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Abstract
We obtain a new characterization of the higher Sobolev space W™P(R"), m € N
and p € (1,+o0) and of the space BV™, the space of functions of higher order
bounded variation. The characterizations are in term of BMO-type seminorms.
The results unify and substantially extend previous results in [16] and [13].
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1 Introduction

Let W{Z’Cp (R") (m e N, 1 < p < ), denote the Sobolev space of functions belonging
to Ly (R") whose distribution derivatives up to order m belong to L, (R").

In [4], the Authors studied a characterization of W™” based on J. Bourgain, H.
Brezis and P. Mironescu’s approach introduced in [6] (see also [8]). In particular they

prove that if f € W 1"(Q), 1 < p < oo and Q is a smooth bounded domain in R”
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then f belongs to W"P(Q) if and only if,

m—1
liminffflR SO 1S dxdy < o (1)

&0 lx = y["P

where p,, with & > 0, are radial mollifiers and R™! f is the Taylor (m — 1) remainder
of f. For p = 1, the condition (1) describes BV".

Here we say that a W"~"!(Q) is of m-th order bounded variation BV™ if its m-
th order partial derivatives in the sense of distributions are finite Radon measures.
Spaces of this kind have been studied in [11] as applications in mathematical imaging
in the setting of isotropic and anisotropic variants of the TV-model (see also [14]).

Another characterization of W, 1 < p < oo, (BV™ for p = 1) formulated in
terms of the m-th differences has been presented in [5].

In this article we are concerned with a characterization of W 1 < p < oo, (BV™
for p = 1) as the limit of certain BMO-type seminorms similar to the one introduced
by J. Bourgain, H. Brezis, P. Mironescu in [7].

In [16] the Authors showed that a function f € L’

space Wlof(R"), 1 < p < +o0, if and only if

(R™) belongs to the Sobolev

loc

where

liI})l+ K(g, 1,p) < +c0
Ko(f1,p) = ' sup > JC dx, 2

Fo - Jf
¢ Qe

and the supremum on the right hand side is taken over all families G, of disjoint
e-cubes Q' = Q'(xp, &) of side length &, centered in x(, with arbitrary orientation.
Moreover, if f € Wlkf (R") and p > 1 then

i K.(/,1.p) = v p) [ 97 ds 3
£ R»

where

y(n, p) := max f lx-v|P dx (@)
o

vesn-1

where Q = ( 1 %)n

Following some ideas in [1], an analogous representation formula is obtained for
the total variation of S BV functions in [15] (see also [12]). For related results see
also [10], [13].

Here, given a function f € W, C_]’p (R™), p > 1, for any & > 0, we consider

Ke(fom.p) = & sup 3 f ) — P L) do
Ge Q'€G.
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where the families G, are as above and Pg,‘l[ f1] is the polynomial of degree m — 1
centered at xg, given by

P = ) (X—Xo)ajg (D) (s)ds. s)

lal<m—1

In particular, for m = 1 and m = 2 we have:

< of
PO, =f ) Pl , :f i~ i (J( - d )
o [f1(x) Q/f o Lf1(x) . f+ i;(x Xo;) » C')y;(y) y

Our main Theorem reads as follows:

Theorem 1 Let p> 1 and f € W;Zc_l’p (R™), then
IV"fle L) (R") & lim i(r)lf Ko(f, m, p) < 0. (6)
£

Moreover, if f € W;Z’Cp (R™) and p > 1 we have also

tim K(f,m. p) = B, m. p) fR VTP dx ™

The constant in (7) is given by

1 p
B(n,m, p) := max (—) f|v-x’"—fv-y’”dy‘pdx. (8)
vesh-1 \ m! 0 0

where N = n™ and we refer to Section 2 for the notation.

Note that this Theorem is exactly an extension of Theorem 2.2 in [16] to the
higher order case; indeed, in the case m = 1, since fo -vdx = 0, the constant
B(n, 1, p) coincides with the one defined in (4).

A drawback of the formula (7) is that one does not recover the function in BV"™.
However, we are able to show that it is possible to characterize the functions in
BV™(R") as the functions f € Wl'sc_l’l(R”) such that lim sup,_,o K.(f, m, 1) < +c0.

2 Notation and preliminaries

We denote by Q = (—% %)n C R” the unit cube with faces parallel to coordinate axes
in R”. For any z € R" and & > 0 we denote by O.(z) = z + €0 the cube of sidelenght
€ centered in z.

Form,n > 1, we denote by N; = n™J for j=0,...,m. Given v € R™ we denotes
its components by v;, ;... With iy = 1...n. Taking x € R", x = (x;)ieq1
define the product v - x as the element of RV given by

.....
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The product of v € RM and m times the vector x € R”, v- x-x----x is an element
of R¥» = R and it is denoted for brevity by v - x™.

For a multi-index @ = (@, - ,@,), @; > 0 and a point x = (x1,---,x,) € R", we
denote by

X =atag

the monomial of degree |a| = Y1 ;.

In the same way,

0y

- Ax{" -+ dxy"
is a weak partial derivative of order |c/|.

Sometimes, we use the convention that D% = u. Moreover, let V"u be a vector
with the components D%u, |a| = m.

D%u

2.1 The Sobolev space W™

Definition 1 Let Q c R” be an open set, let m € N, and let | < p < co. The Sobolev space
W"P(Q) is the space of all functions u € LP(Q)) which admit a—th weak derivative D%u in
LP(Q) for every a € N" with 1 < |a| < m.

The space W™P(Q) is endowed with the norm

ldlwercoy = llliry + Y ID"ullrcoy

1<|al<m

Definition 2 Let Q c R” be an open set, let m € N, and let | < p < co. The homogeneous
Sobolev space WP (Q) is the space of all functions u € Llloc(Q) whose a—th weak derivative
D%u belongs to LP(Q) for every @ € N” with |a| = m.

Note that the inclusion
W™P(Q) € W™P(Q)
holds. Moreover, as a consequence of Poincare’s inequality for sufficiently regular
domains of finite measure the spaces W (Q) and W™P(Q) actually coincide.
The space W™P(Q) is equipped with the seminorm

|M|Wm.p(Q) = IV"ullzr (-

Sometimes we will also use the equivalent seminorm u = -, 1D ul|1r ().

The equivalence of the norm permit to have a useful density result as in [18,
Remark 11.28]. Indeed, if u € W™P(Q) then for every o > 0 there exists v € C®(Q)N
W™P(Q) such that [|u — vlymrq) < 0

Let QO c R" be an open bounded set and let E C Q be a Lebesgue measurable
set with finite positive measure. Let 1 < p < +oo0 and let m € N. Then, for every
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u € WP(Q), there exists a polynomial P’g‘l [u] of degree m — 1 such that for every
multi-index @ € R"” with 0 < || < m — 1 (see [18, Exercise 13.26]),

f (D"u(x) - D"Py~" [ul(x)) dx = 0. )
E

Theorem 2 (Poincare inequality in W [18, Theorem 13.27]) Let m € N, let 1 < p < 400
and let Q C R" be an open, bounded and convex set. Then there exists a positive constant
C = C(m,n, p,Q) > 0 such that,

m=1

D IVE @ = PE il < CIV"sllr ),
k=0

for every u € WP and for everyk =0,...,m— 1.

Notice that for m = 1 the previous Theorem is the classical Poincare inequality
and the polynomial Pq[u] is the mean of u over Q. In particular, if u € W™P(Q") with
Q' = Q'(xp, €), then there exists a unique polynomial P’Z),‘l [u] of degree m — 1 such
that (9) holds and there exists a constant C = C(n, m, p) such that

f|u—1>'"1 |P<Cg’"pf V" ulP. (10)

Next, we consider the Sobolev—Gagliardo—Nirenberg’s embedding in W™ (see
Lemma 2.1 in [19]).
Letn>mp,1 < p < . Letu € W*P(Q') with Q" = Q’(xo, £). Then there exists
a unique polynomial Pg,‘l[u] of degree m — 1 such that (9) holds and there exists a
constant C = C(n, m, p) such that
np

1
( lu— Py [u] ) < (s" mprV’"ulp) (11)
where p* = — i

Moreover the following easy properties of Pq[u] holds:

® Linearity:
Polu](x) + Pa[vl(x) = Palu + v](x).
® Scaling:
Pealul(ex) = Polug](x),
where ug(x) := u(ex).
We write

T™u(x) = Z Dy (y)(x y)"

la|l<m

for the Taylor polynomial of order m and

R™u(x,y) = u(x) — T;,"u(x)
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for the Taylor remainder of order m.

2.2 Functions of higher-order bounded variation

Let Q c R” be an open set. A function u € L!(Q) is of bounded variation (for short
u € BV(Q)) if u has a distributional gradient in form of a Radon measure of finite
total mass and write

V(@) = sup {u divg : ¢ € Co@). liglle < 1}
We define
BV™(Q) = {u e W' H(Q), V" 'u e BV(Q,S™ ' (R))}

the space of (real valued) functions of m-th order bounded variation, i.e. the set of all
functions, whose distributional gradients up to order m — 1 are represented through 1-
integrable tensor-valued functions and whose m-th distributional gradient is a tensor-
valued Radon measure of finite total variation. Here S¥(R") denotes the set of all
symmetric tensors of order k£ with real components, which is naturally isomorphic to
the set of all k-linear symmetric maps (R")* — R (see [11]).

It becomes a Banach space with the norm

llullgvm@y = llullyn-r1e) + [V"ul(€).

Here the total variation of V""~'u is denoted by |V"u|(Q) and defined by

|Vmu|(Q) = SUP[ Z fDa] ..... o U aamQOm ..... e dx B
Q

A ey ¥y =1

where the supremum is taken over all ¢ € C(l)(Q, R™) with ||¢|le = 1.

Obviously, W™!(Q) is a subspace of BV"(Q).

The definition of BV generalizes that of the classical space of functions of
bounded variation and many results about BV can be obtained in BV™ similarly (see
[17]). We recall a higher-order variant of the famous Poincaré inequality, which will
be useful throughout the sequel:

Theorem 3 (Poincare inequality in BV [14, Lemma 2.2]) Let Q C R" be an open and
bounded subset with Lipschitz boundary, m € N, 1 < p < oo. Then there exist a constant C > 0,
depending only on Q, m and n such that for all u € BV"™(Q)

llullpymq) < CIV"'ul(Q).

In particular, the following version of Poincare’s inequality holds.
Let u € BV™(Q’) with Q' = Q'(xo, &), then there exists a unique polynomial
Pg,‘l [1] of degree m — 1 such that (9) holds and there exists a constant C = C(n, m)
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such that
f u — P [u]] < Ce" V™ ul(Q") (12)
Qr

By the nature of its definition, the space BV™ inherits the Poincare-Wirtinger
inequality which can be proved exactly as the corresponding first order result.

Let n > m, u € BV"(Q') with Q' = Q’(x9,&). Then there exists a unique
polynomial Pg,’l [¢] of degree m — 1 such that (9) holds and there exists a constant
C = C(n,m) such that

n-m

( lu — Pgrl[u]w—”m) <C
Q/

1
— V" ul(Q). (13)

S”

We end this subsection with a higher- order variant of the compactness result in
BV (Theorem 3.23 in [3]).

Proposition 4 (Compactness result in BV [17, Lemma 2.1] ) Let Q c R" be open and
bounded with Lipschitz boundary, and let (u);>.| be a sequence of BV™ functions such that
llegllpym(y < M

for some constant M > 0. Then there is a subsequence (uk,)}il and a function u € BV™(Q)
such that
”u - uk]”W’"*U(Q) -0 forl—> oo and ”M”va(g) <M.

2.3 Other useful inequalities

The following tools will be useful in the sequel.
Given ¢ € (0, 1), from the convexity of the function t — |¢f|’ we get for every
a,beR

1 6 1+6 | (1 +906)?
Ia + b|p = m(l + 6)61 + 1—_’_57b < (1 + 6)p|6l|p + 6—P|b|p (14)

Taking into account (14), we also obtain the following pointwise inequality

1
- bl > P — —|pP 15
a=bl 2 lal? = b (15)
for every a, b € R. Given &, € R" it holds
€17 = P < p (€1 + )P~ 1€ = 7l (16)
and, given &, € R" \ {0} it holds
£_n|_ k-n (17)

el Al 1l
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2.4 The local version of the functional K.(f, m, p)

We define the following local counterpart of (2) which will be use in Step 3 of proof
of Theorem 1

Ko(f,m, p,Q) = &' sup > f lfeo = PR A1) dx, (18)
Ge greg, VY

where the supremum on the right hand side is taken over all families G, of disjoint
open cubes of sidelenght € and arbitrary orientation contained in Q.

This quantity is strictly related to the L” norm of V" f. Indeed, for p < - with
p* = %, by using Holder inequality, we have
fllrio < Ifllm o (19)

Thus, there exists a constant C depending only on Q, m, p such that for Q" = €0 + xp,
by (19) and (11), we get

emnd i -pyturarsc [y (20)
o o
Summing over all sets Q’ in G, we obtain

gy J[Q, |fG0) = P LI dx < CIV" £117
056,

and therefore
Ko(f.m. p.Q) < CIV" fIl7 -

We conclude this subsection, by observing that if ¥ € SV~! is a vector maximizing
the integral in (8), xo € R" and Q,(xo) is a cube of side length n with center in xo then

),
(m)?" Jo,(x)

3 Thecasem = 2

p
(x—xp)" v — f (y—x0)" - vdy| dx=Bn,m,p) -y, (21)
0y (x0)

In this section we deal with the case m = 2. In this case it is easier to make some
explicit computations. Moreover we give an estimates on the constant 3(n, 2, p) in
terms of the Laplacian of the function f € WP,

We prove the following

Proposition 5 Let f € W2P and B(n,2, p) as in (8). Then the following estimate from below
holds true
B2, p) = CpplAFO)I. (22)
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9

First, by virtue of (9), it is possible to characterize Pq[u] for m = 2. Fixed xy € Q,

a generic polynomial of degree 1 centered in xj is given by
P}z[u](x) ={a,x—xg) + b, acR"beR.
By (9) with |a| = 0, we have

b|Q| = f (u(x) —<{a, x — xp)) dx
Q

which implies
b= j((u(x) —{a, x — xp)) dx.
o)

Moreover, for every i = 1,...,n, again (9) for |a| = 1 gives

ou
a; = jg (9_x,~(x) dx

a= J[ Vu(x) dx.
Q
Then the polynomial Psll(u) is

PLIul(x) = f (u(y) - <Jf Vu,y>) dy + <jf Vuy) dy, x - x0)
Q Q Q

where, with a slight abuse of notation, we mean

and we write

- ou
<3£ V() dy, x - x0) = ;m - xog]g F0)ds

(23)

Remark 1 We observe that if Q is symmetric with respect to xp, the polynomial P}z[u] has a

simpler form, indeed

f <Jf Vuy)dy = 0,
QJQ

PLIu() = Jg u(y) dy + <£ Vu(y) dy, x - x0)

and then

Proof of Proposition 5 We observe that when m = 2, p > 1, (8) reads as

p

v-xz—fv-yzdy| dx.
0

can equivalently be write as

(Ax, x)

B(n,2,p) ;= max lf
0

VES"Z’] 4

In this case v - x2

(24)

(25)
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where A € M(n) is a matrix n X n and (-, -) denote the usual scalar product in R".
It is worth to remark that

1
Bn,2,p) > —f
20 Jo

Firstly we observe that denoting by e; the canonical basis of R”, by O € O(n) an orthogonal
matrix and by R € S O(n) a rotation around the origin taking 071(Q) into O we have

- 1
f y?dy=f <y~e,»>2dy=f (Rw-e,-)2dw:f(w~R le?dy =
o07'(Q) o07'(Q) RoO™'(Q) 0 12

Moreover, given A € S(n) a symmetric matrix there exist O € O(n) and D € D(n) such that
A = ODO™!. Thus we have

f (Az.2)dz = f (ODO™")z, 2 dz = f (DO )2, 072y dz = f (Dy.y)dy
0 9 0 0-1(Q)

n n n
1
= §A~?d:§/1- ?d:—§a~
L"(Q) Z. iy; ay Z. tj;_ yiay 12i:1 i

HQ)

P
dx. (26)

(V2 F(O)x.x) - fQ (V2 FO)y,

27

Then we can estimate from below B(n, 2, p) using (26) and (27), proving (22).
Indeed, setting V2 f(0) = A we have

f txn= O

Moreover setting y = miny;, we have

%L‘(Ax,x)— dx ——f|<(1)0 Hx,07'x) -
2__ 2
f‘z o 1<Q>'Z

1
= — P v — = P
= 2pIAf(O)I Lq(@ |y B " i CrplAfO)IF.  (28)

]

4 A characterization of W"?

Proof of Theorem 1 We divide the proof in three steps, proving first the limsup and liminf
inequalities in (7) and then the validy of (6).
As a starting point we fix a bounded open set Q c R" and f € W™P(Q). Given o > 0,
there exists a function g € C°(Q) such that || f — gllw=.r(q) < o and we choose & > 0 such that
Vne

[V"g(x) = V"g()| < o, Vx,y, |x—yl < 5 (29)

Let us take now a family G, of disjoint open cubes Q' of side length & and arbitrary
orientation and let us denote by G, the subfamily of G, made by all cubes Q’ € G- such that
Q' cQ.

Step1 (limsup inequality).

We are going to show that

lim sup Kc(f, m, p) < B(n,m, P)f [V fIP dx.
&—0* R"
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We may assume, without loss of generality, that [V f| € LP(Q). Using (14) and the linearity of
P’" 1111, for any Q' € G, we have:

inf P ax<avord [e-rgtisl avemof [ -0 Pyt gl ax

(30)

where M5 = (1 + 8)P/6P.

We recall the notation in Section 2, so denoting by xg the center of the cube Q" and for all
x € Q' we write

g(x) = Ty g(x) + R"g(x, xo),

where |R"g(x,y)| < (n3oem)/2m = Cioe™.

We now estimate the two terms in (30). Let us focus on the first addendum: using again
(14) we have

JC | - Po1gl]” dx
1
‘_'Vmg(x()) “(x = x0)" + R"g(x, x0) = b( — V"g(x0) - (v = x0)™ dy +]( R"g(y. x0) dy]
Q/ m: o m: o

1 4
<A+ JCQ V" g(x0) - (x = xo)" — JCQ V" g(x0) - (v = x0)" dy‘ dx + 2PM635Q |R™g(x, x0)|” dx

< (1+6)PB(n,m, p)e"PIN" g(xo)l” + CoMsoPe™P.

P
dx

(31
Moreover, applying again (14) and (29) we have

IV"g(xo)l” < (1+ 6)"]C [V"g(x)|” dx + C3Mi0.
Q/
Hence
JC |g - Pg,_l [g]|p dx < B(n,m, p)(1 + 6)2”8’"”JC [V"g(x)IP dx + C4Mse™P P . (32)
o o

Let us focus now on the second addendum in (30). By Poincaré inequality in WP (see
Theorem 2), we have

JC (-9 - Pyt - gl dx < cpemr f IV"(f - Q) dx (33)
o o
where C), is the Poincaré€ constant for cubes.

Observe now that #(GL) < £7"|Q| and set Q, = {x € Q : dist(x,dQ) > e+/n}. Using
(30),(32) and (33) we have

&y f |r =Pyt ax

Q'eG.

&y JC =Pt dx e

f v 1P
QG 0cG.\g. VY

<+ orermr ]C e - Pl dx+C,,M5f|V’”(f Pl +cﬁf V" P dx

oG RN\Q,

< +5)3”ﬁ(n m, p) Z f V" g(x)IP dx + CaMse" o + Cp,Mso? + Ce IR o V" fIPdx
0'€G; "\

<1+ 6)3p/3(n,m, p)j;2 V" f(0)IF dx + C4Mse" P + CpMsa? + Ce \ﬁl; " V" fIPdx
(34)
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where the constants depend only on n, p and |Q|. Then, taking the supremum over all the
families of cubes G, and then letting first e > 07, 0 — 0,5 — 0 and Q T R” we conclude.

Step2 (liminf inequality). We fix Q ¢ R”, we assume again that f € W;Z’C‘” () and we fix
o > 0and g € C°(Q) as in the previous Step. We prove that

liminf Ke(f,m. ) 2 B m. p) f IV 11 dx, (35)
e—0* R
So, for n € (0, 1) we consider the set
Up=lxeQ: Vgl > )

With a clever use of Lemma 2.95 of [3] (as in Proposition 3.6 of [15]) it is possible to find
k sufficiently small pairwise disjoint open sets S ; C SN covering S¥~!. Precisely,

k
USJ':SN_]

j=1
diam §; <5 forall j=1..k

k
Vm
U{xe Un:%(x)easj} =0.
e Vgl
Forall j=1,...,k we denote
V"g(x)
A;= elU, : eSir,
/ {" Tl
which are open sets with the property
k
u\ | Jaj =0 (36)
j=1
For £ > 0 we consider the family ¥, of all open cubes with faces parallel to the coordinate
planes, side length &, centered at all points of the form ev, with v € Z". Then forall j = 1,...,k

we choose M € S j and we denote by R; € S O(n) a rotation that takes e; into M;.
Note that in this way, denoting by x” the center of the cube Q" € ¥, we have (see (21)),

1
(mh?

f |(x XYt v (y—-x)y"- de‘p dx = B(n,m, p) - g""P.
Ri(Q) Ri(@)

Forall j = 1,...,k we denote by R;(Qp, ;), On,j € Fe, h = 1,...,mj, the elements of G,
contained in A ;. By (36) there exists &(c, ) such that if & < &(c7, 77) then

mj

k
u\ [ JURiny

j=1h=1

<.

We denote by xy, ; the center of the cube R;(Qy, ;) and we argue as in Step 1. Indeed we have
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g - [g]| dx
£1<Qh,f>| R(Q/,) ‘

1 1 P
> — vn e (x—xp )" = " No(x=xp ) d
Z T +op (m!)pjgi(gh‘j) 8(xp,j) - (x — xp,j) JE. o0 8(xp,j) - (x = xp, ) x
2 IR"™ g(x, xp, )P dx
0P JR;(0np) ‘
v AP P
> 1 . | g(xh,l)l f Mj . ()C _ xh,j)m _:F Mj . ()C _ xh,j)m dx
(L+0)yP  mhH?  Jryo,, R/(Oh))
27 |V™ g(xp, I p
~ s Wﬁ-@h ; (V" g(xn, ) = Mj) - (x = xp, )" _ng(Q, V)(V’”g(xh,j) - M) (x—x )" dx
J L) J ]
oPgmp
-Cy
or
"PB(n,m, p)IV"gCxn HIP CgnPe™P oPenP
o TE g, - ¢ :
(1+6)*? op 5P

(37
Now, adding on j and / the previous inequality, recalling (36), we have

g JC |g Pm 1[g]| dx
Ry(Qnp)eG; Y Ri(Cn)
mj g n,m, V™o(x, HIP CenP P P omp
- mpzz Bln,m, p)IV"gCxn DI CenPe el - E
(1+06)2p or P
j=1 h=
(n,m, p) CgnPe" Pl
LBl S e ”—puvmgn% —o
T (1+6) o Jrion o [
(” m, P) f vl
> P — ——(1+|V"gll”) -
a +6)3P [V*"gl ( Il g||,_ )
ﬂ(n,m,P)f v oP
> P 1+ |IV™%, —C—,
1+ 0% V" £l ( I gII ) 57

where the constants may change from line to line and depend only on p, n and |Q2|. We conclude
choosing 1 small enough and consequently & small,

"’"”Zf}f Py s dx

Q'€Ge
(1+5)p & Z jc 'g Po [g]' dx__fwm(f ol

pom.p) ., Co?
= (A +opr fglv =

where again C may change from line to line and depend on p, n and |Q|. To conclude we take
the supremum over all the families G and let first e — 0, o0 — 0,6 — 0 and Q T R", proving
(35).

Step3 (proof of (6)) Nowletp > 1, f € Wl':)’c_l’p(R”) and liminf,_,g K.(f, m, p) < co. We
fix o > 0, Q ¢ R" and observe that there exist r > 0 and a finite family of pairwise disjoint
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open cubes Q(x;, r) such that

<o (38)

o\ Jown
i=1
V" () = V" f)l < o (39)

Moreover we fix 0 < &€ < r and we set fz(x) = (0 * f)(x), where o is a standard mollifier with
compact support in the unit cube Q and o-(x) = £ "o(x/¢).
For every Q(x;,r) we consider a family H; of pairwise disjoint cubes Q; = z; + €0 C
Oxj,r),forj=1,...,k.
We compute now
P p
V" folzpl? = | fR FOIV"pe(z = ) dy’ ) UR (r0) = PE A0 V7 etz = ) dy‘

< gomompanpon fQ o) - P A1) dy = S—mpJCQ TR valto) s

Moreover, by (29) and (14), we have
1
1+

V" fe(z )l > g fQ V" £ (Ol dox — 6%0.17
J

Then
1

1+6

Summing up all the cubes in H,, we obtain

| wrorars e o - pgtne)] dye e
9 Qj / or

)
— V" fe(0IP dx
1+6 Jown

k k
1 m p n—-mp g m—1 P C pn
<— 5;:1 fQ, V" feol dx < j§=1‘ L V0 -PE o) v+ o

k
C
<oy 1 32 Jror =P dy+ o, @0
= J

where the last inequality follows since k& < r". Taking the supremum with respect to all
families H, and the liminf with respect to &, we have
1

_— T . . C
I+6 fgw V" FCOI dx < liminf Ke(f.m. p. Q(xi. 1)) + =5 0"

Summing up with respect to i and using (38) we have
1 . C
— fg V" FCOIP dx < lim inf Ko(fm,p, @) + - P10

Letting o — 0, 6 — 0 and Q T R", we conclude.
O

Remark 2 'We observe that Theorem 7 hold also in an open set 2 with the same proof replacing
K:(f, m, p) by the quantity K.(f, m, p, Q) defined in (18).

Corollary 6 Let p > 1, n > mp, p* = =2 Q c R" and G a pairwise disjoint family of

n—-mp’
translations Q' of €Q contained in Q. Then, the following three statements are equivalent:
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i) f e Wmr(Q)y
ii)
sup Z " ’""JC |f—ngl[f]|p < +00;
g&‘ Q/Eg Q,
iii)
sup DU =Py AN
8 Qegé‘

Q)

Proof In this proof the constant C may change from line to line.
We prove that iii) = ii). By Holder’s inequality it holds

a"‘mpJCQ, |r =Py tr)| dx < ggm - (fQ - pg i ) 1 = P e g

(41)

n—mp

Summing over all sets Q" in G, and passing to the supremum, we conclude.
We prove that i) = iii). Using the Sobolev-Gagliardo-Nirenberg inequality (11), we obtain
that there exists a constant C = C(n, m, p) such that

=P ,,e o, €I

Summing over Q' in G, and passing to the supremum over all families G, the proof is
completed.
The equivalence i) & ii) is proved in [9].

- 42)

d

5 A characterization of higher order bounded variation

In this section we deal with the case p = 1. This case is not included in Theorem 1
since (6) hold only for p > 1.

The case m = 1 was treated in [16]. They proved that (see Proposition 2.4 of [16])
if f € L}OC(R”) then

feBVR") < lim iglf K (f,1,1) < +o0 (43)
Precisely, they prove that for f € L}OC(R") it holds
1 o . 1
ZIVAAE) < liminf K,(/,1.1) < limsup K,(/. 1, 1) < 7 [V/I®",
0" £—0*
where the total variation of f in Q C R”, possibly equal to +oo, is defined by setting
IVAI(Q) := sup {f ) divedx = ¢ CUQ), liglle < 1}
Q

We prove a similar characterization for the case m > 1. Now an equivalence similar
to (43) involve the space BV"(R") of functions of m-th order bounded variation (see
Section 2).
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Precisely, we prove the following

Proposition 7 Let f € WI'ZC__I’](R”). Then
feBV'"RY) limi(r)lng(f, m, 1) < +o0
E—

Moreover; there is a positive constants C, independent of f, such that

V" fIR") < liminf Ko(f.m. 1) < lim sup Ks(f,m. 1) < CIV" fIR"). (44)

£—0*
Proof To prove the first inequality in (44) we argue as in Step 3 of Theorem 1. In particular,
we have

1

55 Jyn |mes(x)|dx<gnmzjc o) - P 10|y + (,rn )

Taking the supremum with respect to all families H, and the liminf with respect to &, we have

- . C
3 II?J(T)If L(W) V" fe(x)| dx < 11211611C K:(f,m, Q(xi,r)) + g(rr".

By the compactness in BV (Proposition 4), we get
1 c
lemfl(Q(xls r)dx < iminf K(f, m, Q(xi, 1)) + EW"
Summing up with respect to i and using (38) we obtain
1 C
T3 V" FI(Q)dx < ligli(r)lf Ko(f,m, Q) + Eo'r”|9|

We conclude letting o — 0,6 — 0, Q T R".
In order to prove the estimate from above in (44), it is is sufficient to apply the Poincare’
inequality in BV (see Section 2).
d

Corollary 8 Let n > m, 1* = S, Q C R" and G is any pairwise disjoint family of
translations Q' of €Q contained in Q. Then, the following three statements are equivalent:

i) f € BV™Q);
ii)
sup Z " ’”JC |f ngl[f]l < 400
G geg,
iii)
sup DN =Py 1 ) < +eo
Ge 0cG,

Proof We prove that iii) = ii). By Holder’s inequality it holds

& '"JC |f = P dx < |f - P (46)

L)’
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The conclusion follows by summing over all sets Q’ in Ge.
We prove that i) = iii). By using (13) there exists a constant C = C(n.m) such that

-1
I =P, o, < €197 11 @) (7
The conclusion follows again by summing over all sets Q’ in Ge.
The equivalence i) & ii) is proved in [9]. O
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