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Abstract

We consider a Plateau problem in codimension 1 in the non-parametric setting. A Dirichlet
boundary datum is given only on part of the boundary ∂Ω of a bounded convex domain Ω ⊂ R2.
Where the Dirichlet datum is not prescribed, we allow a free contact with the horizontal plane.
We show existence of a solution, and prove regularity for the corresponding minimal surface.
Finally we compare these solutions with the classical minimal surfaces of Meeks and Yau, and
show that they are equivalent when the Dirichlet boundary datum is assigned in at most 2
disjoint arcs of ∂Ω.
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1 Introduction

Let Ω ⊂ R2 be a bounded open convex set; in this paper we look for an area-minimizing surface
which can be written as a graph over a subset of Ω, and spanning a Jordan curve Γσ = γ ∪ σ ⊂
R2× [0,+∞). Here γ is fixed (Dirichlet condition) and is given by a family {γi}ni=1 ⊂ ∂Ω× [0,+∞)
of n ∈ N curves each joining pairs of points {(pi, qi)}ni=1 of ∂Ω. Whereas σ, which represents the
free boundary, consists of (the image of) n curves (σ1, . . . , σn) sitting in the plane containing Ω
(also called free boundary plane), and joining the endpoints of γ in order that γ∪σ forms a Jordan
curve Γσ in R3. We assume that each γi is Cartesian, i.e., it can be expressed as the graph of a
given nonnegative function ϕ defined on a corresponding portion of ∂Ω. This allows to restrict
ourselves to the Cartesian setting, and to assume that the competitors for the Plateau problem are
expressed by graphs of functions ψ defined on a suitable subdomain of Ω depending on σ.

Our prototypical example is given by the catenoid. Consider a cylinder in R3 with a circle of
radius r as basis, and height l. Choose a system of Cartesian coordinates in which the x1x2-plane
contains the cylinder axis, and restrict attention to the half-space {x3 ≥ 0} as in Figure 1, where
Ω = (0, l)× (−r, r) and n = 2. Write

∂Ω = ∂0
1Ω ∪ ∂D1 Ω ∪ ∂0

2Ω ∪ ∂D2 Ω,

where ∂0
1Ω = (0, l) × {r}, ∂0

2Ω = (0, l) × {−r}, ∂D1 Ω = {0} × (−r, r), and ∂D2 Ω = {l} × (−r, r).
On the Dirichlet boundary ∂DΩ = ∂D1 Ω ∪ ∂D2 Ω we prescribe a continuous function ϕ whose graph
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Figure 1: The catenoid: when l is large enough the two dotted curves σ1 and σ2 merge and the
(generalized) graph of ψ reduces to two vertical half-circles on ∂DΩ = ∂D1 Ω ∪ ∂D2 Ω. In this case
∂DΩ ⊂ ∂E(σ1) ∪ ∂E(σ2).

consists of the two half-circles γ1 and γ2. The endpoints of γ1 and γ2 live on the free boundary plane
(the horizontal plane) and are p1 = (0,−r), q1 = (0, r), and p2 = (l, r), q2 = (l,−r) respectively.
The free boundary σ consists of two curves σ1 and σ2 with endpoints q1, p2, and q2, p1, respectively,
constrained to stay in Ω. The concatenation of γ = γ1 ∪ γ2 and σ forms a Jordan curve in R3

Γσ = γ1 ∪ σ1 ∪ γ2 ∪ σ2.

Therefore we proceed to look for an area-minimizer among all Cartesian surfaces S with boundary
Γσ keeping σ free, i.e. we minimize the area among all pairs (σ, S). In this particular case of
the catenoid, a minimizing sequence ((σk, Sk)) tends (in a suitable way specified in the sequel)
to a minimizer (σ, S) which allows for two different possibilities. If l is small, σ1 and σ2 remain
disjoint and the classical catenoid (half of it, namely the intersection between the catenoid and the
half-space {x3 ≥ 0}) is the surface S, in turn coinciding with the graph of a function ψ defined
on the region of Ω “enclosed” by σ. If instead l is large, the two curves σ1 and σ2 merge and the
region of Ω enclosed by σ tends to become empty (it reduces to the two segments ∂D1 Ω ∪ ∂D2 Ω).
This describes the solution given by two (half) discs.

A peculiarity of our problem is the presence of a free boundary. The problem of Plateau with
partial free boundary has been exhaustively studied (see for instance [10]) but never investigated,
to our best knowledge, with the non-parametric approach.

Referring to Section 2 for the precise description of the mathematical framework, here we just
describe it with few details. We fix some distinct points p1, q1, p2, q2, . . . , pn, qn ∈ ∂Ω taken in
clockwise order. The part of ∂Ω between the points pi and qi is noted by ∂Di Ω, and the part
between qi and pi+1 by ∂0

i Ω. We fix a nonnegative continuous function ϕ : ∂Ω → [0,+∞) which
is positive on ∂DΩ = ∪ni=1∂

D
i Ω and vanishes on {pi, qi}ni=1 ∪ ∂0Ω with ∂0Ω = ∪ni=1∂

0
i Ω , and we

consider Lipschitz injective and mutually disjoint curves σi in Ω, i = 1, . . . , n, joining pi to qi+1.
We suppose the graph of ϕ on ∂DΩ to be a Lipschitz curve in R3. We define E(σ) := ∪ni=1E(σi),
with E(σi) the planar closed region enclosed between ∂0

i Ω and σi.
We define the two classes

Σ̂ := {σ = (σ1, σ2, . . . , σn) : [0, 1]→ Ω
n

be curves as above}, (1.1)

Xϕ := {(σ, ψ) ∈ Σ̂×W 1,1(Ω) : ψ = 0 a.e. in E(σ) and ψ = ϕ on ∂DΩ}. (1.2)
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Figure 2: An example of the setting (in 3D), when n = 3. On the boundary of the convex set Ω we
have fixed the points pi, qi; the arc of ∂Ω joining pi to qi is ∂Di Ω, while the arc joining qi to pi+1

is ∂0
i Ω (p4 := p1). On ∂DΩ the Dirichlet boundary datum ϕ is imposed, whose graph has been

depicted. The dotted arcs are the free planar curves σi joining the pairs (qi, pi+1).

We want to find a solution to the following minimum problem:

inf
(σ,ψ)∈Xϕ

A(ψ; Ω \ E(σ)), (1.3)

where A denotes the classical area integral, i.e.,

A(ψ; Ω \ E(σ)) :=

∫
Ω\E(σ)

»
1 + |∇ψ|2dx. (1.4)

Since, in general, existence of minimizers is not guaranteed in the class Xϕ, we need to formulate
this problem to a more suited space of admissible pairs. Specifically, a standard relaxation procedure
leads one to analyse the problem above for pairs (σ, ψ) belonging to Σ×BV (Ω), where Σ is a suitable
class containing Σ̂ but which also allows for partial overlapping of the curves σi (a precise definition
is given in Section 2.3). Therefore we shall be concerned with the study of the functional Fϕ defined
as

Fϕ(σ, ψ) := A(ψ; Ω)− |E(σ)|+
∫
∂Ω
|ψ − ϕ|dH1, (1.5)

where (σ, ψ) ∈ W ⊂ Σ×BV (Ω), W is the space of pairs (σ, ψ) ∈ Σ×BV (Ω) such that ψ = 0 a.e.
on E(σ), and A(ψ; Ω) is the relaxed area functional defined as in (2.1), which accounts for the area
of the generalized graph of the map ψ on Ω. The functional Fϕ extends the area integral A to the
larger class W.

We then prove the following result, accounting for existence and regularity of minimizers of Fϕ.

Theorem 1.1. There exists a minimizer of Fϕ on W. Moreover, any minimizer (σ, ψ) ∈ W of Fϕ
satisfies the following regularity properties:
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(1) The region E(σ) consists of a family of closed convex sets. The boundary ∂E(σ) is given by
the union of the arcs ∂0Ω and a family of disjoint Lipschitz curves in Ω (joining the points pi
and qj, in some order). Moreover, if ∂Di Ω is not a straight segment, then ∂Di Ω∩ ∂E(σ) = Ø.
If instead ∂Di Ω is a straight segment, then either ∂Di Ω∩ ∂E(σ) = Ø or ∂Di Ω∩ ∂E(σ) = ∂Di Ω.

(2) The function ψ is real analytic in Ω\E(σ), and is continuous on ∂DΩ\∂E(σ) where it attains
the boundary value ψ = ϕ.

(3) If Ω ∩ ∂E(σ) 6= Ø, there is at least a minimizer (σ, ψ) such that ψ is continuous and null on
Ω ∩ ∂E(σ), and moreover Ω ∩ ∂E(σ) consists of a family of mutually disjoint smooth curves
(joining pi and qj in some order).

A comparison with classical solutions of the Plateau problem in parametric form is in order.
Denoting by γi the graph of the map ϕ on ∂Di Ω, we consider also sym(γi), namely the graph of −ϕ
on ∂Di Ω, which is symmetric to γi with respect to the plane containing Ω. Setting Γi := γi∪sym(γi),
this turns out to be a simple Jordan curve in R3, for all i = 1, . . . , n. Hence we can consider the
classical Plateau problem for the curves Γi. In the case n = 1 it is intuitive that a disc-type minimal
surface S spanning Γ = Γ1 will be symmetric with respect to the plane containing Ω, and that
S+ := S ∩ {x3 ≥ 0} will be a minimal disc with partial free boundary on Ω. It is interesting to
compare such a minimal disc with the graph of ψ, where (σ, ψ) ∈ W is a minimizer as in Theorem
1.1. Actually, in this simple case n = 1, it is not difficult to see that S+ is Cartesian, and it is the
graph of a function ψ which is positive outside the convex region E(σ) enclosed by σ and ∂0Ω, and
further (σ, ψ) is a minimizer as provided by Theorem 1.1. Also the converse is true: Any minimizer
(σ, ψ) that satisfies (1)-(3) of Theorem 1.1 has as graph of ψ a disc-type surface S+ whose double
S = S+ ∪ S− is a classical solution to the Plateau problem for the curve Γ.

This result is rigorously stated in Theorem 6.1 of Section 6.1. In Section 6.2 we instead analyse
the case n = 2. In this case one might look for minimal surfaces obtained as union of two discs
spanning Γ1 and Γ2, or else for a catenoid-type surface spanning Γ = Γ1 ∪ Γ2 together. Appealing
to an existence result due to Meeks and Yau [18], we are able to show the counterpart of Theorem
6.1: Theorem 6.5, that essentially states that any minimizer (σ, ψ) ∈ W of Fϕ satisfying properties
(1)–(3) of Theorem 1.1 is (the nonnegative half of) a Meeks-Yau solution, and vice-versa. In order
to prove Theorem 6.5 we will strongly use the convexity of the domain Ω, which implies that the
cylinder Ω× R, which contains Γ on its boundary, is convex, and so the results of Meeks and Yau
are applicable.

Due to the highly nontrivial arguments used to prove this result, we restrict our analysis to the
case n = 2, since a generalization to the case n > 2 probably requires heavy modifications. Indeed,
some of the lemmas needed to prove Theorem 6.5 employ crucially the fact that ∂0Ω consists of
only two connected components. For this reason we leave the case n > 2 for future investigations.

Let us now come to the reasons for our study. One motivation is the description of a cluster
of soap films which are constrained to wet a given system of wires γ emanating from a given free
boundary plane. The soap films are expected to arrange in such a way to form a free boundary
on the plane. Therefore, the questions of existence of a minimal configuration and its regularity
naturally arise. A second motivation is related to the description of the singular part of the L1-
relaxation of the Cartesian 2-codimensional area functional∫

U

»
1 + |∇u1|2 + |∇u2|2 + (det∇u)2 dx, u = (u1, u2) ∈ C1(U ;R2),

computed on nonsmooth maps. The L1-relaxed area functional [1,14], denoted by A(·;U), is mostly
unknown, up to a few exceptions, see [1, 5–7, 20]. One of the remarkable exceptions is the case of
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Figure 3: A possible configuration of the sets E(σi) (in the relaxed problem). Also in this example
n = 3. The (clockwise oriented) arcs p̄1q1 = ∂D1 Ω, p̄2q2 = ∂D2 Ω, and p̄3q3 = ∂D3 Ω are the set where ϕ
is prescribed and positive. In the set ∂0Ω = q̄1p2∪ q̄2p3∪ q̄3p1 and on E(σ) = E(σ1)∪E(σ2)∪E(σ3)
we prescribe ψ = 0. The curves σi joining qi to pi+1 (with the corresponding set E(σi)) are
indicated. On the dotted segment σ1 and σ2 overlaps with opposite orientations. The emphasized
region Ω \ E(σ) is the one where ψ is not necessarily null.

the vortex map uV : Bl(0) \ {0} ⊂ R2 → R2, defined by uV (x) = x
|x| : in this case it can be proved

that

A(uV ;Bl(0)) =

∫
Bl(0)

»
1 + |∇uV |2dx+ inf Fϕ(σ, ψ), (1.6)

where the infimum is taken over all pairs (σ, ψ) ∈ Σ × BV (R2l) with ψ = 0 a.e. on E(σ). Here
the setting is the following: n = 1, R2l = (0, 2l) × (−1, 1), ∂0R2l = (0, 2l) × {1}, ∂DR2l =
({0}× (−1, 1))∪ ([0, 2l]×{−1})∪ ({2l}× (−1, 1)), p = (0, 1), q = (2l, 1), and σ is a unique curve in

R2l joining p to q. The Dirichlet datum ϕ : ∂DR2l → [0,∞) is the function ϕ(w1, w2) =
»

1− w2
2.

This setting is similar to the catenoid case, with the difference that the Dirichlet boundary is here
extended to include the basis (0, 2l)×{−1} and the free curve σ is just one simple curve (see Figure
4).

In order to construct a recovery sequence for the relaxed area (1.6) of the vortex map, it is
essential to analyse the existence and regularity of minimizers of Fϕ. In particular, it is necessary
to show that there is at least one sufficiently regular1 minimizer (σ, ψ). The shape of the curve σ
and the graph of ψ are related to the vertical part of a Cartesian current in Bl(0)×R2 which arises
as limit of (the graphs of) a recovery sequence (vk) ⊂ C1(Bl(0);R2) for A(uV ;Bl(0)).

According to what happens for the catenoid, also in this case we have a dichotomy for the
behaviour of minimizers (σ, ψ). When l is small, the solution (σ, ψ) consists of a curve σ joining p
and q whose interior is contained in R2l, and its shape is so that E(σ) is convex; at the same time
the graph of ψ on R2l \ E(σ) is a sort of half-catenoid, so that if we double it considering also its
symmetric with respect to the plane containing R2l, it becomes a sort of catenoid spanning two
radius one circles, and constrained to contain the segment (0, 2l)× {−1}. When instead l is larger

1Conditions provided by Theorem 1.1 are sufficient.
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Figure 4: The domain R2l of the vortex map. The graph of ϕ on ∂DR2l is emphasized (in particular
ϕ = 0 on the lower horizontal side), together with an admissible curve σ, which in this specific case
partially overlaps the Dirichlet boundary. In this example n = 1.

than a certain threshold, then the solution reduces to two circles spanning the two radius one and
parallel circles.

The structure of the paper is as follows. In Section 2 we introduce the setting of the problem
in detail. In order to prove existence of minimizers of Fϕ we first restrict ourselves to prove the
result in a smaller class Wconv ⊂ W of admissible pairs (σ, ψ), where compactness is easier and
allows to make use of the direct method. Roughly speaking, the class Wconv accounts only for
specific geometries of the free boundary σ, namely, it considers configurations for which each set
E(σi) is convex. In Section 3 we prove the existence of minimizers of Fϕ in Wconv. Next, in
Section 4, we show the existence of minimizers in the wider class W where, essentially, σ is not
constrained to the previous geometric features; this result is contained in Corollary 4.3. To show
this we consider a minimizing sequence in W and we modify it, by a cut and paste procedure, in
order to construct a minimizing sequence in Wconv. In Section 5 we study the regularity properties
of minimizers. Specifically, we state and prove Theorem 5.1, which rephrases in a more precise
way the results contained in Theorem 1.1. Theorem 1.1 follows from Theorem 3.1, Corollary 4.3,
and Theorem 5.1. Eventually in Section 6 we compare the solutions we found with the classical
minimal surfaces spanning Γ. Here, as anticipated, we restrict our analysis to the case n = 1, 2,
the case n = 2 essentially giving rise to either a catenoid-type minimal surface, or two disc-type
surfaces spanning Γ1 and Γ2. The main theorems here are Theorems 6.1 and 6.5. The proof of
the former, for the case n = 1, is quite simple, whereas Theorem 6.5, for the case n = 2, requires
a series of lemmas. In particular, if S is a Meeks-Yau catenoid-type minimal surface, at one step,
we need to employ a Steiner symmetrization of the 3-dimensional finite perimeter set in Ω × R
enclosed by S. In turn, using standard results on the condition of equality for the perimeters of a
set and its symmetrization, we are able to show that the starting surface S were already symmetric
with respect to the plane containing Ω, and already Cartesian, and the conclusion of the proof of
Theorem 6.5 is achieved.
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2 Preliminaries

2.1 Area of the graph of a BV function

Let U ⊂ R2 be a bounded open set. For any ψ ∈ BV (U) we denote by Dψ its distributional
gradient, so that

Dψ = ∇ψL2 +Dsψ,

where ∇ψ is the approximate gradient of ψ and Dsψ denotes the singular part of Dψ. We recall
that the L1-relaxed area functional reads as [15]

A(ψ;U) :=

∫
U

»
1 + |∇ψ|2dx+ |Dsψ|(U). (2.1)

In what follows we denote by ∂∗A the reduced boundary of a set of finite perimeter A ⊂ R3 (see [2]).
For any ψ ∈ BV (U) we denote by Rψ ⊂ U the set of regular points of ψ, namely the set of points
x ∈ U which are Lebesgue points for ψ, ψ(x) coincides with the Lebesgue value of ψ at x and ψ is
approximately differentiable at x. We define the subgraph SGψ of ψ as

SGψ := {(x, y) ∈ Rψ × R : y < ψ(x)}.

This turns out to be a finite perimeter set in U×R. Its reduced boundary in U×R is the generalised
graph Gψ := {(x, ψ(x)) : x ∈ Rψ} of ψ, which turns out to be a 2-rectifiable set. If 〚SGψ〛 ∈ D3(R3)
denotes the integral current given by integration over SGψ and ∂〚SGψ〛 ∈ D2(R3) is its boundary
in the sense of currents, then

〚Gψ〛 = ∂〚SGψ〛 (U × R),

with 〚Gψ〛 denoting the integer multiplicity 2-current given by integration over Gψ (suitably oriented;
see [13] for more details).

2.2 Hausdorff distance

If A,B ⊂ R2 are nonempty, the symbol dH(A,B) stands for the Hausdorff distance between A and
B, that is

dH(A,B) := max

ß
sup
a∈A

dB(a) , sup
b∈B

dA(b)

™
,

where dF (·) is the distance from the nonempty set F ⊆ R2. If we restrict dH to the class of closed
sets, then dH defines a metric. Moreover:

(H1) dA(x) ≤ dB(x) + dH(A,B) for every x ∈ R2;

(H2) (K, dH) with K := {K ⊂ R2 nonempty and compact} is a complete metric space;

(H3) If A,B ⊂ R2 are bounded, closed, nonempty and convex sets, then dH(A,B) = dH(∂A, ∂B);

(H4) If A ∈ K is convex, then there exists a sequence (An)n ⊂ K of convex sets with boundary of
class C∞ such that dH(An, A)→ 0 as n→∞;

(H5) Let (An)n be a sequence of closed convex sets in R2, A ⊂ R2 and dH(An, A)→ 0 as n→ +∞.
Then A is convex as well;

(H6) Let (An)n and A be compact convex subsets of R2 such that dH(An, A)→ 0 and let x ∈ int(A);
then x ∈ An definitely in n;
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(H7) Let A and B be closed subsets of R2 with dH(A,B) = ε. Then A ⊂ B+
ε and B ⊂ A+

ε where,
for all E ⊂ R2, we have set E+

ε := {x ∈ R2 : dE(x) ≤ ε}.

Remark 2.1. Property (H1) is straightforward, while (H2) is well-known. Also property (H3) is
easily obtained (see, e.g. [21]). Concerning property (H4) we refer to, e.g., [4, Corollary 2]. To see
(H5), from (H1) we have that dAn → dA pointwise, and therefore since dAn is convex, also dA is
convex, which implies A convex2. Let us now prove (H6) by contradiction; assume that there exists
a subsequence (nk) such that dAnk (x) > 0 for all k ∈ N; then x ∈ R2 \ Ank , dAnk (x) = d∂Ank (x),
and using (H1) twice,

d∂A(x) ≤ d∂Ank (x) + dH(∂Ank , ∂A) = dAnk (x) + dH(Ank , A)

≤ dA(x) + 2dH(A,Ank) = 2dH(A,Ank)→ 0,

the first equality following from (H3). This implies x ∈ ∂A, a contradiction.

We begin with the following standard result that will be useful later:

Lemma 2.2. Let K ⊂ R2 be a convex compact set with nonempty interior. Then there exists a
1-periodic curve σ̂ ∈ Lip(R;R2), injective on [0, 1), such that σ̂([0, 1]) = ∂K and

σ̂(t) = σ̂(0) + `(σ̂)

∫ t

0
γ̂(s) ds, γ̂(t) = (cos(θ̂(t)) , sin(θ̂(t))) for all t ∈ [0, 1],

with θ̂ a non-decreasing function satisfying θ̂(t+ 1)− θ̂(t) = 2π for all t ∈ R.

Notice that σ̂ is differentiable a.e. in R and σ̂′(t) = `(σ̂)γ̂(t), so that the speed modulus of the
curve |σ̂′(t)| = `(σ̂) is constant and coincides with the length of the curve `(σ̂) =

∫ 1
0 |σ̂

′(s)|ds.

Proof. We start by approximating K by convex sets with C∞ boundary. By (H4) for all n ∈ N
there is a convex compact set Kn ⊂ R2 with boundary of class C∞ and such that dH(Kn,K)→ 0
as n→∞. For any n ∈ N we let σ̂n ∈ C∞(R;R2) be a 1-periodic function injectively parametrizing
∂Kn on [0, 1); therefore σ̂n([0, 1]) = ∂Kn, and

σ̂n(t) = σ̂n(0) + `(σ̂n)

∫ t

0
γ̂n(s) ds, γ̂n(t) = (cos(θ̂n(t)) , sin(θ̂n(t))) ∀t ∈ [0, 1],

where θ̂n ∈ C∞(R) is a non-decreasing function with θ̂n(t+ 1)− θ̂n(t) = 2π, for all t ∈ R. In view
of (H2), by construction we can find x0 ∈ K, R > r > 0 such that Br(x0) ⊂ Kn ⊂ BR(x0) for all
n ∈ N, and therefore H1(∂Br(x0)) ≤ `(σ̂n) = H1(∂Kn) ≤ H1(∂BR(x0)); thus, up to subsequence,
`(σ̂n)→ “m ∈ R+ as n→∞. Moreover, up to subsequence, we might assume σ̂n(0)→ p ∈ ∂K. On
the other hand observing that∫ t+1

t
|θ̂′n(s)|ds =

∫ t+1

t
θ̂′n(s)ds = 2π, for all t ∈ R,

we have that, again up to subsequence, θ̂n
∗
⇀ θ̂ ∈ BVloc(R) and pointwise (by Helly selection

principle), with θ̂ a non-decreasing function with θ̂(t + 1) − θ̂(t) = 2π for all t ∈ R. We also have

γ̂n
∗
⇀ γ̂ in BVloc(R;R2) where γ̂(t) = (cos(θ̂(t)) , sin(θ̂(t))).

We let σ̂ ∈ Lip(R;R2) be the (1-periodic) simple closed curve defined as

σ̂(t) := p+ “m∫ t

0
γ̂(s) ds ∀t ∈ R. (2.2)

2Since A is closed, it coincides with the sublevel {x : d(x,A) ≤ 0}, which is convex.

8



Note that “m = `(σ̂). Then clearly σ̂n → σ̂ in W 1,1([0, 1];R2), since

‖σ̂′n − σ̂′‖L1([0,1];R2) =

∫ 1

0
|`(σ̂n)γ̂n(t)− `(σ̂)γ̂(t)|dt

≤ |`(σ̂n)− `(σ̂)|+ `(σ̂)

∫ 1

0
|γ̂n(t)− γ̂(t)|dt→ 0.

By the continuous embedding W 1,1([0, 1];R2) ⊂ C0([0, 1];R2) (and by 1-periodicity, on R) we also
get σ̂n → σ̂ uniformly on [0, 1]. This, together with property (H3) gives

dH(∂K, σ̂([0, 1])) ≤ dH(∂K, ∂Kn) + dH(σ̂n([0, 1]), σ̂([0, 1]))→ 0,

which in turn implies σ̂([0, 1]) = ∂K. The injectivity of σ̂ on [0, 1) follows from expression (2.2),
the fact that “m > 0, and the fact that K is convex with nonempty interior.

Corollary 2.3. Let K ⊂ R2 be a convex compact set with nonempty interior. Let q, p be two
distinct points on ∂K, and let Ùpq be the relatively open, connected curve contained in ∂K with
endpoints q and p clockwise ordered. Then there exists an injective curve σ ∈ Lip([0, 1];R2) such
that σ((0, 1)) = Ùpq, σ(0) = q, σ(1) = p, and

σ(t) = q + `(σ)

∫ t

0
γ(s) ds, γ(t) = (cos(θ(t)) , sin(θ(t)) for all t ∈ [0, 1],

with θ a non-decreasing function satisfying θ(1)− θ(0) ≤ 2π.

Proof. Lemma 2.2 provides σ̂ ∈ Lip([0, 1];R2) parametrizing ∂K. Then there are two values t1, t2 ∈
[0, 1], t1 < t2, with q = σ(t1) and p = σ(t2). Then the existence of σ follows by reparametrization
of the interval [t1, t2], and all the properties follows from the corresponding properties of σ̂.

2.3 Setting of the problem

We fix Ω ⊂ R2 to be an open bounded convex set (strict convexity is not required) which will be
our reference domain. Given two points p, q ∈ ∂Ω in clockwise order, Ùpq stands for the relatively
open arc on ∂Ω joining p and q.

Let n ∈ N, n ≥ 1, and let {pi}ni=1 be distinct points on ∂Ω chosen in clockwise order; we set
pn+1 := p1. For all i = 1, . . . , n let qi be a point in ṗipi+1 ⊂ ∂Ω. We set

∂Di Ω := p̃iqi, ∂0
i Ω := q̇ipi+1 for i = 1, . . . , n, (2.3)

and

∂DΩ :=
n⋃
i=1

∂Di Ω, ∂0Ω :=
n⋃
i=1

∂0
i Ω. (2.4)

Since ∂Di Ω and ∂0
i Ω are relatively open in ∂Ω, so are ∂DΩ and ∂0Ω. It follows that ∂Ω is the

disjoint union
∂Ω = ∪ni=1{pi, qi} ∪ ∂DΩ ∪ ∂0Ω.

We fix a continuous function ϕ : ∂Ω→ [0,+∞) such that

ϕ = 0 on ∂0Ω and ϕ > 0 on ∂DΩ,

see Figures 1, 2. We will make a further regularity assumption on ϕ: we require that the graph
Gϕ ∂Di Ω = {(x, ϕ(x)) : x ∈ ∂Di Ω} of ϕ on ∂Di Ω is a Lipschitz curve in R3, for all i = 1, . . . , n.
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Remark 2.4. The hypothesis ϕ > 0 on ∂DΩ excludes from our analysis the example in Figure 4 of
the introduction. We will further comment on this later on (see Section 5.1); the presence of pieces
of ∂DΩ where ϕ = 0 will bring to some additional technical difficulties that we prefer to avoid here.
However, the setting in Figure 4 can be easily achieved by an approximation argument. Namely,
one considers a suitable regularization ϕε of ϕ on ∂DΩ such that ϕε > 0, and then letting ε → 0
one obtains a solution to the problem with Dirichlet datum ϕ.

We will analyse the functional F = Fϕ defined in (1.5), namely

F(σ, ψ) := A(ψ; Ω)− |E(σ)|+
∫
∂Ω
|ψ − ϕ|dH1, (2.5)

where the pair (σ, ψ) belongs to the admissible class W, defined as follows:

W :=
{

(σ, ψ) ∈ Σ×BV (Ω) : ψ = 0 a.e. in E(σ)
}
,

Σ :=
{
σ = (σ1, . . . , σn) ∈ (Lip([0, 1]; Ω))n satisfies (i’)-(ii’)

}
,

(2.6)

where

(i’) σ = (σ1, . . . , σn) with σi injective, σi(0) = qi and σi(1) = pi+1, for all i = 1, . . . , n;

(ii’) For i = 1, . . . , n, denoting by E(σi) ⊂ Ω the closed region enclosed between ∂0
i Ω and σi([0, 1]),

we assume int(E(σi)) ∩ int(E(σj)) = Ø for i 6= j where int denotes the interior part; we also
set

E(σ) :=
n⋃
i=1

E(σi). (2.7)

Remark 2.5. The injectivity property in (i’) guarantees that the sets E(σi) are simply connected
(not necessarily connected). The assumption that the interior int(E(σi)) of the sets E(σi) are
mutually disjoint is an hypothesis on the curves σi, which essentially translates into the fact that
these curves cannot cross transversally each other, but might overlap. Notice that int(E(σi)) might
be empty, as the case ∂0

i Ω = σi([0, 1]) is not excluded.

The strategy to show existence and regularity of minimizers of the functional (2.5) (see (3.1))
is to reduce to study the same functional on a restricted class of competitors, more precisely to
reduce our analysis to the case where the sets E(σi) are convex. Specifically, we define:

Wconv :=
{

(σ, ψ) ∈ Σconv ×BV (Ω) : ψ = 0 a.e. in E(σ)
}
,

Σconv :=
{
σ = (σ1, . . . , σn) ∈ Σ : σ satisfies (i)

}
,

(2.8)

and:

(i) For all i = 1, . . . , n the set E(σi) is convex.

As we have already said, the sets int(E(σi)) might also be empty, since from assumption (i’) we
cannot exclude that σi overlaps ∂0

i Ω: Recalling that Ω is convex, this can happen, by (ii’) and (i),
only if q̇ipi+1 is a straight segment3. Clearly,

Wconv ⊂ W. (2.9)

3We shall prove that, for a minimizer, σi([0, 1]) cannot intersect ∂DΩ unless ∂DΩ is locally a segment, see Theorem
5.1.
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Remark 2.6. Exploiting the characterization of the boundaries of convex sets given in Corollary
2.3, we see that conditions (i’),(ii’) and (i) for the curves in Σconv imply the following:

(P) For all i = 1, . . . , n there is a nondecreasing function θi : [0, 1] → R with θi(1) − θi(0) ≤ 2π,
and such that, setting γi(t) := (cos(θi(t)) , sin(θi(t))) for all t ∈ [0, 1], we have

σi(t) = qi + `(σi)

∫ t

0
γi(s) ds ∀t ∈ [0, 1].

Here we have denoted the length of σi by `(σi).

3 Existence of minimizers of F in Wconv

The main result of this section reads as follows.

Theorem 3.1 (Existence of a minimizer of F in Wconv). Let F and Wconv be as in (2.5) and
(2.8) respectively. Then there is a solution to

min
(σ,ψ)∈Wconv

F(σ, ψ). (3.1)

We prove Theorem 3.1 using the direct method. To this aim we need to introduce a notion of
convergence in Wconv.

Definition 3.2 (Convergence in Wconv). We say that the sequence (((σ)k, ψk))k ⊂ Wconv, with
(σ)k = ((σ1)k, ..., (σn)k), converges to (σ, ψ) ∈ Wconv if:

(a) (σi)k converges to σi uniformly in [0, 1] for all i = 1, . . . , n;

(b) (ψk)k converges to ψ weakly star in BV (Ω), i.e., ψk → ψ in L1(Ω) and Dψk ⇀ Dψ weakly
star in Ω in the sense of measures as k → +∞.

Remark 3.3. For any i = 1, . . . , n we have limk→+∞ dH(E((σi)k), E(σi)) = 0, since by property
(H3)

dH(E((σi)k), E(σi)) = dH(∂E((σi)k), ∂E(σi)) = dH((σi)k([0, 1]), σi([0, 1]))→ 0.

Lemma 3.4 (Compactness of Wconv). Let
(
((σ)k, ψk)

)
k
⊂ Wconv be a sequence with

supk F((σ)k, ψk) < +∞. Then
(
((σ)k, ψk)

)
k

admits a subsequence converging to an element of
Wconv.

Proof. We divide the proof in two steps.

Step 1: Compactness of (σ)k. For simplicity we use the notation σik = (σi)k for every k ∈ N and
i ∈ {1, . . . , n}. By condition (P) in Remark 2.6, for every k ∈ N and i ∈ {1, . . . , n} there exists a
non-decreasing function θik : [0, 1]→ R, θik(1)− θik(0) ≤ 2π, such that

σik(t) = qi + `(σik)

∫ t

0
γik(s)ds, γik(t) := (cos θik(t) , sin θik(t)) ∀t ∈ [0, 1],

and with σik(1) = pi+1. We observe that

`(σik) =

∫ 1

0
|σ′ik(t)|dt ≤ H1(∂Ω),
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since the orthogonal projection Πki : ∂Ω \ ∂0
i Ω → E(σik) is a contraction and H1(∂Ω \ ∂0

i Ω) ≤
H1(∂Ω). Hence, up to a (not relabelled) subsequence, `(σik)→ mi ∈ R+ as k → +∞. The number
mi is positive since, for all k and i, we have `(σik) ≥ |qi − pi+1| > 0. Moreover∫ 1

0
|θ′ik(t)|dt =

∫ 1

0
θ′ik(t)dt ≤ 2π;

hence, up to a subsequence, θki
∗
⇀ θi in BV ([0, 1]) and θi is non-decreasing with θi(1)− θi(0) ≤ 2π.

Furthermore γik
∗
⇀ γi in BV ([0, 1];R2) with γi(t) = (cos(θi(t)) , sin(θi(t))).

As a consequence σik → σi in W 1,1([0, 1];R2), where

σi(t) := qi +mi

∫ t

0
γi(s)ds = qi + `(σi)

∫ t

0
γi(s)ds.

Indeed we have

‖σ′ik − σ′i‖L1([0,1];R2) =

∫ 1

0
|`(σik)γik(t)− `(σi)γi(t)|dt

≤ H1(∂Ω)

∫ 1

0
|γik(t)− γi(t)|dt+ |`(σik)− `(σi)|. (3.2)

Now taking the limit as k → +∞ in (3.2) we conclude. Thus limk→+∞ σik = σi uniformly, hence
we also conclude that σi takes values in Ω.
It remains to show that E(σi) is convex for any i ∈ {1, . . . , n}. The uniform convergence of (σik)
yields

lim
k→+∞

dH(∂E(σik), ∂E(σi)) = 0.

This, together with property (H3), gives for h ≥ k,

dH(E(σik), E(σih)) = dH(∂E(σik), ∂E(σih))

≤dH(∂E(σik), ∂E(σi)) + dH(∂E(σih), ∂E(σi))→ 0 as k → +∞,

and so (E(σik))k∈N is a Cauchy sequence in the space of compact subsets of R2 endowed with the
Hausdorff distance (see (H2)). We find K ⊂ R2 convex compact such that dH(E(σik),K) → 0.
Eventually from (H3) we get

dH(∂K, ∂E(σi)) ≤ dH(∂E(σik), ∂K) + dH(∂E(σik), ∂E(σi))

=dH(E(σik),K) + dH(∂E(σik), ∂E(σi))→ 0 as k → +∞.

Therefore we conclude that ∂K = ∂E(σi), so E(σik)→ E(σi) in the Hausdorff distance, and E(σi)
is convex by property (H5).

Step 2: Compactness of (ψk). Setting Fk = ∪ni=1E(σik) we have

|Dψk|(Ω) ≤ A(ψk,Ω) ≤ F((σ)k, ψk) + |Fk| ≤ C < +∞ ∀k > 0,

where we used that |Fk| ≤ |Ω|. Therefore, up to a subsequence, ψk
∗
⇀ ψ in BV (Ω) as k → +∞. To

conclude it remains to show that ψ = 0 a.e. in E(σ) = ∪iE(σi). By limk→+∞ dH(Fk, E(σ)) = 0,
property (H6) yields

if x ∈ int(E(σ)) then x ∈ Fk definitely in k,

and hence since limk→+∞ ψk = ψ a.e. in Ω, we infer ψ = 0 a.e. in E(σ).
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Lemma 3.5 (Lower semicontinuity of F in Wconv). Let
(
((σ)k, ψk)

)
k
⊂ Wconv be a sequence

converging to (σ, ψ) ∈ Wconv. Then

F(σ, ψ) ≤ lim inf
k→+∞

F((σ)k, ψk).

Proof. By a standard argument [15], the functional

ψ ∈ BV (Ω) 7→ A(ψ; Ω) +

∫
∂Ω
|ψ − ϕ|dH1

is L1(Ω)-lower semicontinuous. We now show that the map σ ∈ Σconv 7→ |E(σ)| is continu-
ous. Let (σ)k ⊂ Σconv, σ ∈ Σconv, and suppose that (σi)k uniformly converges to σi for all
i = 1, . . . , n as k → +∞. Set Fk := ∪ni=1E((σi)k) and recall that E(σ) = ∪ni=1E(σi). By Remark
3.3 limh→+∞ dH(E((σi)k), E(σi)) = 0 for all i = 1, . . . , n and therefore dH(Fk, E(σ)) =: εk → 0+.

By invoking (H7) we have E(σ) ⊂ (Fk)
+
εk

. Moreover, since dH((Fk)
+
εk
, E(σ)) ≤ 2εk, we get

(Fk)
+
εk
⊆ (E(σ))+

2εk
, and so

|E(σ)| ≤ |(Fk)+
εk
| ≤ |(E(σ))+

2εk
|.

This implies
lim sup
k→+∞

|Fk| ≤ lim sup
k→+∞

|(Fk)+
εk
| ≤ |E(σ)|.

The converse inequality is a consequence of Fatou’s Lemma and (H6), indeed

|E(σ)| ≤
∫

Ω
lim inf
k→+∞

χFk(x)dx ≤ lim inf
k→+∞

∫
Ω
χFk(x)dx = lim inf

k→+∞
|Fk|.

The assertion of the lemma follows.

Proof of Theorem 3.1. By Lemma 3.4 and Lemma 3.5 we can apply the direct method and conclude.

4 Existence of a minimizer of F in W
In this section we extend the previous results to the minimization of F in the larger class W of
competitors.

One issue we find in minimizing the functional F on W, is that the class Σ in (2.6) is not
closed under uniform convergence, since a uniform limit of elements in Σ needs not be formed by
injective curves. To overcome this difficulty, in Theorem 4.1 we prove that the infimum of F over
W coincides with the infimum of F over Wconv. Thus in particular, by Theorem 3.1, we derive the
existence of a minimizer for F in W (Corollary 4.3).

Theorem 4.1 (Existence of a minimizer of F in W). There exists (σ, ψ) ∈ Wconv such that

F(σ, ψ) = inf
(s,ζ)∈W

F(s, ζ).

Moreover every connected component of E(σ) is convex.

Remark 4.2. Since the σi’s may overlap, the assumption that every E(σi) is convex does not
imply in general that every connected component of E(σ) = ∪ni=1E(σi) is convex.

As a direct consequence of Theorem 4.1 we have:
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Corollary 4.3. Let (σ, ψ) ∈ Wconv be a minimizer as in Theorem 3.1. Then (σ, ψ) is also a
minimizer of F in the class W.

For the reader convenience we split the proof of Theorem 4.1 into a sequence of intermediate
results: Lemmas 4.4, 4.5, 4.6, and the conclusion. First we need to introduce some notation.

Let (σ, ψ) ∈ W. We fix an extension ϕ̂ ∈ W 1,1(B) of ϕ on an open ball B ⊃ Ω. Extending ψ in
B \ Ω as ϕ̂ (still denoting by ψ such an extension), we can rewrite F(σ, ψ) as

F(σ, ψ) = A(ψ;B)− |E(σ)| − A(ψ;B \ Ω). (4.1)

Lemma 4.4. Let u ∈ BV (R×(0,+∞)) be a nonnegative function with compact support in an open
ball Br. Then ∫

(R×{0})∩Br
u(s) dH1(s) ≤ A(u;Br ∩ (R× (0,+∞)))− |EBr |, (4.2)

where
EBr := {x ∈ Br ∩ (R× (0,+∞)) : u(x) = 0}.

Notice that the function u is defined only on the half-plane R× (0,+∞), and in (4.2) the symbol
u(s) denotes its trace on the line R× {0}.

Proof. We denote by x = (x1, x2) ∈ R2 the coordinates in R2. Set H+ := R × (0,+∞), Z :=
(Br ∩H+)× R. Let

L := {(x, y) ∈ Z : x ∈ Ru, y ∈ (−u(x), u(x))} ⊂ R3,

where Ru is the set of regular points of u. We have, recalling the notation in Section 2.1,

2A(u;Br ∩H+) = A(u;Br ∩H+) +A(−u;Br ∩H+)

= H2(∂∗(Z ∩ SGu)) +H2(∂∗(Z ∩ SG−u))

= H2(Z ∩ ∂∗L) + 2|EBr |.
(4.3)

Suppose Br ∩ (R × {0}) = (a, b) × {0}. Then, looking at Gu as an integral current, a slicing
argument yields

H2(Z ∩ ∂∗L) ≥
∫ b

a
H1(Z ∩ {x1 = t} ∩ ∂∗L)dt

=

∫ b

a
H1(Z ∩ {x1 = t} ∩ (spt(Gu − G−u)))dt

≥
∫ b

a
2u(t, 0)dt = 2

∫
(R×{0})∩Br

u(s) dH1(s) ,

(4.4)

where the last inequality follows from the following fact: If we denote by 〚Gu〛t the slice of the
current 〚Gu〛 on the line {x1 = t}, then

∂〚Gu〛t = δ(t,0,u(t,0)) − δ(t,st,0) for a.e. t ∈ (a, b),

where st ≥ 0 is such that (t, st) = Br ∩ ({t} × R+), and in writing δ(t,st,0) we are using that u has
compact support in Br. This can be seen, for instance, by approximation of u by smooth maps4.
Therefore

∂(〚Gu〛t − 〚G−u〛t) = δ(t,0,u(t,0)) − δ(t,0,−u(t,0)) for a.e. t ∈ (a, b).

This justifies the last inequality in (4.4), and the proof is achieved.

4With respect to the strict convergence of BV (Br ∩ (R × {0})), which guarantees the approximation also of the
trace of u on ∂

(
Br ∩ (R× {0})

)
.

14



We now turn to two technical lemmas which are necessary to prove Theorem 4.1. We need to
introduce a class of sets whose boundaries are regular enough so that the trace of a BV function
on them is well-defined. Precisely we say that an open subset of R2 is piecewise Lipschitz if it can
be written as the union of a finite family of (not necessarily disjoint) Lipschitz open sets. Notice
that, by (2.1) if V ⊂⊂ U is a piecewise Lipschitz subset of an open and bounded U ⊂ R2, then

A(ψ, V ) = A(ψ, V ) +

∫
∂V
|ψ+ − ψ−|dH1, (4.5)

where ψ+ (respectively ψ−) denotes the trace of ψ V (respectively ψ (U \ V )) on ∂V .

Lemma 4.5 (Reduction of energy, I). For N ≥ 1 let F1, . . . , FN be nonempty connected subsets
of Ω, each Fi being the closure of a piecewise Lipschitz set, with Fi ∩ Fj = Ø for i, j ∈ {1, . . . , N},
i 6= j. Let ψ ∈ BV (B) satisfy

ψ = 0 a.e. in G :=
N⋃
i=1

Fi and ψ = ϕ̂ in B \ Ω . (4.6)

Then, for any i ∈ {1, . . . , N},

A(ψ?i ;B)− |G?i | − A(ψ?i ;B \ Ω) ≤ A(ψ;B)− |G| − A(ψ;B \ Ω),

where

G?i :=
⋃
j 6=i

Fj ∪ conv(Fi) and ψ?i :=

®
0 in conv(Fi)

ψ otherwise.
(4.7)

Proof. Fix i ∈ {1, . . . , N}. By the convexity of Ω, we have ψ = ψ?i in B \ Ω, hence it suffices to
show that

A(ψ?i ;B)− |G?i | ≤ A(ψ;B)− |G|.

We start by observing that we may assume Fi to be simply connected. Indeed, if not, we can
replace it with the set obtained by filling the holes of Fi, and by setting ψ equal to zero in the
holes. This procedure reduces the energy. Indeed, since Fi is piecewise Lipschitz, any hole H of
it satisfies ∂H ⊂ ∪nj=1∂Aj where Aj ’s are the Lipschitz sets whose union is Fi. Hence the trace of
ψ H on ∂H is well-defined, and the external trace ψ (B \H) vanishes.

We have that (∂conv(Fi)) \ ∂Fi is a countable union of segments. We will next modify ψ by
iterating at most countably many operations, setting ψ = 0 in the region between each of these
segments and ∂Fi.

Step 1: Base case. Let l be one of such segments, and U be the open region enclosed between
∂Fi and l. We define ψ′ ∈ BV (Ω) as

ψ′ :=

®
0 in U

ψ otherwise .

We claim that
A(ψ′;B)− |G′| ≤ A(ψ;B)− |G| , (4.8)

where G′ := G ∪ U . To prove the claim we introduce the sets

H := int(Fi ∪ U), V := U ∩ (∪j 6=iFj).
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Note that H is a piecewise Lipschitz set. By construction

|G′| = |H|+ | ∪j 6=i Fj | − |V | ,

and (4.8) will follow if we show that

A(ψ′;B)− |H| ≤ A(ψ;B)− | ∪j Fj |+ | ∪j 6=i Fj | − |V | = A(ψ;B)− |Fi ∪ V | .

Since |H| = |Fi ∪ V |+ |U \ V |, this can also be written as

A(ψ′;B) ≤ A(ψ;B) + |U \ V | .

In turn A(ψ′;B) = A(ψ′;U) + A(ψ′;B \ U) (and similarly for ψ), so we have reduced ourselves
with proving

A(ψ′;U) ≤ A(ψ;U) + |U \ V | . (4.9)

In view of the definition of ψ′ which is zero in U , we have5 A(ψ′;U) =
∫
l |ψ

+|dH1+|U | (ψ+ denoting
the trace of ψ (B \ U) on the segment l) implying that (4.9) is equivalent to∫

l
|ψ+|dH1 ≤ A(ψ;U)− |V | .

Finally, if ψU denotes the trace of ψ U on l, we write A(ψ;U) = A(ψ;U \ l) +
∫
l |ψ

+ − ψU |dH1,
and the expression above is equivalent to∫

l
|ψ+|dH1 ≤

∫
l
|ψ+ − ψU |dH1 +A(ψ;U \ l)− |V | . (4.10)

We now prove (4.10). Fix a Cartesian coordinate system (x1, x2) so that l belongs to the x1-axis
and U belongs to the half-plane {x2 > 0}. Let u be an extension of ψ in R×(0,+∞) which vanishes
outside U . Lemma 4.4, applied to u with the ball Br = B, implies∫

l
|ψU |dH1 =

∫
{x2=0}∩B

u dH1 ≤ A(u;B ∩ (R× (0,+∞)))− |EB| ≤ A(ψ;U \ l)− |V |.

Here the last inequality follows by recalling that ψ (and thus u) vanishes on V . From this and the
inequality

∫
l |ψ

+|dH1 ≤
∫
l |ψ

+ − ψU |dH1 +
∫
l |ψU |dH

1 the proof of (4.10) is achieved, so that (4.8)
follows.

Step 2: Iterative case. We set ∂(conv(Fi)) \ ∂Fi = ∪∞j=1lj with lj mutually disjoint segments.
For every h ≥ 1 we define the pair (ψh, Gh) as follows:

• if h = 1

ψ1 :=

®
0 in U1

ψ otherwise,
and G1 := G ∪ U1 ,

where U1 is the open region enclosed between ∂Fi and l1. We also define H1 := int(Fi ∪ U1).

• if h ≥ 2

ψh :=

®
0 in Uh

ψh−1 otherwise,
and Gh := Gh−1 ∪ Uh ,

where Uh is the open region enclosed between ∂Hh−1 and lh and Hh := int(Hh−1 ∪ Uh).

5Notice that we use the precise integral formula (4.5) thanks to the boundary regularity of U . More precisely we
have ∂U \ l ⊂ ∂Fi ⊂ ∪nj=1∂Aj , where Aj ’s are the Lispchitz sets whose union is Fi.
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By construction each Hh is simply connected and piecewise Lipschitz, Hh ⊂ Hh+1, Gh ⊂ Gh+1 ⊂ Ω
for every h ≥ 1, and moreover

lim
h→+∞

|Hh| = |conv(Fi)| , lim
h→+∞

|Gh| = |G?i | , (4.11)

where G?i := ∪∞h=1Gh = ∪j 6=iFj ∪ conv(Fi). For any h ≥ 2 we apply step 1, and after h iterations
we get

A(ψh;B)− |Gh| ≤ A(ψh−1;B)− |Gh−1| ≤ · · · ≤ A(ψ1;B)− |G1| ≤ A(ψ;B)− |G| . (4.12)

In particular,

|Dψh|(B) ≤ A(ψh;B) ≤ A(ψ;B) + |Gh \G| ≤ A(ψ;B) + |Ω \G| ,

for all h ≥ 1, and then we easily see that, up to a subsequence, ψh
∗
⇀ ψ?i in BV (B), where ψ∗i is

defined as in (4.7). Now the lower semicontinuity of A(·;B) yields

lim inf
h→+∞

A(ψh, B) ≥ A(ψ?i ;B) . (4.13)

Finally, gathering together (4.11)-(4.13) we infer

A(ψ?i ;B)− |G?i | ≤ lim inf
h→+∞

A(ψh;B)− lim
h→+∞

|Gh| ≤ A(ψ;B)− |G| .

This concludes the proof.

Lemma 4.6 (Reduction of energy, II). Let N ≥ 1, F1, . . . , FN , G and ψ be as in Lemma 4.5.

Then there exist ñ ∈ {1, . . . , N} and mutually disjoint closed convex sets ‹F1, . . . , ‹Fñ ⊂ Ω such that

G ⊂
ñ⋃
i=1

‹Fi =: G? , (4.14)

and
A(ψ?;B)− |G?| − A(ψ?;B \ Ω) ≤ A(ψ;B)− |G| − A(ψ;B \ Ω) , (4.15)

where

ψ? :=

®
0 in G?

ψ otherwise .
(4.16)

Proof. Base case: (h = 1). We take the sets

conv(F1) , F2 , . . . , FN and G?1 := ∪Ni=2Fi ∪ conv(F1) , (4.17)

and let

ψ?1 :=

®
0 in G?1
ψ otherwise .

Then by Lemma 4.5,

A(ψ?1;B)− |G?1| − A(ψ?1;B \ Ω) ≤ A(ψ;B)− |G| − A(ψ;B \ Ω) . (4.18)

The next step is not necessary if N = 1.
Iterative step: (h > 1). Suppose N > 1. Let 1 < h ≤ m ≤ N be natural numbers, and let

F1,h, . . . , Fm,h be connected closed subsets of Ω with nonempty interior that satisfy the following
property: There exists 1 ≤ k < h such that:
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(1) F1,h, . . . , Fk,h are convex;

(2) Fi,h ∩ Fj,h = Ø for all i, j 6= k, i 6= j.

Notice that, if m > 1, for h = 2 the sets

F1,2 := conv(F1) , F2,2 := F2 , . . . , FN,2 := FN ,

in the base case satisfy (1), (2) with m = N and k = 1. We then set Ik := {1 ≤ i ≤ m, i 6=
k : Fi,h∩Fk,h 6= Ø} and construct a new family of sets using the following algorithm, distinguishing
the two cases (a) and (b):

(a) If Ik = Ø we define the sets

Fi,h+1 :=

®
Fi,h for i 6= k + 1

conv(Fk+1,h) for i = k + 1 ,

and
G?h+1 := ∪mi=1Fi,h+1 ;

(b) if Ik 6= Ø, up to relabelling the indices, we may assume that

Ik = {k1, k1 + 1, . . . k2} \ {k},

for some k1 6= k2 with 1 ≤ k1 ≤ k ≤ k2 ≤ m, so that

{1, . . . ,m} \ {k} \ Ik = {1, . . . , k1 − 1} ∪ {k2 + 1, . . . ,m}.

Then we set

Fi,h+1 :=


Fi,h for i = 1, . . . , k1 − 1

conv(Fk,h ∪ (∪j∈IkFj,h)) for i = k1

Fi+k2−k1,h for i = k1 + 1, . . . ,m− k2 + k1 ,

and
G?h+1 := ∪m−k2+k1

i=1 Fi,h+1 .

In both cases (a) and (b) a direct check shows that the produced sets satisfy properties (1) and (2).
We define also the function

ψ?h+1 :=

®
0 in G?h+1

ψ?h otherwise .

Then, by induction, for all h we use Lemma 4.5, and in view of (4.18) we infer

A(ψ?h+1;B)− |G?h+1| − A(ψ?h+1;B \ Ω) ≤A(ψ?h;B)− |G?h| − A(ψ?h;B \ Ω)

≤ A(ψ;B)− |G| − A(ψ;B \ Ω) .

Conclusion. If N = 1 it is sufficient to apply only the base case. If instead N > 1 after a finite
number h? ≤ N of iterations we obtain a collections of mutually disjoint and closed convex sets
F1 := F1,h? , . . . , Fñ := Fñ,h? with 1 ≤ ñ ≤ n such that

G ⊂ ∪ñi=1Fi =: G? ,
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and
A(ψ?;B)− |G?| − A(ψ?;B \ Ω) ≤ A(ψ;B)− |G| − A(ψ;B \ Ω) ,

with

ψ? := ψ?h? =

®
0 in G?

ψ otherwise .

Proof of Theorem 4.1. By Theorem 3.1 it is enough to show that

inf
(σ,ψ)∈W

F(σ, ψ) = inf
(σ,ψ)∈Wconv

F(σ, ψ) .

Since from (2.9) it follows
inf

(σ,ψ)∈W
F(σ, ψ) ≤ inf

(σ,ψ)∈Wconv

F(σ, ψ),

we only need to show the converse inequality. Take a pair (σ̄, ψ̄) ∈ W; we suitably modify (σ̄, ψ̄)
into a new pair (σ, ψ) ∈ Wconv satisfying

F(σ, ψ) ≤ F(σ̄, ψ̄),

and this will conclude the proof.
Let E(σ̄1), . . . , E(σ̄n) be the closed sets with mutually disjoint interiors corresponding to σ̄ (as

in (ii’) of Section 2.3) and let G := ∪ni=1E(σ̄i). Consider the (closure of the) connected components

F1, . . . , FN of G, N ≤ n . Then by Lemma 4.6 there exist 1 ≤ ñ ≤ N and ‹F1, . . . , ‹Fñ ⊂ Ω mutually
disjoint closed and convex satisfying (4.14), (4.15) and (4.16). Therefore, by construction, for every

i = 1, . . . , n, qi and pi+1 belong to ‹Fj for a unique j ∈ {1, . . . , ñ}. For every j = 1, . . . , ñ we denote
by

qj1 , pj1+1, . . . , qjnj , pjnj+1,

the ones that belong to Fj . Then we conclude by taking (σ, ψ) ∈ Wconv with σ := (σ1, . . . , σn) and

σjk([0, 1]) =

{
qjkpjk+1 for k = 1, . . . , nj − 1

∂Fj \
(
∪njh=1∂

0
jh

Ω
)
∪
(
∪nj−1
h=1 qjhpjh+1

)
for k = nj ,

for every j = 1, . . . , ñ and ψ := ψ?.

5 Regularity of minimizers

In this section we investigate regularity properties of minimizers of F . The main result reads as
follows.

Theorem 5.1 (Structure of minimizers). Every minimizer (σ, ψ) ∈ Wconv of F in W, namely

F(σ, ψ) = min
(s,ζ)∈W

F(s, ζ) ,

satisfies the following properties:

1 Each connected component of E(σ) is convex;

2 ψ is positive and real analytic in Ω \ E(σ);
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3 If ∂Di Ω is not a segment for some i = 1, . . . , n, then ∂E(σ) ∩ ∂Di Ω = Ø, ψ is continuous up
to ∂Di Ω, and ψ = ϕ on ∂Di Ω;

4 If ∂Di Ω is a segment for some i = 1, . . . , n, then either ∂E(σ)∩ ∂Di Ω = Ø or ∂E(σ)∩ ∂Di Ω =
∂Di Ω. In the first case ψ is continuous up to ∂Di Ω and ψ = ϕ on ∂Di Ω.

Moreover, there is a minimizer (σ, ψ) ∈ Wconv such that

5 Ω ∩ ∂E(σ) consists of a finite number of disjoint curves of class C∞, and ψ is continuous
and null on ∂E(σ) \ ∂DΩ.

Remark 5.2. If ∂Di Ω is a straight segment nothing ensures that ∂E(σ) ∩ ∂Di Ω = Ø. However, if
this intersection is nonempty, then it must be ∂Di Ω ⊂ ∂E(σ). The prototypical example is given
by the classical catenoid, as explained in the introduction (see also Figure 1) where, if the basis of
the rectangle Ω = R2` is large enough, a solution ψ is identically zero, and ∂DΩ ⊂ ∂E(σ).

This also explains why in point 5 of Theorem 5.1 we write ∂E(σ) \ ∂DΩ, since ∂DΩ might be
partially included in ∂E(σ) if ∂Di Ω is a segment (for some i = 1, . . . , n).

For the reader convenience we divide the proof in a number of steps.

Lemma 5.3. Every minimizer (σ, ψ) ∈ Wconv of F in W satisfies 1, 2 and ψ = ϕ on ∂DΩ\∂E(σ).

Proof. Item 1 follows by Theorem 4.1. By [15, Theorem 14.13] we also have that ψ is real analytic
in Ω \E(σ). Together with the strong maximum principle [15, Theorem C.4], this implies that, in
Ω \E(σ), either ψ > 0 or ψ ≡ 0. On the other hand, since Ω is convex we can apply [15, Theorem
15.9] and get that ψ is continuous up to ∂DΩ \ ∂E(σ); in particular

ψ = ϕ > 0 on ∂DΩ \ ∂E(σ) , (5.1)

which in turn implies ψ > 0 in Ω \ E(σ) .

Lemma 5.4. Let Γ ⊂ R3 be a rectifiable, simple, closed and non-planar curve satisfying the fol-
lowing properties:

(1) Γ ⊂ ∂(F × R) for some closed bounded convex set F ⊂ R2 with nonempty interior;

(2) Γ is symmetric with respect to the horizontal plane R2 × {0};

(3) There are an arc Ùpq ⊂ ∂F , with endpoints p and q, and f ∈ C0(Ùpq∪{p, q}; [0,+∞)) such that
f is positive in Ùpq and

Γ ∩ {x3 ≥ 0} = Gf ∪ ({p} × [0, f(p)]) ∪ ({q} × [0, f(q)]). (5.2)

Let S be a solution to the classical Plateau problem for Γ, i.e., a disc-type area-minimizing surface
among all disc-type surfaces spanning Γ. Then:

(1′) βp,q := S∩(R2×{0}) ⊂ F is a simple curve of class C∞ joining p and q such that βp,q∩∂F =
{p, q};

(2′) S is symmetric with respect to R2 × {0};

(3′) The surface S+ := S ∩ {x3 ≥ 0} is the graph of a function ψ̃ ∈W 1,1(Up,q) ∩ C0(Up,q), where

Up,q ⊂ int(F ) is the open region enclosed between Ùpq and βp,q. Moreover ψ̃ is analytic in Up,q;
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(4′) The curve βp,q is contained in the closed convex hull of Γ, and F \ Up,q is convex.

Remark 5.5. If the function f in (3) is such that f(p) = f(q) = 0 then (5.2) becomes Γ ∩ {x3 ≥
0} = Gf . For later convenience we prove Lemma 5.4 under the more general assumption (3).

Proof. Even though several arguments are standard, we give the proof for completeness.
Step 1: βp,q is a simple curve joining p and q.

Let B1 ⊂ R2 be the open unit disc centred at the origin and let Φ = (Φ1,Φ2,Φ3) : B1 → S ⊂ R3

be a parametrization of S with Φ(∂B1) = Γ, that is harmonic, conformal, and therefore analytic
in B1, continuous up to ∂B1. Further by (1) it follows that Φ is an embedding and hence injective
(see [18] and also [10, page 343]).
By assumption (5.2) we have {w ∈ ∂B1 : Φ3(w) = 0} = {Φ−1(p, 0),Φ−1(q, 0)}, so that Φ3 changes
sign only twice on ∂B1. By applying Rado’s lemma (see e.g. [10, Lemma 2, page 295]) to the
harmonic function Φ3 we deduce that ∇Φ3 6= 0 in B1 and in particular {w ∈ B1 : Φ3(w) > 0} and
{w ∈ B1 : Φ3(w) < 0} are connected, and {w ∈ B1 : Φ3(w) = 0} is a simple smooth curve in B1

joining Φ−1(p, 0) and Φ−1(q, 0). By the injectivity of Φ we have that S ∩ (R2 × {0}) = Φ({w ∈
B1 : Φ3(w) = 0}) is a simple smooth curve joining p and q.

Step 2: S is symmetric with respect to the horizontal plane R2 × {0}.
By step 1 the sets {w ∈ B1 : Φ3(w) ≥ 0} and {w ∈ B1 : Φ3(w) ≤ 0} are simply connected and the
two surfaces

S+ := Φ({w ∈ B1 : Φ3(w) ≥ 0}) , S− := Φ({w ∈ B1 : Φ3(w) ≤ 0})

have the topology of the disc. We assume without loss of generality that H2(S+) ≤ H2(S−). Let

Sym(S+) := {(x′, x3) : (x′,−x3) ∈ S+} , S̃ := S+ ∪ Sym(S+) .

Then S̃ is symmetric surface of disc-type with ∂S̃ = Γ and

H2(S̃) = 2H2(S+) ≤ H2(S+) +H2(S−) = H2(S) .

In particular S̃ is a symmetric solution to the Plateau problem for Γ. Further S = S̃ on a relatively
open subset of S; hence, since they are real analytic surfaces, they must coincide, S = S̃.

Step 3: S+ is the graph of a function ψ̃ ∈W 1,1(Up,q) ∩ C0(Up,q).
To show this it is enough to check the validity of the following

Claim: Every vertical plane Π is tangent to int(S) at most at one point.

In fact by step 2 this readily implies that int(S+) has no points with vertical tangent plane and
hence we can conclude. We prove the claim arguing by contradiction as in [6, page 97], that is we
assume there is a vertical plane Π tangent to int(S) at x′ and x′′ with x′ 6= x′′. We define the linear
map dν(x) := (x−x′) ·ν with ν a unit normal to Π, so that clearly Π = {x ∈ R3 : dν(x) = 0}. Since
F is convex Π∩ (∂F ×{0}) contains at most two points. By properties (1)-(3) each of these points
is either the projection on the horizontal plane of one or two points of Π ∩ Γ, or the projection on
the horizontal plane of one of the vertical segments {p}× [0, f(p)] and {q}× [0, f(q)]. Hence Π∩Γ
contains either:

• at most two points and a segment;

• two segments;

• four points.
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Without loss of generality we restrict our analysis to the last case (the others are simpler to treat),
namely we assume that there are four (clockwise ordered) points w1, . . . , w4 ∈ ∂B1 such that
Π∩Γ = {Φ(w1), . . . ,Φ(w4)}, that is dν ◦Φ(wi) = 0 for i = 1, . . . , 4. We may also assume dν ◦Φ > 0
on w̆1w2 ∪ w̆3w4 and dν ◦Φ < 0 on w̆2w3 ∪ w̆4w1. Here w̆iwj denotes the relatively open arc in ∂B1

joining wi and wj for i, j ∈ {1, . . . , 4}.
Notice that the function dν ◦Φ: B1 → R is harmonic in B1, continuous up to ∂B1 and vanishes at
w1, . . . , w4; hence, by classical arguments [19, Section 437] we see that the set {w ∈ B1 : dν ◦Φ = 0},
in a neighbourhood of w′ := Φ−1(x′) (respectively w′′ := Φ−1(x′′)), is the union of a number
m ≥ 2 of analytic curves crossing at w′ (respectively w′′). Thus near w′ and w′′ the set {w ∈
B1 : dν ◦ Φ(w) > 0} is the union of at least two disjoint open regions A1,1, A1,2 and A2,1, A2,2

respectively such that A1,1 ∩ A1,2 = {w′}, A2,1 ∩ A2,2 = {w′′}. Moreover each Ai,j belongs either
to the connected component of {w ∈ B1 : dν ◦Φ(w) > 0} containing w̆1w2 or to the one containing
w̆3w4. Up to relabelling the indices we have two possibilities.

Case 1: A1,1 andA1,2 belong to the same connected component containing w̆1w2. Then we can find two
simple curves α1, α2 contained in A1,1 and A1,2 respectively, that connect w′ to a point in w̆1w2

and such that the region enclosed by the curve α1 ∪ α2 intersects {w ∈ B1 : dν ◦ Φ(w) < 0}.
Since dν ◦ Φ > 0 on α1 ∪ α2 by the maximum principle we have a contradiction.

Case 2: A1,1 and A2,1 belong to the connected component containing w̆1w2 while A1,2 and A2,2 belong
to the connected component containing w̆3w4. Then we can find four simple curves αi,j
(with i, j = 1, 2) contained respectively in Ai,j , such that α1,1 (respectively α2,1) connects w′

(respectively w′′) to a point in w̆1w2 and α1,2 (respectively α2,2) connects w′ (respectively w′′)
to w̆3w4. Then the region enclosed by the curve ∪i,jαi,j intersects {w ∈ B1 : dν ◦ Φ(w) < 0},
while dν ◦ Φ > 0 on ∪i,jαi,j , which again by the maximum principle gives a contradiction.

Thus the claim follows.

Step 4: The curve βp,q is contained in the closed convex hull of Γ, and the set F \Up,q is convex.
Let π(Γ) ⊂ ∂F be the projection of Γ onto the plane R2 × {0}. By [10, Theorem 3, pag. 343] the
relative interior of S is strictly contained in the convex hull of Γ, thus in particular the curve βp,q
(respectively βp,q \{p, q}) is contained (respectively strictly contained) in the same half-plane (with
respect to the line pq) that contains π(Γ).

Now, assume by contradiction that F \ Up,q is not convex. Then there are p′, q′ ∈ βp,q with the
following properties:

• The open region U ′ enclosed by βp,q and the segment p′q′ is non-empty and contained in Up,q;

• the points p and q and the set U ′ lie on the same side with respect to the line containing p′q′.

Let then dW : R3 → R be an affine function that vanishes on the vertical plane containing p′q′

and is positive on the half-space W+ containing p, q and U ′. We now observe that Γ ∩W+ is the
union of two connected subcurves Γ1 and Γ2, containing p and q respectively. As a consequence
Φ−1(Γ1) = w̆1w2 and Φ−1(Γ2) = w̆3w4 for some w1, w2, w3, w4 ∈ ∂B1 (clockwise oriented).
On the other hand since dW > 0 on U ′ we can find t′ ∈ ∂U ′ \ p′q′ such that dW ◦ Φ(Φ−1(t′)) =
dW (t′) > 0 with Φ−1(t′) ∈ B1.
Once again by the harmonicity of dW ◦ Φ: B1 → R we deduce the existence of a curve α ⊂ {w ∈
B1 : dW ◦ Φ(w) > 0} joining Φ−1(t′) to one of w̆1w2 and w̆3w4. Hence Φ(α) ⊂ Φ(B1) = ψ̃(Up,q) is
a curve joining t′ to one of Γ1 and Γ2, say Γ1. This implies that the projection π(Φ(α)) of Φ(α)
onto the horizontal plane R2 × {0} is a curve contained in Up,q that connects t′ to π(Γ1). So in
particular, the curve π(Φ(α)) cannot be included in the half-plane W+. But this contradicts the
fact that α ⊂ {w ∈ B1 : dW ◦ Φ(w) > 0} (this is because the values of dW at a point x and π(x)
are the same).
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We need also the following technical results on the distance function dF from a convex set F .

Lemma 5.6. Let F ⊂ R2 be bounded, closed and convex. Then ∆ dF ∈ L∞loc(R2 \ F ) ∩ L1(B \ F )
for every ball B with F ⊂⊂ B.

Proof. By [8, Theorem 3.6.7 pag. 75] it follows that dF ∈ C1,1
loc (R2 \ F ), hence ∇2 dF ∈ L∞loc(R2 \

F ;R2×2). Therefore we only have to check that ∆ dF ∈ L1(B \ F ).
Let η > 0 be fixed sufficiently small. Select (fk)k∈N ⊂ C1

c (R2;R2) such that fk → ∇ dF in
W 1,1(B \ F+

η/2) as k → +∞. By the divergence theorem we have∫
B\F+

η

divfk dx =

∫
∂B∪∂(F+

η )
fk · νη dH1, (5.3)

with νη the outer unit normal to ∂B ∪ ∂(F+
η ). By taking the limit as k →∞ we get

lim
k→+∞

∫
B\F+

η

divfk dx =

∫
B\F+

η

∆ dF dx , (5.4)

and

lim
k→+∞

∫
∂B∪∂(F+

η )
fk · νη dH1 =

∫
∂B∪∂(F+

η )
∇ dF · νη dH1 , (5.5)

where (5.5) follows by using that ∂(F+
η ) is of class C1,1 and hence fk (∂B∪∂(F+

η ))→ ∇dF (∂B∪
∂(F+

η )) in L1(∂B∪∂(F+
η )). Since dF is convex we have ∆ dF ≥ 0 a.e. in R2\F , moreover |∇dF | = 1

in R2 \ F ; then gathering together (5.3), (5.4), (5.5) we have∫
B\F+

η

|∆ dF | dx =

∫
B\F+

η

∆ dF dx =

∫
∂B∪∂(F+

η )
∇ dF · νη dH1 ≤ H1(∂B ∪ ∂(F+

η )) ≤ C,

with C > 0 independent of η. By the arbitrariness of η > 0, the thesis follows.

Corollary 5.7. Let U ⊂ R2 be a bounded open set with Lipschitz boundary. Let F ⊂ R2 be closed
and convex such that U∩F = Ø and let ψ ∈W 1,1(U)∩L∞(U)∩C0(U). Then the following formula
holds:

−
∫
U
ψ∆ dF dx =

∫
U
∇ψ · ∇ dF dx−

∫
∂U
ψ γ dH1,

where ν is the outer normal to ∂U and γ denotes the normal trace of ∇ dF on ∂U .

Proof. We have |∇ dF | = 1 in R2 \ F , moreover since U ∩ F = Ø, by Lemma 5.6 we deduce also
∆ dF ∈ L1(U). Therefore the thesis readily follows by applying [3, Theorem 1.9].

Remark 5.8. The normal trace γ of ∇ dF on ∂F equals 1 H1-a.e. on ∂F . Indeed, from Corollary
5.7 we have that for all ϕ ∈ C1

c (R2;R2) it holds

−
∫
R2\F+

η

ϕ∆ dF dx =

∫
R2\F+

η

∇ϕ · ∇ dF dx−
∫
∂(F+

η )
ϕγ dH1

=

∫
R2\F+

η

∇ϕ · ∇ dF dx−
∫
∂(F+

η )
ϕdH1,

where we have used that ∂(F+
η ) being a level set of dF , it results ∇ dF = νη on it. Letting η → 0

and using that ∆ dF ∈ L1(B \ F ) for all balls B, we infer

−
∫
R2\F

ϕ∆ dF dx =

∫
R2\F

∇ϕ · ∇ dF dx−
∫
∂F
ϕdH1.

By the arbitrariness of ϕ and again by Corollary 5.7, the claim follows.
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Lemma 5.9. Let F ⊂ Ω be closed and convex with non-empty interior, and let δ > 0. Let
ψ ∈W 1,1((F+

δ \ F ) ∩ Ω) ∩ L∞((F+
δ \ F ) ∩ Ω) ∩ C0((F+

δ \ F ) ∩ Ω). Then

lim
ε→0+, ε<δ

∫
Ω∩∂(F+

ε )
ψ dH1 =

∫
Ω∩∂F

ψ dH1 . (5.6)

Proof. Let ε ∈ (0, δ) and Tε := (F+
ε \ F ) ∩ Ω. Since Tε ∩ F = Ø, by Corollary 5.7 we get

−
∫
Tε

ψ∆ dF dx =

∫
Tε

∇ψ · ∇ dF dx−
∫
∂Tε

ψ γ dH1 . (5.7)

By Remark 5.8 we have

−
∫
Tε

ψ∆ dF dx =

∫
Tε

∇ψ · ∇ dF dx

+

∫
Ω∩∂F

ψ dH1 −
∫

Ω∩∂(F+
ε )
ψ dH1 −

∫
((F+

ε )\F )∩∂Ω
ψ γ dH1 .

(5.8)

Now

lim
ε→0+

∣∣∣ ∫
Tε

∇ψ · ∇ dF dx
∣∣∣ ≤ lim

ε→0+

∫
Tε

|∇ψ| dx = 0 , (5.9)

and

lim
ε→0+

∣∣∣ ∫
(F+
ε \F )∩∂Ω

ψ γ dH1
∣∣∣ ≤ lim

ε→0+

∫
(F+
ε \F )∩∂Ω

ψ dH1 = 0 . (5.10)

Moreover, since ∆ dF ∈ L1(Tε) by Lemma 5.6, we deduce also

lim
ε→0+

∣∣∣ ∫
Tε

−ψ∆ dF dx
∣∣∣ ≤ ‖ψ‖L∞ lim

ε→0+

∫
Tε

|∆ dF | dx = 0 . (5.11)

Finally gathering together (5.8)-(5.11) we infer (5.6).

Remark 5.10. Let F , δ and ψ be as in Lemma 5.9. Let α be any connected component of Ω∩∂F ,
and for every 0 < ε < δ let αε be the corresponding component of Ω ∩ ∂(F+

ε ); namely, if πF is the
orthogonal projection onto the convex closed set F , setting

α̂ε := {x ∈ ∂(F+
ε ) : πF (x) ∈ α},

then one has αε := α̂ε ∩ Ω. Arguing as in Lemma 5.9, we can show that

lim
ε→0+

∫
αε

ψ dH1 =

∫
α
ψ dH1 .

Lemma 5.11. Let (σ, ψ) ∈ Wconv be a minimizer as in Theorem 4.1. Then there is a minimizer
(σ̂, ψ̂) ∈ Wconv with the following properties:

1. ∂E(σ̂) ∩ ∂Ω = ∂E(σ) ∩ ∂Ω;

2. ψ̂ is continuous and null on Ω ∩ ∂E(σ̂).

The second condition means essentially that ψ̂ vanishes on Ω∩ ∂E(σ̂) when considering its trace
from the side of Ω \ E(σ̂).

Proof. We know by Lemma 5.3 that (σ, ψ) satisfies the following properties:
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• Each connected component of E(σ) is convex;

• ψ is positive and real analytic in Ω \ E(σ);

• ψ = ϕ on ∂DΩ \ ∂E(σ).

In what follows we are going to modify (σ, ψ) near each arc of ∂E(σ) using an iterative argument
in order to get a new minimizer (σ̂, ψ̂) ∈ Wconv that satisfies 1-2. To this aim we denote by F1, . . . , Fk
with 1 ≤ k ≤ n the closed connected components of E(σ); we also set δ0 := mini 6=j dist(Fi, Fj) > 0.
Moreover by the first property we deduce that Ω ∩ ∂E(σ) is the union of an at most countable
family of pairwise disjoint arcs with endpoints in ∂Ω, i.e.,

Ω ∩ ∂E(σ) =

k⋃
i=1

∞⋃
j=1

αi,j ,

where αi,j is a connected component of Ω ∩ ∂Fi for i ∈ {1, . . . , k}, j ≥ 16.

Step 1: Base case. Let α be one of the connected components of Ω ∩ ∂F , with F := Fi for
some i ∈ {1, . . . , k}. In this step we construct a new minimizer (σα, ψα) ∈ Wconv such that
∂E(σα) ∩ ∂Ω = ∂E(σ) ∩ ∂Ω and ψα is continuous and null on α′, where α′ ⊂ Ω ∩ ∂E(σα) is a
suitable curve that replaces α and has the same endpoints as α.

For ε ∈ (0, δ0/2) we define the stripe

T̂ε(α) := {x ∈ Ω \ F : dist(x, α) < ε} ⊂ F+
ε \ F ,

and consider the planar curve αε in Ω defined as in Remark 5.10. Let Tε(α) be the connected
component of T̂ε(α) whose boundary contains αε. Let Lε be defined as

Lε := ∂Tε(α) ∩ ∂Ω,

so that in particular ∂Tε(α) = α ∪ αε ∪Lε . Let p, q ∈ ∂Ω be the endpoints of α (and then also the
endpoints of αε ∪ Lε, which are independent of ε). We define the curves

Γε := Γ+
ε ∪ Γ−ε , Γ+

ε := Gψ αε
∪ Gϕ Lε

∪ l+ , Γ−ε := G−ψ αε
∪ G−ϕ Lε

∪ l− ,
where

l+ := ({p} × [0, ϕ(p)]) ∪ ({q} × [0, ϕ(q)]) , l− := ({p} × [−ϕ(p), 0]) ∪ ({q} × [−ϕ(q), 0]) .

By observing that Lε ⊂ ∂DΩ \ ∂E(σ) and recalling that ψ = ϕ on ∂DΩ \ ∂E(σ) we deduce that Γε
is a closed non-planar curve in R3 that satisfies assumptions (1)-(3) of Lemma 5.4. In particular a
solution Sε to the classical Plateau problem corresponding to Γε is a disc-type surface such that:

1. βεp,q := Sε ∩ (R2 × {0}) is a simple curve of class C∞ joining p and q;

2. Sε is symmetric with respect to the horizontal plane;

3. the surface S+
ε := Sε∩{x3 ≥ 0} is the graph of a function ψεp,q ∈W 1,1(U εp,q)∩C0(U

ε
p,q), where

U εp,q ⊂ F ∪ Tε(α) is the open region enclosed between αε ∪ Lε and βεp,q;

4. the curve βεp,q is contained in the closed convex hull of Γε and (F ∪ Tε(α)) \ U εp,q is convex.

We would like to compare the area of S+
ε with the area of the generalized graph of ψ on Tε(α).

This is not immediate since, due to the fact that ψ is just BV , we cannot, a priori, conclude that
this generalized graph is of disc-type7. Hence we proceed as follows. We fix ε̄ ∈ (0, δ0/2); we claim

6Notice that at this stage we do not have any information about the geometry of the set ∂Ω∩ ∂E(σ), and Ω∩ ∂Fi
could a priori be the union of infinitely many connected components.

7This is due to the jump of ψ on ∂F which is, in general, not regular enough.
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that

A(ψε̄p,q;U
ε̄
p,q) ≤ A(ψ;Tε̄(α)) +

∫
α
ψ Tε̄(α) dH1 . (5.12)

Since ψ is analytic in Tε̄(α) ⊂ Ω \ E(σ), by Lemma 5.9 and Remark 5.10 it follows that

lim
ε→0+, ε<ε̄

∫
αε

ψ Tε̄(α) dH1 =

∫
α
ψ Tε̄(α) dH1 . (5.13)

We take
T ε̄ε (α) := Tε̄(α) \ Tε(α) and Yε̄ := Sε ∪ Gψ T ε̄ε (α) ∪ G−ψ T ε̄ε (α) .

Since Sε is a disc-type surface and ψ is analytic in T ε̄ε (α) it turns out that Yε̄ is also a disc-type
surface satisfying ∂Yε̄ = Γε̄. Therefore using that Sε̄ and Sε are solutions to the Plateau problems
corresponding to Γε̄ and Γε respectively, we have

H2(Sε̄) ≤ H2(Yε̄) = 2H2(Gψ T ε̄ε (α)) +H2(Sε)

≤ 2H2(Gψ Tε̄(α)) + 2

∫
αε∪Lε

ψ Tε̄(α) dH1

= 2H2(Gψ Tε̄(α)) + 2

∫
αε

ψ Tε̄(α) dH1 + 2

∫
Lε

ψ Tε̄(α) dH1 .

Passing to the limit as ε→ 0+, by (5.13) and the fact that H1(Lε)→ 0, we obtain

H2(Sε̄) ≤ 2H2(Gψ Tε̄(α)) + 2

∫
α
ψ Tε̄(α) dH1,

which yields

A(ψε̄p,q;U
ε̄
p,q) = H2(S+

ε̄ ) ≤ H2(Gψ Tε̄(α)) +

∫
α
ψ Tε̄(α) dH1 = A(ψ;Tε̄(α)) +

∫
α
ψ Tε̄(α) dH1,

and (5.12) is proved.
We now define Eα := (E(σ) ∪ Tε̄(α)) \ U ε̄p,q and

ψα :=


0 in Eα

ψε̄p,q in U ε̄p,q
ψ otherwise .

By (5.12) and using that U ε̄p,q ∪ Eα = E(σ) ∪ Tε̄(α) we derive

A(ψα; Ω)− |Eα| = A(ψε̄p,q;U
ε̄
p,q) +A(ψ; Ω \ (U ε̄p,q ∪ Eα))

= A(ψε̄p,q;U
ε̄
p,q) +A(ψ; Ω \ (Tε̄(α) ∪ E(σ)))

≤ A(ψ;Tε̄(α)) +

∫
α
ψ Tε̄(α) dH1 +A(ψ; Ω \ Tε̄(α))− |E(σ)|

= A(ψ; Ω)− |E(σ)| .

(5.14)

It remains to construct σα ∈ Σconv. Without loss of generality we may assume

σ1([0, 1]), . . . , σh([0, 1]) ⊂ F and σh+1([0, 1]), . . . , σn([0, 1]) 6⊂ F
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for some h ≤ n, notice that if h = n the second family of curves is empty. Then we define
σα := (σα1 , . . . , σ

α
h , σh+1, . . . , σn) ∈ Lip([0, 1]; Ω)n where if h > 1

σαi ([0, 1]) =

{
qipi+1 for i = 1, . . . , h− 1

∂(F ∪ Tε̄(α) \ U ε̄p,q) \
(

(∪hi=1∂
0
i Ω) ∪ (∪h−1

i=1 qipi+1)
)

for i = h,

where qipi+1 is the segment joining qi to pi+1; if instead h = 1 we simply set

σα1 ([0, 1]) = ∂(F ∪ Tε̄(α) \ U ε̄p,q) \ ∂0
1Ω.

Clearly the pair (σα, ψα) belongs to Wconv, and by (5.14) it satisfies

F(σα, ψα) = F(σ, ψ) .

Moreover ∂E(σα) ∩ ∂Ω = ∂E(σ) ∩ ∂Ω and ψα is continuous and null on α′, where

α′ := βε̄p,q ⊂ Ω ∩ ∂E(σα) . (5.15)

Summarizing, we have replaced the curve α with α′, ensuring that the new function ψα is now
continuous and null on α′.

Step 2: Iterative case. In this step we construct a minimizer (σ̂, ψ̂) ∈ Wconv that satisfies the
thesis by iterating step one at most a countable number of times.
We first consider F = F1 and apply step 1 for each α1,j with j ≥ 1. More precisely we define the
pair (σ1,j , ψ1,j) ∈ Wconv as follows:

• if j = 1 we set
(σ1,1, ψ1,1) := (σα1,1 , ψα1,1) ,

where (σα1,1 , ψα1,1) ∈ Wconv is a minimizer constructed as in step 1 with α = α1,1;

• if j > 1 we set
(σ1,j , ψ1,j) := (σ

α1,j

1,j−1, ψ
α1,j

1,j−1) ,

where (σ
α1,j

1,j−1, ψ
α1,j

1,j−1) ∈ Wconv is a minimizer constructed as in step 1 with (σ, ψ) = (σ1,j−1, ψ1,j−1)
and α = α1,j .

Since F(σ1,j , ψ1,j) = F(σ, ψ) for all j ≥ 1, by Lemma 3.4 it follows that (σ1,j , ψ1,j) converges to
(σ1, ψ1) ∈ Wconv in the sense of Definition 3.2. Moreover by construction we have that for every
j ≥ 1 the pair (σ1,j , ψ1,j) satisfies

∂E(σ1,j) ∩ ∂Ω = ∂E(σ) ∩ ∂Ω ,

and ψ1,j is continuous and null on ∪jh=1α
′
1,h ⊂ Ω ∩ ∂E(σ1,j) ∩ ∂F1, where α′1,h are defined as in

(5.15). As a consequence (σ1, ψ1) satisfies

∂E(σ1) ∩ ∂Ω = ∂E(σ) ∩ ∂Ω ,

and ψ1 is continuous and null on ∪∞j=1α
′
1,j ⊂ Ω ∩ ∂E(σ1) ∩ ∂F1. Moreover

Ω ∩ ∂E(σ1) = (∪∞j=1α
′
1,j) ∪ (∪ki=2 ∪∞j=1 αi,j) ,

Now repeating the argument above for the pair (σ1, ψ1) and i = 2 we obtain a new minimizer
(σ2, ψ2) ∈ Wconv satisfying

∂E(σ2) ∩ ∂Ω = ∂E(σ) ∩ ∂Ω ,
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ψ2 is continuous and null on ∪∞j=1(α′1,j ∪ α′2,j) ⊂ Ω ∩ ∂E(σ1) ∩ (∂F1 ∪ ∂F2) and

Ω ∩ ∂E(σ2) = (∪2
i=1 ∪∞j=1 α

′
i,j) ∪ (∪ki=3 ∪∞j=1 αi,j) .

Iterating this process a finite number of times we finally get a minimizer (σ̂, ψ̂) ∈ Wconv with the
required properties.

We are finally in the position to conclude the proof of Theorem 5.1.

Proof of Theorem 5.1. Let (σ, ψ) ∈ Wconv be any minimizer as in Theorem 4.1. By Lemma 5.3 we
know that (σ, ψ) satisfies properties 1, 2 and

ψ = ϕ on ∂DΩ \ ∂E(σ) .

Moreover by Lemma 5.11 there is a minimizer (σ̂, ψ̂) ∈ Wconv such that

∂E(σ̂) ∩ ∂Ω = ∂E(σ) ∩ ∂Ω , (5.16)

and ψ̂ is continuous and null on Ω ∩ ∂E(σ̂).
It remains to show that if ∂Di Ω is not straight for some i = 1, . . . , n, then

∂E(σ) ∩ ∂Di Ω = ∂E(σ̂) ∩ ∂Di Ω = Ø .

If instead ∂Di Ω is straight for some i = 1, . . . , n we prove that property 4 holds. Eventually we show
that there is a minimizer that satisfies property 5. This will be achieved in a number of steps.

Step 1: Assuming that there is i ∈ {1, . . . , n} such that ∂Di Ω is not straight, we show that
∂Di Ω ∩ E(σ̂) = Ø. To prove this we proceed by analysing three different cases.

Case A: Suppose, to the contrary, that there is a non-straight8 arc Ùab (with endpoints a 6= b) in

∂Di Ω ∩ ∂E(σ̂). Thus in particular Ùab ⊂ ∪nj=1σ̂j([0, 1]). We may assume without loss of generality

that Ùab ⊂ σ̂1([0, 1]).
Then we consider the curves

Γ := Γ+ ∪ Γ− , Γ+ := G
ϕ ıab ∪ l+ , Γ− := G−ϕ ıab ∪ l− , (5.17)

where

l+ := ({a} × [0, ϕ(a)]) ∪ ({b} × [0, ϕ(b)]) , l− := ({a} × [−ϕ(a), 0]) ∪ ({b} × [−ϕ(b), 0]) .

In this way Γ satisfies the assumptions of Lemma 5.4 and hence a solution S to the Plateau problem
spanning Γ is a disc-type surface such that:

i. βa,b := S ∩ (R2 × {0}) is a simple curve of class C∞ joining a and b;

ii. S is symmetric with respect to R2 × {0};

iii. the surface S+ := S ∩{x3 ≥ 0} is the graph of a function ψa,b ∈W 1,1(Ua,b)∩C0(Ua,b), where

Ua,b ⊂ E(σ̂1) is the open region enclosed between Ùab and βa,b;

iv. the curve βa,b is contained in the closed convex hull of Γ and E(σ̂1) \ Ua,b is convex.

8Namely, Ùab is not contained in a line.
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The inclusion Ua,b ⊂ E(σ̂1) follows since Ùab ⊂ σ̂1([0, 1]), E(σ̂1) is convex, and S is contained in the
convex envelope of Γ. Furthermore by the minimality of S one has

A(ψa,b;Ua,b) = H2(S+) <

∫ıab ϕdH1 =

∫ıab |ψ̂ − ϕ| dH1 . (5.18)

Here the strict inequality follows since the vertical wall spanning Γ given by {(x′, x3) : x′ ∈ Ùab, x3 ∈
[−ϕ(x′), ϕ(x′)]} is a disc-type surface but, since Ùab is not a segment, cannot be a solution to the
Plateau problem. We now consider the pair (σ̃, ψ̃) ∈ Wconv given by

σ̃ := (σ̃1, σ̂2, . . . , σ̂n) , ψ̃ :=


0 in ‹E ,
ψa,b in Ua,b ,

ψ̂ otherwise ,

(5.19)

where σ̃1 is such that σ̃1([0, 1]) = (σ̂1([0, 1])\Ùab)∪βa,b and ‹E := E(σ̂)\Ua,b = E(σ̃). Then noticing

that ψ̂ = 0 in Ua,b, E(σ̂) = E(σ̃) ∪ Ua,b, and recalling (5.18), we get

F(σ̃, ψ̃) = A(ψ̃; Ω)− |E(σ̃)|+
∫
∂Ω
|ψ̃ − ϕ| dH1

= A(ψ̂; Ω \ Ua,b) +A(ψa,b;Ua,b)− |E(σ̃)|+
∫
∂Ω
|ψ̃ − ϕ| dH1

= A(ψ̂; Ω) +A(ψa,b;Ua,b)− |E(σ̂)|+
∫
∂Ω
|ψ̂ − ϕ| dH1

< A(ψ̂; Ω)− |E(σ̂)|+
∫
∂Ω
|ψ̃ − ϕ| dH1 +

∫ıab |ψ̂ − ϕ| dH1

= A(ψ̂; Ω)− |E(σ̂)|+
∫
∂Ω
|ψ̂ − ϕ| dH1 = F(σ̂, ψ̂) ,

where the penultimate equality follows from the fact that ψ̃ is continuous and equal to ϕ on Ùab
while the traces of ψ̃ and ψ̂ coincide on ∂Ω \ Ùab. This contradicts the minimality of (σ̂, ψ̂).

Case B : Suppose by contradiction that the set ∂Di Ω ∩ ∂E(σ̂) contains an isolated point c or

has a straight segment cc′ as isolated connected component. Then there are two arcs Ùab ⊂ ∂Di Ω

and ã′b′ ⊂ ∂E(σ̂) with either a 6= a′ or b 6= b′ (and with endpoints a 6= b and a′ 6= b′) such that

aa′ ∩ bb′ = Ø and Ùab ∩ ã′b′ = {c} (respectively Ùab ∩ ã′b′ = cc′). Notice also that, since ∂Di Ω is not

straight, the segment cc′ does not coincide with ∂Di Ω and hence the arc Ùab can be chosen so that
it properly contains the segment cc′. We consider the curves

Γ := Γ+ ∪ Γ− , Γ+ := G
ϕ ıab ∪ Gψ̂ aa′

∪ G
ψ̂ bb′

, Γ− := G−ϕ ıab ∪ G−ψ̂ aa′
∪ G−ψ̂ bb′

. (5.20)

Notice that Γ± connect a′ to b′. By applying again Lemma 5.4 to the nonplanar curve Γ and
arguing as in case A we obtain the contradiction also in this case.

Case C : More generally, assume by contradiction that both the sets ∂Di Ω∩∂E(σ̂) and ∂Di Ω\∂E(σ̂)

are nonempty. Then we can find a not flat arc Ùab ⊂ ∂Di Ω such that the following holds9: there are

9This is a consequence of the fact that Ùab \ ∂E(σ̂) is relatively open in Ùab, so it is an at most countable union of
disjoint relatively open arcs.
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pairs of points {cj , dj}j∈N ⊂ ∂Di Ω ∩ ∂E(σ̂) such that the arcs ãd0, ĉ0b, and {c̄jdj}∞j=1 are mutually
disjoint and Ùab \ ∂E(σ̂) = ãd0 ∪ (∪∞j=1c̄jdj) ∪ ĉ0b .

Without loss of generality, we might assume that all the points cj , dj ∈ σ̂1([0, 1]). For all j ≥ 1

we denote by Vj the region enclosed by c̄jdj and ∂E(σ̂)10. We now argue as in case B and choose
a′, b′ ∈ σ̂1([0, 1]). Additionally, let V0 = V a

0 ∪ V b
0 , with V a

0 (respectively V b
0 ) be the region enclosed

between ∂E(σ̂) and aa′∪ãd0 (∂E(σ̂) and bb′∪ĉ0b, respectively). We finally define Γ correspondingly,
as in (5.20). Again by Lemma 5.4 the solution S to the Plateau problem corresponding to Γ satisfies
properties i.-iv. with a′ and b′ in place of a and b respectively. Moreover by the minimality of S
for every N ≥ 1 there holds11

A(ψa′,b′ ;Ua′,b′) = H2(S+) ≤
∫ıab ϕdH1 −

∫
ãd0∪ĉ0b

ϕdH1 −
N∑
j=1

∫
c̄jdj

ϕdH1 +

N∑
j=0

A(ψ, Vj) . (5.21)

In particular by taking the limit as N →∞ in (5.21) we get

A(ψa′,b′ ;Ua′,b′) = H2(S+) ≤
∫ıab\∂E(σ̂)

ϕdH1 +A(ψ̂,∪∞j=0Vj) . (5.22)

Let (σ̃, ψ̃) ∈ Wconv be defined as in (5.19), then observing that ψ̂ = 0 in Ua′,b′ \ (∪∞j=0Vj), E(σ̂) =
E(σ̃) ∪ (Ua′,b′ \ ∪∞j=0Vj) and using (5.22) we deduce

F(σ̃, ψ̃) = A(ψ̂; Ω \ Ua′,b′) +A(ψa′,b′ ;Ua′,b′)− |E(σ̃)|+
∫
∂Ω
|ψ̃ − ϕ| dH1

= A(ψ̂; Ω \ (∪∞j=0Vj)) +A(ψa′,b′ ;Ua′,b′)− |E(σ̂)|+
∫
∂Ω
|ψ̃ − ϕ| dH1

≤ A(ψ̂; Ω \ (∪∞j=0Vj))− |E(σ̂)|+
∫
∂Ω
|ψ̃ − ϕ| dH1 +

∫ıab∩∂E(σ̂)
ϕdH1 +A(ψ̂;∪∞j=0Vj)

= A(ψ̂; Ω)− |E(σ̂)|+
∫
∂Ω
|ψ̂ − ϕ| dH1 = F(σ̂, ψ̂) ,

which in turn implies
F(σ̃, ψ̃) ≤ F(σ̂, ψ̂) . (5.23)

To conclude we need to show that the inequality in (5.23) is strict. To this aim we choose c ∈
{cj}∞j=1. Consider the curves Γ1 and Γ2 defined as follows

Γ1 := Γ+
1 ∪ Γ−1 , Γ+

1 := Gϕ ıac ∪ Gψ̂ aa′
∪ l+ , Γ−1 := G−ϕ ıac ∪ G−ψ̂ aa′

∪ l− ,

Γ2 := Γ+
2 ∪ Γ−2 , Γ+

2 := G
ϕ Ùcb ∪ Gψ̂ bb′

∪ l+ , Γ−2 := G−ϕ Ùcb ∪ G−ψ̂ bb′
∪ l− ,

where
l+ := ({c} × [0, ϕ(c)]) , l− := ({c} × [−ϕ(c), 0]) .

Let S1 and S2 be the solutions to the Plateau problem corresponding to Γ1 and Γ2 respectively, so
that properties i.-iv. are satisfied with c in place of b′ and a′ respectively. By the minimality of S
we have

A(ψa′,b′ , Ua′,b′) < A(ψa′,c, Ua′,c) +A(ψc,b′ , Uc,b′) . (5.24)

10These regions are simply connected since cj , dj ∈ σ̂1([0, 1]).
11The right-hand side is the area of the surface given by the (positive) subgraph of ϕ on Ùab \ ∪Nj=1c̄jdj and the

graph of ψ̂ on the region ∪Nj=0Vj , which is of disc-type. To see this we use that the trace of ψ̂ on the subarcs of ∂E(σ̂)
between the points cj and dj is zero (and between a′ and d0, and d0 and b′).
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On the other hand by arguing as above12 we conclude

A(ψa′,c, Ua′,c) ≤
∫ıac∪∂E(σ̂)

ϕdH1 +A(ψ̂,∪j∈I1Vj ∪ V a
0 ) , (5.25)

and

A(ψc,b′ , Uc,b′) ≤
∫Ùcb∪∂E(σ̂)

ϕdH1 +A(ψ̂,∪j∈I2Vi ∪ V b
0 ) , (5.26)

where I1 := {j : c̄jdj ⊂ Ùac} and I2 := {j : c̄jdj ⊂ Ùcb}. Gathering together (5.24)-(5.26) we derive

A(ψa′,b′ , Ua′,b′) <

∫ıab∪∂E(σ̂)
ϕdH1 +A(ψ̂,∪∞j=0Vj) ,

which in turn implies
F(σ̃, ψ̃) < F(σ̂, ψ̂) ,

and thus the contradiction.

Step 2: Assuming there is i ∈ {1, . . . , n} such that ∂Di Ω is a straight segment, and we show that
either ∂E(σ̂) ∩ ∂Di Ω = Ø or ∂E(σ̂) ∩ ∂Di Ω = ∂Di Ω.
Suppose by contradiction that ∂E(σ̂) ∩ ∂Di Ω 6= Ø and also ∂Di Ω \ ∂E(σ̂) 6= Ø. Without loss of
generality we can restrict to the case ∂E(σ̂)∩ ∂Di Ω = ∂F ∩ ∂Di Ω with F any connected component
of E(σ̂). Since F is convex and ∂Di Ω is a segment ∂F ∩ ∂Di Ω has to be connected, i.e., it is either
a single point a or a segment aa′ 6= ∂Di Ω.
In both cases we then consider a (small enough) ball B centred at a such that B ∩ E(σ̂) = B ∩ F
(in the second case we also require that the radius of B is smaller than aa′).

If ∂F ∩ ∂Di Ω = {a} we let {p, q} := ∂B ∩ ∂F and {b, c} := ∂B ∩ ∂Di Ω (with b, p and c, q lying on
the same side with respect to a). Then we define the curves

Γ := Γ+ ∪ Γ− , Γ+ := Gϕ bc ∪ Gψ Ùbp ∪ Gψ Ùcq , Γ− := G−ϕ bc ∪ G−ψ Ùbp ∪ G−ψ Ùcq ,
where Ùbp, Ùcq denote the arcs in ∂B joining b to p and c to q respectively.

If ∂F ∩ ∂Di Ω = aa′ we let {p, q} := ∂B ∩ ∂F and {b, c} := ∂B ∩ ∂Di Ω where we identify q and c.
Then we consider the curves

Γ := Γ+∪Γ− , Γ+ := Gϕ bc∪Gψ Ùbp∪({c}×[0, ϕ(c)]) , Γ− := G−ϕ bc∪G−ψ Ùbp∪({c}×[−ϕ(c), 0]) .

By applying again Lemma 5.4 to Γ and arguing as above we get the contradiction.

Step 3: We show that there is a minimizer (σ̃, ψ̃) that satisfies property 5.
We first notice that ψ̂ is continuous and null on ∂E(σ̂) \ ∂DΩ. Moreover by steps 1 and 2 it follows
that ∂E(σ̂) ∩ Ω is the union of a finite number of pairwise disjoint Lipschitz curves each of them
joining each pi for i = 1, . . . , n to each of the qj for some j = 1, . . . , n. To conclude it is enough to
replace each curve, without increasing the energy, with a smooth one having the same endpoints.
More precisely, let γ be any of such curves. Reasoning as in the proof of Lemma 5.11 step 1, we can
replace (σ̂, ψ̂) with a new minimizer (σγ , ψγ) ∈ Wconv such that ∂E(σγ) ∩ ∂Ω = ∂E(σ) ∩ ∂Ω and
ψγ = 0 on γ′, where γ′ ⊂ ∂E(σγ) ∩ Ω is a suitable smooth curve that replaces γ and has the same
endpoints of γ. In particular ψγ is continuous and null on ∂E(σγ) \ ∂DΩ. Eventually iterating this
procedure for each curve in ∂E(σ̂) \ ∂Ω we can construct a new minimizer (σ̃, ψ̃) with the required
properties.

12With the arc Ùac (Ùcb, respectively) in place of Ùab.
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5.1 The example of the catenoid containing a segment

Consider the setting depicted in Figure 4. Here Ω = R2l = (0, 2l) × (−1, 1), n = 1, ∂DΩ =
({0, 2l} × (−1, 1)) ∪ ((0, 2l) × {−1}) and ∂0Ω = (0, 2l) × {1}, p = (0, 1), q = (2l, 1). The map

ϕ is ϕ(w1, w2) =
»

1− w2
2, and thus vanishes on [0, 2l] × {−1}; for this reason this case is not

covered by our analysis. However we can find a solution as in Theorem 1.1 also in this case, by an
approximation procedure.

Precisely, for ε > 0 and consider an approximating sequence (ϕ)ε of continuous Dirichlet data,
with Gϕε Lipschitz, which tends to ϕ uniformly and satisfy ϕε = 0 on ∂0Ω, ϕε > 0 on ∂DΩ. Let
(σε, ψε) be a solution as in Theorem 1.1 corresponding to the boundary datum ϕε; as F(σε, ψε)
is equibounded13, arguing as in the proof of Lemma 3.4, we can see that, up to a subsequence,
((σε, ψε)) tends to some (σ, ψ) ∈ Wconv, which minimizes the functional F with Dirichlet condition
ϕ. In this case however we cannot guarantee that σ does not touch ∂DΩ, even if this is not a
straight segment. This is essentially due to the presence of the portion [0, 2l]× {−1} of ∂Ω where
ϕ is zero, which does not allow to apply the arguments used in the proof of Theorem 5.1.

In particular, it can be seen that if l is large enough, the solution (σ, ψ) splits and becomes
degenerate, being ψ ≡ 0 and the functional F pays only the area of two vertical half discs of
radius 1. Under a certain threshold instead the solution satisfies the regularity properties stated
in Theorem 5.1, and in particular ψ = ϕ on ∂DΩ, and σ is the graph of a smooth convex function
passing through p and q. We refer to [6] for details and comprehensive proofs of these facts.

6 Comparison with the parametric Plateau problem: The case
n = 1, 2

In this section we compare the solutions provided by Theorems 3.1 and 5.1 with the solutions to
the classical Plateau problem in parametric form. Specifically, motivated by the example of the
catenoid, we will restrict our analysis to the classical disc-type and annulus-type Plateau problem.
These configurations correspond to the cases n = 1 and n = 2 respectively, i.e., the Dirichlet
boundary ∂DΩ is either an open arc or the union of two open arcs of ∂Ω with disjoint closure.
Due to the highly involved geometric arguments, we do not discuss the case n > 2, which requires
further investigation.

Thus, in this section we assume n = 1, 2. We first discuss the case n = 1 which is a consequence
of Lemma 5.4, and then the case n = 2.

6.1 The case n = 1

Let n = 1. Let p1, q1 ∈ ∂Ω, ∂DΩ = ∂D1 Ω, ϕ be as in Section 2.3 and consider the space curve
γ1 := Gϕ ∂D1 Ω joining p1 to q1. We define the curve

Γ := γ1 ∪ Sym(γ1),

where Sym(γ1) := G−ϕ ∂D1 Ω, and consider the classical Plateau problem in parametric form span-
ning Γ. More precisely we look for a solution to

m1(Γ) := inf
Φ∈P1(Γ)

∫
B1

|∂w1Φ ∧ ∂w2Φ|dw, (6.1)

13We can indeed always bound it from above by |Ω|+
∫
∂DΩ
|ϕε|dH1.
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where

P1(Γ) :=
{

Φ ∈ H1(B1;R3) ∩ C0(B1;R3) such that Φ ∂B1 : ∂B1 → Γ

is a weakly monotonic parametrization of Γ
}
.

(6.2)

Then the following holds:

Theorem 6.1 (The disc-type Plateau problem (n = 1)). Let Φ ∈ P1(Γ) be a solution to (6.1)
and let

S+ := Φ(B1) ∩ {x3 ≥ 0} and S− := Φ(B1) ∩ {x3 ≤ 0}.

Then there exists a minimizer (σ, ψ) ∈ Wconv of F in W satisfying properties 1-5 of Theorem 5.1
and such that

S± = G±ψ (Ω\E(σ))
. (6.3)

Conversely let (σ, ψ) ∈ Wconv be a minimizer of F in W satisfying properties 1-5 of Theorem 5.1.
Then the disc-type surface

S := G
ψ (Ω\E(σ))

∪ G−ψ (Ω\E(σ))

is a solution to the classical Plateau problem associated to Γ, i.e., there is Φ ∈ P1(Γ) solution to
(6.1) such that Φ(B1) = S.

6.2 The case n = 2

Let n = 2. Let Ω, p1, q1, p2, q2 ∈ ∂Ω, ∂DΩ, ∂D1 Ω, ∂D2 Ω, ϕ be as in Section 2.3 and consider the
space curve γi := Gϕ ∂Di Ω joining pi to qi for i = 1, 2. We define the curves

Γ1 := γ1 ∪ Sym(γ1), Γ2 := γ2 ∪ Sym(γ2),

where Sym(γi) := G−ϕ ∂Di Ω for i = 1, 2. We consider the classical Plateau problem in parametric
form spanning the curve

Γ := Γ1 ∪ Γ2.

Precisely we set Σann ⊂ R2 to be an open annulus enclosed between two concentric circles C1 and
C2, and we look for a solution to

m2(Γ) := inf
Φ∈P2(Γ)

∫
Σann

|∂w1Φ ∧ ∂w2Φ|dw, (6.4)

where

P2(Γ) :=
{

Φ ∈ H1(Σann;R3) ∩ C0(Σann;R3) such that Φ(∂Σann) = Γ and Φ Cj : Cj → Γj

is a weakly monotonic parametrization of Γj for j = 1, 2
}
.

Here the crucial assumption that we require is that the curves Γj have the orientation inherited
by the orientation14 of the graph of ϕ on ∂Dj Ω.
Due to the specific geometry of Γ we can appeal to Theorem 6.4 below (which is a consequence
of [18, Theorem 1 and Theorem 5]) to deduce the existence of a minimizer. This might not be true

14Once we fix an orientation of ∂Ω, the orientation of the graph Gϕ of ϕ is inherited, since Gϕ is standardly defined
as the push-forward of the current of integration on ∂DΩ by the map x 7→ (x, ϕ(x)).
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for a more general Γ. To this purpose for j = 1, 2 we consider the minimization problem defined in
(6.1) for the curve Γj , namely

m1(Γj) = inf
Φ∈P1(Γj)

∫
B1

|∂w1Φ ∧ ∂w2Φ|dw, (6.5)

with P1(Γj) defined as in (6.2).

Remark 6.2. By standard arguments one sees that m2(Γ) ≤ m1(Γ1) +m1(Γ2). Indeed, two disc-
type surfaces can be joined by a very thin tube (with arbitrarily small area) in order to change the
topology of the two discs into an annulus-type surface.

Definition 6.3. Let Φ ∈ P2(Γ) be a solution to (6.4). We say that Φ is a MY solution to (6.4)
if Φ is harmonic, conformal, and it is an embedding. In particular, in such a case, m2(Γ) =
H2(Φ(Σann)).

Theorem 6.4 (Meeks and Yau). Suppose m2(Γ) < m1(Γ1) +m1(Γ2). Then there exists a MY
solution Φ ∈ P2(Γ) to (6.4). Furthermore, every minimizer of (6.4) is a MY solution.

Proof. See [18].

This result allows to prove the following:

Theorem 6.5 (The annulus-type Plateau problem (n = 2)). The following hold:

(i) Suppose m2(Γ) < m1(Γ1) +m1(Γ2). Let Φ ∈ P2(Γ) be a MY solution to (6.4) and let

S := Φ(Σann), S+ := S ∩ {x3 ≥ 0}, S− := S ∩ {x3 ≤ 0}.

Then there exists a minimizer (σ, ψ) ∈ Wconv of F in W satisfying properties 1-5 of Theorem
5.1 and such that

S± = G±ψ (Ω\E(σ))
. (6.6)

(ii) Suppose m2(Γ) = m1(Γ1) + m1(Γ2). For j = 1, 2 let Φj ∈ P1(Γj) be a solution to (6.5) and
let Sj := Φj(B1). Let also

S+ := (S1 ∪ S2) ∩ {x3 ≥ 0} and S− := (S1 ∪ S2) ∩ {x3 ≤ 0}.

Then S1∩S2 = Ø and there exists a minimizer (σ, ψ) ∈ Wconv of F in W satisfying properties
1-5 of Theorem 5.1 and such that (6.6) holds.

(iii) Conversely, let (σ, ψ) ∈ Wconv be a minimizer of F in W satisfying properties 1-5 of Theorem
5.1. Then the surface

S := G
ψ (Ω\E(σ))

∪ G−ψ (Ω\E(σ))

is either an annulus-type surface or the union of two disjoint disc-type surfaces, and is a
solution to the classical Plateau problem associated to Γ. More precisely, either there is a
MY solution Φ ∈ P2(Γ) to (6.4) with S = Φ(Σann), or there are Φj ∈ P1(Γj) solutions to
(6.5) for j = 1, 2, such that S = Φ1(B1) ∪ Φ2(B1) and Φ1(B1) ∩ Φ2(B1) = Ø.
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6.3 Toward the proofs of Theorems 6.1 and 6.5: preliminary lemmas

In order to prove Theorems 6.1 and 6.5, we collect some technical lemmas.

Lemma 6.6. Let n = 2, and (σ, ψ) ∈ Wconv be a minimizer of F in W satisfying properties 1-5 of
Theorem 5.1.

(a) Suppose that Ω \ E(σ) is simply connected. Then there exists an injective map Φ ∈W 1,1(Σann;R3)∩
C0(Σann;R3) such that

Φ(Σann) = G
ψ (Ω\E(σ))

∪ G−ψ (Ω\E(σ))
,

and Φ Cj : Cj → Γj is a weakly monotonic parametrization of Γj for j = 1, 2.

(b) Suppose that Ω \ E(σ) consists of two connected components, whose closures F1 and F2

are disjoint, with Fj ⊇ ∂Dj Ω for j = 1, 2. Then there exist two injective maps Φ1,Φ2 ∈
W 1,1(B1;R3) ∩ C0(B1;R3) such that

Φj(B1) = Gψ Fj
∪ G−ψ Fj

, j = 1, 2,

and Φj ∂B1 : ∂B1 → Γj is a weakly monotonic parametrization of Γj for j = 1, 2.

Proof. (a). Since Ω \ E(σ) is simply connected, the maps‹Ψ± ∈W 1,1(Ω \ E(σ);R3) ∩ C0(Ω \ E(σ);R3), ‹Ψ±(p) := (p,±ψ(p)), (6.7)

are disc-type parametrizations of G±ψ (Ω\E(σ))
.

Now, using a homeomorphism of class H1 between Ω \ E(σ) and a disc, we can parametrize15

Ω \ E(σ) with a half-annulus, obtained as the region enclosed between two concentric half-circles
with endpoints A1, A2, A3, A4 (in the order) on the same diameter, and the two segments A1A2

and A3A4. Then we construct a parametrization Ψ+ of G
ψ (Ω\E(σ))

from the half-annulus, such

that Ψ+(A1) = (q1, 0), Ψ+(A2) = (p2, 0), Ψ+(A3) = (q2, 0), Ψ+(A4) = (p1, 0), and sending weakly
monotonically the two half-circles into γ1 and γ2, and the two segments into σ1 and σ2, respectively.
Similarly, we construct a parametrization Ψ− of G−ψ (Ω\E(σ))

from another copy of a half-annulus,

just by setting Ψ− := Sym(Ψ+) (the symmetric of Ψ+ with respect to the plane containing Ω).
Eventually, glueing the two half-annuli along the two segments, we obtain a parametrization Φ
of G

ψ (Ω\E(σ))
∪ G−ψ (Ω\E(σ))

defined on Σann. By the continuity of ψ on ∂DΩ we have that Φ
parametrizes Γi on Ci, i = 1, 2.

(b). It is sufficient to argue as in case (a), by replacing Ω \ E(σ) in turn with F1 and F2 and
Σann with B1 to find Φ1 and Φ2, respectively.

Lemma 6.7. Let n = 2, and (σ, ψ) ∈ Wconv be a minimizer of F in W satisfying properties 1-5 of
Theorem 5.1.

(a) Suppose that Ω \ E(σ) is simply connected and

H2(G
ψ (Ω\E(σ))

∪ G−ψ (Ω\E(σ))
) ≤ m2(Γ). (6.8)

Let Φ be the parametrization given by Lemma 6.6 (a). Then there exists a reparametrization of
the annulus Σann such that, using it to reparametrize Φ, the corresponding map (still denoted
by Φ) belongs to P2(Γ) and solves (6.4).

15For instance, we can consider a (flat) disc-type Plateau solution spanning ∂(Ω \ E(σ)). Then we can employ a
Lipschitz homeomorphism between the disc and the half-annulus.
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(b) Suppose that Ω \ E(σ) consists of two connected components whose F1 and F2 are disjoint,
and Fj ⊃ ∂Dj Ω for j = 1, 2, and

H2(Gψ Fj
∪ G−ψ Fj

) ≤ m1(Γj), j = 1, 2.

Let Φ1,Φ2 be the maps given by Lemma 6.6 (b). Then, for j = 1, 2, there is a reparametriza-
tion of Φj belonging to P1(Γj) and solving (6.5).

Proof. (a). Fix a point p̃ ∈ Ω \ E(σ) and set ‹Ψ+
k := ‹Ψ+ Hk, where ‹Ψ is defined in (6.7) and Hk

is the connected component of‹Hk := {p ∈ Ω \ E(σ) : dist(p, ∂(Ω \ E(σ))) ≥ 1/k}

containing p̃.
For k ∈ N large enough Hk is simply connected with rectifiable boundary. In particular ‹Ψ+

k

parametrizes a disc-type surface, and using the regularity of ψ in Ω \ E(σ), it follows that ‹Ψ+
k

is Lipschitz continuous. Furthermore, ‹Ψ+
k ∂Hk parametrizes a Jordan curve, and these curves

converge, in the sense of Fréchet (see [10, Theorem 4, Section 4.3]) as k → +∞, to the curve having

image ‹Ψ+(∂(Ω \ E(σ)))) =: λ. Notice that

λ = σ1 ∪ σ2 ∪ γ1 ∪ γ2. (6.9)

Call λk the image of the curve given by ‹Ψ+
k ∂Hk. Let P1(λk), P1(λ), m1(λk), m1(λ) be defined as

in (6.2) and (6.1) with λk and λ in place of Γ respectively. Up to reparametrizing B1 (see footnote

15), ‹Ψ+
k belongs to P1(λk), therefore

H2(Gψ Hk
) =

∫
Hk

|∂w1
‹Ψ+
k ∧ ∂w2

‹Ψ+
k |dw ≥ m1(λk) ∀k ≥ 1.

We claim that equality holds in the previous expression, namely

H2(Gψ Hk
) = m1(λk) ∀k ≥ 1. (6.10)

Indeed, assume by contradiction that H2(Gψ Hk0
) > m1(λk0) for some k0 ≥ 1, and pick δ > 0 with

H2(Gψ Hk0
) ≥ δ +m1(λk0). (6.11)

Take Φk0 ∈ P1(λk0) a solution to m1(λk0). For k > k0, as Hk0 ⊂ Hk, by a glueing argument16, we
can find Φk ∈ P1(λk) such that Φk(B1) = Φk0(B1) ∪ Gψ (Hk\Hk0

). Thus by (6.11) we have

H2(Gψ Hk
) ≥δ +m1(λk0) +H2(Gψ (Hk\Hk0

))

=δ +H2(Φk0(B1)) +H2(Gψ (Hk\Hk0
)) ≥ δ +m1(λk) ∀k > k0.

Letting k → +∞, since λk → λ in the sense of Fréchet, we have m1(λk)→ m1(λ) [10, Theorem 4,
Section 4.3]. In particular, from the previous inequality we infer

F(σ, ψ) = H2(G
ψ (Ω\E(σ))

) ≥ δ +m1(λ).

16This is done, for instance, by glueing an external annulus to a disc, and using Φk0 from the disc, and a
reparametrization of G

ψ (Hk\Hk0
)

from the annulus.
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Hence we conclude

H2(G
ψ (Ω\E(σ))

∪ G−ψ (Ω\E(σ))
) ≥ 2δ + 2m1(λ) ≥ 2δ +m2(Γ),

which contradicts (6.8). In the last inequality we have used that 2m1(λ) ≥ m2(Γ); this follows
from the fact that a disc-type parametrization of a minimizer for m1(λ) can be reparametrized on
a half-annulus (as in the proof of Lemma 6.6), and glued with another reparametrization of it on
the other half-annulus, so to obtain a parametrization of an annulus-type surface spanning Γ which
is admissible for (6.4). Hence claim (6.10) follows.

Now, since ψ is Lipschitz continuous on Hk, for all k ∈ N there exists a parametrization Ψk ∈
H1(B1;R3) ∩ C0(B1;R3) with Ψk(∂B1) = λk monotonically which solves the classical disc-type
Plateau problem spanning λk and such that

Ψk(B1) = Gψ Hk
.

Letting k → +∞ and using that the Dirichlet energy of Ψk equals the area of Gψ Hk
, we conclude

that (Ψk) tends to a map Ψ ∈ H1(B1;R3) ∩ C0(B1;R3) with Ψ(∂B1) = λ weakly monotonically,
and that is a solution of the classical disc-type Plateau problem with

Ψ(B1) = G
ψ (Ω\E(σ))

.

Arguing as in the proof of Lemma 6.6 we finally get a parametrization Φ : Σann → R3 which belongs
to P2(Γ) and parametrizes G

ψ (Ω\E(σ))
∪ G−ψ (Ω\E(σ))

. This concludes the proof of (a).

(b). It is sufficient to argue as in case (a), by replacing Ω \ E(σ) in turn with F1 and F2 and
Σann with B1 to find Φ1 and Φ2, respectively.

We can now start the proof of Theorems 6.1 and 6.5.

6.4 Proof of Theorem 6.1

Proof of Theorem 6.1. Let Φ ∈ P1(Γ) be a solution to (6.1). The curve Γ satisfies the assumptions
of Lemma 5.4, hence the minimal disc-type surface S := Φ(B1) satisfies the following properties:

• βp1,q1 := S ∩ (R2 × {0}) ⊂ Ω is a simple curve of class C∞ joining p1 and q1 and such that
βp1,q1 ∩ ∂Ω = {p1, q1};

• S is symmetric with respect to R2 × {0};

• the surface S+ = S∩{x3 ≥ 0} is the graph of a function ψ̃ ∈W 1,1(Up1,q1)∩C0(Up1,q1), where

Up1,q1 ⊂ Ω is the open region enclosed between ∂D1 Ω and βp1,q1 . Moreover ψ̃ is analytic in
Up1,q1 ;

• the curve βp1,q1 is contained in the closed convex hull of Γ, and Ω \ Up1,q1 is convex.

Let (σ, ψ) ∈ Wconv be given by

σ := σ1 and ψ :=

®
0 in Ω \ Up1,q1

ψ̃ in Up1,q1 ,

where σ1([0, 1]) = βp1,q1 . Clearly (6.3) holds. Moreover H2(S) = 2F(σ, ψ) = m1(Γ). It remains
to show that this is a minimizer of F . Let (σ′, ψ′) ∈ Wconv be a minimizer of F that satisfies
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properties 1-5 of Theorem 5.1 and consider the disc-type surface with boundary Γ given by S′ :=
G
ψ′ (Ω\E(σ′)) ∪ G−ψ′ (Ω\E(σ′)). Since (σ, ψ) is admissible for F , we deduce

H2(S′) = 2F(σ′, ψ′) ≤ m1(Γ).

Then we are in the hypotheses of Lemma 6.7 and so there is a parametrization Φ′ ∈ P1(Γ) with
Φ′(B1) = S′. By minimality of (σ′, ψ′) and of S we have

H2(S) ≤ H2(S′) = 2F(σ′, ψ′) ≤ 2F(σ, ψ) = H2(S). (6.12)

Hence (σ, ψ) is a minimizer of F in W and Φ′ is a solution to (6.1).
Conversely, let (σ, ψ) ∈ Wconv be a solution that satisfies properties 1-5 of Theorem 5.1. Let

Φ̃ be a solution to (6.1); then we can find (σ̃, ψ̃) ∈ W whose doubled graph S̃ = G
ψ̃ (Ω\E(σ̃))

∪
G−ψ̃ (Ω\E(σ̃))

satisfies

H2(S) = 2F(σ, ψ) ≤ 2F(σ̃, ψ̃) = H2(S̃) = m1(Γ).

Arguing as before we find a map Φ ∈ P1(Γ) parametrizing S. We conclude that Φ is a solution to
(6.1), and the theorem is proved.

6.5 Proof of Theorem 6.5

The proof of Theorem 6.5 is much more involved, so we divide it in a number of steps. We start
with a result (which can be seen as the counterpart of Lemma 5.4 for the Plateau problem defined
in (6.4)) that will be crucial to prove (i). In what follows we denote by π : R3 → R2 × {0} the
orthogonal projection.

Theorem 6.8. Suppose m2(Γ) < m1(Γ1) +m1(Γ2) and let Φ ∈ P2(Γ) be a MY solution to (6.4).
Then the minimal surface Φ(Σann) satisfies the following properties:

(1) The set π(Φ(Σann)) is simply connected in Ω; Ω ∩ ∂π(Φ(Σann)) consists of two disjoint em-
bedded curves β1 and β2 of class C∞ joining q1 to p2, and q2 to p1, respectively. Moreover,
the closed region Ei enclosed between ∂0

i Ω and βi, i = 1, 2, is convex;

(2) Φ(Σann) is symmetric with respect to the plane R2 × {0};

(3) Φ(Σann) ∩ (R2 × {0}) = β1 ∪ β2;

(4) S+ := Φ(Σann) ∩ {x3 ≥ 0} is Cartesian. Precisely, it is the graph of a function ψ̃ ∈
W 1,1(int(π(Φ(Σann)))) ∩ C0(π(Φ(Σann))).

The proof of Theorem 6.8 is a consequence of Lemmas 6.9, 6.10, 6.11, 6.13, 6.14, and 6.15 below.

Lemma 6.9. Suppose m2(Γ) < m1(Γ1) + m1(Γ2) and let Φ ∈ P2(Γ) be a MY solution to (6.4).
Then π(Φ(Σann)) is a simply connected region in Ω containing ∂D1 Ω ∪ ∂D2 Ω.

Proof. We recall that Φ : Σann → R3 is an embedding. The fact that π(Φ(Σann)) is a subset of
Ω and contains ∂D1 Ω ∪ ∂D2 Ω follows from the fact that the interior of Φ(Σann) is contained in the
convex hull of Γ. So it remains to show that π(Φ(Σann)) is simply connected.
Suppose by contradiction that π(Φ(Σann)) is not simply connected. Let H be a hole of it, namely
a region in Ω surrounded by a loop contained in π(Φ(Σann)) and such that H ∩ π(Φ(Σann)) = Ø;
choose a point P ∈ H. We will search for a contradiction by exploiting that Σann is an annulus
and using that the map Φ is analytic and harmonic.
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Figure 5: The horizontal section of two planes Πθ1 and Πθ2 intersecting ∂0
1Ω and ∂0

2Ω, respectively.

Let θ be the angular coordinate of a cylindrical coordinate system (ρ, θ, z) in R3 centred at P
and with z-axis the vertical line π−1(P ). For θ ∈ [0, 2π) we consider the half-plane orthogonal to
R2 × {0} defined by

Πθ := {(ρ, θ, z) : ρ > 0, z ∈ R}.

Now we fix two values θ1 and θ2 so that Πθ1 and Πθ2 intersect (the interior of) ∂0
1Ω and ∂0

2Ω
respectively. The half-planes17 Πθ1+π and Πθ2+π might intersect ∂DΩ (see Figure 5). However,
since the points p1, q1, p2, q2, are in clockwise order on ∂Ω, and Ω is convex, it is not difficult to
conclude the following assertion:

The half-planes Πθ1+π and Πθ2+π cannot intersect the two components ∂D1 Ω and ∂D2 Ω of ∂DΩ at
the same time.

In other words: If, for instance, Πθ1+π intersects ∂D1 Ω, then Πθ2+π does not intersect ∂D2 Ω. Let
us prove the assertion in the form of the last statement, being the other cases similar. This is
trivial, since, if Πθ1 intersects ∂0

1Ω and Πθ1+π intersects ∂D1 Ω (as in Figure 5), we have that Π
θ̂

intersects ∂D1 Ω ∪ ∂0
1Ω for all θ̂ ∈ [θ1, θ1 + π]. As either θ2 or θ2 + π belongs to [θ1, θ1 + π], we have

that Πθ2 ∪ Πθ2+π intersects ∂D1 Ω ∪ ∂0
1Ω. Since by hypothesis Πθ2 intersects ∂0

2Ω, it follows that
Πθ2+π does not intersect ∂D2 Ω, and the statement follows.

Moreover, since Πθ1 intersects ∂0
1Ω and Πθ2 intersects ∂0

2Ω, it is straightforward that:

If Πθ1+π intersects ∂0
1Ω then also Πθ2+π intersects ∂0

1Ω.

We are now ready to conclude the proof of the lemma. We have to discuss the following cases:

(1) Πθ1+π intersects ∂0Ω;

(2) Πθ1+π intersects ∂D1 Ω;

(3) Πθ1+π intersects ∂D2 Ω.

By hypothesis on P , for all θ ∈ [0, 2π) the intersection between Φ(Σann) and Πθ consists of a family
of smooth simple curves, either closed or with endpoints on Γ. Correspondingly, Φ−1(Φ(Σann)∩Πθ)
is a family of closed curves in Σann, possibly with endpoints on C1 ∪ C2.

17The angles are considered (mod 2π).
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In particular, since Πθ1 ∩ ∂0
1Ω 6= Ø, the set18 Φ−1(Φ(Σann) ∩ Πθ1) is a family of closed curves in

Σann.
In case (1) also Φ−1(Φ(Σann) ∩ Πθ1+π) consists of closed curves in Σann. Take two loops α and

α′ in Φ−1(Φ(Σann)∩Πθ1) and in Φ−1(Φ(Σann)∩Πθ1+π) respectively. Let d1 be the signed distance
function from the plane Πθ1 ∪ Πθ1+π, positive on ∂D2 Ω. Since d1 ◦ Φ changes its sign when one
crosses transversally α and α′, we easily see that both α and α′ cannot be homotopically trivial in
Σann (by harmoniticy of d1 ◦Φ, if for instance α is homotopically trivial in Σann, d1 ◦Φ = 0 in the
region enclosed by α, i.e. the image of Φ is locally flat, contradicting the analyticity of Φ). Hence,
since Φ is an embedding, they run exactly one time around C1; as a consequence, they must be
homotopically equivalent to each other in Σann. On the other hand, they do not intersect each
other (Φ is an embedding), so they bound an annulus-type region in Σann, and by harmonicity
d1 ◦Φ is constantly null in this region. This would imply again that the image by Φ of this annulus
is contained in Πθ1 ∪Πθ1+π, a contradiction.

In case (2), by recalling our assertion, we deduce that Πθ2+π might intersect either ∂0Ω or ∂D1 Ω.
Further we can exclude that Πθ2+π intersects ∂0Ω (otherwise, we repeat the argument for case (1)
switching the role of θ1 and θ2). Therefore the only remaining possibility is that Πθ2+π intersects
∂D1 Ω (see Figure 5). Let d2 be the signed distance function from Πθ2 ∪Πθ2+π positive on ∂D2 Ω. In
particular, di ◦Φ, i = 1, 2, is positive on the circle C2 of Σann. By hypothesis on di, i = 1, 2, we see
that d1 is positive on Πθ2 , and d2 is positive on Πθ1 .

As in case (1), let α ∈ Φ−1(Φ(Σann)∩Πθ1) and β ∈ Φ−1(Φ(Σann)∩Πθ2) be two loops. We know
that α and β are closed in Σann. Again, we conclude that α and β are homotopically equivalent
in Σann, and both run one time around C2. Assume without loss of generality that α encloses β,
which in turn encloses C2. Since d2 ◦ Φ is positive on both α and C2, d2 ◦ Φ must be positive in
the region enclosed between them, contradicting the fact that it vanishes on β.

If instead we are in case (3) we can argue analogously to case (2) and get a contradiction. In all
cases (1), (2), and (3), we reach a contradiction which derives by assuming that π(Φ(Σann)) is not
simply connected. The proof is achieved.

We next proceed to characterize the geometry of Ω ∩ ∂π(Φ(Σann)).

Lemma 6.10. Suppose m2(Γ) < m1(Γ1) +m1(Γ2) and let Φ ∈ P2(Γ) be a MY solution to (6.4).
Then Ω ∩ ∂π(Φ(Σann)) consists of two disjoint Lipschitz embedded curves β1 and β2 joining q1 to
p2, and q2 to p1, respectively. Moreover, the closed regions Ei enclosed between ∂0

1Ω and βi are
convex for i = 1, 2.

Proof. By Lemma 6.9, π(Φ(Σann)) is simply connected in Ω, and contains ∂DΩ. Therefore Ω \
π(Φ(Σann)) consists of two simply connected components, one containing ∂0

1Ω and the other con-
taining ∂0

2Ω. Let E1 and E2 be the closures of these two components19, so that in particular the
boundary of Ei is a simple Jordan curve of the form βi ∪ ∂0

i Ω for some embedded curve βi ⊂ Ω
joining the endpoints of ∂0

i Ω. We will prove that Ei is convex for i = 1, 2. This will also imply that
βi are Lipschitz.

Take i = 1, and assume by contradiction that E1 is not convex. Thus we can find a line l in R2

and three different points A1, A2, A3 on l, with A2 ∈ A1A3, so that A2 is contained in Ω \E1, and
A1 and A3 belong to the interior of E1.

Consider the region π(Φ(Σann))\l, which consists in several (open) connected components. There
is one of these connected components, say U , which does not intersect ∂DΩ and whose boundary
contains A2. In addition, U ∩ ∂DΩ = Ø. Indeed, ∂U is the union of a segment L (containing A2)

18Since Πθ1 ∩ ∂DΩ = Ø these curves must be closed in Σann.
19The sets E1 and E2 have nonempty interior, since Φ(Σann) is contained in the interior of the convex hull of

Φ(∂Σann), hence contained in the cylinder Ω× R.
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and a curve γ (contained in β1 ⊆ ∂(π(Φ(Σann))) joining its endpoints. Hence, U \ U = γ ∪ L, and
L cannot intersect ∂DΩ by the hypothesis on A1, A2, and A3.

Let Πl ⊂ R3 be the plane containing l and orthogonal to the plane containing Ω; As usual,
Πl ∩ Φ(Σann) is a family of closed curves, possibly with endpoints on Γ ∩ Πl. Now, pick a point P
on ∂U \ L, and let Q be a point on Φ(Σann) so that π(Q) = P . Let dl : R3 → R be the signed
distance from Πl, with dl(Q) = dl(P ) > 0. We claim that, if D is the connected component of
{w ∈ Σann : dl ◦ Φ(w) > 0} containing the point Φ−1(Q), then D ∩ ∂Σann = Ø. This would
contradict the harmonicity of dl ◦ Φ, since dl ◦ Φ would be zero on D, but dl(Q) > 0.

Assume by contradiction that the converse holds. Then there is an arc α : [0, 1] → D ∪ ∂Σann

joining Φ−1(Q) to ∂Σann . The image of the map π ◦ Φ ◦ α is an arc in Ω joining P to ∂DΩ and
such that dl ≥ 0 on it. Clearly this arc is a subset of π(Φ(Σann)). Since π ◦Φ ◦α(0) = P , it follows
that the image of π ◦ Φ ◦ α is contained in U . Now U does not intersect ∂DΩ, contradicting that
π ◦ Φ ◦ α(1) ∈ ∂DΩ. This concludes the proof.

In the next step we show that there exists a set E ⊂ R3 of finite perimeter such that

∂E = ∂∗E = Φ(Σann) ∪∆1 ∪∆2,

where

∆i := {P = (P ′, P3) ∈ R3 : P ′ = (P1, P2) ∈ ∂Di Ω, P3 ∈ (−ϕ(P ′), ϕ(P ′))}, i = 1, 2. (6.13)

In particular ∆1 ∪∆2 ⊂ (∂Ω)× R and (Ω× R) ∩ ∂E = Φ(Σann).

We first fix some notation. We let 〚E〛 ∈ D3(R3) be the 3-current given by integration over E
with E ⊂ R3 being a set of finite perimeter. To everyMY solution Φ ∈ P2(Γ) to (6.4) we associate
the push-forward 2-current Φ]〚Σann〛 ∈ D2(R3) given by integration over the (suitably oriented)
surface Φ(Σann) [17, Section 7.4.2]. Finally if T ∈ Dk(U) with U ⊂ R3 open and k = 2, 3, we
denote by |T | the mass of T in U [see [11, p. 358]].

Lemma 6.11 (Region enclosed by Φ(Σann)). Suppose m2(Γ) < m1(Γ1) + m1(Γ2) and let Φ ∈
P2(Γ) be a MY solution to (6.4). Then there is a closed finite perimeter set E ⊂ Ω× R such that
∂E = Φ(Σann) in Ω× R.

Proof. As Φ]〚Σann〛 is a boundaryless integral 2-current in Ω×R, there exists (see, e.g., [17, Theorem
7.9.1]) an integral 3-current E ∈ D3(Ω × R) with ∂E = Φ]〚Σann〛, and we might also assume that
the support of E is compact in Ω×R. We claim that, up to switching the orientation of Φ]〚Σann〛,
E has multiplicity in {0, 1}, and hence is the integration 〚E〛 over a bounded measurable set E.
This is a finite perimeter set if we show that the integration over (Ω × R) ∩ ∂∗E coincides with
Φ]〚Σann〛.

By Federer decomposition theorem [11, Section 4.2.25, p. 420] (see also [11, Section 4.5.9]
and [17, Theorem 7.5.5]) there is a sequence (Ek)k∈N of finite perimeter sets such that

E =
+∞∑
k=1

σk〚Ek〛, σk ∈ {−1, 1}, (6.14)

moreover

|E| =
+∞∑
k=1

|Ek| and |∂E| = H2(Φ(Σann)) =
+∞∑
k=1

H2(∂∗Ek). (6.15)
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We start by observing that
∂∗Ek ⊆ Φ(Σann) ∀k ∈ N. (6.16)

Indeed, fixing k ∈ N, by the second equation in (6.15), we have that ∂∗Ek is contained in the
support of ∂E , which in turn is Φ(Σann). As a consequence, if P = (P1, P2, P3) ∈ (Ω× R) ∩ ∂∗Ek,
then P ∈ Φ(Σann). Around P we can find suitable coordinates and a cube U = (P1 − ε, P1 + ε)×
(P2 − ε, P2 + ε) × (P3 − ε, P3 + ε) such that Φ(Σann) ∩ U is the graph Gh of a smooth function
h : (P1 − ε, P1 + ε) × (P2 − ε, P2 + ε) → (P3 − ε, P3 + ε). Moreover, Φ]〚Σann〛 = 〚Gh〛 in U . We
conclude20 that E U = 〚SGh ∩ U〛 +m〚U〛, with SGh the subgraph of h, and m ∈ Z.
We claim that

∀k either Ek ∩ U = SGh ∩ U or Ek ∩ U = U \ SGh.

Indeed, assume for instance that |Ek ∩ SGh ∩ U | > 0 and |(SGh \ Ek) ∩ U | > 0; by the constancy
lemma it follows that ∂〚Ek〛 is nonzero in the simply connected open set SGh, contradicting (6.16).

As a consequence of the preceding claim, we have that U ∩ ∂∗Ek = U ∩ Φ(Σann). Since this
argument holds for any choice of P ∈ (Ω × R) ∩ ∂∗Ek, we have proved that (Ω × R) ∩ ∂∗Ek is
relatively open (and relatively closed at the same time) in Φ(Σann), which in turn being a connected
open set, implies

Φ(Σann) = ∂∗Ek ∀k ∈ N.

Denote by I± := {k ∈ N : σk = ±1}, where σk appears in (6.14). Going back to the local
behaviour around P ∈ Φ(Σann), if U is a neighbourhood as above, we see that for all k ∈ I+ either
Ek ∩ U = SGh or Ek = U \ SGh (namely, all the Ek’s coincide in U), since otherwise, there will
be cancellations in the series

∑
k∈I+ ∂〚Ek〛, in contradiction with the second formula in (6.15).

Assume without loss of generality that for all k ∈ I+ we have Ek ∩ U = SGh; thus, arguing as
before, for all k ∈ I− we must have Ek ∩ U = U \ SGh.

We obtain that E U = m〚SGh〛 − n〚U \ SGh〛 for some nonnegative integers n,m. Since
(∂E) U = (m + n)〚Gh〛 and also (∂E) U = Φ]〚Σann〛 = 〚Gh〛 in U , we conclude m + n = 1.
Hence either m = 1 and n = 0, or m = 0 and n = 1. On the other hand, we know that
E U =

∑
k∈I+ 〚Ek ∩ U〛−

∑
k∈I− 〚Ek ∩ U〛, from which it follows that I+ has cardinality m and

I− has cardinality n. Namely, one of the sets I± is empty, and the other contains only one index.
We conclude that the sum in (6.14) involves only one index, that is, there is only one compact

set E in Ω× R such that (up to switching the orientation)

E = 〚E〛.

This concludes the proof.

Remark 6.12. From the fact that (Ω×R) ∩ ∂E = Φ(Σann) ∪∆1 ∪∆2, we easily see that π(E) =
π(Φ(Σann)) which, by Lemma 6.9, is simply connected.

We denote by symst(E) the set (symmetric with respect to the horizontal plane R2×{0}) obtained
applying to E the Steiner symmetrization with respect to R2 × {0}.
Clearly symst(E) ∩ (∂Di Ω× R) = ∆i with ∆i defined as in (6.13). We define the surfaces

S := ∂(symst(E)) \ (∆1 ∪∆2), S+ := S ∩ {x3 ≥ 0}, S− := S ∩ {x3 ≤ 0}. (6.17)

Since P (symst(E)) ≤ P (E) (here P (·) is the perimeter [2]) we have H2(S) ≤ H2(Φ(Σann)).

20This is a consequence of the constancy lemma and the fact that ∂E − Φ]〚Σann〛 = 0 in U .
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Lemma 6.13 (Graphicality of ∂(symst(E)) ). Suppose m2(Γ) < m1(Γ1) + m1(Γ2) and let Φ ∈
P2(Γ) be a MY solution to (6.4). Let E be the finite perimeter set given by Lemma 6.11 and S±

be as in (6.17). Then there is ψ̃ ∈ BV (int(π(E)) ∩ C0(π(E)) such that S± = G±ψ̃. In particular

S± ∩ (R2 × {0}) = Ω ∩ ∂(π(E)).

The proof of Lemma 6.13 essentially follows from the fact that Φ(Σann) is a minimal surface in
Ω× R.

Proof. Since E has finite perimeter, there exists a function ψ̃ ∈ BV (π(E)) such that S± = G±ψ̃
[9]. So, we only need to show that ψ̃ is continuous. Take a point P ′ in the interior of π(E); if
P ′ = π(Φ(w)) for some w, then w ∈ Σann, since π(Φ(Ci)) ⊂ ∂Ω for i = 1, 2. If at none of the points
of π−1(P ′)∩Φ(Σann) the tangent plane to Φ(Σann) is vertical, then ψ̃ is C∞ in a neighbourhood of
P ′, since it is the linear combination of smooth functions (see the discussion after formula (6.21)
below, where details are given). Therefore we only have to check continuity of ψ̃ at those points P ′

for which there is P ∈ π−1(P ′) ∩ Φ(Σann) such that Φ(Σann) has a vertical tangent plane Π at P .
Consider a system of Cartesian coordinates centred at P , with the (x, y)-plane coinciding with Π,

the x-axis coinciding with the line π−1(P ′), and let z = z(x, y) (defined at least in a neighbourhood
of 0) be the analytic function whose graph coincides with Φ(Σann). This map, restricted to the
x-axis, is analytic and it vanishes at x = 0; hence it is either constantly zero or it has a discrete
set of zeroes (in the neighbourhood where it exists). We now exclude the former case: If z(·, 0)
is constantly zero, it means that around P there is a vertical open segment included in π−1(P ′),
which is contained in Φ(Σann). Let Q be an extremal point of this segment, and let ΠQ be the
tangent plane to Φ(Σann) at Q. This plane must contain as tangent vector the above segment,
hence ΠQ is vertical and contains π−1(P ′). Choosing again a suitable Cartesian coordinate system
centred at Q we can express locally the surface Φ(Σann) as the graph of an analytic function
defined in a neighbourhood of Q in ΠQ, and so the restriction of this map to π−1(P ′) is analytic
in a neighbourhood of Q, hence it must be constantly zero since it is zero in a left (or right)
neighbourhood of Q. What we found is that we can properly extend the segment PQ on the Q side
to a segment PR contained in Φ(Σann). By iterating this argument we conclude that the whole
line π−1(P ′) is contained in Φ(Σann), which is impossible since Φ(Σann) is bounded.

Hence the zeroes of the function z(·, 0) are isolated, so the next assertion follows:

Assertion A: Let P ∈ π−1(P ′) ∩ Φ(Σann). Then in a neighbourhood of P the only intersection
between Φ(Σann) and π−1(P ′) is P itself.

We can now conclude the proof of the continuity of the function ψ̃. Let P ′ be in the interior of
π(E), and write π−1(P ′) ∩ Φ(Σann) = {Q1, Q2, . . . , Qm} ⊂ Ω× R. It follows that

2ψ̃(P ′) = H1(π−1(P ′) ∩ E) =

m∑
j=1

σj(Qj)3, (6.18)

where (Qj)3 is the vertical coordinate of Qj and σj ∈ {−1, 0, 1} is defined as

σj =


−1 if Qj−1Qj ⊂ R3 \ E and QjQj+1 ⊂ E,
1 if Qj−1Qj ⊂ E and QjQj+1 ⊂ R3 \ E,
0 otherwise,

j = 1, . . . ,m. (6.19)

Let P ′k ∈ int(π(E)) be such that the sequence (P ′k) converges to P ′, and write π−1(P ′k)∩Φ(Σann) =
{Qk1, Qk2, . . . , Qkmk} ⊂ Ω× R. With a similar notation as above, we have

2ψ̃(P ′k) = H1(π−1(P ′k) ∩ E) =

mk∑
j=1

σkj (Qkj )3. (6.20)
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Now, if P ′ is such that at every point Qj the tangent plane to Φ(Σann) is not vertical, then Φ(Σann)
is a smooth Cartesian surface in a neighbourhood of Qj , and so it is clear that, for k large enough,

m = mk, Qkj → Qj , σkj → σj for all j = 1, . . . ,m, (6.21)

and the continuity of (6.18) follows. Therefore it remains to check continuity in the case that the
tangent plane to some Qj is vertical.

Let ‹Q be one of these points, with associated sign σ̃. By assertion A there is δ > 0 so that ‹Q is
the unique intersection between π−1(P ′) and Φ(Σann) with vertical coordinate in [‹Q3 − δ, ‹Q3 + δ].

This means that the segments π−1(P ′) ∩ {‹Q3 − δ < x3 < ‹Q3} and π−1(P ′) ∩ {‹Q3 < x3 < ‹Q3 + δ}
are either subsets of int(E) or subsets of R3 \ E. In particular, there is a neighbourhood U ⊂ Ω

of P ′ such that the discs U × {x3 = ‹Q3 − δ} and U × {x3 = ‹Q3 + δ} are subsets of int(E) or of
R3 \E. Suppose without loss of generality that both these discs are inside R3 \E (the other cases
being similar), so that σ̃ = 0. We infer that, for k large enough so that P ′k ∈ U , there is a finite

subfamily {Qkj : j ∈ J} of {Qk1, Qk2, . . . , Qkmk} contained in {‹Q3 < x3 < ‹Q3 + δ} and which satisfies
the following: The sum in (6.20) restricted to such subfamily reads as:∑

j∈J
σkj (Qkj )3 = (Qkjl)3 − (Qkjl−1

)3 + · · ·+ (Qkj2)3 − (Qkj1)3,

where J = {j1, j2, . . . , jl} and (Qkjl)3 > (Qkjl−1
)3 > · · · > (Qkj2)3 > (Qkj1)3 (in the case that jl = 1

necessarily σkj1 = 0 and the sum is zero). We have to show that this sum tends to σ̃‹Q3 = 0 as

k → +∞, which is true, since each Qkj tends to ‹Q. Repeating this argument for each point ‹Q
appearing in (6.18) with a vertical tangent plane to Φ(Σann), we conclude the proof of continuity
of ψ̃ in the interior of π(E).

Let now P ′ ∈ ∂(π(E)). If P ′ ∈ ∂(π(E)) ∩ Ω then every point in π−1(P ′) ∩ Φ(Σann) has vertical
tangent plane and we can argue as in the previous case. It remains to show continuity of ψ̃ on
∂π(E)∩ ∂Ω. In this case we exploit the fact that the interior of Φ(Σann) is contained in Ω×R. We
sketch the proof without details since it is very similar to the previous arguments. Let P ′ ∈ ∂D1 Ω,
thus π−1(P ′) ∩ Γ1 consists of two points Q1 and Q2. Let (P ′k) be a sequence of points in π(E)

converging to P . For P ′k ∈ ∂D1 Ω it follows π−1(P ′k) ∩ Γ1 = {Qk1, Qk2} and the continuity of ψ̃
follows from the continuity of ϕ on ∂D1 Ω, whereas if P ′k is in the interior of π(E) there holds
π−1(P ′k) ∩ Γ1 = {Qk1, Qk2, . . . , Qkmk}. Using the continuity of Φ up to C1, it is easily seen that all
such points must converge, as k → +∞, either to Q1 or to Q2. Hence we can repeat an argument
similar to the one used before.

Lemma 6.14. Suppose m2(Γ) < m1(Γ1) +m1(Γ2) and let Φ ∈ P2(Γ) be a MY solution to (6.4).
Let E be the finite perimeter set given in Lemma 6.11 and let S be defined as in (6.17). Then there
is an injective map Φ̃ ∈ H1(Σann;R3)∩C0(Σann;R3) which maps ∂Σann weakly monotonically to Γ
and such that Φ̃(Σann) = S, and also

H2(S) =

∫
Σann

|∂w1Φ̃ ∧ ∂w2Φ̃|dw =

∫
Σann

|∂w1Φ ∧ ∂w2Φ|dw = m2(Γ). (6.22)

In particular, Φ̃ is a solution of (6.4).

Proof. By Lemma 6.13 there is ψ̃ ∈ BV (int(π(E)) ∩ C0(π(E)) such that S± = G±ψ̃. As a conse-

quence, for p ∈ ∂DΩ we have ψ̃(p) = ϕ(p) and for p ∈ ∂(π(E)) ∩ Ω we have ψ̃(p) = 0.
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By Lemma 6.9 π(E) is simply connected, and so the maps ‹Ψ± : π(E) → R3 given by ‹Ψ±(p) :=
(p,±ψ̃(p)) are disc-type parametrizations of S±. Moreover S+ and S− glue to each other along
∂(symst(E)) ∩ (R2 × {0}) = β1 ∪ β2, where β1 and β2 are the curves given by Lemma 6.10 .

Let (σ, ψ) ∈ Wconv be a minimizer of F which satisfies properties 1-5 of Theorem 5.1. Setting
σ̃ := (β1, β2) and by extending ψ̃ to zero in Ω \ π(E), without relabelling it, by minimality we get

2F(σ, ψ) ≤ 2F(σ̃, ψ̃) = H2(S),

whence, by Remark 6.12

2F(σ, ψ) ≤ H2(S) ≤ H2(Φ(Σann)) =

∫
Σann

|∂w1Φ ∧ ∂w2Φ|dw = m2(Γ). (6.23)

We are in the hypotheses of Lemma 6.7, and therefore there exists a map Φ̃ ∈ P2(Γ) parametrizing
G
ψ (Ω\E(σ))

∪G−ψ (Ω\E(σ))
which is a minimizer of (6.4). In particular, 2F(σ, ψ) = m2(Γ), and all

the inequalities in (6.23) are equalities. We deduce also that (σ̃, ψ̃) is a minimizer of F in Wconv,
so that by Theorem 5.1 ψ̃ is analytic in int(π(E)). As a consequence it belongs to W 1,1(π(E);R3).

We now conclude the proof of the lemma by invoking again Lemma 6.7.

Lemma 6.15. Suppose m2(Γ) < m1(Γ1) +m1(Γ2) and let Φ ∈ P2(Γ) be a MY solution to (6.4).
Let E be the finite perimeter set given in Lemma 6.11 and let S be defined as in (6.17). Then
Φ(Σann) = S and in particular E = symst(E).

Proof. By Lemma 6.14 we have that H2(S) = m2(Γ) from which it follows that P (symst(E)) =
P (E). Then we can apply [9, Theorem 1.1] to deduce the existence of two functions f, g : π(E)→ R
of bounded variation, such that ∂∗E = Gf ∪Gg (up to H2-negligible sets). We will show that f = ψ̃

and g = −ψ̃. To this aim, thanks again to [9, Theorem 1.1], we know that for a.e. p ∈ π(E), the

two unit normal vectors νf = (νf1 , ν
f
2 , ν

f
3 ) and νg = (νg1 , ν

g
2 , ν

g
3 ) to Gf and Gg at the points (p, f(p))

and (p, g(p)), respectively, satisfy

(νf1 , ν
f
2 , ν

f
3 ) = (νg1 , ν

g
2 ,−ν

g
3 ). (6.24)

To conclude the proof it is then sufficient to show that f = −g a.e. on π(E): indeed this would
readily imply E = symst(E) and hence f = ψ̃.

Let p ∈ int(π(E)); if
π−1(p) ∩ S = {P1, P2, . . . , Pk}, (6.25)

then for a.e. p ∈ int(π(E)) it is k ≤ 2. We now show that, for all p ∈ int(π(E)), if k > 1, none of the
points {P1, P2, . . . , Pk} has vertical tangent plane. Assume by contradiction that P1 has vertical
tangent plane Π1. In this case Π1 ∩ S consists, in a neighbourhood U of P1, of at least 2 curves
crossing transversally at P1. These curves, by assertion A in the proof of Lemma 6.13, intersect
π−1(p) only at P1. Moreover, in a neighbourhood V of P2, with U ∩ V = ∅, Π1 ∩ S consists of (at
least) one (or more) curve passing through P2. This curve is locally Cartesian if π−1(p) crosses S
transversally in P2, otherwise it can be locally the union of two curves ending at P2, with vertical
tangent plane, which lie on the same side of Π1 with respect to π−1(p). In both cases, we deduce
that there is a point q ∈ Π1 ∩ (Ω×{0}) for which π−1(q) intersects transversally S in at least three
points. As a consequence, for all q′ in a neighbourhood of q in Ω, the line π−1(q′) intersects S at
more than two points, which is a contradiction. We have proved the following:

Assertion: for all p ∈ int(E) the line π−1(p) either intersects S transversally at two points P1, P2,
or it intersects S at only one point P1.
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We now see that the latter case cannot happen. Indeed, first one checks that in this case the
intersection cannot be transversal21, and that π−1(p) must be tangent to S at P1. Let Π1 be the
vertical tangent plane to S at P1. Let Π⊥1 be the vertical plane orthogonal to Π1 passing through
P1. In a neighbourhood of P1, the unique curve in S ∩Π⊥1 must be the union of two curves joining
at P1, and these curves must belong to the same half-plane of Π⊥1 with boundary π−1(p). As a
consequence, if p′ ∈ Ω ∩ Π⊥1 is in that half-plane, then π−1(p′) consists of at least two points; if
p′ lies in the opposite half-plane, then π−1(p′) is empty. This means that necessarily p ∈ ∂π(E).
Namely, the previous assertion can be strengthened to:

For all p ∈ int(E) the line π−1(p) intersects S transversally at exactly two points P1, P2.

The consequence of this is that f and g belong to W 1,1(int(π(E))) and are also smooth in
int(π(E)). Indeed, let p ∈ int(π(E)), so f(p) 6= g(p), and

π−1(p) ∩ S = {(p, f(p)), (p, g(p))}. (6.26)

Since S is locally the graph of smooth functions around (p, f(p)) and (p, g(p)), these functions
coincide with f and g, respectively. We can now conclude the proof of the lemma: let us choose a
simple curve α : [0, 1] → π(E) with α(0) ∈ ∂DΩ and α(1) = p such that (6.24) holds for H1 a.e.
p ∈ α([0, 1]). Since f ◦ α and g ◦ α are differentiable in [0, 1], condition (6.24) uniquely determines
the tangent planes to Gf and Gg, and hence it implies that the derivatives of f ◦α and g ◦α satisfy

(f ◦ α)′(t) + (g ◦ α)′(t) = 0, for a.e. t ∈ [0, 1]. (6.27)

By continuity of f and g one infers f ◦ α + g ◦ α = c a.e. on [0, 1] (actually everywhere since
f + g is continuous), for some constant c ∈ R. To show that c = 0 it is sufficient to observe that
f ◦ α(0) = ϕ(α(0)) and g ◦ α(0) = −ϕ(α(0)). Hence f(p) = −g(p), and the thesis of Lemma 6.15
is achieved.

We are now in a position to conclude the proof of Theorem 6.8.

Proof of Theorem 6.8. Property (1) follows by Lemma 6.9 and Lemma 6.10. Properties (2)–(4)
follow by Lemma 6.13 and Lemma 6.15. To see that βi are C∞ it is sufficient to observe that, in
view of the Cartesianity of S+ and S−, their union coincides with the set S ∩ {x3 = 0} which, by
standard arguments, is the image of the zero-set of Φ3, which is smooth.

Theorem 6.16. There holds

2 min
(s,ζ)∈Wconv

F(s, ζ) = m2(Γ). (6.28)

Proof. Step 1: 2 min(s,ζ)∈Wconv
F(s, ζ) ≤ m2(Γ).

Suppose m2(Γ) < m1(Γ1) + m1(Γ2). Let Φ ∈ P2(Γ) be a MY solution to (6.4) and let S :=
Φ(Σann). By Theorem 6.8 the following properties hold:

• S ∩ (R2 × {0}) = β1 ∪ β2 with β1 and β2 disjoint embedded curves of class C∞ joining q1 to
p2 and q2 to p1, respectively;

• S is symmetric with respect to R2 × {0};

• for i = 1, 2 the closed region Ei enclosed between ∂0
i Ω and βi is convex;

21This is a consequence of the fact that the line π−1(p) must lie outside the set E, with the only exception of the
point P1. Indeed, otherwise, there must be some other point in π−1(p) ∩ S, E being compact in R3.
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• S+ = S ∩ {x3 ≥ 0} is the graph of ψ̃ ∈ W 1,1(U) ∩ C0(U), where U = Ω \ (E1 ∪ E2) is the
open region enclosed between ∂DΩ and β1 ∪ β2.

Let (σ, ψ) ∈ Wconv be given by

σ := (σ1, σ2) and ψ :=

®
0 in Ω \ U,
ψ̃ in U,

where σi([0, 1]) = βi for i = 1, 2. Then clearly S+ = Gψ (Ω\E(σ)) and

min
(s,ζ)∈Wconv

F(s, ζ) ≤ F(σ, ψ) = H2(S+) =
1

2
m2(Γ).

Suppose now m2(Γ) = m1(Γ1)+m1(Γ2). Let Φj ∈ P1(Γj) be a solution to (6.1) and Sj := Φj(B1)
(j = 1, 2). For j = 1, 2, let Dj be the closed convex hull of Γj : clearly D1 ∩D2 = Ø. By Lemma
5.4 each Sj satisfies the following properties:

• Sj ∩ (R2 × {0}) = βj ⊂ Dj is a simple smooth curve joining pj to qj ;

• Sj is symmetric with respect to R2 × {0};

• S+
j := S ∩ {x3 ≥ 0} is the graph of a function ψ̃j ∈W 1,1(Uj)∩C0(U j), where Uj ⊂ Dj is the

open region enclosed between ∂DΩj and βj ;

• βj is contained in Dj and Fj \ Uj is convex.

Let (σ, ψ) ∈ Wconv be given by

σ := (σ1, σ2) and ψ :=

®
0 in Ω \ {U1 ∪ U2},
ψ̃j in Uj for j = 1, 2,

where σ1([0, 1]) := p1q2 and σ2([0, 1]) := β2 ∪ q2p1 ∪ β1. Then S+ := S+
1 ∪ S

+
2 = Gψ (Ω\E(σ)) and

min
(s,ζ)∈Wconv

F(s, ζ) ≤ F(σ, ψ) = H2(S+) =
1

2
(m1(Γ1) +m1(Γ2)) =

1

2
m2(Γ),

and the proof of step 1 is concluded.

Step 2: 2 min(s,ζ)∈Wconv
F(s, ζ) ≥ m2(Γ).

Let (σ, ψ) ∈ Wconv be a minimizer satisfying properties 1-5 of Theorem 5.1.
If E(σ1) ∪ E(σ2) = Ø, by Step 1 we can apply Lemma 6.7 and find an injective parametrization
Φ ∈ P2(Γ) such that Φi(∂Σann) = Γ monotonically Φ(Σann) = Gψ ∪ G−ψ, and

2F(σ, ψ) =

∫
Σann

|∂w1Φ ∧ ∂w2Φ|dw ≥ m2(Γ).

If instead E(σ1) ∪ E(σ2) 6= Ø, similarly we find injective parametrizations Φ1 ∈ P1(Γ1) and Φ2 ∈
P1(Γ2) such that Φj(∂B1) = Γj monotonically for j = 1, 2, Φ1(B1) ∪ Φ2(B1) = Gψ ∪ G−ψ, and

2F(σ, ψ) =

∫
B1

|∂w1Φ1 ∧ ∂w2Φ1|dw +

∫
B1

|∂w1Φ2 ∧ ∂w2Φ2|dw ≥ m1(Γ1) +m1(Γ2) ≥ m2(Γ).

This concludes the proof.
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Now the proof of Theorem 6.5 is easily achieved.

Proof of Theorem 6.5. (i). Let Φ ∈ P2(Γ), S, S+, S− be as in the statement. By arguing as in the
proof of Theorem 6.16 we can find (σ, ψ) ∈ Wconv such that S± = G±ψ (Ω\E(σ)). Then by Theorem
6.16 we have

F(σ, ψ) =
1

2
m2(Γ) = min

(s,ζ)∈Wconv

F(s, ζ) (6.29)

Hence (σ, ψ) is a minimizer for F in W; moreover by the properties of S it also satisfies properties
1-5 of Theorem 5.1.

(ii). Let Φj ∈ P1(Γj), Sj for j = 1, 2, S+, S− be as in the statement. Again arguing as in the
proof of Theorem 6.16, we can find (σ, ψ) ∈ Wconv such that S± = G±ψ (Ω\E(σ)) and (6.29) holds,
so that (σ, ψ) is a minimizer of F in W satisfying properties 1-5 of Theorem 5.1.

(iii). Let (σ, ψ) ∈ Wconv be a minimizer of F in W satisfying properties 1-5 of Theorem 5.1. Let
also

S := Gψ (Ω\E(σ)) ∪ G−ψ (Ω\E(σ)).

Suppose E(σ1) ∩ E(σ2) = Ø. Then there is Φ ∈ P2(Γ) which is a MY solution to (6.4) such
that Φ(Σann) = S: indeed, to see this, it is sufficient to apply Lemma 6.7, since by Theorem 6.16
we have

2F(σ, ψ) = m2(Γ). (6.30)

Suppose now E(σ1) ∩ E(σ2) 6= Ø; then with a similar argument we can construct Φj ∈ P1(Γj)
for j = 1, 2 solutions to (6.1) such that Φ1(B1) ∪ Φ2(B1) = S. The proof is achieved.
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