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Abstract

We consider a Plateau problem in codimension 1 in the non-parametric setting. A Dirichlet
boundary datum is given only on part of the boundary 9 of a bounded convex domain  C R2.
Where the Dirichlet datum is not prescribed, we allow a free contact with the horizontal plane.
We show existence of a solution, and prove regularity for the corresponding minimal surface.
Finally we compare these solutions with the classical minimal surfaces of Meeks and Yau, and
show that they are equivalent when the Dirichlet boundary datum is assigned in at most 2
disjoint arcs of 9.
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1 Introduction

Let © C R? be a bounded open convex set; in this paper we look for an area-minimizing surface
which can be written as a graph over a subset of {2, and spanning a Jordan curve I'y = vU o C
R? x [0, +00). Here v is fixed (Dirichlet condition) and is given by a family {v;}"_; C 9Q x [0, +00)
of n € N curves each joining pairs of points {(p;, g;)}1~; of 0Q. Whereas o, which represents the
free boundary, consists of (the image of) n curves (o1,...,0,) sitting in the plane containing 2
(also called free boundary plane), and joining the endpoints of 7 in order that vUo forms a Jordan
curve I', in R3. We assume that each «; is Cartesian, i.e., it can be expressed as the graph of a
given nonnegative function ¢ defined on a corresponding portion of 9. This allows to restrict
ourselves to the Cartesian setting, and to assume that the competitors for the Plateau problem are
expressed by graphs of functions 1 defined on a suitable subdomain of 2 depending on o.

Our prototypical example is given by the catenoid. Consider a cylinder in R? with a circle of
radius r as basis, and height [. Choose a system of Cartesian coordinates in which the xjx2-plane
contains the cylinder axis, and restrict attention to the half-space {x3 > 0} as in Figure [I] where
Q= (0,1) X (—r,r) and n = 2. Write

00 =NQUPQUANUIPQ,

where 99Q = (0,1) x {r}, 99Q = (0,1) x {—r}, OPQ = {0} x (—r,7), and OPQ = {I} x (—r,7).
On the Dirichlet boundary 9P = dPQ U 0P we prescribe a continuous function ¢ whose graph
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Figure 1: The catenoid: when [ is large enough the two dotted curves o; and o2 merge and the
(generalized) graph of 9 reduces to two vertical half-circles on 0PQ = 9PQ U 02Q. In this case
oPQ c 0E(o1) UOE(09).

consists of the two half-circles v and 2. The endpoints of v; and 2 live on the free boundary plane
(the horizontal plane) and are p; = (0,—7), ¢1 = (0,7), and p2 = (I,r), g2 = (I, —7r) respectively.
The free boundary o consists of two curves o1 and oo with endpoints ¢, p2, and g2, p1, respectively,
constrained to stay in €. The concatenation of v = v; U~ and o forms a Jordan curve in R?

Iy =mUor Uy Uos.

Therefore we proceed to look for an area-minimizer among all Cartesian surfaces S with boundary
I, keeping o free, i.e. we minimize the area among all pairs (0,S). In this particular case of
the catenoid, a minimizing sequence ((ox,Sk)) tends (in a suitable way specified in the sequel)
to a minimizer (o,.S) which allows for two different possibilities. If [ is small, o1 and oy remain
disjoint and the classical catenoid (half of it, namely the intersection between the catenoid and the
half-space {z3 > 0}) is the surface S, in turn coinciding with the graph of a function v defined
on the region of €2 “enclosed” by o. If instead [ is large, the two curves o1 and o2 merge and the
region of  enclosed by o tends to become empty (it reduces to the two segments 9PQ U 02Q).
This describes the solution given by two (half) discs.

A peculiarity of our problem is the presence of a free boundary. The problem of Plateau with
partial free boundary has been exhaustively studied (see for instance [10]) but never investigated,
to our best knowledge, with the non-parametric approach.

Referring to Section [2| for the precise description of the mathematical framework, here we just
describe it with few details. We fix some distinct points p1,q1,p2,q2,...,Pn,¢n € 0N taken in
clockwise order. The part of 92 between the points p; and ¢; is noted by QD Q, and the part
between ¢; and p;1 by 87Q. We fix a nonnegative continuous function ¢: 9Q — [0, +00) which
is positive on 9P7Q = U?_;0PQ and vanishes on {p;, ¢;}*; U 9°Q with 9°Q = U?_,8%Q , and we
consider Lipschitz injective and mutually disjoint curves o; in Q, i = 1,...,n, joining p; to g;y1.
We suppose the graph of ¢ on 9PQ to be a Lipschitz curve in R®. We define E(o) := U, E(0;),
with E(o;) the planar closed region enclosed between 9 and o;.

We define the two classes

= {0 = (01,09,...,0,) : [0,1] = Q" be curves as above}, (1.1)

OE
X, :={(0,9) e Ex WH(Q) : 9y = 0 ae. in E(o) and ¢ = ¢ on 9PQ}. (1.2)



Figure 2: An example of the setting (in 3D), when n = 3. On the boundary of the convex set 2 we
have fixed the points p;, ¢;; the arc of 92 joining p; to ¢; is ﬁiD ), while the arc joining ¢; to p;11
is 8?9 (ps := p1). On OPQ the Dirichlet boundary datum ¢ is imposed, whose graph has been
depicted. The dotted arcs are the free planar curves o; joining the pairs (g;, pi+1)-

We want to find a solution to the following minimum problem:

(071}11)1£X¢ A(; 2\ E(0)), (1.3)

where A denotes the classical area integral, i.e.,

A(; Q\ E(0)) := /Q\E( | 1+ |Vy|2da. (1.4)

Since, in general, existence of minimizers is not guaranteed in the class X,, we need to formulate
this problem to a more suited space of admissible pairs. Specifically, a standard relaxation procedure
leads one to analyse the problem above for pairs (o, 1) belonging to X x BV (£2), where X is a suitable
class containing S but which also allows for partial overlapping of the curves o; (a precise definition
is given in Section. Therefore we shall be concerned with the study of the functional F, defined
as

Folob) = A Q) — |E(o)] + /8 o= plant!, (15)

where (0,1) € W C ¥ x BV(2), W is the space of pairs (o,¢) € ¥ x BV(Q) such that ) =0 a.e.
on E(c), and A(y; Q) is the relaxed area functional defined as in (2.1, which accounts for the area
of the generalized graph of the map ¢ on €). The functional F, extends the area integral A to the
larger class W.

We then prove the following result, accounting for existence and regularity of minimizers of 7.

Theorem 1.1. There ezists a minimizer of F, on W. Moreover, any minimizer (o,v) € W of F,
satisfies the following regularity properties:



(1) The region E(c) consists of a family of closed convex sets. The boundary OE(o) is given by
the union of the arcs 9°Q and a family of disjoint Lipschitz curves in Q (joining the points p;
and g;, in some order). Moreover, if OP() is not a straight segment, then OPQNOE(c) = O.
If instead OPQ is a straight segment, then either 9P QN OE(c) = @ or 0PQNIE(0) = 0P .

(2) The function v is real analytic in Q\ E(0), and is continuous on 0P Q\OE (o) where it attains
the boundary value ¥ = .

(3) If QN OE(0) # O, there is at least a minimizer (o,1) such that ¢ is continuous and null on
QNOIE(c), and moreover QN IE (o) consists of a family of mutually disjoint smooth curves
(joining p; and q; in some order).

A comparison with classical solutions of the Plateau problem in parametric form is in order.
Denoting by 7; the graph of the map ¢ on 9”Q, we consider also sym(7;), namely the graph of —¢

on OiD Q, which is symmetric to ~; with respect to the plane containing €. Setting I'; := ~;Usym(;),
this turns out to be a simple Jordan curve in R3, for all i = 1,...,n. Hence we can consider the
classical Plateau problem for the curves I';. In the case n = 1 it is intuitive that a disc-type minimal
surface S spanning I' = I'; will be symmetric with respect to the plane containing €2, and that
St := SN {x3 > 0} will be a minimal disc with partial free boundary on Q. It is interesting to
compare such a minimal disc with the graph of ¢, where (0,%) € W is a minimizer as in Theorem
Actually, in this simple case n = 1, it is not difficult to see that ST is Cartesian, and it is the
graph of a function ¢ which is positive outside the convex region E(c) enclosed by o and §°€), and
further (o,1) is a minimizer as provided by Theorem Also the converse is true: Any minimizer
(0,1) that satisfies (1)-(3) of Theorem has as graph of 1 a disc-type surface ST whose double
S = ST US™ is a classical solution to the Plateau problem for the curve T.

This result is rigorously stated in Theorem of Section In Section [6.2] we instead analyse
the case n = 2. In this case one might look for minimal surfaces obtained as union of two discs
spanning I'; and I'e, or else for a catenoid-type surface spanning I' = T'y U T's together. Appealing
to an existence result due to Meeks and Yau [18], we are able to show the counterpart of Theorem
Theorem that essentially states that any minimizer (o,v) € W of F,, satisfying properties
(1)—(3) of Theorem is (the nonnegative half of) a Meeks-Yau solution, and vice-versa. In order
to prove Theorem we will strongly use the convexity of the domain €2, which implies that the
cylinder 2 x R, which contains I' on its boundary, is convex, and so the results of Meeks and Yau
are applicable.

Due to the highly nontrivial arguments used to prove this result, we restrict our analysis to the
case n = 2, since a generalization to the case n > 2 probably requires heavy modifications. Indeed,
some of the lemmas needed to prove Theorem employ crucially the fact that 9°Q consists of
only two connected components. For this reason we leave the case n > 2 for future investigations.

Let us now come to the reasons for our study. One motivation is the description of a cluster
of soap films which are constrained to wet a given system of wires v emanating from a given free
boundary plane. The soap films are expected to arrange in such a way to form a free boundary
on the plane. Therefore, the questions of existence of a minimal configuration and its regularity
naturally arise. A second motivation is related to the description of the singular part of the L!-
relaxation of the Cartesian 2-codimensional area functional

/ \/1 + |Vui|? + |Vug|? + (detVu)? dex, u = (u1,us) € CHU;R?),
U

computed on nonsmooth maps. The L!-relaxed area functional [1,{14], denoted by A(-; U), is mostly
unknown, up to a few exceptions, see [1,5-7,[20]. One of the remarkable exceptions is the case of



Figure 3: A possible configuration of the sets E(o;) (in the relaxed problem). Also in this example
n = 3. The (clockwise oriented) arcs p1gi = OPQ, pagz = 0P Q, and p3g3 = 9P are the set where ¢
is prescribed and positive. In the set °Q = q1ps Ugop3z Ugspi and on E(0) = E(o1)UE(02)UE(03)
we prescribe 1» = 0. The curves o; joining ¢; to p;y1 (with the corresponding set F(o;)) are
indicated. On the dotted segment o1 and o9 overlaps with opposite orientations. The emphasized
region Q \ E(0) is the one where 9 is not necessarily null.

the vortex map uy : B;(0) \ {0} € R? — R2, defined by uy (z) = ‘%: in this case it can be proved
that

Aluy: Bi(0)) = /B ) 1+ [Vay [2de + inf F (0, ), (1.6)

where the infimum is taken over all pairs (o,v¢) € ¥ x BV (Ry) with ¢ = 0 a.e. on E(c). Here
the setting is the following: n = 1, Ry = (0,21) x (—=1,1), 3Ry = (0,21) x {1}, OPRy =
({0} x (—=1,1))u([0,2]] x {-1})U ({2} x (—1,1)), p=(0,1), ¢ = (21,1), and o is a unique curve in
Ry joining p to ¢. The Dirichlet datum ¢ : 8P Ry — [0, 00) is the function ¢ (w1, ws) = 1/1 — w3.
This setting is similar to the catenoid case, with the difference that the Dirichlet boundary is here
extended to include the basis (0,20) x {—1} and the free curve o is just one simple curve (see Figure
).

In order to construct a recovery sequence for the relaxed area of the vortex map, it is
essential to analyse the existence and regularity of minimizers of F,. In particular, it is necessary
to show that there is at least one sufficiently regulalﬂ minimizer (o,1). The shape of the curve o
and the graph of ¢ are related to the vertical part of a Cartesian current in B;(0) x R? which arises
as limit of (the graphs of) a recovery sequence (vy) C C(B;(0); R?) for A(uy; B;(0)).

According to what happens for the catenoid, also in this case we have a dichotomy for the
behaviour of minimizers (o,1). When [ is small, the solution (o, ) consists of a curve ¢ joining p
and ¢ whose interior is contained in Ry, and its shape is so that E(o) is convex; at the same time
the graph of ¢ on Ry \ E(0) is a sort of half-catenoid, so that if we double it considering also its
symmetric with respect to the plane containing Ry, it becomes a sort of catenoid spanning two
radius one circles, and constrained to contain the segment (0,2[) x {—1}. When instead [ is larger

!Conditions provided by Theorem are sufficient.



Figure 4: The domain Ry of the vortex map. The graph of ¢ on 9P Ry; is emphasized (in particular
© = 0 on the lower horizontal side), together with an admissible curve o, which in this specific case
partially overlaps the Dirichlet boundary. In this example n = 1.

than a certain threshold, then the solution reduces to two circles spanning the two radius one and
parallel circles.

The structure of the paper is as follows. In Section [2] we introduce the setting of the problem
in detail. In order to prove existence of minimizers of F, we first restrict ourselves to prove the
result in a smaller class Weony C W of admissible pairs (o,), where compactness is easier and
allows to make use of the direct method. Roughly speaking, the class Weony accounts only for
specific geometries of the free boundary o, namely, it considers configurations for which each set
E(0;) is convex. In Section [3| we prove the existence of minimizers of Fy, in Weony. Next, in
Section [, we show the existence of minimizers in the wider class YW where, essentially, o is not
constrained to the previous geometric features; this result is contained in Corollary To show
this we consider a minimizing sequence in W and we modify it, by a cut and paste procedure, in
order to construct a minimizing sequence in Wegny. In Section [5| we study the regularity properties
of minimizers. Specifically, we state and prove Theorem which rephrases in a more precise
way the results contained in Theorem Theorem follows from Theorem Corollary
and Theorem Eventually in Section [6] we compare the solutions we found with the classical
minimal surfaces spanning I". Here, as anticipated, we restrict our analysis to the case n = 1,2,
the case n = 2 essentially giving rise to either a catenoid-type minimal surface, or two disc-type
surfaces spanning I'y and I's. The main theorems here are Theorems and The proof of
the former, for the case n = 1, is quite simple, whereas Theorem for the case n = 2, requires
a series of lemmas. In particular, if S is a Meeks-Yau catenoid-type minimal surface, at one step,
we need to employ a Steiner symmetrization of the 3-dimensional finite perimeter set in £ x R
enclosed by S. In turn, using standard results on the condition of equality for the perimeters of a
set and its symmetrization, we are able to show that the starting surface S were already symmetric
with respect to the plane containing €2, and already Cartesian, and the conclusion of the proof of
Theorem [6.5] is achieved.



2 Preliminaries

2.1 Area of the graph of a BV function

Let U C R? be a bounded open set. For any ¢ € BV (U) we denote by Dt its distributional
gradient, so that
Dy = VyL? + D,

where V1 is the approximate gradient of ¢» and D%y denotes the singular part of D). We recall
that the L'-relaxed area functional reads as [15]

A U = /U 1+ [Vo2dz + | D |(U). (2.1)

In what follows we denote by 0* A the reduced boundary of a set of finite perimeter A C R3 (see [2]).
For any ¢ € BV(U) we denote by Ry, C U the set of regular points of 1, namely the set of points
x € U which are Lebesgue points for 1, ¥ (z) coincides with the Lebesgue value of ¥ at z and v is
approximately differentiable at . We define the subgraph SG,, of ¢ as

SGy = {(z,y) € Ry xRy <¢(a)}.

This turns out to be a finite perimeter set in U x R. Its reduced boundary in U x R is the generalised
graph Gy, == {(z,9(x)): @ € Ry} of ¢, which turns out to be a 2-rectifiable set. If [SGy] € D3(R?)
denotes the integral current given by integration over SGy and 9[SGy] € D2(R3) is its boundary
in the sense of currents, then

[Gy] = A[SGy]L(U x R),

with [G,] denoting the integer multiplicity 2-current given by integration over G, (suitably oriented;
see [13] for more details).

2.2 Hausdorff distance

If A, B C R? are nonempty, the symbol dg (A, B) stands for the Hausdorff distance between A and
B, that is

dp(A, B) := max {Sup dp(a), sup dA(b)} ,
acA beB

where dp(-) is the distance from the nonempty set F' C R2. If we restrict dg to the class of closed
sets, then dy defines a metric. Moreover:

(H1) da(z) < dp(z) + dg (A, B) for every = € R?;

(H2) (K,dy) with K := {K C R?nonempty and compact} is a complete metric space;

(H3) If A, B C R? are bounded, closed, nonempty and convex sets, then dy (A, B) = dg(0A, 0B);
(H4)

H4) If A € K is convex, then there exists a sequence (A,,), C K of convex sets with boundary of
class C* such that dg(A4,, A) — 0 as n — oo;

(H5) Let (A,)n, be a sequence of closed convex sets in R?, A C R? and dy(A,, A) — 0 as n — +oo.
Then A is convex as well;

(H6) Let (Ay), and A be compact convex subsets of R? such that dg (A, A) — 0and let = € int(A);
then x € A, definitely in n;



(H7) Let A and B be closed subsets of R? with dy (A, B) =¢. Then A C BY and B C A where,
for all E C R?, we have set EX := {x € R?: dp(x) < ¢e}.

Remark 2.1. Property |(H1)| is straightforward, while [(H2)|is well-known. Also property |(H3)|is
easily obtained (see, e.g. [21]). Concerning property [(H4)| we refer to, e.g., |4, Corollary 2]. To see

from we have that d4, — da pointwise, and therefore since d4, is convex, also d4 is
convex, which implies A Convexﬂ Let us now prove by contradiction; assume that there exists
a subsequence (ny) such that da, (x) > 0 for all k € N; then z € R2\ A,,, da,, (z) = doa,, (z),
and using |(H1)| twice,

doa(z) < daAnk (z) + dH(aAnk, 0A) = dA"k (z) + dH(Ank,A)
da(x) + QdH(A,Ank) = ZdH(A,Ank) — 0,

A

the first equality following from |(H3)| This implies = € 0A, a contradiction.
We begin with the following standard result that will be useful later:

Lemma 2.2. Let K C R? be a convexr compact set with nonempty interior. Then there exists a
1-periodic curve & € Lip(R;R?), injective on [0,1), such that 5([0,1]) = 0K and

~ ~

5(t) = 5(0) + £(5) /0 F(s)ds, A(t) = (cos(B(t)), sin(A(t))) for all t € [0,1],

with 6 a non-decreasing function satisfying é\(t +1) - é\(t) =27 for allt € R.

Notice that ¢ is differentiable a.e. in R and &’(t) = £(5)7(t), so that the speed modulus of the
curve |6'(t)| = £(7) is constant and coincides with the length of the curve £(g) = fol |0’ (s)|ds.

Proof. We start by approximating K by convex sets with C* boundary. By for all n € N
there is a convex compact set K, C R? with boundary of class C* and such that d (K, K)—0
asn — oo. For any n € N we let 5,, € C*°(R;R?) be a 1-periodic function injectively parametrizing
0K, on [0, 1); therefore 7,([0,1]) = K, and

Galt) = Ga(0) + £(.) /0 Fuls)ds,  Fu(t) = (cos(Ba(t)) , sin(@a()) ¥t € [0,1],

where 6,, € C*(R) is a non-decreasing function with 6, (t + 1) — 8,,(¢) = 2, for all ¢t € R. In view
of (H2), by construction we can find o € K, R > r > 0 such that B,(z¢) C K,, C Br(xo) for all
n € N, and therefore H(9B,(z0)) < €(G,) = HY(OK,) < H'(0Bg(z0)); thus, up to subsequence,
0(G,) — m € RT as n — oco. Moreover, up to subsequence, we might assume 7,(0) — p € K. On
the other hand observing that

1 t+1
/ |67, (s)|ds = / 0),(s)ds = 2m, for all t € R,
t t

we have that, again up to subsequence, §n A 5/\6 BVlOC(I[/@ and pointwise (by Helly selection
principle), with 6 a non-decreasing function with 6(¢t + 1) — 6(t) = 27 for all ¢ € R. We also have
Fn =7 in BVioo(R; R?) where 7(t) = (cos(B(t)) , sin(9(t))).

We let & € Lip(R; R?) be the (1-periodic) simple closed curve defined as

G(t) =p+m /0 A(s)ds Wt eR. (2.2)

2Since A is closed, it coincides with the sublevel {z : d(x, A) < 0}, which is convex.



Note that m = £(5). Then clearly 5, — & in W1([0, 1]; R?), since
1

15~ 3 lesoagen) = [ 16Ga3n(0) — £@)(E)de
0

1
< 0@n) — £(3)| + £(3) / Bu(t) — F(E)]dt — 0.

By the continuous embedding W1([0,1]; R?) c C°([0,1]; R?) (and by 1-periodicity, on R) we also
get 0, — ¢ uniformly on [0, 1]. This, together with property |(H3)| gives

dH(8K,6([O, 1])) < dH(aKa aKn) + dH(an([O’ 1])76([07 1])) — 0,

which in turn implies ([0, 1]) = 0K. The injectivity of o on [0,1) follows from expression (2.2),
the fact that m > 0, and the fact that K is convex with nonempty interior.
O

Corollary 2.3. Let K C R? be a convexr compact set with nonempty interior. Let q,p be two
distinct points on 0K, and let pq be the relatively open, connected curve contained in OK with
endpoints q and p clockwise ordered. Then there exists an injective curve o € Lip([0,1];R?) such
that o((0,1)) = pq, 0(0) =g, o(1) = p, and

t
o(t)=q Jrﬁ(o')/o v(s)ds, ~(t) = (cos(6(t)), sin(0(t)) for all t € [0,1],

with 6 a non-decreasing function satisfying 6(1) — 6(0) < 27.

Proof. Lemma provides & € Lip([0, 1]; R?) parametrizing K. Then there are two values t1,ty €
[0,1], t1 < ta, with ¢ = o(t1) and p = o(t2). Then the existence of o follows by reparametrization
of the interval [t1,t2], and all the properties follows from the corresponding properties of 7. O

2.3 Setting of the problem

We fix Q C R? to be an open bounded convex set (strict convexity is not required) which will be
our reference domain. Given two points p,q € 99 in clockwise order, pq stands for the relatively
open arc on df2 joining p and q.

Let n € N, n > 1, and let {p;}?" ; be distinct points on 9 chosen in clockwise order; we set
Pns1:=p1. Foralli=1,...,n let ¢; be a point in p;p;+1 C 2. We set

P = pigi, X0 = Gipir1 fori=1,...,n, (2.3)

and . .
oPa:=[JoPa,  o"a:=]Joa. (2.4)

i=1 i=1

Since (‘3Z~D Q and 9P are relatively open in 95, so are 0P and 8°Q. It follows that O is the
disjoint union

o0 = U {pi,qi} UOPQU Q.

We fix a continuous function ¢ : 9Q — [0, +00) such that
© =0 on 9°Q and ¢ >0 on 07Q,

see Figures We will make a further regularity assumption on ¢: we require that the graph
ngapo = {(x,p(z)) : z € IPQ} of p on 9P is a Lipschitz curve in R3, for alli = 1,...,n.

9



Remark 2.4. The hypothesis ¢ > 0 on 9P excludes from our analysis the example in Figure 4| of
the introduction. We will further comment on this later on (see Section ; the presence of pieces
of OPQ where ¢ = 0 will bring to some additional technical difficulties that we prefer to avoid here.
However, the setting in Figure {4] can be easily achieved by an approximation argument. Namely,
one considers a suitable regularization ¢, of ¢ on 9P such that ¢, > 0, and then letting ¢ — 0
one obtains a solution to the problem with Dirichlet datum ¢.

We will analyse the functional F = F,, defined in (L.5)), namely

Flo.) = A ) = [B@)] + [ o= plart!, (25)
where the pair (o,1) belongs to the admissible class W, defined as follows:
W= {(0,1/}) € x BV(Q):¢ =0 ae. in E(a)},
Si={o = (01,...,00) € (Lip([0, 1); 2))" satisfies (i)-(ii") }

where
(i’) o= (01,...,0,) with o; injective, 0;(0) = ¢; and o;(1) = piy1, foralli =1,... n;

(ii’) Fori=1,...,n, denoting by E(c;) C Q the closed region enclosed between 9% and o;([0, 1]),
we assume int(E(o0;)) Nint(E(o;)) = O for i # j where int denotes the interior part; we also

set
n

E(o) == E(0v). (2.7)

i=1

Remark 2.5. The injectivity property in guarantees that the sets F(o;) are simply connected
(not necessarily connected). The assumption that the interior int(E(c;)) of the sets E(o;) are
mutually disjoint is an hypothesis on the curves o;, which essentially translates into the fact that
these curves cannot cross transversally each other, but might overlap. Notice that int(E(c;)) might
be empty, as the case 9YQ = 0;([0, 1]) is not excluded.

The strategy to show existence and regularity of minimizers of the functional (2.5) (see (3.1]))
is to reduce to study the same functional on a restricted class of competitors, more precisely to
reduce our analysis to the case where the sets F(o;) are convex. Specifically, we define:

Weons i= {(a, b)) € Seony X BV(Q) : ¥ =0 ae. in E(a)},
(2.8)
Seony (= {a = (01,...,0,) € ¥ : 0 satisfies (i)},

and:
(i) For all i =1,...,n the set E(0;) is convex.

As we have already said, the sets int(£(o;)) might also be empty, since from assumption (i’) we
cannot exclude that o; overlaps 99Q2: Recalling that ( is convex, this can happen, by (ii’) and (i),
only if ¢;p;11 is a straight segmen‘(ﬂ Clearly,

WCOHV C W‘ (2.9)

3We shall prove that, for a minimizer, 0(]0,1]) cannot intersect AP Q unless 9P Q is locally a segment, see Theorem

E1
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Remark 2.6. Exploiting the characterization of the boundaries of convex sets given in Corollary
2.3] we see that conditions[[{)][(ii")] and [(i)] for the curves in Seony imply the following:

(P) For all i = 1,...,n there is a nondecreasing function 6;: [0,1] — R with 6;(1) — 6;(0) < 2,
and such that, setting ~;(t) := (cos(6;(t)) , sin(0;(t))) for all ¢ € [0, 1], we have

t
wlt) =g+ o) [ w(s)ds  vee o
0
Here we have denoted the length of o; by £(0;).

3 Existence of minimizers of F in W, v

The main result of this section reads as follows.

Theorem 3.1 (Existence of a minimizer of F in Weony). Let F and Weony be as in (2.5)) and
(2.8) respectively. Then there is a solution to

min  F(o,9). 3.1
(O’,’Lﬁ) EWeonv ( /(Z)) ( )

We prove Theorem using the direct method. To this aim we need to introduce a notion of
convergence in Weony-

Definition 3.2 (Convergence in Weo,y ). We say that the sequence (((0)g, ¥x))k € Weony, with
(o) = ((01)ky -y (On)k), converges to (o,1) € Weony if:

(a) (0i)k converges to o; uniformly in [0,1] for alli=1,...,n;

(b) (Y converges to ¢ weakly star in BV (), i.e., ¥ — ¢ in L*(Q) and Dy, — D3 weakly
star in ) in the sense of measures as k — +00.

Remark 3.3. For any i = 1,...,n we have limy_, o dg(E((0)x), E(0s)) = 0, since by property

(T13))
du(E((0i)k), E(0i)) = du(OE((04)k), 0E(0:)) = du((04:)k([0,1]), 4([0, 1])) — 0.

Lemma 3.4 (Compactness of Weopy). Let (((U)k,wk))k C Weonv be a sequence with

supy, F((0)k, ¥r) < +00. Then (((0)k,4r)), admils a subsequence converging to an element of
WCOHV’

Proof. We divide the proof in two steps.

Step 1: Compactness of (¢)x. For simplicity we use the notation o;; = (0;)y for every k € N and
i € {1,...,n}. By condition (P) in Remark for every k € N and i € {1,...,n} there exists a
non-decreasing function 60;;: [0,1] — R, 6;5(1) — 0;1(0) < 27, such that
t
oik(t) = i +f(0ik)/ Yik(s)ds,  yik(t) == (cos O (t) , sin i (t)) Vit € [0,1],
0

and with o;;(1) = pir1. We observe that

1
emw=£wmmw<#@m,

11



since the orthogonal projection Il;: 9Q \ 99Q — E(oy) is a contraction and H!(9Q \ 89Q) <
H(09). Hence, up to a (not relabelled) subsequence, £(o;) — m; € Rt as k — +00. The number
m; is positive since, for all k and i, we have ¢(o%) > |g; — piv+1| > 0. Moreover

1 1
/ 6L, ()| dt = / (B)dt < 2
0 0

hence, up to a subsequence, 0;; — 6; in BV ([0, 1]) and 6; is non-decreasing with 6;(1) — 6;(0) < 2.
Furthermore v;, — v; in BV ([0, 1]; R?) with ~;(t) = (cos(6;(t)) , sin(6;(t))).
As a consequence o;;, — o; in W1([0,1];R?), where

t

oi(t) == q; + mi/o vi(s)ds = ¢; + K(ai)/o vi(8)ds.

Indeed we have

1
i — oillLro,1r2) = /o (k) vik(t) — £(oi)7i(t)|dt

1
< H'(99) /O ik (t) = i()|dt + [£(ow) — £(o)]- (3-2)

Now taking the limit as k — +o0 in (3.2) we conclude. Thus limg_, 0;x = 0; uniformly, hence

we also conclude that o; takes values in .
It remains to show that E(c;) is convex for any i € {1,...,n}. The uniform convergence of (o)
yields

lim dy(0E(oi),0E (o)) = 0.

k—+o0

This, together with property gives for h > k,
di(E(ow), E(oin)) = du(0E(oik), 0E(oin))
<dy(0E(oi),0E(0;)) + dg(0E (o), 0E(0;)) = 0 as k — oo,

and so (E(o))ken is a Cauchy sequence in the space of compact subsets of R? endowed with the
Hausdorff distance (see |(H2)). We find K C R? convex compact such that dg(E (o), K) — 0.

Eventually from |(H3)| we get

dH(aK, aE(JZ)) < dH(aE(UZk),aK> + dH(8E<JZk),8E(UZ))
:dH(E(Uik),K) + dH(aE(Jlk),aE(Uz)) —0 as k— +oo.

Therefore we conclude that 0K = 0F(0;), so E(o;;) — E(0;) in the Hausdorff distance, and E(o;)
is convex by property |(H5)]

Step 2: Compactness of (¢). Setting Fj, = U, E(0;;) we have
| DY) (Q) < AW, Q) < F(0)p,hr) + |Fel <C < 400 VE >0,

where we used that |F},| < |Q|. Therefore, up to a subsequence, ¢ — v in BV (Q) as k — +o0. To
conclude it remains to show that ¢ = 0 a.e. in E(0) = U;E(0;). By limg_, o0 dg(Fy, E(0)) = 0,

property [(H6)| yields
if z€int(E(o)) then xz € Fj, definitely in k,

and hence since limg_, o ¥ = ¥ a.e. in Q, we infer ¢» = 0 a.e. in E(0).

12



Lemma 3.5 (Lower semicontinuity of 7 in Weony). Let (((J)k,@/}k))k C Weonv be a sequence
converging to (0,1) € Weony. Then

F(o,0) < liminf F((0)y ¥,

—+00

Proof. By a standard argument [15], the functional
v e BY(®) AW )+ [ [0 - el
o0

is L'(Q)-lower semicontinuous. We now show that the map o € Scony + |E(0)| is continu-
ous. Let (0)r C Yconv, 0 € Xconv, and suppose that (o;); uniformly converges to o; for all
i=1,...,nas k — +oo. Set Fy := U E((0;)x) and recall that E(c) = U E(0;). By Remark
limp, 100 dg (E((0i)k), E(0;)) = 0 for all i = 1,...,n and therefore dy(Fy, E(c)) =: g, — 0T.
By invoking [(H7)| we have E(o) C (Fy)Z . Moreover, since dg((Fy)d,, E(0)) < 2ex, we get
(Fr)Z, € (E(0))s,, and so
[E(0)] < |(Fr)d,| < [(E(0))se, |
This implies
lim sup |Fy| < lim sup | (Fy)2. | < |E(o)].

k——+o0 k—+o0

The converse inequality is a consequence of Fatou’s Lemma and [(H6)|, indeed

B() < [ tminf xr, (2)de < fmint [ xp(@)do = Timnf 3.

The assertion of the lemma follows. O

Proof of Theorem[3.1] By Lemmal[3.4land Lemmal[3.5 we can apply the direct method and conclude.
O

4 Existence of a minimizer of F in W

In this section we extend the previous results to the minimization of F in the larger class W of
competitors.

One issue we find in minimizing the functional F on W, is that the class ¥ in is not
closed under uniform convergence, since a uniform limit of elements in ¥ needs not be formed by
injective curves. To overcome this difficulty, in Theorem we prove that the infimum of F over
W coincides with the infimum of F over Weony. Thus in particular, by Theorem we derive the
existence of a minimizer for F in W (Corollary [4.3).

Theorem 4.1 (Existence of a minimizer of F in W). There ezists (0,1) € Weony such that

Flo.w) = inf F(5,0)

Moreover every connected component of E(o) is convez.

Remark 4.2. Since the o;’s may overlap, the assumption that every E(o;) is convex does not
imply in general that every connected component of E(c) = U  E(0;) is convex.

As a direct consequence of Theorem [.1] we have:

13



Corollary 4.3. Let (0,9) € Weonv be a minimizer as in Theorem [3.1 Then (o,v) is also a
minimazer of F in the class V.

For the reader convenience we split the proof of Theorem [4.1] into a sequence of intermediate
results: Lemmas [4.4] and the conclusion. First we need to introduce some notation.
Let (0,7) € W. We fix an extension 3 € W!(B) of ¢ on an open ball B D Q. Extending ¢ in
B\ Q as @ (still denoting by 9 such an extension), we can rewrite F(o,) as
F(o,9) = A(Y; B) — |E(0)| — A(¢; B\ Q). (4.1)
Lemma 4.4. Let u € BV (R x (0,+00)) be a nonnegative function with compact support in an open
ball B,. Then
/ u(s) dH(s) < A(u: B, 01 (B x (0, +0))) — | Ep, | (42)
(Rx{0})NB,
where
Ep, :={z € B, N (R x (0,400)) : u(x) = 0}.
Notice that the function w is defined only on the half-plane R x (0, +00), and in (4.2)) the symbol

u(s) denotes its trace on the line R x {0}.

Proof. We denote by z = (x1,72) € R? the coordinates in R2. Set H := R x (0,+00), Z =
(B, N H*) x R. Let

L:={(z,y) € Z:z € Ry, y € (—u(z),u(z))} C R?,
where R, is the set of regular points of u. We have, recalling the notation in Section [2.1
2A(u; B, NH) = A(u; B, " H) + A(—u; B, N HY)
=H*(0*(Z N SGy)) + H*(9*(Z N SG_y)) (4.3)
=H*(ZNO*L) +2|Eg,|.
Suppose B, N (R x {0}) = (a,b) x {0}. Then, looking at G, as an integral current, a slicing

argument yields

b
H*(ZNO*L) > / HYZ N {x) =t} NI*L)dt

-/ "H(Z 0 {21 = £} O (4G — Gou)))l (4.4)

b
> / 2u(t,0)dt = 2/ u(s) dH'(s),
a (Rx{0})NB.

where the last inequality follows from the following fact: If we denote by [G,], the slice of the
current [G,] on the line {x; = ¢}, then

OlGul; = 01,0,u(t,0)) = Ot,5:,0) for a.e. t € (a,b),

where s; > 0 is such that (¢,s;) = B, N ({t} x R"), and in writing d(, s, o) we are using that u has
compact support in B,.. This can be seen, for instance, by approximation of u by smooth mapﬂ
Therefore

8([[guﬂt — [[Q_u]]t) = 5(t,0,u(t,0)) — (5(15,07,“(25’0)) for a.e. t € (CL, b)
This justifies the last inequality in , and the proof is achieved. O

“With respect to the strict convergence of BV (B, N (R x {0})), which guarantees the approximation also of the
trace of u on &(B, N (R x {0})).
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We now turn to two technical lemmas which are necessary to prove Theorem We need to
introduce a class of sets whose boundaries are regular enough so that the trace of a BV function
on them is well-defined. Precisely we say that an open subset of R? is piecewise Lipschitz if it can
be written as the union of a finite family of (not necessarily disjoint) Lipschitz open sets. Notice
that, by if V.CC U is a piecewise Lipschitz subset of an open and bounded U C R?, then

A, V) = AW, V) + / gt — g |an, (4.5)

oV
where 1 (respectively 1~) denotes the trace of 1.V (respectively ¢ (U \ V)) on 9V.

Lemma 4.5 (Reduction of energy, I). For N > 1 let F, ..., Fn be nonempty connected subsets
of Q, each F; being the closure of a piecewise Lipschitz set, with F; N F; =0 fori,je{l,...,N},
i #j. Let ¢ € BV (B) satisfy

N
=0 ae in G::UFZ- and Y =¢ in B\Q. (4.6)
i=1

Then, for any i € {1,..., N},
AW§; B) — |G| = A(¥7; B\ Q) < A(y; B) — |G| — A(y; B\ Q),
where

G} = U F;Uconv(F;) and of =
J#i

{0 in conv(F;) @7

1 otherwise.

Proof. Fix i € {1,...,N}. By the convexity of Q, we have ¢ = 9% in B\ Q, hence it suffices to
show that
A(F; B) — |GF| < A(¥; B) — |G

We start by observing that we may assume F; to be simply connected. Indeed, if not, we can
replace it with the set obtained by filling the holes of F;, and by setting 1 equal to zero in the
holes. This procedure reduces the energy. Indeed, since F; is piecewise Lipschitz, any hole H of
it satisfies 0H C Uj_;0A; where A;’s are the Lipschitz sets whose union is ;. Hence the trace of
YL H on 0H is well-defined, and the external trace (B \ H) vanishes.

We have that (Oconv(F;)) \ OF; is a countable union of segments. We will next modify ¢ by
iterating at most countably many operations, setting ¥» = 0 in the region between each of these
segments and OF;.

Step 1: Base case. Let [ be one of such segments, and U be the open region enclosed between

OF; and [. We define ¢/ € BV (Q) as
po 0 mU
1 otherwise.

We claim that
AW’ B) — |G'| < A(y; B) — |G|, (4.8)

where G’ := G UU. To prove the claim we introduce the sets

H = int(FZ-UU), V= Uﬂ(U]’;ﬁiFj).
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Note that H is a piecewise Lipschitz set. By construction
|G| = [H|+ | Ujzi Fy| = V],
and will follow if we show that
A B) = [H| < A(¢h; B) = | Uj Fj| + | Ujzi Fj| = [V = A(¥; B) = [F; U V.
Since |H| = |F; UV|+ |U \ V]|, this can also be written as
AW B) < A(¥; B) + U\ V.

In turn A(¢'; B) = A(W';U) + A(Y'; B\ U) (and similarly for v), so we have reduced ourselves
with proving

AW, U) < A U) + U\ V. (4.9)
In view of the definition of 1/’ which is zero in U, we hav AW U) = [,|¢T|dH+|U| (¥ denoting
the trace of ¢ (B \ U) on the segment [) implying that (4.9)) is equivalent to
J1wtlant < a0y -1,
l

Finally, if ¢y denotes the trace of ¥ LU on I, we write A(¢;U) = A(y; U\ 1) + [, [v+ — ¢y |dH!,
and the expression above is equivalent to

/l AR < /l ot — i+ AW T\ — V. (4.10)

We now prove (4.10)). Fix a Cartesian coordinate system (z1,z2) so that [ belongs to the xj-axis
and U belongs to the half-plane {z2 > 0}. Let u be an extension of ¢ in R x (0, +00) which vanishes
outside U. Lemma [£.4] applied to u with the ball B, = B, implies

/|¢U|cm1 — / wdH! < A(w; B (R % (0,400))) — |Es| < AW;T\1) - [V].
l {z2=0}NB

Here the last inequality follows by recalling that v (and thus u) vanishes on V. From this and the
inequality [, [¢T|dH! < [, |0 —y|dH! + [, [u|dH! the proof of ([4.10) is achieved, so that (4.8)

follows.
Step 2: Iterative case. We set 9(conv(F;)) \ OF; = Uj2,l; with [; mutually disjoint segments.
For every h > 1 we define the pair (¢, G,) as follows:

e ifh=1
V1= {?/} :‘zh[gwise, and Gy i=GUUL,
where U; is the open region enclosed between 0F; and [;. We also define Hy := int(m).
o if h >2

0 in U _
Py = HEh . and Gy :=G_1UUy,
Yp_1 otherwise,

where Uy, is the open region enclosed between 0Hjp, 1 and I, and Hj := int(Hy_q U Up).

5Notice that we use the precise integral formula (4.5 thanks to the boundary regularity of U. More precisely we
have OU \ | C 9F; C u;;laAj, where A;’s are the Lispchitz sets whose union is Fj.
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By construction each Hy, is simply connected and piecewise Lipschitz, Hj, C Hy1, G, C Ghy1 C Q
for every h > 1, and moreover

li Hy| = F; li = |G} 4.11
i [Hy| = leonv(F)|, lim (Gul = 1G], (411)

where G := U2 |G}, = Ujx F; U conv(F;). For any h > 2 we apply step 1, and after h iterations
we get

A(n; B) = |Gh| < A(pn—1; B) = [Gpa| < - -+ < A(¢1; B) — |G| < A(y; B) — |G| (4.12)
In particular,

[Dynl(B) < A(yn; B) < A(4; B) + |G \ G| < A(¢; B) + [\ G,

for all h > 1, and then we easily see that, up to a subsequence, 1), — Yf in BV(B), where ¢} is
defined as in (4.7). Now the lower semicontinuity of A(+; B) yields

lim inf A(¢p, B) > A(Y;; B) . (4.13)

h—4o00

Finally, gathering together (4.11))-(4.13)) we infer
A5 B) — |GY] < liminf A(y; B) — lim_|Gal < A(W; B) — |G.
h—+o00 h—+o00

This concludes the proof. O

Lemma 4.6 (Reduction of energy, II). Let N > 1, Fy,...,Fn,G and ¢ be as in Lemma .
Then there exist i € {1,..., N} and mutually disjoint closed convex sets Fi, ..., Fy C Q such that

Gc|JF=¢", (4.14)
i=1
and B B
A" B) — |G*| — A(p*; B\ Q) < A(Y; B) — |G| — A(y; B\ Q), (4.15)
where
« _JO inG¥
V= {@ZJ otherwise. (4.16)

Proof. Base case: (h =1). We take the sets

conv(Fy), Fy, ..., Fx and G} :=UN,F, Uconv(F)), (4.17)

. {0 in G¥

1) otherwise.

and let

Then by Lemma [4.5]
A@W1; B) = |G| — A(WT; B\ Q) < A(¥ B) — |G| — A(¥; B\ Q) . (4.18)

The next step is not necessary if N = 1.

Iterative step: (h > 1). Suppose N > 1. Let 1 < h < m < N be natural numbers, and let
Fip,...,Fy, be connected closed subsets of Q with nonempty interior that satisfy the following
property: There exists 1 < k < h such that:
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(1) Fip,...,Fyp are convex;
(2) FinNFEjp=0foralli,j#k, i#j.
Notice that, if m > 1, for h = 2 the sets
Fio:=conv(Fy), Fho:=F,, ..., Fyg:=Fn,

in the base case satisfy with m = N and k = 1. We then set I := {1 < i < m,i #
k: F; , N Fyp, # O} and construct a new family of sets using the following algorithm, distinguishing
the two cases (a) and (b):

(a) If I, = @ we define the sets

Fopuy = Fin fori#k+1
e conv(Fpy1p) fori=k+1,

and
* P m .
ht1 = Uim1 Fipt;

(b) if I, # @, up to relabelling the indices, we may assume that
Iy = {ki ki + 1, ko \ {2,
for some ki # ko with 1 < k1 < k < ko < m, so that
{1,....mI\{k}\ I ={1,..., k1 — 1} U{ka + 1,...,m}.

Then we set

E;p fori=1,.... k1 —1
Fipy1 = § conv(Fy p, U (Ujer, Fjp)) fori=k
E+k2—k1,h fori=ki+1,...,m—ko+ ky,
and
—ko+k
ha = U R

In both cases (a) and (b) a direct check shows that the produced sets satisfy properties (1) and (2).

We define also the function
0 in Gy, 41

Vg = " .
Yy otherwise.
Then, by induction, for all A we use Lemma and in view of (4.18)) we infer

AW 415 B) = 1Gh | — A1 B\ Q) <AW5; B) — |Gh| — A(yy; B\ Q)
< A(¢; B) — |G| — A(y; B\ Q).

Conclusion. If N = 1 it is sufficient to apply only the base case. If instead N > 1 after a finite
number A* < N of iterations we obtain a collections of mutually disjoint and closed convex sets
Fy = Fy px, ..., Fy = Fj p» with 1 <7 < n such that

GcULF=G*,
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and

A(W*; B) = |G| = A(¢*; B\ Q) < A(¢; B) — |G| — A(y; B\ Q)
with
. {0 in G*

1 otherwise.

Proof of Theorem[/.1. By Theorem [3.1]it is enough to show that

inf F(o,9) = inf  F(o,v).
(Uﬂ/’)GW ( w) (07¢)€WCODV ( zp)

Since from (2.9) it follows
inf  F(o,9) < inf  F(o,v),

(va)ew (Uzw)ewconv

we only need to show the converse inequality. Take a pair (7,v) € W; we suitably modify (&, 1)
into a new pair (0,1) € Weony satisfying

Flo,v) < F(5,7),

and this will conclude the proof.

Let E(61),...,E(d,) be the closed sets with mutually disjoint interiors corresponding to ¢ (as
in (ii’") of Section [2.3) and let G := U} E(;). Consider the (closure of the) connected components
Fy,....,Fyof G, N <n. Then by Lemmathere exist 1 <n < N and E, .. .,fﬁ C Q mutually
disjoint closed and convex satisfying , and . Therefore, by construction, for every
i=1,...,n, ¢ and p;11 belong to F'] for a unique j € {1,...,n}. For every j = 1,...,n we denote
by

9515 Pjr+15- -+ 7anj apjanrla

the ones that belong to F;. Then we conclude by taking (o,v) € Weony With o := (01,...,0,) and

D1 for k=1,...,n;—1

(o 0,1 == 5 nj—l——
(01D {aFj \ (UL, 0) U (G Gus) for k=ny,

for every j =1,...,n and ¢ := ¢*. O

5 Regularity of minimizers

In this section we investigate regularity properties of minimizers of . The main result reads as
follows.

Theorem 5.1 (Structure of minimizers). Every minimizer (,v) € Weony of F in W, namely

Flo, ) = (S%ienw F(s,Q),

satisfies the following properties:
1 FEach connected component of E (o) is convex;

2 1) is positive and real analytic in Q\ E(o);
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8 If OPQ is not a segment for some i = 1,...,n, then AE(c) NOPQ = @, ¥ is continuous up
to @DQ, and Y = ¢ on an,-

4 If 8Z-DQ is a segment for some i =1,...,n, then either OE(c) N 8Z-DQ =0 or 0E(o)N 8Z~DQ =
OPQ. In the first case 1 is continuous up to OPQ and 1 = ¢ on 0P Q.

Moreover, there is a minimizer (0,1) € Weony Such that

5 QN OE(o) consists of a finite number of disjoint curves of class C*°, and 1 is continuous
and null on OE(o) \ 0P€Q.

Remark 5.2. If 9PQ is a straight segment nothing ensures that dE(c) N d°Q = . However, if
this intersection is nonempty, then it must be 9°Q C dE(s). The prototypical example is given
by the classical catenoid, as explained in the introduction (see also Figure [1)) where, if the basis of
the rectangle = Ry is large enough, a solution ¢ is identically zero, and 9”Q C 9E(o).

This also explains why in point |5 of Theorem |5.1| we write OE (o) \ 0P, since PQ might be
partially included in OE (o) if 9P is a segment (for some i = 1,...,n).

For the reader convenience we divide the proof in a number of steps.
Lemma 5.3. Every minimizer (o,1) € Weonv of F in W satisﬁes @ and ) = p on OPQ\OE(0).

Proof. Ttem (1| follows by Theorem By [15 Theorem 14.13] we also have that 1) is real analytic
in Q\ E(0). Together with the strong maximum principle [15, Theorem C.4], this implies that, in
Q\ E(0), either ¢ > 0 or ¢ = 0. On the other hand, since €2 is convex we can apply |15, Theorem
15.9] and get that v is continuous up to 9”Q \ dE(c); in particular

p=¢>0 ondPQ\dE(0), (5.1)

which in turn implies ¢ > 0 in Q \ E(0) .
O

Lemma 5.4. Let I' C R? be a rectifiable, simple, closed and non-planar curve satisfying the fol-
lowing properties:

(1) T € O(F x R) for some closed bounded convex set F C R? with nonempty interior;
(2) T is symmetric with respect to the horizontal plane R? x {0};

(3) There are an arc pq C OF, with endpoints p and q, and f € C°(pgU{p, q}; [0, +00)) such that
f is positive in pq and

I'nfas >0} = Gr U ({py x [0, F())) U ({g} x [0, F(9)])- (5-2)

Let S be a solution to the classical Plateau problem for I', i.e., a disc-type area-minimizing surface
among all disc-type surfaces spanning I'. Then:

(1) Bpg :=SN(RZx{0}) C F is a simple curve of class C* joining p and q such that B ,NOF =

{p,q};

(2') S is symmetric with respect to R? x {0};

(3") The surface ST := SN {xs > 0} is the graph of a function J e Whi(U,,) N C°(U,,), where
Up,q C int(F) is the open region enclosed between pq and By 4. Moreover 1) is analytic in U, 4;
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(4") The curve Bpq is contained in the closed convex hull of T', and F \ Up 4 is convex.

Remark 5.5. If the function f in is such that f(p) = f(q) = 0 then (5.2)) becomes I' N {x3 >
0} = G¢. For later convenience we prove Lemma under the more general assumption

Proof. Even though several arguments are standard, we give the proof for completeness.

Step 1: Bpq 15 a simple curve joining p and q.
Let B; C R? be the open unit disc centred at the origin and let ® = (&1, Py, ®3): By — S C R3
be a parametrization of S with ®(0B;) = I, that is harmonic, conformal, and therefore analytic
in By, continuous up to 0B;. Further by it follows that ® is an embedding and hence injective
(see [18] and also [10, page 343]).
By assumption we have {w € 0B;: ®3(w) = 0} = {®~!(p,0),P1(q,0)}, so that 3 changes
sign only twice on dBj. By applying Rado’s lemma (see e.g. |10, Lemma 2, page 295]) to the
harmonic function ®3 we deduce that V&3 # 0 in By and in particular {w € By: ®3(w) > 0} and
{w € B;y: ®3(w) < 0} are connected, and {w € B;: ®3(w) = 0} is a simple smooth curve in By
joining ®~!(p,0) and ®~1(¢,0). By the injectivity of ® we have that SN (R? x {0}) = ®({w €
By : ®3(w) = 0}) is a simple smooth curve joining p and g.

Step 2: S is symmetric with respect to the horizontal plane R? x {0}.
By step 1 the sets {w € B;: ®3(w) > 0} and {w € By: ®3(w) < 0} are simply connected and the
two surfaces

ST :=®({w € By: ®3(w) >0}), S :=0{w e By: ¢3(w) <0})
have the topology of the disc. We assume without loss of generality that H?(ST) < H2(S™). Let
Sym(St) := {(a',23): (2, —x3) € ST}, §:=S5T USym(ST).
Then S is symmetric surface of disc-type with 88 =T and
H2(S) = 2H2(SH) < H2(ST) + H2(S7) = HA(S).
In particular Sisa symmetric solution to the Plateau problem for I'. Further S = S on a relatively

open subset of S; hence, since they are real analytic surfaces, they must coincide, S = S.
Step 8: S is the graph of a function ¥ € WU, ) N C%U,.,).

To show this it is enough to check the validity of the following
Claim: Every vertical plane II is tangent to int(S) at most at one point.

In fact by step 2 this readily implies that int(S™) has no points with vertical tangent plane and
hence we can conclude. We prove the claim arguing by contradiction as in [6, page 97], that is we
assume there is a vertical plane II tangent to int(S) at 2’ and 2" with 2/ # z”. We define the linear
map d, (z) := (x —2') - v with v a unit normal to II, so that clearly IT = {z € R3: d,(x) = 0}. Since
F is convex IIN (OF x {0}) contains at most two points. By properties|(1)H(3)| each of these points
is either the projection on the horizontal plane of one or two points of II NI, or the projection on
the horizontal plane of one of the vertical segments {p} x [0, f(p)] and {¢} x [0, f(¢)]. Hence IINT
contains either:

e at most two points and a segment;
e two segments;

e four points.
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Without loss of generality we restrict our analysis to the last case (the others are simpler to treat),
namely we assume that there are four (clockwise ordered) points wi,...,ws € 0Bj such that
INr = {®(w1),...,P(ws)}, that is d, o ®(w;) =0 fori = 1,...,4. We may also assume d, o ® > 0
on wywz Uwsws and d, o ® < 0 on wews Uwaw;. Here w;w; denotes the relatively open arc in 0B
joining w; and wj for i,j € {1,...,4}.

Notice that the function d, o ®: B; — R is harmonic in By, continuous up to dB; and vanishes at
w1, . . ., wyq; hence, by classical arguments [19, Section 437] we see that the set {w € B;: d,o® = 0},
in a neighbourhood of w' := ®~1(a’) (respectively w” := ®~1(2”)), is the union of a number
m > 2 of analytic curves crossing at w’ (respectively w”). Thus near w’ and w” the set {w €
By: d, o ®(w) > 0} is the union of at least two disjoint open regions A; 1, A12 and Ag 1, Ago
respectively such that Ay 1N Ay 9 = {w'}, A21 N A9 = {w"}. Moreover each A;; belongs either
to the connected component of {w € B;: d, o ®(w) > 0} containing wjws or to the one containing
wzwy. Up to relabelling the indices we have two possibilities.

Case 1: Ay and A; 2 belong to the same connected component containing wiws. Then we can find two
simple curves a1, az contained in A; 1 and A; 2 respectively, that connect w’ to a point in wyws
and such that the region enclosed by the curve ag U ag intersects {w € B;: d, o ®(w) < 0}.
Since d, o ® > 0 on a1 U ag by the maximum principle we have a contradiction.

Case 2: Ay 1 and Ay belong to the connected component containing wyws while A; 5 and As 2 belong
to the connected component containing wsws. Then we can find four simple curves «;
(with i, j = 1, 2) contained respectively in A; ;, such that oy ; (respectively as 1) connects w’
(respectively w”) to a point in wws and aq 2 (respectively oz 2) connects w’ (respectively w”)
to wzws. Then the region enclosed by the curve U; ja; ; intersects {w € B;: d, o ®(w) < 0},
while d, o ® > 0 on U; ja; j, which again by the maximum principle gives a contradiction.

Thus the claim follows.

Step 4: The curve B, 4 is contained in the closed convex hull of ', and the set F'\ Uy 4 is convex.
Let 7(I') C OF be the projection of I' onto the plane R? x {0}. By [10, Theorem 3, pag. 343] the
relative interior of S is strictly contained in the convex hull of I', thus in particular the curve 3,4
(respectively 5,4\ {p, ¢}) is contained (respectively strictly contained) in the same half-plane (with
respect to the line pqg) that contains = (I").

Now, assume by contradiction that F\ U, , is not convex. Then there are p', ¢’ € 5, , with the
following properties:

e The open region U’ enclosed by 3, 4 and the segment p/q’ is non-empty and contained in Up.g;

e the points p and ¢ and the set U’ lie on the same side with respect to the line containing p/'q’.

Let then dy: R? — R be an affine function that vanishes on the vertical plane containing p/q’
and is positive on the half-space W™ containing p, ¢ and U’. We now observe that I' N W™ is the
union of two connected subcurves I'y and I'9, containing p and ¢ respectively. As a consequence
&~ 1(T';) = wiws and ®~1(Ty) = wzwy for some wy, ws, w3, wy € OBy (clockwise oriented).

On the other hand since dy > 0 on U’ we can find #' € U’ \ p/q’ such that dy o ®(®~1(¢)) =
dw (t') > 0 with @~ 1(¢') € B.

Once again by the harmonicity of dy o ®: By — R we deduce the existence of a curve ac{we
By : dw o ®(w) > 0} joining ®1(¢) to one of wiws and wzws. Hence ®(a) C ®(By) = (U,,) is
a curve joining ¢’ to one of I'; and I'g, say I';. This implies that the projection 7(®(a)) of ®(«)
onto the horizontal plane R? x {0} is a curve contained in U, , that connects ¢’ to 7(T'1). So in
particular, the curve 7(®(a)) cannot be included in the half-plane W*. But this contradicts the
fact that « C {w € By: dw o ®(w) > 0} (this is because the values of dy at a point = and 7 (z)
are the same). O
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We need also the following technical results on the distance function dg from a convex set F'.

Lemma 5.6. Let F' C R? be bounded, closed and convez. Then Adp € L (R*\ F)NLY(B\ F)
for every ball B with FF CC B.

Proof. By |8, Theorem 3.6.7 pag. 75] it follows that dp € Cﬁ)’cl (R?\ F), hence VZdp € L (R?\
F;R?*2). Therefore we only have to check that Adp € LY(B\ F).

Let > 0 be fixed sufficiently small. Select (fi)reny C CL(R?R?) such that f — Vdp in
whi(B\ FT;?z) as k — 400. By the divergence theorem we have

/ div f do = / fr vy dHY, (5.3)
B\F,f dBUA(F;f)

with v, the outer unit normal to 9B U 9(F,"). By taking the limit as k — oo we get

lim divfi dx = / Adp dz, (5.4)
k—+00 B\F;;' B\F{f

and

lim fio v dH' = / Vdp - v, dH', (5.5)
k=+oo JoBUd(F;) dBUS(F;)

where (5.5)) follows by using that d(F,") is of class C1! and hence fL(0BUJ(F,")) — V drL(dBU
O(F,")) in Ll(aBU(?(F;)). Since d is convex we have Adp > 0 a.e. in R?\ F, moreover |Vdp| = 1

in R?\ F; then gathering together (5.3)), (5.4), (5.5) we have
/ A dp] da::/ Adp da::/ Vdp vy dHY < H (OB UB(FN) < C,
B\F;f B\F, dBUA(F;1)

with C' > 0 independent of 7. By the arbitrariness of n > 0, the thesis follows. O

Corollary 5.7. Let U C R? be a bounded open set with Lipschitz boundary. Let F C R? be closed
and convex such that UNF = @ and let v € WHL({U)NL®(U)NC°(U). Then the following formula
holds:

—/¢Adpdx=/v¢-VdFdx— by dH?,
U U oU

where v is the outer normal to OU and 7y denotes the normal trace of V.dgr on OU.

Proof. We have |V dg| =1 in R? \ F, moreover since U N F = @, by Lemma [5.6| we deduce also
Adp € LY(U). Therefore the thesis readily follows by applying [3, Theorem 1.9]. O

Remark 5.8. The normal trace v of Vdp on OF equals 1 H'-a.e. on OF. Indeed, from Corollary
we have that for all ¢ € C}(R?;R?) it holds

—/ goAdFda::/ W.VdFdx—/ oy dH?
R2\F R2\Ff a(F)

:/ Vgo-VdFd:r—/ ©dH?,
R2\F; a(F)

where we have used that 8(F77r ) being a level set of dp, it results Vdp = v, on it. Letting n — 0

and using that Adyr € LY(B\ F) for all balls B, we infer

—/ @Adpdx:/ w-Vdde—/ pdH!.
R2\F R2\F oF

By the arbitrariness of ¢ and again by Corollary the claim follows.
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Lemma 5.9. Let F C Q be closed and convexr with non-empty interior, and let § > 0. Let

Y e WH((FF\F)NQ)NLX((F \F)NnQ)NC((F; \ F)N Q). Then

lim / wml:/ YdH.
e—0t, e<d Qma(pj) QNOF

Proof. Let ¢ € (0,0) and T := (F" \ F) N Q. Since T. N F' = @, by Corollary [5.7 we get

—/ YAdpdr= | Vi -Vdpdr— vy dH!.
€ Ts 8TE
By Remark [5.8 we have

— | YAdpdr= [ V¢ -Vdrdx
T: T:

+/ mml—/ wdﬂl—/ Yy dH!.
QNOF QNa(F) ((FZH\F)NoQ

Now
lim ‘/ Vz/deFda:‘g lim/ V| dz =0,
e—=0t 1 1o e—=0t J1,
and
lim / md#] < lim bdH =0.
=0t 1 J(FF\F)non =0t J(FH\F)noQ

Moreover, since Adp € L'(T.) by Lemma we deduce also

lim ’/ —wAdFdx‘gwuLoo lim/ IAdp|dz =0.
T. e—=0t T.

e—0t

Finally gathering together (5.8))-(5.11f) we infer (5.6]).

(5.6)

(5.7)

(5.8)

(5.11)

O]

Remark 5.10. Let F, ¢ and ¢ be as in Lemmal[5.9] Let o be any connected component of QNIF,
and for every 0 < & < 4 let o be the corresponding component of Q N J(F.F); namely, if 7 is the

orthogonal projection onto the convex closed set F, setting
Qe :={z € O(F) : mp(2) € a},

then one has a, := a. N . Arguing as in Lemma [5.9], we can show that

lim/ ¢d%1=/¢d7¢1.
e—=0t Jao, o

Lemma 5.11. Let (0,%) € Weony be a minimizer as in Theorem . Then there is a minimizer

~

(0,1) € Weony with the following properties:
1. OE(0) N oQ = 0E(0) N OQY;

2. 1 is continuous and null on QN OE(7).

The second condition means essentially that LZ vanishes on QN JE(c) when considering its trace

from the side of Q\ E(7).

Proof. We know by Lemma that (o,) satisfies the following properties:
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e Each connected component of E(c0) is convex;
e 7 is positive and real analytic in Q \ F(0);
e )= on dPQ\ OE(0).

In what follows we are going to modify (o, 1) near each arc of (o) using an iterative argument
in order to get a new minimizer (7, w) € Weonv that Satlsﬁes To this aim we denote by Fi, ..., F},
with 1 < k < n the closed connected components of F(c); we also set dg := min,; dist(F;, Fj) > 0.
Moreover by the first property we deduce that Q@ N OE(c) is the union of an at most countable
family of pairwise disjoint arcs with endpoints in 042, i.e.,

QNOIE(c UU%,

i=17=1

where «; ; is a connected component of Q NOF; for i € {1,...,k}, j > lﬂ

Step 1: Base case. Let « be one of the connected components of Q N JF, with F := F; for
some i € {1,...,k}. In this step we construct a new minimizer (6%, 9¥*) € Weony such that
OE(c®) NI = JE(c) N 0N and 9* is continuous and null on o/, where o/ C QN IE(c?) is a
suitable curve that replaces a and has the same endpoints as a.

For ¢ € (0,d0/2) we define the stripe
Ti(a) :={z € Q\ F: dist(z,0) <e} C FF \ F,

and consider the planar curve . in Q defined as in Remark [5.10] - Let T.(«) be the connected
component of T-(cv) whose boundary contains a.. Let L. be defined as

L. := 0T () N 0N,
so that in particular 0T (o) = a U ae U L. . Let p, g € 02 be the endpoints of o (and then also the
endpoints of . U L., which are independent of £). We define the curves
Te:=T7UT,, T :=Gy , UG, VI, T-:=G , , UG | , Ul,

where

= ({p} x [0, ) U (g} x [0,0()]), 17 := ({p} x [=¢(p),0]) U ({q} x [=¢(q),0]).

By observing that L. C 9”Q\ 0E (o) and recalling that 1) = ¢ on d°Q\ OE (o) we deduce that I’
is a closed non-planar curve in R? that satisfies assumptions of Lemma In particular a
solution S to the classical Plateau problem corresponding to I'; is a disc-type surface such that:

L Bpg=5:N (R% x {0}) is a simple curve of class C™ joining p and g¢;

2. S. is symmetric with respect to the horizontal plane;

3. the surface S := S.N{x3 > 0} is the graph of a function ¢5 , € WHH(Ug ) OCO(U;q), where
Uyq CFU T-(«) is the open region enclosed between o, U L. and By

4. the curve 3y, is contained in the closed convex hull of T'; and (F'UT:()) \ Uy, is convex.

We would like to compare the area of S with the area of the generalized graph of ¢ on T.(«).
This is not immediate since, due to the fact that ¢ is just BV, we cannot, a priori, conclude that
this generalized graph is of disc—typeﬂ Hence we proceed as follows. We fix € € (0, dp/2); we claim

5Notice that at this stage we do not have any information about the geometry of the set 92N OE(c), and QN IF;
could a priori be the union of infinitely many connected components.
"This is due to the jump of ¢ on OF which is, in general, not regular enough.
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that
AW Ufg) < A Te(a)) + [ wLT:(w) M (5.12)

Since 1 is analytic in Tx(a) C '\ E(0), by Lemma and Remark it follows that

lim YL Te(r) dH! :/dJI_TE(a) dHt. (5.13)

=0T, e<8 Jo,

We take

TZ(a) = Te(@) \ Te(a) and Ye:=S: UGy 1e(a) Y9I yl 12(a) -

Since S is a disc-type surface and v is analytic in 7¢ () it turns out that Yz is also a disc-type
surface satisfying 0Yz = I's. Therefore using that Sz and S; are solutions to the Plateau problems
corresponding to I's and I'c respectively, we have

H?(S:) < HA(Ye) = 2H2(g¢l_T§(a)) +H?(S:)

< UGy o) +2 / WL Te(a) dH

a:UL:

= 2H* Gy 1o(a) + 2/ YL Te(a) dH! + 2/ YL Te(a) dH! .

Qg €
Passing to the limit as ¢ — 0%, by (5.13)) and the fact that H!'(L.) — 0, we obtain
H?(Se) < 2HX Gyl 1) + 2/ YL Te(er) dH,
(e

which yields

Ay i Up ) = HA(SE) <HH Gyl 1a) + / YL Te(e) dH' = A(Y; Te(a)) + / YL Te(er) dH',

and ((5.12) is proved.
We now define E := (E(0) UT:s()) \ Uiq and
0 in B¢
=y inUS,
P otherwise .

By and using that Uy , U E* = E(0) U T:(a) we derive
A™Q) — |E%] = Ay, 1 Uy o) + A Q\ (U, U E))
= A(Wy.q: Upg) + A(W; Q\ (Te(a) U B(0)))
< AW Tee) + [ VL) dH! + AW 2\ Tx(a) - |E(O)

= A(¢; Q) — |E(0)].-

(5.14)

It remains to construct c% € Yoy, Without loss of generality we may assume

o1([0,1]), ..., 04([0,1) € F and  0p41([0,1]),...,00(0,1]) ¢ F
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for some h < n, notice that if h = n the second family of curves is empty. Then we define

0% :=(of,...,00,0n41,...,0n) € Lip([0, 1]; 2)" where if h > 1

4iPi+1 for 1=1,...,h—1

o101 = {8(FUTE(a) VU \ (U,009) U (Sl gpi)) for i =h,

where @;p; 11 is the segment joining ¢; to p;41; if instead h = 1 we simply set
o5 ([0.1]) = O(F UTe(a) \ UZ,) \ 42
Clearly the pair (0®,9®) belongs to Weony, and by it satisfies
F(o%,4%) = Flo,1).
Moreover OE(c®) N9 = 0E(0) N 0N and ¢ is continuous and null on o/, where
o ==, CQANIE(c”). (5.15)

Summarizing, we have replaced the curve o with o/, ensuring that the new function ¥“ is now
continuous and null on «o’.

Step 2: Iterative case. In this step we construct a minimizer (o, zz;) € Weonv that satisfies the
thesis by iterating step one at most a countable number of times.
We first consider /' = F; and apply step 1 for each a7 ; with j > 1. More precisely we define the
pair (o1,4,%1,5) € Weony as follows:

o if j =1 we set
(01,1)¢1,1) = (Ua1117w01,1)7

where (0“1, *1) € Weony is @ minimizer constructed as in step 1 with o = o 1;

e if 5 > 1 we set
(O-Ljvwl,j) = (0101,;"117 i;jiﬁa

Qa0
where (O'Lj_l, 1j01

and a = ay ;.

) € Weony is a minimizer constructed as in step 1 with (o,) = (o1,j-1,%1,j-1)

Since F(o1,5,%1,5) = F(o,%) for all j > 1, by Lemma it follows that (o1 ,11,;) converges to
(01,%1) € Weonv in the sense of Definition Moreover by construction we have that for every
J > 1 the pair (o1, 1,;) satisfies

OE(01.;) N0 = OE (o) N O,

and 11 ; is continuous and null on Uizlo/l’h C QN OE(o1,;) NOF1, where all,h are defined as in

. As a consequence (o7, ) satisfies
OE(01) NN = 0E(c) N o,
and 1 is continuous and null on U]‘?‘;lo/u C QN OE(o1) NOF;. Moreover
QNIE(or) = (U2 07 ;) U (Ui, 52y i) s

Now repeating the argument above for the pair (o1,%;) and i = 2 we obtain a new minimizer
(027 ¢2) S Wconv SatISfylng
OE(02) N0 = OE(0) N 0N,
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Y2 is continuous and null on U32, (o] ; Uay ;) C QN IE(a1) N (9F) U L) and
QN OE(02) = (U7, U, aj ;) U (i 52y @ij) -

Iterating this process a finite number of times we finally get a minimizer (o, 121\) € Weonv With the
required properties. O

We are finally in the position to conclude the proof of Theorem [5.1]

Proof of Theorem[5.1]. Let (0,1) € Weony be any minimizer as in Theorem By Lemma we
know that (o,1)) satisfies properties and

Yv=¢ on 0”Q\OE(0).
Moreover by Lemma there is a minimizer (7, 12) € Weonv such that
OE(@) N O = 0E(c) NN, (5.16)

and 1 is continuous and null on Q2 N IE(3).
It remains to show that if af Q) is not straight for some ¢ = 1,...,n, then

OE(0) NP =0E(G)NdPa=0.

If instead OiD Q) is straight for some ¢ = 1, ..., n we prove that property [4/ holds. Eventually we show
that there is a minimizer that satisfies property [5l This will be achieved in a number of steps.

Step 1: Assuming that there is ¢ € {1,...,n} such that aiDQ is not straight, we show that
0PQ N E(G) = @. To prove this we proceed by analysing three different cases.

Case A: Suppose, to the contrary, that there is a non—straigh arc ab (with endpoints a # b) in
OPQ N OE(%). Thus in particular ab C U7_10;([0,1]). We may assume without loss of generality

that ab C 71([0,1]).
Then we consider the curves

. - + . + - -
[:=Tr7ul™, I'M=g  Zul™, TI'':=g  Sul", (5.17)
where

1= ({a} x [0,0(@)]) U ({0} x [0,00)), 1~ = ({a} x [~p(a), 0]) U ({b} x [~ (5),0]).

In this way I satisfies the assumptions of Lemma[5.4]and hence a solution S to the Plateau problem
spanning I" is a disc-type surface such that:

i. Bap:=S5N(R?x {0}) is a simple curve of class C* joining a and b;
ii. S is symmetric with respect to R? x {0};

iii. the surface ST := SN {x3 > 0} is the graph of a function ¢, € WH(U, ;) NC°(U, ), where
Uap C E(01) is the open region enclosed between ab and S, p;

iv. the curve f, is contained in the closed convex hull of I and E(01) \ Uy is convex.

8Namely, ab is not contained in a line.
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The inclusion U, , C E(7) follows since ab C 71([0,1]), E(1) is convex, and S is contained in the
convex envelope of I'. Furthermore by the minimality of S one has

AwmihwzH%W)<ﬁﬂﬁH“=fJ$—ﬂWf- (5.18)
ab ab

Here the strict inequality follows since the vertical wall spanning I given by {(2/, z3): 2’ € ab, x5 €
[—@(a'), p(z")]} is a disc-type surface but, since ab is not a segment, cannot be a solution to the
Plateau problem. We now consider the pair (¢,%) € Weony given by

0 in E,
0= (517627"',871)7 P = 7#a,b in Ua,b7 (519)
P otherwise,

where &, is such that &1 ([0, 1]) = (51([0,1]) \ @b) U Bup and E := E(5)\ U,y = E(5). Then noticing
that ¢ = 01in Uyy, E(7) = E(0) UU,p, and recalling (5.18]), we get

.ﬂaiwaa&ﬂwwEﬁﬂ+Aﬂw—¢MHl
=A@ﬂ\%w+Awmﬂhw—WGﬂ+/\i—wﬁf
o0
=A@KD+Awwiaw—W®M+/ D — ol !
o0
<A@xn—wwn+/\J—wm#+/J$—mm#
o0 ab
—A@KD—WGH+AQ@—wMH“ﬂH&$%

where the penultimate equality follows from the fact that 1/} is continuous and equal to ¢ on ab
while the traces of i and 1/} coincide on 92\ ab. This contradicts the minimality of (¢ 1/))

Case B: Suppose by contradiction that the set 9”Q N dF(7) contains an isolated point ¢ or
has a straight segment cc’ as isolated connected component. Then there are two arcs ab C 8Z~D Q
and a't/ C OE(o) with either a # a’ or b # b’ (and with endpoints a # b and @’ # b') such that
ad NBY = @ and abN a't/ = {c} (respectively abna'tl = cc). Notice also that, since 7€ is not
straight, the segment cc¢’ does not coincide with 9P and hence the arc ab can be chosen so that
it properly contains the segment cc/. We consider the curves

N - + . ~ - .= — o ~
[=T7ul™, T7:=6G | 2UG V9w, =9 | aY9 gLawV9 oL (5:20)

Notice that I'* connect o’ to b'. By applying again Lemma to the nonplanar curve I' and
arguing as in case A we obtain the contradiction also in this case.

Case C: More generally, assume by contradiction that both the sets 0P QNOE(7) and 0P Q\OE(7)
are nonempty. Then we can find a not flat arc ab C GZ-D Q) such that the following holdd’} there are

9This is a consequence of the fact that ab \ OE(0) is relatively open in ab, so it is an at most countable union of
disjoint relatively open arcs.
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pairs of points {c;, d;}jen C 0PQNIE(T) such that the arcs ady, cob, and {c]d }52, are mutually
disjoint and
ab \JE(0) = ady U (U5 1c]d U cob.

Without loss of generality, we might assume that all the points ¢;,d; € 71([0,1]). For all j > 1
we denote by V; the region enclosed by c]d and OE (o l We now argue as in case B and choose
a b € a1([0, 1]) Addltlonally, let Vo = V' U VO, with V§ (respectively V) be the region enclosed
between OE () and aa ad’Uad (OE(5) and bt/ Ucob, respectively). We finally define I" correspondingly,
as in . Again by Lemmathe solution S to the Plateau problem corresponding to I' satisfies
properties with @’ and ¥’ in place of a and b respectively. Moreover by the minimality of S
for every N > 1 there holdq"]

20 at 1 1 1
At U ) =S < [part = [ pant Z/C o M +2Aw, . (521)

In particular by taking the limit as NV — oo in (5.21)) we get

doUCob

A y; Up ) = H2(ST) < /A @ dH' + A, U, V). (5.22)
aB\OE(3)
et (o, J) € Weonv be defined as in n, then observing that 12 =0in Uyy \ (U?‘;OY/}), E(o) =
( YU (Uar i \ U3Z4V;) and using we deduce

F@D) = A0\ Uy) + Al ir; Un) — |1E@)| + /6 19— gl
= A\ (U20V)) + A Uw ) — |EG)| + / D~ ol !
o0
w(&@\(uﬁovj»—rE(a)H / 10— ol dm! + L pdH 4 AW UE))
09 abNOE(3)

= A(d:9) — |EG)| + /a 19— gl = F(@.0).

which in turn implies _ N

F(o,9) < F(3,9). (5.23)
To conclude we need to show that the inequality in (5.23)) is strict. To this aim we choose ¢ €
{cj}52;. Consider the curves I't and I'y defined as follows

Iy=rfury, If:=6, &U GoLaw VI T1 =G | UG g aw Ui,
1t — + . PO + - . _ o -
Iy := F2 UFQ , FQ = ngcAbugw_bb,Ul , F2 = g_(chbUg_Qprb,Ul ,
where
= ({c} x[0,0(0)]), 1 = ({c} x [-¢(c),0]).
Let S; and S5 be the solutions to the Plateau problem corresponding to I'y and I's respectively, so

that properties are satisfied with ¢ in place of ¥’ and a’ respectively. By the minimality of S
we have

(¢a’ b ’b’) < A(d}a ,C3 a c) + A(¢c vHUe b’) (524)

0T hese regions are simply connected since c;,d; € 71([0,1]).

"'The right-hand side is the area of the surface given by the (positive) subgraph of ¢ on ab \ U;\Izlgﬁl; and the
graph of ¥ on the region U;'V:O‘/}, which is of disc-type. To see this we use that the trace of ¥ on the subarcs of E(c)
between the points ¢; and d; is zero (and between a’ and do, and do and b').
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On the other hand by arguing as above{ﬂ we conclude

At o Ut o) < / pdH + AW, Ujer, V; UV, (5.25)
TUOE()
and
Aoy, Uny) < /A pdH' + A, Ujer,Vi UVY), (5.26)
cbUDE (o)

where I 1= {j: E]‘d; C act and I := {j: gj‘d; - cAb} Gathering together (5.24)-(5.26)) we derive

A(¢a’,b’a Ua’,b’) < /A ¥ dHl + A({/}\’ quoz()vj) )
abUOE(T)

which in turn implies

F@,4) < F(3,9),
and thus the contradiction.

Step 2: Assuming there is i € {1,...,n} such that 9P is a straight segment, and we show that
either 9E(5) N 0P Q = @ or OE(5) N 9P Q = dP Q.
Suppose by contradiction that 0E(7) N dPQ # @ and also 9°Q \ OE(G) # @. Without loss of
generality we can restrict to the case OF(5) N 9P Q = 0F N 9PQ with I any connected component
of E(). Since F is convex and 97 is a segment F N 9P has to be connected, i.e., it is either
a single point a or a segment aa’ # 8Z~DQ.
In both cases we then consider a (small enough) ball B centred at a such that BN E(6) = BN F
(in the second case we also require that the radius of B is smaller than aa’).

If 0OF N9PQ = {a} we let {p,q} := OBNOF and {b,c} := 0B N IPQ (with b,p and ¢, ¢ lying on
the same side with respect to a). Then we define the curves

7t - + . -

where l/);), cq deno‘@he arcs in 0B joining b to p and ¢ to g respectively.
If OF NP Q = ad’ we let {p,q} := BN IF and {b,c} := OB N P where we identify ¢ and c.
Then we consider the curves

DimTHUr, T = G, 500, pUUA XD ple) s T =0 5UG_, gUUelX[-¢(0).0)
By applying again Lemma to I' and arguing as above we get the contradiction.

Step 3: We show that there is a minimizer (o, 1;) that satisfies property
We first notice that ¢ is continuous and null on 9E(5) \ 9”Q. Moreover by steps 1 and 2 it follows
that OE(c) N Q is the union of a finite number of pairwise disjoint Lipschitz curves each of them
joining each p; for i = 1,...,n to each of the ¢; for some j =1,...,n. To conclude it is enough to
replace each curve, without increasing the energy, with a smooth one having the same endpoints.
More precisely, let v be any of such curves. Reasoning as in the proof of Lemmal5.11]step 1, we can
replace (7,1) with a new minimizer (¢7,197) € Weony such that 0E(c?) N0 = 0E(o) N 0N and
Y7 =0 on v/, where 7/ C OE(c7) N is a suitable smooth curve that replaces v and has the same
endpoints of 7. In particular v is continuous and null on dE(c7) \ 9P1. Eventually iterating this
procedure for each curve in 9E(7) \ 02 we can construct a new minimizer (7, ) with the required
properties. [

12With the arc ac @, respectively) in place of ab.
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5.1 The example of the catenoid containing a segment

Consider the setting depicted in Figure Here Q = Ry = (0,2) x (=1,1), n = 1, 9PQ =
({0,210} x (=1,1)) U ((0,21) x {—1}) and 9°Q = (0,2l) x {1}, p = (0,1), ¢ = (2I,1). The map
¢ is o(w1,w2) = y/1 — w3, and thus vanishes on [0,2(] x {—1}; for this reason this case is not
covered by our analysis. However we can find a solution as in Theorem also in this case, by an
approximation procedure.

Precisely, for ¢ > 0 and consider an approximating sequence (). of continuous Dirichlet data,
with G, Lipschitz, which tends to ¢ uniformly and satisfy ¢. = 0 on 2°Q, ¢, > 0 on 9PQ. Let
(02,%¢) be a solution as in Theorem corresponding to the boundary datum ¢.; as F(o., 1)
is equiboundedEL arguing as in the proof of Lemma we can see that, up to a subsequence,
((0e, 1)) tends to some (0,%) € Weony, which minimizes the functional F with Dirichlet condition
@. In this case however we cannot guarantee that o does not touch 9”Q, even if this is not a
straight segment. This is essentially due to the presence of the portion [0,2{] x {—1} of 92 where
 is zero, which does not allow to apply the arguments used in the proof of Theorem

In particular, it can be seen that if [ is large enough, the solution (o,%) splits and becomes
degenerate, being v = 0 and the functional F pays only the area of two vertical half discs of
radius 1. Under a certain threshold instead the solution satisfies the regularity properties stated
in Theorem and in particular ¥ = ¢ on 9P°Q, and ¢ is the graph of a smooth convex function
passing through p and q. We refer to [6] for details and comprehensive proofs of these facts.

6 Comparison with the parametric Plateau problem: The case
n=12

In this section we compare the solutions provided by Theorems and with the solutions to
the classical Plateau problem in parametric form. Specifically, motivated by the example of the
catenoid, we will restrict our analysis to the classical disc-type and annulus-type Plateau problem.
These configurations correspond to the cases n = 1 and n = 2 respectively, i.e., the Dirichlet
boundary 9P is either an open arc or the union of two open arcs of 9Q with disjoint closure.
Due to the highly involved geometric arguments, we do not discuss the case n > 2, which requires
further investigation.

Thus, in this section we assume n = 1,2. We first discuss the case n = 1 which is a consequence
of Lemma [5.4] and then the case n = 2.

6.1 The casen=1

Let n = 1. Let p1,q1 € 99, 0PQ = 0PQ, ¢ be as in Section and consider the space curve
v = ngalDQ joining p1 to q1. We define the curve

I':=~; USym(m1),

where Sym(vy) := gwl_ oPQ and consider the classical Plateau problem in parametric form span-
ning I'. More precisely we look for a solution to

[):= inf o ® A Dy, B| o, 1
ml( ) <I>€17I>11(1") B, ’a 1 N0, 2 |w (6 )

13We can indeed always bound it from above by |Q| + faDQ | |dH®.
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where

Pr(T) :

{q> € H'(B1;R3) N C°(B1; R3) such that ®LABy: dB; — T
(6.2)
is a weakly monotonic parametrization of F}.

Then the following holds:

Theorem 6.1 (The disc-type Plateau problem (n =1)). Let ® € Pi(T") be a solution to (6.1)
and let o o
ST .= ‘I’(Bl) N {.21?3 > 0} and S” = (I)(Bl) N {$3 < 0}.
Then there exists a minimizer (0,1) € Weonv of F in W satisfying properties of Theorem
and such that
+ _
% =0y @Ew)- (6.3)

Conversely let (0,1) € Weony be a minimizer of F in W satisfying properties of Theorem ﬂ
Then the disc-type surface

S =0y @amo) Y I L@E@)

is a solution to the classical Plateau problem associated to T, i.e., there is ® € P1(I") solution to
(6.1]) such that ®(By) = S.
6.2 The case n =2
Let n = 2. Let Q, p1,q1,p2,q2 € 09, OPQ, 0PQ, 9PQ, ¢ be as in Section and consider the
space curve y; := QWL aPq joining p; to g; for i = 1,2. We define the curves

[ =y USym(y1),  Tz:=72USym(y2),

where Sym(y;) := G_ 1 opg for i =1,2. We consider the classical Plateau problem in parametric
form spanning the curve
I'=T;uTls.

Precisely we set Yoy C R? to be an open annulus enclosed between two concentric circles C; and
(5, and we look for a solution to

T):= inf O ® A Doy, |, 6.4
mo(t) = int [ 100,@ 0,0l (6.4)

where
Py(T) := {cp € H(Sann; R?) N CO(Tann; R?) such that &(d8an,) = T and ®LC; : C; — T
is a weakly monotonic parametrization of I'; for j =1, 2}.

Here the crucial assumption that we require is that the curves I'; have the orientation inherited
by the orientationH of the graph of ¢ on 8JD Q.
Due to the specific geometry of I' we can appeal to Theorem below (which is a consequence
of [18, Theorem 1 and Theorem 5]) to deduce the existence of a minimizer. This might not be true

4Once we fix an orientation of €, the orientation of the graph G, of ¢ is inherited, since G, is standardly defined
as the push-forward of the current of integration on dp2 by the map = — (z, p(x)).
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for a more general I'. To this purpose for j = 1,2 we consider the minimization problem defined in
(6.1) for the curve I';, namely

I'))= inf o B A Dy, @, .
i) = ot [ 100,91 00l (65

with P1(I';) defined as in (6.2]).

Remark 6.2. By standard arguments one sees that ma(I') < m1(I'1) + m1(T'2). Indeed, two disc-
type surfaces can be joined by a very thin tube (with arbitrarily small area) in order to change the
topology of the two discs into an annulus-type surface.

Definition 6.3. Let ® € Py(T") be a solution to (6.4). We say that ® is a MY solution to (6.4))
if © z'sfharmom’c, conformal, and it is an embedding. In particular, in such a case, ma(I') =
H2(®(Zamn))-

Theorem 6.4 (Meeks and Yau). Suppose ma(I') < mq1(I'1) + mi1(I2). Then there exists a MY
solution ® € Po(T") to (6.4). Furthermore, every minimizer of (6.4) is a MY solution.

Proof. See [18]. O
This result allows to prove the following;:
Theorem 6.5 (The annulus-type Plateau problem (n = 2)). The following hold:
(1) Suppose ma(T') < mi(T'1) +mi(Te). Let € Po(T) be a MY solution to and let
S = ®(Xamn), ST :=Sn{x3 >0}, S~ :=8nN{x3 <0}

Then there exists a minimizer (o,1) € Weony of F in W satisfying pmpertz'es of Theorem
(51 and such that

+
57 = Gy L@Ew) (6:6)

(i4) Suppose mo(I') = m1(T'1) +mi(I'2). For j = 1,2 let ®; € P1(T';) be a solution to (6.5) and
let Sj := ®;(B1). Let also

St .= (51 U SQ) N {$3 > 0} and ST = (Sl U SQ) N {.233 < 0}.

Then S1NSe = @ and there exists a minimizer (o,1) € Weonv of F in W satisfying properties

of Theorem and such that holds.

(7i1) Conversely, let (o,1) € Weony be a minimizer of F in W satisfying propertz'es of Theorem
5.1l Then the surface

§:=0y @5w) Y I-sL@Ew)

s either an annulus-type surface or the union of two disjoint disc-type surfaces, and is a
solution to the classical Plateau problem associated to I'. More precisely, either there is a
MY solution ® € Py(T) to with S = ®(Zann), or there are ®; € P1(T;) solutions to
for j =1,2, such that S = ®1(B;) U ®2(B1) and ®1(B1) N ®(By) = O.
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6.3 Toward the proofs of Theorems and preliminary lemmas

In order to prove Theorems [6.1| and we collect some technical lemmas.

Lemma 6.6. Let n =2, and (0,v) € Weony be a minimizer of F in W satisfying properties of
Theorem [5.1.

(a) Suppose that Q \ E(o) is simply connected. Then there exists an injective map ® € WH(Dann; R3)N
C®(Zann; R3) such that

®(Zann) = Gy anae) Y I-sL @B
and ®L_C;: C; — I'; is a weakly monotonic parametrization of I'; for j =1,2.

(b) Suppose that Q\ E(o) consists of two connected components, whose closures Fi and F»
are disjoint, with Fj; 2 OJDQ for 7 = 1,2. Then there exist two injective maps ®1,Po €
WhL(B;R3) N CY(By1; R?) such that

®(B1) =Gyl 5, UG ylr,  J=12

and ®;1_0B1: 0By — I'; is a weakly monotonic parametrization of I'; for j =1,2.

Proof. (a). Since 2\ E(0) is simply connected, the maps
TE e WHH(Q\ E(0);R) NCOQ\E(0);R?),  T=(p) = (p, +¢(p)), (6.7)
are disc-type parametrizations of G W (O\E@)"

Now, using a homeomorphism of class H! between Q\ E(0) and a disc, we can parametrizd!?
O\ E(o) with a half-annulus, obtained as the region enclosed between two concentric half-circles
with endpoints A1, Ao, A3, A4 (in the order) on the same diameter, and the two segments A; Ay
and A3A;. Then we construct a parametrization ¥+ of G WL (@B from the half-annulus, such
that U (A1) = (¢1,0), T (Az) = (p2,0), ¥ (A3) = (g2,0), ¥T(A4) = (p1,0), and sending weakly
monotonically the two half-circles into y; and 2, and the two segments into o1 and o9, respectively.
Similarly, we construct a parametrization ¥~ of G WL (@OE@)) from another copy of a half-annulus,
just by setting ¥~ := Sym(¥™) (the symmetric of ¥ with respect to the plane containing Q).
Eventually, glueing the two half-annuli along the two segments, we obtain a parametrization ®
of G WL (O\E(0), ug L (NE©)) defined on ¥.,,. By the continuity of ¢ on d°Q we have that ®
parametrizes I'; on Cy, i = 1, 2.

(b). It is sufficient to argue as in case (a), by replacing Q \ E(c) in turn with F; and F» and
Yann With By to find &1 and ®9, respectively. O

Lemma 6.7. Let n =2, and (0,%) € Weony be a minimizer of F in W satisfying properties [I{3 of
Theorem [5.11

(a) Suppose that Q\ E(c) is simply connected and

HAGy @i U sl @aie) < ma(D)- (6.8)

Let ® be the parametrization given by Lemma (a). Then there exists a reparametrization of
the annulus Xany, such that, using it to reparametrize ®, the corresponding map (still denoted

by ®) belongs to Pa(I") and solves (6.4]).

5For instance, we can consider a (flat) disc-type Plateau solution spanning 8(Q \ E(c)). Then we can employ a
Lipschitz homeomorphism between the disc and the half-annulus.
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(b) Suppose that Q\ E(o) consists of two connected components whose Fy and Fy are disjoint,
and F; D 8JDQ for 7=1,2, and

%2(g¢l_Fj UGyl p,) <ma(ly), J=12.

Let &1, D5 be the maps given by Lemma (b). Then, for j = 1,2, there is a reparametriza-
tion of ®; belonging to P1(I'j) and solving (6.5)).

Proof. (a). Fix a point p € 2\ E(0) and set E; := Ut H), where U is defined in (6.7) and Hy,
is the connected component of

Hy, = {peQ\ E(o): dist(p,d(Q\ E(0))) > 1/k}

containing p. N
For £ € N large enough Hj is simply connected with rectifiable boundary. In particular \I?
parametrizes a disc-type surface, and using the regularity of ¢ in Q\ E(0), it follows that \I/;

is Lipschitz continuous. Furthermore, azLaHk parametrizes a Jordan curve, and these curves
converge, in the sense of Fréchet (see [10, Theorem 4, Section 4.3]) as k — +00, to the curve having
image U (9(Q\ E(0)))) =: A\. Notice that

)\:0'1U02U’)/1U72. (69)

Call A, the image of the curve given by E;L@Hk. Let P1(Ag), P1(A), mi(Ag), m1(A) be defined as
in (6.2) and (6.1) with Ax and A in place of I' respectively. Up to reparametrizing By (see footnote
15), U} belongs to Pi(Ag), therefore

7{2(g¢|_Hk) = /H ]awlf\f’g A 8w2/\i;g|dw > my(Ag) vk > 1.
k
We claim that equality holds in the previous expression, namely
MGyl ) =mi(\) VR > 1. (6.10)
Indeed, assume by contradiction that %Q(szl_HkO) > mq(Ay,) for some kg > 1, and pick 6 > 0 with
H2(Gyl_p,,) = 0+ ma(Ag,)- (6.11)

Take @, € P1(Ag,) a solution to mi(Ag,). For k > ko, as Hy, C Hy, by a glueing argumemﬂﬂ7 we
can find @) € Py (A\x) such that &y (By) = ®g,(B1) U ng(Hk\Hko)‘ Thus by (6.11]) we have

HA Gyl pr,) =6 +mi(g,) + H2(gw|_(Hk\HkO))
=6 4+ H2 (P, (B1)) + %Q(Qwuﬂk\me)) >6+mi(\) Yk > ko

Letting k — +o00, since Ay — A in the sense of Fréchet, we have mq(A\x) — mi(A) [10, Theorem 4,
Section 4.3]. In particular, from the previous inequality we infer

Flo.¥) = H Gy anmmy) = 0 +mi(N).

%This is done, for instance, by glueing an external annulus to a disc, and using ®x, from the disc, and a

reparametrization of gw L (H\Hy ) from the annulus.
o\ ko

36



Hence we conclude
(%l_ @Eo) Y9yl @memy) = 20 +2ma(X) = 26 +ma(T),

which contradicts (6.8). In the last inequality we have used that 2mi()\) > my(I); this follows
from the fact that a disc-type parametrization of a minimizer for mj(\) can be reparametrized on
a half-annulus (as in the proof of Lemma [6.6]), and glued with another reparametrization of it on
the other half-annulus, so to obtain a parametrization of an annulus-type surface spanning I" which

is admissible for (6.4). Hence claim (/6.10) follows.

Now, since v isiipschitz continuous on Hyp, for all £ € N there exists a parametrization ¥y, €
H'(B1;R?) N C°(B1;R?) with U,(0B1) = A\x monotonically which solves the classical disc-type
Plateau problem spanning A; and such that

Vi(B1) = Gyl_p,-
Letting k& — 400 and using that the Dirichlet energy of ¥} equals the area of gw_ m,,» We conclude
that (V) tends to a map ¥ € H'(By;R3) N C°(By;R3) with ¥(9B;) = A weakly monotonically,
and that is a solution of the classical disc-type Plateau problem with

V(B1) =9y aEw)

Arguing as in the proof of Lemma.we finally get a parametrization ® : ¥,,, — R? which belongs
to P2(I') and parametrizes G L (@B@)) Y g L (NE())" This concludes the proof of (a).

(b). Tt is sufficient to argue as in case (a), by replacing Q \ E(o) in turn with F; and F5 and
Yann With Bj to find ®; and ®9, respectively. O

We can now start the proof of Theorems [6.1] and [6.5]

6.4 Proof of Theorem [6.1]

Proof of Theorem[6.1] Let ® € P1(T") be a solution to (6.1)). The curve I satisfies the assumptions
of Lemma [5.4 u hence the minimal disc-type surface S := ®(B;) satisfies the following properties:

e B = SN (R?x{0}) C Qis asimple curve of class C™ joining p; and ¢; and such that
Bpr.qs MO = {p1, a1 };

e S is symmetric with respect to R? x {0};

e the surface ST = SN {x3 > 0} is the graph of a function 1 € WU, ) NC° (Upl,ql) where
Up,.n C € is the open region enclosed between 0P and B, 4. Moreover ¢ is analytic in

Upi,ai;

e the curve 3, 4, is contained in the closed convex hull of I', and Q \ Uy, 4, is convex.

Let (0,%) € Weonv be given by

0 inQ\U
o:=01 and Y= {~ ?n \ Ui
7/) mn UPLQN

where 01([0,1]) = Bp,.q- Clearly (6.3) holds. Moreover H2(S) = 2F(0,v) = my(I'). It remains
to show that this is a minimizer of F. Let (¢/,9') € Weony be a minimizer of F that satisfies
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properties of Theorem and consider the disc-type surface with boundary I' given by S’ :=

g v L (NE©) ug W (@B Since (o, ) is admissible for F, we deduce

H2(S') = 2F (o', 9') < my(T).

Then we are in the hypotheses of Lemma and so there is a parametrization ®' € P;(I') with
®’'(B1) = S’. By minimality of (¢/,4’) and of S we have

H2(S) < HE(S") = 2F (0, ¢') < 2F(0,9) = H2(S). (6.12)

Hence (o,) is a minimizer of F in W and @’ is a solution to (6.1]).

_ Conversely, let (0,1) € Weony be a solution that satisfies properties of Theorem Let
® be a solution .to (6.1); then we can find (7,1) € W whose doubled graph S = g&L(W) U
G ILENEG) satisfies

H2(S) = 2F(0,1)) < 2F(F,9) = H2(S) = my (D).

Arguing as before we find a map ® € P;(I") parametrizing S. We conclude that @ is a solution to
(6.1)), and the theorem is proved. O

6.5 Proof of Theorem [6.5]

The proof of Theorem is much more involved, so we divide it in a number of steps. We start
with a result (which can be seen as the counterpart of Lemma for the Plateau problem defined
in (6.4))) that will be crucial to prove In what follows we denote by 7: R — R? x {0} the
orthogonal projection.

Theorem 6.8. Suppose ma(I') < mi(I'1) + m1(I'2) and let & € Po(T") be a MY solution to (6.4).

Then the minimal surface ®(Xann) satisfies the following properties:

(1) The set m(®(Sann)) is simply connected in Q; QN On(P(Xann)) consists of two disjoint em-
bedded curves B and Bo of class C° joining q1 to ps, and qo to pi1, respectively. Moreover,
the closed region E; enclosed between 8?9 and B;, 1 = 1,2, is convex;

ann) 15 symmetric with respect to the plane R? x {0};
ann) N (RQ X {0}) = ﬁl U 52;'

(4) St = ®(Samn) N {ws > 0} is Cartesian. Precisely, it is the graph of a function 1 €

W (int (7(@(Zann)))) N CO(7((Zam)))-
The proof of Theorem [6.8]is a consequence of Lemmas 6.10] [6.11}, [6.13] [6.14], and [6.15] below.
Lemma 6.9. Suppose ma(I') < mi(I'1) + m1(I'2) and let & € Po(T") be a MY solution to (6.4).

Then m(®(Zann)) is a simply connected region in Q containing 0P QU 0PQ.

o=
B(E

Proof. We recall that & : Sann — R? is an embedding. The fact that 7L(<I>(§ann)) is a subset of
Q) and contains (9%) Qu 82D Q follows from the fact that the interior of ®(X,,y) is contained in the

convex hull of I". So it remains to show that m(®(Xann)) is simply connected.

Suppose by contradiction that m(®(Xann)) is not simply connected. Let H be a hole of it, namely
a region in ) surrounded by a loop contained in 7(®(Xau)) and such that H N 7(®(Samm)) = O
choose a point P € H. We will search for a contradiction by exploiting that 3,,, is an annulus

and using that the map ® is analytic and harmonic.
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Figure 5: The horizontal section of two planes II, and Iy, intersecting ) and 9512, respectively.

Let 6 be the angular coordinate of a cylindrical coordinate system (p, 6, z) in R? centred at P
and with z-axis the vertical line 7—1(P). For # € [0,27) we consider the half-plane orthogonal to
R? x {0} defined by

Iy :={(p,0,2): p> 0,z € R}.

Now we fix two values #; and 6 so that Ilp, and Iy, intersect (the interior of) 97Q and 990
respectively. The half—planeﬂ g, +» and Ilp, . might intersect AP (see Figure . However,
since the points pi1, q1, p2, ¢o, are in clockwise order on 92, and €2 is convex, it is not difficult to
conclude the following assertion:

The half-planes Iy, | » and Iy, cannot intersect the two components 9P and 92 of 9P at
the same time.

In other words: If, for instance, Ily, 1, intersects alD 2, then Ily,, does not intersect (92D Q. Let
us prove the assertion in the form of the last statement, being the other cases similar. This is
trivial, since, if [Ty, intersects 9YQ and Ilg, ., intersects AP (as in Figure , we have that Il
intersects 9P Q U 990 for all 0 c [01,01 + 7]. As either 6, or 65 + 7 belongs to [61, 601 + 7|, we have
that Ily, U Ilp, - intersects 81D QU &Y. Since by hypothesis Iy, intersects 99€), it follows that
Iy, does not intersect 82D ), and the statement follows.

Moreover, since Iy, intersects 9)Q and Ily, intersects 994, it is straightforward that:

If Iy, + » intersects AYQ then also Iy, - intersects 9.

We are now ready to conclude the proof of the lemma. We have to discuss the following cases:
(1) g, ., intersects 9°Q;
(2) Mg, 4 intersects OPQ;

(3) Tlg, 4, intersects 9L €.

By hypothesis on P, for all 6 € [0, 27) the intersection between ®(X,ny,) and Il consists of a family
of smooth simple curves, either closed or with endpoints on I'. Correspondingly, (P (Xann) NIlp)
is a family of closed curves in X,p,, possibly with endpoints on C7 U Cs.

"The angles are considered (mod 27).
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In particular, since IIp, N V0 # @, the se O~ 1(®(Xann) N1ly,) is a family of closed curves in
Yann-

In case (1) also @1 (®(Xann) NIy, ) consists of closed curves in Yu,,. Take two loops a and
o in @D (Sann) N1y, ) and in ®~1(®(X,,,) N1y, 4, ) Tespectively. Let di be the signed distance
function from the plane Ilp, U Ilp, ,, positive on 82D Q. Since dj o ® changes its sign when one
crosses transversally o and o/, we easily see that both a and o’ cannot be homotopically trivial in
Yann (by harmoniticy of d; o @, if for instance « is homotopically trivial in ¥,,,, dp o ® = 0 in the
region enclosed by a, i.e. the image of ® is locally flat, contradicting the analyticity of ®). Hence,
since @ is an embedding, they run exactly one time around Ci; as a consequence, they must be
homotopically equivalent to each other in X,,,. On the other hand, they do not intersect each
other (® is an embedding), so they bound an annulus-type region in ¥,,,, and by harmonicity
dy o ® is constantly null in this region. This would imply again that the image by ® of this annulus
is contained in ﬁ@l U Ilp, 4, a contradiction.

In case (2), by recalling our assertion, we deduce that Ily,, might intersect either 9°Q or 9P Q.
Further we can exclude that Ily, ,, intersects 3°Q (otherwise, we repeat the argument for case (1)
switching the role of #; and 63). Therefore the only remaining possibility is that Iy, , intersects
OPQ (see Figure . Let dy be the signed distance function from Iy, U g, positive on 0Q. In
particular, d; o ®, i = 1,2, is positive on the circle Cy of Xa,,. By hypothesis on d;, i = 1,2, we see
that d, is positive on Ily,, and da is positive on Ilp, .

As in case (1), let a € @~ H(®(Zann) N1p,) and B € @~ H(P(Tann) N1lp,) be two loops. We know
that o and [ are closed in ¥,,,. Again, we conclude that a and § are homotopically equivalent
in ¥,nn, and both run one time around Cy. Assume without loss of generality that « encloses (3,
which in turn encloses Cs. Since dy o ® is positive on both a and Cs, ds o & must be positive in
the region enclosed between them, contradicting the fact that it vanishes on S.

If instead we are in case (3) we can argue analogously to case (2) and get a contradiction. In all
cases (1), (2), and (3), we reach a contradiction which derives by assuming that 7(®(Xann)) is not
simply connected. The proof is achieved. O

We next proceed to characterize the geometry of Q M O (®(Zann))-
Lemma 6.10. Suppose ma(I') < mi(I'1) +mi(T'2) and let & € Pa(T) be a MY solution to (6.4).

Then QN Om(®(Zann)) consists of two disjoint Lipschitz embedded curves B1 and B2 joining q1 to
p2, and q2 to p1, respectively. Moreover, the closed regions E; enclosed between 992 and B; are

convez fori=1,2.

Proof. By Lemma 7(®(Xann)) is simply connected in Q, and contains 9”Q. Therefore Q \
7(®(Xann)) consists of two simply connected components, one containing Y and the other con-
taining 9. Let E; and Fy be the closures of these two componemtsiﬂ7 so that in particular the
boundary of Ej is a simple Jordan curve of the form 3; U Q2 for some embedded curve f; C Q
joining the endpoints of 8?9. We will prove that F; is convex for ¢ = 1,2. This will also imply that
B; are Lipschitz.

Take ¢ = 1, and assume by contradiction that E; is not convex. Thus we can find a line [ in R?
and three different points Ay, A, A on [, with Ay € A; A3, so that As is contained in Q\ Fy, and
Aq and Ajz belong to the interior of FEj.

Consider the region 7(®(Xaun)) \ 1, which consists in several (open) connected components. There
is one of these connected components, say U, which does not intersect 9”§ and whose boundary
contains Ay. In addition, U N 9P = @. Indeed, U is the union of a segment L (containing As)

18Since Ilp, N OPQ = @ these curves must be closed in Xann.
YThe sets F; and Es have nonempty interior, since ®(Xann) is contained in the interior of the convex hull of
®(0%ann), hence contained in the cylinder 2 x R.
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and a curve 7 (contained in $; C 9(m(®(Xann))) joining its endpoints. Hence, U \ U = v U L, and
L cannot intersect 9P by the hypothesis on A;, As, and Aj.

Let II; € R? be the plane containing ! and orthogonal to the plane containing €; As usual,
II; N ®(Xann) is a family of closed curves, possibly with endpoints on I' N II;. Now, pick a point P
on OU \ L, and let @ be a point on ®(X,,,) so that 7(Q) = P. Let d; : R3 — R be the signed
distance from II;, with d;(Q) = d;(P) > 0. We claim that, if D is the connected component of
{w € Tam : dj o ®(w) > 0} containing the point ®~(Q), then D N 0¥y = @. This would
contradict the harmonicity of d; o @, since d; o ® would be zero on D, but d;(Q) > 0.

Assume by contradiction that the converse holds. Then there is an arc « : [0,1] = D U 0¥,
joining ®~1(Q) to 0%ann - The image of the map 7 o ® o v is an arc in Q joining P to 0”Q and

such that d; > 0 on it. Clearly this arc is a subset of 7(®(¥ann)). Since mo @ oa(0) = P, it follows

that the image of 7o ® o o is contained in U. Now U does not intersect 97, contradicting that
mo®oa(l) € 9PQ. This concludes the proof. O

In the next step we show that there exists a set £ C R3 of finite perimeter such that
OE = 0"FE = ®(Xann) U A U Ay,
where
Aj:={P=(P,P3) eR®: P =(P,P) € d°Q, Py (—p(P),o(P))}, i=1,2. (6.13)
In particular A; U Ay C (9Q) x R and (2 x R)NIE = ®(Zann)-

We first fix some notation. We let [E] € D3(R3) be the 3-current given by integration over E
with E C R3 being a set of finite perimeter. To every MY solution ® € Py(T") to we associate
the push-forward 2-current ®;[Xann] € D2(R3) given by integration over the (suitably oriented)
surface ®(Xann) [17, Section 7.4.2]. Finally if T € Dy (U) with U C R3 open and k = 2,3, we
denote by | 7| the mass of 7 in U [see [11} p. 358]].

Lemma 6.11 (Region enclosed by ®(X.nn)). Suppose ma(I') < m1(T'1) +mi(T'2) and let @ €
Po(T) be a MY solution to (6.4). Then there is a closed finite perimeter set E C Q x R such that
OE = &(Sam) in Q x R,

Proof. As ®4[Xann] is a boundaryless integral 2-current in 2 xR, there exists (see, e.g., |17, Theorem
7.9.1]) an integral 3-current £ € D3(§2 x R) with 0 = ®4[Yann], and we might also assume that
the support of £ is compact in  x R. We claim that, up to switching the orientation of Q4 Eann],
€ has multiplicity in {0,1}, and hence is the integration [E] over a bounded measurable set E.
This is a finite perimeter set if we show that the integration over (2 x R) N 90*FE coincides with
(I)ﬁ [[Eannﬂ‘

By Federer decomposition theorem [11, Section 4.2.25, p. 420] (see also [11, Section 4.5.9]
and [17, Theorem 7.5.5]) there is a sequence (Ej)ken of finite perimeter sets such that

+o0o
&= Zak[[Ek’ﬂv Ok € {_17 1}a (614)
k=1
moreover
400 oo
€] =) B and [0€] = H*(D(Samn)) = Y H* (0" Ey). (6.15)
k=1 k=1
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We start by observing that
O*Ey C ®(Xanm) Vk € N. (6.16)

Indeed, fixing £ € N, by the second equation in , we have that 0*FEj is contained in the
support of €, which in turn is ®(Z,u,). As a consequence, if P = (Pp, Py, P3) € (2 x R) N 0*Ej,
then P € ®(X,n,). Around P we can find suitable coordinates and a cube U = (P} — ¢, P} +¢) X
(Po —e,Py +¢) X (P3 —e,P3 + ¢) such that ®(X,,,) N U is the graph Gy of a smooth function
h:(Pr—¢e,Pi+¢e)x (Po—e,Po+e)— (P3—¢,P3+¢). Moreover, ®4[Yann] = [Grn] in U. We
concludelﬂ that ELU = [SGy, N U] + m[U], with SG}, the subgraph of h, and m € Z.

We claim that

Vk either ExNU =SG,NU or E,NU=U)\SG.

Indeed, assume for instance that |E, N SGp N U| > 0 and |(SG, \ Ex) NU| > 0; by the constancy
lemma it follows that J[E%] is nonzero in the simply connected open set SG},, contradicting .
As a consequence of the preceding claim, we have that U N 0*Ey = U N ®(X,nn). Since this
argument holds for any choice of P € (Q x R) N 0*E}, we have proved that (2 x R) N 0*E}, is
relatively open (and relatively closed at the same time) in ®(3,,y), which in turn being a connected
open set, implies
®(Xamm) = 0*E,  VkEN.

Denote by Z% := {k € N : 0, = +1}, where o} appears in (6.14). Going back to the local
behaviour around P € ®(X,y,), if U is a neighbourhood as above, we see that for all k € ZT either
E,NU = SG}, or By, = U \ SG}, (namely, all the E}’s coincide in U), since otherwise, there will
be cancellations in the series >, .7+ O[Ex], in contradiction with the second formula in (6.15).
Assume without loss of generality that for all K € Z+ we have Ey N U = SGj,; thus, arguing as
before, for all k € Z~ we must have E;, NU = U \ SGy,.

We obtain that ELU = m[SGL] — n[U \ SG},] for some nonnegative integers n,m. Since
(E)LU = (m + n)[Gy] and also (0€)LU = ®4[Eann] = [Gr] in U, we conclude m +n = 1.
Hence either m = 1 and n = 0, or m = 0 and n = 1. On the other hand, we know that
ELU =3 ez [ExNU] = Y ez [Ex NU], from which it follows that Z* has cardinality m and
7~ has cardinality n. Namely, one of the sets Z* is empty, and the other contains only one index.

We conclude that the sum in involves only one index, that is, there is only one compact
set £ in Q x R such that (up to switching the orientation)

& =[E].
This concludes the proof. ]

Remark 6.12. From the fact that (Q x R) NOE = ®(Z,nn) U Ay U Ag, we easily see that 7(E) =
7(®(Xann)) which, by Lemma is simply connected.

We denote by symg, (E) the set (symmetric with respect to the horizontal plane R? x {0}) obtained
applying to E the Steiner symmetrization with respect to R? x {0}.
Clearly symy (E) N (0PQ x R) = A; with A; defined as in (6.13). We define the surfaces

S = 0(symy (E))\ (A1 UAy), ST:=85n{x3>0}, S :=5n{x3<0}. (6.17)

Since P(symy (E)) < P(E) (here P(-) is the perimeter [2]) we have H?(S) < H?(®(Zamn))-

20This is a consequence of the constancy lemma and the fact that € — ®4[Zann] =0 in U.
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Lemma 6.13 (Graphicality of d(symg (F)) ). Suppose ma(I') < mi(I'1) + mi(T'2) and let ¢ €
Pa(T') be a MY solution to (6.4). Let E be the finite perimeter set given by Lemma and ST
be as in (6.17). Then there is ¢» € BV (int(n(E)) N C°(n(E)) such that ST = G, ;- In particular

SEN(R? x {0}) =QNna(r(E)).

The proof of Lemma essentially follows from the fact that ®(X.,,) is a minimal surface in
Q x R.
Proof. Since E has finite perimeter, there exists a function @ € BV (w(E)) such that $* = +d
[9]. So, we only need to show that 1; is continuous. Take a point P’ in the interior of 7(F); if
P’ = 7(®(w)) for some w, then w € Xy, since 7(P(C;)) C I for i = 1,2. If at none of the points
of 7 1(P") N ®(Tann) the tangent plane to ®(Tany) is vertical, then 1 is C™ in a neighbourhood of
P’, since it is the linear combination of smooth functions (see the discussion after formula
below, where details are given). Therefore we only have to check continuity of ¢ at those points P’
for which there is P € 771(P’") N ®(Xann) such that ®(T,,,) has a vertical tangent plane IT at P.

Consider a system of Cartesian coordinates centred at P, with the (x, y)-plane coinciding with II,
the z-axis coinciding with the line 771 (P’), and let z = z(x,y) (defined at least in a neighbourhood
of 0) be the analytic function whose graph coincides with ®(3.,,). This map, restricted to the
x-axis, is analytic and it vanishes at « = 0; hence it is either constantly zero or it has a discrete
set of zeroes (in the neighbourhood where it exists). We now exclude the former case: If z(-,0)
is constantly zero, it means that around P there is a vertical open segment included in 7#~1(P’),
which is contained in ®(Xann). Let @ be an extremal point of this segment, and let IIg be the
tangent plane to ®(X,,,) at Q. This plane must contain as tangent vector the above segment,
hence Il is vertical and contains 71 (P'). Choosing again a suitable Cartesian coordinate system
centred at (Q we can express locally the surface @(fann) as the graph of an analytic function
defined in a neighbourhood of @ in Ilg, and so the restriction of this map to 7—!(P’) is analytic
in a neighbourhood of @, hence it must be constantly zero since it is zero in a left (or right)
neighbourhood of Q. What we found is that we can properly extend the segment PQ on the Q side
to a segment PR contained in @(iann). By iterating this argument we conclude that the whole
line 771(P’) is contained in ®(X,u,), which is impossible since ®(X,,,) is bounded.

Hence the zeroes of the function z(+,0) are isolated, so the next assertion follows:

Assertion A: Let P € m=Y(P') N ®(Zann). Then in a neighbourhood of P the only intersection
between ®(Lann) and 71 (P') is P itself.

We can now conclude the proof of the continuity of the function 1; Let P’ be in the interior of
7(E), and write 7~ (P") N ®(Zamn) = {Q1,Q2,...,Qm} C Q x R. Tt follows that

2)(P') = H (=~ (P) N E) Zaj Q)3 (6.18)

where (Q);)s is the vertical coordinate of ; and o; € {—1, 0,1} is defined as

-1 if Qj_le CR3 \ FE and Qij-l—l C FE,
o =41 if Qj—le C FE and Qij—I—l CR3 \ E, j=1...,m. (6.19)

0 otherwise,

Let P] € int(m(E)) be such that the sequence (P]) converges to P, and write 71 (P}) N ®(Zann) =
{Qlf, Q’;, ... ,Qlfnk} C  x R. With a similar notation as above, we have

2(PL) = H (=~ Y(P}) N E) Za (@%)s. (6.20)

43



Now, if P’ is such that at every point @; the tangent plane to ®(Xann) is not vertical, then ®(X,ny)
is a smooth Cartesian surface in a neighbourhood of );, and so it is clear that, for £ large enough,

m = my, Q?—)Qj, Uf—)(fj forall j=1,...,m, (6.21)

and the continuity of follows. Therefore it remains to check continuity in the case that the
tangent plane to some @); is vertical.

Let @ be one of these points, with associated sign o. By assertion A there is 6 > 0 so that a is
the unique intersection between 7= (P’) and ®(X,n,) with vertical coordinate in [Q3 — 0, Q3 + 6].
This means that the segments 7—(P’) N {@3 —d<x3< C~23} and 7~ 1(P) N {63 <3< ng + 0}
are either subsets of int(E) or subsets of R? \ E. In particular, there is a neighbourhood U C Q
of P’ such that the discs U x {z3 = Q3 — 6} and U x {z3 = Q3 + &} are subsets of int(E) or of
R3\ E. Suppose without loss of generality that both these discs are inside R\ E (the other cases
being similar), so that & = 0. We infer that, for k large enough so that P, € U, there is a finite
subfamily {Q;’C cjeJyof {QF,Qk, ..., Qﬁlk} contained in {ng <3< Q3+ 0} and which satisfies
the following: The sum in restricted to such subfamily reads as:

k(Nk k k k k
Y o@D = (Q5)s — (QF s+ +(Q5,)s — (@QF,)s,
Jj€J
where J = {j1,J2,...,71} and (Q?l)g > (Q.I;l—l)g > > (Q?Q)g > (Q;‘f’l)g (in the case that j; = 1
necessarily afl = 0 and the sum is zero). We have to show that this sum tends to c@3 = 0 as
k — 400, which is true, since each Q;‘? tends to @ Repeating this argument for each point @

appearing in (6.18)) with a vertical tangent plane to ®(Xann), we conclude the proof of continuity
of v in the interior of m(E).

Let now P’ € 9(n(E)). If P' € d(n(E)) N Q then every point in 7~ 1(P’) N ®(Zann) has vertical
tangent plane and we can argue as in the previous case. It remains to show continuity of ¢ on
Om(E)NOQ. In this case we exploit the fact that the interior of ®(X,,y,) is contained in  x R. We
sketch the proof without details since it is very similar to the previous arguments. Let P’ € 8? Q,
thus 7~ 1(P") N I'y consists of two points Q1 and Q2. Let (P]) be a sequence of points in 7(E)
converging to P. For P| € 9PQ it follows 7~ *(P]) NT1 = {Q},Q5} and the continuity of "
follows from the continuity of ¢ on 9P, whereas if P/ is in the interior of 7(E) there holds
Y (P)NT = Q% Q5. ..., Qﬁlk} Using the continuity of ® up to Cq, it is easily seen that all
such points must converge, as k — +o00, either to ()1 or to Q2. Hence we can repeat an argument
similar to the one used before. O

Lemma 6.14. Suppose ma(I') < mi(I'1) +m1(T'2) and let & € Pa(T") be a MY solution to .
Let E be the finite perimeter set given in Lemma and let S be defined as in . Then there
is an injective map ® € H'(Zann; R3) N CO(Zann; R?) which maps 0Xann weakly monotonically to T
and such that ®(Zann) = S, and also

7—[2(5):/ |aw1<I>Aaw2<£|dw=/ |8, @ A Dy ®|dew = mip (D). (6.22)

ann

In particular, ® is a solution of (6.4]).

Proof. By Lemma [6.13| there is b € BV (int(w(E)) N CO(x(E)) such that S* = g+ As a conse-

quence, for p € APQ we have 1(p) = ¢(p) and for p € d(x(E)) N Q we have 1h(p) = 0.
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By Lemma m(E) is simply connected, and so the maps Ut 7(E) — R3 given by Ei(p) =
(p, j:{/;(p)) are disc-type parametrizations of S*. Moreover St and S~ glue to each other along
A(symg (E)) N (R? x {0}) = 1 U B2, where ;1 and 33 are the curves given by Lemma .

Let (0,1) € Weony be a minimizer of F which satisfies properties of Theorem ﬂ Setting
o := (P1, f2) and by extending v to zero in 2\ w(E), without relabelling it, by minimality we get

2F (0,4) < 2F(5,9) = H*(S),

whence, by Remark

2F (0,9) < H*(S) < H*(@(Sam)) = / |0y @ A Oy ®|dw = mia(T). (6.23)
We are in the hypotheses of Lemma and therefore there exists a map de P,(T') parametrizing
g L@ E@) Y gy L (NE@)) which is a minimizer of (6.4]). In partifular, 2F(0,9) = ma(I"), and all
the inequalities in (6.23) are equalities. We deduce also that (¢,) is a minimizer of F in Weony,

so that by Theorem 5.1/ is analytic in int(7(E)). As a consequence it belongs to Wi (7w (E); R3).
We now conclude the proof of the lemma by invoking again Lemma [6.7] O

Lemma 6.15. Suppose ma(I') < mi(I'1) +mi1(T'2) and let & € Po(T') be a MY solution to (6.4)).
Let E be the finite perimeter set given in Lemma and let S be defined as in (6.17). Then
O(Xann) = S and in particular E = symg (E).

Proof. By Lemma we have that H2(S) = mg(T') from which it follows that P(symg (F))
P(E). Then we can apply |9, Theorem 1.1] to deduce the existence of two functions f, g : 7(E)
of bounded variation, such that 0*F = Gy UG, (up to H2-negligible sets). We will show that f
and g = —¢. To this aim, thanks again to [9, Theorem 1.1], we know that for a.e. p € 7w(E), t
two unit normal vectors vf = (l/{, I/g, V?{) and vy = (V{,15,14) to Gy and G, at the points (p, f(p
and (p, g(p)), respectively, satisfy

B <= |

~—~

)

(vl v, v]) = (W, v, —vi). (6.24)

To conclude the proof it is then sufficient to show that f = —g a.e. on 7(E): indeed this would
readily imply E = symg (F) and hence f = .
Let p € int(7(E)); if

T p)NS={P, P,..., P}, (6.25)
then for a.e. p € int(w(E)) it is k < 2. We now show that, for all p € int(7w(FE)), if & > 1, none of the
points { Py, Pa,..., P;} has vertical tangent plane. Assume by contradiction that P; has vertical

tangent plane II;. In this case II; N .S consists, in a neighbourhood U of Py, of at least 2 curves
crossing transversally at P;. These curves, by assertion A in the proof of Lemma [6.13] intersect
7~ 1(p) only at P;. Moreover, in a neighbourhood V of P, with UNV = &, II; N S consists of (at
least) one (or more) curve passing through P. This curve is locally Cartesian if 7—1(p) crosses S
transversally in Ps, otherwise it can be locally the union of two curves ending at P», with vertical
tangent plane, which lie on the same side of IT; with respect to 7~!(p). In both cases, we deduce
that there is a point ¢ € II; N (2 x {0}) for which 77!(q) intersects transversally S in at least three
points. As a consequence, for all ¢’ in a neighbourhood of ¢ in €, the line 77 1(¢’) intersects S at
more than two points, which is a contradiction. We have proved the following;:

Assertion: for all p € int(E) the line 7~ 1(p) either intersects S transversally at two points Py, Py,
or it intersects S at only one point P;.
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We now see that the latter case cannot happen. Indeed, first one checks that in this case the
intersection cannot be transversaﬂ and that 7—!(p) must be tangent to S at P;. Let II; be the
vertical tangent plane to S at Py. Let II{ be the vertical plane orthogonal to IT; passing through
P;. In a neighbourhood of P;, the unique curve in SN Hf must be the union of two curves joining
at P, and these curves must belong to the same half-plane of 1'[1L with boundary 7~ !(p). As a
consequence, if p' € QN Hf is in that half-plane, then 7—!(p') consists of at least two points; if
p' lies in the opposite half-plane, then 7~!(p’) is empty. This means that necessarily p € dr(FE).
Namely, the previous assertion can be strengthened to:

For all p € int(E) the line 7~ (p) intersects S transversally at exactly two points Py, Ps.

The consequence of this is that f and g belong to Wll(int(r(E))) and are also smooth in
int(w(E)). Indeed, let p € int(7(E)), so f(p) # g(p), and

)N S ={(p, f(p)), (p.g(p))}. (6.26)

Since S is locally the graph of smooth functions around (p, f(p)) and (p,g(p)), these functions
coincide with f and g, respectively. We can now conclude the proof of the lemma: let us choose a
simple curve a : [0,1] — 7(E) with a(0) € 9”Q and a(1) = p such that holds for H! a.e.
p € a([0,1]). Since f o« and g o « are differentiable in [0, 1], condition uniquely determines
the tangent planes to Gy and G4, and hence it implies that the derivatives of f o« and g o « satisfy

(foa)(t)+ (goa)(t) =0, for a.e. t € [0,1]. (6.27)

By continuity of f and g one infers foa + goa = ¢ a.e. on [0,1] (actually everywhere since
f + g is continuous), for some constant ¢ € R. To show that ¢ = 0 it is sufficient to observe that
foa(0) = p(a(0)) and go a(0) = —p(a(0)). Hence f(p) = —g(p), and the thesis of Lemma
is achieved. O

We are now in a position to conclude the proof of Theorem

Proof of Theorem[6.8. Property follows by Lemma and Lemma Properties |(2)H(4)|

follow by Lemma [6.13] and Lemma [6.15] To see that 8; are C it is sufficient to observe that, in
view of the Cartesianity of ST and S~, their union coincides with the set S N {x3 = 0} which, by
standard arguments, is the image of the zero-set of ®3, which is smooth. O

Theorem 6.16. There holds

9 in  F(s,¢) = ma(T). 6.28
L (5,¢) = ma(l') (6.28)

Proof. Step 1: 2min(, oyeyy,,,, F(8,¢) < ma(T).
Suppose ma(I') < m1(I'1) +m1(I'z). Let & € Po(I") be a MY solution to (6.4) and let S :=
®(Xann). By Theorem the following properties hold:

e SN (R? x {0}) = B1 U B2 with B; and Bs disjoint embedded curves of class C™ joining q; to
p2 and g2 to p1, respectively;

e S is symmetric with respect to R? x {0};

e for ¢ = 1,2 the closed region F; enclosed between 8?(2 and f; is convex;

21This is a consequence of the fact that the line 7~ (p) must lie outside the set E, with the only exception of the
point P;. Indeed, otherwise, there must be some other point in 7r71(p) NS, E being compact in R3.
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o ST = 5N {x3 > 0} is the graph of ¥ € WhH(U) N CO(U), where U = Q\ (E; U Ey) is the
open region enclosed between 0P and 51 U fs.

Let (0,%) € Weony be given by

0 inQ\U,
= , and =<
o:=(o1,02) and 9 {%Z) 0 U

where 0;([0,1]) = §; for i = 1,2. Then clearly S* = G| (q\p(,)) and

1
(S,giaeli}vlconv f(S? C) S F(0-7 1/}) - HQ(S+) - imQ(F)

Suppose now ma(T') = mq(I'1)+m(I'). Let ®; € P1(I';) be a solution to (6.1]) and S; := ®;(By)
(7 =1,2). For j = 1,2, let D; be the closed convex hull of I';: clearly D; N Dy = . By Lemma
each S; satisfies the following properties:

e S;N(R? x {0}) = Bj C D; is a simple smooth curve joining p; to g;;
e S; is symmetric with respect to R? x {0};

o Sj = SN {x3 > 0} is the graph of a function ¢; € WHL(U;) N CO(T;), where U; C D is the
open region enclosed between 9 2, and Bj;

e [(; is contained in D; and F; \ Uj is convex.

Let (0,1%) € Weony be given by

0 inQ\{U;uUU
o:=(01,09) and =< ~ Tn \ { 1' 2},
v; inUj for j =1,2,

where o1([0,1]) := p1gz and 02([0,1]) := B2 U @p1 U B1. Then ST := S USS = ng(Q\E(U)) and

Lmin P50 < Flo) = HAST) = (1) +m (o)) = gma),

and the proof of step 1 is concluded.

Step 2: 2Ming c)eWeon, F (5,¢) = ma(T).
Let (0,%) € Weony be a minimizer satisfying properties of Theorem [5.1
If E(o1) U E(02) = @, by Step 1 we can apply Lemma and find an injective parametrization

® € Po(I") such that ®;(0¥ann) = I' monotonically ®(Xann) = Gy UG_y, and
2F(o,7) = / |0, @ A Oy, @|dw > mo(T).

If instead E(01) U E(03) # O, similarly we find injective parametrizations ®; € P1(I'1) and @3 €
P1(T'2) such that ®;(0B;) = I'; monotonically for j = 1,2, ®(B1) U ®2(B1) = Gy UG_y, and

2.7:(0‘,¢) = / \Owl@l VAN 8w2<1>1|dw —|—/ ]81,)1@2 A 8W2(I)2‘dw > ml(Fl) + ml(Fg) > mg(r).
B1 B
This concludes the proof. ]
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Now the proof of Theorem [6.5] is easily achieved.

Proof of Theorem [6.5 Let ® € Po(T), S, ST, S~ be as in the statement. By arguing as in the
proof of Theorem we can find (0,1) € Weony such that St =g oy (Q\E(0))- Then by Theorem
[6.16] we have

Flo.w) = gma(T) = min  F(s.0) (6.29)

Hence (0,1)) is a minimizer for F in W; moreover by the properties of S it also satisfies properties
of Theorem [E.11

Let ®; € Pi(T;), S; for j = 1,2, ST, S~ be as in the statement. Again arguing as in the
proof of Theorem @ we can find (0,%) € Weony such that S* =G ol (Q\E(o and holds,
so that (o,1) is a mimmizer of F in W satisfying properties of Theorem [5.1

Let (0,1) € Weony be a minimizer of F in W satisfying properties of Theorem Let

also

S =Gyl @\E(0) Y I-pL(\E(0))

Suppose E(o1) N E(o2) = @. Then there is ® € Po(I") which is a MY solution to (6.4) such
that ®(Xann) = S: indeed, to see this, it is sufficient to apply Lemma since by Theorem
we have

2F(0,%) = ma(D). (6.30)

Suppose now E(o1) N E(o2) # ©; then with a similar argument we can construct ®; € Py(T'))
for j = 1,2 solutions to (6.1)) such that ®;(B;) U ®2(B1) = S. The proof is achieved. O
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