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Abstract

In this paper we show that, if T is an area-minimizing 2-dimensional integral current
with ∂T = Q JΓK, where Γ is a C1,α curve for α > 0 and Q an arbitrary integer, then T has
a unique tangent cone at every boundary point, with a polynomial convergence rate. The
proof is a simple reduction to the case Q = 1, studied by Hirsch and Marini in [8].

1 Introduction

The main goal of this note is to prove the following theorem, we refer to [7, 10] for the relevant
notation and definitions.

Theorem 1.1. Let T be a 2-dimensional area-minimizing integral current T in some open set
U ⊂ R2 and assume that ∂T = Q JΓK for some integer Q and some C1,α embedded simple
curve with α > 0. Then at every point x ∈ Γ there is a unique tangent cone C, that is, if
ιx,r : Rm+n → Rm+n is the map z 7→ z−x

r , then Tx,r := (ιx,r)]T converges, as r ↓ 0, to C.

A corresponding interior theorem was proved by White almost 40 years ago in his ground-
breaking paper [11]. White’s approach has been extended to other cases in the interior, see
e.g. [3, 9], while a comprehensive generalization to a rather robust notion of almost minimizer
(which covers all known situations) has been given in [6].

Concerning the boundary case, for Q = 1 Theorem 1.1 has been shown recently by Hirsch
and Marini in [8], still building on White’s seminal approach. Our proof deviates only slightly
from the one of [8], however our interest in Theorem 1.1 comes from the more general problem
of proving regularity at the boundary for area-minimizing currents in higher codimension, when
the multiplicity Q is higher than 1. The latter problem was raised by White in [1] and there are
no available results thus far, excluding the trivial case of 1-dimensional currents. Theorem 1.1 is
a stepping stone for a subsequent work of us, [5], where we give a first result on White’s problem:
in [5] we prove full regularity at the boundary for 2-dimensional area-minimizing currents, under
the assumption that Γ is sufficiently smooth and is contained in the boundary of a sufficiently
smooth uniformly convex set (more specifically C3,α regularity of both suffices). Thus [5] partially
generalizes a theorem of Allard, who in his seminal paper [2] proved full regularity under the
above convexity assumption when Q = 1, in any dimension and codimension. We will dedicate
the next section to give a more general and more precise statement than the one above, where
the assumption is relaxed to a suitable form of almost minimality and the convergence rate of
Tx,r to C is shown to be polynomial. While the first point is less relevant for the purpose of [5],
the second plays indeed a fundamental role.
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grant FRG-1854147. The second author would like to thank Fapesp for financial support via the
grant “Bolsa de Pesquisa no Exterior” number 2018/22938-4.

2 Almost minimality and polynomial rate of convergence

Before stating our main theorem we establish some notation. First of all we refer the reader
to [7, 10] for the notation and basic terminology in the theory of integral currents. We will use
the short hand notation Tx,r for (ιx,r)] T (and drop x if it is the origin) and, for a given C1 non
selfintersecting curve, we will denote by TxΓ its tangent line at x.
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The exact definition of almost minimality which we will be used in the rest of the notes is as
follows.

Definition 2.1 ( [8, Definition 1.1]). Given three real numbers Λ ≥ 0, r0 ∈]0, 1], α0 > 0, we
say that an m-dimensional integral current T is (Λ, r0, α0)-almost (area) minimizing at x ∈
spt(T ), if we have

‖T‖ (Br(x)) ≤ (1 + Λrα0) ‖T + ∂T̃‖ (Br(x)) ,(2.1)

for all 0 < r < r0 and all integral (m+ 1)-dimensional currents T̃ supported in Br(x).

The convergence of integral currents will be measured using the flat distance between T, S ∈
Im (BR+1), (here we use the definition of [10, Section 6.7] which is different from Federer’s
definition, cf. [7]):

dBR(T, S) = inf {‖R‖ (BR) + ‖Q‖ (BR) : T − S = R+ ∂Q in BR+1, } ,(2.2)

where the infimum is taken over R ∈ Im (BR+1) and Q ∈ Im+1 (BR+1). We also use distH to
denote the Hausdorff distance between closed sets and we denote by e(p, r) the usual “spherical
excess” of a current T , namely

(2.3) e(p, r) :=
‖T‖(Br(p))

πr2
−Θ(T, p) ,

where

Θ(T, p) := lim
r↓0

‖T‖(Br(p))

πr2

(the latter limit will be shown to exist in the next section). Finally, we measure the Hölder
regularity of the curve Γ with a standard Hölder seminorm,

[Γ]0,α,U := sup
q 6=p∈Γ∩U

|TpΓ− TqΓ|
|p− q|α

.

Theorem 2.1. There are constants C, ε0, and β > 0 depending only on n, α, and Θ0 with the
following property. Assume that:

(a) Γ is a C1,α non self-intersecting curve in Br(p) with p ∈ Γ, r ≤ 1, and rα[Γ]0,α,Br(p) ≤ ε0;

(b) T is a two-dimensional integral current in Br(p) ⊂ R2+n with ∂T = Q JΓK;

(c) T is (Λ, r, α)-almost minimizing at p and Λrα ≤ ε0;

(d) Θ(T, p) = Θ0 and e(p, r) ≤ ε2
0.

Then there exists a unique area minimizing cone S such that ∂S = Q JT0ΓK and moreover for
every 0 < ρ ≤ r we have

|e(p, ρ)| ≤ C|e(p, r)|
(ρ
r

)2β

+ C(Λ2 + [Γ]20,α,Br(p))
(ρ
r

)2β

(2.4)

dB1(0)(Tp,ρ, S) ≤ C|e(p, r)| 12
(ρ
r

)β
+ C(Λ + [Γ]0,α,Br(p))

(ρ
r

)β
(2.5)

distH(spt (Tp,ρ) ∩ B̄1, spt (S) ∩B1) ≤ C|e(p, r)| 12
(ρ
r

)β
+ C(Λ + [Γ]0,α,Br(p))

(ρ
r

)β
(2.6)

Theorem 1.1 follows easily from the above more precise version and the classical monotonicity
formula (which we recall below). Moreover, a simple scaling argument reduces it to the case p = 0
and r = 1, which will be the focus of the rest of this note.

3 Straightening the boundary and monotonicity formula

Following [8], a standard computation which “straightens” the boundary with a suitable C1,α

diffeomorphism reduces Theorem 2.1 to the case in which Γ is a straight line. We report here
the relevant technical lemma, which corresponds to [8, Lemma 2.1], and clearly holds in any
dimension.
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Lemma 3.1. For every α1 ∈ (0, 1) and m,n integers there exist constants ε1 = ε1(m,n, α1) > 0
and C1(m,n, α1), with the following properties. Whenever Γ is the graph of a C1,α1 function ψ :
Rm ⊃ B1 → Rn with ψ(0) = 0, Dψ(0) = 0 and [Dψ]α1,B1

≤ ε1, there is a C1,α1 diffeomorphism
φ : B1 → B1 such that

(i) φ maps each ∂Bρ onto itself;

(ii) φ maps Γ ∩B1 onto B1 ∩ (Rm × {0});

(iii) [Dφ]α1,B1
≤ C1[Dψ]α1,B1

;

(iv) |x|−1|φ(x)− x|+ |Dφ(x)− Id| ≤ C1[Dψ]α1,B1 |x|α1 for all x ∈ B1.

Observe that, if φ is as in the above lemma and T is an integer rectifiable current, then

(1− C[ψ]α1,B1
ρα1)‖T‖(Bρ) ≤ ‖φ]T‖(Bρ) ≤ (1 + C[ψ]α1,B1

ρα1)‖T‖(Bρ) .

In particular, after applying a translation, a rescaling and a composition with a diffeomorphism
φ as in the above lemma, it is immediate to check that Theorem 2.1 can be reduced to the case in
which p = 0, r = 1 and Γ is a straight line `. More precisely, we only have to prove the following
case of Theorem 2.1

Theorem 3.2. The conclusions of Theorem 2.1 apply to the special case in which p = 0, r = 1,
and Γ is a straight line ` passing through the origin.

We also record another application of Lemma 3.1, given in [8, Proposition 4.3]: the argument
given in [8] under the assumption that ∂T = JΓK (i.e. Q = 1) works indeed in our case as well.

Proposition 3.3. Let Γ be a straight line passing through the origin, p = 0, r = 1 and T be as
in Theorem 2.1. Then there is a constant C2(α, n) such that

eC2Λσα ‖T‖ (Bσ)

σ2
− eC2Λsα ‖T‖ (Bs)

s2
≥
ˆ
Bσ\Bs

eC2Λ|z|α
∣∣z⊥∣∣2
2|z|4

d‖T‖(z),(3.1)

for every 0 < s < σ ≤ 1.

In fact it can be readily checked that the argument given in [8] does not depend on the
dimension of the current.

Remark 1. A classical consequence of the almost monotonicity formula is that, under the
assumptions of Theorem 2.1 the density of the current T exists in p, i.e. the limit

Θ(T, p) = lim
r→0

‖T‖ (Br(p))

πr2
.(3.2)

Moreover, the function Θ(T, ·) is upper-semicontinuous on Γ. The proof follows the classical
arguments for area-minimizing currents and can be found in [8].

Another consequence is that
‖T‖(Bρ(p))

πρ2 ≥ e−CΛραΘ(T, p) ≥ Θ(T, p) − CΛραΘ(T, p), so that

e(p, r) ≥ −CΛραΘ(T, p). In particular (2.4) is equivalent to the same statement with e(p, ·)
replacing |e(p, ·)|.

4 Classification of 2-dimensional area-minimizing cones with
a straight line boundary

In this section we give a complete description of 2-dimensional area minimizing cones with
boundary Q J`K for some straight line `.

Proposition 4.1. Let S be a 2-dimensional integral current in R2+n such that

(a) S is area minimizing;

(b) S is a cone, i.e. (ι0,r)]T = T for every r > 0;

(c) ∂S = Q J`K for some positive integer Q and a straight line ` containing the origin.

Then we can decompose S = Sint + Sb where:
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(i) Sint and Sb are both area minimizing and their supports intersect only at the origin;

(ii) ∂Sint = 0 and thus

Sint =

N∑
i=1

Qi JViK

where Q1, . . . , QN are positive integers and V1, . . . , VN are distinct oriented 2-dimensional
planes such that Vi ∩ Vj = {0} for all i 6= j;

(iii) One of the following two alternatives hold for Sb:

(iiia) There are M distinct oriented halfplanes V +
1 , . . . , V +

M and M positive integers Q+
i such

that ∂
q
V +
i

y
= J`K and Sb =

∑
iQ

+
i

q
V +
i

y
;

(iiib) There is a single oriented plane V containing `, subdivided by the latter in two oriented
half-planes V + and V − with ∂ JV +K = −∂ JV −K = J`K, and two positive integers Q+

and Q− such that Sb = Q+ JV +K +Q− JV −K.

Figure 1: An illustration of Sb in (iiia)
with M = 3.

Figure 2: An illustration of Sb in (iiib).

Observe that in the first case we must have
∑
iQ

+
i = Q and thus M ≤ Q, while in the second

case we must have Q+−Q− = Q and thus Q+ > Q−. Before coming to the proof of Proposition
4.1 we come to a simple corollary.

Corollary 4.2. The density at the origin of a 2-dimensional area-minimizing cone as in Propo-
sition 4.1 is always a positive multiple of 1

2 and it is at least Q
2 . If for every Q, Q̄, and n positive

integers we denote by C (Q, Q̄, n) the space of 2-dimensional area-minimizing cones S in R2+n

such that

• ∂S = Q J`K for some line ` passing through the origin,

• Θ(S, 0) ≤ Q̄
2 ,

then C (Q, Q̄, n) is compact in the topology of local flat convergence.

Proof of Proposition 4.1. Recall that R := ∂(S B1) − Q J`K B1 is a 1-dimensional integral
current with ∂R = Q JP1K − Q JP2K, where P1 and P2 denote the two intersection points of `
with the unit sphere ∂B1. Observe also that, by the interior regularity theory, R is in fact
a smooth 1-dimensional embedded minimal submanifold of ∂B1 \ {P1, P2}. The support of R
consists therefore of the union of a finite number of distinct great circles γ1, . . . , γN contained in
∂B1 \ {P1, P2} and a finite number of distinct half great circles η1, . . . , ηM , each with endpoints
P1 and P2. We denote by V1, . . . , VN the 2-dimensional planes containing γ1, . . . , γN , for which
we choose an arbitrary orientation, and by V +

1 , . . . , V +
M the 2-dimensional halfplanes containing

η1, . . . , ηM , for which we fix the orientation such that ∂
q
V +
i

y
= J`K. By the constancy theorem

we must have
S :=

∑
i

Qi JViK︸ ︷︷ ︸
=:Sint

+
∑
j

Q̄j
q
V +
j

y

︸ ︷︷ ︸
=:Sb

,

for some nonzero integers Q1, . . . , QN , Q̄1, . . . , Q̄M . Without loss of generality we can change
the orientation of the Vi so that all the Qi are positive. Sint satisfies therefore the claims of the
proposition. As for Sb we distinguish two cases:
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(a) The Q̄j are all positive. Sb satisfies, therefore, the description of case (iiia).

(b) One Q̄j , say Q̄1, is negative, and we denote it by −Q̄ with Q̄ positive. Observe that, since
∂Sb =

∑
i Q̄i J`K = Q J`K, we must have

∑
i Q̄i = Q and thus at least one Q̄j is positive.

Fix any of them. We argue then as in [4, Lemma 3.18]. We observe first that we can
decompose Sb as

Sb = −
q
V +

1

y
+

q
V +
j

y︸ ︷︷ ︸
=:R1

+ (Q̄j − 1)
q
V +
j

y
− (Q̄− 1)

q
V +

1

y
+

∑
i6∈{1,j}

Q̄i
q
V +
i

y

︸ ︷︷ ︸
=:R2

.

It is clear that ‖Sb‖ = ‖R1‖+ ‖R2‖ and that ∂R1 = 0. It thus follows that R1 is an area-
minimizing cone without boundary. It is therefore regular except possibly at the origin,
which implies that V +

1 and V +
j are two halves of the same plane. Since this argument

can be applied to every pair l, k with Q̄l < 0 < Q̄k, it follows then that indeed M = 2,
Q̄1 < 0 < Q̄2. If we then let V be the two-dimensional plane of which V +

1 and V +
2 are the

two halves, claim (iiib) readily follows after we let V + be V +
2 and V − be the opposite (in

terms of orientation) of V +
1 .

5 White’s and Hirsch-Marini’s epiperimetric inequalities

The proof of Theorem 2.1 is based on a so-called epiperimetric inequality.

Definition 5.1. Let S be a 2-dimensional area-minimizing cone in R2+n with ∂S = Q J`K
for some straight line ` passing through the origin and some positive integer Q, and let R :=
∂(S B1) −Q J`K B1 be its cross section. Given two positive constants ε and δ we say that S
satisfies the (δ, ε)-epiperimetric property , if the following holds. Let Z ∈ I1 (∂B1) be such
that

(i) ∂Z = ∂R,

(ii) F(Z −R) ≤ ε,

(iii) ‖Z‖(∂B1)− ‖R‖(∂B1) ≤ ε,

(iv) dist(spt(Z), spt(R)) ≤ ε.

Then there is H ∈ I2 (B1) such that ∂H = Z −Q J`K B1 and

‖H‖ (B1)− ‖S‖ (B1) ≤ (1− δ) (‖ J0K××Z‖ (B1)− ‖S‖ (B1)) .(5.1)

Remark 2. Observe that as it is immediate to see J0K××Z = J0K××∂H, and so (5.1) is the same
as the following equation

(5.2) ‖H‖ (B1)− ‖S‖ (B1) ≤ (1− δ) (‖ J0K××∂H‖ (B1)− ‖S‖ (B1)) .

The main point in the proof of Theorem 3.2 is then that every 2-dimensional area-minimizing
cone satisfies an epiperimetric inequality.

Proposition 5.1. For every 2-dimensional area-minimizing cone S in R2+n as in Definition
5.1, there are positive constants ε(S), δ(S) such that S satisfies the (ε, δ)-epiperimetric property.

Combined with Corollary 4.2 we then easily conclude that

Corollary 5.2. For every choice of integers Q ≥ 0, Q̄ ≥ 1, and n ≥ 1 there are positive constants
ε(Q, Q̄, n), δ(Q, Q̄, n) such that every S ∈ C (Q, Q̄, n) satisfies the (ε, δ)-epiperimetric property.

The proof that Proposition 5.1 implies Theorem 3.2 given in [8] applies line by line to our
case, with the caveat that, in order to achieve the independence of all the constants from the
particular cone (and replace it with the density of the cone at the origin and the number Q) it
suffices to apply Corollary 5.2

White in [11] was the first to prove the epiperimetric property for every 2-dimensional area-
minimizing cone without boundary, which we can interpret as the case Q = 0 of Proposition 5.1,
in particular from now on we adopt the latter convention. Hirsch and Marini in [8] proved the
case Q = 1. From both statements we gather than the validity of Corollary 5.2 when Q ∈ {0, 1}.
The general case can then be concluded from the following decomposition lemma.
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Lemma 5.3. Let ε0 > 0 be any given positive number and Q̄ ≥ Q ≥ 2, n ≥ 1 be any given triple
of integers. Then there is ε > 0 with the following property. Assume that S ∈ C (Q, Q̄, n) and
that Z is a 1-dimensional integral current in ∂B1 which satisfies the assumptions of Definition
5.1. Then there are

(A) Q cones Si = Ri×× J0K ∈ C (1, Q̄, n),

(B) Q+ 1 integral currents Zi in ∂B1,

such that

(i) Z =
∑
i Zi;

(ii) ‖S‖(B1) =
∑
i ‖Si‖(B1), ‖Z‖ =

∑
i ‖Zi‖;

(iii) ∂Zi = ∂Ri for all i ∈ {1, . . . , Q};

(iv) F(Zi −Ri) ≤ ε0 for all i ∈ {1, . . . , Q};

(v) ‖Zi‖(∂B1)− ‖Ri‖(∂B1) ≤ ε0 for all i ∈ {1, . . . , Q};

(vi) dist(spt(Zi), spt(Ri)) ≤ ε0 for all i ∈ {1, . . . , Q};

(vii) ∂ZQ+1 = 0 and ‖ZQ+1‖(∂B1) ≤ ε0.

To pass from Lemma 5.3 to Proposition 5.1 we simply use the case Q = 1 of Corollary 5.2
to each of the pieces Zi with i ≤ Q to find a suitable competitor Hi with ∂Hi = ∂Zi + J`K B1,
while we can use the isoperimetric inequality to find HQ+1 such that ∂HQ+1 = ZQ+1 and
M(H) ≤ C(M(ZQ+1))2. The verification that H =

∑
iHi gives the epiperimetric inequality for

a suitable choice of the parameters involved is elementary and left to the reader.

Proof. We argue by contradiction and assume that {Zj} is a sequence of 1-dimensional integral
currents in ∂B1 and Sj is a sequence of cones in C (Q, Q̄, n) such that the assumptions in
Definition 5.1 hold true with a sequence of vanishing εj , but the decomposition claimed in
the Lemma does not exist for every j. Since C (Q, Q̄, n) is a compact set, we can assume, by
extraction of a subsequence, that Sj converges to some S∞ in C (Q, Q̄, n). Observe that the
only condition relating the pieces Sji to Sj is that ‖Sj‖(B1) =

∑
i ‖S

j
i ‖(B1). However, since

‖S∞‖(B1), ‖S‖(B1) ∈ {k2π : k ∈ Z, k ≤ Q̄} (this is true for all the cones in C (Q, Q̄, n)) and since
‖Sj‖(B1)→ ‖S∞‖(B1), we can assume, without loss of generality, that the ‖Sj‖(B1) = ‖S‖(B1).
In particular we can substitute Sj with S in the contradiction statement. Denoting by R the
cross section of S, we have therefore a sequence of currents which satisfies the following conditions

(a) ∂Zj = ∂R;

(b) Zj converges to R in the flat norm;

(c) spt (Zj) converges to spt (R) in the Hausdorff distance;

(d) lim supj ‖Zj‖(∂B1) ≤ ‖R‖(∂B1).

The contradiction assumption is that for some ε0, independent of j, there is no decomposition
as claimed in the lemma. However, will construct one for j large enough reaching the desired
contradiction.

Observe that by (b) and the semicontinuity of the mass, (d) can actually be improved to

(5.3) lim
j
‖Zj‖(∂B1) = ‖R‖(∂B1) .

Let P and N be the two points in ∂B1 such that ∂R = Q JNK − Q JP K. Recall the decom-
position theorem in [7, 4.2.25]: each Zj can be decomposed in an (at most) countable sum of
indecomposable 1-dimensional integral currents

∑
i T

j
i with the following properties

Zj =
∑
i

T ji ,

‖Zj‖ =
∑
i

‖T ji ‖ ,

‖∂Zj‖ =
∑
i

‖∂T ji ‖ .
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It turns out that, for each T ji , either ∂T ji = 0 or there is a positive integer k ≤ Q such that

∂T ji = k JNK− k JP K. [7, 4.2.5] also implies that each T ji is given by (f ji )]

r
[0,M(T ji )]

z
for some

Lipschitz map f ji : R → ∂B1, which is injective on [0,M(T ji )). In particular, if ∂T ji 6= 0, then

we must have ∂T ji = JNK− JP K. Upon reordering the T ji we can thus assume ∂T ji = JNK− JP K
for all 1 ≤ i ≤ Q and ∂T ji = 0 for all i ≥ Q+ 1. We then set T j] :=

∑
i≥Q+1 T

j
i .

So far we have

Zj = T j] + T j1 +

Q∑
i=2

T ji

with

‖Zj‖ = ‖T j] ‖+ ‖T j1 ‖+

Q∑
i=2

‖T ji ‖ .

By the compactness of integral currents and (5.3), we can assume that a subsequence, not
relabeled, satisfies T ji → Ti and T j] → T] in the sense of currents, for some integral currents Ti

and T]. We claim that we can decompose T j] into T j[ + T j\ with

• ∂T j[ = ∂T j\ = 0;

• the Hausdorff limit of spt (T j[ ) (which upon extraction of a subsequence we can assume to
exist) is contained in spt (T]);

• M(T j\ )→ 0.

We will then set Zj1 := T j1 + T j[ , ZjQ+1 := T j\ , and Zji := T ji for the remaining j ∈ {2, . . . , Q}.
Clearly (i), (ii), (iii), and (vii) hold, it remains to show (iv)-(vi).

We first show the decomposition of T j] . Observe that we have two possibilities

(I) spt (T]) and spt (R− T]) are disjoint;

(II) spt (T]) and spt (R− T]) are not disjoint.

In the first case choose then η > 0 so that the η-neighborhoods of the two pieces are disjoint.
Since the supports of the Zj are converging to the support of R in the sense of Hausdorff, it
follows that, if j is large enough, then the support of each current T ji (which is a connected set)
is either contained in the η-neighborhood of spt (T]) or it is contained in the η-neighborhood of

spt (R − T]). Then T j[ is defined as the sum of those T ji with i ≥ Q + 1 whose supports are
contained in the η-neighborhood of spt (T]).

In case (II), however, Proposition 4.1 implies that the support of the whole current R is a
single great circle γ, which equals the support of T]. But then the Hausdorff limit of spt (T j] ) is
necessarily contained in γ.

Now we turn to (iv)-(vi). Note that the compactness gives

F(T ji − Ti) + F(T j] − T])→ 0(5.4)

and thus

R = T] +

Q∑
i=1

Ti .

It follows in particular that ∂Ti = JNK− JP K, while ∂T] = 0, but also that

M(R) ≤M(T]) +
∑
i

M(Ti) .

Next note that, by semicontinuity of the mass and (5.3), we must have

M(T]) +
∑
i

M(Ti) ≤ lim inf
j→∞

M(Zj) ≤M(R) .

It thus follows that

M(R) = M(T]) +
∑
i

M(Ti) ,(5.5)

M(Ti) = lim
j

M(T ji ) ,(5.6)

M(T]) = lim
j

M(T j] ) .(5.7)
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Notice that

S = J0K××R = J0K××T] + J0K××T1︸ ︷︷ ︸
=:S1

+

Q∑
i=2

J0K××Ti︸ ︷︷ ︸
=:Si

.

Then we have by (5.5)

‖S‖ =

Q∑
i=1

‖Si‖

and as S is area-minimizing, so are the Si’s. Each Si is then an element of C (1, Q̄, n).
Fix now an i ≥ 2 and recall (5.4) and (5.6). We claim (iv)-(vii) hold true for Zji (with j large

enough) and Ri := Ti. Indeed, recall that each T ji = (f ji )]

r
[0,M(T ji )]

z
for a Lipschitz injective

curve f ji : [0,M(T ji )] → ∂B1. Assuming that f ji is parametrized with constant speed over the

interval [0, 1], we have supj ‖ḟ
j
i ‖∞ <∞ and f ji (0) = P , f ji (1) = N . We can apply Ascoli-Arzelá

and assume, without loss of generality, that f ji converges to a Lipschitz map fi : [0, 1] → ∂B1

and it thus follows that Ri = Ti = (fi)] J[0, 1]K. Observe that

M(Ri) ≤
ˆ 1

0

|ḟi| ≤ lim inf
j→∞

ˆ 1

0

|ḟ ji | ≤ lim inf
j

M(T ji ) .

Therefore, the chains of inequalities above are actually equalities, from which we infer that
spt (Ri) = fi([0, 1]). In particular we have that

distH(spt (T ji ), spt (Ri)) = distH(f ji ([0, 1])), fi([0, 1]))→ 0 for all i ≥ 2.

This shows (vi) for all i ≥ 2 (recall that we set Zji := T ji ).
The only choice for R1 is then

R1 = R−
Q∑
i=2

Ri = T] + T1 .

Observe that while we have

F(T j1 + T j] −R1)→ 0 and M(T j1 + T j] )→M(R1) ,

we cannot conclude that the supports of T j1 +T j] converge in the sense of Hausdorff to the support

of R1, because we do not know the representation by the Lipschitz map for T j] . However, we can
infer that

distH(spt (T j1 ), spt (T1))→ 0 .

Thus, we achieve our goal, because we know that T j\ converges to zero and T j[ converges to
T], which in turn implies that spt (T]) must be necessarily contained in the Hausdorff limit of

spt (T j[ ).
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