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Abstract
We obtain a new characterization of the higher Sobolev space Wm,p(Rn), m ∈ N
and p ∈ (1,+∞) and of the space BVm, the space of functions of higher order
bounded variation. The characterizations are in term of BMO-type seminorms.
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1 Introduction
Let Wm,p

loc (Rn) (m ∈ N, 1 ≤ p < ∞), denote the Sobolev space of functions belonging
to Lp

loc(Rn) whose distribution derivatives up to order m belong to Lp
loc(Rn).

In [4], the Authors studied a characterization of Wm,p based on J. Bourgain, H.
Brezis and P. Mironescu’s approach introduced in [6] (see also [8]). In particular they
prove that if f ∈ Wm−1,p(Ω), 1 < p < ∞ and Ω is a smooth bounded domain in Rn
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then f belongs to Wm,p(Ω) if and only if,

lim inf
ε→0

∫
Ω

∫
Ω

|Rm−1 f (x, y)|p

|x − y|mp ρε(|x − y|) dx dy < ∞ (1)

where ρε, with ε > 0, are radial mollifiers and Rm−1 f is the Taylor (m − 1) remainder
of f . For p = 1, the condition (1) describes BVm.

Here we say that a Wm−1,1(Ω) is of m-th order bounded variation BVm if its m-
th order partial derivatives in the sense of distributions are finite Radon measures.
Spaces of this kind have been studied in [11] as applications in mathematical imaging
in the setting of isotropic and anisotropic variants of the TV-model (see also [14]).

Another characterization of Wm,p, 1 < p < ∞, (BVm for p = 1) formulated in
terms of the m-th differences has been presented in [5].

In this article we are concerned with a characterization of Wm,p 1 < p < ∞, (BVm

for p = 1) as the limit of certain BMO–type seminorms similar to the one introduced
by J. Bourgain, H. Brezis, P. Mironescu in [7].

In [16] the Authors showed that a function f ∈ Lp
loc(Rn) belongs to the Sobolev

space W1,p
loc (Rn), 1 < p < +∞, if and only if

lim
ε→0+

K(ε, 1, p) < +∞

where

Kε( f , 1, p) := εn−p sup
Gε

∑
Q′∈Gε

?
Q′

∣∣∣∣∣∣ f (x) −
∫

Q′
f

∣∣∣∣∣∣p dx , (2)

and the supremum on the right hand side is taken over all families Gε of disjoint
ε-cubes Q′ = Q′(x0, ε) of side length ε, centered in x0, with arbitrary orientation.
Moreover, if f ∈ W1,p

loc (Rn) and p ≥ 1 then

lim
ε→0+

Kε( f , 1, p) = γ(n, p)
∫
Rn
|∇ f |p dx (3)

where
γ(n, p) := max

ν∈Sn−1

∫
Q
|x · ν|p dx (4)

where Q =
(
− 1

2 ,
1
2

)n
.

Following some ideas in [1], an analogous representation formula is obtained for
the total variation of S BV functions in [15] (see also [12]). For related results see
also [10], [13].

Here, given a function f ∈ Wm−1,p
loc (Rn), p ≥ 1, for any ε > 0, we consider

Kε( f ,m, p) := εn−mp sup
Gε

∑
Q′∈Gε

?
Q′

∣∣∣ f (x) − Pm−1
Q′ [ f ](x)

∣∣∣p dx ,
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where the families Gε are as above and Pm−1
Q′ [ f ] is the polynomial of degree m − 1

centered at x0, given by

Pm−1
Q′ [ f ](x) =

∑
|α|≤m−1

(x − x0)α
∫

Q′
(Dα f ) (s) ds. (5)

In particular, for m = 1 and m = 2 we have:

P0
Q′[ f ](x) =

∫
Q′

f ; P1
Q′[ f ](x) =

∫
Q′

f +

n∑
i=1

(xi − x0i )
(∫

Q′

∂ f
∂yi

(y) dy
)
.

Our main Theorem reads as follows:

Theorem 1 Let p > 1 and f ∈ Wm−1,p
loc (Rn), then

|∇m f | ∈ Lp
loc(Rn) ⇐⇒ lim inf

ε→0
Kε( f ,m, p) < ∞. (6)

Moreover, if f ∈ Wm,p
loc (Rn) and p ≥ 1 we have also

lim
ε→0

Kε( f ,m, p) = β(n,m, p)
∫
Rn
|∇m f |p dx. (7)

The constant in (7) is given by

β(n,m, p) := max
ν∈SN−1

(
1

m!

)p ∫
Q

∣∣∣∣ν · xm −

∫
Q
ν · ym dy

∣∣∣∣p dx. (8)

where N = nm and we refer to Section 2 for the notation.
Note that this Theorem is exactly an extension of Theorem 2.2 in [16] to the

higher order case; indeed, in the case m = 1, since
∫

Q x · ν dx = 0, the constant
β(n, 1, p) coincides with the one defined in (4).

A drawback of the formula (7) is that one does not recover the function in BVm.
However, we are able to show that it is possible to characterize the functions in
BVm(Rn) as the functions f ∈ Wm−1,1

loc (Rn) such that lim supε→0 Kε( f ,m, 1) < +∞.

2 Notation and preliminaries

We denote by Q =
(
− 1

2 ,
1
2

)n
⊂ Rn the unit cube with faces parallel to coordinate axes

in Rn. For any z ∈ Rn and ε > 0 we denote by Qε(z) = z + εQ the cube of sidelenght
ε centered in z.

For m, n ≥ 1, we denote by N j = nm− j for j = 0, . . . ,m. Given ν ∈ RN0 we denotes
its components by νi1,...,ik ,...,im with ik = 1 . . . n. Taking x ∈ Rn, x = (xik )ik∈{1,...,n} we
define the product ν · x as the element of RN1 given by

(ν · x)i1,...,ik−1,ik+1,...,im =

n∑
ik=1

νi1,i2,...,im xik .
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The product of ν ∈ RN0 and m times the vector x ∈ Rn, ν · x · x · · · · x is an element
of RNm = R and it is denoted for brevity by ν · xm.

For a multi-index α = (α1, · · · , αn), αi ≥ 0 and a point x = (x1, · · · , xn) ∈ Rn, we
denote by

xα = xα1
1 xα2

2 · · · x
αn
n

the monomial of degree |α| =
∑n

i=1 αi.
In the same way,

Dαu =
∂|α|u

∂xα1
1 · · · ∂xαn

n

is a weak partial derivative of order |α|.
Sometimes, we use the convention that D0u = u. Moreover, let ∇mu be a vector

with the components Dαu, |α| = m.

2.1 The Sobolev space Wm,p

Definition 1 Let Ω ⊂ Rn be an open set, let m ∈ N, and let 1 ≤ p < ∞. The Sobolev space
Wm,p(Ω) is the space of all functions u ∈ Lp(Ω) which admit α−th weak derivative Dαu in
Lp(Ω) for every α ∈ Nn with 1 ≤ |α| ≤ m.

The space Wm,p(Ω) is endowed with the norm

‖u‖Wm,p(Ω) = ‖u‖Lp(Ω) +
∑

1≤|α|≤m

‖Dαu‖Lp(Ω)

Definition 2 Let Ω ⊂ Rn be an open set, let m ∈ N, and let 1 ≤ p < ∞. The homogeneous
Sobolev space Ẇm,p(Ω) is the space of all functions u ∈ L1

loc(Ω) whose α−th weak derivative
Dαu belongs to Lp(Ω) for every α ∈ Nn with |α| = m.

Note that the inclusion
Wm,p(Ω) ⊆ Ẇm,p(Ω)

holds. Moreover, as a consequence of Poincarè’s inequality for sufficiently regular
domains of finite measure the spaces Ẇm,p(Ω) and Wm,p(Ω) actually coincide.

The space Ẇm,p(Ω) is equipped with the seminorm

|u|Ẇm,p(Ω) = ‖∇mu‖Lp(Ω).

Sometimes we will also use the equivalent seminorm u 7→
∑
|α|=m ‖Dαu‖Lp(Ω).

The equivalence of the norm permit to have a useful density result as in [18,
Remark 11.28]. Indeed, if u ∈ Ẇm,p(Ω) then for every σ > 0 there exists v ∈ C∞(Ω)∩
Ẇm,p(Ω) such that ‖u − v‖Wm,p(Ω) ≤ σ.

Let Ω ⊂ Rn be an open bounded set and let E ⊂ Ω be a Lebesgue measurable
set with finite positive measure. Let 1 ≤ p ≤ +∞ and let m ∈ N. Then, for every
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u ∈ Wm,p(Ω), there exists a polynomial Pm−1
E [u] of degree m − 1 such that for every

multi-index α ∈ Rn with 0 ≤ |α| ≤ m − 1 (see [18, Exercise 13.26]),∫
E

(
Dαu(x) − DαPm−1

E [u](x)
)

dx = 0. (9)

Theorem 2 (Poincarè inequality in Wm,p [18, Theorem 13.27]) Let m ∈ N, let 1 ≤ p < +∞

and let Ω ⊂ Rn be an open, bounded and convex set. Then there exists a positive constant
C = C(m, n, p,Ω) > 0 such that,

m−1∑
k=0

‖∇k(u − Pm−1
Ω [u])‖Lp(Ω) ≤ C‖∇mu‖Lp(Ω),

for every u ∈ Wm,p and for every k = 0, . . . ,m − 1.

Notice that for m = 1 the previous Theorem is the classical Poincarè inequality
and the polynomial PΩ[u] is the mean of u over Ω. In particular, if u ∈ Wm,p(Q′) with
Q′ = Q′(x0, ε), then there exists a unique polynomial Pm−1

Q′ [u] of degree m − 1 such
that (9) holds and there exists a constant C = C(n,m, p) such that∫

Q′
|u − Pm−1

Q′ [u]|p ≤ Cεmp
∫

Q′
|∇mu|p. (10)

Next, we consider the Sobolev–Gagliardo–Nirenberg’s embedding in Wm,p(see
Lemma 2.1 in [19]).

Let n > mp, 1 ≤ p < n
m . Let u ∈ Wm,p(Q′) with Q′ = Q′(x0, ε). Then there exists

a unique polynomial Pm−1
Q′ [u] of degree m − 1 such that (9) holds and there exists a

constant C = C(n,m, p) such that

(∫
Q′
|u − Pm−1

Q′ [u]|p
?

) 1
p?

≤ C
(

1
εn−mp

∫
Q′
|∇mu|p

) 1
p

(11)

where p? =
np

n−mp .
Moreover, the following easy properties of PΩ[u] holds:

• Linearity:
PΩ[u](x) + PΩ[v](x) = PΩ[u + v](x).

• Scaling:
PεΩ[u](εx) = PΩ[uε](x),

where uε(x) := u(εx).

We write
T m

y u(x) =
∑
|α|≤m

Dαu(y)
(x − y)α

α!

for the Taylor polynomial of order m and

Rmu(x, y) = u(x) − T m
y u(x)



Springer Nature 2021 LATEX template

6 A BMO-type characterization of higher order Sobolev spaces

for the Taylor remainder of order m.

2.2 Functions of higher-order bounded variation
Let Ω ⊂ Rn be an open set. A function u ∈ L1(Ω) is of bounded variation (for short
u ∈ BV(Ω)) if u has a distributional gradient in form of a Radon measure of finite
total mass and write

|∇u|(Ω) = sup
{
u divϕ : ϕ ∈ C1

0(Ω), ‖ϕ‖L∞ ≤ 1
}
.

We define

BVm(Ω) = {u ∈ Wm−1,1(Ω), ∇m−1u ∈ BV(Ω, S m−1(R))}

the space of (real valued) functions of m-th order bounded variation, i.e. the set of all
functions, whose distributional gradients up to order m−1 are represented through 1-
integrable tensor-valued functions and whose m-th distributional gradient is a tensor-
valued Radon measure of finite total variation. Here S k(Rn) denotes the set of all
symmetric tensors of order k with real components, which is naturally isomorphic to
the set of all k-linear symmetric maps (Rn)k → R (see [11]).

It becomes a Banach space with the norm

‖u‖BVm(Ω) = ‖u‖Wm−1,1(Ω) + |∇mu|(Ω).

Here the total variation of ∇m−1u is denoted by |∇mu|(Ω) and defined by

|∇mu|(Ω) = sup

 n∑
α1,...,αm=1

∫
Ω

Dα1,...,αm−1 u · ∂αmϕα1,...,αm dx

 ,
where the supremum is taken over all ϕ ∈ C1

0(Ω,Rn) with ‖ϕ‖∞ = 1.
Obviously, Wm,1(Ω) is a subspace of BVm(Ω).
The definition of BVm generalizes that of the classical space of functions of

bounded variation and many results about BV can be obtained in BVm similarly (see
[17]). We recall a higher-order variant of the famous Poincaré inequality, which will
be useful throughout the sequel:

Theorem 3 (Poincarè inequality in BVm [14, Lemma 2.2]) Let Ω ⊂ Rn be an open and
bounded subset with Lipschitz boundary, m ∈ N, 1 ≤ p < ∞. Then there exist a constant C > 0,
depending only on Ω, m and n such that for all u ∈ BVm(Ω)

‖u‖BVm(Ω) ≤ C|∇mu|(Ω).

In particular, the following version of Poincare’s inequality holds.
Let u ∈ BVm(Q′) with Q′ = Q′(x0, ε), then there exists a unique polynomial

Pm−1
Q′ [u] of degree m − 1 such that (9) holds and there exists a constant C = C(n,m)
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such that ∫
Q′
|u − Pm−1

Q′ [u]| ≤ Cεm|∇mu|(Q′) (12)

By the nature of its definition, the space BVm inherits the Poincare-Wirtinger
inequality which can be proved exactly as the corresponding first order result.

Let n > m, u ∈ BVm(Q′) with Q′ = Q′(x0, ε). Then there exists a unique
polynomial Pm−1

Q′ [u] of degree m − 1 such that (9) holds and there exists a constant
C = C(n,m) such that(∫

Q′
|u − Pm−1

Q′ [u]|
n

n−m

) n−m
n

≤ C
1

εn−m |∇
mu|(Q′). (13)

We end this subsection with a higher- order variant of the compactness result in
BV (Theorem 3.23 in [3]).

Proposition 4 (Compactness result in BVm [17, Lemma 2.1] ) Let Ω ⊂ Rn be open and
bounded with Lipschitz boundary, and let (uk)∞k=1 be a sequence of BVm functions such that

‖uk‖BVm(Ω) ≤ M

for some constant M > 0. Then there is a subsequence (ukl )
∞
l=1 and a function u ∈ BVm(Ω)

such that
‖u − ukl‖Wm−1,1(Ω) → 0 for l→ ∞ and ‖u‖BVm(Ω) ≤ M.

2.3 Other useful inequalities
The following tools will be useful in the sequel.

Given δ ∈ (0, 1), from the convexity of the function t → |t|p we get for every
a, b ∈ R

|a + b|p =

∣∣∣∣∣ 1
(1 + δ)

(1 + δ)a +
δ

1 + δ

1 + δ

δ
b
∣∣∣∣∣p ≤ (1 + δ)p|a|p +

(1 + δ)p

δp |b|p (14)

Taking into account (14), we also obtain the following pointwise inequality

|a − b|p ≥
1

(1 + δ)p |a|
p −

1
δp |b|

p (15)

for every a, b ∈ R. Given ξ, η ∈ Rn it holds

||ξ|p − |η|p| ≤ p (|ξ| + |η|)p−1
|ξ − η| (16)

and, given ξ, η ∈ Rn \ {0} it holds∣∣∣∣∣ ξ|ξ| − η

|η|

∣∣∣∣∣ ≤ 2
|ξ − η|

|ξ|
. (17)
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2.4 The local version of the functional Kε(f,m, p)
We define the following local counterpart of (2) which will be use in Step 3 of proof
of Theorem 1

Kε( f ,m, p,Ω) = εn−mp sup
Gε

∑
Q′∈Gε

?
Q′

∣∣∣ f (x) − Pm−1
Q′ [ f ](x)

∣∣∣p dx , (18)

where the supremum on the right hand side is taken over all families Gε of disjoint
open cubes of sidelenght ε and arbitrary orientation contained in Ω.

This quantity is strictly related to the Lp norm of ∇m f . Indeed, for p < n
m with

p? =
np

n−mp , by using Hölder inequality, we have

‖ f ‖Lp(Q) ≤ ‖ f ‖Lp? (Q) (19)

Thus, there exists a constant C depending only on Q,m, p such that for Q′ = εQ+ x0,
by (19) and (11), we get

εn−mp
∫

Q′
| f (x) − Pm−1

Q′ [ f ]|p dx ≤ C
∫

Q′
|∇m f |p. (20)

Summing over all sets Q′ in Gε, we obtain

εn−mp
∑

Q′∈Gε

∫
Q′
| f (x) − Pm−1

Q′ [ f ]|p dx ≤ C‖∇m f ‖pLp(Ω)

and therefore
Kε( f ,m, p,Ω) ≤ C‖∇m f ‖pLp(Ω).

We conclude this subsection, by observing that if ν̄ ∈ SN−1 is a vector maximizing
the integral in (8), x0 ∈ R

n and Qη(x0) is a cube of side length η with center in x0 then

1
(m!)p

∫
Qη(x0)

∣∣∣∣(x − x0)m · ν̄ −

∫
Qη(x0)

(y − x0)m · ν̄ dy
∣∣∣∣p dx = β(n,m, p) · ηn+mp. (21)

3 The case m = 2
In this section we deal with the case m = 2. In this case it is easier to make some
explicit computations. Moreover we give an estimates on the constant β(n, 2, p) in
terms of the Laplacian of the function f ∈ W2,p.

We prove the following

Proposition 5 Let f ∈ W2,p and β(n, 2, p) as in (8). Then the following estimate from below
holds true

β(n, 2, p) ≥ Cn,p|∆ f (0)|p. (22)
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First, by virtue of (9), it is possible to characterize PΩ[u] for m = 2. Fixed x0 ∈ Ω,
a generic polynomial of degree 1 centered in x0 is given by

P1
Ω[u](x) = 〈a, x − x0〉 + b, a ∈ Rn, b ∈ R.

By (9) with |α| = 0, we have

b|Ω| =
∫

Ω

(u(x) − 〈a, x − x0〉) dx

which implies

b =

∫
Ω

(u(x) − 〈a, x − x0〉) dx.

Moreover, for every i = 1, . . . , n, again (9) for |α| = 1 gives

ai =

∫
Ω

∂u
∂xi

(x) dx

and we write
a =

∫
Ω

∇u(x) dx.

Then the polynomial P1
Ω

(u) is

P1
Ω[u](x) =

∫
Ω

(
u(y) − 〈

∫
Ω

∇u, y〉
)

dy + 〈

∫
Ω

∇u(y) dy, x − x0〉 (23)

where, with a slight abuse of notation, we mean

〈

∫
Ω

∇u(y) dy, x − x0〉 =

n∑
j=1

(xi − x0i )
∫

Ω

∂u
∂yi

(y) dy.

Remark 1 We observe that if Ω is symmetric with respect to x0, the polynomial P1
Ω

[u] has a
simpler form, indeed ∫

Ω

〈

∫
Ω

∇u, y〉 dy = 0,

and then
P1

Ω[u](x) =

∫
Ω

u(y) dy + 〈

∫
Ω

∇u(y) dy, x − x0〉 (24)

Proof of Proposition 5 We observe that when m = 2, p ≥ 1, (8) reads as

β(n, 2, p) := max
ν∈Sn2−1

1
4

∫
Q

∣∣∣∣∣∣ν · x2 −

∫
Q
ν · y2 dy

∣∣∣∣∣∣p dx. (25)

In this case ν · x2 can equivalently be write as

〈Ax, x〉
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where A ∈ M(n) is a matrix n × n and 〈·, ·〉 denote the usual scalar product in Rn.
It is worth to remark that

β(n, 2, p) ≥
1

2p

?
Q

∣∣∣∣∣∣〈∇2 f (0)x, x〉 −
?

Q
〈∇2 f (0)y, y〉

∣∣∣∣∣∣p dx . (26)

Firstly we observe that denoting by ei the canonical basis of Rn, by O ∈ O(n) an orthogonal
matrix and by R ∈ S O(n) a rotation around the origin taking O−1(Q) into Q we have∫

O−1(Q)
y2

i dy =

∫
O−1(Q)

(y · ei)2 dy =

∫
R◦O−1(Q)

(Rw · ei)2 dw =

∫
Q

(w · R−1ei)2 dy =
1

12

Moreover, given A ∈ S(n) a symmetric matrix there exist O ∈ O(n) and D ∈ D(n) such that
A = ODO−1. Thus we have∫

Q
〈Az, z〉 dz =

∫
Q
〈(ODO−1)z, z〉 dz =

∫
Q
〈(DO−1)z,O−1z〉 dz =

∫
O−1(Q)

〈Dy, y〉 dy

=

∫
O−1(Q)

n∑
i=1

λiy2
i dy =

n∑
i=1

λi

∫
O−1(Q)

y2
i dy =

1
12

n∑
i=1

λi

(27)

Then we can estimate from below β(n, 2, p) using (26) and (27), proving (22).
Indeed, setting ∇2 f (0) = A we have∫

Q
〈Ax, x〉 =

∆ f (0)
12

.

Moreover setting y = min yi, we have

1
2p

∫
Q

∣∣∣∣∣∣〈Ax, x〉 −
∫

Q
〈Ay, y〉

∣∣∣∣∣∣p dx =
1

2p

∫
Q

∣∣∣∣∣〈(DO−1)x,O−1x〉 −
∆ f (0)

12

∣∣∣∣∣p dx

=
1

2p

∫
Q

∣∣∣∣∣∑ λiy2
i −

∆ f (0)
12

∣∣∣∣∣p dx ≥
1

2p

∫
O−1(Q)

∣∣∣∣∣∑ λiy2
−

∆ f (0)
12

∣∣∣∣∣p dx

=
1

2p |∆ f (0)|p
∫

O−1(Q)

∣∣∣∣∣y − 1
12

∣∣∣∣∣p dx = Cn,p|∆ f (0)|p. (28)

�

4 A characterization of Wm,p

Proof of Theorem 1 We divide the proof in three steps, proving first the limsup and liminf
inequalities in (7) and then the validy of (6).

As a starting point we fix a bounded open set Ω ⊂ Rn and f ∈ Wm,p(Ω). Given σ > 0,
there exists a function g ∈ C∞c (Ω) such that ‖ f − g‖Wm,p(Ω) < σ and we choose ε > 0 such that

|∇mg(x) − ∇mg(y)| ≤ σ, ∀x, y, |x − y| ≤
√

nε
2

(29)

Let us take now a family Gε of disjoint open cubes Q′ of side length ε and arbitrary
orientation and let us denote by G′ε the subfamily of Gε made by all cubes Q′ ∈ Gε such that
Q′ ⊂ Ω.
Step1 (limsup inequality).

We are going to show that

lim sup
ε→0+

Kε( f ,m, p) ≤ β(n,m, p)
∫
Rn
|∇m f |p dx.
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We may assume, without loss of generality, that |∇m f | ∈ Lp(Ω). Using (14) and the linearity of
Pm−1

Q′ [ f ], for any Q′ ∈ G′ε we have:∫
Q′

∣∣∣∣ f − Pm−1
Q′ [ f ]

∣∣∣∣p dx ≤ (1 + δ)p
∫

Q′

∣∣∣∣g − Pm−1
Q′ [g]

∣∣∣∣p dx + Mδ

∫
Q′

∣∣∣∣( f − g) − Pm−1
Q′ [ f − g]

∣∣∣∣p dx

(30)
where Mδ = (1 + δ)p/δp.

We recall the notation in Section 2, so denoting by x0 the center of the cube Q′ and for all
x ∈ Q′ we write

g(x) = T m
x0

g(x) + Rmg(x, x0),

where |Rmg(x, y)| < (n
m
2 σεm)/2m = C1σε

m.
We now estimate the two terms in (30). Let us focus on the first addendum: using again

(14) we have∫
Q′

∣∣∣∣g − Pm−1
Q′ [g]

∣∣∣∣p dx

=

∫
Q′

∣∣∣∣∣∣ 1
m!
∇mg(x0) · (x − x0)m + Rmg(x, x0) −

[∫
Q′

1
m!
∇mg(x0) · (y − x0)m dy +

∫
Q′

Rmg(y, x0) dy
]∣∣∣∣∣∣p dx

≤ (1 + δ)p 1
(m!)p

∫
Q′

∣∣∣∣∣∣∇mg(x0) · (x − x0)m −

∫
Q′
∇mg(x0) · (y − x0)m dy

∣∣∣∣∣∣p dx + 2pMδ

∫
Q′

∣∣∣Rmg(x, x0)
∣∣∣p dx

≤ (1 + δ)pβ(n,m, p)εmp|∇mg(x0)|p + C2Mδσ
pεmp.

(31)
Moreover, applying again (14) and (29) we have

|∇mg(x0)|p ≤ (1 + δ)p
∫

Q′

∣∣∣∇mg(x)
∣∣∣p dx + C3Mδσ

p.

Hence∫
Q′

∣∣∣∣g − Pm−1
Q′ [g]

∣∣∣∣p dx ≤ β(n,m, p)(1 + δ)2pεmp
∫

Q′
|∇mg(x)|p dx + C4Mδε

mpσp. (32)

Let us focus now on the second addendum in (30). By Poincaré inequality in Wm,p (see
Theorem 2), we have∫

Q′

∣∣∣∣( f − g) − Pm−1
Q′ [ f − g]

∣∣∣∣p dx ≤ Cpε
mp−n

∫
Q′
|∇m( f − g)|p dx (33)

where Cp is the Poincaré constant for cubes.
Observe now that ](G′ε) ≤ ε−n|Ω| and set Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε

√
n}. Using

(30),(32) and (33) we have

εn−mp
∑

Q′∈Gε

∫
Q′

∣∣∣∣ f − Pm−1
Q′ [ f ]

∣∣∣∣p dx

≤ εn−mp
∑

Q′∈G′ε

∫
Q′

∣∣∣∣ f − Pm−1
Q′ [ f ]

∣∣∣∣p dx + C6

∑
Q′∈Gε\G′ε

∫
Q′
|∇m f |p

≤ (1 + δ)pεn−mp
∑

Q′∈G′ε

∫
Q′

∣∣∣∣g − Pm−1
Q′ [g]

∣∣∣∣p dx + CpMδ

∫
Ω

|∇m( f − g)|p + C6

∫
Rn\Ωε

|∇m f |pdx

≤ (1 + δ)3pβ(n,m, p)
∑

Q′∈G′ε

∫
Q′
|∇mg(x)|p dx + C4Mδε

nσp + CpMδσ
p + C6

∫
Rn\Ωε

|∇m f |pdx

≤ (1 + δ)3pβ(n,m, p)
∫

Ω

|∇m f (x)|p dx + C4Mδε
nσp + CpMδσ

p + C6

∫
Rn\Ωε

|∇m f |pdx

(34)
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where the constants depend only on n, p and |Ω|. Then, taking the supremum over all the
families of cubes Gε, and then letting first ε→ 0+, σ→ 0, δ→ 0 and Ω ↑ Rn we conclude.

Step2 (liminf inequality). We fix Ω ⊂ Rn, we assume again that f ∈ Wm,p
loc (Ω) and we fix

σ > 0 and g ∈ C∞c (Ω) as in the previous Step. We prove that

lim inf
ε→0+

Kε( f ,m, p) ≥ β(n,m, p)
∫
Rn
|∇m f |p dx. (35)

So, for η ∈ (0, 1) we consider the set

Uη = {x ∈ Ω : |∇mg(x)| > η}

With a clever use of Lemma 2.95 of [3] (as in Proposition 3.6 of [15]) it is possible to find
k sufficiently small pairwise disjoint open sets S j ⊂ S

N−1 covering SN−1. Precisely,

k⋃
j=1

S̄ j = SN−1

diam S j < η for all j = 1...k∣∣∣∣∣∣∣∣
k⋃

j=1

{
x ∈ Uη :

∇mg(x)
|∇mg(x)|

∈ ∂S j

}∣∣∣∣∣∣∣∣ = 0.

For all j = 1, . . . , k we denote

A j =

{
x ∈ Uη :

∇mg(x)
|∇mg(x)|

∈ S j

}
,

which are open sets with the property ∣∣∣∣∣∣∣∣Uη \

k⋃
j=1

A j

∣∣∣∣∣∣∣∣ = 0. (36)

For ε > 0 we consider the family Fε of all open cubes with faces parallel to the coordinate
planes, side length ε, centered at all points of the form εv, with v ∈ Zn. Then for all j = 1, . . . , k
we choose M j ∈ S j and we denote by R j ∈ S O(n) a rotation that takes e1 into M j.

Note that in this way, denoting by x′ the center of the cube Q′ ∈ Fε, we have (see (21)),

1
(m!)p

∫
R j(Q′)

∣∣∣∣(x − x′)m · ν̄ −

∫
R j(Q′)

(y − x′)m · ν̄ dy
∣∣∣∣p dx = β(n,m, p) · εn+mp.

For all j = 1, . . . , k we denote by R j(Qh, j),Qh, j ∈ Fε, h = 1, . . . ,m j, the elements of Gε
contained in A j. By (36) there exists ε(σ, η) such that if ε < ε(σ, η) then∣∣∣∣∣∣∣∣Uη \

k⋃
j=1

m j⋃
h=1

R j(Qh, j)

∣∣∣∣∣∣∣∣ ≤ ηp.

We denote by xh, j the center of the cube R j(Qh, j) and we argue as in Step 1. Indeed we have
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∫
R j(Qh, j)

∣∣∣∣g − Pm−1
R j(Qh, j)[g]

∣∣∣∣p dx

≥
1

(1 + δ)p
1

(m!)p

∫
R j(Qh, j)

∣∣∣∣∣∣∇mg(xh, j) · (x − xh, j)m −

∫
R j(Qh, j)

∇mg(xh, j) · (x − xh, j)m
∣∣∣∣∣∣p dx

−
2p

δp

∫
R j(Qh, j)

|Rmg(x, xh, j)|p dx

≥
1

(1 + δ)2p

|∇mg(xh, j)|p

(m!)p

∫
R j(Qh, j)

∣∣∣∣∣∣M j · (x − xh, j)m −

∫
R j(Qh, j)

M j · (x − xh, j)m
∣∣∣∣∣∣p dx

−
2p

δp

|∇mg(xh, j)|p

(m!)p

∫
R j(Qh, j)

∣∣∣∣∣∣(∇mg(xh, j) − M j) · (x − xh, j)m −

∫
R j(Qh, j)

(∇mg(xh, j) − M j) · (x − xh, j)m
∣∣∣∣∣∣p dx

−C7
σpεmp

δp

≥
εmpβ(n,m, p)|∇mg(xh, j)|p

(1 + δ)2p −
C8η

pεmp

δp ‖∇mg‖pL∞ −C7
σpεmp

δp .

(37)

Now, adding on j and h the previous inequality, recalling (36), we have

εn−mp
∑

R j(Qh, j)∈G′ε

∫
R j(Qh, j)

∣∣∣∣g − Pm−1
Q′ [g]

∣∣∣∣p dx

≥ εn−mp
k∑

j=1

m j∑
h=1

εmpβ(n,m, p)|∇mg(xh, j)|p

(1 + δ)2p −
C8η

pεmp

δp ‖∇mg‖pL∞ −C7
σpεmp

δp

≥
β(n,m, p)
(1 + δ)3p

k∑
j=1

m j∑
h=1

∫
R j(Qh, j)

|∇mg|p −
C8η

pεn

δp ‖∇mg‖pL∞ −C7
σpεn

δp

≥
β(n,m, p)
(1 + δ)3p

∫
Ω

|∇mg|p −
Cηp

δp (1 + ‖∇mg‖pL∞ ) −C
σp

δp

≥
β(n,m, p)
(1 + δ)4p

∫
Ω

|∇m f |p −
Cηp

δp (1 + ‖∇mg‖pL∞ ) −C
σp

δp ,

where the constants may change from line to line and depend only on p, n and |Ω|. We conclude
choosing η small enough and consequently ε small,

εn−mp
∑

Q′∈Gε

∫
Q′

∣∣∣∣ f − Pm−1
Q′ [ f ]

∣∣∣∣p dx

≥
1

(1 + δ)p ε
n−mp

∑
Q′∈Gε

∫
Q′

∣∣∣∣g − Pm−1
Q′ [g]

∣∣∣∣p dx −
1
δp

∫
Ω

|∇m( f − g)|p

≥
β(n,m, p)
(1 + δ)5p

∫
Ω

|∇m f |p −
Cσp

δp ,

where again C may change from line to line and depend on p, n and |Ω|. To conclude we take
the supremum over all the families Gε and let first ε → 0, σ → 0, δ → 0 and Ω ↑ Rn, proving
(35).

Step3 (proof of (6)) Now let p > 1, f ∈ Wm−1,p
loc (Rn) and lim infε→0 Kε( f ,m, p) < ∞. We

fix σ > 0, Ω ⊂ Rn and observe that there exist r > 0 and a finite family of pairwise disjoint
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open cubes Q(xi, r) such that ∣∣∣∣∣∣∣Ω \
m⋃

i=1

Q(xi, r)

∣∣∣∣∣∣∣ < σ. (38)

|∇m f (x) − ∇m f (y)| < σ (39)

Moreover we fix 0 < ε < r and we set fε(x) = (%ε ∗ f )(x), where % is a standard mollifier with
compact support in the unit cube Q and %ε(x) = ε−n%(x/ε).

For every Q(xi, r) we consider a family Hε of pairwise disjoint cubes Q j = z j + εQ ⊂
Q(xi, r), for j = 1, . . . , k.

We compute now

|∇m fε(z j)|p =

∣∣∣∣∣∫
Rn

f (y)∇mρε(z j − y) dy
∣∣∣∣∣p =

∣∣∣∣∣∫
Rn

(
f (y) − Pm−1

Q j
[ f ](y)

)
∇mρε(z j − y) dy

∣∣∣∣∣p
≤ ε(−m−n)p+np−n

∫
Q j

∣∣∣∣ f (y) − Pm−1
Q j

[ f ](y)
∣∣∣∣p dy = ε−mp

∫
Q j

∣∣∣∣ f (y) − Pm−1
Q j

[ f ](y)
∣∣∣∣p dy.

Moreover, by (29) and (14), we have

|∇m fε(z j)|p ≥
1

1 + δ
ε−n

∫
Q j

|∇m fε(x)|p dx −
C
δpσ

p

Then
1

1 + δ

∫
Q j

|∇m fε(x)|p dx ≤ εn−mp
∫

Q j

∣∣∣∣ f (y) − Pm−1
Q j

[ f ](y)
∣∣∣∣p dy +

C
δpσ

pεn.

Summing up all the cubes inHε, we obtain

1
1 + δ

∫
Q(xi,r)

|∇m fε(x)|p dx

≤
1

1 + δ

k∑
j=1

∫
Q j

|∇m fε(x)|p dx ≤ εn−mp
k∑

j=1

∫
Q j

∣∣∣∣ f (y) − Pm−1
Q j

[ f ](y)
∣∣∣∣p dy +

C
δpσ

pεn

≤ εn−mp
k∑

j=1

∫
Q j

∣∣∣∣ f (y) − Pm−1
Q j

[ f ](y)
∣∣∣∣p dy +

C
δpσ

prn, (40)

where the last inequality follows since kεn ≤ rn. Taking the supremum with respect to all
familiesHε and the liminf with respect to ε, we have

1
1 + δ

∫
Q(xi,r)

|∇m f (x)|p dx ≤ lim inf
ε→0

Kε( f ,m, p,Q(xi, r)) +
C
δpσ

prn.

Summing up with respect to i and using (38) we have

1
1 + δ

∫
Ω

|∇m f (x)|p dx ≤ lim inf
ε→0

Kε( f ,m, p,Ω) +
C
δpσ

p|Ω|.

Letting σ→ 0, δ→ 0 and Ω ↑ Rn, we conclude.
�

Remark 2 We observe that Theorem 7 hold also in an open set Ω with the same proof replacing
Kε( f ,m, p) by the quantity Kε( f ,m, p,Ω) defined in (18).

Corollary 6 Let p > 1, n > mp, p? =
np

n−mp , Ω ⊂ Rn and Gε a pairwise disjoint family of
translations Q′ of εQ contained in Ω. Then, the following three statements are equivalent:
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i) f ∈ Wm,p(Ω);
ii)

sup
Gε

∑
Q′∈Gε

εn−mp
?

Q′

∣∣∣ f − Pm−1
Q′ [ f ]

∣∣∣p < +∞;

iii)
sup
Gε

∑
Q′∈Gε

‖ f − Pm−1
Q′ [ f ] ‖p

Lp? (Q′)
< +∞

.

Proof In this proof the constant C may change from line to line.
We prove that iii)⇒ ii). By Hölder’s inequality it holds

εn−mp
∫

Q′

∣∣∣∣ f − Pm−1
Q′ [ f ]

∣∣∣∣p dx ≤
εn−mp

εn

(∫
Q′

∣∣∣∣ f − Pm−1
Q′ [ f ]

∣∣∣∣ np
n−mp

) n−mp
n

|Q′|
mp
n =

∥∥∥∥ f − Pm−1
Q′ [ f ]

∥∥∥∥p

Lp? (Q′)
.

(41)
Summing over all sets Q′ in Gε and passing to the supremum, we conclude.

We prove that i)⇒ iii). Using the Sobolev-Gagliardo-Nirenberg inequality (11), we obtain
that there exists a constant C = C(n,m, p) such that∥∥∥∥ f − Pm−1

Q′ [ f ]
∥∥∥∥

Lp? (Q′)
≤ C

∥∥∥∇m f
∥∥∥

Lp . (42)

Summing over Q′ in Gε and passing to the supremum over all families Gε the proof is
completed.

The equivalence i)⇔ ii) is proved in [9].
�

5 A characterization of higher order bounded variation
In this section we deal with the case p = 1. This case is not included in Theorem 1
since (6) hold only for p > 1.

The case m = 1 was treated in [16]. They proved that (see Proposition 2.4 of [16])
if f ∈ L1

loc(Rn) then

f ∈ BV(Rn) ⇐⇒ lim inf
ε→0

Kε( f , 1, 1) < +∞ (43)

Precisely, they prove that for f ∈ L1
loc(Rn) it holds

1
4
|∇ f |(Rn) ≤ lim inf

ε→0+
Kε( f , 1, 1) ≤ lim sup

ε→0+

Kε( f , 1, 1) ≤
1
2
|∇ f |(Rn),

where the total variation of f in Ω ⊂ Rn, possibly equal to +∞, is defined by setting

|∇ f |(Ω) := sup
{∫

Ω

f (x) div ϕ(x) dx : ϕ ∈ C1
c (Ω), ‖ϕ‖∞ ≤ 1

}
We prove a similar characterization for the case m > 1. Now an equivalence similar
to (43) involve the space BVm(Rn) of functions of m-th order bounded variation (see
Section 2).
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Precisely, we prove the following

Proposition 7 Let f ∈ Wm−1,1
loc (Rn). Then

f ∈ BVm(Rn) ⇐⇒ lim inf
ε→0

Kε( f ,m, 1) < +∞

Moreover, there is a positive constants C, independent of f , such that

|∇m f |(Rn) ≤ lim inf
ε→0+

Kε( f ,m, 1) ≤ lim sup
ε→0+

Kε( f ,m, 1) ≤ C|∇m f |(Rn). (44)

Proof To prove the first inequality in (44) we argue as in Step 3 of Theorem 1. In particular,
we have

1
1 + δ

∫
Q(xi,r)

|∇m fε(x)| dx ≤ εn−m
k∑

j=1

∫
Q j

∣∣∣∣ f (y) − Pm−1
Q j

[ f ](y)
∣∣∣∣ dy +

C
δ
σrn, (45)

Taking the supremum with respect to all familiesHε and the liminf with respect to ε, we have

1
1 + δ

lim inf
ε→0

∫
Q(xi,r)

|∇m fε(x)| dx ≤ lim inf
ε→0

Kε( f ,m,Q(xi, r)) +
C
δ
σrn.

By the compactness in BVm (Proposition 4), we get

1
1 + δ

|∇m f |(Q(xi, r)) dx ≤ lim inf
ε→0

Kε( f ,m,Q(xi, r)) +
C
δ
σrn

Summing up with respect to i and using (38) we obtain

1
1 + δ

|∇m f |(Ω) dx ≤ lim inf
ε→0

Kε( f ,m,Ω) +
C
δ
σrn|Ω|

We conclude letting σ→ 0, δ→ 0, Ω ↑ Rn.
In order to prove the estimate from above in (44), it is is sufficient to apply the Poincare’

inequality in BVm (see Section 2).
�

Corollary 8 Let n > m, 1? = n
n−m , Ω ⊂ Rn and Gε is any pairwise disjoint family of

translations Q′ of εQ contained in Ω. Then, the following three statements are equivalent:

i) f ∈ BVm(Ω);
ii)

sup
Gε

∑
Q′∈Gε

εn−m
?

Q′

∣∣∣ f − Pm−1
Q′ [ f ]

∣∣∣ < +∞

iii)
sup
Gε

∑
Q′∈Gε

‖ f − Pm−1
Q′ [ f ] ‖L1? (Q′) < +∞

Proof We prove that iii)⇒ ii). By Hölder’s inequality it holds

εn−m
∫

Q′

∣∣∣∣ f − Pm−1
Q′ [ f ]

∣∣∣∣ dx ≤
∣∣∣∣ f − Pm−1

Q′ [ f ]
∣∣∣∣
L1? (Q′)

. (46)
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The conclusion follows by summing over all sets Q′ in Gε.
We prove that i)⇒ iii). By using (13) there exists a constant C = C(n.m) such that∥∥∥∥ f − Pm−1

Q′ [ f ]
∥∥∥∥

L1? (Q′)
≤ C

∥∥∥∇m f
∥∥∥

Lp (Q′) (47)

The conclusion follows again by summing over all sets Q′ in Gε.
The equivalence i)⇔ ii) is proved in [9]. �
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