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ABSTRACT. We provide a new characterization of homogeneous Besov and Sobolev
spaces in Carnot groups using the fractional heat kernel and Poisson kernel. We ap-
ply our results to study commutators involving fractional powers of the sub-Laplacian.

1. INTRODUCTION

Besov and Sobolev spaces measure regularity of functions and are of central importance
in the study of PDEs. There has been much work on these spaces and their characteriza-
tion in different settings. Such alternative characterizations provide flexibility for appli-
cations. In this work, we give a new characterization of homogeneous Besov and Sobolev
spaces in Carnot groups using the fractional heat kernel and Poisson kernel. We use this
to study commutators involving fractional powers of the sub-Laplacian.

A Carnot group is a Lie group whose Lie algebra admits a stratification. This decom-
poses the Lie algebra as a direct sum of vector subspaces, the first of which is called the
horizontal layer and generates the other subspaces via Lie brackets. Carnot groups have a
rich geometric structure adapted to the horizontal layer, including translations, dilations,
Carnot-Carathéodory (CC) distance, and a Haar measure [4, 17, 31, 38]. Carnot groups
have been studied in contexts such as differential geometry [17], subelliptic differential
equations [11, 24, 25|, real and complex analysis [45, 41, 40]. For an introduction to
Carnot groups from the point of view of this paper and for further examples, we refer to
(11, 24, 45].

In the Euclidean case there have been characterizations of Besov and Sobolev spaces
using multiple tools, mostly relying on the Fourier transform and Littlewood-Paley de-
compositions [12, 13, 14]. In Carnot groups there have been a few characterizations of
such spaces, for instance using the heat kernel [43] and a spectral multiplier version of
Besov spaces [28]. We also mention the use of a Littlewood-Paley decomposition in the
study of the phase space in the Heisenberg group [5, 6]. This uses the Fourier transform
in that setting. We also point out the extension of the characterization in [43] to the case
of metric measure spaces with heat kernels satisfying a Gaussian bound, [16]. As we will
see later on, the kernels that we will be using do not satisfy this bound.

The heat kernel and fractional heat kernel in Carnot groups have been studied for
some time, e.g. see [21] and the references therein. The Poisson kernel in Carnot groups
was introduced and studied in [26], but the fractional one is a recent discovery. It was
first introduced and studied in [20] to exhibit a Harnack-type estimate for the fractional
Laplacian. The method of construction follows the classical one introduced by Caffarelli
and Silvestre in [15], but here using the spectral resolution of the sub-Laplacian. We
also point out that there is also another construction for a different fractional Poisson
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kernel in the Heisenberg group for the conformal fractional sub-Laplacian in [27] and the
construction relies mainly on the Fourier transform.

In this paper we start by defining a norm using the fractional heat kernel which ends up
being equivalent to the classical homogeneous Besov norm as stated in Theorem 3.4. This
procedure is close to the one of [43] and it does rely partially on the semi-group property
of the fractional heat kernel. Next, we study different properties of the fractional Poisson
kernel, allowing us, as stated in Theorem 4.6, to provide different equivalent norms to the
classical homogeneous Besov spaces. The main challenge in this procedure is to bypass
the use of the Fourier transform and still keep certain harmonic analysis properties of the
different kernel we are considering. Also, in the same spirit, in Theorem 5.1, we provide
a lower bound for the fractional Sobolev norms using a square-function-type quantity
involving the convolution with the Poisson kernel and we finish in Proposition 5.5, by
providing a characterization of the BMO norm.

Concerning applications of our results, the second characterization that we provide for
Besov and Sobolev spaces appears to be well suited to the study of commutators involving
fractional powers of the sub-Laplacian. We recall that, in [35], the first author provided
a family of estimates for the commutator of the fractional sub-Laplacian using a more
direct approach in estimating the singular kernel of the operator. In this work we provide
an extended result, which generalizes many classical commutator estimates known in the
Euclidean setting to the case of Carnot groups. For instance, in Theorems 6.5 and 6.6
we provide bilinear-type estimates for three terms commutators involving the fractional
sub-Laplacian. In fact the first result (namely Theorem 6.5) provides LP-type estimates
and the second result deals with the borderline setting of bounding the Hardy norm. Also,
in Theorem 6.7, we provide a proof of the Chanillo-type commutator estimates for the
Carnot group setting. We follow closely the ideas provided in the Euclidean setting [34] to
use the fractional Poisson kernel to simplify the expressions of the commutators. But we
point out that in the Euclidean case, the estimates and characterizations of the different
spaces was established separately in [12]. This is why, in our case, we first have to cross
the difficulty of characterizing these spaces.

In general, commutator estimates are a fundamental tool in the study of the regularity
of PDE, especially in the fractional setting. For instance, in Carnot groups, [35] gives
applications to the study of the regularity and decay of solutions to the fractional CR-
Yamabe problem, while [37] characterizes the asymptotic profile decomposition of Palais-
Smale sequences for the same problem. In the Euclidean setting one has even more
applications of commutator estimates [33, 44, 22, 23].

The structure of the paper is as follows.

In Section 2 we provide the necessary preliminaries on the structure of Carnot groups,
the sub-Laplacian and the heat kernel.

In Section 3 we provide a characterization of Besov spaces using the fractional heat
kernel. This is the kernel of the flow generated by the fractional power of the sub-
Laplacian. The proof in this section follows the approach in [43], where an analogous
characterization of Besov spaces was obtained using the standard (non-fractional) heat
kernel and Poisson kernel.

In Section 4 and Section 5 we move to the characterization of Besov, Sobolev and BMO
spaces using the fractional Poisson kernel. Here we generalize ideas in the Euclidean
setting and avoid notions involving the Fourier transform because that is a tool that we
cannot afford in Carnot groups in general.
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In Section 6 we provide several applications of our results to estimates for commutators
of fractional powers of the sub-Laplacian. Such estimates were established and studied in
the Euclidean setting in [18, 22, 23, 34, 33, 44].
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2. PRELIMINARIES
2.1. Carnot Groups.

Definition 2.1. A connected and simply connected Lie group (G, -) is a Carnot group
of step k if its Lie algebra g admits a step k stratification. This means that there exist
non-trivial linear subspaces Vi, ..., Vi of g such that

g=Vid- -V (2.1)

where [V}, V;] = Vi for 1 <i < k and [V}, V] = {0}. Here [V}, V}] is the subspace of g
generated by the commutators [X,Y] with X € V; and Y € V.

Let m; = dim(V;) fori = 1,..., k. Define hg = 0 and h; = my+---+m; fori =1,... k.
We also use the notation n := h; and m := m;. The homogeneous dimension of G is then
defined by @ := Zle idim(V;).

Choose a family of left invariant vector fields X = {X;,..., X,,} adapted to the strat-
ification of g, i.e. such that Xj,_ 41,..., Xy, is a basis of Vj for each j = 1,..., k. This
identifies g with R™. Using exponential coordinates of the first kind we identify G with g
and hence with R". With these coordinates, X;(0) =e; fori =1,...,n.

Definition 2.2. The sub-bundle of the tangent bundle T'G that is spanned by the vec-
tor fields X1, ..., X,, plays a particularly important role in the theory. It is called the
horizontal bundle HG. The fibers of HG are

H,G = span{X;(x),..., Xn(z)}, z€G.

We can endow each fiber of HG with a corresponding inner product (-,-) and with a
norm | - | that make the basis X;(z),...,X,,(z) an orthonormal basis. The sections
of HG are called horizontal sections and a vector of H,G a horizontal vector. Each
horizontal section is identified by its canonical coordinates with respect to this moving
frame Xi(x),..., X,n(z). This way, a horizontal section ¢ is identified with a function

¢=(¢1,---,Pm) : R" = R™.

Definition 2.3. For any x € G, the left translation 7, : G — G is defined by 7,2 = xz.
For any A > 0, the dilation d, : G — G, is defined as

() = (Ner, -, A"E), (2.2)

where z = (&1,...,&) € R™ x ... x R™ = G.
The Haar measure of G = (R",-) is the Lebesgue measure in R”. If A C G is Lebesgue
measurable, we write |A| to denote its Lebesgue measure.
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Let |- | : G — [0,00) denote a symmetric homogeneous norm on G [11], meaning:
e |- | is continuous,
o |0\(z)| = A|x| for every A > 0,
° |.l’71| = |J}|
Note that any two continuous homogeneous norms are equivalent, i.e. within constant
multiplicative constant factors of each other. All the estimates we give are the same if
the norm is changed up to changes in constants. We denote the ball centered at a point
x € G with radius r > 0 by
B(z,r)={yeG: |y 'z| <r}.

We denote balls centered at the identity 0 by B(r) = B(0,r).
Given two non-negative functions f and g, we shall write f < g if there exists a constant
C such that f(z) < Cg(z) for all z € G. Similarly we shall write f ~ ¢ if f < ¢g and

g3 f

Definition 2.4. Suppose f : G — R is a function for which X f exists for 1 < j < m.
Then we define the horizontal gradient of f as the horizontal section whose coordinates

are (Xqf, ..., Xnf):

m

Vel =) (Xif)X:
1=1

We denote by A, the positive sub-Laplacian defined by

Af =) X;X;f

j=1
whenever f is a function such that X;X;f exists for 1 < j < m.

If Q C G is an open set, we define C*(€2) as in the classical case when (2 is a subset of
R"™. We will use the inequality

1FCy) = fOll S [llIVe Sl
for all y € G and sufficiently smooth f: G — R. This is a consequence of the Fundamental
Theorem of Calculus.

2.2. Heat Kernel. For every multi-index = (f3, ..., (,) € N, we denote
Bl = Br+ -+ Ba

and
DP = XU Xbn
where
XU = XX, X,
——
Bi—times

We also use the notation (9/0x;)" or 9° to denote differentiation with respect to the
standard basis of R”. The Schwartz space and space of distributions are defined as in the
classical setting, which we now briefly recall.

Definition 2.5. We define the Schwartz space 8(G) by identification of G with R™:
8(G) ={¢ € C*(G): P(0/0x;) ¢ is bounded on G

for every polynomial P and every multi-index (§}.
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We equip 8(G) with the following seminorms for multi-indices «, 5 € N™:
I9lla,6 = sup [z D).
zeG
The convolution of two functions f,g : G — R is defined whenever it makes sense by

()@ = [ fav o) dv= [ gl a5 dy

Rn

Definition 2.6. The continuous dual of §(G) with the family of seminorms || - ||, s is the
space of distributions on G, denoted 8'(G).
The action of a distribution f on a Schwartz function ¢ is denoted (f, ). The convo-

lution f * ¢ of f and ¢ is defined by (f * ¢)(z) = (f, ¢) where ¢(y) = ¢(y'z). If a is a
multi-index, the derivative 0% f of a distribution f is defined by

(0°f, ) = (—1)I(f,0%0) € 8(G).

Define the parabolic version of a Carnot group G by G := R x G. This is a Carnot
group where the group operation in the first coordinate is the usual addition and its
homogeneous dimension is @ + 2. We define dilations on G by 0, (¢, z) = (A%, x(x)).

Definition 2.7. The heat operator is the operator H on G defined by H := 0, + A,.

The heat operator is:
e translation invariant i.e. for any g € G, H(u o 7,) = (H(u)) o 7y,
e homogeneous of degree 2 i.e. for any A > 0, H(u o dy) = \2Hu,

e hypoelliptic i.e. if u is a distribution on G such that Hu is C* in some open set
2, then v must be C*° on ().

Definition 2.8. The heat operator H admits a fundamental solution h, usually called
the heat kernel for G.
Write hy(z) := h(t,z) and define for f locally integrable on R™:

Hif(e) = (F b)) = [ ity '2)() dy
whenever the integral exists. Then {H;};¢ is called the heat semigroup for G.
We now recall properties of h and Hy, see for example [11, 26] or [48, Section IV. 4]
Theorem 2.9. The heat kernel h satisfies:
(1) h e C=(G\{(0,0)});
(2) h(N\*t,65(z)) = A\~Ch(t,z) for every x € G and t,\ > 0;
(8) h(t,z) =0 for every t <0 and [, h(t,z) dz =1 for every t > 0;

(4) h(t,x) = h(t,x™ 1) for every t >0 and v € G;
(5) there exists ¢ > 1 (depending only on G) such that for every x € G andt > 0

2
92 exp( il >> < h(t,z) < et %exp ( — %), (2.3)

(6) For every nonnegative mtege'r k and B € N, there exists ¢ = ¢(B, k) > 0 such that
for every x € G and t >0

Q+ji+2k _ |a|?

’—Dﬁhta: <ctm 2 et (2.4)

otk
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Further, for any f € LY(R™) and t > 0, we have H.f € C*(R") and u(t,z) = H.f(x)
solves Hu = 0 in (0,00) x R™. Also u(t,x) — f(z) strongly in L'(R") ast — 0.

We now recall that the fractional sub-Laplacian and its inverse can be expressed using
the heat semigroup H; as in [24].

Definition 2.10. We define the fractional sub-Laplacian by

() f = limﬁ / T (LA HLf dt (2.5)

e—0 F

and

1 n
~A))f = lim —— [ “7'H, fdt
(—Ay)f nggor(a)/o of dt,

where 0 < a < 1 and f € L*(G) is any function for which the relevant limit exists in L?
norm.

We recall the following proposition [24, 26].

Proposition 2.11. For 0 < a < Q) the integral
1
I'(s)

2

R(z) = / t27 h(t,z)dt, 1€G,
0

converges absolutely and has the following properties:

o R, is a kernel of type a, i.e. is C*° away from 0 and homogeneous of degree a—Q);
® RoxRg=Rayip fora, >0 and a+ < Q;

e Ry is the fundamental solution of —Ay, i.e. (—Ap)Re = dp;

o For f € LP(G) and 1 < p < 0o, we have (—Ay)~*f = [ * Ra,.

From Proposition 2.11 and Theorem 2.9 it follows that R,(x) ~ |z|~9**. Also the

function p(z) = (Ra(m))ﬁ defines a symmetric homogeneous norm which is smooth
away from the origin and induces a quasi-distance equivalent to the left-invariant Carnot-
Carathéodory distance.

In a similar way one can define the function R,, introduced in [20], for @ < 0 and

a¢{0,—2,—4,---} by
R, (x) =

t2 7 h(t, z) dt.
rigy ), e

Again, R, is homogeneous of degree o — Q and
Ra(z) ~ 2|9, (2.6)

Using classical interpolation (or what is it called A—kernel estimates in [26]) one has for
0<a<@,
[Raullr < Jlul e (2.7)
1

for % == — % and 1 < ¢ < Q. Using R, one can define another representation for the
fractional sub-Laplacian. The following theorem is from [20, Theorem 3.11].

Theorem 2.12. Ifu € §(G), then for0 < a < 1:

(—Aw)u(z) = PV. /G (uly) — (@) Rosaly ') dy

S}

= lim (u(y) — u(x))R_saly~'z) dy.
e=0% JG\B(z.e)
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Moreover, using Balakrishnan’s approach (see [7, 8]) and what proved in [29, Lemma
8.5] (see also [21]) we also have the following formula

Theorem 2.13. Ifu € §(G), then for0 < a < 1:

m/o 7 (Hyu(z) — u(x)) dt
—1 et —u(x
- /0 £ (Hyu(x) — u(x)) dt.

The integral in the right-hand side must be interpreted as a Bochner integral in L*(G).

(~ ) u) =

2.3. Spectral Analysis in Carnot Groups. We collect here some well-known results
in Spectral Analysis which will be used later in the paper.

Since —A is self-adjoint with domain {f € L*(G) : —A,f € L*(G)}, we can consider
its spectral resolution [;° AdE()). Then [24, (3.12)],

(-2 = [T amo,
with domain 0
W2*2(G) = {u € L*(G): /OOO N A(BE(Nu,u) < oo} :

Any bounded Borel measurable function m on [0, 00) defines an operator on L*(G) by

m(—Ay) = /0 T () dE().

Let K,, denote the convolution kernel of the operator m(—A,), namely K,, is a distribu-
tion on G satisfying

m(—Ap)u = ux K,, forue §(G). (2.8)

If m is also compactly supported, then K,, € L*(G) and there exists a regular Borel
measure o, on [0, 00), whose support is the L? spectrum of —A,, such that [36, Theorem
3.10]:
[ 1 @P dz = [ im0 doy ().
G 0

Remark 2.14. For any function f on G and any A > 0, set d, f(x) = f(dr(z)). We claim:

A (= Ap)¥dy = N (—Ap)". (2.9)
Indeed, by Theorem 2.12 we get
d;l(—Ab)o‘d,\f(:U) = lim (drf(y) — d,\f(élx))R,ga(yfl(hx) dy

=07t G\B(3y 7.c) A A
= lim (f(0ry) = f(2)) Rosa (01 ((8ry) ")) dy

=07t G\B(52.¢) A
= A2 lim (f(0ry) = f(2))Roaa((0ry)'x) dy

e=0" JG\B(6 1 z,¢)

%I
where in the last equality we used R_2a(5%(((5,\y)’1x) = A2 R_,,((8xy)"'z). The con-
clusion follows by a change of variables.
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Similar to above, one can check that for any m € L*((0,00)) we have
dy ' m((—=Ap)*)dy = m(A**(—Ap)%). (2.10)
Remark 2.15. Given m € L*((0,00)) and ¢ > 0, set
m(A) =m(VA) and m'(\) = m(tV).
For any f € 8(G),
m! (= 8))f = m(t(~A)) f
= di (=) 2)d f
= d; 'in((—A))def
= d; ' (dof * K)
=t f *d; ' Kp).
Hence
Kot (z) = t‘QKm(é% (x)). (2.11)
Now suppose that a > @ /2 and fix n € C5°(0, 00) not identically zero. If m satisfies
sup [[n(-)m (t:)llwea@) < oo, (2.12)

then by [19, Lemma 6], K! € L'(G) uniformly in ¢ € (0,00). Here W*?(R) denotes the
standard fractional Sobolev space of order a.

2.4. Semigroups. We recall a few properties of the semigroups generated by fractional
powers of generators of strongly continuous semigroups. We refer to [47, Section 11,
Chapter IX] for more information and all the missing proofs.

2.4.1. General Semigroups. It is well known that (A,)* is the generator of a Markovian

semigroup {e'4=},o which is related to {e!4},-o by the subordination formula

etA“u:/ fra(s)eAu ds (2.13)
0
= / fra(m)e™ 4y dr (2.14)
0
where
1 o+100

7 / A dy i A >0,
ft,a()‘) = T Ja
0 if A<0.

for 0 > 0,£ >0 and 0 < a < 1. Thanks to [47, Proposition 2 of Section 11, Chapter IX],
fta(A) is nonnegative for A > 0 and for A > 0

/ fra(s)e ™ ds = e ™", (2.15)
0

—100

Moreover,

. 1 t
ft,a(s) S min {m, Slm} (216)
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and for —00o < § < «

- § 1e I'(1-6/a) 5/a
/0 fros)s" da = 5o (2.17)
and if 6 > «
/ ()8 ds = oo, (2.18)
0

2.4.2. Heat Semigroup. Let us now come to the heat semigroup. In this case, (—Ay)*
is defined in (2.5) and its domain is W?*%(G). We may use (2.13) and the equation
et(=20)y, = Hyu to write

B0 () = /0 (o) ( /@, h(s, y='2)uly) dy> ds  forue [X(G).

Hence, using Theorem 2.9 and (2.14), we have

et(_Ab)au(x) = /00 eTtl/a(_Ab)u(x)fLa(T) dr
0
= [T ([ et ) fatr) an
= [G (/OO h(rtY yz) fi(7) d7'> u(y) dy.
0

Thus, the function

ha(t,y) = /0 T h(rth ) fua(r) dr (2.19)
is the integral kernel of the semigroup e!=2¢)" i.e.,

8%y (z) = /Gha(t, y 'r)u(y) dy  for u € L*(G). (2.20)

2.5. Besov Spaces. We now recall the definition of the Besov space B, ,(G) [43].

Definition 2.16. Let 0 <s< 1,1 <p<ooand 1<¢g < oo.
The Besov space B, ,(G) is defined for ¢ < oo by

B: (G) = {f e LP(G) : /G (“f(xy) |;|;f(w)\’Lp>q|;1|gé _ OO}‘

The Besov space B;  (G) is defined by

B (G) = {f € LP(G) : sup I/ (zy) = f(@)lle» < oo} )

y#0 |y|8
We define the corresponding semi-norms by
zy)—f(x 74 a :
(fG <||f( y)\yﬁ( >HLP> ﬁ) if ¢ < oo,

Ify)—F@)lLr
0 lyls

/]

s =
BPle

S if ¢ = oo.

Note By, can also be defined as the completion of 8§(G) with respect to || - ||z» + || - |

Bqu .
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3. BESOv SPACES VIA FRACTIONAL HEAT KERNEL

In this section we will provide a characterization of Besov spaces using the fractional
heat kernel. Throughout this section we fix a € (0,1). We first collect some properties of
the function h, defined in (2.19) by

ha(t,y) = /O h h(rte,y) fra(r) dr.

Proposition 3.1. Given o € (0, 1), the function h, has the following properties:

(1) ho € C*(G\ {(0,0)}),

(2) ha(N2%t,65(z)) = A" Chy(t,x) for every x € G and t,\ > 0,

(8) ha(t,z) =0 for every t <0 and [, ho(t,x) dz =1 for everyt > 0,
(4) ho(t,x) = ho(t, 271 for every t >0 and z € G.

Proof. (1), (2) and (4) are trivial consequences of Theorem 2.9 (1), (2) and (4) respectively.
Property (3) follows from Theorem 2.9 (3) by observing that for ¢ > 0 we have

/Gm(t,x) dxz/@/oooh(ﬁi,x)fm(ﬂ dr dxzfooofl,a(f) dr=1, (3.1

where the last equality is [47, Proposition 3, Chapter IX]. O

In what follows, given f € LP(G) we will use the notation

u(t, 2) = (ho % f)(t,2) = / h (69) £ (') dy
= /Gha (t,xy_l) f(y) dy. (3.2)

Recall that n is the topological dimension of G.
Proposition 3.2. Let k € N and § € N". Then h,(t,x) satisfies fort >0 and x # 0:

816 T —(Q+8|+2ak) if lr|2e > t,
—D’Bh ( )‘ 5 |_|Q+\B\+2ak f| |2 =
otk 20 if |z]?> < t.

Further, for 1 <p <r <oo and § = Q(1/p—1/r), we have for allt >0

\[3\+2ak+5

[gep e ], < ==

Proof. We start with the pointwise estimates for £ = 0 and 5 = 0. By Proposition 3.1(2)
we have:

ha (1%, 0,(x)) = r~9hy(t, ).
If |x|** > ¢, we have
ha(t, ) = |2~ ha(tle] 7,01 ()
< 2|7 sup ha(to,y).
021

Hence to ccomplete, it suffices to prove that

0<to<1
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Indeed, from the expression of h,, Theorem 2.9, the boundedness of h(t,y) on the set
ly| = 1 and the fact that fi,(7) is continuous and integrable in 7 [47, Proposition 3,
Chapter IX] we have that

mamynsém|v%,nﬁa>
Slwhwﬂ&
< 0

On the other hand, if |z|?* < ¢, then we have
hlt2) = halt. 8,8, 1 (x)

2a

<t sup ha(l,y).
0<y[<1

The thesis follows if we prove that supy.,<; ha(1,y) < 0o. Using again the expression of
h, and the fact that h(7,y) is uniformly bounded if 7 > 1, we have

IMQMSAVWMMAﬂw+[VWMMMﬂM
< T 2
,VA ¢

By (2.16), it holds that
/ e fra(AN)d\ = e,
0

Therefore, f;, is the density of an a-stable subordinator. Now from [10, Eq. 14], we have
for t >0 and A > 0,

o(T)dr + 1.

fraA) StATIoe

Hence,

1 ) 1
Q _lyl _(Q 1
/ T 2e e fla(T) d7'§/ -G w 47 < oo
0 0

and we conclude as before. This provides us with the following estimate:

o 1
ho(t,y) S max (tw, —) :
ly[@
The proof of the pointwise estimates of the derivatives follows from the formula

O Do (2 (@+ls+2) 9 s

WD h ( t,5r($)) =T %D ha(t,ﬂf)

and Theorem 2.9(6). Let us move to the L” estimates. Using Young’s inequalities, since
u(t,x) = (he * f)(t, x), we have that

[ e, = gt e
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The conclusion follows observing that
akz ak
—D ho(t,z)| dz

D’Bh dr = —DPh, d /
/’815’“ ‘ v /|z<t2a ot* (. )’ v a|>t 7 | OtF

Q+[8[+2ak
< / e do+ / | (@HPIH20R) 4
\:p|<t% |z\>tﬁ

< gl +CQ/ FQ-1,.~(Q+Bl+20k) . (3.3)
2a

~

|8]+2ak
< t_ 2
~

If g is chosen such that 1/r =1/p+1/q —1 > 0, then by Young’s inequality

)
Hatk Otk 2
_IBl4+2ak+Q(1—1/q)
S 2 [ f1] v
m|+2ak+5
St [ £l zo-

We recall the following useful lemma [39]:

Lemma 3.3. Let (Sy, 1) and (Sa, po) be o-finite measure spaces. Fix a py X jio-measurable
function K for which there exists C' > 0 such that

(1) |K(z,y)| < C for py X pg a.e. (x,y) € S; X S,

() [, |K(2,9)ldim(@) < C for s a.c. y € %,

(3) o, 1K (x,y)|dus(y) < C for py ae. x €S,
Then the integral operator defined by T(f fs fly) dua(y) is bounded from
LP(Sa, ) to LP(Sy, 1) for 1 <p < oo.

Let 0 <s<1,1<p<oo,1<qg< oo and recall the function u defined in (3.2). We
consider the following semi-norm on Besov spaces:
) +)
Lp t

1 Fllama = ( / * (t

We can now prove our characterization of Besov spaces using the fractional heat kernel.
The following result will be crucial later.

ou
E(tv )

Theorem 3.4. Let 0 < s < 1,0<a<1l,1<p<ooandl < q < oo. Then for any
f € L*(G) we have

||f||s7p,q ~ ||f||Bgz-

Proof. We will show the equivalence of these two semi-norms for f € §(G) and the result
will follow then by density. By Proposition 3.1(3), [, % da = 0, therefore by (3.2) and
Proposition 3.1(4)

ou oh

Ftn) = [ G (S - @) dy
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Denoting w,(y) = || f(zy) — f(z)||z» and using Minkowski’s integral inequality, we get

150, = ([ | Geenwen - senaf dx);
< 15

Now using Proposition 3.2, we have

8u _s _ o Q+sa
s (tl 2 / ly| @, (y) dy + 1 2 wp(y) dy)-
ly|2e>t ly[2o<t

)q%)é < /OOO (12 /| L ) dy)q%i
+( /Om (% /| o, ) ay)" <y’
S </0°° </th_g|y|_2a+as><|y2azt(y)|y|‘“sw (y)lyl @ dy)q it>

([ ([ bl el dr) )’

=1+ L. (3.4)
For the integral I;, we apply Lemma 3.3 with
o (S1,m) = ((0,00), ),
o (52, p2) = (G, %)7
o K =Ki(t,y) =t""2[y[* 2 xpyzens,
e p replaced by ¢,
o f replaced by f(y) = |y|~*w,(y).

It is not hard to verify that the assumptions of the lemma are satisfied with C' = 2. For
instance, to verify Lemma 3.3(2) we need to show [ |K(t,y)|du(t) < C. To see this we
compute as follows

)|wp(y) dy.

tl

Hence,

(f (=

8u

© L, dt
Kldm(® = [ 0l s
0

lyl*e
— ’y|a52a/ 2 dt
0

3
1
=

S1

2)

To see f € L9(S,, j15) we notice that for |y| > 1, w,(y) < 2||f||z» and hence

1
| ( )|q ~ | |qa5 L1(|y| > 17”2)‘
Now for |y| < 1, since f € 8(G) we have w,(y) < |y|||Vef|lr». Thus
FWIT < [yl" 7 € L |yl < 1, pa)-
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Applying Lemma 3.3 with these parameters leads to the estimate:

W (y)q é
< et AV
his </G |y|Q+qsa y> . (3.5>

Similarly, in order to bound I3, we use Lemma 3.3 with the same measure spaces, the
same function f, and

K= Kg(t y) =1t "2 y‘Q+ X|y|2a§t.
Once again this yields
I << wp®)' ); (3.6)
2 Jg v ‘
Combining (3.5) and (3.6) we get
o du ¢ dty;
1—7 Raa
£l = ( / (t BE (3.7
l
i 4
- ||f||Bgz.

On the other hand, we have

flzy) — f(z) = lim (—%u(r, xy) + %u(r, x)) dr + u(t, zy) — u(t, x).

e—0 c

<2 [

But we know that

Hence

0
Eu(r, :r:)HLp dr + ||u(t, zy) — u(t, x)|| Lo

lu(t, zy) — u(t, z)llr S Wl Veult, z)| .
By the semigroup property u(t, ) = ho(%,-) *x u(3,-) [47] and Proposition 3.2, we get for
any ¢ =1,...,my:

0 9 [t
2x S| . .
Hat ult (2 ) < ’) Lp (3.8)
a [t
<t e — '
~te 8tu( ) Lp
Since || X;u(t, )|z~ — 0 as t — oo,we obtain
Xiul(t,
u(t, ) / o
Thus by (3.8)
o0 1 0 T
) Miyr < T3 ||—u (=, -
Xt e 5 [ | S (5| ar
5[ r2a %u(r,-) . dr.
2
Therefore,
w()</t gu(raz‘) dr + |y OO?“% 2u(r:L') dr
n Ly ot " or
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So, if one takes t = |y|?*, we have that

g5, = ([l )@ )’ (39)

([ e

(t2)] anlyl2 ay)"

au

> =ie, i
—l—(/ / y| Ttz —ut,xH dtqy*Qdy)
[ o )],
= Il + IQ
s 0 dty g
< 2| St ’ ‘1—) ! 3.10
S( ] e guen], s (3.10)
= ||f||s,p7q‘
Here we used Lemma 3.3 to get the last inequality. Indeed, we take f(t) = t'~2 %u(t, x)‘ o
(S1, 1) = ((0,00), 94 and (S, u2) = (G, %). For I, we consider the kernel
Ki(t,y) =y~ t2 Xicpype
and for Iy we consider the kernel
Ks(t,y) = t%_%’y‘l_aSXt>|y|a/2-
This completes the proof. O

4. BESOV SPACES VIA FRACTIONAL P0O1SSON KERNEL

In this section we characterize Besov spaces B,  (G) using the fractional Poisson kernel.
Recall [20, Eq. 26] that for any 0 < a < 1 the fractional Poisson kernel can be written as

o0 t2
pa(t,z) = Cat2a/ r’(lm)efﬂh(r, x) dr,
0

where C, = (4°T'(a))~!. From now on, we will let 4 denote the Dirac mass.

Proposition 4.1. Let n € N and g € N". Then

~@Q+B)
5 || if x>t
|D%pa(t,2)| < { —(Q+15)) if |z| <t

Proof. Using Theorem 2.9(2) it is easy to see that
Pa( M, 0x(2)) = A 9pu(t, ) for every t >0, z € G and A > 0.

Therefore, if t < |z| we get

_ t _
Palt, ) = |2| ®pa | =01 (x) | < 2|79 sup palto,y).
|z| " Tl O<to<s
y[=1

Hence to estimate |p,(t, z)| for |x| > t it is enough to show that

sup pa(to,y) < oo.

0<tp<1
lyl=1
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Indeed, from the expression of p, and Theorem 2.9 (5) we have that

o0 i2
palto, )] < £20 / P00 ) dr
0

' 3 > e
0 1

ST+II

The integral I1 can be easily bounded, indeed we have
I < / r(+o+8) dr < oo,
1

For the integral I we have, by the change of variable s = ,
0

1

I< /tg s~ 0+~ ds < / s~ 1= 35 ds < 0.
0 0
It follows that if t < |z|, then p,(¢,7) < |2|~9. Similarly, for |z| < t, we get

Palt,@) =t pa (1,04(x)) < 72 sup pa(L,y).
ly|<1

Therefore, the estimate follows, if one shows supj,<; pa(1,y) < oo. Using [43, Theorem
4] we can estimate

pa<1,y>s/
0
=]+ 11.

By the strong decay of the exponential term, we have that

r’(Ha)e’ﬁ]yrQ dr +/ rm () =7 =% gy

[y?

lyl?

o0
Q
17 5/ rmtet e a dr < 0.
0

In order to bound I, one can assume that |y| is small or else the bound is obvious. For
any N € N, there exists C'= C(N) > 0 such that for |y| sufficiently small we have

e~ar < CrN for all r € (0, y|?).
Hence if we pick N > %Q + a, then

ly|?
TSl [ ey gyl @),
0

This gives the desired result, leading to p,(t,z) < t79.
Finally, from the homogeneity of h we have
DPpo(rt,0,(x)) = r~@HED DAy (8, 2).
The bounds then follow as in Proposition 3.2. O

If one wants to consider also derivatives in ¢, the bound becomes a bit more involved.
We adopt the following notation: f <p,, g if 9/DPf < 0iDPg for all i < k and |B] < n.

Lemma 4.2. For alln,k € N, t € (0,00) and x € G we have
t2a

Palt, ) Spm .
(12 + |2[2) 52




FUNCTION SPACES VIA FRACTIONAL POISSON KERNEL 17

Proof. We will write the proof for d,p,, for higher derivatives the proof follows the same
strategy. From the formula defining p, we have that

oo t2 oo t2
Oipalt, ) < t2a1/ e S (e ) dr + t2a+1/ r~ e 5 h(r, ) dr
0 0
=1+1I (4.1)

_Q _zI?

Let us focus on 1. Using the estimate h(r,z) < r~2e” e and a substitution of the form
5 = #, we have

x

) 2
(t2 + |$‘2)Q-§2al 5 ‘x|2a+Q]' 5 tQa_l/ S—(l—Q—a)e_T;‘Qs 3_%€_éd8,
0

for t < |x|. This last integral is uniformly bounded by fooo s’(”a*%)e’ids, which is finite

since the integrand at infinity behaves like s~(1+a+2) and at zero it vanishes at infinite

order. Therefore,
t2a7 1

I f§ Q+2a *
(t* + [z[*) 2

Using the same method, we see that the second integral satisfies

tZOzfl

IT< .
(12 + |22) %%

Let ¢ > |z|. From the homogeneity of h, we have

Ofpa(rt, 6,2) = 1~ @9 p, (¢, z).

Therefore using exactly the same procedure as in the proof of Proposition 4.1, we get

1
Opa(t,z) S Pro¥E}

and this proves our estimate. O

As in the previous section, given f € 8(G) we will denote by

u(t,z) = (pa * f)(t,2) Z/Gpa (ty) f(y'z) dy = /Gpa (txy™) f(y) dy  (4.2)

For the reverse inequality in Theorem 4.6 we need a non-degeneracy condition, that
is a Calderon-type formula. In the Euclidean setting one can make use of the Fourier
transform, but in a more abstract setting such as ours we need a different tool. We took
inspiration from [28] where a characterization of Besov spaces using the Littlewood-Paley
approach is proved. Since we are dealing with continuous versions of the decomposition
rather than the classical discrete one, we adopt the following notation. Given ¢ € L}(G),
we denote by 1, the function

(z) = t‘Qg/)(é% (x)) for all z € G and t > 0.

Lemma 4.3. There exists 1) € L'(G) such that [, =0 and

/ h tahy 8tpa(t)% =0 in §(G). (4.3)
0
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Remark 4.4. Equation (4.3) is always to be interpreted to mean

. A - .,
lim t@Dt*@tpa(t)T =0 in 8(G). (4.4)

e—0,A—00 e

More precisely, let K4, = faA t)y % &gpa(t)% € §8(G), in the sense that (K., f)s =

Jo Ka:c(y)f(y) dy. The convergence K. — 6 in 8'(G) means that (Ku., f)s —
(0, f)s = f(0) for all f € 8(G). Now, if we set Tar = Kae = f, then by definition
of convolution of tempered distributions, we have for f,(y) = f(xy~!), that

TA,&('I) - <KA,€7f.Z‘>8/7
for all z € G. Thus, by the convergence K4, — & we have

Tac(z) = f(o),
for all f € §(G) and all z € G.

Proof of Lemma 4.3: Let us denote by {E)\} the spectral resolution of —A; in L*(G). Let
¢ € C*7(]0,00)) be as in [20, Proposition 4.1]. By [20, Theorem 4.4], for any u € L*(G)
and ¢ > 0 we have

o(-,1) :/ H(02°\) AE(N)u = 1 pa- 1)
0
where 6 = (2a)2*. Moreover, by [20, Proof of Theorem 4.4], the following formula holds:
PO NY) = 2_(a+1)ca>\a/2ta@1/2/ Folat) VA =2 Ha(\/Xt).
0

Here ¢, > 0 (for the precise expression see [20, Proposition 4.1]) and H, : [0,00) — R
denotes the continuous function defined as

Ha(s) = 2_(a+1)6a91/2$a/ 7-_(04-‘!'1)6—7'36—% dr.
0
Therefore,
U*tatpa(-,t) :/ f{a(t\/X) dE()\)u (45)
0

where H,(s) = sH/(s).
Now we want to find a continuous function G : [0,00) — R such that

. dt
/ AL (VNGNS =1,
0
which is equivalent to
. d
/ a(s)G(s)2 — 1.
0 s

Since H,(s) is continuous and not equal to the zero function, there exists an interval
I = [%,2b] with a > 0, where |H,(s)] > 0 for all s € I. Let  be a smooth function
supported in [§,2b], equals 1 on [a,b] and such that 0 < n(s) < 1in I. For all s € I we
define
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/Ooo I:Ia(s)Gl(s)% - /::n(s) ds.

G1 (S)
faQ/bQ n(t) dt

Define G : [0,00) — R by G(\) = G(v/X). Since G has compact support, then using the
results of Section 2.3, there exists K € L*(G) such that for all u € §(G)

é(—Ab)u =Uu*x Ké

For every ¢t > 0 we define GY(\) = G(tv/X), from (2.11) we get Kpo(x) =t~ QKG((S%(JE)).
To conclude the proof it suffices to take 1 (z) = Kg(x) which gives ¢, (z) = Kgi(z).
Indeed, by (4.5), for all u € L*(G)

/EAu*tatpa, / / (VN dEOu-t (4.6)

Taking u = fx1; we get u = GH((—A)) f = G G(tv/A) dE(N)f. Therefore, (4.6) implies

LAt¢t*8tpa( *f— //H tVAN)GAVA) dEN) f— dt
//Ht\/_ t\/_)—dE()

Since, Aﬁa VNGV L 1 as A — oo and e — 0, for all A > 0, we have that
3 t

Therefore,

Hence it suffices to take

G(s) =

A 00
im [ ter0pa() <5 = [T aBO)T = .
0

A—00,e—0 c

Here the first equality follows from the fact that, for the spectral measure dFE, one has
[ FN)gN) dEXN) = [ f(A) dE(N) [ g(A) dE(X) for all bounded Borel functions f and g.
The second equality follows from Fubini’s theorem. One way to see this is to localize at
given functions f and g, that is, in the form

( / ’ /O TGN B, g e dt = / ’ /O TG ) dpg (V) dt

and then use the classical Fubini theorem for the measures dus, and dt since now the
measures are real valued, not operator valued. The last convergence statement follows
again from the fact that if f,, converges pointwise to f, then the corresponding operators
converge in the weak x-topology, that is

( / £.(0) dEO)u, v) g2 — / FOV AE()u, v) 42

for all u,v € L2
Finally, by [19, Theorem 1, Lemma 6], we have that ||¢||z: is finite. Moreover, notice
that G(s) = s*Ga(s), where

Gals) = 7(s) .
sHy(s) [ m(t) dt
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Notice that G5 is well defined and smooth since it is supported away from 0. Setting
Ga(N\) = G2(VX), we have that

G(=Ay) = —AyGa(—Ay).
In particular, we have that
Kg=—-0pKyg,.
Therefore,
/ (x) de = / —ApKg, (7) dv = 0.
G G
OJ

Remark 4.5. Notice that a similar construction can be also done for t"(—Ay)2p, for
r € [0,2]. Namely, there for r € [0,1], there exists ¢ € L'(G), with [, = 0 and

fooo thy %" (—Ap) " Pa (t)% = 4. Indeed the spectral multiplier corresponding to t"(—A)2p,
can be written as (v/At)"H(v/At). Hence one needs to find G such that

/0 o H(s)G(s)L

s
But then, using the same idea as before, we can pick
s

Gi(s) = n(S)m~

Another important remark is that if ¢ is chosen as in the proof of Lemma 4.3, then
—Ay(1) € L'. In particular, by real interpolation, we have

1 1
Vel S TILIIg S 1 = Al + |l

Hence Vg € LY(G).

Theorem 4.6. Let f € 8(G) and u be as in (4.2). Then for s € (0,1) we have

([ e 19sutolr-)" <1

=1.

1—r

e .
prq

Also, for s < 2a < 2,

e 0 dty\ ¢
(] gty <5) " ~ 1,
and for s € (0,2),
[e’e] d %
([ e l-antlmrF) ~ s
0

Proof. We begin with the proof of the first part. In this case, one inequality is easy to
prove but the opposite one needs another ingredient provided by Lemma 4.3. First, notice
that the fact h(t, x) = h(t, —x) implies

hs .
BP»(I

/Xih(r,x) de =0 for all i = 1,...,m and all r € (0, 00).
G
Hence using the explicit form of p, yields

/ Vepa(t,z) dz = 0.
G
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Next we have
Veu(t.r) = | Vena(t)(fan) = @) av.
Therefore,
IVeul < / Vepalt, y)lwn(y) dy,

where wy,(y) = || f(zy) — f(x)|/zr. Thus, by Proposition 4.1

1| Veullp < £ /

ly|>t

@) dy+ [ @ () dy

ly|<t

Again here, we use the same trick as in (3.4). Indeed, for the first integral we take
K(t,y) = mew’j% on the spaces ((0,+00), %) and (G, ﬁ) and f(y) = 2% For the

Tt lyl°®
second integral, we take K(t,y) = X|y‘<tt’(Q+s)|y|Q+s with the same measure spaces and
function f. We then have

([ e 19eutoler-)" <l

hs -
prq

This proves the first inequality.
For the reverse inequality, we first use Remark 4.5 to see that

f(x) = /O‘X’wt * t(—Ab)%pa * f)(x)%

Hence, using Young’s inequality for convolutions in the first inequality,

I £(ay) — £ (4.7
o 1 dt
S [ e = @l bl
> 1 dt > 1 dt
S [ vl At + [ el oyl (~A) s

o 1 dt o 1 dt
S [ xwstlolla a0l S+ [ el Vetllulyll A3l
0 0

(4.8)

Since ¢ and Vgy € LY(G) (see Remark 4.5), we have

> 1 dt o 1 dt
) S [ vl F 4 [ eyl (-A0 s

> dt > dt
S [ vt VeulF + [ xalyll Vol
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Here, we used in the second inequality the continuity of the Riesz transform from L? to
L? which gives |[(=Ay)2ul|» < ||Veul e (see [9]). Hence,

([ 2yt < ([([7 LnalVauluLr-Se)’
([ Eemvas$rSE)°
> 1 diy g
([ evelin | o )
00 1
(Ve | e )
< (/Ooo<t18||v6u|ym)q$)3. (4.9)

using the same trick of Lemma 3.3. Let us now move to the second equivalence. We will
prove the direct inequality and the reverse one works exactly as in the previous setting.
The main difference in this second equivalence, is the fact that fG Opa(t,y) dy # 0 so
we need to do few more manipulations in order to have a similar setting as before. First
recall from [20], that p, satisfies the equation

O ("2 0ypy) + 112 Aype = 0 for ¢ > 0.

Hence, we have

/ Oy (t' " Oypa) (t, y) dy = 0.
G
Thus,

P20 0,u(t, ) / H29 0, (1) f (xy) dy
G

- /@ /t " 0,(r200,p.) (r. ) (f (ay) — f(x) dr dy
_ /G /t 0 A () (f () — (@) dr dy. (4.10)

It follows then, that
12 9yl < / / 1120 Ay (r, )y () dr dy
G Jt
< / / P20 Aypa(ry )y () dr dy (4.11)
ly|<t Jt

+ / / P2 Ay () (y) dr dy
ly|>t Jt
= I+ 11 (4.12)

We first estimate /. Using the fact that |y| < ¢, we have from Lemma 4.2, that

ri=2 |Abpa(7”> y)] S rQ+1+2a°
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Thus,

1
I's /|<t orzar(y) dy.
Yy

* [a-s ] dt [ 1 ¢ dt
/0 [t f} TN/O [/GX|y<tmwp(y> dy v

We use then Lemma 3.3 with the same measure spaces as before, for the kernel K (¢,y) =
X\y|<t|tQQ++s and f(y) = i (IS) This leads to

([l =

We move now to the second term. Indeed, we have

ly|
< / / P20 Aypa(ry )y () dr dy
ly/>t JO

In particular,

s [ A () dr dy (4.13
lyI>t Jly]

Now using again Lemma 4.2, we have that, for r < |y|,

Therefore, since a < 1, we have

[yl 2 1
; | Appa(r,y)| dr < W

Similarly, when r > |y|, using Lemma 4.2, we have

00 2«

= —2a —2a r
/ P72 Aype (ry y)| dr S / ey dr
1yl 1yl (r2 4 [y?)" 2

/ 1
dr
2a+1
] rQ+2ao+

1
i

AN

AN

(4.14)

Thus, we have
t2a s
2a0—s
t IIS;/@XI@;NWWP(?J) dy.

We use now Lemma 3.3 With the same measure spaces as before and p = ¢, for K(t,y) =
wp

X‘y|>t|5§—;5 and f(y) = ‘S , keeping in mind that the assumptions of Lemma 3.3 hold

([ ') <

Therefore, we conclude that

(ﬁwﬁlwawm}éﬁ SUfls,

The proof of the last equivalence, is exactly similar to the first one, hence we omit it. [

when 2a > s, we have
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5. SQUARE FuncTION AND BMO BOUNDS

5.1. Square Function Bounds. The following square function bounds using the Sobolev
norm will be useful later in the applications.

Theorem 5.1. Let f € 8(G) and 1 < p < oco. Then:
For —Q) < s <1 we have

([T iventapst)

For s < 2a we have

S N(=24)2 fll 2o

([ gty

For —(Q) < s < 2 we have

'(/0 (25| Vau(t, 2)[]? jt> <I(=20)5 f| 1o

In order to proceed with the proof of Theorem 5.1, we first need to recall a few important
properties of square functions. For further details, we refer the reader to [26, 45].
Let ¢ € 8(G) be such that [, ¢ dz = 0 and ¢(x) = t*Q¢(5%x). Then we define the

square functions

SN(=24)% 2.

Lp

p

sit@ = ([ [ irrewPeotaar)’ (5.1
0 |lz—1y|<Bt
where 5 > 0 and
00 dt 1
gof (@)= ([ 1rvoE) (52
0
In [26], the authors proved the LP boundedness of these operators. More precisely, they

show that for 0 < p < o0, g4 and Sg are bounded from the Hardy space H?(G) to L*(G).
From now on, we will write S, for Sg . In order to use this result, we need to relax the
assumption ¢ € §(G). We will need these bounds for some specific functions ¢ which are
not in 8(G).

Proposition 5.2. Let s > —1 and ¢(v) = Vg(—Ay)2pa(1, 1) which implies the formula
¢i(z) = 15V (—Ay)2palt, ). Then the function Kb defined by

b
d
~ [

converges as a — 0 and b — oo to a function K in 8'(G) that is smooth on G\ {0} and
homogeneous of degree —@) around zero.

Proof. The formula ¢;(z) = t'+*Vg(—A,)2p,(t, 7) follows from the homogeneity of p,.
Next notice that p, * pa(t, ) =t~y * pa(l, 2). Indeed, this follows from the property
that f, * g, = (f * ¢g);. Here the convolution is only on the x variable, while the scaling is
in the ¢ variable). Now notice that

b
K(z) = / 725 (= AT (D * pa) (t, ) dt.
But then one can see, using Proposition 4.1 and an interpolation inequality of the form
1(=20) ull e (@) S 1 Aptll oo oy [1(=A0) |
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with Q = {R < |z| < 2R}, that
—(Q+2s+2) :
s+1 ‘.Z" if ¢< ‘Qf|
ool ${ o 150

Therefore, for |z| > 0, t1725(—Ap) ¥ po#pa(t, ) = O(H11%) near zero and t1725(—A,)* T p,
Pa(t,r) = O(t~971) near oco. Thus, as long as 1 + 2s > —1, the integral converges abso-
lutely to a smooth function on G\ {0}. Moreover, if we let K = lim, 0,500 K2, We have

that K (rz) = r~?K(x) which finishes the proof. O
One also has the same result for
HH5Ve(—Ay) 2 pay if s> -1,
e (—Ay)2 2, if s> —2aq,

=Y oA Ca i s> -2, (5:3)

275V (—Ay)2 %pa if s>-—1-—2a.
Recall the square functions gy and Sj = Sy defined in (5.1) and (5.2).

Proposition 5.3. Let ¢, defined in (5.3). Then Sy and g4 are bounded from LP to LP,
forl<p< .

Proof. We will follow here the proof in [26] for the case ¢ € §(G) and we will present it
for ¢, as in Proposition 5.2 since the proof is similar for the remaining functions in (5.3).
Indeed, one first proves the L? bound, that is

2, = h * * ﬁ
H9¢f”L2—/G/O fxof ¢tt

= / [ K(x) f(z) dz < [[K  fllz2]| f]] 2 (5.4)
G
But, from Proposition 3.2, K is a kernel of type (0,2), thus we have that
I s fllzz S 1|22

Therefore

lgsllz2 < S 2-
We define the space X = L?((0,00),4) and the X—valued distribution ® defined for
f € 8(G) by

@00 = [ 1@a) dz
We claim that this distribution is well defined. Indeed, we have
1
(2, /O] < gllollz=lfllz-

Next, we notice that since [ ¢ =0 we have that

(@, f)(1)] < / F(tz) — £(0)[6(z) da.

Since f € 8(G) we see that
. ‘<<I>,J;><t>‘

is bounded near zero, therefore (@, f) € L*((0,00), 9t). Hence, g, f(x) is well defined and
gof () = || f = | x.
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And so far we have proved that g, is bounded from L? to L%. Moreover, if we look at
O (z)(t) = ¢(x) we have that

o ‘ dt
ID?® ()% =/ [#D (= A) 2 palt, 2) [ —
0

~J

|| o0

</ $128| | ~2(Q+B+s+1) dt+/ HH25-2(Q+B+1+s) g4
0 ||

< || ~2@FA)

Hence & is an X-valued kernel of type (0,7) for al » > 0 which leads to the boundedness
of f*® from L? to L% for 1 < p < co. Thus

196 fllze S 11 flze-
A similar bound holds for the operator Sg. O

Proof of Theorem 5.1. The proof of Theorem 5.1 now is a straightforward consequence of
Proposition 5.3. First, we write

' Vgu(t,x) = t' 7 Vepa * f = 1'7"Vg(—Ay) 2pa * (—Ay)2 f.
Applying Proposition 5.3, we have the desired result for s < 1. 0

5.2. BMO Bounds. Next we provide some equivalent characterizations of the BMO
norm that will be useful in the coming applications. First, given a function f € L} .(G)

and B a ball in G, we define
i),
mp=— [ f(z)dx.
" =15 )y

Let B be the collection of all the balls in G. A function f is said to be in BMO if

[f]Brmo = sup ﬁ /B |f(z) —mp| dz < co.

BeB

We recall next the characterization of the BMO norm using the Carleson measure. If we
denote by

T(B.(x0)) = {(t,r) e Rt x G : |zy'z| < r —t},

then we have the following proposition [45].

Proposition 5.4. Let f € 8(G) and ¢ € 8(G) be such that [, ¢(x) dz = 0. Then

dt d
sup |B|/ |f €151t|2 Lar [f]BMO

BeB

If we assume the existence of 1 € 8(G), with fGl/) dx =0 and fooo Oy * wt% = b, then

1
1 dt dxz\ 2
sup< /° 1 x :) ~ [flsao.
Bes \|B| Jr(s) t

From the equivalence stated above, one gets the following proposition.

Proposition 5.5. Let f € 8(G). Then for ¢ defined in (5.3), we have

[f ]BMO ~ sup

1 dt\ 3
[l
BeB <|B\ T(B)’ . t
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From the previous proposition we get in particular:

dty 3
Slpwo = sup (| |tVsult,) <)
Bes \|B| Jr) t
dty 3
/A sup ( t?Agu(t, z 2—)
su \ 1 T(BI (t.2)["
1 dt\ 2
= sup | — t T 2—) ,
36133(‘3’ T(B) | ot ult 2) t
and in the fractional setting:
1 ; dey 2
[f]Bymo = sup ( t°(—=Ap)2ul(t, 37)’2_>
Bes Bl Jr) t
s s o Aty 3
sup( 15V (= Ay Fult, 7)) —) . (5.5)
pes Bl Jres) t

We finish now by recalling the following duality result between the Carleson measure
and the square function [45].

Lemma 5.6. Let G, F : RT x G — R be two functions. Then

/G/Ooo F(t,x)G(t,:z:)% da

1 dt dt 3
< su F(t, 2— d / / G(t,y)|? d dex,
4%gQB,TwI Ly~ dy)* G(y%KJ (t9)P gy )

whenever the right hand side is finite.

Corollary 5.7. Let G : Rt x G — R such that

dt
2
/((}(/ylz|<t|G(t,y)| oE dy> dr < co.
Then

// t—u £ )Gt x)ﬁ dzr < mBMO/ (L_1x|<t|G(t,y)|2th+l dy)l du.

This inequality still holds if we replace t “u(t, z) by any one of:
tVeu(t, x),

2 Apu(t, ),

£(—A)sult, o),

sV (—Ay) 2u(t, ).

6. APPLICATIONS

Before starting this section we recall some relevant maximal functions bounds. Given
a function ¢: G — R satisfying the growth condition

1
()| S m,

for a given A > 0, one can define the two maximal functions

(MG f)(x) = Stgg(f * ¢y ) ()
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and
(Myf)(z) = sup{|f * &| : |[z7'y| < ¢,0 <t < o0}
With these definitions, one has the following theorem [26].

Theorem 6.1. For A > Q, MY and My are bounded from LP(G) to LP(G) for p > 1 and
from LY(G) to weak L'(G).

In this Sectlon if f e 8(G) we will write I, = f % p,. We also use the notation
V=Ved 8t, defined by Vu = (Vgu, 6t)' In what follows, we will write M and M°
instead of M, and MY, since the function ¢ will be different depending on the situation.

6.1. Integral Inequalities.

Theorem 6.2. Let f,g,h € 8(G) and 1 < py,pa, p3 < 00 such that pil—i—p%—l—p% =1. Then
(1) For s1,s, € (0,min{1,2a}) and Q > s3 >0

dx dt 51 52
S =20) % Fllzo [[(=26) 2 gll o || Loy | oo
(2) For s; € (0,min{1,2a}) and Q > s3,82 >0

dx dt s
S(=20)2 flloen [ Lo, o2 | Lsg 2| Los -

/ (25249 [ [V G| |
R+ xG

A\
R+ xG
(3) For s; € (0,min{1 + 2«,2}), s9 € (O min{1,2a}) and 0 < s3 < Q,

S=20) 7 Fllzo [[(=29) 2 glloe || Log | s

/ 3= S1+52+51”|V@,VF ||VG || Hyl
R+t xG

Here I, is the fractional integration of order «, that is Inu = (—Ay)2u.

Proof. We will present the proof of (1). The proofs of (2) and (3) follow the same idea.
We will apply the result of Theorem 6.1 for ¢, = t*(—A;)2p,. Indeed, we have that

1

(—A)2pa(l,2) S G0

Hence, we have by definition of Mg, that
supt®|Hy| = sup |t°(—Ap) 2 pa * L f| = ML f).
>0 >0

Hence,

%0 S dz dt > - 500 | 4t
// 28192453 U B |V Gl || Ha) L g/Mg(Issh)/ HVE |t 52| VG, |— da.
¢ Jo t G 0 !

The result then follows from Hélder’s inequality and Theorem 5.1. 0

Theorem 6.3. Let f,g,h € 8(G), and l + l =1 with1 < p < oo. Then for s € (0,1)

dl’ dt s e
S Mol (=26)2 flze | (—As) 2 ]| s,

/ 09 [ |V eV FL [V Gl
RtxG
and for s < 2a. we have

dz dt
AT A
R+ xG

< (Mol (=A)2 fll1ellgl Lo
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Proof. Let us again start by proving the first claim. Indeed, using Corollary 5.7 we have
that

~ ~ ~ dz dt
/ 12209 T [ VeV Fy| [V G| (6.1)
Rt xG t
S 2 dt \3
Sthlavo [ ([ (80 IVeVEIIYG, dr
G < |y_1:c|<t < > tQ+1)
S e | M((-00) H@)S((~0)ig) (o) do
G
< [Pleaoll(=26)? fll e [1(=2) 2 gl o
A similar proof holds for the second claim. U

6.2. Three Terms Commutator. Let u,v € §(G). Then we define the three commu-
tator H,(u,v) by:

Ha(u,v) := (—Ap)*(uv) — u(—Ap) v — v(—Ap)“u.

This commutator was studied in the Euclidean setting in [34, 44] and in the case of
Carnot groups in [35]. We want also to point out that one can obtain easy bounds for
this commutator in Besov spaces. Indeed

Proposition 6.4. Let o € (0,1), assume that * = pil +
$1,89 > 0 so that s1 + so = 2a. Then we have

[Fa(w, 0) [ S ul

and X+ L = 1. We let
q1 q2

1
p2

551 ||?}| 552 .
Brra1 Bp3.az

Proof. The proof follows directly from the pointwise expression of the commutator. Using

(—Ap)u(z) = / (u(z) — u(y)) Ralzy™) dy,

we can write as in [35],
Ha(u,v)(z) = /G[U(Iy) —u(2)][v(zy) — v(2)|Raly) dy.

Since R, ~ |ly|~9~22, we have for % =14 p%, 1=214+ 2L and 200 = s1 + $o:

1
1@

90 ()l S ( / ( / [u(zy) - u(@]\[;;(xy) ~ v(a)] ’ ;'g ) )’

< [ (] (len = stollten ey 0y

1 dy
S Lmllu(xy) — ()] o [Jv(2y) —U(I)HLPQW

ly
S lullgs

[0l 32
Bp3.az

O

The case of LP spaces is a little bit more difficult and technical as in [35]. We will
see here that for some range of «, we can obtain a relatively simple proof of some of
these bounds and in fact extend the range of the estimates proved in [35] to include a
BMO-type estimate.
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6.2.1. LP-Type Estimates.
Theorem 6.5. Let o € (0,1], then one has

[[Ha(w, 0)][e S N(=2s) ull Lo [v] aso-

Moreover, for a = aq + g with aq, ag € (0%) and 113 = pil + p%, one has
[Halw, v)|lee S (1(=A)  ul| e [[(=2A5) 0| r2.

Proof. We will start first by proving the second claim. We let h € L¥ | and we propose to
estimate [, Ho(u,v)h dz. Using the fact that

lim <t1_2°‘%Ua(t, :v)) = Co(—Ap)%u(x)

t—0

and that

§t< 1- M%Ua) — _f2eA

we have that

/U-C (u,v)h dz

12‘“UV@H UnHoO,Ve — Vi HoOU )}dtdx

/ {120 [QGtUa(?tVa n VGVQVGUQ} H, dz dt‘
GxR*
dz dt

~J

</ 2200 [V || Ha|
GxR+

Now using Theorem 6.2, we have that

/ﬂ{a(u,v)h dz
G

S II(=20) | o [[ (= Ap)*2 0| o2 | ]| 1o

Notice that this also provides the proof of the first claim for a < % using Theorem 6.3. It
remains thus to treat the case a = % In this case, we have after another integration by

parts
/ Heo(u,v)h de
G

~
~

/ [2atUaatva + vaavGUa] H., dx dt‘
GxR*

/ gt[(zatU OV + VeVaVgUa) H ] dx dt'
GxRt

[

< / t[|@Ua||?Va||©Ha| + |@Va||©vGUa|IHa|] da dt.
GxRt
Next writing t? = tt%¢ for the first term and ¢t = #2723 we get

/ Heo(u,v)h dzx
G

S [olsaol|bll Lo | (=2e) 2wl o
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6.2.2. Riviere-Da Lio Three Term Commutator.
Theorem 6.6. If 2a < 1 we have

1(=20) Ha (w, 0) | S N (=20) ull o[ (= A0) ul] 1
Proof. Here we will use the duality between H' and BMO (see [26]).

Case 2a < 1: Let h € §(G) and g = (—Ap)*h. Then we have

/ 3o (u, v)g da / ()% — ug(—A)*0 — vg(—Ay)u da
G G

/ O (2 (U Va0,G o — UyGo0, Vi — VoGo0,Uy)) dt dz
GxRt

5/ 120V U ||V Val|Gal dt da
GxRt

+

/ t7290,U, 0,V G| dt da
GxR+

We write the first term as 12| Vg U, [t 72*| VgV, [t**|Ga|7 to get, using Theorem 6.3, an
estimate of the form

/ 1720V Ual [V Vall Gl dt da < [glmaroll(—A) ull ol (= ) 0] 1.
GxRt

The second term is a little more involved as in the proof of Theorem 6.5, an extra inte-
grations by parts is needed. Indeed,

1
/ 120U, 0V Go] = — / OOt UL 0,V Gy ) dt dx
GxR Q JexRrt+

_—1
2 GxRt

1
+ — 127229,U,0,V,,0,G,, dt dz

2a Joxr+

272 AYULO VoG + AV, UL G dt d

22 AYULO, VoG + AV UL G dt d

_—1
2 GxR+

1
+ — t1 0, (20Ut 20, Vot 20,6, dur dt.

8 GxR+

Now the first two terms can be easily bounded by the desired quantity. It remains to
bound the last one.

/ 190, (t 20Ut 220,V t'20,G, ) da dt

GxR+

__ / B2 [(AUadVi + AVadUn)D,Go — BV 6UadlVa + OV 6VaOlls) VGl .
GxR+

Again all the terms here have the right form of Theorems 6.2 and 6.3 and they provide
the desired bound.
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Case 2a = 1: In this case, we have

|/9—C1(u,v)g dz| = | 8t<U;V;(—Ab)H; QUL H L — 8,ViUL 0, H L) dt da
G 2 2 2 2 2 2 2 2 2 2

GxR+
= | t@t((U;V;)(—Ab)H; — (U;V;)ttatHl) dt dz
GXR+ 2 2 2 2 2 2
= | tat(ANb(U;Vl)atH;) dt dz
GxR+ 22l
= 9| t0,(VULVV10,H 1) dt da
GxR+ 2o

VvV

1
2

)0:H )| dt da
IV, dt da.

where here A~b = Ay + 0y and we used the harmonicity of the extension. Notice here that
we can finish the proof as in the previous case. O

Notice that one can also capture the (LP, L?) — L"-type estimates in [35] by slightly
modifying the proof and using the L” estimates for the Riesz potential.

6.3. Chanillo-Type Commutator. We recall here the commutator estimate proved by
Chanillo [18]:
ILs, v]ulle S lJullLe[v]Baro-
Notice that
I, v]u = I;(uv) — vl (u).
Therefore, if we set u = (—A)2a, we have
/(—Ab)é([fs,v]u)h - / O[(—Ay)ia — a(—Ay)ih] de.

G G

So we propose to estimate an integral of the form

NI

v[(—=Ap)3u — u(—Ay)2h] dz.

o

Theorem 6.7. For ]lo + % — % =1, we have

< [Wlsaol|(—20) 2ul| o ||| (= Ap) 2| .

/Gv[<—Ab)Su u(—Ay)3h] da

Proof. Again, we use the same trick, that is we write

~
~

/ O [tl_s(atU%Hg — 6tH§U§)V§} dt dz
GxR+

<

~Y

1—s
/GXRth (V((;,U%H% — V@U%H%)ng% dt dx

+

/ tl_s(atU%H% — 8tU%H%)atV% dt dz
GxR*
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Using Theorem 6.3, we have that

s
2

/ 15 (VaUs Hy — VoUs H:)VaVs dt da| < [olmaroll(— ) Eul ool oo
GxR+

< [W]snmoll(—2s) 2ul| o || (—Ap) 2| £

where the second inequality follows from the sobolev embeddings with % = é + %
The second term on the other hand, cannot be bounded directly since we are in the case
s = 2a. That is why, we perform another integration by parts:

1-s
/GXR+t (@U&Hé — 8tU%H§)E)tV% dt dz (6.2)

1
! / O (05U Hy — U0,H: )1 —0,Vz) dt da
S JexRr+
1
= —/ —t27S(AbU%H% — U%AbH%)atV%
GxR+t

S
—t*7*(QUs Hs — Us0,Hs) AV dt dx
= —/ t275(AbU%H% — U%AbH%)ﬁtV%
GxR+
+ tQ_S(atVGU%H% + 8tU%VGH%)VGV%
—1*7*(VeU:0,H: — UsO,VH:)VgVs dt dz

The first term can be bounded easily as in Theorem 6.6. For the last two terms, we also

have the right bound since s <1+ 2a =1+ s. 0
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