Serena Guarino Lo Bianco¹ and Roberta Schiattarella^{2*†}

 ^{1*}Dipartimento di Agraria, Università di Napoli "Federico II", via Università 100, Portici (NA), 80055, Italy.
 ²Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università di Napoli "Federico II", Via Cintia, Napoli, 80126, Italy.

*Corresponding author(s). E-mail(s): roberta.schiattarella@unina.it; Contributing authors: serena.guarinolobianco@unina.it; [†]These authors contributed equally to this work.

Abstract

We obtain a new characterization of the higher Sobolev space $W^{m,p}(\mathbb{R}^n)$, $m \in \mathbb{N}$ and $p \in (1, +\infty)$ and of the space BV^m , the space of functions of higher order bounded variation. The characterizations are in term of BMO-type seminorms. The results unify and substantially extend previous results in [16] and [13].

Keywords: Higher order Sobolev spaces, Higher order bounded variation, BMO-type seminorms

MSC Classification: 46E35, 26B30

1 Introduction

Let $W_{\text{loc}}^{m,p}(\mathbb{R}^n)$ $(m \in \mathbb{N}, 1 \le p < \infty)$, denote the Sobolev space of functions belonging to $L_{\text{loc}}^p(\mathbb{R}^n)$ whose distribution derivatives up to order *m* belong to $L_{\text{loc}}^p(\mathbb{R}^n)$.

In [4], the Authors studied a characterization of $W^{m,p}$ based on J. Bourgain, H. Brezis and P. Mironescu's approach introduced in [6] (see also [8]). In particular they prove that if $f \in W^{m-1,p}(\Omega)$, $1 and <math>\Omega$ is a smooth bounded domain in \mathbb{R}^n

then f belongs to $W^{m,p}(\Omega)$ if and only if,

$$\liminf_{\varepsilon \to 0} \int_{\Omega} \int_{\Omega} \frac{|R^{m-1} f(x, y)|^p}{|x - y|^{mp}} \rho_{\varepsilon}(|x - y|) \, dx \, dy < \infty \tag{1}$$

where ρ_{ε} , with $\varepsilon > 0$, are radial mollifiers and $R^{m-1}f$ is the Taylor (m-1) remainder of *f*. For p = 1, the condition (1) describes BV^m .

Here we say that a $W^{m-1,1}(\Omega)$ is of *m*-th order bounded variation BV^m if its *m*-th order partial derivatives in the sense of distributions are finite Radon measures. Spaces of this kind have been studied in [11] as applications in mathematical imaging in the setting of isotropic and anisotropic variants of the TV-model (see also [14]).

Another characterization of $W^{m,p}$, $1 , <math>(BV^m \text{ for } p = 1)$ formulated in terms of the *m*-th differences has been presented in [5].

In this article we are concerned with a characterization of $W^{m,p}$ $1 , <math>(BV^m$ for p = 1) as the limit of certain BMO–type seminorms similar to the one introduced by J. Bourgain, H. Brezis, P. Mironescu in [7].

In [16] the Authors showed that a function $f \in L^p_{loc}(\mathbb{R}^n)$ belongs to the Sobolev space $W^{1,p}_{loc}(\mathbb{R}^n)$, 1 , if and only if

$$\lim_{\varepsilon \to 0^+} K(\varepsilon, 1, p) < +\infty$$

where

$$K_{\varepsilon}(f,1,p) := \varepsilon^{n-p} \sup_{\mathcal{G}_{\varepsilon}} \sum_{Q' \in \mathcal{G}_{\varepsilon}} \int_{Q'} \left| f(x) - \int_{Q'} f \right|^p dx, \qquad (2)$$

and the supremum on the right hand side is taken over all families $\mathcal{G}_{\varepsilon}$ of disjoint ε -cubes $Q' = Q'(x_0, \varepsilon)$ of side length ε , centered in x_0 , with arbitrary orientation. Moreover, if $f \in W_{\text{loc}}^{1,p}(\mathbb{R}^n)$ and $p \ge 1$ then

$$\lim_{\varepsilon \to 0^+} K_{\varepsilon}(f, 1, p) = \gamma(n, p) \int_{\mathbb{R}^n} |\nabla f|^p \, dx \tag{3}$$

where

$$\gamma(n,p) := \max_{\nu \in \mathbb{S}^{n-1}} \int_{Q} |x \cdot \nu|^{p} dx$$
(4)

where $Q = \left(-\frac{1}{2}, \frac{1}{2}\right)^{n}$.

Following some ideas in [1], an analogous representation formula is obtained for the total variation of SBV functions in [15] (see also [12]). For related results see also [10], [13].

Here, given a function $f \in W_{\text{loc}}^{m-1,p}(\mathbb{R}^n), p \ge 1$, for any $\varepsilon > 0$, we consider

$$K_{\varepsilon}(f,m,p) := \varepsilon^{n-mp} \sup_{\mathcal{G}_{\varepsilon}} \sum_{\mathcal{Q}' \in \mathcal{G}_{\varepsilon}} \int_{\mathcal{Q}'} \left| f(x) - P_{\mathcal{Q}'}^{m-1}[f](x) \right|^p \, dx \,,$$

where the families $\mathcal{G}_{\varepsilon}$ are as above and $P_{Q'}^{m-1}[f]$ is the polynomial of degree m-1 centered at x_0 , given by

$$P_{Q'}^{m-1}[f](x) = \sum_{|\alpha| \le m-1} (x - x_0)^{\alpha} \oint_{Q'} (D^{\alpha} f)(s) \, ds.$$
(5)

In particular, for m = 1 and m = 2 we have:

$$P_{Q'}^{0}[f](x) = \int_{Q'} f; \qquad P_{Q'}^{1}[f](x) = \int_{Q'} f + \sum_{i=1}^{n} (x_i - x_{0_i}) \left(\int_{Q'} \frac{\partial f}{\partial y_i}(y) \, dy \right).$$

Our main Theorem reads as follows:

Theorem 1 Let p > 1 and $f \in W_{loc}^{m-1,p}(\mathbb{R}^n)$, then $|\nabla^m f| \in L_{loc}^p(\mathbb{R}^n) \iff \liminf_{\varepsilon \to 0} K_{\varepsilon}(f,m,p) < \infty.$ (6)

Moreover, if $f \in W_{loc}^{m,p}(\mathbb{R}^n)$ and $p \ge 1$ we have also

$$\lim_{\varepsilon \to 0} K_{\varepsilon}(f, m, p) = \beta(n, m, p) \int_{\mathbb{R}^n} |\nabla^m f|^p \, dx.$$
⁽⁷⁾

The constant in (7) is given by

$$\beta(n,m,p) := \max_{\nu \in \mathbb{S}^{N-1}} \left(\frac{1}{m!}\right)^p \int_Q \left| \nu \cdot x^m - \int_Q \nu \cdot y^m \, dy \right|^p \, dx. \tag{8}$$

where $N = n^m$ and we refer to Section 2 for the notation.

Note that this Theorem is exactly an extension of Theorem 2.2 in [16] to the higher order case; indeed, in the case m = 1, since $\int_Q x \cdot v \, dx = 0$, the constant $\beta(n, 1, p)$ coincides with the one defined in (4).

A drawback of the formula (7) is that one does not recover the function in BV^m . However, we are able to show that it is possible to characterize the functions in $BV^m(\mathbb{R}^n)$ as the functions $f \in W^{m-1,1}_{loc}(\mathbb{R}^n)$ such that $\limsup_{\varepsilon \to 0} K_{\varepsilon}(f, m, 1) < +\infty$.

2 Notation and preliminaries

We denote by $Q = \left(-\frac{1}{2}, \frac{1}{2}\right)^n \subset \mathbb{R}^n$ the unit cube with faces parallel to coordinate axes in \mathbb{R}^n . For any $z \in \mathbb{R}^n$ and $\varepsilon > 0$ we denote by $Q_{\varepsilon}(z) = z + \varepsilon Q$ the cube of sidelenght ε centered in z.

For $m, n \ge 1$, we denote by $N_j = n^{m-j}$ for j = 0, ..., m. Given $v \in \mathbb{R}^{N_0}$ we denotes its components by $v_{i_1,...,i_k,...,i_m}$ with $i_k = 1...n$. Taking $x \in \mathbb{R}^n$, $x = (x_{i_k})_{i_k \in \{1,...,n\}}$ we define the product $v \cdot x$ as the element of \mathbb{R}^{N_1} given by

$$(v \cdot x)_{i_1,\dots,i_{k-1},i_{k+1},\dots,i_m} = \sum_{i_k=1}^n v_{i_1,i_2,\dots,i_m} x_{i_k}.$$

The product of $v \in \mathbb{R}^{N_0}$ and *m* times the vector $x \in \mathbb{R}^n$, $v \cdot x \cdot x \cdots x$ is an element of $\mathbb{R}^{N_m} = \mathbb{R}$ and it is denoted for brevity by $v \cdot x^m$.

For a multi-index $\alpha = (\alpha_1, \dots, \alpha_n), \alpha_i \ge 0$ and a point $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, we denote by

$$x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$

the monomial of degree $|\alpha| = \sum_{i=1}^{n} \alpha_i$.

In the same way,

$$D^{\alpha}u = \frac{\partial^{|\alpha|}u}{\partial x_1^{\alpha_1}\cdots \partial x_n^{\alpha_n}}$$

is a weak partial derivative of order $|\alpha|$.

Sometimes, we use the convention that $D^0 u = u$. Moreover, let $\nabla^m u$ be a vector with the components $D^{\alpha}u$, $|\alpha| = m$.

2.1 The Sobolev space $W^{m,p}$

Definition 1 Let $\Omega \subset \mathbb{R}^n$ be an open set, let $m \in \mathbb{N}$, and let $1 \leq p < \infty$. The Sobolev space $W^{m,p}(\Omega)$ is the space of all functions $u \in L^p(\Omega)$ which admit α -th weak derivative $D^{\alpha}u$ in $L^p(\Omega)$ for every $\alpha \in \mathbb{N}^n$ with $1 \leq |\alpha| \leq m$.

The space $W^{m,p}(\Omega)$ is endowed with the norm

$$||u||_{W^{m,p}(\Omega)} = ||u||_{L^p(\Omega)} + \sum_{1 \le |\alpha| \le m} ||D^{\alpha}u||_{L^p(\Omega)}$$

Definition 2 Let $\Omega \subset \mathbb{R}^n$ be an open set, let $m \in \mathbb{N}$, and let $1 \leq p < \infty$. The homogeneous Sobolev space $\dot{W}^{m,p}(\Omega)$ is the space of all functions $u \in L^1_{loc}(\Omega)$ whose α -th weak derivative $D^{\alpha}u$ belongs to $L^p(\Omega)$ for every $\alpha \in \mathbb{N}^n$ with $|\alpha| = m$.

Note that the inclusion

$$W^{m,p}(\Omega) \subseteq \dot{W}^{m,p}(\Omega)$$

holds. Moreover, as a consequence of Poincarè's inequality for sufficiently regular domains of finite measure the spaces $\dot{W}^{m,p}(\Omega)$ and $W^{m,p}(\Omega)$ actually coincide.

The space $\dot{W}^{m,p}(\Omega)$ is equipped with the seminorm

$$|u|_{\dot{W}^{m,p}(\Omega)} = ||\nabla^m u||_{L^p(\Omega)}.$$

Sometimes we will also use the equivalent seminorm $u \mapsto \sum_{|\alpha|=m} ||D^{\alpha}u||_{L^{p}(\Omega)}$.

The equivalence of the norm permit to have a useful density result as in [18, Remark 11.28]. Indeed, if $u \in \dot{W}^{m,p}(\Omega)$ then for every $\sigma > 0$ there exists $v \in C^{\infty}(\Omega) \cap \dot{W}^{m,p}(\Omega)$ such that $||u - v||_{W^{m,p}(\Omega)} \leq \sigma$.

Let $\Omega \subset \mathbb{R}^n$ be an open bounded set and let $E \subset \Omega$ be a Lebesgue measurable set with finite positive measure. Let $1 \leq p \leq +\infty$ and let $m \in \mathbb{N}$. Then, for every

 $u \in W^{m,p}(\Omega)$, there exists a polynomial $P_E^{m-1}[u]$ of degree m-1 such that for every multi-index $\alpha \in \mathbb{R}^n$ with $0 \le |\alpha| \le m-1$ (see [18, Exercise 13.26]),

$$\int_{E} \left(D^{\alpha} u(x) - D^{\alpha} P_{E}^{m-1}[u](x) \right) dx = 0.$$
(9)

Theorem 2 (Poincarè inequality in $W^{m,p}$ [18, Theorem 13.27]) Let $m \in \mathbb{N}$, let $1 \le p < +\infty$ and let $\Omega \subset \mathbb{R}^n$ be an open, bounded and convex set. Then there exists a positive constant $C = C(m, n, p, \Omega) > 0$ such that,

$$\sum_{k=0}^{m-1} \|\nabla^k (u - P_{\Omega}^{m-1}[u])\|_{L^p(\Omega)} \le C \|\nabla^m u\|_{L^p(\Omega)},$$

for every $u \in W^{m,p}$ and for every k = 0, ..., m - 1.

Notice that for m = 1 the previous Theorem is the classical Poincarè inequality and the polynomial $P_{\Omega}[u]$ is the mean of u over Ω . In particular, if $u \in W^{m,p}(Q')$ with $Q' = Q'(x_0, \varepsilon)$, then there exists a unique polynomial $P_{Q'}^{m-1}[u]$ of degree m - 1 such that (9) holds and there exists a constant C = C(n, m, p) such that

$$\int_{Q'} |u - P_{Q'}^{m-1}[u]|^p \le C \varepsilon^{mp} \int_{Q'} |\nabla^m u|^p.$$
(10)

Next, we consider the Sobolev–Gagliardo–Nirenberg's embedding in $W^{m,p}$ (see Lemma 2.1 in [19]).

Let n > mp, $1 \le p < \frac{n}{m}$. Let $u \in W^{m,p}(Q')$ with $Q' = Q'(x_0, \varepsilon)$. Then there exists a unique polynomial $P_{Q'}^{m-1}[u]$ of degree m - 1 such that (9) holds and there exists a constant C = C(n, m, p) such that

$$\left(\int_{Q'} |u - P_{Q'}^{m-1}[u]|^{p^*}\right)^{\frac{1}{p^*}} \le C \left(\frac{1}{\varepsilon^{n-mp}} \int_{Q'} |\nabla^m u|^p\right)^{\frac{1}{p}}$$
(11)

where $p^{\star} = \frac{np}{n-mp}$.

Moreover, the following easy properties of $P_{\Omega}[u]$ holds:

• Linearity:

$$P_{\Omega}[u](x) + P_{\Omega}[v](x) = P_{\Omega}[u+v](x).$$

• Scaling:

$$P_{\varepsilon\Omega}[u](\varepsilon x) = P_{\Omega}[u_{\varepsilon}](x),$$

where $u_{\varepsilon}(x) := u(\varepsilon x)$.

We write

$$T_y^m u(x) = \sum_{|\alpha| \le m} D^{\alpha} u(y) \frac{(x-y)^{\alpha}}{\alpha!}$$

for the Taylor polynomial of order *m* and

$$R^m u(x, y) = u(x) - T_y^m u(x)$$

for the Taylor remainder of order *m*.

2.2 Functions of higher-order bounded variation

Let $\Omega \subset \mathbb{R}^n$ be an open set. A function $u \in L^1(\Omega)$ is of bounded variation (for short $u \in BV(\Omega)$) if *u* has a distributional gradient in form of a Radon measure of finite total mass and write

$$|\nabla u|(\Omega) = \sup \left\{ u \operatorname{div} \varphi : \varphi \in C_0^1(\Omega), \|\varphi\|_{L^\infty} \le 1 \right\}.$$

We define

$$BV^{m}(\Omega) = \{ u \in W^{m-1,1}(\Omega), \ \nabla^{m-1}u \in BV(\Omega, S^{m-1}(\mathbb{R})) \}$$

the space of (real valued) functions of m-th order bounded variation, i.e. the set of all functions, whose distributional gradients up to order m-1 are represented through 1-integrable tensor-valued functions and whose *m*-th distributional gradient is a tensor-valued Radon measure of finite total variation. Here $S^k(\mathbb{R}^n)$ denotes the set of all symmetric tensors of order *k* with real components, which is naturally isomorphic to the set of all *k*-linear symmetric maps $(\mathbb{R}^n)^k \to \mathbb{R}$ (see [11]).

It becomes a Banach space with the norm

$$||u||_{BV^{m}(\Omega)} = ||u||_{W^{m-1,1}(\Omega)} + |\nabla^{m}u|(\Omega).$$

Here the total variation of $\nabla^{m-1}u$ is denoted by $|\nabla^m u|(\Omega)$ and defined by

$$|\nabla^m u|(\Omega) = \sup\left(\sum_{\alpha_1,\dots,\alpha_m=1}^n \int_{\Omega} D_{\alpha_1,\dots,\alpha_{m-1}} u \cdot \partial_{\alpha_m} \varphi_{\alpha_1,\dots,\alpha_m} \, dx\right),$$

where the supremum is taken over all $\varphi \in C_0^1(\Omega, \mathbb{R}^n)$ with $\|\varphi\|_{\infty} = 1$.

Obviously, $W^{m,1}(\Omega)$ is a subspace of $BV^{m}(\Omega)$.

The definition of BV^m generalizes that of the classical space of functions of bounded variation and many results about BV can be obtained in BV^m similarly (see [17]). We recall a higher-order variant of the famous Poincaré inequality, which will be useful throughout the sequel:

Theorem 3 (Poincarè inequality in BV^m [14, Lemma 2.2]) Let $\Omega \subset \mathbb{R}^n$ be an open and bounded subset with Lipschitz boundary, $m \in \mathbb{N}$, $1 \le p < \infty$. Then there exist a constant C > 0, depending only on Ω , *m* and *n* such that for all $u \in BV^m(\Omega)$

$$||u||_{BV^m(\Omega)} \le C|\nabla^m u|(\Omega).$$

In particular, the following version of Poincare's inequality holds.

Let $u \in BV^m(Q')$ with $Q' = Q'(x_0, \varepsilon)$, then there exists a unique polynomial $P_{Q'}^{m-1}[u]$ of degree m-1 such that (9) holds and there exists a constant C = C(n,m)

such that

$$\int_{\mathcal{Q}'} |u - P_{\mathcal{Q}'}^{m-1}[u]| \le C\varepsilon^m |\nabla^m u|(\mathcal{Q}') \tag{12}$$

By the nature of its definition, the space BV^m inherits the Poincare-Wirtinger inequality which can be proved exactly as the corresponding first order result.

Let n > m, $u \in BV^m(Q')$ with $Q' = Q'(x_0, \varepsilon)$. Then there exists a unique polynomial $P_{Q'}^{m-1}[u]$ of degree m - 1 such that (9) holds and there exists a constant C = C(n,m) such that

$$\left(\int_{\mathcal{Q}'} |u - P_{\mathcal{Q}'}^{m-1}[u]|^{\frac{n}{n-m}}\right)^{\frac{n-m}{n}} \le C \frac{1}{\varepsilon^{n-m}} |\nabla^m u|(\mathcal{Q}').$$
(13)

We end this subsection with a higher- order variant of the compactness result in BV (Theorem 3.23 in [3]).

Proposition 4 (Compactness result in BV^m [17, Lemma 2.1]) Let $\Omega \subset \mathbb{R}^n$ be open and bounded with Lipschitz boundary, and let $(u_k)_{k=1}^{\infty}$ be a sequence of BV^m functions such that

 $||u_k||_{BV^m(\Omega)} \le M$

for some constant M > 0. Then there is a subsequence $(u_{k_l})_{l=1}^{\infty}$ and a function $u \in BV^m(\Omega)$ such that

 $||u - u_{k_l}||_{W^{m-1,1}(\Omega)} \to 0 \text{ for } l \to \infty \text{ and } ||u||_{BV^m(\Omega)} \leq M.$

2.3 Other useful inequalities

The following tools will be useful in the sequel.

Given $\delta \in (0, 1)$, from the convexity of the function $t \to |t|^p$ we get for every $a, b \in \mathbb{R}$

$$|a+b|^{p} = \left|\frac{1}{(1+\delta)}(1+\delta)a + \frac{\delta}{1+\delta}\frac{1+\delta}{\delta}b\right|^{p} \le (1+\delta)^{p}|a|^{p} + \frac{(1+\delta)^{p}}{\delta^{p}}|b|^{p}$$
(14)

Taking into account (14), we also obtain the following pointwise inequality

$$|a-b|^{p} \ge \frac{1}{(1+\delta)^{p}} |a|^{p} - \frac{1}{\delta^{p}} |b|^{p}$$
(15)

for every $a, b \in \mathbb{R}$. Given $\xi, \eta \in \mathbb{R}^n$ it holds

$$||\xi|^{p} - |\eta|^{p}| \le p \left(|\xi| + |\eta|\right)^{p-1} |\xi - \eta|$$
(16)

and, given $\xi, \eta \in \mathbb{R}^n \setminus \{0\}$ it holds

$$\left|\frac{\xi}{|\xi|} - \frac{\eta}{|\eta|}\right| \le 2\frac{|\xi - \eta|}{|\xi|}.$$
(17)

2.4 The local version of the functional $K_{\varepsilon}(f, m, p)$

We define the following local counterpart of (2) which will be use in Step 3 of proof of Theorem 1

$$K_{\varepsilon}(f,m,p,\Omega) = \varepsilon^{n-mp} \sup_{\mathcal{G}_{\varepsilon}} \sum_{Q' \in \mathcal{G}_{\varepsilon}} \int_{Q'} \left| f(x) - P_{Q'}^{m-1}[f](x) \right|^p \, dx \,, \tag{18}$$

where the supremum on the right hand side is taken over all families $\mathcal{G}_{\varepsilon}$ of disjoint open cubes of sidelenght ε and arbitrary orientation contained in Ω .

This quantity is strictly related to the L^p norm of $\nabla^m f$. Indeed, for $p < \frac{n}{m}$ with $p^* = \frac{np}{n-mp}$, by using Hölder inequality, we have

$$\|f\|_{L^{p}(Q)} \le \|f\|_{L^{p^{\star}}(Q)} \tag{19}$$

Thus, there exists a constant *C* depending only on *Q*, *m*, *p* such that for $Q' = \varepsilon Q + x_0$, by (19) and (11), we get

$$\varepsilon^{n-mp} \oint_{Q'} |f(x) - P_{Q'}^{m-1}[f]|^p \, dx \le C \int_{Q'} |\nabla^m f|^p.$$
(20)

Summing over all sets Q' in $\mathcal{G}_{\varepsilon}$, we obtain

$$\varepsilon^{n-mp} \sum_{Q' \in \mathcal{G}_{\varepsilon}} \int_{Q'} |f(x) - P_{Q'}^{m-1}[f]|^p \, dx \le C ||\nabla^m f||_{L^p(\Omega)}^p$$

and therefore

$$K_{\varepsilon}(f, m, p, \Omega) \le C \|\nabla^m f\|_{L^p(\Omega)}^p$$

We conclude this subsection, by observing that if $\bar{\nu} \in \mathbb{S}^{N-1}$ is a vector maximizing the integral in (8), $x_0 \in \mathbb{R}^n$ and $Q_\eta(x_0)$ is a cube of side length η with center in x_0 then

$$\frac{1}{(m!)^p} \int_{\mathcal{Q}_{\eta}(x_0)} \left| (x - x_0)^m \cdot \bar{\nu} - \int_{\mathcal{Q}_{\eta}(x_0)} (y - x_0)^m \cdot \bar{\nu} \, dy \right|^p dx = \beta(n, m, p) \cdot \eta^{n+mp}.$$
(21)

3 The case m = 2

In this section we deal with the case m = 2. In this case it is easier to make some explicit computations. Moreover we give an estimates on the constant $\beta(n, 2, p)$ in terms of the Laplacian of the function $f \in W^{2,p}$.

We prove the following

Proposition 5 Let $f \in W^{2,p}$ and $\beta(n, 2, p)$ as in (8). Then the following estimate from below holds true

$$\beta(n,2,p) \ge C_{n,p} |\Delta f(0)|^p.$$

$$\tag{22}$$

First, by virtue of (9), it is possible to characterize $P_{\Omega}[u]$ for m = 2. Fixed $x_0 \in \Omega$, a generic polynomial of degree 1 centered in x_0 is given by

$$P_{\Omega}^{1}[u](x) = \langle a, x - x_{0} \rangle + b, \qquad a \in \mathbb{R}^{n}, b \in \mathbb{R}.$$

By (9) with $|\alpha| = 0$, we have

$$b|\Omega| = \int_{\Omega} \left(u(x) - \langle a, x - x_0 \rangle \right) \, dx$$

which implies

$$b = \int_{\Omega} (u(x) - \langle a, x - x_0 \rangle) \, dx.$$

Moreover, for every i = 1, ..., n, again (9) for $|\alpha| = 1$ gives

$$a_i = \int_{\Omega} \frac{\partial u}{\partial x_i}(x) \, dx$$

and we write

$$a = \int_{\Omega} \nabla u(x) \, dx.$$

Then the polynomial $P_{\Omega}^{1}(u)$ is

$$P_{\Omega}^{1}[u](x) = \int_{\Omega} \left(u(y) - \langle \int_{\Omega} \nabla u, y \rangle \right) dy + \langle \int_{\Omega} \nabla u(y) dy, x - x_{0} \rangle$$
(23)

where, with a slight abuse of notation, we mean

$$\langle \int_{\Omega} \nabla u(y) \, dy, \, x - x_0 \rangle = \sum_{j=1}^n (x_i - x_{0_j}) \int_{\Omega} \frac{\partial u}{\partial y_i}(y) \, dy.$$

Remark 1 We observe that if Ω is symmetric with respect to x_0 , the polynomial $P_{\Omega}^1[u]$ has a simpler form, indeed

$$\int_{\Omega} \langle \int_{\Omega} \nabla u, y \rangle \, dy = 0,$$

and then

$$P_{\Omega}^{1}[u](x) = \int_{\Omega} u(y) \, dy + \langle \int_{\Omega} \nabla u(y) \, dy, \, x - x_0 \rangle \tag{24}$$

Proof of Proposition 5 We observe that when $m = 2, p \ge 1, (8)$ reads as

$$\beta(n,2,p) := \max_{v \in \mathbb{S}^{n^2 - 1}} \frac{1}{4} \int_{Q} \left| v \cdot x^2 - \int_{Q} v \cdot y^2 \, dy \right|^p \, dx.$$
(25)

In this case $v \cdot x^2$ can equivalently be write as

$$\langle Ax, x \rangle$$

where $A \in \mathcal{M}(n)$ is a matrix $n \times n$ and $\langle \cdot, \cdot \rangle$ denote the usual scalar product in \mathbb{R}^n .

It is worth to remark that

$$\beta(n,2,p) \ge \frac{1}{2^p} \int_Q \left| \langle \nabla^2 f(0)x, x \rangle - \int_Q \langle \nabla^2 f(0)y, y \rangle \right|^p \, dx \,. \tag{26}$$

Firstly we observe that denoting by e_i the canonical basis of \mathbb{R}^n , by $O \in O(n)$ an orthogonal matrix and by $\mathcal{R} \in SO(n)$ a rotation around the origin taking $O^{-1}(Q)$ into Q we have

$$\int_{O^{-1}(Q)} y_i^2 \, dy = \int_{O^{-1}(Q)} (y \cdot e_i)^2 \, dy = \int_{R \circ O^{-1}(Q)} (Rw \cdot e_i)^2 \, dw = \int_Q (w \cdot R^{-1}e_i)^2 \, dy = \frac{1}{12}$$

Moreover, given $A \in S(n)$ a symmetric matrix there exist $O \in O(n)$ and $D \in D(n)$ such that $A = ODO^{-1}$. Thus we have

$$\int_{Q} \langle Az, z \rangle \, dz = \int_{Q} \langle (ODO^{-1})z, z \rangle \, dz = \int_{Q} \langle (DO^{-1})z, O^{-1}z \rangle \, dz = \int_{O^{-1}(Q)} \langle Dy, y \rangle \, dy$$

$$= \int_{O^{-1}(Q)} \sum_{i=1}^{n} \lambda_{i} y_{i}^{2} \, dy = \sum_{i=1}^{n} \lambda_{i} \int_{O^{-1}(Q)} y_{i}^{2} \, dy = \frac{1}{12} \sum_{i=1}^{n} \lambda_{i}$$
(27)

Then we can estimate from below $\beta(n, 2, p)$ using (26) and (27), proving (22). Indeed, setting $\nabla^2 f(0) = A$ we have

$$\int_{Q} \langle Ax, x \rangle = \frac{\Delta f(0)}{12}$$

Moreover setting $\overline{y} = \min y_i$, we have

$$\frac{1}{2^{p}} \int_{Q} \left| \langle Ax, x \rangle - \int_{Q} \langle Ay, y \rangle \right|^{p} dx = \frac{1}{2^{p}} \int_{Q} \left| \langle (DO^{-1})x, O^{-1}x \rangle - \frac{\Delta f(0)}{12} \right|^{p} dx$$
$$= \frac{1}{2^{p}} \int_{Q} \left| \sum \lambda_{i} y_{i}^{2} - \frac{\Delta f(0)}{12} \right|^{p} dx \ge \frac{1}{2^{p}} \int_{O^{-1}(Q)} \left| \sum \lambda_{i} \overline{y}^{2} - \frac{\Delta f(0)}{12} \right|^{p} dx$$
$$= \frac{1}{2^{p}} |\Delta f(0)|^{p} \int_{O^{-1}(Q)} \left| \overline{y} - \frac{1}{12} \right|^{p} dx = C_{n,p} |\Delta f(0)|^{p}. \quad (28)$$

4 A characterization of W^{*m*,*p*}

Proof of Theorem 1 We divide the proof in three steps, proving first the limsup and liminf inequalities in (7) and then the validy of (6).

As a starting point we fix a bounded open set $\Omega \subset \mathbb{R}^n$ and $f \in W^{m,p}(\Omega)$. Given $\sigma > 0$, there exists a function $g \in C_c^{\infty}(\Omega)$ such that $||f - g||_{W^{m,p}(\Omega)} < \sigma$ and we choose $\varepsilon > 0$ such that

$$|\nabla^m g(x) - \nabla^m g(y)| \le \sigma, \qquad \forall x, y, \ |x - y| \le \frac{\sqrt{n\varepsilon}}{2}$$
(29)

Let us take now a family $\mathcal{G}_{\varepsilon}$ of disjoint open cubes Q' of side length ε and arbitrary orientation and let us denote by $\mathcal{G}'_{\varepsilon}$ the subfamily of $\mathcal{G}_{\varepsilon}$ made by all cubes $Q' \in \mathcal{G}_{\varepsilon}$ such that $Q' \subset \Omega$.

Step1 (limsup inequality).

We are going to show that

$$\limsup_{\varepsilon \to 0^+} K_{\varepsilon}(f, m, p) \le \beta(n, m, p) \int_{\mathbb{R}^n} |\nabla^m f|^p \, dx$$

We may assume, without loss of generality, that $|\nabla^m f| \in L^p(\Omega)$. Using (14) and the linearity of $P_{Q'}^{m-1}[f]$, for any $Q' \in \mathcal{G}'_{\varepsilon}$ we have:

$$\int_{Q'} \left| f - P_{Q'}^{m-1}[f] \right|^p dx \le (1+\delta)^p \int_{Q'} \left| g - P_{Q'}^{m-1}[g] \right|^p dx + M_{\delta} \int_{Q'} \left| (f-g) - P_{Q'}^{m-1}[f-g] \right|^p dx$$
(30)

where $M_{\delta} = (1 + \delta)^p / \delta^p$.

We recall the notation in Section 2, so denoting by x_0 the center of the cube Q' and for all $x \in Q'$ we write

$$g(x) = T_{x_0}^m g(x) + R^m g(x, x_0)$$

where $|R^m g(x, y)| < (n^{\frac{m}{2}} \sigma \varepsilon^m)/2^m = C_1 \sigma \varepsilon^m$.

We now estimate the two terms in (30). Let us focus on the first addendum: using again (14) we have

$$\begin{split} &\int_{Q'} \left| g - P_{Q'}^{m-1}[g] \right|^{p} dx \\ &= \int_{Q'} \left| \frac{1}{m!} \nabla^{m} g(x_{0}) \cdot (x - x_{0})^{m} + R^{m} g(x, x_{0}) - \left[\int_{Q'} \frac{1}{m!} \nabla^{m} g(x_{0}) \cdot (y - x_{0})^{m} dy + \int_{Q'} R^{m} g(y, x_{0}) dy \right] \right|^{p} dx \\ &\leq (1 + \delta)^{p} \frac{1}{(m!)^{p}} \int_{Q'} \left| \nabla^{m} g(x_{0}) \cdot (x - x_{0})^{m} - \int_{Q'} \nabla^{m} g(x_{0}) \cdot (y - x_{0})^{m} dy \right|^{p} dx + 2^{p} M_{\delta} \int_{Q'} \left| R^{m} g(x, x_{0}) \right|^{p} dx \\ &\leq (1 + \delta)^{p} \beta(n, m, p) \varepsilon^{mp} |\nabla^{m} g(x_{0})|^{p} + C_{2} M_{\delta} \sigma^{p} \varepsilon^{mp}. \end{split}$$

$$(31)$$

Moreover, applying again (14) and (29) we have

ľ

$$\nabla^m g(x_0)|^p \le (1+\delta)^p \oint_{Q'} \left|\nabla^m g(x)\right|^p \, dx + C_3 M_\delta \sigma^p.$$

Hence

$$\int_{Q'} \left| g - P_{Q'}^{m-1}[g] \right|^p dx \le \beta(n,m,p)(1+\delta)^{2p} \varepsilon^{mp} \int_{Q'} \left| \nabla^m g(x) \right|^p dx + C_4 M_\delta \varepsilon^{mp} \sigma^p.$$
(32)

Let us focus now on the second addendum in (30). By Poincaré inequality in $W^{m,p}$ (see Theorem 2), we have

$$\int_{Q'} \left| (f-g) - P_{Q'}^{m-1} [f-g] \right|^p dx \le C_p \varepsilon^{mp-n} \int_{Q'} |\nabla^m (f-g)|^p dx \tag{33}$$

where C_p is the Poincaré constant for cubes.

Observe now that $\sharp(\mathcal{G}'_{\varepsilon}) \leq \varepsilon^{-n}|\Omega|$ and set $\Omega_{\varepsilon} = \{x \in \Omega : \operatorname{dist}(x, \partial\Omega) > \varepsilon \sqrt{n}\}$. Using (30),(32) and (33) we have

$$\begin{split} \varepsilon^{n-mp} & \sum_{Q' \in \mathcal{G}_{\varepsilon}} \int_{Q'} \left| f - P_{Q'}^{m-1}[f] \right|^{p} dx \\ &\leq \varepsilon^{n-mp} \sum_{Q' \in \mathcal{G}_{\varepsilon}'} \int_{Q'} \left| f - P_{Q'}^{m-1}[f] \right|^{p} dx + C_{6} \sum_{Q' \in \mathcal{G}_{\varepsilon} \setminus \mathcal{G}_{\varepsilon}'} \int_{Q'} |\nabla^{m} f|^{p} \\ &\leq (1+\delta)^{p} \varepsilon^{n-mp} \sum_{Q' \in \mathcal{G}_{\varepsilon}'} \int_{Q'} \left| g - P_{Q'}^{m-1}[g] \right|^{p} dx + C_{p} M_{\delta} \int_{\Omega} |\nabla^{m} (f-g)|^{p} + C_{6} \int_{\mathbb{R}^{n} \setminus \Omega_{\varepsilon}} |\nabla^{m} f|^{p} dx \\ &\leq (1+\delta)^{3p} \beta(n,m,p) \sum_{Q' \in \mathcal{G}_{\varepsilon}'} \int_{Q'} |\nabla^{m} g(x)|^{p} dx + C_{4} M_{\delta} \varepsilon^{n} \sigma^{p} + C_{p} M_{\delta} \sigma^{p} + C_{6} \int_{\mathbb{R}^{n} \setminus \Omega_{\varepsilon}} |\nabla^{m} f|^{p} dx \\ &\leq (1+\delta)^{3p} \beta(n,m,p) \int_{\Omega} |\nabla^{m} f(x)|^{p} dx + C_{4} M_{\delta} \varepsilon^{n} \sigma^{p} + C_{p} M_{\delta} \sigma^{p} + C_{6} \int_{\mathbb{R}^{n} \setminus \Omega_{\varepsilon}} |\nabla^{m} f|^{p} dx \\ &\leq (1+\delta)^{3p} \beta(n,m,p) \int_{\Omega} |\nabla^{m} f(x)|^{p} dx + C_{4} M_{\delta} \varepsilon^{n} \sigma^{p} + C_{p} M_{\delta} \sigma^{p} + C_{6} \int_{\mathbb{R}^{n} \setminus \Omega_{\varepsilon}} |\nabla^{m} f|^{p} dx \\ &\leq (1+\delta)^{3p} \beta(n,m,p) \int_{\Omega} |\nabla^{m} f(x)|^{p} dx + C_{4} M_{\delta} \varepsilon^{n} \sigma^{p} + C_{p} M_{\delta} \sigma^{p} + C_{6} \int_{\mathbb{R}^{n} \setminus \Omega_{\varepsilon}} |\nabla^{m} f|^{p} dx \\ &\leq (1+\delta)^{3p} \beta(n,m,p) \int_{\Omega} |\nabla^{m} f(x)|^{p} dx + C_{4} M_{\delta} \varepsilon^{n} \sigma^{p} + C_{p} M_{\delta} \sigma^{p} + C_{6} \int_{\mathbb{R}^{n} \setminus \Omega_{\varepsilon}} |\nabla^{m} f|^{p} dx \\ &\leq (1+\delta)^{3p} \beta(n,m,p) \int_{\Omega} |\nabla^{m} f(x)|^{p} dx + C_{4} M_{\delta} \varepsilon^{n} \sigma^{p} + C_{p} M_{\delta} \sigma^{p} + C_{6} \int_{\mathbb{R}^{n} \setminus \Omega_{\varepsilon}} |\nabla^{m} f|^{p} dx \\ &\leq (1+\delta)^{3p} \beta(n,m,p) \int_{\Omega} |\nabla^{m} f(x)|^{p} dx + C_{4} M_{\delta} \varepsilon^{n} \sigma^{p} + C_{p} M_{\delta} \sigma^{p} + C_{6} \int_{\mathbb{R}^{n} \setminus \Omega_{\varepsilon}} |\nabla^{m} f|^{p} dx \\ &\leq (1+\delta)^{3p} \beta(n,m,p) \int_{\Omega} |\nabla^{m} f(x)|^{p} dx + C_{6} \int_{\mathbb{R}^{n} \mathbb{R}^{n} dx \\ &\leq (1+\delta)^{3p} \beta(n,m,p) \int_{\Omega} |\nabla^{m} f(x)|^{p} dx + C_{6} \int_{\mathbb{R}^{n} \mathbb{R}^{n} dx \\ &\leq (1+\delta)^{3p} \delta(n,p) \\ &\leq$$

where the constants depend only on *n*, *p* and $|\Omega|$. Then, taking the supremum over all the families of cubes $\mathcal{G}_{\varepsilon}$, and then letting first $\varepsilon \to 0^+$, $\sigma \to 0$, $\delta \to 0$ and $\Omega \uparrow \mathbb{R}^n$ we conclude.

Step2 (liminf inequality). We fix $\Omega \subset \mathbb{R}^n$, we assume again that $f \in W_{loc}^{m,p}(\Omega)$ and we fix $\sigma > 0$ and $g \in C_c^{\infty}(\Omega)$ as in the previous Step. We prove that

$$\liminf_{\varepsilon \to 0^+} K_{\varepsilon}(f, m, p) \ge \beta(n, m, p) \int_{\mathbb{R}^n} |\nabla^m f|^p \, dx.$$
(35)

So, for $\eta \in (0, 1)$ we consider the set

$$U_{\eta} = \{ x \in \Omega : |\nabla^m g(x)| > \eta \}$$

With a clever use of Lemma 2.95 of [3] (as in Proposition 3.6 of [15]) it is possible to find *k* sufficiently small pairwise disjoint open sets $S_i \subset \mathbb{S}^{N-1}$ covering \mathbb{S}^{N-1} . Precisely,

$$\left| \bigcup_{j=1}^{k} \bar{S}_{j} = \mathbb{S}^{N-1} \right|$$

diam $S_{j} < \eta$ for all $j = 1...k$
$$\left| \bigcup_{j=1}^{k} \left\{ x \in U_{\eta} : \frac{\nabla^{m} g(x)}{|\nabla^{m} g(x)|} \in \partial S_{j} \right\} \right| = 0$$

For all $j = 1, \ldots, k$ we denote

$$A_j = \left\{ x \in U_\eta : \frac{\nabla^m g(x)}{|\nabla^m g(x)|} \in S_j \right\},\,$$

which are open sets with the property

$$\left| U_{\eta} \setminus \bigcup_{j=1}^{k} A_{j} \right| = 0.$$
(36)

For $\varepsilon > 0$ we consider the family $\mathcal{F}_{\varepsilon}$ of all open cubes with faces parallel to the coordinate planes, side length ε , centered at all points of the form εv , with $v \in \mathbb{Z}^n$. Then for all j = 1, ..., k we choose $M_j \in S_j$ and we denote by $R_j \in SO(n)$ a rotation that takes e_1 into M_j .

Note that in this way, denoting by x' the center of the cube $Q' \in \mathcal{F}_{\varepsilon}$, we have (see (21)),

$$\frac{1}{(m!)^p} \int_{R_j(Q')} \left| (x - x')^m \cdot \bar{\nu} - \int_{R_j(Q')} (y - x')^m \cdot \bar{\nu} \, dy \right|^p dx = \beta(n, m, p) \cdot \varepsilon^{n + mp}$$

For all j = 1, ..., k we denote by $R_j(Q_{h,j}), Q_{h,j} \in \mathcal{F}_{\varepsilon}, h = 1, ..., m_j$, the elements of $\mathcal{G}_{\varepsilon}$ contained in A_j . By (36) there exists $\varepsilon(\sigma, \eta)$ such that if $\varepsilon < \varepsilon(\sigma, \eta)$ then

$$U_{\eta} \setminus \bigcup_{j=1}^{k} \bigcup_{h=1}^{m_{j}} \mathcal{R}_{j}(Q_{h,j}) \leq \eta^{p}.$$

We denote by $x_{h,j}$ the center of the cube $\mathcal{R}_i(Q_{h,j})$ and we argue as in Step 1. Indeed we have

$$\begin{split} &\int_{R_{j}(Q_{h,j})} \left| g - P_{R_{j}(Q_{h,j})}^{m-1} [g] \right|^{p} dx \\ &\geq \frac{1}{(1+\delta)^{p}} \frac{1}{(m!)^{p}} \int_{R_{j}(Q_{h,j})} \left| \nabla^{m} g(x_{h,j}) \cdot (x - x_{h,j})^{m} - \int_{R_{j}(Q_{h,j})} \nabla^{m} g(x_{h,j}) \cdot (x - x_{h,j})^{m} \right|^{p} dx \\ &\quad - \frac{2^{p}}{\delta^{p}} \int_{R_{j}(Q_{h,j})} \left| R^{m} g(x, x_{h,j}) \right|^{p} dx \\ &\geq \frac{1}{(1+\delta)^{2p}} \frac{|\nabla^{m} g(x_{h,j})|^{p}}{(m!)^{p}} \int_{R_{j}(Q_{h,j})} \left| M_{j} \cdot (x - x_{h,j})^{m} - \int_{R_{j}(Q_{h,j})} M_{j} \cdot (x - x_{h,j})^{m} \right|^{p} dx \\ &\quad - \frac{2^{p}}{\delta^{p}} \frac{|\nabla^{m} g(x_{h,j})|^{p}}{(m!)^{p}} \int_{R_{j}(Q_{h,j})} \left| (\nabla^{m} g(x_{h,j}) - M_{j}) \cdot (x - x_{h,j})^{m} - \int_{R_{j}(Q_{h,j})} (\nabla^{m} g(x_{h,j}) - M_{j}) \cdot (x - x_{h,j})^{m} \right|^{p} dx \\ &\quad - C_{7} \frac{\sigma^{p} \varepsilon^{mp}}{\delta^{p}} \\ &\geq \frac{\varepsilon^{mp} \beta(n,m,p) |\nabla^{m} g(x_{h,j})|^{p}}{(1+\delta)^{2p}} - \frac{C_{8} \eta^{p} \varepsilon^{mp}}{\delta^{p}} ||\nabla^{m} g||_{L^{\infty}}^{p} - C_{7} \frac{\sigma^{p} \varepsilon^{mp}}{\delta^{p}}. \end{split}$$

$$\tag{37}$$

Now, adding on j and h the previous inequality, recalling (36), we have

$$\begin{split} \varepsilon^{n-mp} & \sum_{R_j(\mathcal{Q}_{h,j})\in\mathcal{G}_{\varepsilon}^r} \int_{R_j(\mathcal{Q}_{h,j})} \left| g - P_{\mathcal{Q}'}^{m-1}[g] \right|^p \, dx \\ & \geq \varepsilon^{n-mp} \sum_{j=1}^k \sum_{h=1}^{m_j} \frac{\varepsilon^{mp} \beta(n,m,p) |\nabla^m g(x_{h,j})|^p}{(1+\delta)^{2p}} - \frac{C_8 \eta^p \varepsilon^{mp}}{\delta^p} \|\nabla^m g\|_{L^{\infty}}^p - C_7 \frac{\sigma^p \varepsilon^{mp}}{\delta^p} \\ & \geq \frac{\beta(n,m,p)}{(1+\delta)^{3p}} \sum_{j=1}^k \sum_{h=1}^{m_j} \int_{R_j(\mathcal{Q}_{h,j})} |\nabla^m g|^p - \frac{C_8 \eta^p \varepsilon^n}{\delta^p} \|\nabla^m g\|_{L^{\infty}}^p - C_7 \frac{\sigma^p \varepsilon^n}{\delta^p} \\ & \geq \frac{\beta(n,m,p)}{(1+\delta)^{3p}} \int_{\Omega} |\nabla^m g|^p - \frac{C\eta^p}{\delta^p} (1+\|\nabla^m g\|_{L^{\infty}}^p) - C \frac{\sigma^p}{\delta^p} \\ & \geq \frac{\beta(n,m,p)}{(1+\delta)^{4p}} \int_{\Omega} |\nabla^m f|^p - \frac{C\eta^p}{\delta^p} (1+\|\nabla^m g\|_{L^{\infty}}^p) - C \frac{\sigma^p}{\delta^p}, \end{split}$$

where the constants may change from line to line and depend only on p, n and $|\Omega|$. We conclude choosing η small enough and consequently ε small,

$$\begin{split} \varepsilon^{n-mp} \sum_{Q' \in \mathcal{G}_{\varepsilon}} \int_{Q'} \left| f - P_{Q'}^{m-1}[f] \right|^p dx \\ &\geq \frac{1}{(1+\delta)^p} \varepsilon^{n-mp} \sum_{Q' \in \mathcal{G}_{\varepsilon}} \int_{Q'} \left| g - P_{Q'}^{m-1}[g] \right|^p dx - \frac{1}{\delta^p} \int_{\Omega} |\nabla^m (f-g)|^p \\ &\geq \frac{\beta(n,m,p)}{(1+\delta)^{5p}} \int_{\Omega} |\nabla^m f|^p - \frac{C\sigma^p}{\delta^p}, \end{split}$$

where again *C* may change from line to line and depend on *p*, *n* and $|\Omega|$. To conclude we take the supremum over all the families $\mathcal{G}_{\varepsilon}$ and let first $\varepsilon \to 0$, $\sigma \to 0$, $\delta \to 0$ and $\Omega \uparrow \mathbb{R}^n$, proving (35).

Step3 (proof of (6)) Now let p > 1, $f \in W_{loc}^{m-1,p}(\mathbb{R}^n)$ and $\liminf_{\varepsilon \to 0} K_{\varepsilon}(f, m, p) < \infty$. We fix $\sigma > 0$, $\Omega \subset \mathbb{R}^n$ and observe that there exist r > 0 and a finite family of pairwise disjoint

open cubes $Q(x_i, r)$ such that

$$\left|\Omega \setminus \bigcup_{i=1}^{m} Q(x_i, r)\right| < \sigma.$$
(38)

$$\nabla^m f(x) - \nabla^m f(y)| < \sigma \tag{39}$$

Moreover we fix $0 < \varepsilon < r$ and we set $f_{\varepsilon}(x) = (\varrho_{\varepsilon} * f)(x)$, where ϱ is a standard mollifier with compact support in the unit cube Q and $\varrho_{\varepsilon}(x) = \varepsilon^{-n} \varrho(x/\varepsilon)$.

For every $Q(x_i, r)$ we consider a family $\mathcal{H}_{\varepsilon}$ of pairwise disjoint cubes $Q_j = z_j + \varepsilon Q \subset Q(x_i, r)$, for j = 1, ..., k.

We compute now

$$\begin{split} |\nabla^m f_{\varepsilon}(z_j)|^p &= \left| \int_{\mathbb{R}^n} f(y) \nabla^m \rho_{\varepsilon}(z_j - y) \, dy \right|^p = \left| \int_{\mathbb{R}^n} \left(f(y) - P_{Q_j}^{m-1}[f](y) \right) \nabla^m \rho_{\varepsilon}(z_j - y) \, dy \right|^p \\ &\leq \varepsilon^{(-m-n)p+np-n} \int_{Q_j} \left| f(y) - P_{Q_j}^{m-1}[f](y) \right|^p \, dy = \varepsilon^{-mp} \int_{Q_j} \left| f(y) - P_{Q_j}^{m-1}[f](y) \right|^p \, dy. \end{split}$$

Moreover, by (29) and (14), we have

$$|\nabla^m f_{\varepsilon}(z_j)|^p \ge \frac{1}{1+\delta} \varepsilon^{-n} \int_{Q_j} |\nabla^m f_{\varepsilon}(x)|^p \, dx - \frac{C}{\delta^p} \sigma^p$$

Then

$$\frac{1}{1+\delta} \int_{Q_j} |\nabla^m f_{\varepsilon}(x)|^p \, dx \le \varepsilon^{n-mp} \oint_{Q_j} \left| f(y) - P_{Q_j}^{m-1}[f](y) \right|^p \, dy + \frac{C}{\delta^p} \sigma^p \varepsilon^n.$$

Summing up all the cubes in $\mathcal{H}_{\varepsilon}$, we obtain

$$\frac{1}{1+\delta} \int_{Q(x_i,r)} |\nabla^m f_{\varepsilon}(x)|^p dx \\
\leq \frac{1}{1+\delta} \sum_{j=1}^k \int_{Q_j} |\nabla^m f_{\varepsilon}(x)|^p dx \leq \varepsilon^{n-mp} \sum_{j=1}^k \int_{Q_j} \left| f(y) - P_{Q_j}^{m-1}[f](y) \right|^p dy + \frac{C}{\delta^p} \sigma^p \varepsilon^n \\
\leq \varepsilon^{n-mp} \sum_{j=1}^k \int_{Q_j} \left| f(y) - P_{Q_j}^{m-1}[f](y) \right|^p dy + \frac{C}{\delta^p} \sigma^p r^n, \quad (40)$$

where the last inequality follows since $k\varepsilon^n \leq r^n$. Taking the supremum with respect to all families $\mathcal{H}_{\varepsilon}$ and the limit fixed with respect to ε , we have

$$\frac{1}{1+\delta}\int_{Q(x_i,r)} |\nabla^m f(x)|^p \, dx \leq \liminf_{\varepsilon \to 0} K_\varepsilon(f,m,p,Q(x_i,r)) + \frac{C}{\delta^p}\sigma^p r^n.$$

Summing up with respect to i and using (38) we have

$$\frac{1}{1+\delta} \int_{\Omega} |\nabla^m f(x)|^p \, dx \le \liminf_{\varepsilon \to 0} K_{\varepsilon}(f,m,p,\Omega) + \frac{C}{\delta^p} \sigma^p |\Omega|$$

Letting $\sigma \to 0$, $\delta \to 0$ and $\Omega \uparrow \mathbb{R}^n$, we conclude.

Remark 2 We observe that Theorem 7 hold also in an open set Ω with the same proof replacing $K_{\varepsilon}(f, m, p)$ by the quantity $K_{\varepsilon}(f, m, p, \Omega)$ defined in (18).

Corollary 6 Let p > 1, n > mp, $p^* = \frac{np}{n-mp}$, $\Omega \subset \mathbb{R}^n$ and $\mathcal{G}_{\varepsilon}$ a pairwise disjoint family of translations Q' of εQ contained in Ω . Then, the following three statements are equivalent:

i)
$$f \in W^{m,p}(\Omega);$$

ii)

iii)

$$\sup_{\mathcal{G}_{\varepsilon}} \sum_{Q' \in \mathcal{G}_{\varepsilon}} \varepsilon^{n-mp} \oint_{Q'} \left| f - P_{Q'}^{m-1}[f] \right|^p < +\infty;$$

$$\sup_{\mathcal{G}_{\varepsilon}} \sum_{Q' \in \mathcal{G}_{\varepsilon}} \|f - P_{Q'}^{m-1}[f]\|_{L^{p^{\star}}(Q')}^{p} < +\infty$$

Proof In this proof the constant C may change from line to line.

We prove that $iii) \Rightarrow ii$). By Hölder's inequality it holds

$$\varepsilon^{n-mp} \oint_{Q'} \left| f - P_{Q'}^{m-1}[f] \right|^p \, dx \le \frac{\varepsilon^{n-mp}}{\varepsilon^n} \left(\int_{Q'} \left| f - P_{Q'}^{m-1}[f] \right|^{\frac{np}{n-mp}} \right)^{\frac{n-mp}{n}} |Q'|^{\frac{mp}{n}} = \left\| f - P_{Q'}^{m-1}[f] \right\|_{L^{p^*}(Q')}^p$$
(41)

Summing over all sets Q' in $\mathcal{G}_{\varepsilon}$ and passing to the supremum, we conclude.

We prove that i) \Rightarrow *iii*). Using the Sobolev-Gagliardo-Nirenberg inequality (11), we obtain that there exists a constant C = C(n, m, p) such that

$$\left\| f - P_{Q'}^{m-1}[f] \right\|_{L^{p^{*}}(Q')} \le C \left\| \nabla^{m} f \right\|_{L^{p}}.$$
(42)

Summing over Q' in $\mathcal{G}_{\varepsilon}$ and passing to the supremum over all families $\mathcal{G}_{\varepsilon}$ the proof is completed.

The equivalence i) \Leftrightarrow ii) is proved in [9].

5 A characterization of higher order bounded variation

In this section we deal with the case p = 1. This case is not included in Theorem 1 since (6) hold only for p > 1.

The case m = 1 was treated in [16]. They proved that (see Proposition 2.4 of [16]) if $f \in L^1_{loc}(\mathbb{R}^n)$ then

$$f \in BV(\mathbb{R}^n) \iff \liminf_{\varepsilon \to 0} K_{\varepsilon}(f, 1, 1) < +\infty$$
 (43)

Precisely, they prove that for $f \in L^1_{loc}(\mathbb{R}^n)$ it holds

$$\frac{1}{4} |\nabla f|(\mathbb{R}^n) \le \liminf_{\varepsilon \to 0^+} K_{\varepsilon}(f, 1, 1) \le \limsup_{\varepsilon \to 0^+} K_{\varepsilon}(f, 1, 1) \le \frac{1}{2} |\nabla f|(\mathbb{R}^n),$$

where the total variation of f in $\Omega \subset \mathbb{R}^n$, possibly equal to $+\infty$, is defined by setting

$$|\nabla f|(\Omega) := \sup\left\{\int_{\Omega} f(x) \operatorname{div} \varphi(x) \, dx : \varphi \in C_c^1(\Omega), \ \|\varphi\|_{\infty} \le 1\right\}$$

We prove a similar characterization for the case m > 1. Now an equivalence similar to (43) involve the space $BV^m(\mathbb{R}^n)$ of functions of m-th order bounded variation (see Section 2).

Precisely, we prove the following

Proposition 7 Let
$$f \in W_{loc}^{m-1,1}(\mathbb{R}^n)$$
. Then

$$f \in BV^m(\mathbb{R}^n) \iff \liminf_{\varepsilon \to 0} K_{\varepsilon}(f, m, 1) < +\infty$$

Moreover, there is a positive constants C, independent of f, such that

$$|\nabla^m f|(\mathbb{R}^n) \le \liminf_{\varepsilon \to 0^+} K_{\varepsilon}(f, m, 1) \le \limsup_{\varepsilon \to 0^+} K_{\varepsilon}(f, m, 1) \le C |\nabla^m f|(\mathbb{R}^n).$$
(44)

Proof To prove the first inequality in (44) we argue as in Step 3 of Theorem 1. In particular, we have

$$\frac{1}{1+\delta} \int_{Q(x_i,r)} |\nabla^m f_{\varepsilon}(x)| \, dx \le \varepsilon^{n-m} \sum_{j=1}^k \oint_{Q_j} \left| f(y) - P_{Q_j}^{m-1}[f](y) \right| \, dy + \frac{C}{\delta} \sigma r^n, \tag{45}$$

Taking the supremum with respect to all families $\mathcal{H}_{\varepsilon}$ and the limit with respect to ε , we have

$$\frac{1}{1+\delta}\liminf_{\varepsilon\to 0}\int_{Q(x_i,r)}|\nabla^m f_{\varepsilon}(x)|\,dx\leq \liminf_{\varepsilon\to 0}K_{\varepsilon}(f,m,Q(x_i,r))+\frac{C}{\delta}\sigma r^n.$$

By the compactness in BV^m (Proposition 4), we get

$$\frac{1}{1+\delta} |\nabla^m f|(Q(x_i, r)) \, dx \le \liminf_{\varepsilon \to 0} K_\varepsilon(f, m, Q(x_i, r)) + \frac{C}{\delta} \sigma r^n$$

Summing up with respect to i and using (38) we obtain

$$\frac{1}{1+\delta} |\nabla^m f|(\Omega) \, dx \leq \liminf_{\varepsilon \to 0} K_\varepsilon(f, m, \Omega) + \frac{C}{\delta} \sigma r^n |\Omega|$$

We conclude letting $\sigma \to 0, \delta \to 0, \Omega \uparrow \mathbb{R}^n$.

In order to prove the estimate from above in (44), it is is sufficient to apply the Poincare' inequality in BV^m (see Section 2).

Corollary 8 Let n > m, $1^* = \frac{n}{n-m}$, $\Omega \subset \mathbb{R}^n$ and $\mathcal{G}_{\varepsilon}$ is any pairwise disjoint family of translations Q' of εQ contained in Ω . Then, the following three statements are equivalent:

i)
$$f \in BV^m(\Omega)$$
;
ii)

$$\sup_{\mathcal{G}_{\varepsilon}} \sum_{\mathcal{Q}' \in \mathcal{G}_{\varepsilon}} \varepsilon^{n-m} \oint_{\mathcal{Q}'} \left| f - P_{\mathcal{Q}'}^{m-1}[f] \right| < +\infty$$

iii)

$$\sup_{\mathcal{G}_{\varepsilon}} \sum_{\mathcal{Q}' \in \mathcal{G}_{\varepsilon}} \|f - P_{\mathcal{Q}'}^{m-1}[f]\|_{L^{1^{\star}}(\mathcal{Q}')} < +\infty$$

Proof We prove that iii) \Rightarrow ii). By Hölder's inequality it holds

$$\varepsilon^{n-m} \int_{Q'} \left| f - P_{Q'}^{m-1}[f] \right| \, dx \le \left| f - P_{Q'}^{m-1}[f] \right|_{L^{1^*}(Q')}. \tag{46}$$

The conclusion follows by summing over all sets Q' in $\mathcal{G}_{\varepsilon}$.

We prove that i) \Rightarrow *iii*). By using (13) there exists a constant C = C(n.m) such that

$$\left\| f - P_{Q'}^{m-1}[f] \right\|_{L^{1^{\star}}(Q')} \le C \left\| \nabla^m f \right\|_{L^p}(Q')$$
(47)

The conclusion follows again by summing over all sets O' in $\mathcal{G}_{\varepsilon}$.

The equivalence i) \Leftrightarrow ii) is proved in [9].

Declarations

- Funding (The authors are members of Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of INdAM. The research of S.G.L.B. has been funded by PRIN Project 2017AYM8XW and the research of R.S. has been funded by PRIN Project 2017JFFHSH.)
- Conflict of interest/Competing interests (There is no conflict of interest)
- Ethics approval (Not applicable)
- Consent to participate (Not applicable)
- Consent for publication (The Authors consent for publication)
- Availability of data and materials (Not applicable)
- Code availability (Not applicable)
- Authors' contributions (The Authors contributed equally to this work.)

References

- [1] L. AMBROSIO, J. BOURGAIN, H. BREZIS, A. FIGALLI, BMO-type norms related to the perimeter of sets, Comm. Pure Appl. Math., 69 (2016), 1062–1086.
- [2] L. AMBROSIO, G. COMI, Anisotropic Surface Measures as Limits of Volume Fractions. Current Research in Nonlinear Analysis 135 (2018), 1-32.
- [3] L. AMBROSIO, N. FUSCO, D. PALLARA, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
- [4] B. BOJARSKI, L. IHNATSYEVA, J. KINNUNEN, How to recognize polinomials in higher order Sobolev spaces, Math. Scand.112 (2013),161-181.
- [5] R. Borghol, Some properties of Sobolev spaces, Asymptot. Anal. 51 (2007), no.3-4, 303-318.
- [6] J. BOURGAIN, H. BREZIS, P. MIRONESCU, Another look at Sobolev spaces, Optimal Control and Partial Differential Equations, IOS Press, Amsterdam 2001, 439-455.
- [7] J. BOURGAIN, H. BREZIS, P. MIRONESCU, A new function space and applications, Journal of the EMS, 17 (2015), 2083–2101.

 \square

- 18 A BMO-type characterization of higher order Sobolev spaces
- [8] H. BREZIS, How to recognize constant functions. A connection with Sobolev spaces., (Russian) Uspekhi Mat. Nauk 57 (2002), no. 4(346), 59–74; translation in Russian Math. Surveys 57 (2002), no. 4, 693–708.
- [9] A. BRUDNYI, Y. BRUDNYI, On the Banach structure of multivariate BV spaces, Dissertationes Math. 548 (2020), 52 pp.
- [10] G. DI FRATTA, A. FIORENZA, BMO-type seminorms from Escher-type tessellations, J. Funct. Anal. 279 (2020), 108556.
- [11] F. DEMENGEL, R. TEMAM, *Convex functions of a measure and applications*, Indiana University Mathematical Journal, vol. 33 n. 5 (1984), pp. 673-709.
- [12] F. FARRONI, N. FUSCO, S. GUARINO LO BIANCO, R. SCHIATTARELLA, A formula for the anisotropic total variation of BV functions, Journal of Functional Analysis 278 (9) (2020), 108451.
- [13] F. FARRONI, S. GUARINO LO BIANCO, R. SCHIATTARELLA, BMO-type seminorms generating Sobolev functions, J. Math. Anal. Appl. 491 (2020), no.1, 124298, 15pp.
- [14] M. FUCHS, J. MULLER, A higher order TV-type variational problem related to the denoising and inpainting of images, Nonlinear Anal. 154 (2017), 122-147.
- [15] N. FUSCO, G. MOSCARIELLO, C. SBORDONE, A formula for the total variation of SBV functions. J. Funct. Anal. 270 (2016), no. 1, 419-446.
- [16] N. FUSCO, G. MOSCARIELLO, C. SBORDONE, BMO-type seminorms and Sobolev functions. ESAIM Control Optim. Calc. Var. 24 (2018), no. 2, 835-847.
- [17] R.L. JERRARD, H.M. SONER, Functions of bounded higher variation, Indiana Univ. Math. J., 51 (2002), pp. 645-677, 10.1512/iumj.2002.51.2229
- [18] G. LEONI A first course in Sobolev spaces. Second Edition. Graduate Studies in Mathematics, 181. American Mathematical Society, Providence, RI (2017).
- [19] MARCUS, Exceptional sets with respect to Lebesgue differentiation of functions in Sobolev spaces, Ann. Sc. Norm. Sup. Pisa, Cl. Sc., 1, no 1-2 (1974), 113-130.