH , and BJ do not intersect the boundary Γ). We
are thus left to handle the case in which L (and therefore also H and J) are boundary
squares.

To do so, we need analogues of three lemmas from [13].

Lemma 14.5. Let B+ ⊂ R2 be a half ball centered at the origin and w ∈ W 1,2(B+,AQ(Rn))
be Dir-minimizing with w = Q J0K on B+ ∩ (R × {0}). Denoting w̄ := w ⊕ (−η ◦ w) =∑

i Jwi − η ◦ wK and u := η ◦ w, we have

Q

∫
B+

|Du−Du(0)|2 =

∫
B+

G(Dw,Q JDu(0)K)2 −Dir(w̄, B+).

Proof. We extend w in an odd way to all of the ball B. Notice that then also the extension
of u is harmonic in all of B. Now the proof is the same as in [13, Lemma 7.3], but we repeat
it here anyway. First notice, that u is a classical harmonic function and in particular, fulfills
the mean value property. We use it to deduce

Q

∫
B

|Du−Du(0)|2 = Q

∫
B

(
|Du|2 + |Du(0)|2 − 2Du ·Du(0)

)
= Q

∫
B

|Du|2 +Q|B||Du(0)|2 − 2Q

(∫
B

Du

)
·Du(0)

= Q

∫
B

|Du|2 −Q|B||Du(0)|2.

(14.3)

Similarly we compute

Q

∫
B

|Dw|2 =
∑
i

∫
B

|Dwi|2 =
∑
i

∫
B

(
|Dwi −Du(0)|2 − |Du(0)|2 + 2Dwi ·Du(0)

)
=

∫
B

G(Dw,Q JDu(0)K)2 −Q|B||Du(0)|2 + 2Q

(∫
B

1

Q

∑
i

Dwi

)
·Du(0)

=

∫
B

G(Dw,Q JDu(0)K)2 +Q|B||Du(0)|2.

(14.4)
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Last we split the Dirichlet energy of w into the average and the average-free part (as already
observed in (9.14)).∫

B

|Dw̄|2 =
∑
i

∫
B

|Dwi −Du|2 =
∑
i

∫
B

(
|Dwi|2 + |Du|2 − 2Dwi ·Du

)
=

∫
B

|Dw|2 +Q

∫
B

|Du|2 − 2Q

∫
B

(
1

Q
Dwi

)
·Du

=

∫
B

|Dw|2 −Q
∫
B

|Du|2.

(14.5)

The three identities (14.3), (14.4), (14.5) and dividing everything by 2 conclude the lemma.
�

An other important ingredient is the unique continuation for Dir-minimizers (compare
to [13, Lemma 7.1]).

Lemma 14.6 (Unique Continuation for Dir-minimizers). For every 0 < η < 1 and c > 0,
there is a δ > 0 such that whenever B+

2r ⊂ V0 is the half ball and w : B+
2r → AQ(Rn) is

Dir-minimizing with w = Q J0K on B+
2r ∩ (R× {0}), Dir(w,B+

2r) = 1, and Dir(w,B+
r ) ≥ c,

then

Dir(w,Bs(q)) ≥ δ for every Bs(q) ⊂ B+
2r with s ≥ ηr.

Proof. The qualitative statement (UC) of the proof of [13, Lemma 7.1] applies directly to
our situation while the quantitative statement follows from a blow-up argument that goes
analogously for us as Bs(q) ⊂ B+

2r. �

The previous two lemmas imply the following energy decay for Dir-minimizers (compare
to [13, Proposition 7.2]) which itself implies the Proposition 14.4. First fix a number λ > 0
such that

(1 + λ)4 < 2δ1 .

Proposition 14.7 (Decay estimate for Dir-minimizers). For any η > 0 there is a δ > 0
such that whenever B+

2r ⊂ V0 is the half ball and w : B+
2r → AQ(Rn) is Dir-minimizing with

w = Q J0K on B+
2r ∩ (R× {0}) and satisfies∫

B+
(1+λ)r

G(Dw,Q JD(η ◦ w)(0)K)2 ≥ 2δ1−4Dir(w,B+
2r),

then we have for any Bs(q) ⊂ B+
2r with s ≥ ηr

δ Dir
(
w,B+

(1+λ)r

)
≤ Dir

(
w̄, B+

(1+λ)r

)
≤ 1

δr2

∫
Bs(q)

|w̄|2.

Here we used again the notation w̄ := w ⊕ (−η ◦ w) =
∑

i Jwi − η ◦ wK.
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Proof. We follow word by word the proof of [13, Proposition 7.2] using Lemma 14.6 and
Lemma 14.5 instead of [13, Lemma 7.1] and [13, Lemma 7.3]. We reach the contradicting
inequality ∫

B+
1+λ

|Du−Du(0)|2 ≥ 2δ1−4

∫
B+

2

|Du|2

which is false as one can see by reflecting such that u stays harmonic and then using the
classical decay for harmonic functions. �

15. Frequency function and monotonicity

In this section we take a further crucial step towards the proof of Theorem 4.6. We recall
our key Assumption 4.5 and we add a further one on the smallness of the excess. Before
doing that, we observe a corollary of the decay estimate in Theorem 4.7.

Corollary 15.1. Let T and Γ be as in Assumption 2.4 and assume that 0 ∈ Γ is a flat
point and that Q JV K is the unique tangent cone to T at 0. Then there is a geometric
constant κ > 0 and constants C and r0 > 0 (depending on Γ and T ) such that

E(T,Cr) ≤ Cr4κ ∀r ≤ r0 . (15.1)

Thus, upon rescaling the current appropriately, if 0 is a flat point we can assume, without
loss of generality, the following.

Assumption 15.2. Let T and Γ be as in Assumption 2.4. 0 ∈ Γ is a flat point, Q JV K is
the unique tangent cone to T at 0, we let n be as in (4.1) and assume that (4.3) holds. In
addition we assume to have fixed a choice of the parameters so that Theorem 10.16 and
Theorem 10.21 hold and that

E(T,C4R0ρ) + A2ρ2 ≤ εCMρ
2κ ∀ρ ≤ 1 . (15.2)

Observe that, by (15.2), we conclude that both Theorem 10.16 and Theorem 10.21 can
be applied to the current T0,ρ whenever ρ ≤ 1.

15.1. Intervals of flattening. We start defining a decreasing set of radii {t1 > t2 >
. . .} ⊂ (0, 1], which at the moment can be both finite and infinite: in the first case one tN
will be equal to 0, while in the second case all tk’s are positive and tk ↓ 0.
t1 is defined to be equal to 2. We then let M̄1 =M1 be the center manifold and N̄1 = N1

the corresponding normal approximation which results after we apply Theorem 10.16 and
Theorem 10.21 to the current T . Moreover we let W (1) be the squares of the Whitney
decomposition described in Definition 10.11. We then distinguish two cases:

(Stop) There is a square H ∈ W (1) such that

dist(0, H) ≤ 64
√

2`(H) . (15.3)

(Go) There is no such square.
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Notice that every such square H satisfying (15.3) is a boundary square. In the first case
we select an H as in (Stop) which has maximal sidelength and we define t̄2 := 66

√
2`(H)

and t2 := t1t̄2 = 132
√

2`(H). Otherwise we define t2 = 0. Observe that

t2
t1
≤ 66

√
22−N0 (15.4)

Before proceeding further, we record an important consequence of the Whitney decom-
position:

Corollary 15.3. If (Stop) holds, then the square H of maximal sidelength that satisfies
(15.3) must be an element of W e, i.e. it violates the excess condition

Proof. Observe that if H is an (NN) square, then there is a neighboring square H ′ of double
sidelength which also belongs to W and it is easy to see that the latter satisfies (15.3) too,
violating the maximilaity of H. Note next that (15.3) implies that H is a boundary square,
and as such it cannot belong to W h. �

In case t2 > 0 we then apply Theorem 10.16 and Theorem 10.21 to T0,t2 and let M̄2 and
N̄2 be the corresponding objects. The pair (M2, N2) will be derived by scaling back the
objects at scale t2, namely

M2 =
{
t2q : q ∈ M̄2

}
, (15.5)

N2(q) = t2N̄2

(
q

t2

)
. (15.6)

We then apply the procedure above to M̄2 in place of M̄1 and determine t̄3 analogously,
while we set t3 := t2t̄3.

We proceed inductively and define M̄k,Mk, N̄k, Nk, t̄k, and tk := tk−1t̄k: the procedure
stops when one tk equals 0, otherwise goes indefinitely. Observe that for every k we have
the estimate

tk
tk−1

≤ 66
√

22−N0 . (15.7)

15.2. Frequency function. Observe that the conclusion of Theorem 4.6 is equivalent to
T coinciding with Q JMkK for some k in a neighborhood of the origin. A simple corollary
of the interior regularity is in fact the following

Corollary 15.4. If Nk ≡ Q J0K on some nontrivial open subset of Mk, then T = Q JMkK
in a neighborhood of 0 and in particular Theorem 4.6 holds.

We next consider a function d which is C2 in the punctured ball B1(0), whose gradient
∇d is tangent to Γ and such that (i)-(ii)-(iii) of Definition 5.6 hold. Likewise we fix the
function φ : [0,∞)→ [0,∞) given by

φ(t) :=

 1, if t ∈ [0, 1
2
],

(1− 2t), if t ∈ [1
2
, 1],

0, if t ≥ 1 .
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From now on we denote by D the classical Euclidean differentiation of functions, tensors,
and vector fields, which for objects defined on the manifoldMk will mean that we compute
derivatives along the tangents to the manifold. On the other hand we use the notation∇Mk

,
DMk , and divMk

, respectively for the gradient, Levi-Civita connection, and divergence of
(respectively), functions, tensors, and vector fields on Mk understood as a Riemannian
submanifold of the Euclidean space R2+n.

We then define

D(r) :=

∫
Mk

φ

(
d(x)

r

)
|DNk|2(x) dH2(x), if r ∈ (tk+1, tk], (15.8)

H(r) := −
∫
Mk

φ′
(
d(x)

r

)
|∇Mk

d(x)|2 |Nk(x)|2

d(x)
dH2(x), if r ∈ (tk+1, tk]. (15.9)

S(r) :=

∫
Mk

φ

(
d(x)

r

)
|Nk(x)|2 dH2(x). (15.10)

We are then ready to state our main estimate.

Theorem 15.5. Let T be as in Assumption 15.2. Either T = Q JMkK in a neighborhood of
the origin for some k (and in that case note that tk+1 = 0), or else H(r) > 0 and D(r) > 0

for every r. In the latter case the function I(r) := rD(r)
H(r)

satisfies the following properties

for some constants C and τ > 0:

(a) For all r > 0, we have

I(r) ≥ C−1, (15.11)

and

D(r) ≤ Cr2+τ . (15.12)

(b) I is continuous and differentiable on each open interval (tk+1, tk) and moreover

d

dr

(
log I(r) + CD(r)τ − Ct2τ−2

k

S(r)

D(r)

)
≥ −Crτ−1 for a.e. r ∈]tk+1, tk[. (15.13)

(c) At each tk the function I has one-sided limits

I(t+k ) = lim
t↓tk

I(t),

I(t−k ) = lim
t↑tk

I(t),

and moreover ∑
k

|I(t+k )− I(t−k )| <∞. (15.14)

We will prove (a) and (b) in Section 16 while we devote Section 17 to show (c). An
obvious corollary of Theorem 15.5 is the following
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Corollary 15.6. Let T be as in Assumption 15.2. Either 0 is a regular point, or else I(r)
is well defined for every r and the limit

I0 := lim
r↓0

I(r)

exists, is finite and positive.

Proof. First of all observe that, since I(r) ≥ C−1,

f(r) := log I(r)− Ct2τ−2
k

S(r)

D(r)
+ CD(r)τ + Crτ ≥ − logC .

We will also see below in Lemma 16.1 that S(r) ≤ Cr2D(r). Hence, since the Lipschitz
constant of log is bounded on [C−1,∞[, we infer

|f(t+j )− f(t−j )| ≤ C|I(t+j )− I(t−j )|+ C(t+j )τ . (15.15)

Next we show that the two bounds (15.14) and (15.13) imply that f is bounded from above:
considering ρ ∈]0, 1[, we let k the largest number such that ρ < tk and we can estimate

f(1)− f(ρ) =

∫ tk

ρ

f ′ +
k−1∑
j=1

∫ tj

tj+1

f ′ +
k∑
j=2

(f(t+j )− f(t−j ))

which turns into

f(ρ) ≤ f(1)−
∫ tk

ρ

f ′ −
k−1∑
j=1

∫ tj

tj+1

f ′ −
∑
j

|f(t+j )− f(t−j )|

≤ f(1) + C

∫ 1

0

rτ−1 dr + C
∑
j

|I(t+j )− I(t−j )| <∞

(note that in the last line we have used (15.15)).
Next observe that the distributional derivative of f consists of a nonnegative measure

(on the union of the open intervals (tk+1, tk) and a purely atomic Radon measure which
has finite mass by (15.14). We thus conclude that the distributional derivative of f is a
Radon measure. Next fix any ρ ≤ 1 and let tk be such that 2tk+1 < ρ < 2tk. We then have
the bound

|Df |(]ρ, 1[) ≤ Df(ρ, t−k ) +
∑

1≤j≤k−1

Df(]t+j+1, t
−
j [) +

∑
2≤j≤k

|f(t+j )− f(t−j )|

≤ 2
∞∑
j=1

|f(t+j )− f(t−j )|+ ‖f‖∞ <∞ .

Hence, letting ρ go to 0 we discover that |Df |(]0, 1[) < ∞, that is f ∈ BV (]0, 1[). This
in turn implies that f is a function of bounded variation and hence that limr↓0 f(r) exists
and is finite. Observe, moreover that by (16.11) we infer that f(r) − log(I(r)) converges
to 0 as r ↓ 0. We thus conclude that

lim
r↓0

ef(r) = lim
r↓0

I(r)
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exists, it is finite, and it is positive. �

16. Proof of Theorem 15.5: Part I

16.1. Proof of (15.11). The claim is simply equivalent to the existence of a constant C
such that H(r) ≤ CrD(r). The latter is a consequence of a Poincaré-type inequality which
uses the fact that Nk vanishes identically on the boundary curve Γ. The proof will be
reduced to [8, Proposition 9.4]. However, in order to make the latter reduction, we employ
a device which will be used in several subsequent computations. Having fixed a positive r
different from any tj we let k be such that tk+1 < r < tk and we define the corresponding
rescaled quantities D̄k(t

−1
k r), H̄k(t

−1
k r), S̄k(t

−1
k r), and Īk(t

−1
k r). More precisely we define the

function dk(x) := t−1
k d(tkx) and set

D̄k(ρ) :=

∫
M̄k

φ

(
dk(x)

ρ

)
|DN̄k|2(x) dH2(x) , (16.1)

H̄k(ρ) := −
∫
M̄k

φ′
(
dk(x)

ρ

)
|∇M̄k

dk(x)|2 |N̄k(x)|2

dk(x)
dH2(x) , (16.2)

S̄k(ρ) :=

∫
M̄k

φ

(
dk(x)

ρ

)
|N̄k(x)|2 dH2(x). (16.3)

We then can immediately check the relations

D̄k(t
−1
k r) = t−2

k D(r) , (16.4)

H̄k(t
−1
k r) = t−3

k H(r) , (16.5)

S̄k(t
−1
k r) = t−4

k S(r) , (16.6)

S̄ ′k(t
−1
k r) = t−3

k S ′(r) , (16.7)

D̄′k(t
−1
k r) = t−1

k D′(r) . (16.8)

Lemma 16.1. There is a constant C such that

H(r) ≤ CrD(r) , (16.9)

S ′(r) ≤ CrD(r) , (16.10)

S(r) ≤ Cr2D(r) . (16.11)

Proof. We observe that the corresponding inequalities for D̄k, H̄k, S̄k, and S̄ ′k follow from
[8, Proposition 9.4], since the center manifold M̄k, the functions dk, and Nk satisfy the
assumptions of the Proposition. �

16.2. Derivatives of H and D. In order to prove (15.13) the first step consists in com-
puting the derivatives of H and D. In what follows we will use the usual convention
of denoting by O(g) any function f of the real variable r > 0 with the property that
|f(r)| ≤ Cg(r). Moreover, in order to avoid cumbersome notation, for r ∈ (tk+1, tk] we will
drop the subscript Mk from the gradient ∇Mk

on the manifold.
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Proposition 16.2. Under the assumptions of Theorem 15.5 we have, for every r ∈
(tk+1, tk],

D′(r) = −
∫
φ′
(
d(x)

r

)
d(x)

r2
|DN |2, (16.12)

H ′(r) =

(
1

r
+O(1)

)
H(r) + 2E(r), (16.13)

and

E(r) = −1

r

∫
φ′
(
d(x)

r

)∑
i

Ni(x) · (DNi(x)∇d(x)) . (16.14)

Proof. The first derivative is a straightforward computation. For the second, we can follow
the computations of [8, Proof of Proposition 9.5] to conclude that

H ′(r) = 2E(r)− 1

r

∫
φ′
(
d(x)

r

)
∆Mk

d(x)|N |2(x) ,

where ∆Mk
is the Laplace-Beltrami operator on the manifoldMk. Noticing that φ′

(
d(x)
r

)
vanishes unless C−1r ≤ |x| ≤ Cr, our claim will follow once we show that

∆Mk
d(x) =

1

d(x)
+O(1) =

1

d(x)
(1 +O(d(x))) .

In order to show the latter estimate, we fix a point x ∈Mk and observe first that the second
fundamental form of the center manifold M̄k is bounded by C(E(T0,tk , 4R0)1/2+Atk), which
in turn is bounded by Ctκk for some positive κ. By rescaling, the second fundamental form
AMk

of Mk enjoys the bound ‖AMk
‖∞ ≤ Ctκ−1

k . On the other hand, recalling that
|x|−1|Dd−D|x||+ |D2d−D2|x|| ≤ C it is easy to see that∣∣∣∣∆Mk

d(x)− 1

d(x)

∣∣∣∣ ≤ ∣∣∣∣∆Mk
|x| − 1

|x|

∣∣∣∣+ C + C|x|‖AMk
‖∞

≤ C + C‖AMk
‖∞ ≤ Ctκk + C ≤ C . �

16.3. First variations and approximate identities. We start by recalling that, since
T0,tk is area-minimizing and ∂T0,2tk C4R0 = Q JΓkK C4R0 , then δT0,tk(X) = 0 for every
X which is tangent to Γ. In what follows we fix a C3 extension ϕ̃k of the function ϕ̄k to
[−4, 4]2 ⊂ V (by increasing the C3,ω estimate on ϕk by a constant factor) whose graph is
the center manifold M̄k and we denote by pk the orthogonal projection onto the graph of
ϕ̃k (which is of course defined only in a suitable normal neighborhood of it). We then fix
the two relevant vector fields with which we will test the stationarity condition:

Xo(p) := φ

(
dk(pk(p))

r

)
(p− pk(p)),

Xi(p) := −Y (pk(p)) := −1

2
φ

(
dk(pk(p)))

r

)
∇d2

k

|∇dk|2
(pk(p))

(note that ∇ means the gradient ∇M̄k
here).
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Note that Xi is tangent to both M̄k and Γk. Moreover, in [8, Sections 9.4 and 9.5],
the estimates are done separately on both sides of Γk. Thus, it applies to our situation
directly with M+ = M̄k. Note also that the fifth error terms vanish for us as our ”am-
bient manifold” is Rn+2. We summarize the statements here and first define the following
function

ϕk(p) := φ

(
dk(pk(p))

r

)
.

We also introduce the rescaled quantity

Ēk(ρ) := −1

ρ

∫
M̄k

φ′
(
dk(x)

ρ

)∑
i

(N̄k)i(x) · (D(N̄k)i(x)∇dk(x))

and record the corresponding relation with E, namely

Ēk(t
−1
k r) = t−2

k E(r) . (16.15)

Proposition 16.3 (Outer variations). Let Ak and HM̄k
denote the second fundamental

form and the man curvature of M̄k respectively. Assume tk+1

tk
< r < 1. Then we have

|D̄k(r)− Ēk(r)| =

∣∣∣∣∣
∫
M̄k

(
ϕk|DN̄k|2 +

∑
i

((N̄k)i ⊗Dϕk) : D(N̄k)i

)∣∣∣∣∣ ≤
4∑
j=1

|Erroj |,

(16.16)

with

Erro1 := −Q
∫
M̄k

ϕ〈HM̄k
,η ◦ N̄k〉,

|Erro2| ≤ C

∫
M̄k

|ϕk||Ak|2|N̄k|2,

|Erro3| ≤ C

∫
M

(
|ϕk|(|DN̄k|2|N̄k||Ak|+ |DN̄k|4) + |Dϕk|(|DN̄k|3|N̄k|+ |DN̄k||N̄k|2|Ak|)

)
,

Erro4 := δTF̄k(Xo)− δT0,tk(Xo) = δTF̄k(Xo).

For the inner variation, we introduce first a bit more of notation. First of all, we see
D(N̄k)j as a map from TM̄k to Rn+2. Denoting the components of (N̄k)j by (N̄k)j =
((N̄k)

1
j , . . . , (N̄k)

n+2
j ) and choosing a vector field Z tangent to M̄k, we write

D(N̄k)j(Z) = (DZ(N̄k)
1
j , . . . , DZ(N̄k)

n+2
j ).

Similarly, we have

D(N̄k)jD
M̄kY (Z) = D(N̄k)j(D

M̄kY (Z)) = (DDM̄kY (Z)(N̄k)
1
j , . . . , DDM̄kY (Z)(N̄k)

n+2
j ).

Thus, for the scalar product D(N̄k)j : D(N̄k)jD
M̄kY , we choose an orthonormal frame

e1, e2 of TM̄k and express

D(N̄k)j : D(N̄k)jD
M̄kY =

∑
`

〈De`(N̄k)j, DDM̄kY (e`)
(N̄k)j〉 =

∑
`,i

De`(N̄k)
i
jDDM̄kY (e`)

(N̄k)
i
j.
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We further introduce the quantity

G(r) := −r−2

∫
Mk

φ

(
d

r

)
d

|∇d|2
∑
j

|D(Nk)j · ∇d|2

and its correspoding rescaled version

Ḡk(ρ) = −ρ−2

∫
M̄k

φ

(
dk
ρ

)
dk
|∇dk|2

∑
j

|D(N̄k)j · ∇dk|2 ,

while we record the corresponding relation as in (16.4)-(16.8):

Ḡk(t
−1
k r) = t−1

k G(r) . (16.17)

Proposition 16.4 (Inner variations). Under the above assumptions we have∣∣D̄′k(r)−O(tκk)D̄k(r)− 2Ḡk(r)
∣∣

=
2

r

∣∣∣∣∣
∫
M̄k

(∑
j

D(N̄k)j : D(N̄k)jD
M̄kY − 1

2
|DN̄k|2divM̄k

Y

)∣∣∣∣∣ ≤ 2

r

4∑
j=1

|Errij|, (16.18)

with

Erri1 := Q

∫
M̄k

(
〈HM̄k

,η ◦ N̄k〉divM̄k
Y + 〈DYHM̄k

,η ◦ N̄k〉
)
,

|Erri2| ≤ C

∫
M̄k

|Ak|2
(
|DY ||N̄k|2 + |Y ||N̄k||DN̄k|

)
,

|Erri3| ≤ C

∫
M̄k

(
|DN̄k|2|Y ||Ak|(|N̄k|+ |DN̄k|) + |DY |(|A||N̄k|2|DN̄k|+ |DN̄k|4)

)
Erri4 := δTF̄k(Xi)− δT0,tk(Xi) = δTF̄k(Xi).

Proof. The arguments for the proposition are the same as in [8, Proposition 9.10] and
indeed they are based on the Taylor expansions of [12, Theorems 4.2 & 4.3]. However
some more care is required because the term O(tκk)D(r) appears in the corresponding
inequality (namely [8, (9.28)] as O(1)D(r). The reason for the improvement is based on
the computations [8, (9.29)] and [8, Lemma 9.2]: the improvement follows easily from the
fact that:

• The curvature of the rescaled boundary Γk is bounded by tk;
• The C3 norm of the function ϕ̄k (whose graph is the center manifold M̄k) is

bounded by (E(T0,tk ,C4R0) + ‖ψk‖C3,α0 )1/2, where ψk is the function whose graph
describes Γk; we thus have ‖ϕ̄k‖C3 ≤ Ctτk.

�
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16.4. Families of subregions for estimating the error terms. We want to estimate
the error terms over the Whitney regions in order to use the separation estimate (Proposi-
tion 14.1) and the splitting before tilting estimates (Proposition 14.4). To achieve this goal
we goes along the same lines of [8, Section 9.6] and apply the arguments of [8, Section 9.6]
to the current T0,tk that gives rise to the center manifold M̄k . Notice that in each error
term, there is the cut-off φ(dk/r), thus it is enough to consider squares which intersect
B+
r := {x ∈ V0 ∩ D : dk(ϕ̄k(x)) < r}. However, to sum the estimates over all squares,

we prefer the regions over which we integrate to be disjoint. For this purpose, we define a
Besicovitch-type covering.

From now on we fix all the constants from Assumption 10.7 and treat them as geometric
constants. We are going to consider the Whitney decomposition and the corresponding
family W e,W h,W n of squares whose definition is detailed in Section 10. Note that the
construction is not applied to the current T and the boundary Γ, but rather to the rescaled
current T0,tk and the rescaled boundary Γk. Note that the assumptions for the construction
apply for each k. For our notation to be more precise we should add the dependence on
k of the various families W , however, since k is fixed at this stage, in order to make our
formulas simpler we drop such dependence.

First we consider all squares which stopped for the excess or the height and which
influence some square intersecting B+

r .

Definition 16.5. We define the family T to be

T :=
{
L ∈ W e ∪W h : L ∩B+

r 6= ∅
}

∪
{
L ∈ W e : there is an L′ ∈ W n(L) such that L′ ∩B+

r 6= ∅
}
.

Notice that because in a chain of squares in W n, the sidelengths always double, we have
for each L ∈ T

sep(L,B+
r ) := inf{|x− y| : x ∈ L, y ∈ B+

r } ≤ 3
√

2`(L).

To each such square L ∈ T , we associate a ball B(L) which we call satellite ball. Prefer-
ably this ball is contained in the square and with radius comparable to the sidelength.
However, as not every square in T is contained in D, we choose instead a nearby ball.
Moreover we want that the concentric ball with twice the radius to be contained in B+

r .
Notice that because of the intervals of flattening (15.3), the largest square L contributing
to the center manifold and intersecting B+

r satisfies `(L) ≤ 1
64
√

2
r.

• If B`(L)/2(xL) ⊂ B+
r , we define B(L) := B`(L)/4(xL).

• If B`(L)/2(xL) * B+
r , we choose a point y ∈ ∂B+

r minimizing the distance to L.
Notice that the size length of the squares in the domain of influence of L vary by
a factor 2, we have |xL − y| ≤ 4

√
2`(L). The center of the satellite ball we want

to be a point inside B+
r and close to y (and thus close to xL). Indeed, first notice

that by the regularity assumption on Γk, ϕ̄k (Theorem 10.16) and dk (Definition

5.6) there is a C1-diffeomorphism Ψr : B̄+
r → B̄+

r with ‖Ψr − Id‖ ≤ Cm
1/2
0 .

Moreover, we define for any ` < r
2

the vectorfield n` : ∂B+
r → B+

r describing
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∂{y ∈ B+
r : dist(y, ∂B+

r ) > `} by

n`(x1, x2) :=


(x1, `), if |x1| < r − `, x2 = 0 ,

(r − `)(x1, x2), if x2 > ` ,

(r − `, `), if `− r < x1 < r, x2 ≤ ` ,

(−r + `, `), if − r < x1 < −r + `, x2 ≤ `.

Notice that if εCM is small enough, we have for any ` < r
2

B`/2

(
Ψr(n`(x))

)
⊂ Ψr

(
B`(n`(x))

)
⊂ B+

r .

Thus for the y ∈ B`(L)/2(xL) ∩ ∂B+
r , we define

qL := Ψr

(
n`(L)/2(Ψ−1

r (y))
)

and observe that

B(L) := B`(L)/4(qL) ⊂ B+
r .

By construction and the estimates on dk, we have if εCM is small enough,

|qL − xL| ≤ 5
√

2`(L) and thus dist(qL, L) ≤ 4
√

2`(L).

From this family T , we now choose a maximal subfamily T for which the satellite balls
are disjoint. Denote by S := sup{`(L) : L ∈ T }. We define T1 ⊂ {L ∈ T : 1

2
S ≤ `(L) ≤ S}

to be a maximal subfamily for which the associated satellite balls are pairwise disjoint. We
inductively define Tk+1 ⊂ {L ∈ T : 2−k−1S ≤ `(L) ≤ 2−kS} to be a maximal subfamily
such that all the satellite balls B(L′) with L′ ∈ T1 ∪ · · · ∪Tk are pairwise disjoint. Finally
we define T to be the union of all the Tk. As we want to cover all of B+

r , we associate
to each square in L ∈ T the nearby squares of T whose satellite balls intersect B(L) and
the domain of influence W n(L). Indeed, by a standard covering argument, notice that if
H ∈ T , then there is at least one square L ∈ T such that dist(H,L) ≤ 20

√
2`(L). We fix

an arbitrary choice to partition T into families T (L) such that L ∈ T , for any H ∈ T (L)
we have `(H) ≤ 2`(L) and dist(H,L) ≤ 20

√
2`(L). Now we add the rest of B+

r and define

W (L) :=
⋃

H∈T (L)

W n(H) ∪ {H}.

The associated Whitney regions will be called U(L) ⊂M,

U(L) :=
⋃

H∈W (L)

Φ̄k(H) ,

where the map Φ̄k is the parametrization of the center manifold induced by ϕ̄k, namely
Φ̄k(x) = (x, ϕ̄k(x)).
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For simplicity of notation, we enumerate T = {Li}i and denote

B+
r := Φ̄k(B

+
r ) = M̄k ∩ {dk < r},

Ui := U(Li) ∩ B+
r ,

Bi := Φ̄k(B(Li)),

`i := `(Li).

Notice that by construction, every satellite ball B(Li) has distance at least `i/4 to ∂B+
r .

In particular, there is a geometric constant c > 0 such that

c
`i
r
≤ inf

p−1
k (Bi)

ϕk = inf
Bi
ϕk.

As in [8, Section 9.6.2], we conclude that there is a geometric constant C > 0 such that

sup
p−1
k (Ui)

ϕk = sup
Ui
ϕk ≤ C inf

p−1
k (Ui)

ϕk = C inf
Ui
ϕk, (16.19)∑

H∈W (Li)

`(H)2 ≤ C`2
i . (16.20)

Applying the estimates of Theorem 10.21 and Corollary 10.19(ii) in each square of W (Li)
and summing over them yields

Lip(N̄k|Ui) ≤ Cmγ2

0 `
γ2

i , (16.21)

‖N̄k‖C0(Ui) + sup
spt(T )∩p−1(Ui)

|p⊥| ≤ Cm
1/4
0 `1+β1

i , (16.22)

‖TF̄k − T0,tk‖(p−1
k (Ui)) ≤ Cm1+γ2

0 `4+γ2

i , (16.23)∫
Ui
|DN̄k|2 ≤ Cm0 `

4−2δ1
i , (16.24)∫

Ui
|η ◦ N̄k| ≤ Cm0`

4+γ2/2
i + C

∫
Ui
|N̄k|2+γ2 . (16.25)

On the other hand, we can use the the Separation Proposition 14.1, the Splitting Propo-
sition 14.4 and the estimates (16.19), (16.20) to deduce estimates on the normal approxi-
mation as stated in the next lemma.

Lemma 16.6. Assume the assumption 10.18 holds. Then there is a geometric constant
C0

2 such that

m0

∑
i

(
`4+2β1

i inf
Bi
ϕk

)
≤ C0D̄k(r), (16.26)

m0

∑
i

`4+β1

i ≤ C0

∫
B+
r

|DN̄k|2 ≤ C0(D̄k(r) + rD̄′k(r)). (16.27)

2Here and in the sequel we call a constant geometric if it depends only on n,Q,N0,M0, C
[
e, C

\
e, Ch which

we fixed.
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Moreover, we have

m0 sup
i
`i ≤ C0(rD̄k(r))

1/(5+β1) and m0 sup
i

(
`i inf
Bi
ϕk

)
≤ C0D̄k(r)

1/(4+β1), (16.28)

and

D̄k(r) ≤ C0m0r
4−2δ1 ≤ C0t

2κ
k r

4−2δ1 . (16.29)

Proof. The proof goes completely analogous to the one of [8, Lemma 9.13] and we summa-
rize it here. Fix an Li ∈ T . If Li ∈ W h, it is an interior square and we can use Proposition
14.1 to deduce ∫

Bi
|N̄k|2 ≥ c0m

1/2
0 `4+2β1

i . (16.30)

On the other hand, if Li ∈ W e, then Li can be either a boundary square or an interior
square. However the satellite ball does not intersect the boundary and also we can apply
Proposition 14.4 in both situations. Thus, we have∫

Bi
|DN̄k|2 ≥ c0m0`

4−2δ1
i , (16.31)∫

Bi
ϕ|DN̄k|2 ≥ c0m0`

4−2δ1
i inf

Bi
ϕk. (16.32)

Summing over all squares and using (16.30), (16.31) and (16.32), we conclude

m0

∑
i

`4+2β1

i inf
Bi
ϕk ≤ C0

∫
B+
r

(
|N̄k|2 + ϕk|DN̄k|2

)
,

m0

∑
i

`4+2β1

i ≤ C0

∫
B+
r

(
|N̄k|2 + |DN̄k|2

)
≤ C0

∫
B+
r

|DN̄k|2,

where we used the Poincaré inequality and the fact that N̄k vanishes on Γk. We conclude
by noticing that, as φ′ = −2 in [1

2
, 1], we have∫

{r/2<dk<r}∩M̄k

|DN̄k|2 ≤ rD̄′k(r) ,∫
{dk<r/2}∩M̄k

|DN̄k|2 ≤ D̄k(r) .

(16.29) is a consequence of (16.24). �

We end this section with estimating the error terms (compare with [8, Proposition 9.14]).

Proposition 16.7. There are constants C, τ > 0 such that

|Erro1|+ |Erro3|+ |Erro4| ≤ CD̄k(r)
1+τ , (16.33)

|Erro2| ≤ Ct2κk S̄k(r) ≤ Ct2κk r
2D̄k(r) (16.34)
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and

|Erri1|+ |Erri3|+ |Erri4| ≤ CD̄k(r)
τ
(
D̄k(r) + rD̄′k(r)

)
, (16.35)

|Erri2| ≤ Ct2κk rD̄k(r). (16.36)

Proof. The detailed estimates can be found in the proof of [8, Proposition 9.14]. Notice
that as there it is done for either side of the boundary separately, and as we have the same
estimates on N , it applies directly to our situation. The idea is as follows. First we notice
that

|Y (p)| ≤ ϕ(p)dk(pk(p)) and |DY (p)| ≤ C1B+
r

(pk(p)).

Then because of the Theorem 10.16, both the second fundamental form and the mean
curvature of M̄k are bounded (and their derivatives) are bouned by Ctκk. The remaining
terms in the errors can be split into the regions Uj and then be estimated by powers of m0

and `j using (16.21) - (16.25). Choosing τ � δ1 and recalling that δ1 ≤ β1 ≤ γ1/8, we see
that the powers are higher than what we need for (16.26) and (16.27). Thus with (16.28)
we gain the additional D̄k(r)

τ .
The only relevant difference in the estimates of [8, Proposition 9.14] is in the terms Erri2

and Eo
2, where our estimates have an improved factor Ct2κk in the right hand side. But this

follows easily from the fact that in our case we take advantage of ‖Ak‖∞ ≤ Ctκk, while in
[8, Proposition 9.14] the second fundamental form of the center manifold is only known to
be bounded by a constant. �

16.5. Proof (15.12) and (15.13). In order to prove (15.12) we exploit (16.4) and (16.29):
we assume tk+1 < r < tk and estimate

D(r) = t2kD̄k(t
−1
k r) ≤ Ct2+2κ

k (t−1
k r)4−2δ1 ≤ Cr2+2κ .

In order to prove (15.13) we follow the computations of [8, Section 9.1], but in our setting
some additional complications are created by the fact that we need to scale back our
estimates for the rescaled quantities D̄k, H̄k, S̄k, Ḡk, and S̄k. First of all we recall (16.13):

H ′(r) = r−1H(r) + 2E(r) +O(1)H(r) . (16.37)

Next we combine (16.16), (16.33), and (16.34) to get

|D̄k(t
−1
k r)− Ēk(t−1

k r)| ≤ CD̄k(t
−1
k r)1+τ + Ct2τk S̄k(t

−1
k r). (16.38)

We next can use (16.4), (16.6), and (16.15) to conclude

|D(r)− E(r)| ≤ CD(r)(t−2
k D(r))τ + Ct2τ−2

k S(r) . (16.39)

Next recall that D(r) ≤ Cr2+2κ. Since r ≤ tk we can write

t−2
k D(r) ≤ Ct−2

k r2D(r)1−2/(2 + 2κ) ≤ CD(r)1−1/(1 + κ) .

Thus, at the prize of choosing τ smaller, we can translate (16.39) into

|D(r)− E(r)| ≤ CD(r)1+τ + Ct2τ−2
k S(r) . (16.40)
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The final ingredient is derived by first combining (16.18), (16.35), and (16.36) to get

|D̄′k(t−1
k r) +O(t2κk )D̄k(t

−1
k r)− Ḡk(t

−1
k r)|

≤ C

t−1
k r

D̄k(t
−1
k r)τ

(
D̄k(t

−1
k r) + t−1

k rD̄′k(t
−1
k r)

)
+ Ct2κk D̄k(t

−1
k r) , (16.41)

which in turn, using (16.4), (16.17), and (16.15) becomes

|D′(r) +O(t2κ−1
k )D(r)− 2G(r)| ≤ C(t−2

k D(r))τ (r−1D(r) +D′(r)) + Ct2κ−1
k D(r) . (16.42)

But then, arguing as for (16.40) we can achieve

|D′(r)− 2G(r)| ≤ Ct2κ−1
k D(r) + CD(r)τ (r−1D(r) +D′(r)) . (16.43)

We are now ready to estimate d
dr

log I(r). We start by writing

d

dr
log I(r) =

1

r
+
D′(r)

D(r)
− H ′(r)

H(r)
. (16.44)

Hence, using (16.37) we write

d

dr
log I(r) ≥ −C +

D′(r)

D(r)
− 2E(r)

H(r)
. (16.45)

Next recall (15.12) while Lemma 16.1 implies that for σ ∈]0, 1[ we have

t2σ−2
k S(r) ≤ Cr2t2σ−2

k D(r) ≤ Cr2σD(r) . (16.46)

In combination with the last two bounds, (16.40) becomes (after possibly choosing a new
positive τ)

|D(r)− E(r)| ≤ CrτD(r) , (16.47)

which in turn implies
D(r)

2
≤ E(r) ≤ 2D(r) , (16.48)

provided r ≤ r0 is sufficiently small with r0 > 0 depending only on C and τ .
By (16.48) we can turn (16.40) into

|E(r)−1 −D(r)−1| ≤ CD(r)τ−1 + Ct2τ−2
k

S(r)

D(r)2
. (16.49)

Inserting the latter into (16.45) (and considering that D′(r) ≥ 0) we then get

d

dr
log(I(r)) ≥ D′(r)

E(r)
− 2E(r)

H(r)
− C D′(r)

D(r)1−τ − Ct
2κ−2
k

S(r)D′(r)

D(r)2
− C . (16.50)

We can finally insert (16.43) to achieve

d

dr
log(I(r)) ≥2G(r)

E(r)
− 2E(r)

H(r)
− CD(r)

E(r)

(
D(r)τ

r
+

D′(r)

D(r)1−τ + t2τ−2
k

)
− C D′(r)

D(r)1−τ − Ct
2κ−2
k

S(r)D′(r)

D(r)2
− C . (16.51)

Next note that:
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• G(r)H(r) ≥ E(r)2, by Cauchy-Schwarz;

• D(r)
E(r)
≤ C;

• D(r) ≤ Cr2+2κ.

• We can rewrite −S(r)D′(r)
D(r)2 = d

dr
S(r)
D(r)
− S′(r)

D(r)
, and it is easy to see that S ′ is positive.

So, after possibly choosing τ smaller, yet positive, we achieve

d

dr

(
log I(r) + CD(r)τ − Ct2τ−2

k

S(r)

D(r)

)
≥ −Crτ−1 . (16.52)

17. Proof of Theorem 15.5: Part II

This section is devoted to prove (15.14). We observe that, by the continuity of the
functions

t 7→ H(Nk, t) and t 7→ D(Nk, t)

we have

I(t+k ) =
tkD(Nk−1, tk)

H(Nk−1, tk)
and I(t−k ) =

tkD(Nk, tk)

H(Nk, tk)
.

In order to simplify our notation we use the shortcut E(T, r) for E(T,Br). We will show
the following two propositions

Proposition 17.1. There is a constant C independent of k such that, if εCM is small
enough then

C−1t2kE(T, 6tk) ≤ D(Nk−1, tk) ≤ Ct2kE(T, 6tk) (17.1)

C−1t2kE(T, 6tk) ≤ D(Nk, tk) ≤ Ct2kE(T, 6tk) (17.2)

C−1t3kE(T, 6tk) ≤ H(Nk−1, tk) ≤ Ct3kE(T, 6tk) (17.3)

C−1t3kE(T, 6tk) ≤ H(Nk, tk) ≤ Ct3kE(T, 6tk) . (17.4)

Proposition 17.2. There is a positive exponent τ1 independent of k such that, if εCM is
small enough then

|D(Nk−1, tk)−D(Nk, tk)| ≤ Ct2kE(T, 6tk)
1+τ1 , (17.5)

|H(Nk−1, tk)−H(Nk, tk)| ≤ Ct3kE(T, 6tk)
1+τ1 . (17.6)

Observe that the estimates (17.2) (the second one), (17.3) (the first one), (17.4) (the
first one), (17.5), and (17.6) imply

|I(t+k )− I(t−k )| ≤ CE(T, 6tk)
τ1 ≤ Ct2κτ1k . (17.7)

On the other hand, by the choice of N0 in Assumption 10.7, by (15.7), we get tk
tk−1
≤ 1

2
,

which iterated implies tk ≤ 2−k. We therefore get

|I(t+k )− I(t−k )| ≤ C2−2κτ1k , (17.8)

which clearly implies (15.14).
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Proof of Proposition 17.1. As the center manifold M̄k−1 stopped, and we are close to the
boundary, it must have stopped for the excess and thus, there is a square L ∈ W e such
that c tk

tk−1
≤ `(L) ≤ C tk

tk−1
(recall section 15.1). Looking at its ancestors (as we did in

Proposition 10.12), we notice

E(T, ρtk) = E(T0,tk−1
, ρtk/tk−1) ≤ Cm0(k − 1)

(
ρ
tk
tk−1

)2−2δ1

, (17.9)

for every 1 ≤ ρ ≤ 5R0
tk−1

tk
and some geometric constant C. Here we denote by m0(k − 1)

and m0(k) the two quantities

m0(k − 1) = E(T0,tk−1
,C5R0) + ‖ψk−1‖2

C3,α(]−5R0,5R0[),

m0(k) = E(T0,tk ,C5R0) + ‖ψk‖2
C3,α(]−5R0,5R0[) ,

where ψk and ψk−1 are the functions describing the rescaled boundaries Γk and Γk−1.
Observe that, since ψk(0) = ψk−1(0) = 0 and ψ′k(0) = ψ′k−1(0) = 0, it can be readily
checked that

‖ψk‖2
C3,α(]−5R0,5R0[) ≤

t2k
t2k−1

‖ψk−1‖2
C3,α(]−5R0,5R0[) ,

so that we have

m0(k) ≤ E(T,C5R0tk) +
t2k
t2k−1

m0(k − 1) ≤ Cm0(k − 1)

(
tk
tk−1

)2−2δ1

, (17.10)

where we also used (17.9). On the other hand, because of the stopping condition we also
know that

E(T, 6tk) = E(T0,tk−1
, 6tk/tk−1) ≥ C−1m0(k − 1)

(
tk
tk−1

)2−2δ1

. (17.11)

In particular, we infer by (17.10) that

E(T, 6tk) ≥ C−1m0(k) . (17.12)

Observe now that for D(N̄k, 1) we have the inequality

D(N̄k, 1) ≤ Cm0(k)

by construction of the center manifold (i.e. (10.21)). In turn, by rescaling, we can conclude

D(Nk, tk) = t2kD(N̄k, 1) ≤ Ct2km0(k) ≤ Ct2kE(T, 6tk) ,

namely the first of the two inequalities in (17.13). Then we observe that (17.1) and (17.3)
follow from the Splitting Proposition 14.4 applied to to the current T0,tk which in turn
produces the center manifold M̄k−1 and the normal approximation N̄k−1 as we are in the
situation where the center manifold stopped. Moreover, we recall that by the Poincaré
inequality (as already observed in (15.11) and proved in Section 16), we have for any r > 0

H(Nk, r) ≤ CrD(Nk, r) .
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Thus (17.4) and (17.2) follow once we have shown the following inequalities

D(Nk, tk) ≤ Ct2kE(T, 6tk) ≤ Ct−1
k H(Nk, 6tk) . (17.13)

For the second inequality in (17.13) we adapt the proof of [13, Proposition 3.7] as the
only difference to our situation is the cut-off function. We describe here the idea of the
argument, the details can be read in [13, Section 9]. Again recall the square L ∈ W e which
stopped in the construction of M̄k−1 according to the argument above. By the splitting
Proposition 14.4, we then have a nearby ball B`/4(z) not intersecting Γ0,tk−1

such that

m0(k − 1)

(
tk
tk−1

)6−2δ1

≤ C

∫
Φ̄k−1(B`/4(z))

|N̄k−1|2 .

The argument of [13, Section 9] provides now a similar bound for the ball B′ = 2 tk−1

tk
B`/4(z),

which has radius comparable to 1, in the center manifold M̄k. More precisely, since
(
tk−1

tk

)4

is exactly the scaling relating the L2 norm on B′ and B`/4(z), while
(
tk−1

tk

)2−2δ1
is the scaling

factor which makes m0(k) and m0(k− 1) comparable, the corresponding estimate is given
by

m0(k) ≤ C

∫
Φ̄k(B′)

|N̄k|2 .

Applying the rescaling which relates M̄k and Mk, we find a corresponding rescaled ball
B′′ (of radius comparable to tk)

m0(k)t4k ≤ C

∫
B′′∩Mk

|Nk|2 .

Using that the center z of the ball can be chosen arbitrarily as long as it is at a distance
from L compared to its diameter, we can ensure that −d(p)−1φ′(t−1

k d(p)) ≥ ct−1
k on B′′ (for

some positive geometric constant c). We thus get

m0(k)t3k ≤ −
∫
B′′∩Mk

|Nk|2
φ′(t−1

k d(p))

d(p)
≤ CH(Nk, tk) .

However Ek(T, 6tk) ≤ Cm0(k), and we have thus completed the proof of the second in-
equality in (17.13).

�

Proof of Proposition 17.2. Define for p ∈ Mk the map Fk(p) =
∑

i Jp+ (Nk)i(p)K and for
q ∈ Mk−1 the map Fk−1(q) =

∑
i Jq + (Nk−1)i(q)K. Moreover denote by Ek := E(T, 6tk)

and Ck := C2tk(0, V0). In order to compare Nk and Nk−1, we first apply Theorem 10.21
to the rescaled currents T0,tk and T0,tk−1

to derive corresponding estimates for the normal
approximations N̄k and N̄k−1 of the currents on M̄k and M̄k−1. We then scale them back
to find corresponding estimates for Nk and Nk−1. During this process we also observe that,
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by (17.9) and (17.10), we have

m0(k) +m0(k − 1)

(
tk
tk−1

)2−2δ1

≤ CEk . (17.14)

Moreover, we will prove later

‖ϕk−1‖C0(B2tk
) ≤ CtkE

1/2
k , (17.15)

‖Dϕk−1‖C0(B2tk
) ≤ CE

1/2
k (17.16)

‖D2ϕk−1‖C0(B4tk
) ≤ Ct−1

k−1m0(k − 1)
1/2 ≤ Ct−1

k E
1/2
k (17.17)

‖ϕk‖C0(B2tk
) ≤ CtkE

1/2
k , (17.18)

‖Dϕk‖C0(B5tk
) ≤ Cm0(k)

1/2 ≤ CE
1/2
k , (17.19)

‖D2ϕk‖C0(B5tk
) ≤ Ct−1

k m0(k)
1/2 ≤ Ct−1

k E
1/2
k , (17.20)

‖D(ϕk −ϕk−1)‖2
L2(B2tk

) ≤ Ct2kE
1+2γ2 . (17.21)

In particular we get by (17.14), (10.19), and (10.21) after rescaling back

Lip(Nk) + Lip(Nk−1) ≤ CEγ2

k , (17.22)

M(TFk Ck −TFk−1
Ck) ≤M(TFk Ck − T Ck) + M(T Ck −TFk−1

Ck)

≤ Ct2kE
1+γ2

k . (17.23)

Thus, we set N̂k to be the Q-valued function defined on Mk−1 satisfying

GN̂k
Ck = TFk Ck = GNk Ck =: S ,

where with GN̂k
we mean the current associated to the function p 7→ p + N̂k(p). By

comparing D(Nk, tk) with D(N̂k, tk) and H(Nk, tk) with H(N̂k, tk) we make an additional
error of size t2kE

1+γ2

k and size t3kE
1+γ2

k respectively. We will prove this later. With this
aim in mind we change coordinates in the integrals of D and H to flat ones. Denote by
Φk(x) := (x,ϕk(x)) and Φk−1(x) := (x,ϕk−1(x)). We then estimate∣∣∣D(Nk, tk)−

∫
|DNk|2(Φk(x))φ

(
t−1
k d(Φk(x))

)
dx
∣∣∣

≤ C

∫
B2tk

|DNk|2(Φk(x))φ
(
t−1
k d(Φk(x))

)
|DΦk(x)− (Id , 0)| dx

≤ C‖Dϕk‖C0(B2tk
)

∫
|DNk|2(Φk(x))φ

(
t−1
k d(Φk(x))

)
JΦk(x)dx

≤ Ct2kE
3/2
k ,

where we used (17.2) and (17.19) for the last inequality. Analogous estimates can be

employed for D(N̂k, tk), H(Nk, tk), and H(N̂k, tk).



AN ALLARD-TYPE BOUNDARY REGULARITY THEOREM 91

Therefore, it is enough to prove

∣∣∣∣∫ |DNk|2φ
(
t−1
k d(Φk(x))

)
dx−

∫
|DN̂k|2φ(t−1

k d(Φk−1(x)))dx

∣∣∣∣ ≤ Ct2kE
1+γ2

k , (17.24)∣∣∣∣∫ |Nk|2
φ′(t−1

k d(Φk(x)))

d(Φk(x))
dx−

∫
|N̂k|2

φ′(t−1
k d(Φk−1(x)))

d(Φk−1(x))
dx

∣∣∣∣ ≤ Ct3kE
1+γ2

k . (17.25)

For (17.24), notice that Nk(p) =
∑

i J(Fk)i(p)− pK. Hence, each component of Nk satisfies

|D(Nk)i(Φk(x))| ≤ C |T(Fk)i(x)TFk − TΦk(x)Mk| .

By the Lipschitz bound of ϕk (17.19) and of Fk, we thus have

∫
|DNk|2φ

(
t−1
k d(Φk(x))

)
≤ C

∫
C

|~S(p)− ~Tpk(p)Mk|2φ(t−1
k d(pk(p)))d‖S‖(p) +O(t2kE

1+γ2

k ) ,∫
|DN̂k|2φ(t−1

k d(Φk−1(x))) ≤ C

∫
C

|~S(p)− ~Tpk−1(p)Mk−1|2φ(t−1
k d(pk−1(p)))d‖S‖(p)

+O(t2kE
1+γ2

k ) ,

where we denoted by pk and pk−1 the nearest point projection on Mk and Mk−1 respec-
tively, while C is the vertical cylinder with base B2tk . As we have from Theorem 10.16

that ‖ϕk−ϕk−1‖C2 ≤ Ct−1
k E

1/2
k , by the Lipschitz bound of φ, we deduce for any p ∈ spt(S)

and q, q′ ∈Mk,

|φ(t−1
k d(pk(p)))− φ(t−1

k d(pk−1(p)))| ≤ CE
1/2
k ,

|TqMk − Tq′Mk| ≤ Ct−1
k E

1/2
k |q − q

′| .

Hence, we have

∫
C

|~S(p)− ~Tpk(p)Mk|2|φ(t−1
k d(pk(p)))− φ(t−1

k d(pk−1(p))|d‖S‖(p) ≤ Ct2kE
3/2
k ,

|Tpk(p)Mk − Tpk−1(p)Mk−1| ≤ C|Dϕk(pV0(pk(p)))−Dϕk−1(pV0(pk−1(p)))|
≤ CEk + |D(ϕk −ϕk−1)|(pV0(p))
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where we used (10.19) in the last inequality. We therefore can conclude∣∣∣∣∣
∫
|DNk|2φ

(
t−1
k d(Φk(x))

)
dx−

∫
B2tk

|DN̂k|2φ(t−1
k d(Φk−1(x)))dx

∣∣∣∣∣
≤ Ct2kE

1+γ2

k + C

∫
C

|~S(p)− ~Tpk(p)Mk|2|φ(t−1
k d(pk(p)))− φ(t−1

k d(pk−1(p)))| d‖S‖

+ C

∫
C

∣∣∣|~S(p)− ~Tpk(p)Mk|2 − |~S(p)− ~Tpk−1(p)Mk−1|2
∣∣∣φ(t−1

k d(pk−1(p))) d‖S‖

≤ Ct2kE
1+γ2

k + C

∫
C

|~S(p)− ~Tpk(p)Mk||~Tpk(p)Mk − ~Tpk−1(p)Mk−1|φ(t−1
k d(pk(p))) d‖S‖

+ C

∫
C

|~S(p)− ~Tpk−1(p)Mk−1||~Tpk(p)Mk − ~Tpk−1(p)Mk−1|φ(t−1
k d(pk(p))) d‖S‖

≤ Ct2kE
1+γ2

k + CtkE
1/2
k

(∫
C

|~Tpk(p)Mk − ~Tpk−1(p)Mk−1|2φ(t−1
k d(pk(p))) d‖S‖

) 1
2

≤ Ct2kE
1+γ2

k + CtkE
1/2
k

(∫
B2tk

|Dϕk −Dϕk−1|2
) 1

2

≤ Ct2kE
1+γ2

k ,

where we used (17.21) for the last inequality.

We finally turn to (17.25). For x ∈ V0, denote by zk := (x,ϕk(x)) and ẑk := (x,ϕk−1(x)).
Then we estimate∣∣∣|Nk|2(zk)− |N̂k|2(ẑk)

∣∣∣ ≤ |Nk|(zk)
∣∣∣|Nk|(zk)− |N̂k|(ẑk)

∣∣∣+ |N̂k|(ẑ)
∣∣∣|Nk|(zk)− |N̂k|(ẑk)

∣∣∣ .
Moreover, using Cauchy-Schwarz and the fact that the L2 norm of Nk and N̂k is bounded

by t2kE
1/2
k , we have ∣∣∣∣∫ |Nk|2

φ′(t−1
k d(zk))

d(zk)
dx−

∫
|N̂k|2

φ′(d((ẑk))

d(ẑk)
dx

∣∣∣∣
≤ CtkE

1/2
k

(∫
B2tk

∣∣∣|Nk|(zk)− |N̂k|(ẑk)
∣∣∣2 dx) 1

2

. (17.26)

If we now define pi := (Fk)i(x) and qi := (F̂k)i(x) := ẑk + (N̂k)i(ẑk), we have (up to
reordering the indices)

|Nk|(zk) =

(∑
i

|pi − zk|2
) 1

2

, |N̂k|(ẑk) =

(∑
i

|qi − ẑk|2
) 1

2

.
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Now we use the triangle inequality to see

∣∣∣|Nk|(zk)− |N̂k|(ẑk)
∣∣∣2 =

∣∣∣∣∣(∑
i

|pi − zk|2
) 1

2 −
(∑

i

|qi − ẑk|2
) 1

2

∣∣∣∣∣
2

≤ C
∑
i

|pi − qσ(i)|2 + C|zk − ẑk|2

= CG
(∑

i

JpiK ,
∑
i

JqiK
)2

+ C|ϕk(x)−ϕk−1(x)|2 ,

for σ the permutation realizing the distance G
(∑

i JpiK ,
∑

i JqiK
)

.

Note that, since ϕk and ϕk−1 agree on the boundary pV0(Γ), we can use (17.21) and the
Poincaré inequality to conclude

‖ϕk −ϕk−1‖L2(B2tk
) ≤ Ctk‖Dϕk −Dϕk−1‖L2(B2tk

) ≤ Ct3kE
1/2+γ2

k . (17.27)

Figure 4. An illustration of how Lemma 17.3 is used.

To estimate further we split the distance G
(∑

i JpiK ,
∑

i JqiK
)

into a horizontal and

vertical part in the following sense. We define V := ẑk + TẑkMk−1, Ṽ := zk + TzkMk,
V ′ := ẑk + TzkMk and

∑
i Jq
′
iK := 〈S,pV ′ , 0〉. Observe that V and V ′ differ by a rotation,

while V ′ and Ṽ are parallel. We then apply the Lemma 17.3 to the shifted situation where
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ẑk = 0 and deduce

G
(∑

i

JqiK ,
∑
i

Jq′iK
)
≤ CLip(Fk)‖Nk‖C0(|V − V0|+ |V ′ − V0|)

≤ CLip(Fk)‖Nk‖C0(|Dϕk|+ |Dϕk−1|)
≤ CtkE

3/4+γ2

k ,

where in the last inequality we used (17.16) and (17.19). In order to estimate G
(∑

i JpiK ,
∑

i Jq
′
iK
)

,

we call fṼ : TzkMk → AQ(Rn) the function having the same graph as Fk in C2tk . Observe
that

|TzkMk − V0| ≤ Ctk‖D2ϕk‖C0 ≤ CE
1/2
k

and by [12, Proposition 5.2]

Lip(fṼ ) ≤ CEγ2

k .

Then we observe that
∑

i JpiK =
∑

i

q
fṼ i(zk)

y
and

∑
i Jq
′
iK =

∑
i

q
fṼ i(pTpMk

(ẑk))
y
. Thus

we have

G
(∑

i

JpiK ,
∑
i

Jq′iK
)
≤ Lip(fṼ )|zk − pTzkMk

(ẑk)|

≤ Lip(fṼ )(||ϕk||C0 + ||ϕk−1||C0) ≤ CtkE
1/2+γ2

k .

Squaring and integrating (and using (17.27)), we deduce∫
B2tk

∣∣∣|Nk|(zk)− |N̂k|(ẑk)
∣∣∣2 ≤ Ct4kE

1+2γ2

k .

Inserting in (17.26) we conclude∣∣∣∣∫ |Nk|2
φ′(t−1

k d(zk)

d(zk)
dx−

∫
|N̂k|2

φ′(t−1
k d((ẑ))

d(ẑ)
dx

∣∣∣∣ ≤ Ct3kE
1+γ2 .

It remains to prove (17.15)-(17.21).
(17.19) and (17.20) follow from Theorem 10.16 using a simple rescaling and (17.14).

Next, for ϕk−1 the estimate on the second derivative derived from Theorem 10.16 and
(17.14) is favourable, as it gives directly (17.17). However the estimate on the first deriv-
ative is not, as it would give

‖Dϕk−1‖C0(B5tk
) ≤ Cm0(k − 1)

1/2 ≤ C

(
tk−1

tk

)1−δ1
E

1/2
k , (17.28)

which is not good enough for our purposes.
Proof of (17.15), (17.16), and (17.18) In order to gain a more favorable estimate for the

first derivative (and the C0 norm of ϕk−1) we first observe that by Lemma 10.4

h(T,C10tk(0, V0)) ≤ CE
1/2
k tk .
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Arguing as in the proof of (17.3) it is not difficult to see that∫
C5tk

(0,V0)∩Mk−1

|Nk−1|2 ≤ CEkt
4
k . (17.29)

Since TFk−1
coincides with spt(T ) on a large set we can also infer∫

B5tk

|ϕk−1|2 ≤ CEkt
4
k . (17.30)

In order to see the latter estimate, consider first a point p ∈Mk−1 with the property that
the support of Fk−1(p) is a subset of the support of T . By the height bound we know

that h(T,C10tk(0, V0)) ≤ CE
1/2
k tk. In particular, if we let p⊥0 be the projection on the

orthogonal complement V0, we conclude

|p⊥0 ◦ Fk−1|(p) ≤ CE
1/2
k tk .

Consider now that, if x is such that p = (x,ϕk−1(x)), since Fk(p) =
∑

i JF
i
k(p)K =∑

i JN
i
k(p) + pK, we get

|ϕk−1(x)| ≤ |p⊥0 ◦ Fk−1|(x,ϕk−1(x)) + |p⊥0 ◦Nk−1|(x,ϕk−1(x))

≤ CE
1/2
k tk + |Nk−1|(x,ϕk−1(x)) . (17.31)

Let now K be the set of such points p (i.e. for which the support of Fk(p) is contained in
the support of T ) and define K := p0(K)∩B5tk . Using the bounds (17.29) and (17.31) we
easily obtain ∫

K

|ϕk−1(x)|2 ≤ CEkt
4
k . (17.32)

In order to estimate the integral on the remaining portion (i.e. on B5tk \ K), we apply
(10.16) to M̄k−1, sum over all the stopped squares in B5tk \ K (which by the stopping
condition have side length comparable to tk/tk−1), scale it back to Mk−1 and deduce

|B5tk \K| ≤ H2(B6tk ∩Mk−1 \ K) ≤ C(m0(k − 1))1+γ2

(
tk
tk−1

)4+γ2

t2k−1

≤ C

(
tk
tk−1

)2+γ2

. (17.33)

Then we observe that, by (17.32) and the classical Chebyshev inequality, there is at least

one point x ∈ B5tk where |ϕk−1(x)| ≤ CE
1/2
k tk, and we use (17.28) to conclude that for all

y ∈ B5tk we have

|ϕk−1(y)| ≤ CE
1/2
k tk + CE

1/2
k

(
tk−1

tk

)1−δ1
|x− y| ≤ CE

1/2
k

(
tk−1

tk

)1−δ1
tk . (17.34)

Putting together (17.32), (17.33), and (17.34), we achieve∫
B5tk

|ϕk−1|2 ≤ CEkt
4
k + CEk

(
tk
tk−1

)2+γ2−2(1−δ1)

t4k .
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Since 2 + γ2 ≥ 2− 2δ1 and tk ≤ tk−1, the latter clearly implies (17.30).
We next use Gagliardo-Nirenberg interpolation inequality and from (17.29) and (17.17)

we get (17.15) and (17.16), namely

‖ϕk−1‖C0(B2tk
) ≤ CtkE

1/2
k , ‖Dϕk−1‖C0(B2tk

) ≤ CE
1/2
k .

We analogously conclude (17.18).
Proof of (17.21) We wish to show that

‖D(ϕk −ϕk−1)‖2
L2(B2tk

) ≤ Ct2kE
1+2γ2

k .

We choose a suitable cut-off function ψ which equals 1 on B2tk and is compactly supported
in B3tk and write ∫

B2tk

|D(ϕk −ϕk−1)|2 ≤
∫
B3tk

|D(ϕk −ϕk−1)|2ψ

Integrating by parts, we can estimate∫
|D(ϕk −ϕk−1)|2ψ =

∫
(ϕk −ϕk−1)∆(ϕk −ϕk−1)ψ +

∫
(ϕk −ϕk−1)∇(ϕk −ϕk−1) · ∇ψ .

We next use that ‖∇ψ‖ ≤ Ct−1
k , (17.16), (17.17), (17.19), and (17.20) to estimate∫

B2tk

|D(ϕk −ϕk−1)|2 ≤ CE
1/2
k t−1

k

∫
B3tk

|ϕk −ϕk−1| . (17.35)

We next consider the multivalued functions fk and fk−1 on B3tk and taking values into
AQ(Rn) with the properties that

Gfk = TFk C0,3tk , Gfk−1
= TFk−1

C0,3tk .

Note that the values of fk and fk−1 coincide except for a set of measure at most t2kE
1+γ2

k

(again we use Theorem 10.21 and sum over the stopped squares). Moreover, because
Lip(fk),Lip(fk−1) ≤ CEγ2

k , we immediately draw the conclusion∫
B3tk

|η ◦ fk − η ◦ fk−1| ≤ E1+2γ2

k t3k .

On the other hand, appealing to Proposition 10.23 (and rescaling appropriately) we get∫
B3tk

|η ◦ fk −ϕk| ≤ CE
3/4
k t3k ,

∫
B3tk

|η ◦ fk−1 −ϕk−1| ≤ C

((
tk−1

tk

)2−2δ1

Ek

)3/4(
tk
tk−1

)4

t3k−1 .

While the first estimate is already suitable for our purposes, the second require some more
care. We recall (17.10) to the effect that(

tk−1

tk

)2−2δ1

Ek ≤
(
tk−1

tk

)2−2δ1

m0(k) ≤ C
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for a geometric constant C. Since 1
2−2δ1

≥ 3
4
, we can then estimate∫

B3tk

|η ◦ fk−1 −ϕk−1| ≤ CE
3
4
k t

3
k .

By possible choosing γ2 sufficiently small we get∫
B3tk

|ϕk −ϕk−1| ≤ CE
1/2+2γ2

k t3k ,

which, by (17.35), gives (17.21).
�

17.1. Lipschitz estimate using 2d-rotations.

Lemma 17.3. There is a constant c > 0 such that the following holds. Let F : V0 →
AQ(Rn) be a Lipschitz map with Lip(F ) < c, let V and V ′ be 2-dimensional subspaces with
|V − V0| + |V ′ − V0| < c and denote by p and p′ the orthogonal projection on V and V ′

respectively. Then for P := 〈TF ,p, 0〉 and P ′ := 〈TF ,p
′, 0〉 it holds

G(P, P ′) ≤ C Lip(F ) ‖F‖C0(|V − V0|+ |V ′ − V0|) . (17.36)

Proof. We use an argument already observed in more generality in [13, Lemma D.1]. How-
ever, we repeat here the parts needed for the previous lemma. First of all, we construct
finitely many planes by using 2d-rotations that will allow us to reduce (17.36) to a one-
dimensional situation. Recall the terminology: we say that R ∈ SO(n+ 2) is a 2d-rotation
if there are two orthonormal vectors e1, e2 and an angle θ such that

R(e1) = cos(θ)e1 + sin(θ)e2 ,

R(e2) = cos(θ)e1 − sin(θ)e2 ,

R(v) = v , for any v ∈ 〈e1, e2〉⊥.

Now let us denote by W1 = V ∩ V ′. If dim(W1) = 2, then V = V ′ and there is nothing to
prove. Otherwise dim(W1) < 2 = dim(V ) = dim(V ′) and we can write

V = W1 ⊕ V̂ , V ′ = W1 ⊕ V̂ ′,

for some subspaces V̂ and V̂ ′. Choose any unit vector e1 ∈ V̂ = V ∩W⊥
1 and define

e′1 :=
p′(e1)

|p′(e1)|
∈ V ′ ∩W⊥

1 .

Moreover, define R1 to be the 2d-rotation mapping e1 onto e′1 and

V2 := R1(V ) ,

W2 := V2 ∩ V ′ .

Notice that W1 ⊂ V1 is invariant under R1, so clearly W1 = (W1 ∩ V ′) ⊂ (V2 ∩ V ′) = W2.
Moreover, e′1 ∈ V2 ∩ V ′, and hence

W2 ⊃ 〈W1, e
′
1〉 .
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As e′1 ⊥ W1, we have dim(W2) ≥ dim(W1)+1. Now, if dim(W2) = 2, then V2 = R1(V1) = V ′

and we define R2 to be the identity. Otherwise dim(W2) = 1 and we can again find a unit
vector e2 ∈ V2 ∩W⊥

2 , define

e′2 :=
p′(e2)

|p′(e2)|
∈ V ′ ∩W⊥

1 ,

and define R2 to be the 2d-rotation mapping e2 onto e′2. As before, we denote by V3 :=
R2(V2) and observe that W3 := V3 ∩ V ′ has at least one dimension more than W2. Thus,
in both cases we have

V ′ = R2 ◦R1(V ) .

Next, denote by V1 := V and for j ∈ {1, 2, 3} the orthogonal projection onto Vj by pj and
Pj := 〈TF ,pj, 0〉. Notice that for c > 0 small enough, spt(Pj) is a Q-valued point. We
claim

G(Pj, Pj+1) ≤ CLip(F ) ‖F‖C0(|Vj − V0|+ |Vj+1 − V0|)

concluding the lemma as |Vj −V0| ≤ |V −V ′|+ |V −V0| ≤ 2(|V −V0|+ |V ′−V0|) for every
j. Indeed, for each j, fix a unit vector vj ∈ V0 such that

〈ej, e′j〉 ∩ V0 = {t · vj : t ∈ R} .

Then we can apply the selection principle [10, Proposition 1.2] to the map F j(t) := F (tvj)
to get a selection

F j =
∑
i

q
F j
i

y

for some Lipschitz functions F j
i : [−1, 1]→ Rn satisfying

|DF j
i | ≤ |DF | ≤ Lip(F ) a.e. (17.37)

We therefore conclude the existence of points sj1, . . . , s
j
Q, s

j+1
1 , . . . , sj+1

Q ∈ [−1, 1] such that

G(Pj, Pj+1) ≤
∑
i

∣∣F j
i (sji )− F

j
i (sj+1

i )
∣∣

≤ Lip(F )
∑
i

∣∣sji − sj+1
i

∣∣
≤ Lip(F )

∑
i

(
|sji |+ |s

j+1
i |
)

≤ QC Lip(F ) ‖F‖C0 (|Vj − V0|+ |Vj+1 − V0|) ,

where we also have used (17.37). �

18. Blow-up analysis and conclusion

In this section we complete the proof of Theorem 4.6, which in turn completes the proof
of Theorem 0.6. We recall the I0 from Corollary 15.6. The main point is the following
conclusion.
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Theorem 18.1. Let T be as in Assumption 15.2 and assume that 0 is not a regular point.
Then I0 = 1 and for every ς > 0

lim
r↓0

D(r)

r2+ς
=∞ . (18.1)

The latter is in contradiction with the estimate (15.12) (i.e. D(r) ≤ Cr2+τ ) for some
positive constant τ which depends on the exponent α of Theorem 4.7.

18.1. Blow-up analysis. As already mentioned, Theorem 18.1 is reached through a suit-
able “blow-up” analysis. First of all, having fixed a sequence of sj ↓ 0 we define a suitable
family of rescalings of the maps N ′ks. First of all we choose any k(j) with the property
that

tk(j)+1 < sj ≤ tk(j) . (18.2)

Next we define the exponential map exk : T0Mk → Mk and we identify each tangent
T0Mk to R2 through a suitable rotation of the ambient Euclidean space which maps it
onto R2 × {0}. We then consider the rescaled maps

Ñj(x) :=
Nk(j)(exk(j)(sjx))

D(sj)
1/2

. (18.3)

The main conclusion of our blow-up analysis is the following

Theorem 18.2. Let T be as in Assumption 15.2 and assume that 0 is not a regular point.
Let sj ↓ 0 be an arbitrary vanishing sequence of positive radii, let k(j) be an arbitrary choice

of integers satisfying (18.2) and let Ñj : B+
1 → AQ(Rn), where B+

1 = B1 ∩ {(x1, x2) : x2 ≥
0}. Then a subsequence, not relabeled, converges strongly in W 1,2(B+

1 ) to a map Ñ∞
satisfying the following conditions:

(i) Ñ∞(x1, 0) = Q J0K for all x1;
(ii) Ñ∞ is Dir-minimizing;

(iii) Ñ∞ is I0-homogeneous, where I0 is the positive number in Corollary 15.6.
(iv) η ◦ Ñ∞ ≡ 0;
(v)

∫
B+

1
|DÑ∞|2 = 1.

In particular I0 = 1.

Then the arguments of Theorem 5.9 apply to Ñ∞ and in particular give that I0 = 1.

Proof of Theorem 18.2. Observe first that, following the computations of [8, Section 10.1]
we conclude that

e−Csj81+I0 ≤ H(4sj)

H(sj/2)
≤ eCsj81+4I0

as long as sj ≤ tk(j). Since I0 exists and is finite, there is a constant C (depending only on
I0) such that

D(4sj) ≤ CD(sj/2) .



100 C. DE LELLIS, S. NARDULLI, AND S. STEINBRÜCHEL

On the other hand, arguing as in the proof of Proposition 17.1, we easily see that

D(tk(j)) ≥ C−1t2k(j)E(T, 24tk(j))

(we just need to choose the constant M0 appropriately large to compensate for the larger
radius in the right hand side) while D(4tk(j)) ≤ Ct2k(j)E(T, 24tk(j)). Now, since the geodesic

ball Btk(j)
in Mk(j) contains {d < tk(j)/2} while the geodesic ball B2tk(j)

⊂ {d < 4tk(j)},
using the fact that the rescaling of the manifolds converge smoothly to the flat plane V0,
we easily conclude that ∫

B+
2

|DÑj|2 ≤ C

∫
B+

1

|DÑj|2 .

We can then follow the argument of [8, Section 10.3] to conclude that, up to subsequences,
Ñj converges strongly in the W 1,2(B+

1 ) topology to a Dir-minimizing map Ñ∞. Likewise

we can follow the argument of [8, Section 10.2] to conclude that η◦Ñ∞ vanishes identically.
Recall that the maps Nk(j) vanish identically on Γ, while the rescalings of the latter converge

smoothly to T0Γ = {x2 = 0}. The strong convergence then implies that Ñ∞ = Q J0K on
{x2 = 0} ∩B1. We have thus proved (i), (ii), (iv), and (v). We can however also see that

r
∫
φ(r−1|x|)|DÑ∞(x)|2 dx

−
∫
φ′(r−1|x|)|x|−1|Ñ∞(x)|2 dx

= lim
j→∞

rsjD(rsj)

H(rsj)
= I0 ,

which means that the frequency function of Ñ∞ is constant. This however happens if and
only if Ñ∞ is I0-homogeneous.

As for the final statement, we invoke Theorem 5.3. �

Now that we know that I0 = 1, we can then conclude that by the strong convergence of
{Ñj}j in W 1,2(B+

1 ), we have

Corollary 18.3. If T is as in Theorem 18.2, then

lim
r↓0

D(2r)

D(r)
= 4 .

18.2. Proof of (18.1) and conclusion. Fix ς > 0 and consider the sequence of radii
rk := 2−k. We know from Corollary 18.3 that, for k sufficiently large

D(rk) ≥ 2−2−ς/2D(rk−1) .

In particular we conclude the existence of a k0 such that for every k ≥ k0, we have

D(2−k) ≥ 2−(2+ς/2)(k−k0)D(2−k0) .

In particular for every r ≤ 2−k0 we can write

D(r) ≥ D(2−k0)

22+ς/2
r2+ς/2

and since D(2−k0) > 0, (18.1) readily follows.
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