A BMO-type characterization of higher order Sobolev spaces

Serena Guarino Lo Bianco ${ }^{1}$ and Roberta Schiattarella ${ }^{2 * *}$
${ }^{1 *}$ Dipartimento di Agraria, Università di Napoli "Federico II", via Università 100, Portici (NA), 80055, Italy.
${ }^{2}$ Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università di Napoli "Federico II", Via Cintia, Napoli, 80126, Italy.
*Corresponding author(s). E-mail(s): roberta.schiattarella@unina.it; Contributing authors: serena.guarinolobianco@unina.it;
${ }^{\dagger}$ These authors contributed equally to this work.

Abstract

We obtain a new characterization of the higher Sobolev space $\boldsymbol{W}^{\boldsymbol{m}, \boldsymbol{p}}\left(\mathbb{R}^{n}\right), \boldsymbol{m} \in \mathbb{N}$ and $\boldsymbol{p} \in(1,+\infty)$ and of the space $\boldsymbol{B} \boldsymbol{V}^{\boldsymbol{m}}$, the space of functions of higher order bounded variation. The characterizations are in term of BMO-type seminorms. The results unify and substantially extend previous results in [16] and [13].

Keywords: Higher order Sobolev spaces, Higher order bounded variation, BMO-type seminorms

MSC Classification: 46E35, 26B30

1 Introduction

Let $W_{\text {loc }}^{m, p}\left(\mathbb{R}^{n}\right)(m \in \mathbb{N}, 1 \leq p<\infty)$, denote the Sobolev space of functions belonging to $L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{n}\right)$ whose distribution derivatives up to order m belong to $L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{n}\right)$.

In [4], the Authors studied a characterization of $W^{m, p}$ based on J. Bourgain, H. Brezis and P. Mironescu's approach introduced in [6] (see also [8]). In particular they prove that if $f \in W^{m-1, p}(\Omega), 1<p<\infty$ and Ω is a smooth bounded domain in \mathbb{R}^{n}
then f belongs to $W^{m, p}(\Omega)$ if and only if,

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \int_{\Omega} \int_{\Omega} \frac{\left|R^{m-1} f(x, y)\right|^{p}}{|x-y|^{m p}} \rho_{\varepsilon}(|x-y|) d x d y<\infty \tag{1}
\end{equation*}
$$

where ρ_{ε}, with $\varepsilon>0$, are radial mollifiers and $R^{m-1} f$ is the Taylor ($m-1$) remainder of f. For $p=1$, the condition (1) describes $B V^{m}$.

Here we say that a $W^{m-1,1}(\Omega)$ is of m-th order bounded variation $B V^{m}$ if its m th order partial derivatives in the sense of distributions are finite Radon measures. Spaces of this kind have been studied in [11] as applications in mathematical imaging in the setting of isotropic and anisotropic variants of the TV-model (see also [14]).

Another characterization of $W^{m, p}, 1<p<\infty,\left(B V^{m}\right.$ for $\left.p=1\right)$ formulated in terms of the m-th differences has been presented in [5].

In this article we are concerned with a characterization of $W^{m, p} 1<p<\infty,\left(B V^{m}\right.$ for $p=1$) as the limit of certain BMO-type seminorms similar to the one introduced by J. Bourgain, H. Brezis, P. Mironescu in [7].

In [16] the Authors showed that a function $f \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{n}\right)$ belongs to the Sobolev space $W_{\text {loc }}^{1, p}\left(\mathbb{R}^{n}\right), 1<p<+\infty$, if and only if

$$
\lim _{\varepsilon \rightarrow 0^{+}} K(\varepsilon, 1, p)<+\infty
$$

where

$$
\begin{equation*}
K_{\varepsilon}(f, 1, p):=\varepsilon^{n-p} \sup _{\mathcal{G}_{\varepsilon}} \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon}} f_{Q^{\prime}}\left|f(x)-f_{Q^{\prime}} f\right|^{p} d x \tag{2}
\end{equation*}
$$

and the supremum on the right hand side is taken over all families $\mathcal{G}_{\varepsilon}$ of disjoint ε-cubes $Q^{\prime}=Q^{\prime}\left(x_{0}, \varepsilon\right)$ of side length ε, centered in x_{0}, with arbitrary orientation. Moreover, if $f \in W_{\mathrm{loc}}^{1, p}\left(\mathbb{R}^{n}\right)$ and $p \geq 1$ then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} K_{\varepsilon}(f, 1, p)=\gamma(n, p) \int_{\mathbb{R}^{n}}|\nabla f|^{p} d x \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma(n, p):=\max _{v \in \mathbb{S}^{n-1}} \int_{Q}|x \cdot v|^{p} d x \tag{4}
\end{equation*}
$$

where $Q=\left(-\frac{1}{2}, \frac{1}{2}\right)^{n}$.
Following some ideas in [1], an analogous representation formula is obtained for the total variation of $S B V$ functions in [15] (see also [12]). For related results see also [10], [13].

Here, given a function $f \in W_{\mathrm{loc}}^{m-1, p}\left(\mathbb{R}^{n}\right), p \geq 1$, for any $\varepsilon>0$, we consider

$$
K_{\varepsilon}(f, m, p):=\varepsilon^{n-m p} \sup _{\mathcal{G}_{\varepsilon}} \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon}} f_{Q^{\prime}}\left|f(x)-P_{Q^{\prime}}^{m-1}[f](x)\right|^{p} d x
$$

where the families $\mathcal{G}_{\varepsilon}$ are as above and $P_{Q^{\prime}}^{m-1}[f]$ is the polynomial of degree $m-1$ centered at x_{0}, given by

$$
\begin{equation*}
P_{Q^{\prime}}^{m-1}[f](x)=\sum_{|\alpha| \leq m-1}\left(x-x_{0}\right)^{\alpha} f_{Q^{\prime}}\left(D^{\alpha} f\right)(s) d s \tag{5}
\end{equation*}
$$

In particular, for $m=1$ and $m=2$ we have:

$$
P_{Q^{\prime}}^{0}[f](x)=f_{Q^{\prime}} f ; \quad P_{Q^{\prime}}^{1}[f](x)=f_{Q^{\prime}} f+\sum_{i=1}^{n}\left(x_{i}-x_{0_{i}}\right)\left(f_{Q^{\prime}} \frac{\partial f}{\partial y_{i}}(y) d y\right) .
$$

Our main Theorem reads as follows:

Theorem 1 Let $p>1$ and $f \in W_{\text {loc }}^{m-1, p}\left(\mathbb{R}^{n}\right)$, then

$$
\begin{equation*}
\left|\nabla^{m} f\right| \in L_{l o c}^{p}\left(\mathbb{R}^{n}\right) \Longleftrightarrow \liminf _{\varepsilon \rightarrow 0} K_{\varepsilon}(f, m, p)<\infty \tag{6}
\end{equation*}
$$

Moreover, if $f \in W_{\text {loc }}^{m, p}\left(\mathbb{R}^{n}\right)$ and $p \geq 1$ we have also

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} K_{\varepsilon}(f, m, p)=\beta(n, m, p) \int_{\mathbb{R}^{n}}\left|\nabla^{m} f\right|^{p} d x \tag{7}
\end{equation*}
$$

The constant in (7) is given by

$$
\begin{equation*}
\beta(n, m, p):=\max _{v \in S^{N-1}}\left(\frac{1}{m!}\right)^{p} \int_{Q}\left|v \cdot x^{m}-\int_{Q} v \cdot y^{m} d y\right|^{p} d x \tag{8}
\end{equation*}
$$

where $N=n^{m}$ and we refer to Section 2 for the notation.
Note that this Theorem is exactly an extension of Theorem 2.2 in [16] to the higher order case; indeed, in the case $m=1$, since $\int_{Q} x \cdot v d x=0$, the constant $\beta(n, 1, p)$ coincides with the one defined in (4).

A drawback of the formula (7) is that one does not recover the function in $B V^{m}$. However, we are able to show that it is possible to characterize the functions in $B V^{m}\left(\mathbb{R}^{n}\right)$ as the functions $f \in W_{\text {loc }}^{m-1,1}\left(\mathbb{R}^{n}\right)$ such that $\lim \sup _{\varepsilon \rightarrow 0} K_{\varepsilon}(f, m, 1)<+\infty$.

2 Notation and preliminaries

We denote by $Q=\left(-\frac{1}{2}, \frac{1}{2}\right)^{n} \subset \mathbb{R}^{n}$ the unit cube with faces parallel to coordinate axes in \mathbb{R}^{n}. For any $z \in \mathbb{R}^{n}$ and $\varepsilon>0$ we denote by $Q_{\varepsilon}(z)=z+\varepsilon Q$ the cube of sidelenght ε centered in z .

For $m, n \geq 1$, we denote by $N_{j}=n^{m-j}$ for $j=0, \ldots, m$. Given $v \in \mathbb{R}^{N_{0}}$ we denotes its components by $v_{i_{1}, \ldots, i_{k}, \ldots, i_{m}}$ with $i_{k}=1 \ldots n$. Taking $x \in \mathbb{R}^{n}, x=\left(x_{i_{k}}\right)_{i_{k} \in\{1, \ldots, n\}}$ we define the product $v \cdot x$ as the element of $\mathbb{R}^{N_{1}}$ given by

$$
(v \cdot x)_{i_{1}, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{m}}=\sum_{i_{k}=1}^{n} v_{i_{1}, i_{2}, \ldots, i_{m}} x_{i_{k}} .
$$

The product of $v \in R^{N_{0}}$ and m times the vector $x \in \mathbb{R}^{n}, v \cdot x \cdot x \cdots x$ is an element of $\mathbb{R}^{N_{m}}=\mathbb{R}$ and it is denoted for brevity by $v \cdot x^{m}$.

For a multi-index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \alpha_{i} \geq 0$ and a point $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$, we denote by

$$
x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

the monomial of degree $|\alpha|=\sum_{i=1}^{n} \alpha_{i}$.
In the same way,

$$
D^{\alpha} u=\frac{\partial^{|\alpha|} u}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{n}^{\alpha_{n}}}
$$

is a weak partial derivative of order $|\alpha|$.
Sometimes, we use the convention that $D^{0} u=u$. Moreover, let $\nabla^{m} u$ be a vector with the components $D^{\alpha} u,|\alpha|=m$.

2.1 The Sobolev space $W^{m, p}$

Definition 1 Let $\Omega \subset \mathbb{R}^{n}$ be an open set, let $m \in \mathbb{N}$, and let $1 \leq p<\infty$. The Sobolev space $W^{m, p}(\Omega)$ is the space of all functions $u \in L^{p}(\Omega)$ which admit α-th weak derivative $D^{\alpha} u$ in $L^{p}(\Omega)$ for every $\alpha \in \mathbb{N}^{n}$ with $1 \leq|\alpha| \leq m$.

The space $W^{m, p}(\Omega)$ is endowed with the norm

$$
\|u\|_{W^{m, p}(\Omega)}=\|u\|_{L^{p}(\Omega)}+\sum_{1 \leq|\alpha| \leq m}\left\|D^{\alpha} u\right\|_{L^{p}(\Omega)}
$$

Definition 2 Let $\Omega \subset \mathbb{R}^{n}$ be an open set, let $m \in \mathbb{N}$, and let $1 \leq p<\infty$. The homogeneous Sobolev space $\dot{W}^{m, p}(\Omega)$ is the space of all functions $u \in L_{l o c}^{1}(\Omega)$ whose α-th weak derivative $D^{\alpha} u$ belongs to $L^{p}(\Omega)$ for every $\alpha \in \mathbb{N}^{n}$ with $|\alpha|=m$.

Note that the inclusion

$$
W^{m, p}(\Omega) \subseteq \dot{W}^{m, p}(\Omega)
$$

holds. Moreover, as a consequence of Poincarè's inequality for sufficiently regular domains of finite measure the spaces $\dot{W}^{m, p}(\Omega)$ and $W^{m, p}(\Omega)$ actually coincide.

The space $\dot{W}^{m, p}(\Omega)$ is equipped with the seminorm

$$
|u|_{\dot{W}^{m, p}(\Omega)}=\left\|\nabla^{m} u\right\|_{L^{p}(\Omega)} .
$$

Sometimes we will also use the equivalent seminorm $u \mapsto \sum_{|\alpha|=m}\left\|D^{\alpha} u\right\|_{L^{p}(\Omega)}$.
The equivalence of the norm permit to have a useful density result as in [18, Remark 11.28]. Indeed, if $u \in \dot{W}^{m, p}(\Omega)$ then for every $\sigma>0$ there exists $v \in C^{\infty}(\Omega) \cap$ $\dot{W}^{m, p}(\Omega)$ such that $\|u-v\|_{W^{m, p}(\Omega)} \leq \sigma$.

Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded set and let $E \subset \Omega$ be a Lebesgue measurable set with finite positive measure. Let $1 \leq p \leq+\infty$ and let $m \in \mathbb{N}$. Then, for every
$u \in W^{m, p}(\Omega)$, there exists a polynomial $P_{E}^{m-1}[u]$ of degree $m-1$ such that for every multi-index $\alpha \in \mathbb{R}^{n}$ with $0 \leq|\alpha| \leq m-1$ (see [18, Exercise 13.26]),

$$
\begin{equation*}
\int_{E}\left(D^{\alpha} u(x)-D^{\alpha} P_{E}^{m-1}[u](x)\right) d x=0 . \tag{9}
\end{equation*}
$$

Theorem 2 (Poincarè inequality in $W^{m, p}[18$, Theorem 13.27]) Let $m \in \mathbb{N}$, let $1 \leq p<+\infty$ and let $\Omega \subset \mathbb{R}^{n}$ be an open, bounded and convex set. Then there exists a positive constant $C=C(m, n, p, \Omega)>0$ such that,

$$
\sum_{k=0}^{m-1}\left\|\nabla^{k}\left(u-P_{\Omega}^{m-1}[u]\right)\right\|_{L^{p}(\Omega)} \leq C\left\|\nabla^{m} u\right\|_{L^{p}(\Omega)}
$$

for every $u \in W^{m, p}$ and for every $k=0, \ldots, m-1$.

Notice that for $m=1$ the previous Theorem is the classical Poincarè inequality and the polynomial $P_{\Omega}[u]$ is the mean of u over Ω. In particular, if $u \in W^{m, p}\left(Q^{\prime}\right)$ with $Q^{\prime}=Q^{\prime}\left(x_{0}, \varepsilon\right)$, then there exists a unique polynomial $P_{Q^{\prime}}^{m-1}[u]$ of degree $m-1$ such that (9) holds and there exists a constant $C=C(n, m, p)$ such that

$$
\begin{equation*}
\int_{Q^{\prime}}\left|u-P_{Q^{\prime}}^{m-1}[u]\right|^{p} \leq C \varepsilon^{m p} \int_{Q^{\prime}}\left|\nabla^{m} u\right|^{p} \tag{10}
\end{equation*}
$$

Next, we consider the Sobolev-Gagliardo-Nirenberg's embedding in $W^{m, p}$ (see Lemma 2.1 in [19]).

Let $n>m p, 1 \leq p<\frac{n}{m}$. Let $u \in W^{m, p}\left(Q^{\prime}\right)$ with $Q^{\prime}=Q^{\prime}\left(x_{0}, \varepsilon\right)$. Then there exists a unique polynomial $P_{Q^{\prime}}^{m-1}[u]$ of degree $m-1$ such that (9) holds and there exists a constant $C=C(n, m, p)$ such that

$$
\begin{equation*}
\left(f_{Q^{\prime}}\left|u-P_{Q^{\prime}}^{m-1}[u]\right|^{p^{\star}}\right)^{\frac{1}{p^{\star}}} \leq C\left(\frac{1}{\varepsilon^{n-m p}} \int_{Q^{\prime}}\left|\nabla^{m} u\right|^{p}\right)^{\frac{1}{p}} \tag{11}
\end{equation*}
$$

where $p^{\star}=\frac{n p}{n-m p}$.
Moreover, the following easy properties of $P_{\Omega}[u]$ holds:

- Linearity:

$$
P_{\Omega}[u](x)+P_{\Omega}[v](x)=P_{\Omega}[u+v](x) .
$$

- Scaling:

$$
P_{\varepsilon \Omega}[u](\varepsilon x)=P_{\Omega}\left[u_{\varepsilon}\right](x),
$$

where $u_{\varepsilon}(x):=u(\varepsilon x)$.
We write

$$
T_{y}^{m} u(x)=\sum_{|\alpha| \leq m} D^{\alpha} u(y) \frac{(x-y)^{\alpha}}{\alpha!}
$$

for the Taylor polynomial of order m and

$$
R^{m} u(x, y)=u(x)-T_{y}^{m} u(x)
$$

for the Taylor remainder of order m.

2.2 Functions of higher-order bounded variation

Let $\Omega \subset \mathbb{R}^{n}$ be an open set. A function $u \in L^{1}(\Omega)$ is of bounded variation (for short $u \in B V(\Omega)$) if u has a distributional gradient in form of a Radon measure of finite total mass and write

$$
|\nabla u|(\Omega)=\sup \left\{u \operatorname{div} \varphi: \varphi \in C_{0}^{1}(\Omega),\|\varphi\|_{L^{\infty}} \leq 1\right\}
$$

We define

$$
B V^{m}(\Omega)=\left\{u \in W^{m-1,1}(\Omega), \nabla^{m-1} u \in B V\left(\Omega, S^{m-1}(\mathbb{R})\right)\right\}
$$

the space of (real valued) functions of m-th order bounded variation, i.e. the set of all functions, whose distributional gradients up to order $m-1$ are represented through 1integrable tensor-valued functions and whose m-th distributional gradient is a tensorvalued Radon measure of finite total variation. Here $S^{k}\left(\mathbb{R}^{n}\right)$ denotes the set of all symmetric tensors of order k with real components, which is naturally isomorphic to the set of all k-linear symmetric maps $\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$ (see [11]).

It becomes a Banach space with the norm

$$
\|u\|_{B V^{m}(\Omega)}=\|u\|_{W^{m-1,1}(\Omega)}+\left|\nabla^{m} u\right|(\Omega) .
$$

Here the total variation of $\nabla^{m-1} u$ is denoted by $\left|\nabla^{m} u\right|(\Omega)$ and defined by

$$
\left|\nabla^{m} u\right|(\Omega)=\sup \left(\sum_{\alpha_{1}, \ldots, \alpha_{m}=1}^{n} \int_{\Omega} D_{\alpha_{1}, \ldots, \alpha_{m-1}} u \cdot \partial_{\alpha_{m}} \varphi_{\alpha_{1}, \ldots, \alpha_{m}} d x\right),
$$

where the supremum is taken over all $\varphi \in C_{0}^{1}\left(\Omega, \mathbb{R}^{n}\right)$ with $\|\varphi\|_{\infty}=1$.
Obviously, $W^{m, 1}(\Omega)$ is a subspace of $B V^{m}(\Omega)$.
The definition of $B V^{m}$ generalizes that of the classical space of functions of bounded variation and many results about $B V$ can be obtained in $B V^{m}$ similarly (see [17]). We recall a higher-order variant of the famous Poincaré inequality, which will be useful throughout the sequel:

Theorem 3 (Poincarè inequality in $B V^{m}\left[14\right.$, Lemma 2.2]) Let $\Omega \subset \mathbb{R}^{n}$ be an open and bounded subset with Lipschitz boundary, $m \in \mathbb{N}, 1 \leq p<\infty$. Then there exist a constant $C>0$, depending only on Ω, m and n such that for all $u \in B V^{m}(\Omega)$

$$
\|u\|_{B V^{m}(\Omega)} \leq C\left|\nabla^{m} u\right|(\Omega) .
$$

In particular, the following version of Poincare's inequality holds.
Let $u \in B V^{m}\left(Q^{\prime}\right)$ with $Q^{\prime}=Q^{\prime}\left(x_{0}, \varepsilon\right)$, then there exists a unique polynomial $P_{Q^{\prime}}^{m-1}[u]$ of degree $m-1$ such that (9) holds and there exists a constant $C=C(n, m)$
such that

$$
\begin{equation*}
\int_{Q^{\prime}}\left|u-P_{Q^{\prime}}^{m-1}[u]\right| \leq C \varepsilon^{m}\left|\nabla^{m} u\right|\left(Q^{\prime}\right) \tag{12}
\end{equation*}
$$

By the nature of its definition, the space $B V^{m}$ inherits the Poincare-Wirtinger inequality which can be proved exactly as the corresponding first order result.

Let $n>m, u \in B V^{m}\left(Q^{\prime}\right)$ with $Q^{\prime}=Q^{\prime}\left(x_{0}, \varepsilon\right)$. Then there exists a unique polynomial $P_{Q^{\prime}}^{m-1}[u]$ of degree $m-1$ such that (9) holds and there exists a constant $C=C(n, m)$ such that

$$
\begin{equation*}
\left(f_{Q^{\prime}} \left\lvert\, u-P_{Q^{\prime}}^{m-1}[u]^{\frac{n}{n-m}}\right.\right)^{\frac{n-m}{n}} \leq C \frac{1}{\varepsilon^{n-m}}\left|\nabla^{m} u\right|\left(Q^{\prime}\right) \tag{13}
\end{equation*}
$$

We end this subsection with a higher- order variant of the compactness result in $B V$ (Theorem 3.23 in [3]).

Proposition 4 (Compactness result in $B V^{m}$ [17, Lemma 2.1]) Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded with Lipschitz boundary, and let $\left(u_{k}\right)_{k=1}^{\infty}$ be a sequence of $B V^{m}$ functions such that

$$
\left\|u_{k}\right\|_{B V^{m}(\Omega)} \leq M
$$

for some constant $M>0$. Then there is a subsequence $\left(u_{k_{l}}\right)_{l=1}^{\infty}$ and a function $u \in B V^{m}(\Omega)$ such that

$$
\left\|u-u_{k_{l}}\right\|_{W^{m-1,1}(\Omega)} \rightarrow 0 \text { for } l \rightarrow \infty \text { and }\|u\|_{B V^{m}(\Omega)} \leq M .
$$

2.3 Other useful inequalities

The following tools will be useful in the sequel.
Given $\delta \in(0,1)$, from the convexity of the function $t \rightarrow|t|^{p}$ we get for every $a, b \in \mathbb{R}$

$$
\begin{equation*}
|a+b|^{p}=\left|\frac{1}{(1+\delta)}(1+\delta) a+\frac{\delta}{1+\delta} \frac{1+\delta}{\delta} b\right|^{p} \leq(1+\delta)^{p}|a|^{p}+\frac{(1+\delta)^{p}}{\delta^{p}}|b|^{p} \tag{14}
\end{equation*}
$$

Taking into account (14), we also obtain the following pointwise inequality

$$
\begin{equation*}
|a-b|^{p} \geq \frac{1}{(1+\delta)^{p}}|a|^{p}-\frac{1}{\delta^{p}}|b|^{p} \tag{15}
\end{equation*}
$$

for every $a, b \in \mathbb{R}$. Given $\xi, \eta \in \mathbb{R}^{n}$ it holds

$$
\begin{equation*}
\|\left.\xi\right|^{p}-|\eta|^{p}\left|\leq p(|\xi|+|\eta|)^{p-1}\right| \xi-\eta \mid \tag{16}
\end{equation*}
$$

and, given $\xi, \eta \in \mathbb{R}^{n} \backslash\{0\}$ it holds

$$
\begin{equation*}
\left|\frac{\xi}{|\xi|}-\frac{\eta}{|\eta|}\right| \leq 2 \frac{|\xi-\eta|}{|\xi|} \tag{17}
\end{equation*}
$$

2.4 The local version of the functional $K_{\varepsilon}(f, m, p)$

We define the following local counterpart of (2) which will be use in Step 3 of proof of Theorem 1

$$
\begin{equation*}
K_{\varepsilon}(f, m, p, \Omega)=\varepsilon^{n-m p} \sup _{\mathcal{G}_{\varepsilon}} \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon}} f_{Q^{\prime}}\left|f(x)-P_{Q^{\prime}}^{m-1}[f](x)\right|^{p} d x \tag{18}
\end{equation*}
$$

where the supremum on the right hand side is taken over all families $\mathcal{G}_{\varepsilon}$ of disjoint open cubes of sidelenght ε and arbitrary orientation contained in Ω.

This quantity is strictly related to the L^{p} norm of $\nabla^{m} f$. Indeed, for $p<\frac{n}{m}$ with $p^{\star}=\frac{n p}{n-m p}$, by using Hölder inequality, we have

$$
\begin{equation*}
\|f\|_{L^{p}(Q)} \leq\|f\|_{L^{p^{\star}}(Q)} \tag{19}
\end{equation*}
$$

Thus, there exists a constant C depending only on Q, m, p such that for $Q^{\prime}=\varepsilon Q+x_{0}$, by (19) and (11), we get

$$
\begin{equation*}
\varepsilon^{n-m p} f_{Q^{\prime}}\left|f(x)-P_{Q^{\prime}}^{m-1}[f]\right|^{p} d x \leq C \int_{Q^{\prime}}\left|\nabla^{m} f\right|^{p} . \tag{20}
\end{equation*}
$$

Summing over all sets Q^{\prime} in $\mathcal{G}_{\varepsilon}$, we obtain

$$
\varepsilon^{n-m p} \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon}} f_{Q^{\prime}}\left|f(x)-P_{Q^{\prime}}^{m-1}[f]\right|^{p} d x \leq C\left\|\nabla^{m} f\right\|_{L^{p}(\Omega)}^{p}
$$

and therefore

$$
K_{\varepsilon}(f, m, p, \Omega) \leq C\left\|\nabla^{m} f\right\|_{L^{p}(\Omega)}^{p} .
$$

We conclude this subsection, by observing that if $\bar{v} \in \mathbb{S}^{N-1}$ is a vector maximizing the integral in (8), $x_{0} \in \mathbb{R}^{n}$ and $Q_{\eta}\left(x_{0}\right)$ is a cube of side length η with center in x_{0} then

$$
\begin{equation*}
\frac{1}{(m!)^{p}} \int_{Q_{\eta}\left(x_{0}\right)}\left|\left(x-x_{0}\right)^{m} \cdot \bar{v}-\int_{Q_{\eta}\left(x_{0}\right)}\left(y-x_{0}\right)^{m} \cdot \bar{v} d y\right|^{p} d x=\beta(n, m, p) \cdot \eta^{n+m p} . \tag{21}
\end{equation*}
$$

3 The case $m=2$

In this section we deal with the case $m=2$. In this case it is easier to make some explicit computations. Moreover we give an estimates on the constant $\beta(n, 2, p)$ in terms of the Laplacian of the function $f \in W^{2, p}$.

We prove the following

Proposition 5 Let $f \in W^{2, p}$ and $\beta(n, 2, p)$ as in (8). Then the following estimate from below holds true

$$
\begin{equation*}
\beta(n, 2, p) \geq C_{n, p}|\Delta f(0)|^{p} . \tag{22}
\end{equation*}
$$

First, by virtue of (9), it is possible to characterize $P_{\Omega}[u]$ for $m=2$. Fixed $x_{0} \in \Omega$, a generic polynomial of degree 1 centered in x_{0} is given by

$$
P_{\Omega}^{1}[u](x)=\left\langle a, x-x_{0}\right\rangle+b, \quad a \in \mathbb{R}^{n}, b \in \mathbb{R} .
$$

By (9) with $|\alpha|=0$, we have

$$
b|\Omega|=\int_{\Omega}\left(u(x)-\left\langle a, x-x_{0}\right\rangle\right) d x
$$

which implies

$$
b=f_{\Omega}\left(u(x)-\left\langle a, x-x_{0}\right\rangle\right) d x
$$

Moreover, for every $i=1, \ldots, n$, again (9) for $|\alpha|=1$ gives

$$
a_{i}=f_{\Omega} \frac{\partial u}{\partial x_{i}}(x) d x
$$

and we write

$$
a=f_{\Omega} \nabla u(x) d x
$$

Then the polynomial $P_{\Omega}^{1}(u)$ is

$$
\begin{equation*}
P_{\Omega}^{1}[u](x)=f_{\Omega}\left(u(y)-\left\langle f_{\Omega} \nabla u, y\right\rangle\right) d y+\left\langle f_{\Omega} \nabla u(y) d y, x-x_{0}\right\rangle \tag{23}
\end{equation*}
$$

where, with a slight abuse of notation, we mean

$$
\left\langle f_{\Omega} \nabla u(y) d y, x-x_{0}\right\rangle=\sum_{j=1}^{n}\left(x_{i}-x_{0_{i}}\right) f_{\Omega} \frac{\partial u}{\partial y_{i}}(y) d y .
$$

Remark 1 We observe that if Ω is symmetric with respect to x_{0}, the polynomial $P_{\Omega}^{1}[u]$ has a simpler form, indeed

$$
f_{\Omega}\left\langle f_{\Omega} \nabla u, y\right\rangle d y=0,
$$

and then

$$
\begin{equation*}
P_{\Omega}^{1}[u](x)=f_{\Omega} u(y) d y+\left\langle f_{\Omega} \nabla u(y) d y, x-x_{0}\right\rangle \tag{24}
\end{equation*}
$$

Proof of Proposition 5 We observe that when $m=2, p \geq 1$, (8) reads as

$$
\begin{equation*}
\beta(n, 2, p):=\max _{v \in \mathbb{S}^{2}-1} \frac{1}{4} \int_{Q}\left|v \cdot x^{2}-\int_{Q} v \cdot y^{2} d y\right|^{p} d x . \tag{25}
\end{equation*}
$$

In this case $v \cdot x^{2}$ can equivalently be write as
where $A \in \mathcal{M}(n)$ is a matrix $n \times n$ and $\langle\cdot, \cdot\rangle$ denote the usual scalar product in \mathbb{R}^{n}.
It is worth to remark that

$$
\begin{equation*}
\beta(n, 2, p) \geq \frac{1}{2^{p}} f_{Q}\left|\left\langle\nabla^{2} f(0) x, x\right\rangle-f_{Q}\left\langle\nabla^{2} f(0) y, y\right\rangle\right|^{p} d x . \tag{26}
\end{equation*}
$$

Firstly we observe that denoting by e_{i} the canonical basis of \mathbb{R}^{n}, by $O \in O(n)$ an orthogonal matrix and by $\mathcal{R} \in S O(n)$ a rotation around the origin taking $O^{-1}(Q)$ into Q we have

$$
\int_{O^{-1}(Q)} y_{i}^{2} d y=\int_{O^{-1}(Q)}\left(y \cdot e_{i}\right)^{2} d y=\int_{R \circ O^{-1}(Q)}\left(R w \cdot e_{i}\right)^{2} d w=\int_{Q}\left(w \cdot R^{-1} e_{i}\right)^{2} d y=\frac{1}{12}
$$

Moreover, given $A \in \mathcal{S}(n)$ a symmetric matrix there exist $O \in O(n)$ and $D \in \mathcal{D}(n)$ such that $A=O D O^{-1}$. Thus we have

$$
\begin{align*}
\int_{Q}\langle A z, z\rangle d z & =\int_{Q}\left\langle\left(O D O^{-1}\right) z, z\right\rangle d z=\int_{Q}\left\langle\left(D O^{-1}\right) z, O^{-1} z\right\rangle d z=\int_{O^{-1}(Q)}\langle D y, y\rangle d y \\
& =\int_{O^{-1}(Q)} \sum_{i=1}^{n} \lambda_{i} y_{i}^{2} d y=\sum_{i=1}^{n} \lambda_{i} \int_{O^{-1}(Q)} y_{i}^{2} d y=\frac{1}{12} \sum_{i=1}^{n} \lambda_{i} \tag{27}
\end{align*}
$$

Then we can estimate from below $\beta(n, 2, p)$ using (26) and (27), proving (22).
Indeed, setting $\nabla^{2} f(0)=A$ we have

$$
\int_{Q}\langle A x, x\rangle=\frac{\Delta f(0)}{12}
$$

Moreover setting $\bar{y}=\min y_{i}$, we have

$$
\begin{align*}
& \frac{1}{2^{p}} \int_{Q}\left|\langle A x, x\rangle-\int_{Q}\langle A y, y\rangle\right|^{p} d x=\frac{1}{2^{p}} \int_{Q}\left|\left\langle\left(D O^{-1}\right) x, O^{-1} x\right\rangle-\frac{\Delta f(0)}{12}\right|^{p} d x \\
&=\frac{1}{2^{p}} \int_{Q}\left|\sum \lambda_{i} y_{i}^{2}-\frac{\Delta f(0)}{12}\right|^{p} d x \geq \frac{1}{2^{p}} \int_{O^{-1}(Q)}\left|\sum \lambda_{i} \bar{y}^{2}-\frac{\Delta f(0)}{12}\right|^{p} d x \\
&=\frac{1}{2^{p}}|\Delta f(0)|^{p} \int_{O^{-1}(Q)}\left|\bar{y}-\frac{1}{12}\right|^{p} d x=C_{n, p}|\Delta f(0)|^{p} . \tag{28}
\end{align*}
$$

4 A characterization of $W^{m, p}$

Proof of Theorem 1 We divide the proof in three steps, proving first the limsup and liminf inequalities in (7) and then the validy of (6).

As a starting point we fix a bounded open set $\Omega \subset \mathbb{R}^{n}$ and $f \in W^{m, p}(\Omega)$. Given $\sigma>0$, there exists a function $g \in C_{c}^{\infty}(\Omega)$ such that $\|f-g\|_{W^{m, p}(\Omega)}<\sigma$ and we choose $\varepsilon>0$ such that

$$
\begin{equation*}
\left|\nabla^{m} g(x)-\nabla^{m} g(y)\right| \leq \sigma, \quad \forall x, y,|x-y| \leq \frac{\sqrt{n} \varepsilon}{2} \tag{29}
\end{equation*}
$$

Let us take now a family $\mathcal{G}_{\varepsilon}$ of disjoint open cubes Q^{\prime} of side length ε and arbitrary orientation and let us denote by $\mathcal{G}_{\varepsilon}^{\prime}$ the subfamily of $\mathcal{G}_{\varepsilon}$ made by all cubes $Q^{\prime} \in \mathcal{G}_{\varepsilon}$ such that $Q^{\prime} \subset \Omega$.

Step1 (limsup inequality).

We are going to show that

$$
\limsup _{\varepsilon \rightarrow 0^{+}} K_{\varepsilon}(f, m, p) \leq \beta(n, m, p) \int_{\mathbb{R}^{n}}\left|\nabla^{m} f\right|^{p} d x
$$

We may assume, without loss of generality, that $\left|\nabla^{m} f\right| \in L^{p}(\Omega)$. Using (14) and the linearity of $P_{Q^{\prime}}^{m-1}[f]$, for any $Q^{\prime} \in \mathcal{G}_{\varepsilon}^{\prime}$ we have:
$f_{Q^{\prime}}\left|f-P_{Q^{\prime}}^{m-1}[f]\right|^{p} d x \leq(1+\delta)^{p} f_{Q^{\prime}}\left|g-P_{Q^{\prime}}^{m-1}[g]\right|^{p} d x+M_{\delta} f_{Q^{\prime}}\left|(f-g)-P_{Q^{\prime}}^{m-1}[f-g]\right|^{p} d x$
where $M_{\delta}=(1+\delta)^{p} / \delta^{p}$.
We recall the notation in Section 2, so denoting by x_{0} the center of the cube Q^{\prime} and for all $x \in Q^{\prime}$ we write

$$
g(x)=T_{x_{0}}^{m} g(x)+R^{m} g\left(x, x_{0}\right),
$$

where $\left|R^{m} g(x, y)\right|<\left(n^{\frac{m}{2}} \sigma \varepsilon^{m}\right) / 2^{m}=C_{1} \sigma \varepsilon^{m}$.
We now estimate the two terms in (30). Let us focus on the first addendum: using again (14) we have
$f_{Q^{\prime}}\left|g-P_{Q^{\prime}}^{m-1}[g]\right|^{p} d x$
$=f_{Q^{\prime}} \left\lvert\, \frac{1}{m!} \nabla^{m} g\left(x_{0}\right) \cdot\left(x-x_{0}\right)^{m}+R^{m} g\left(x, x_{0}\right)-\left[f_{Q^{\prime}} \frac{1}{m!} \nabla^{m} g\left(x_{0}\right) \cdot\left(y-x_{0}\right)^{m} d y+\left.f_{Q^{\prime}} R^{m} g\left(y, x_{0}\right) d y\right|^{p} d x\right.\right.$
$\leq(1+\delta)^{p} \frac{1}{(m!)^{p}} f_{Q^{\prime}}\left|\nabla^{m} g\left(x_{0}\right) \cdot\left(x-x_{0}\right)^{m}-f_{Q^{\prime}} \nabla^{m} g\left(x_{0}\right) \cdot\left(y-x_{0}\right)^{m} d y\right|^{p} d x+2^{p} M_{\delta} f_{Q^{\prime}}\left|R^{m} g\left(x, x_{0}\right)\right|^{p} d x$
$\leq(1+\delta)^{p} \beta(n, m, p) \varepsilon^{m p}\left|\nabla^{m} g\left(x_{0}\right)\right|^{p}+C_{2} M_{\delta} \sigma^{p} \varepsilon^{m p}$.
Moreover, applying again (14) and (29) we have

$$
\begin{equation*}
\left|\nabla^{m} g\left(x_{0}\right)\right|^{p} \leq(1+\delta)^{p} f_{Q^{\prime}}\left|\nabla^{m} g(x)\right|^{p} d x+C_{3} M_{\delta} \sigma^{p} . \tag{31}
\end{equation*}
$$

Hence

$$
\begin{equation*}
f_{Q^{\prime}}\left|g-P_{Q^{\prime}}^{m-1}[g]\right|^{p} d x \leq \beta(n, m, p)(1+\delta)^{2 p} \varepsilon^{m p} f_{Q^{\prime}}\left|\nabla^{m} g(x)\right|^{p} d x+C_{4} M_{\delta} \varepsilon^{m p} \sigma^{p} \tag{32}
\end{equation*}
$$

Let us focus now on the second addendum in (30). By Poincaré inequality in $W^{m, p}$ (see Theorem 2), we have

$$
\begin{equation*}
f_{Q^{\prime}}\left|(f-g)-P_{Q^{\prime}}^{m-1}[f-g]\right|^{p} d x \leq C_{p} \varepsilon^{m p-n} \int_{Q^{\prime}}\left|\nabla^{m}(f-g)\right|^{p} d x \tag{33}
\end{equation*}
$$

where C_{p} is the Poincaré constant for cubes.
Observe now that $\#\left(\mathcal{G}_{\varepsilon}^{\prime}\right) \leq \varepsilon^{-n}|\Omega|$ and set $\Omega_{\varepsilon}=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)>\varepsilon \sqrt{n}\}$. Using (30),(32) and (33) we have

$$
\begin{align*}
\varepsilon^{n-m p} & \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon}} f_{Q^{\prime}}\left|f-P_{Q^{\prime}}^{m-1}[f]\right|^{p} d x \\
& \leq \varepsilon^{n-m p} \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon}^{\prime}} f_{Q^{\prime}}\left|f-P_{Q^{\prime}}^{m-1}[f]\right|^{p} d x+C_{6} \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon} \backslash \mathcal{G}_{\varepsilon}^{\prime}} \int_{Q^{\prime}}\left|\nabla^{m} f\right|^{p} \\
& \leq(1+\delta)^{p} \varepsilon^{n-m p} \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon}^{\prime}} f_{Q^{\prime}}\left|g-P_{Q^{\prime}}^{m-1}[g]\right|^{p} d x+C_{p} M_{\delta} \int_{\Omega^{\prime}}\left|\nabla^{m}(f-g)\right|^{p}+C_{6} \int_{\mathbb{R}^{n} \backslash \Omega_{\varepsilon}}\left|\nabla^{m} f\right|^{p} d x \\
& \leq(1+\delta)^{3 p} \beta(n, m, p) \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon}^{\prime}} \int_{Q^{\prime}}\left|\nabla^{m} g(x)\right|^{p} d x+C_{4} M_{\delta} \varepsilon^{n} \sigma^{p}+C_{p} M_{\delta} \sigma^{p}+C_{6} \int_{\mathbb{R}^{n} \backslash \Omega_{\varepsilon}}\left|\nabla^{m} f\right|^{p} d x \\
& \leq(1+\delta)^{3 p} \beta(n, m, p) \int_{\Omega}\left|\nabla^{m} f(x)\right|^{p} d x+C_{4} M_{\delta} \varepsilon^{n} \sigma^{p}+C_{p} M_{\delta} \sigma^{p}+C_{6} \int_{\mathbb{R}^{n} \backslash \Omega_{\varepsilon}}\left|\nabla^{m} f\right|^{p} d x \tag{34}
\end{align*}
$$

where the constants depend only on n, p and $|\Omega|$. Then, taking the supremum over all the families of cubes $\mathcal{G}_{\varepsilon}$, and then letting first $\varepsilon \rightarrow 0^{+}, \sigma \rightarrow 0, \delta \rightarrow 0$ and $\Omega \uparrow \mathbb{R}^{n}$ we conclude.

Step2 (liminf inequality). We fix $\Omega \subset \mathbb{R}^{n}$, we assume again that $f \in W_{l o c}^{m, p}(\Omega)$ and we fix $\sigma>0$ and $g \in C_{c}^{\infty}(\Omega)$ as in the previous Step. We prove that

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0^{+}} K_{\varepsilon}(f, m, p) \geq \beta(n, m, p) \int_{\mathbb{R}^{n}}\left|\nabla^{m} f\right|^{p} d x \tag{35}
\end{equation*}
$$

So, for $\eta \in(0,1)$ we consider the set

$$
U_{\eta}=\left\{x \in \Omega:\left|\nabla^{m} g(x)\right|>\eta\right\}
$$

With a clever use of Lemma 2.95 of [3] (as in Proposition 3.6 of [15]) it is possible to find k sufficiently small pairwise disjoint open sets $S_{j} \subset \mathbb{S}^{N-1}$ covering \mathbb{S}^{N-1}. Precisely,

$$
\begin{gathered}
\bigcup_{j=1}^{k} \bar{S}_{j}=\mathbb{S}^{N-1} \\
\operatorname{diam} S_{j}<\eta \text { for all } j=1 \ldots k \\
\left|\bigcup_{j=1}^{k}\left\{x \in U_{\eta}: \frac{\nabla^{m} g(x)}{\left|\nabla^{m} g(x)\right|} \in \partial S_{j}\right\}\right|=0
\end{gathered}
$$

For all $j=1, \ldots, k$ we denote

$$
A_{j}=\left\{x \in U_{\eta}: \frac{\nabla^{m} g(x)}{\left|\nabla^{m} g(x)\right|} \in S_{j}\right\},
$$

which are open sets with the property

$$
\begin{equation*}
\left|U_{\eta} \backslash \bigcup_{j=1}^{k} A_{j}\right|=0 \tag{36}
\end{equation*}
$$

For $\varepsilon>0$ we consider the family $\mathcal{F}_{\varepsilon}$ of all open cubes with faces parallel to the coordinate planes, side length ε, centered at all points of the form εv, with $v \in \mathbb{Z}^{n}$. Then for all $j=1, \ldots, k$ we choose $M_{j} \in S_{j}$ and we denote by $R_{j} \in S O(n)$ a rotation that takes e_{1} into M_{j}.

Note that in this way, denoting by x^{\prime} the center of the cube $Q^{\prime} \in \mathcal{F}_{\varepsilon}$, we have (see (21)),

$$
\frac{1}{(m!)^{p}} \int_{R_{j}\left(Q^{\prime}\right)}\left|\left(x-x^{\prime}\right)^{m} \cdot \bar{v}-\int_{R_{j}\left(Q^{\prime}\right)}\left(y-x^{\prime}\right)^{m} \cdot \bar{v} d y\right|^{p} d x=\beta(n, m, p) \cdot \varepsilon^{n+m p}
$$

For all $j=1, \ldots, k$ we denote by $R_{j}\left(Q_{h, j}\right), Q_{h, j} \in \mathcal{F}_{\varepsilon}, h=1, \ldots, m_{j}$, the elements of $\mathcal{G}_{\varepsilon}$ contained in A_{j}. By (36) there exists $\varepsilon(\sigma, \eta)$ such that if $\varepsilon<\varepsilon(\sigma, \eta)$ then

$$
\left|U_{\eta} \backslash \bigcup_{j=1}^{k} \bigcup_{h=1}^{m_{j}} \mathcal{R}_{j}\left(Q_{h, j}\right)\right| \leq \eta^{p}
$$

We denote by $x_{h, j}$ the center of the cube $\mathcal{R}_{j}\left(Q_{h, j}\right)$ and we argue as in Step 1. Indeed we have

$$
\begin{align*}
& f_{R_{j}\left(Q_{h, j}\right)}\left|g-P_{R_{j}\left(Q_{h, j}\right)}^{m-1}[g]\right|^{p} d x \\
& \geq \frac{1}{(1+\delta)^{p}} \frac{1}{(m!)^{p}} f_{R_{j}\left(Q_{h, j}\right)}\left|\nabla^{m} g\left(x_{h, j}\right) \cdot\left(x-x_{h, j}\right)^{m}-f_{R_{j}\left(Q_{h, j}\right)} \nabla^{m} g\left(x_{h, j}\right) \cdot\left(x-x_{h, j}\right)^{m}\right|^{p} d x \\
&-\frac{2^{p}}{\delta^{p}} f_{R_{j}\left(Q_{h, j}\right)}\left|R^{m} g\left(x, x_{h, j}\right)\right|^{p} d x \\
& \geq \frac{1}{(1+\delta)^{2 p}} \frac{\left|\nabla^{m} g\left(x_{h, j}\right)\right|^{p}}{(m!)^{p}} f_{R_{j}\left(Q_{h, j}\right)}\left|M_{j} \cdot\left(x-x_{h, j}\right)^{m}-f_{R_{j}\left(Q_{h, j}\right)} M_{j} \cdot\left(x-x_{h, j}\right)^{m}\right|^{p} d x \\
&-\frac{2^{p}}{\delta^{p}} \frac{\left|\nabla^{m} g\left(x_{h, j}\right)\right|^{p}}{(m!)^{p}} f_{R_{j}\left(Q_{h, j}\right)}\left|\left(\nabla^{m} g\left(x_{h, j}\right)-M_{j}\right) \cdot\left(x-x_{h, j}\right)^{m}-f_{R_{j}\left(Q_{h, j}\right)}\left(\nabla^{m} g\left(x_{h, j}\right)-M_{j}\right) \cdot\left(x-x_{h, j}\right)^{m}\right|^{p} d x \\
&-C_{7} \frac{\sigma^{p} \varepsilon^{m p}}{\delta^{p}} \\
& \geq \frac{\varepsilon^{m p} \beta(n, m, p)\left|\nabla^{m} g\left(x_{h, j}\right)\right|^{p}}{(1+\delta)^{2 p}}-\frac{C_{8} \eta^{p} \varepsilon^{m p}}{\delta^{p}}\left\|\nabla^{m} g\right\|_{L^{\infty}}^{p}-C_{7} \frac{\sigma^{p} \varepsilon^{m p}}{\delta^{p}} . \tag{37}
\end{align*}
$$

Now, adding on j and h the previous inequality, recalling (36), we have

$$
\begin{aligned}
& \varepsilon^{n-m p} \sum_{R_{j}\left(Q_{h, j}\right) \in \mathcal{G}_{\varepsilon}^{\prime}} f_{R_{j}\left(Q_{h, j}\right)}\left|g-P_{Q^{\prime}}^{m-1}[g]\right|^{p} d x \\
& \quad \geq \varepsilon^{n-m p} \sum_{j=1}^{k} \sum_{h=1}^{m_{j}} \frac{\varepsilon^{m p} \beta(n, m, p)\left|\nabla^{m} g\left(x_{h, j}\right)\right|^{p}}{(1+\delta)^{2 p}}-\frac{C_{8} \eta^{p} \varepsilon^{m p}}{\delta^{p}}\left\|\nabla^{m} g\right\|_{L^{\infty}}^{p}-C_{7} \frac{\sigma^{p} \varepsilon^{m p}}{\delta^{p}} \\
& \quad \geq \frac{\beta(n, m, p)}{(1+\delta)^{3 p}} \sum_{j=1}^{k} \sum_{h=1}^{m_{j}} \int_{R_{j}\left(Q_{h, j}\right)}\left|\nabla^{m} g\right|^{p}-\frac{C_{8} \eta^{p} \varepsilon^{n}}{\delta^{p}}\left\|\nabla^{m} g\right\|_{L^{\infty}}^{p}-C_{7} \frac{\sigma^{p} \varepsilon^{n}}{\delta^{p}} \\
& \quad \geq \frac{\beta(n, m, p)}{(1+\delta)^{3 p}} \int_{\Omega}\left|\nabla^{m} g\right|^{p}-\frac{C \eta^{p}}{\delta^{p}}\left(1+\left\|\nabla^{m} g\right\|_{L^{\infty}}^{p}\right)-C \frac{\sigma^{p}}{\delta^{p}} \\
& \quad \geq \frac{\beta(n, m, p)}{(1+\delta)^{4 p}} \int_{\Omega}\left|\nabla^{m} f\right|^{p}-\frac{C \eta^{p}}{\delta^{p}}\left(1+\left\|\nabla^{m} g\right\|_{L^{\infty}}^{p}\right)-C \frac{\sigma^{p}}{\delta^{p}},
\end{aligned}
$$

where the constants may change from line to line and depend only on p, n and $|\Omega|$. We conclude choosing η small enough and consequently ε small,

$$
\begin{aligned}
\varepsilon^{n-m p} \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon}} f_{Q^{\prime}} & \left|f-P_{Q^{\prime}}^{m-1}[f]\right|^{p} d x \\
& \geq \frac{1}{(1+\delta)^{p}} \varepsilon^{n-m p} \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon}} f_{Q^{\prime}}\left|g-P_{Q^{\prime}}^{m-1}[g]\right|^{p} d x-\frac{1}{\delta^{p}} \int_{\Omega}\left|\nabla^{m}(f-g)\right|^{p} \\
& \geq \frac{\beta(n, m, p)}{(1+\delta)^{5 p}} \int_{\Omega}\left|\nabla^{m} f\right|^{p}-\frac{C \sigma^{p}}{\delta^{p}},
\end{aligned}
$$

where again C may change from line to line and depend on p, n and $|\Omega|$. To conclude we take the supremum over all the families $\mathcal{G}_{\varepsilon}$ and let first $\varepsilon \rightarrow 0, \sigma \rightarrow 0, \delta \rightarrow 0$ and $\Omega \uparrow \mathbb{R}^{n}$, proving (35).

Step3 (proof of (6)) Now let $p>1, f \in W_{\mathrm{loc}}^{m-1, p}\left(\mathbb{R}^{n}\right)$ and $\lim \inf _{\varepsilon \rightarrow 0} K_{\varepsilon}(f, m, p)<\infty$. We fix $\sigma>0, \Omega \subset \mathbb{R}^{n}$ and observe that there exist $r>0$ and a finite family of pairwise disjoint
open cubes $Q\left(x_{i}, r\right)$ such that

$$
\begin{align*}
& \left|\Omega \backslash \bigcup_{i=1}^{m} Q\left(x_{i}, r\right)\right|<\sigma . \tag{38}\\
& \left|\nabla^{m} f(x)-\nabla^{m} f(y)\right|<\sigma \tag{39}
\end{align*}
$$

Moreover we fix $0<\varepsilon<r$ and we set $f_{\varepsilon}(x)=\left(\varrho_{\varepsilon} * f\right)(x)$, where ϱ is a standard mollifier with compact support in the unit cube Q and $\varrho_{\varepsilon}(x)=\varepsilon^{-n} \varrho(x / \varepsilon)$.

For every $Q\left(x_{i}, r\right)$ we consider a family $\mathcal{H}_{\varepsilon}$ of pairwise disjoint cubes $Q_{j}=z_{j}+\varepsilon Q \subset$ $Q\left(x_{i}, r\right)$, for $j=1, \ldots, k$.

We compute now

$$
\begin{aligned}
& \left|\nabla^{m} f_{\varepsilon}\left(z_{j}\right)\right|^{p}=\left|\int_{\mathbb{R}^{n}} f(y) \nabla^{m} \rho_{\varepsilon}\left(z_{j}-y\right) d y\right|^{p}=\left|\int_{\mathbb{R}^{n}}\left(f(y)-P_{Q_{j}}^{m-1}[f](y)\right) \nabla^{m} \rho_{\varepsilon}\left(z_{j}-y\right) d y\right|^{p} \\
& \quad \leq \varepsilon^{(-m-n) p+n p-n} \int_{Q_{j}}\left|f(y)-P_{Q_{j}}^{m-1}[f](y)\right|^{p} d y=\varepsilon^{-m p} f_{Q_{j}}\left|f(y)-P_{Q_{j}}^{m-1}[f](y)\right|^{p} d y .
\end{aligned}
$$

Moreover, by (29) and (14), we have

$$
\left|\nabla^{m} f_{\varepsilon}\left(z_{j}\right)\right|^{p} \geq \frac{1}{1+\delta} \varepsilon^{-n} \int_{Q_{j}}\left|\nabla^{m} f_{\varepsilon}(x)\right|^{p} d x-\frac{C}{\delta^{p}} \sigma^{p}
$$

Then

$$
\frac{1}{1+\delta} \int_{Q_{j}}\left|\nabla^{m} f_{\varepsilon}(x)\right|^{p} d x \leq \varepsilon^{n-m p} f_{Q_{j}}\left|f(y)-P_{Q_{j}}^{m-1}[f](y)\right|^{p} d y+\frac{C}{\delta^{p}} \sigma^{p} \varepsilon^{n} .
$$

Summing up all the cubes in $\mathcal{H}_{\varepsilon}$, we obtain

$$
\begin{align*}
\frac{1}{1+\delta} & \int_{Q\left(x_{i}, r\right)}\left|\nabla^{m} f_{\varepsilon}(x)\right|^{p} d x \\
\leq \frac{1}{1+\delta} \sum_{j=1}^{k} \int_{Q_{j}}\left|\nabla^{m} f_{\varepsilon}(x)\right|^{p} d x & \leq \varepsilon^{n-m p} \sum_{j=1}^{k} f_{Q_{j}}\left|f(y)-P_{Q_{j}}^{m-1}[f](y)\right|^{p} d y+\frac{C}{\delta^{p}} \sigma^{p} \varepsilon^{n} \\
& \leq \varepsilon^{n-m p} \sum_{j=1}^{k} f_{Q_{j}}\left|f(y)-P_{Q_{j}}^{m-1}[f](y)\right|^{p} d y+\frac{C}{\delta^{p}} \sigma^{p} r^{n}, \tag{40}
\end{align*}
$$

where the last inequality follows since $k \varepsilon^{n} \leq r^{n}$. Taking the supremum with respect to all families $\mathcal{H}_{\varepsilon}$ and the liminf with respect to ε, we have

$$
\frac{1}{1+\delta} \int_{Q\left(x_{i}, r\right)}\left|\nabla^{m} f(x)\right|^{p} d x \leq \liminf _{\varepsilon \rightarrow 0} K_{\varepsilon}\left(f, m, p, Q\left(x_{i}, r\right)\right)+\frac{C}{\delta^{p}} \sigma^{p} r^{n} .
$$

Summing up with respect to i and using (38) we have

$$
\frac{1}{1+\delta} \int_{\Omega}\left|\nabla^{m} f(x)\right|^{p} d x \leq \liminf _{\varepsilon \rightarrow 0} K_{\varepsilon}(f, m, p, \Omega)+\frac{C}{\delta^{p}} \sigma^{p}|\Omega| .
$$

Letting $\sigma \rightarrow 0, \delta \rightarrow 0$ and $\Omega \uparrow \mathbb{R}^{n}$, we conclude.

Remark 2 We observe that Theorem 7 hold also in an open set Ω with the same proof replacing $K_{\mathcal{\varepsilon}}(f, m, p)$ by the quantity $K_{\varepsilon}(f, m, p, \Omega)$ defined in (18).

Corollary 6 Let $p>1, n>m p, p^{\star}=\frac{n p}{n-m p}, \Omega \subset \mathbb{R}^{n}$ and $\mathcal{G}_{\varepsilon}$ a pairwise disjoint family of translations Q^{\prime} of εQ contained in Ω. Then, the following three statements are equivalent:
i) $f \in W^{m, p}(\Omega)$;
ii)

$$
\sup _{\mathcal{G}_{\varepsilon}} \sum_{Q^{\prime} \in \mathcal{G}_{s}} \varepsilon^{n-m p} \mathcal{f}_{Q^{\prime}}\left|f-P_{Q^{\prime}}^{m-1}[f]\right|^{p}<+\infty ;
$$

iii)

$$
\sup _{\mathcal{G}_{\varepsilon}} \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon}}\left\|f-P_{Q^{\prime}}^{m-1}[f]\right\|_{L^{p^{\star}}\left(Q^{\prime}\right)}^{p}<+\infty
$$

Proof In this proof the constant C may change from line to line.
We prove that $i i i) \Rightarrow i i)$. By Hölder's inequality it holds

$$
\begin{equation*}
\varepsilon^{n-m p} f_{Q^{\prime}}\left|f-P_{Q^{\prime}}^{m-1}[f]\right|^{p} d x \leq \frac{\varepsilon^{n-m p}}{\varepsilon^{n}}\left(\int_{Q^{\prime}}\left|f-P_{Q^{\prime}}^{m-1}[f]\right|^{\frac{n p}{n p p}}\right)^{\frac{n-m p}{n}}\left|Q^{\prime}\right|^{\frac{m p}{n}}=\left\|f-P_{Q^{\prime}}^{m-1}[f]\right\|_{L^{p^{\star}}\left(Q^{\prime}\right)}^{p} \tag{41}
\end{equation*}
$$

Summing over all sets Q^{\prime} in $\mathcal{G}_{\varepsilon}$ and passing to the supremum, we conclude.
We prove that $i) \Rightarrow i i i)$. Using the Sobolev-Gagliardo-Nirenberg inequality (11), we obtain that there exists a constant $C=C(n, m, p)$ such that

$$
\begin{equation*}
\left\|f-P_{Q^{\prime}}^{m-1}[f]\right\|_{L^{p^{\star}}\left(Q^{\prime}\right)} \leq C\left\|\nabla^{m} f\right\|_{L^{p}} . \tag{42}
\end{equation*}
$$

Summing over Q^{\prime} in $\mathcal{G}_{\varepsilon}$ and passing to the supremum over all families G_{ε} the proof is completed.

The equivalence $i) \Leftrightarrow i i$) is proved in [9].

5 A characterization of higher order bounded variation

In this section we deal with the case $p=1$. This case is not included in Theorem 1 since (6) hold only for $p>1$.

The case $m=1$ was treated in [16]. They proved that (see Proposition 2.4 of [16]) if $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ then

$$
\begin{equation*}
f \in B V\left(\mathbb{R}^{n}\right) \quad \Longleftrightarrow \quad \liminf _{\varepsilon \rightarrow 0} K_{\varepsilon}(f, 1,1)<+\infty \tag{43}
\end{equation*}
$$

Precisely, they prove that for $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ it holds

$$
\frac{1}{4}|\nabla f|\left(\mathbb{R}^{n}\right) \leq \liminf _{\varepsilon \rightarrow 0^{+}} K_{\varepsilon}(f, 1,1) \leq \limsup _{\varepsilon \rightarrow 0^{+}} K_{\varepsilon}(f, 1,1) \leq \frac{1}{2}|\nabla f|\left(\mathbb{R}^{n}\right)
$$

where the total variation of f in $\Omega \subset \mathbb{R}^{n}$, possibly equal to $+\infty$, is defined by setting

$$
|\nabla f|(\Omega):=\sup \left\{\int_{\Omega} f(x) \operatorname{div} \varphi(x) d x: \varphi \in C_{c}^{1}(\Omega),\|\varphi\|_{\infty} \leq 1\right\}
$$

We prove a similar characterization for the case $m>1$. Now an equivalence similar to (43) involve the space $B V^{m}\left(\mathbb{R}^{n}\right)$ of functions of m-th order bounded variation (see Section 2).

Precisely, we prove the following

Proposition 7 Let $f \in W_{l o c}^{m-1,1}\left(\mathbb{R}^{n}\right)$. Then

$$
f \in B V^{m}\left(\mathbb{R}^{n}\right) \quad \Longleftrightarrow \quad \liminf _{\varepsilon \rightarrow 0} K_{\varepsilon}(f, m, 1)<+\infty
$$

Moreover, there is a positive constants C, independent of f, such that

$$
\begin{equation*}
\left|\nabla^{m} f\right|\left(\mathbb{R}^{n}\right) \leq \liminf _{\varepsilon \rightarrow 0^{+}} K_{\varepsilon}(f, m, 1) \leq \limsup _{\varepsilon \rightarrow 0^{+}} K_{\varepsilon}(f, m, 1) \leq C\left|\nabla^{m} f\right|\left(\mathbb{R}^{n}\right) . \tag{44}
\end{equation*}
$$

Proof To prove the first inequality in (44) we argue as in Step 3 of Theorem 1. In particular, we have

$$
\begin{equation*}
\frac{1}{1+\delta} \int_{Q\left(x_{i}, r\right)}\left|\nabla^{m} f_{\mathcal{E}}(x)\right| d x \leq \varepsilon^{n-m} \sum_{j=1}^{k} f_{Q_{j}}\left|f(y)-P_{Q_{j}}^{m-1}[f](y)\right| d y+\frac{C}{\delta} \sigma r^{n}, \tag{45}
\end{equation*}
$$

Taking the supremum with respect to all families $\mathcal{H}_{\varepsilon}$ and the liminf with respect to ε, we have

$$
\frac{1}{1+\delta} \liminf _{\varepsilon \rightarrow 0} \int_{Q\left(x_{i}, r\right)}\left|\nabla^{m} f_{\varepsilon}(x)\right| d x \leq \liminf _{\varepsilon \rightarrow 0} K_{\varepsilon}\left(f, m, Q\left(x_{i}, r\right)\right)+\frac{C}{\delta} \sigma r^{n} .
$$

By the compactness in $B V^{m}$ (Proposition 4), we get

$$
\frac{1}{1+\delta}\left|\nabla^{m} f\right|\left(Q\left(x_{i}, r\right)\right) d x \leq \liminf _{\varepsilon \rightarrow 0} K_{\varepsilon}\left(f, m, Q\left(x_{i}, r\right)\right)+\frac{C}{\delta} \sigma r^{n}
$$

Summing up with respect to i and using (38) we obtain

$$
\frac{1}{1+\delta}\left|\nabla^{m} f\right|(\Omega) d x \leq \liminf _{\varepsilon \rightarrow 0} K_{\varepsilon}(f, m, \Omega)+\frac{C}{\delta} \sigma r^{n}|\Omega|
$$

We conclude letting $\sigma \rightarrow 0, \delta \rightarrow 0, \Omega \uparrow \mathbb{R}^{n}$.
In order to prove the estimate from above in (44), it is is sufficient to apply the Poincare' inequality in $B V^{m}$ (see Section 2).

Corollary 8 Let $n>m, 1^{\star}=\frac{n}{n-m}, \Omega \subset \mathbb{R}^{n}$ and $\mathcal{G}_{\varepsilon}$ is any pairwise disjoint family of translations Q^{\prime} of εQ contained in Ω. Then, the following three statements are equivalent:
i) $f \in B V^{m}(\Omega)$;
ii)

$$
\sup _{\mathcal{G}_{\varepsilon}} \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon}} \varepsilon^{n-m} f_{Q^{\prime}}\left|f-P_{Q^{\prime}}^{m-1}[f]\right|<+\infty
$$

iii)

$$
\sup _{\mathcal{G}_{\varepsilon}} \sum_{Q^{\prime} \in \mathcal{G}_{\varepsilon}}\left\|f-P_{Q^{\prime}}^{m-1}[f]\right\|_{L^{\star \star}\left(Q^{\prime}\right)}<+\infty
$$

Proof We prove that $i i i) \Rightarrow i i)$. By Hölder's inequality it holds

$$
\begin{equation*}
\varepsilon^{n-m} f_{Q^{\prime}}\left|f-P_{Q^{\prime}}^{m-1}[f]\right| d x \leq\left|f-P_{Q^{\prime}}^{m-1}[f]\right|_{L^{\star \star}\left(Q^{\prime}\right)} \tag{46}
\end{equation*}
$$

The conclusion follows by summing over all sets Q^{\prime} in $\mathcal{G}_{\varepsilon}$.
We prove that i) $\Rightarrow i i i)$. By using (13) there exists a constant $C=C(n . m)$ such that

$$
\begin{equation*}
\left\|f-P_{Q^{\prime}}^{m-1}[f]\right\|_{L^{\star \star}\left(Q^{\prime}\right)} \leq C\left\|\nabla^{m} f\right\|_{L^{p}}\left(Q^{\prime}\right) \tag{47}
\end{equation*}
$$

The conclusion follows again by summing over all sets Q^{\prime} in $\mathcal{G}_{\varepsilon}$.
The equivalence $i) \Leftrightarrow i i$) is proved in [9].

Declarations

- Funding (The authors are members of Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of INdAM. The research of S.G.L.B. has been funded by PRIN Project 2017AYM8XW and the research of R.S. has been funded by PRIN Project 2017JFFHSH.)
- Conflict of interest/Competing interests (There is no conflict of interest)
- Ethics approval (Not applicable)
- Consent to participate (Not applicable)
- Consent for publication (The Authors consent for publication)
- Availability of data and materials (Not applicable)
- Code availability (Not applicable)
- Authors' contributions (The Authors contributed equally to this work.)

References

[1] L. Ambrosio, J. Bourgain, H. Brezis, A. Figalli, BMO-type norms related to the perimeter of sets, Comm. Pure Appl. Math., 69 (2016), 1062-1086.
[2] L. Ambrosio, G. Comi, Anisotropic Surface Measures as Limits of Volume Fractions. Current Research in Nonlinear Analysis 135 (2018), 1-32.
[3] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
[4] B. Bojarski,L. Ihnatsyeva, J. Kinnunen, How to recognize polinomials in higher order Sobolev spaces, Math. Scand. 112 (2013),161-181.
[5] R. Borghol, Some properties of Sobolev spaces, Asymptot. Anal. 51 (2007), no.3-4, 303-318.
[6] J. Bourgain, H. Brezis, P. Mironescu, Another look at Sobolev spaces, Optimal Control and Partial Differential Equations, IOS Press, Amsterdam 2001, 439-455.
[7] J. Bourgain, H. Brezis, P. Mironescu, A new function space and applications, Journal of the EMS, 17 (2015), 2083-2101.
[8] H. Brezis, How to recognize constant functions. A connection with Sobolev spaces., (Russian) Uspekhi Mat. Nauk 57 (2002), no. 4(346), 59-74; translation in Russian Math. Surveys 57 (2002), no. 4, 693-708.
[9] A. Brudnyi, Y. Brudnyi, On the Banach structure of multivariate BV spaces, Dissertationes Math. 548 (2020), 52 pp.
[10] G. Di Fratta, A. Fiorenza, BMO-type seminorms from Escher-type tessellations, J. Funct. Anal. 279 (2020), 108556.
[11] F. Demengel, R. Temam, Convex functions of a measure and applications, Indiana University Mathematical Journal, vol. 33 n. 5 (1984), pp. 673-709.
[12] F. Farroni, N. Fusco, S. Guarino Lo Bianco, R. Schiattarella, A formula for the anisotropic total variation of BV functions, Journal of Functional Analysis 278 (9) (2020), 108451 .
[13] F. Farroni, S. Guarino Lo Bianco, R. Schiattarella, BMO-type seminorms generating Sobolev functions, J. Math. Anal. Appl. 491 (2020), no.1, 124298, 15pp.
[14] M. Fuchs, J. Muller, A higher order TV-type variational problem related to the denoising and inpainting of images, Nonlinear Anal. 154 (2017), 122-147.
[15] N. Fusco, G. Moscariello, C. Sbordone, A formula for the total variation of SBV functions. J. Funct. Anal. 270 (2016), no. 1, 419-446.
[16] N. Fusco, G. Moscariello, C. Sbordone, BMO-type seminorms and Sobolev functions. ESAIM Control Optim. Calc. Var. 24 (2018), no. 2, 835-847.
[17] R.L. Jerrard, H.M. Soner, Functions of bounded higher variation, Indiana Univ. Math. J., 51 (2002), pp. 645-677, 10.1512/iumj.2002.51.2229
[18] G. Leoni A first course in Sobolev spaces. Second Edition. Graduate Studies in Mathematics, 181. American Mathematical Society, Providence, RI (2017).
[19] Marcus, Exceptional sets with respect to Lebesgue differentiation of functions in Sobolev spaces, Ann. Sc. Norm. Sup. Pisa, Cl. Sc., 1, no 1-2 (1974), 113-130.

