
A non-parametric Plateau problem with partial free boundary

Giovanni Bellettini∗ Roberta Marziani† Riccardo Scala‡

September 25, 2024

Abstract

We consider a Plateau problem in codimension 1 in the non-parametric setting, where a
Dirichlet boundary datum is assigned only on part of the boundary ∂Ω of a bounded convex
domain Ω ⊂ R2. Where the Dirichlet datum is not prescribed, we allow a free contact with the
horizontal plane. We show existence of a solution, and prove regularity for the corresponding
area-minimizing surface. We compare these solutions with the classical minimal surfaces of
Meeks and Yau, and show that they are equivalent when the Dirichlet boundary datum is
assigned on at most 2 disjoint arcs of ∂Ω.
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1 Introduction

The Plateau problem is a classical problem in the Calculus of Variations modelling configurations
of soap films obtained by immersing a wire frame into soapy water. Roughly speaking, it consists
in seeking for an area minimizing surface over all surfaces with prescribed boundary a given closed
Jordan curve in space. Over the years several approaches and variants were proposed, each corre-
sponding to a specific choice of the class of admissible surfaces. In the following we list just few
of them and we refer for example to [31] and references therein for a list of the main approaches
available in the literature. One of the first result is due to Weierstrass and Riemann who studied a
non-parametric Plateau problem in R3 obtained by minimizing the area over all cartesian surfaces;
this gave rise to theory of minimal surfaces. Successively Douglas and Radó developed indepen-
dently [23, 38] the classical parametric approach for disk type solutions. This method was later
generalized by Jost [33] to study the Plateau problem for surfaces with higher genus (see also the
paper [36] by Meeks and Yau). A more general approach which accounts for a large class of surfaces
was instead proposed by Federer and Fleming [25], based on integral currents. Another remarkable
work is due to Reifenberg [40] which adopts completely different techniques involving the concept
of Čech homology. Relevant is also Almgren’s contribution with three different approaches, one of
these using the notion of varifolds [2]. Among all possible variants one might consider a partial
free boundary version of the Plateau problem where the boundary datum is partially fixed and
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partially free to move within a given surfaces. This type of problem has been exhaustively studied
(see for instance [22]) in the parametric framework but never investigated, to our best knowledge,
with the non-parametric approach. To this aim, in the present paper we will analyse existence and
regularity of solutions of a non-parametric partial free boundary Plateau problem. More precisely,
we look for an area-minimizing surface which can be written as a graph over a bounded open con-
vex set Ω ⊂ R2, and spanning a Jordan curve Γσ = γ ∪ σ ⊂ R2 × [0,+∞) that is partially fixed.
Namely, γ is fixed (Dirichlet condition) and is given by a family {γi}ni=1 ⊂ ∂Ω× [0,+∞) of n ∈ N
curves each joining distinct pairs of points {(pi, qi)}ni=1 of ∂Ω. Whereas σ, which represents the
free boundary, is an unknown and consists of (the image of) n curves σ1, . . . , σn sitting in Ω, and
joining the endpoints of γ in order that γ ∪σ forms a Jordan curve Γσ in R3. We assume that each
γi is Cartesian, i.e., it can be expressed as the graph of a given nonnegative function φ defined
on a corresponding portion of ∂Ω. This allows to restrict ourselves to the Cartesian setting, and
to assume that the competitors for the Plateau problem are expressed by graphs of functions ψ
defined on a suitable subdomain of Ω depending on σ; see Figure 1 when n = 3. A peculiarity of
our problem is the presence of a free boundary.

The purpose of this paper is twofold. We start addressing the question of existence and regularity
of solutions. Our first main result (Theorems 1.1, 3.1 and 5.1) asserts that there are always solutions
(which can be degenerate, in the sense that they may consist of more than one connected component,
see the example of the catenoid below) and that, under suitable hypotheses on the boundary datum,
there is at least one regular solution continuous up to the boundary. Next we compare our solutions
with solutions to a parametric Plateau problem when n = 1, 2. Roughly speaking, our second main
result (Theorems 1.2, 6.1 and 6.4) shows that any regular solution to our minimization problem is
a minimal embedding in the sense of Meeks and Yau [36], and vice-versa.

Existence and regularity of solutions: We describe here our main results with few details,
referring to Section 2 for the precise description of the mathematical framework. We fix n ∈ N
and 2n distinct points p1, q1, p2, q2, . . . , pn, qn ∈ ∂Ω in clockwise order, and set qn+1 := p1. The
relatively open arc of ∂Ω between the points pi and qi is noted by ∂Di Ω, and the relatively open
arc between qi and pi+1 by ∂0i Ω. We fix a nonnegative continuous function φ : ∂Ω → [0,+∞)
positive on ∂DΩ := ∪ni=1∂

D
i Ω and vanishing on {pi, qi}ni=1 ∪ ∂0Ω, where¡ ∂0Ω := ∪ni=1∂

0
i Ω. For

every i = 1, . . . , n we denote by γi the graph of φ over ∂Di Ω and we consider curves σi : [0, 1] → Ω
with the following properties:

(i) σi is injective, σi(0) = qi and σi(1) = pi+1, for all i = 1, . . . , n;

(ii) int(E(σi)) ∩ int(E(σj)) = Ø for i, j = 1, . . . , n, i ̸= j, where int denotes the interior part.

Note carefully that σi and σj are allowed to partially overlap.
We suppose the graph of φ over ∂DΩ to be a Lipschitz curve in R3 (see Figure 1). Finally we set

E(σ) :=

n⋃
i=1

E(σi), (1.1)

and define the two classes

Σ :=
{
σ = (σ1, . . . , σn) ∈ (Lip([0, 1]; Ω))n satisfies (i)-(ii)

}
, (1.2)

Xφ := {(σ, ψ) ∈ Σ×W 1,1(Ω) : ψ = 0 a.e. in E(σ) and ψ = φ on ∂DΩ}. (1.3)

If (σ, ψ) ∈ Xφ, then the graph of ψ over Ω \ E(σ) is a surface spanning the curve Γσ. We look
for a pair (σ, ψ) minimizing the area of such surfaces, that is, we want to find a solution to the
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Figure 1: An example of the setting (in 3D), when n = 3. On the boundary of the convex set Ω
fix the points pi, qi; the arc of ∂Ω joining pi to qi is ∂

D
i Ω, while the arc joining qi to pi+1 is ∂0i Ω

(p4 := p1). On ∂DΩ the Dirichlet boundary datum φ is imposed, whose graph has been depicted.
The dotted arcs are the free planar curves σi joining qi and pi+1.

minimum problem

inf
(σ,ψ)∈Xφ

∫
Ω\E(σ)

»
1 + |∇ψ|2 dx. (1.4)

We then prove the following result, accounting for existence and regularity of solutions to (1.4).

Theorem 1.1. Let Ω be strictly convex. Then there exists a solution (σ, ψ) ∈ Xφ to (1.4) such
that ψ is continuous on Ω, analytic in Ω \ E(σ), and Ω ∩ ∂E(σ) consists of a family of mutually
disjoint analytic curves (joining pi and qj in some order). Moreover each connected component of
E(σ) is convex.

We emphasize that convexity of Ω is necessary (even for the classical non-parametric Plateau
problem with no free boundary, existence of regular solutions is not guaranteed if Ω is not convex).
The proof of existence relies on direct methods; however, since the class Xφ is not closed under
weak* convergence in BV , they cannot be applied directly to (1.4) but rather to a suitable weak
formulation. For this reason we replace Xφ in (1.3) with a larger class W of admissible pairs, and
relax accordingly the functional in (1.4). We set

W :=
{
(σ, ψ) ∈ Σ×BV (Ω) : ψ = 0 a.e. in E(σ)

}
. (1.5)

The weak formulation consists in looking for solutions to the problem

inf
(σ,ψ)∈W

F(σ, ψ), (1.6)

where F is the functional defined by

F(σ, ψ) : =

∫
Ω

»
1 + |∇ψ|2 dx+ |Dsψ|(Ω)− |E(σ)|+

∫
∂Ω

|ψ − φ| dH1

=

∫
Ω\E(σ)

»
1 + |∇ψ|2 dx+ |Dsψ|(Ω) +

∫
∂Ω

|ψ − φ| dH1, (1.7)
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with Dsψ the singular part of the measure Dψ and |E(σ)| the Lebesgue measure of E(σ). Observe
that F(σ, ψ) equals the integral in (1.4) when ψ ∈ W 1,1(Ω) attains the boundary value φ. The
existence of solutions to (1.6) is shown in two steps. In the first step we prove existence of minimizers
of F in a smaller class Wconv ⊂ W of admissible pairs (σ, ψ), where compactness is easier and
allows to make use of the direct method. The class Wconv accounts only for specific geometries
of the free boundary σ, namely, each set E(σi) is required to be convex (see (2.6) for its precise
definition). In the second step we show, by means of a convexification procedure, that every
minimizer (σ, ψ) ∈ Wconv is actually a solution to (1.6). Eventually we prove that there exists at
least a minimizer (σ, ψ) ∈ Wconv which satisfies certain regularity properties, and in particular is a
solution to (1.4). The fact that, for minimizers, all connected components of E(σ) are convex, is
somehow a consequence of the maximum principle, i.e., every minimal surface is contained in the
convex hull of its boundary. The existence and regularity of a solution to (1.6) are contained in
Theorems 3.1 and 5.1 respectively, which in turn imply Theorem 1.1. We stress that Theorems 3.1
and 5.1 are actually stated in the more general case of a convex planar domain Ω. However, if Ω
is convex but not strictly convex it may happen that a solution to (1.6) is “less regular”, in the
sense that ψ may not achieve the boundary condition (as in the next example), thus failing to be
a solution to (1.4).

The example of the catenoid: Our prototypical example is given by (half of) the catenoid.
Consider a cylinder in R3 with basis a circle of radius r and height ℓ. Choose Cartesian coordinates
for which the x1x2-plane contains the cylinder axis, and restrict attention to the half-space {x3 ≥ 0}
as in Figure 2, where Ω = Rℓ := (0, ℓ)× (−r, r) and n = 2. Write

∂Ω = ∂D1 Ω ∪ ∂01Ω ∪ ∂D2 Ω ∪ ∂02Ω,

where ∂D1 Ω = {0} × (−r, r), ∂01Ω = (0, ℓ)× {r}, ∂D2 Ω = {ℓ} × (−r, r) and ∂02Ω = (0, ℓ)× {−r}. On
the Dirichlet boundary ∂DΩ = ∂D1 Ω ∪ ∂D2 Ω we prescribe the continuous function φ whose graph
consists of the two half-circles γ1 and γ2. The endpoints of γ1 and γ2 live on the free boundary plane
(the horizontal plane) and are p1 = (0,−r), q1 = (0, r), and p2 = (ℓ, r), q2 = (ℓ,−r), respectively.
The free boundary σ consists of two curves σ1 and σ2 with endpoints q1, p2, and q2, p1, respectively,
constrained to stay in Ω. The concatenation of γ = γ1 ∪ γ2 and σ forms a Jordan curve

Γσ = γ1 ∪ σ1 ∪ γ2 ∪ σ2 ⊂ R3. (1.8)

Therefore we look for an area-minimizer among all Cartesian surfaces S with boundary Γσ keeping
σ free, i.e. we look for a solution to (1.4) for this specific geometry. In this case a minimizing
sequence (σk, ψk) ⊂ W of the weak formulation (1.7) tends (in the sense of Definition 4.3) to a
minimizer (σ, ψ) ∈ Wconv which allows for two different possibilities. If ℓ is small, σ1 and σ2 remain
disjoint and (σ, ψ) ∈ Xφ. In particular the area-minimizing surface S (given by the graph of ψ over
Ω \ E(σ)) is the classical (half) catenoid (namely the intersection between the catenoid and the
half-space {x3 ≥ 0}). If instead ℓ is large, the two curves σ1 and σ2 merge, the region Ω \ E(σ)
collapses (i.e., it reduces to the two segments ∂D1 Ω∪∂D2 Ω) and ψ = 0 and therefore (σ, ψ) /∈ Xφ. In
particular the surface S is the union of two vertical (half) disks. We emphasize that this example is
classical and, due to the rotational symmetry of the curve Γ, it can be reduced to a 1-dimensional
problem (see [16,30]).

Let us now quickly describe the second part of the paper.

Comparison with embedded minimal surfaces: We recall that γi is the graph of the map
φ on ∂Di Ω. We consider sym(γi), namely the graph of −φ on ∂Di Ω, which is symmetric to γi
with respect to the plane containing Ω. Setting Γi := γi ∪ sym(γi), this turns out to be a simple
Jordan curve in R3, for all i = 1, . . . , n. Hence we can consider the classical Plateau problem for
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Figure 2: The setting for the catenoid: for ℓ large enough (the basis of the rectangle) the dotted
curves σ1 and σ2 merge and the (generalized) graph of ψ reduces to two vertical half-circles on
∂DΩ = ∂D1 Ω ∪ ∂D2 Ω. In this case ∂DΩ ⊂ ∂E(σ1) ∪ ∂E(σ2).

the curve Γ := ∪ni=1Γi. In the case n = 1 a solution is an area minimizing disk-type surface S
spanning Γ = Γ1. Whereas in the case n = 2 a solution is either an annulus-type surface spanning
Γ = Γ1∪Γ2 or the union of two disjoint disks spanning Γ1 and Γ2, respectively. Then the following
result holds true:

Theorem 1.2. Let Ω be strictly convex. For n ∈ {1, 2} let (σ, ψ) ∈ Xφ be a minimizer as in
Theorem 1.1. Let S+ be the graph of ψ over Ω\E(σ) and let S− be the symmetric of S+ with respect
to the plane containing Ω. Then the set S = S+ ∪S− is a solution to the classical Plateau problem
associated to Γ = ∪ni=1Γi. Vice-versa every solution S to the classical Plateau problem associated
to Γ = ∪ni=1Γi is symmetric with respect to the plane containing Ω. Moreover S+ := S ∩ {x3 ≥ 0}
is the graph of ψ over Ω \ E(σ) for some (σ, ψ) ∈ Xφ, a minimizer as in Theorem 1.1.

The above theorem is rigorously stated in Theorems 6.1 (n = 1) and 6.4 (n = 2) in the more
general case of Ω convex. In particular, if Ω is convex, we prove that there is a correspondence
between a regular solution to the weak formulation (1.6) and a solution to the classical Plateau
problem (as in the example of the catenoid). A relevant consequence of this equivalence is that when
the boundary closed curve Γ is symmetric with respect to the plane containing Ω, and its upper
part is Cartesian, then the same property holds for the corresponding Meeks and Yau solution.

The proof of Theorem 1.2 for n = 1 is not difficult, whereas for n = 2 it is considerably more
complicated, and requires several lemmas: we strongly use the convexity of the domain Ω, which
implies that the cylinder Ω×R, whose boundary contains Γ, is convex, and so the existence results
of Meeks and Yau [36] (see also Theorem 6.3) are applicable.

The main steps of the proof are the following: if S is a Meeks-Yau annulus-type minimal surface,
we perform a Steiner symmetrization of the 3-dimensional finite perimeter set in Ω × R enclosed
by S to obtain a set (symmetric with respect to the plane containing Ω) whose boundary is an
annulus-type minimal surface S̃ spanning Γ which is symmetric and such that S̃+ := S̃ ∩ {x3 ≥ 0}
is Cartesian. In turn, using standard results on the case of equality for the perimeter of a set and
its symmetrization, we show that the original surface S was already symmetric with respect to
the plane containing Ω, so S+ was already Cartesian, and the conclusion of the proof for n = 2 is
achieved. Note that the aim of Theorem 1.2 is not to provide new examples of minimal surfaces;
rather, it enlights (among other things) some interesting qualitative properties of the Meeks-Yau
solutions. Due to the highly nontrivial arguments, we have restricted our analysis to the cases
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Figure 3: A possible configuration of the sets E(σi) in the case n = 3. On the (clockwise oriented)
arcs p̄1q1 = ∂D1 Ω, p̄2q2 = ∂D2 Ω, and p̄3q3 = ∂D3 Ω the function φ is prescribed and positive. On
∂0Ω = q̄1p2 ∪ q̄2p3 ∪ q̄3p1 and on E(σ) = E(σ1)∪E(σ2)∪E(σ3) we prescribe ψ = 0. The curves σi
joining qi to pi+1 (with the corresponding set E(σi)) are indicated. On the dotted segment σ1 and
σ2 overlaps with opposite orientations. On the dark region Ω \ E(σ), ψ is not necessarily null.

n ∈ {1, 2}, since a generalization to the case n > 2 probably requires heavy modifications. Indeed,
some lemmas needed to prove Theorem 6.4 employ crucially the fact that ∂0Ω consists of just two
connected components. For this reason we leave the case n > 2 for future investigations.

Some motivation: The setting of our problem models a cluster of soap films which are con-
strained to wet a given system of wires γ emanating from a given free boundary plane (representing
a table, or a water surface, on which the soap films can freely moves). Our results show that if the
system of wires describes the graphs of functions on ∂Ω as above, then the (Meeks and Yau) so-
lutions of the “parametric” Plateau problem are in fact Cartesian, and coincide with the solutions
obtained by the non-parametric approach. This result can be viewed as a generalization of the
well-known theorem of Radó stating that any minimal disk spanning a Jordan curve in R3 whose
projection on a plane is a bijection with a convex Jordan curve is the graph of a function defined
on the plane [39].

However, the scope of this article goes beyond this generalization, and the solutions we look
for are strongly related with the vertical parts of Cartesian currents arising in the analysis of the
relaxation of the non parametric area functional in dimension 2 and codimension 2. We further
comment on this in Section 7 where we go more into details.

Structure of the paper: The paper is organized as follows. In Section 2 we introduce the
setting of the problem in detail. In Section 3 we show how to reduce the minimum problem from
the wider class W to the class Wconv (Theorem 3.1). Next, in Section 4 we prove the existence of
minimizers in Wconv. As a consequence, we gain the existence of minimizers in class W (Corollary
4.2). In Section 5 we study the regularity of minimizers. Specifically, we state and prove Theorem
5.1 which, together with Theorem 3.1, generalize Theorem 1.1. Theorem 1.1 follows from Theorem
4.1, Corollary 4.2, and Theorem 5.1. Eventually, in Section 6 we compare our solutions with the
classical minimal surfaces spanning Γ. Here, as anticipated, we restrict the analysis to n = 1, 2,
the case n = 2 essentially giving rise to either a catenoid-type minimal surface, or two disk-type
surfaces spanning Γ1 and Γ2. The main theorems here are Theorems 6.1 and 6.4. In Section 7
we briefly point out our motivations for the present study and some open problems. The paper
concludes with an appendix containing some rather classical results on convex sets and Hausdorff
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distance, needed in Section 5.

2 Preliminaries

2.1 Area of the graph of a BV function

Let U ⊂ R2 be a bounded open set. For any ψ ∈ BV (U) we denote by Dψ its distributional
gradient, so that

Dψ = ∇ψL2 +Dsψ,

where ∇ψ is the approximate gradient of ψ and Dsψ denotes the singular part of Dψ. We recall
that the L1-relaxed area functional reads as [29]

A(ψ;U) :=

∫
U

»
1 + |∇ψ|2 dx+ |Dsψ|(U). (2.1)

In what follows we denote by ∂∗A the reduced boundary of a set of finite perimeter A ⊂ R3 (see [4]).
For any ψ ∈ BV (U) we denote by Rψ ⊂ U the set of regular points of ψ, namely the set of points
x ∈ U which are Lebesgue points for ψ, ψ(x) coincides with the Lebesgue value of ψ at x, and ψ
is approximately differentiable at x. We define the subgraph SGψ of ψ as

SGψ := {(x, y) ∈ Rψ × R : y < ψ(x)},

which is a finite perimeter set in U × R. Its reduced boundary in U × R is the generalised graph
Gψ := {(x, ψ(x)) : x ∈ Rψ} of ψ, which turns out to be 2-rectifiable. If 〚SGψ〛 ∈ D3(R3) denotes
the integral current given by integration over SGψ and ∂〚SGψ〛 ∈ D2(R3) is its boundary in the
sense of currents, then

〚Gψ〛 = ∂〚SGψ〛 (U × R),
with 〚Gψ〛 the integer multiplicity 2-current given by integration over Gψ (suitably oriented; see [27]
for more details).

2.2 Setting of the problem

We fix Ω ⊂ R2 to be an open bounded convex set (strict convexity is not required) which will be
our reference domain. Given two points p, q ∈ ∂Ω in clockwise order, Ùpq stands for the relatively
open arc on ∂Ω joining p and q.

Let n ∈ N, n ≥ 1, and let {pi}ni=1 be distinct points on ∂Ω chosen in clockwise order; we set
pn+1 := p1. For all i = 1, . . . , n let qi be a point in ṗipi+1 ⊂ ∂Ω. We set

∂Di Ω := p̃iqi, ∂0i Ω := q̇ipi+1 for i = 1, . . . , n, (2.2)

and

∂DΩ :=
n⋃
i=1

∂Di Ω, ∂0Ω :=
n⋃
i=1

∂0i Ω. (2.3)

Since ∂Di Ω and ∂0i Ω are relatively open in ∂Ω, so are ∂DΩ and ∂0Ω. It follows that ∂Ω is the
disjoint union

∂Ω = ∪ni=1{pi, qi} ∪ ∂DΩ ∪ ∂0Ω.
We fix a continuous function φ : ∂Ω → [0,+∞) such that

φ = 0 on ∂0Ω and φ > 0 on ∂DΩ, (2.4)

see Figures 2, 1. We will make a further regularity assumption on φ: we require that the graph
Gφ ∂Di Ω = {(x, φ(x)) : x ∈ ∂Di Ω} of φ on ∂Di Ω is a Lipschitz curve in R3, for all i = 1, . . . , n.
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Remark 2.1. The hypothesis φ > 0 on ∂DΩ excludes from our analysis the example in Figure 6
of the Introduction. We will further comment on this later on (see Section 5.1); the presence of
pieces of ∂DΩ where φ = 0 brings to some additional technical difficulties that we prefer to avoid
here. However, the setting in Figure 6 can be achieved by an approximation argument. Namely,
one considers a suitable regularization φε of φ on ∂DΩ such that φε > 0, and then letting ε → 0
one obtains a solution to the problem with Dirichlet datum φ.

Remark 2.2. By definition (1.2) any σ ∈ Σ satisfies the injectivity property in (i) which guarantees
that the sets E(σi) are simply connected (but not necessarily connected). Assumption (ii) means
essentially that the curves σi cannot cross transversally each other, but might overlap. Notice that
int(E(σi)) might be empty, the case ∂0i Ω = σi([0, 1]) being not excluded.

In what follows we will study existence and regularity of solutions to problem (1.6). A first step
in this direction is to show in Section 3 that

inf
(s,ζ)∈W

F(s, ζ) = inf
(s,ζ)∈Wconv

F(s, ζ) , (2.5)

where F is the functional in (1.7) and

Wconv :=
{
(σ, ψ) ∈ Σconv ×BV (Ω) : ψ = 0 a.e. in E(σ)

}
,

Σconv :=
{
σ = (σ1, . . . , σn) ∈ Σ : E(σi) is convex for all i = 1, . . . , n

}
.

(2.6)

Notice that, by definition
Σconv ⊂ Σ and Wconv ⊂ W. (2.7)

Moreover, we already know that the sets int(E(σi)) might be empty, since from assumption (i) in
(1.2) we cannot exclude that σi overlaps ∂

0
i Ω: Recalling that Ω is convex, by (ii) and the convexity

of each E(σi), this can happen, only if q̇ipi+1 is a straight segment1. Afterwards, in Section 4, we
prove the existence of (σ, ψ) ∈ Wconv which is a solution to (1.6) by showing that there exists a
minimizer to

F(σ, ψ) = inf
(s,ζ)∈Wconv

F(s, ζ) . (2.8)

Eventually in Section 5 we prove existence of solutions to (2.8) which belong to Xφ.

Remark 2.3. Exploiting the characterization of the boundaries of convex sets given in Corollary
8.3 in the Appendix 8, we see that conditions (i),(ii) and the convexity of E(σi) for the curves in
Σconv imply the following:

(P) Let σ ∈ Σconv; then for all i = 1, . . . , n there are an injective (non-relabelled) reparametriza-
tion of σi in [0, 1], and a nondecreasing function θi : [0, 1] → R with θi(1)− θi(0) ≤ 2π, such
that, setting γi(t) := (cos(θi(t)) , sin(θi(t))) for all t ∈ [0, 1], we have

σi(t) = qi + ℓ(σi)

∫ t

0
γi(s) ds ∀t ∈ [0, 1],

where ℓ(σi) denotes the length of σi.

1We will show that for a minimizer, σi([0, 1]) cannot intersect ∂DΩ unless ∂DΩ is locally a segment (Theorem
5.1).
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3 Reduction from W to Wconv

The main result of this section is contained in Theorem 3.1 where we prove the equivalence given
in (2.5). The reason being that in minimizing the functional F on W one issue is that the class Σ
in (1.2) is not closed under uniform convergence, since a uniform limit of elements in Σ needs not
be formed by injective curves. However, we can always modify a minimizing sequence of curves to
curves in Σconv, since the modification can be done decreasing the energy.

The fact that the infimum of F over W coincides with that over Wconv is due to the following
geometric property: whenever a set E(σi) is not convex, we can always convexify it reducing the
energy. The procedure of convexification is described in Lemmas 3.3, 3.4, and 3.5. Again, the
convexification of E(σi) is still contained in Ω thanks to the convexity of Ω.

Theorem 3.1 (Reduction from W to Wconv). For every (s, ζ) ∈ W there exists (σ, ψ) ∈ Wconv

such that every connected component of E(σ) is convex, and

F(σ, ψ) ≤ F(s, ζ). (3.1)

In particular (2.5) holds true. Further, if the connected components of E(ζ) are not convex, then
the strict inequality holds in (3.1).

Remark 3.2. Since the σi’s may overlap, the convexity of each E(σi) does not imply in general
that every connected component of E(σ) = ∪ni=1E(σi) is convex.

For the reader convenience we split the proof of Theorem 3.1 into a sequence of intermediate
results: Lemmas 3.3, 3.4, 3.5, and the conclusion. First we need to introduce some notation.

Let (σ, ψ) ∈ W. We fix an extension φ̂ ∈ W 1,1(B) of φ on an open ball B ⊃ Ω, where we recall
φ is the boundary datum in (2.4). Extending ψ in B \ Ω as φ̂, and still denoting by ψ such an
extension, we can rewrite F(σ, ψ) as

F(σ, ψ) = A(ψ;B)− |E(σ)| − A(ψ;B \ Ω). (3.2)

Lemma 3.3 (Trace estimate). Let u ∈ BV (R×(0,+∞)) be a nonnegative function with compact
support in an open ball Br ⊂ R2. Then∫

(R×{0})∩Br
u(s) dH1(s) ≤ A(u;Br ∩ (R× (0,+∞)))− |EBr |, (3.3)

where
EBr := {x ∈ Br ∩ (R× (0,+∞)) : u(x) = 0}.

Moreover, inequality (3.3) is always strict, unless u = 0 a.e. on R× (0,+∞).

Notice that the function u is defined only on the half-plane R× (0,+∞), and in (3.3) the symbol
u(s) denotes its trace on the line R× {0} (which is integrable).

Proof. We denote by x = (x1, x2) ∈ R2 the coordinates in R2. Set H+ := R × (0,+∞), Z :=
(Br ∩H+)× R ⊂ R3. Let

Lu := {(x, y) ∈ Z : x ∈ Ru, y ∈ (−u(x), u(x))} ⊂ R3,

where Ru is the set of regular points of u. We have, recalling the notation in Section 2.1,

2A(u;Br ∩H+) = A(u;Br ∩H+) +A(−u;Br ∩H+)

= H2(∂∗(Z ∩ SGu)) +H2(∂∗(Z ∩ SG−u))

= H2(Z ∩ ∂∗Lu) + 2|EBr |.
(3.4)
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Write Br ∩ (R× {0}) = (a, b)× {0}. Then a slicing argument of the current 〚Gu〛 yields

H2(Z ∩ ∂∗Lu) ≥
∫ b

a
H1(Z ∩ {x1 = t} ∩ ∂∗Lu)dt

=

∫ b

a
H1(Z ∩ {x1 = t} ∩ (spt(〚Gu〛 − 〚G−u〛)))dt

≥
∫ b

a
2u(t, 0)dt = 2

∫
(R×{0})∩Br

u(s) dH1(s) ,

(3.5)

where the last inequality follows from the following fact: If we denote by 〚Gu〛t the slice of the
current 〚Gu〛 on {x1 = t}, then

∂〚Gu〛t = δ(t,0,u(t,0)) − δ(t,st,0) for a.e. t ∈ (a, b),

where st ≥ 0 is such that (t, st) = Br ∩ ({t} × R+), and in writing δ(t,st,0) we are using that u has
compact support in Br. This can be seen, for instance, by approximating2 u with a sequence of
smooth functions. Therefore

∂(〚Gu〛t − 〚G−u〛t) = δ(t,0,u(t,0)) − δ(t,0,−u(t,0)) for a.e. t ∈ (a, b).

This justifies the last inequality in (3.5) and, using (3.4), the proof is achieved. Notice that, from
the last formula, it follows that the last inequality in (3.5) is strict if 〚Gu〛t − 〚G−u〛t is not the
straight segment connecting (t, 0, u(t, 0)) and (t, 0,−u(t, 0)) on a set of positive H1-measure. This
implies that inequality in (3.3) is an equality if and only if u = 0 a.e. on H+.

We now turn to two technical lemmas needed to prove Theorem 3.1. We introduce a class of
sets whose boundaries are regular enough to support the trace of a BV function. Precisely we
say that an open subset of R2 is piecewise Lipschitz if it can be written as the union of a finite
family of (not necessarily disjoint) Lipschitz open sets. Using that, for a Lipschitz set E ⊂ R2, the
symmetric difference (∂∗E)∆∂E has null H1 measure, one can see3 that the same property holds
also for a piecewise Lipschitz set. In particular, by (2.1) if V ⊂⊂ U is a piecewise Lipschitz subset
of a bounded open set U ⊂ R2, then

A(ψ, V ) = A(ψ, V ) +

∫
∂V

|ψ+ − ψ−|dH1, (3.6)

where ψ+ (respectively ψ−) denotes the trace of ψ V (respectively ψ (U \ V )) on ∂V .

Lemma 3.4 (Reduction of energy, I). For N ≥ 1 let F1, . . . , FN be nonempty connected subsets
of Ω, each Fi being the closure of a piecewise Lipschitz set, with Fi ∩ Fj = Ø for i, j ∈ {1, . . . , N},
i ̸= j. Let ψ ∈ BV (B) satisfy

ψ = 0 a.e. in G :=
N⋃
i=1

Fi and ψ = φ̂ a.e. in B \ Ω . (3.7)

2With respect to the strict convergence of BV (Br ∩ (R × {0})), which guarantees the approximation also of the
trace of u on ∂

(
Br ∩ (R× {0})

)
.

3The conclusion H1((∂∗V )∆∂V ) = 0 for a piecewise Lipschitz set V = ∪mi=1Ai, with Ai Lipschitz open sets, can
be proven by induction on m, using also the following fact: If B1 and B2 are open sets with H1((∂∗Bi)∆∂Bi) = 0 for
i = 1, 2, then B = B1 ∪ B2 satisfies H1((∂∗B)∆∂B) = 0. This follows by the identity ∂(B1 ∪ B2) = ((∂B1) \ B2) ∪
((∂B2) \B1) ∪ ((∂B1) ∩ ∂B2), which shows that ∂(B1 ∪B2) is a H1-measurable subset of ∂B1 ∪ ∂B2.

10



Then, for any i ∈ {1, . . . , N},

A(ψ⋆i ;B)− |G⋆i | − A(ψ⋆i ;B \ Ω) ≤ A(ψ;B)− |G| − A(ψ;B \ Ω), (3.8)

where

G⋆i :=
⋃
j ̸=i

Fj ∪ conv(Fi) and ψ⋆i :=

®
0 in conv(Fi)

ψ otherwise.
(3.9)

Further, inequality in (3.8) is strict unless ψ = ψ⋆i a.e..

Proof. Fix i ∈ {1, . . . , N}. By the convexity of Ω, we have ψ = ψ⋆i in B \ Ω, hence it suffices to
show that

A(ψ⋆i ;B)− |G⋆i | ≤ A(ψ;B)− |G|.

We start by observing that we may assume Fi to be simply connected. Indeed, if not, we can
replace it with the set obtained by filling the holes of Fi, and by setting ψ equal to zero in the
holes4. This procedure reduces the energy since Fi is piecewise Lipschitz, and any hole H of it has
the property that the external trace of ψ (B \H) on ∂H vanishes.

We have that (∂conv(Fi)) \ ∂Fi is a countable union of segments. We will next modify ψ by
iterating at most countably many operations, setting ψ = 0 in the region between each of these
segments and ∂Fi.

Step 1: Base case. Let l be one of such segments, and U be the open region enclosed between
∂Fi and l. We define ψ′ ∈ BV (Ω) as

ψ′ :=

®
0 in U

ψ otherwise .

We claim that
A(ψ′;B)− |G′| ≤ A(ψ;B)− |G| , (3.10)

with strict inequality unless ψ′ = ψ a.e., where G′ := G ∪ U . To prove the claim we introduce the
sets

H := int(Fi ∪ U), V := U ∩ (∪j ̸=iFj).

Note that H is a piecewise Lipschitz set. By construction

|G′| = |H|+ | ∪j ̸=i Fj | − |V | ,

and (3.10) will follow if we show that

A(ψ′;B)− |H| ≤ A(ψ;B)− | ∪j Fj |+ | ∪j ̸=i Fj | − |V | = A(ψ;B)− |Fi ∪ V | ,

with strict inequality unless ψ′ = ψ a.e. in Ω. Since |H| = |Fi ∪ V | + |U \ V |, this can also be
written as

A(ψ′;B) ≤ A(ψ;B) + |U \ V | .

In turn A(ψ′;B) = A(ψ′;U) + A(ψ′;B \ U) (and similarly for ψ), so we have reduced ourselves
with proving

A(ψ′;U) ≤ A(ψ;U) + |U \ V | . (3.11)

4If H is a hole of Fi and it happens that Fj ⊂ H for some j ̸= i, we redefine Fi as the union of it with H, and set
Fj = Ø. This procedure does not invalidate the following argument.
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In view of the definition of ψ′ which is zero in U , we have5 A(ψ′;U) =
∫
l |ψ

+|dH1+|U | (ψ+ denoting
the trace of ψ (B \ U) on the segment l) implying that (3.11) is equivalent to∫

l
|ψ+|dH1 ≤ A(ψ;U)− |V | .

Finally, if ψU denotes the trace of ψ U on l, we write A(ψ;U) = A(ψ;U \ l) +
∫
l |ψ

+ − ψU |dH1,
and the expression above is equivalent to∫

l
|ψ+|dH1 ≤

∫
l
|ψ+ − ψU |dH1 +A(ψ;U \ l)− |V | . (3.12)

We now prove (3.12). Fix a Cartesian coordinate system (x1, x2) so that l belongs to the x1-axis
and U belongs to the half-plane {x2 > 0}. Let u be an extension of ψ in R×(0,+∞) which vanishes
outside U . Lemma 3.3, applied to u with the ball Br = B, implies∫

l
|ψU |dH1 =

∫
{x2=0}∩B

u dH1 ≤ A(u;B ∩ (R× (0,+∞)))− |EB| ≤ A(ψ;U \ l)− |V |.

Here the last inequality follows by recalling that ψ (and thus u) vanishes on V . From this and the
inequality

∫
l |ψ

+|dH1 ≤
∫
l |ψ

+−ψU |dH1+
∫
l |ψU |dH

1 the proof of (3.12) is achieved, so that (3.10)
follows. Notice that in applying Lemma 3.3 the inequality holds strict when ψ′ does not coincide
with ψ a.e..

Step 2: Iterative case. We set ∂(conv(Fi)) \ ∂Fi = ∪∞
j=1lj with lj mutually disjoint segments.

For every h ≥ 1 we define the pair (ψh, Gh) as follows:

• if h = 1

ψ1 :=

®
0 in U1

ψ otherwise,
and G1 := G ∪ U1 ,

where U1 is the open region enclosed between ∂Fi and l1. We also define H1 := int(Fi ∪ U1);

• if h ≥ 2

ψh :=

®
0 in Uh

ψh−1 otherwise,
and Gh := Gh−1 ∪ Uh ,

where Uh is the open region enclosed between ∂Hh−1 and lh and Hh := int(Hh−1 ∪ Uh).

By construction each Hh is simply connected and piecewise Lipschitz, Hh ⊂ Hh+1, Gh ⊂ Gh+1 ⊂ Ω
for every h ≥ 1, and moreover

lim
h→+∞

|Hh| = |conv(Fi)| , lim
h→+∞

|Gh| = |G⋆i | , (3.13)

where G⋆i := ∪∞
h=1Gh = ∪j ̸=iFj ∪ conv(Fi). For any h ≥ 2 we apply step 1, and after h iterations

we get

A(ψh;B)− |Gh| ≤ A(ψh−1;B)− |Gh−1| ≤ · · · ≤ A(ψ1;B)− |G1| ≤ A(ψ;B)− |G| . (3.14)

In particular,

|Dψh|(B) ≤ A(ψh;B) ≤ A(ψ;B) + |Gh \G| ≤ A(ψ;B) + |Ω \G| ,
5We use the precise integral formula (3.6) thanks to the boundary regularity of U , where we have ∂U \ l ⊂ ∂Fi.
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for all h ≥ 1, and then we easily see that, up to a subsequence, ψh
∗
⇀ ψ⋆i in BV (B), where ψ∗

i is
defined as in (3.9). Now the lower semicontinuity of A(·;B) yields

lim inf
h→+∞

A(ψh, B) ≥ A(ψ⋆i ;B) . (3.15)

Finally, gathering together (3.13)-(3.15) we infer

A(ψ⋆i ;B)− |G⋆i | ≤ lim inf
h→+∞

A(ψh;B)− lim
h→+∞

|Gh| ≤ A(ψ;B)− |G| .

Again we have strict inequality unless ψh = ψh−1 for all h a.e. in Ω. This concludes the proof.

Lemma 3.5 (Reduction of energy, II). Let N ≥ 1, F1, . . . , FN , G and ψ be as in Lemma 3.4.

Then there exist ñ ∈ {1, . . . , N} and mutually disjoint closed convex sets ‹F1, . . . , ‹Fñ ⊂ Ω with
nonempty interior such that

G ⊂
ñ⋃
i=1

‹Fi =: G⋆ , (3.16)

and
A(ψ⋆;B)− |G⋆| − A(ψ⋆;B \ Ω) ≤ A(ψ;B)− |G| − A(ψ;B \ Ω) , (3.17)

where

ψ⋆ :=

®
0 in G⋆

ψ otherwise .
(3.18)

Finally, inequality in (3.17) is strict unless ψ = ψ⋆ a.e..

Proof. Base case: If N = 1 we set ‹F1 := conv(F1) = G⋆ and the thesis follows by Lemma 3.4.
Suppose N > 1. We take the sets

conv(F1) , F2 , . . . , FN and G⋆1 :=

N⋃
i=2

Fi ∪ conv(F1) , (3.19)

and let

ψ⋆1 :=

®
0 in G⋆1
ψ otherwise .

Then by Lemma 3.4,

A(ψ⋆1;B)− |G⋆1| − A(ψ⋆1;B \ Ω) ≤ A(ψ;B)− |G| − A(ψ;B \ Ω) , (3.20)

with strict inequality unless ψ⋆1 = ψ a.e..
Iterative case: Let m, k, h be natural numbers such that 1 ≤ k ≤ m ≤ N , 1 < h ≤ 2N − 1, and

let F1,h, . . . , Fm,h be closed subsets of Ω with nonempty interior that satisfy the following property:

(1) F1,h, . . . , Fk,h are convex;

(2) Fi,h ∩ Fj,h = Ø for all i, j ̸= k, i ̸= j, i, j = 1, . . . ,m.

Notice that for h = 2 and m = N the sets

F1,2 := conv(F1) , F2,2 := F2 , . . . , FN,2 := FN ,

satisfy (1), (2) with k = 1 by the base case (so the iterative step can be applied to these sets).
We then set Ik,h := {1 ≤ i ≤ m, i ̸= k : Fi,h ∩ Fk,h ̸= Ø}. If Ik,h = Ø and k = m we are done,

otherwise we construct a new family of sets using the following algorithm, distinguishing the two
cases (a) and (b):
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(a) if Ik,h = Ø and k < m we define the sets

Fi,h+1 :=

®
Fi,h for i ̸= k + 1

conv(Fk+1,h) for i = k + 1 ,
for i = 1, . . . ,m,

and G⋆h+1 := ∪mi=1Fi,h+1;

(b) if Ik,h ̸= Ø, up to relabelling the indices, we may assume that

Ik,h = {kh,1 ≤ i ≤ kh,2} \ {k},

for some kh,1 ̸= kh,2 with 1 ≤ kh,1 ≤ k ≤ kh,2 ≤ m, so that

{1, . . . ,m} \ {k} \ Ik,h = {1 ≤ i ≤ kh,1 − 1} ∪ {kh,2 + 1 ≤ i ≤ m}.

Note that if kh,1 = 1 then {1 ≤ i ≤ kh,1 − 1} = Ø, and similarly if kh,2 = m then {kh,2 + 1 ≤
i ≤ m} = Ø. Then we set

Fi,h+1 :=


Fi,h for i = 1, . . . , kh,1 − 1

conv(Fk,h ∪ (∪j∈Ik,hFj,h)) for i = kh,1

Fi+kh,2−kh,1,h for i = kh,1 + 1, . . . ,m− kh,2 + kh,1 ,

and G⋆h+1 := ∪m−kh,2+kh,1
i=1 Fi,h+1.

In both cases (a) and (b) a direct check shows that the produced sets satisfy properties (1) and (2)
with m, k + 1, h+ 1 and m− kh,2 + kh,1, kh,1, h+ 1 respectively.

In both cases we define also the function

ψ⋆h+1 :=

®
0 in G⋆h+1

ψ⋆h otherwise .

Then, by induction, for all 1 < h ≤ 2N − 1 we use Lemma 3.4, and in view of (3.20) we infer

A(ψ⋆h+1;B)− |G⋆h+1| − A(ψ⋆h+1;B \ Ω) ≤A(ψ⋆h;B)− |G⋆h| − A(ψ⋆h;B \ Ω)
≤A(ψ;B)− |G| − A(ψ;B \ Ω) ,

with strict inequality unless ψ⋆h+1 = ψ⋆h for all h a.e. in Ω.
Conclusion. If N = 1 it is sufficient to apply the base case. If instead N > 1 after a finite

number h⋆ ≤ 2N − 1 of iterations we obtain a collections of mutually disjoint and closed convex
sets with nonempty interiors F1 := F1,h⋆ , . . . , Fñ := Fñ,h⋆ with 1 ≤ ñ ≤ N such that

G ⊂ ∪ñi=1Fi =: G⋆ ,

and
A(ψ⋆;B)− |G⋆| − A(ψ⋆;B \ Ω) ≤ A(ψ;B)− |G| − A(ψ;B \ Ω) ,

with

ψ⋆ := ψ⋆h⋆ =

®
0 in G⋆

ψ otherwise ,

with strict inequality unless ψ⋆ = ψ a.e..
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Proof of Theorem 3.1. We start by observing that (2.5) readily follows from (3.1). Indeed, this
implies

inf
(σ,ψ)∈Wconv

F(σ, ψ) ≤ inf
(σ,ψ)∈W

F(σ, ψ) .

Whereas from (2.7) it follows

inf
(σ,ψ)∈W

F(σ, ψ) ≤ inf
(σ,ψ)∈Wconv

F(σ, ψ).

Thus, we only need to show (3.1). Take a pair (σ̄, ψ̄) ∈ W; we suitably modify (σ̄, ψ̄) into a new
pair (σ, ψ) ∈ Wconv such that every connected component of E(σ) is convex and

F(σ, ψ) ≤ F(σ̄, ψ̄),

and this will conclude the proof. Once again we notice that strict inequality holds unless ψ = ψ̄
a.e..

Let E(σ̄1), . . . , E(σ̄n) be the closed sets with mutually disjoint interiors corresponding to σ̄ (as
in (ii) before (1.2)) and let G := ∪ni=1E(σ̄i). Let F1, . . . , FN be the (closure of the) connected
components of G, N ≤ n, which are piecewise Lipschitz. By Lemma 3.5 there exist 1 ≤ ñ ≤ N
and ‹F1, . . . , ‹Fñ ⊂ Ω mutually disjoint closed and convex with nonempty interior satisfying (3.16),

(3.17) and (3.18). Therefore, by construction, for every i = 1, . . . , n, qi and pi+1 belong to ‹Fj for a
unique j ∈ {1, . . . , ñ}. For every j = 1, . . . , ñ we denote by

qj1 , pj1+1, . . . , qjnj , pjnj+1,

the ones that belong to ‹Fj . Then we conclude by taking (σ, ψ) ∈ Wconv with σ := (σ1, . . . , σn) and

σjk([0, 1]) =

{
qjkpjk+1 for k = 1, . . . , nj − 1

∂‹Fj \ (∪njh=1∂
0
jh
Ω
)
∪
(
∪nj−1
h=1 qjhpjh+1

)
for k = nj ,

for every j = 1, . . . , ñ and ψ := ψ⋆.

4 Existence of minimizers of F in Wconv

The main result of this section reads as follows.

Theorem 4.1 (Existence of a minimizer of F in Wconv). Let F and Wconv be as in (1.7) and
(2.6) respectively. Then there is (σ, ψ) ∈ Wconv such that

F(σ, ψ) = min
(s,ζ)∈Wconv

F(s, ζ). (4.1)

Moreover, every minimizer (σ, ψ) of F in Wconv is such that every connected component of E(σ)
is convex.

As a direct consequence of Theorem 3.1 and Theorem (4.1)we have:

Corollary 4.2. Let (σ, ψ) ∈ Wconv be a minimizer as in Theorem 4.1. Then (σ, ψ) is also a
minimizer of F in the class W. Moreover, every minimizer (σ, ψ) of F in W is such that every
connected component of E(σ) is convex.

We prove Theorem 4.1 using the direct method. To this aim we need to introduce a notion of
convergence in Wconv.
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Definition 4.3 (Convergence in Wconv). We say that the sequence ((σ)k, ψk)k ⊂ Wconv, with
(σ)k = ((σ1)k, . . . , (σn)k), converges to (σ, ψ) ∈ Wconv if:

(a) ((σi)k)♯〚[0, 1]〛 converges to (σi)♯〚[0, 1]〛 in the sense of currents in D1(R2), for all i = 1, . . . , n;

(b) (ψk)k converges to ψ weakly* in BV (Ω), i.e., ψk → ψ in L1(Ω) and Dψk ⇀ Dψ weakly* in
Ω as measures as k → +∞.

In Definition 4.3 (σi)♯〚[0, 1]〛 denotes the push-forward by σi of the 1-current given by integration
on the segment [0, 1], standardly oriented (see [34] for details).

In the next lemma we show a compactness property of Wconv. In particular given (σ)k ⊂
Σconv with equibounded energies, for all i = 1, . . . , n, up to subsequences, a (not-relabelled)
reparametrization of (σi)k converges uniformly to some σ̂i, and there is a parametrization σi of
the support of (σ̂i)♯〚[0, 1]〛 such that σ = (σ1, . . . , σn) ∈ Σconv. This, together with a uniform
bound on the lengths of (σi)k, implies the convergence of the push-forwards as currents. Notice
that (σi)♯〚[0, 1]〛 is invariant under reparametrization of σi.

Lemma 4.4 (Compactness of Wconv). Let
(
(σ)k, ψk

)
k
⊂ Wconv be a sequence with

supk F((σ)k, ψk) < +∞. Then
(
(σ)k, ψk

)
k
admits a subsequence converging to an element of Wconv.

Proof. We divide the proof in two steps.

Step 1: Compactness of (σ)k. For simplicity we use the notation σik = (σi)k for every k ∈ N and
i ∈ {1, . . . , n}. By condition (P) in Remark 2.3, for every k ∈ N and i ∈ {1, . . . , n} there exists a
non-decreasing function θik : [0, 1] → R, θik(1)− θik(0) ≤ 2π, such that, for a reparametrization σ̂ik
of σik,

σ̂ik(t) = qi + ℓ(σik)

∫ t

0
γik(s)ds, γik(t) := (cos θik(t) , sin θik(t)) ∀t ∈ [0, 1],

and with σ̂ik(1) = pi+1. We observe that

ℓ(σik) =

∫ 1

0
|σ′ik(t)|dt ≤ H1(∂Ω), (4.2)

since the orthogonal projection Πki : ∂Ω \ ∂0i Ω → E(σik) is a contraction and H1(∂Ω \ ∂0i Ω) ≤
H1(∂Ω). Hence, up to a (not relabelled) subsequence, ℓ(σik) → mi ∈ R+ as k → +∞. The number
mi is positive since, for all k and i, we have ℓ(σik) ≥ |qi − pi+1| > 0. Moreover∫ 1

0
|θ′ik(t)|dt =

∫ 1

0
θ′ik(t)dt ≤ 2π;

hence, up to a not relabelled subsequence, θki
∗
⇀ θi in BV (0, 1) and θi is non-decreasing with

θi(1) − θi(0) ≤ 2π. Furthermore γik
∗
⇀ γi in BV ((0, 1);R2) with γi(t) = (cos(θi(t)) , sin(θi(t))).

Thus, arguing as in (8.2) and using (4.2), we get σ̂ik → σ̂i in W
1,1([0, 1];R2), where

σ̂i(t) := qi +mi

∫ t

0
γi(s)ds = qi + ℓ(σi)

∫ t

0
γi(s)ds. (4.3)

Thus limk→+∞ σ̂ik = σ̂i uniformly, hence we also conclude that σ̂i takes values in Ω. Since by (H3)

dH(E(σik), E(σih)) = dH(∂E(σik), ∂E(σih)) ≤ ∥σik − σih∥L∞
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for all h, k > 0, the uniform convergence of (σ̂ik) implies that (E(σik))k is a Cauchy sequence with
respect to the Hausdorff distance. Hence, by (H2) there is Ki ∈ K such that dH(E(σik),Ki) → 0,
and Ki is also convex by (H5).

We now show that σ̂i is injective, unless a pathological case that might happen only if ∂0i Ω is
a straight segment6. Notice that, if ∂0i Ω is not straight, Ki must have nonempty interior, since it
contains the region enclosed between qipi+1 and ∂0i Ω.

First observe that σ̂i([0, 1]) ⊆ ∂Ki. Assume by contradiction that σ̂i(t1) = σ̂i(t2) for some
t1, t2 ∈ [0, 1], t1 < t2. Since Ki is convex, the curve σ̂i [t1, t2] is closed and its image is contained
in ∂Ki. If σ̂i [t1, t2] is constant and equals to σ̂i(t1) we get a contradiction with (4.3) and the
fact that |γi| = 1 a.e. in [t1, t2]. Hence there is a point t3 ∈ (t1, t2) such that σ̂i(t3) ̸= σ̂i(t1).
Let ℓk13 and ℓk23 denote the half-lines in R2 with endpoint σ̂ik(t3) and passing through σ̂ik(t1) and
σ̂ik(t2), respectively. Since E(σik) is convex, we infer that σ̂ik([0, t1]) ∪ σ̂ik([t2, 1]) is contained in
the closed angular sector of R2 enclosed between ℓk13 and ℓk23. Since (σ̂ik) converges uniformly to
σ̂i, we have σ̂ik(tj) → σ̂i(tj) for j = 1, 2, 3, and σ̂i(t3) ̸= σ̂i(t1) = σ̂i(t2), so we easily conclude that
σ̂ik([0, t1])∪ σ̂ik([t2, 1]) must be contained in the line passing through σ̂i(t1) = σ̂i(t2) and σ̂i(t3). As
a consequence also Ki, being convex, is a segment contained in such a line, and has empty interior.
Hence this leads to a contradiction if ∂0i Ω is not a straight segment. In this case we set σi := σ̂i.

If instead ∂0i Ω is a straight segment, it might happen that the image of σ̂i is contained in a line,
which must be the one passing through qi and pi+1. Since uniform convergence of (σ̂ik) and the fact
that ℓ(σik) → ℓ(σ̂i) imply that (σ̂ik)♯〚[0, 1]〛 = (σik)♯〚[0, 1]〛 → (σ̂i)♯〚[0, 1]〛 as currents, and since
∂(σik)♯〚[0, 1]〛 = δpi+1 − δqi for all k, also ∂(σ̂i)♯〚[0, 1]〛 = δpi+1 − δqi . We conclude that (σ̂i)♯〚[0, 1]〛
is the integration over the segment qipi+1, and hence there is a Lipschitz injective curve σi which
parametrizes qipi+1 such that

(σi)♯〚[0, 1]〛 = (σ̂i)♯〚[0, 1]〛, and (σik)♯〚[0, 1]〛 → (σi)♯〚[0, 1]〛.

We next show that E(σi) is convex for any i ∈ {1, . . . , n}. If σi parametrizes the segment qipi+1

then E(σi) is that segment, and there is nothing to prove. Assume then that σi([0, 1]) ̸= qipi+1.
As shown above, the uniform limit σi of (σ̂ik) is injective. We will show that Ki = E(σi). Indeed,
the uniform convergence of (σ̂ik) yields

lim
k→+∞

dH(∂E(σik), ∂E(σi)) = 0.

From (H3) we get

dH(∂Ki, ∂E(σi)) ≤ dH(∂E(σik), ∂Ki) + dH(∂E(σik), ∂E(σi))

=dH(E(σik),Ki) + dH(∂E(σik), ∂E(σi)) → 0 as k → +∞.

Thus ∂Ki = ∂E(σi), so Ki = E(σi) and the convexity is shown. This implies σ ∈ Σconv, and since
(σik)♯〚[0, 1]〛 → (σi)♯〚[0, 1]〛 as currents, the compactness of (σ)k is achieved.

Step 2: Compactness of (ψk). Setting Fk = ∪ni=1E(σik) we have

|Dψk|(Ω) ≤ A(ψk; Ω) ≤ F((σ)k, ψk) + |Fk| ≤ C < +∞ ∀k > 0,

where we used that |Fk| ≤ |Ω|. Therefore, up to a subsequence, ψk
∗
⇀ ψ in BV (Ω) and almost

everywhere in Ω as k → +∞. To conclude it remains to show that ψ = 0 in E(σ) = ∪iE(σi). If
for some i ∈ {1, . . . , n} it happens that ∂0i Ω is straight and σi is the straight segment qipi+1, then

6This case corresponds to E(σik) a possibly curvilinear triangle with vertices pi, qi+1 and a third point rk ∈ Ω
converging to a point r ∈ ∂Ω which is on the same line as pi, qi+1, but outside the segment piqi+1.
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E(σi) has empty interior, and so there is nothing to prove. Otherwise, for the other indeces, by
limk→+∞ dH(E(σik), E(σi)) = 0, property (H6) yields

if x ∈ int(E(σi)) then x ∈ E(σik) for k sufficiently large,

and hence, since limk→+∞ ψk = ψ a.e. in Ω, we infer ψ = 0 a.e. in E(σ).

Remark 4.5. The previous proof shows a slightly stronger result: under the assumption of Lemma
4.4, for every i = 1, . . . , n, we can find σi with σ = (σ1, . . . , σn) ∈ Σconv, σ̂i ∈ Lip([0, 1]; Ω), and
reparametrizations σ̂ik of σik such that

(σ̂i)♯〚[0, 1]〛 = (σi)♯〚[0, 1]〛,

σ̂ik → σ̂i uniformly on [0, 1].

Moreover (σik)♯〚[0, 1]〛 converges to (σi)♯〚[0, 1]〛 in the sense of currents in D1(R2). Finally E(σik) =
E(σ̂ik) converges to E(σ̂i) = E(σi) in (K, dH), and σ̂i = σi unless ∂

0
i Ω is a straight segment. In the

latter case it might happen that σ̂i is not injective, but this happens only if σ̂i([0, 1]) is a segment,
σi is a parametrization of qipi+1, and E(σi) = qipi+1.

Remark 4.6. We have also shown that if (σ̂ik) converges uniformly to σi ∈ Σconv for some i =
1, . . . , n then

lim
k→+∞

dH(E(σik), E(σi)) = 0.

Lemma 4.7 (Lower semicontinuity of F in Wconv). Let
(
(σ)k, ψk

)
k
⊂ Wconv be a sequence

converging to (σ, ψ) ∈ Wconv. Then

F(σ, ψ) ≤ lim inf
k→+∞

F((σ)k, ψk).

Proof. By a standard argument [29], the functional

ψ ∈ BV (Ω) 7→ A(ψ; Ω) +

∫
∂Ω

|ψ − φ|dH1

is L1(Ω)-lower semicontinuous. We now show that the map σ ∈ Σconv 7→ |E(σ)| is continuous. Let
(σ)k ⊂ Σconv, σ ∈ Σconv, and suppose that ((σi)k)♯〚[0, 1]〛 converges to (σi)♯〚[0, 1]〛 in D1(R2) for
all i = 1, . . . , n as k → +∞. Set Fk := ∪ni=1E((σi)k) and recall that E(σ) = ∪ni=1E(σi). Thanks
to Remark 4.5, we can always assume that there are reparametrizations σ̂ik of σik such that σ̂ik
converges uniformly to σ̂i with (σ̂i)♯〚[0, 1]〛 = (σi)♯〚[0, 1]〛. Let us suppose first that σ̂i is injective
for all i = 1, . . . , n, and so σ̂i = σi. By Remark 4.6 limh→+∞ dH(E((σi)k), E(σi)) = 0 for all
i = 1, . . . , n and therefore dH(Fk, E(σ)) =: εk → 0+.

By invoking (H7) we have E(σ) ⊂ (Fk)
+
εk
. Moreover, since dH((Fk)

+
εk
, E(σ)) ≤ 2εk, we get

(Fk)
+
εk

⊆ (E(σ))+2εk , and so

|E(σ)| ≤ |(Fk)+εk | ≤ |(E(σ))+2εk |.
This implies

lim sup
k→+∞

|Fk| ≤ lim sup
k→+∞

|(Fk)+εk | ≤ |E(σ)|.

The converse inequality is a consequence of Fatou’s Lemma and (H6), indeed

|E(σ)| ≤
∫
Ω
lim inf
k→+∞

χFk(x) dx ≤ lim inf
k→+∞

∫
Ω
χFk(x) dx = lim inf

k→+∞
|Fk|.

If instead σ̂i is not injective for some i, we have σ̂i ∈ Lip([0, 1]; Ω) with (σ̂i)♯〚[0, 1]〛 = (σi)♯〚[0, 1]〛,
and we are in the case that E(σ̂i) has empty interior (see Remark 4.5). Thus E(σik) = E(σ̂ik)
converges to a segment Ki ⊋ E(σi) in the Hausdorff distance. Since |Ki| = 0, the thesis of the
lemma follows along the same argument above replacing the symbol E(σi) by Ki.
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Proof of Theorem 4.1. By Lemma 4.4 and Lemma 4.7 we can apply the direct method and conclude
that there exists (σ, ψ) ∈ Wconv such that (4.1) holds. Moreover, since Wconv ⊂ W by Theorem
(3.1) we can choose (σ, ψ) such that every connected component of E(σ) is convex.

5 Regularity of minimizers

In this section we investigate regularity properties of minimizers of F . We recall that our boundary
datum φ satisfies the conditions in (2.4), and φ̂ ∈ W 1,1(B) denotes a fixed extension of φ in the
open ball B ⊃ Ω. The main result here reads as follows.

Theorem 5.1 (Structure of minimizers). Every minimizer (σ, ψ) ∈ Wconv of F in W, namely

F(σ, ψ) = min
(s,ζ)∈W

F(s, ζ) ,

satisfies the following properties:

1. Each connected component of E(σ) is convex;

2. ψ is positive and real analytic in Ω \ E(σ);

3. If ∂Di Ω is not a segment for some i = 1, . . . , n, then ∂E(σ) ∩ ∂Di Ω = Ø, ψ is continuous up
to ∂Di Ω, and ψ = φ on ∂Di Ω;

4. If ∂Di Ω is a segment for some i = 1, . . . , n, then either ∂E(σ)∩ ∂Di Ω = Ø or ∂E(σ)∩ ∂Di Ω =
∂Di Ω. In the first case ψ is continuous up to ∂Di Ω and ψ = φ on ∂Di Ω.

Moreover, there is a minimizer (σ, ψ) ∈ Wconv such that

5. Ω ∩ ∂E(σ) consists of a finite number of disjoint analytic curves, and ψ is continuous and
null on ∂E(σ) \ ∂DΩ.

Remark 5.2. If ∂Di Ω is a straight segment for some i = 1, . . . , n, nothing ensures that ∂E(σ) ∩
∂Di Ω = Ø. However, if this intersection is nonempty, then necessarily ∂Di Ω ⊂ ∂E(σ). The proto-
typical example is given by the classical catenoid, as explained in the Introduction (see Figure 2)
where, if the basis of the rectangle Ω = Rℓ is large enough, a solution ψ is identically zero, and
∂DΩ ⊂ ∂E(σ). This also explains why in point 5. of Theorem 5.1 we write ∂E(σ) \ ∂DΩ.

A consequence of Theorem 5.1 is that a regular solution ψ belongs toW 1,1(Ω) and, if Ω is strictly
convex, it also attains the boundary values. In particular Theorem 5.1 implies Theorem 1.1.

For the reader convenience we divide the proof in a number of steps.

Lemma 5.3. Every minimizer (σ, ψ) ∈ Wconv of F in W satisfies 1., 2. and ψ = φ on ∂DΩ\∂E(σ).

Proof. Item 1. follows by Theorem 3.1. By [29, Theorem 14.13] we also have that ψ is real analytic
in Ω \E(σ). Together with the strong maximum principle [29, Theorem C.4], this implies that, in
Ω \E(σ), either ψ > 0 or ψ ≡ 0. On the other hand, since Ω is convex we can apply [29, Theorem
15.9] and get that ψ is continuous up to ∂DΩ \ ∂E(σ); in particular

ψ = φ > 0 on ∂DΩ \ ∂E(σ) , (5.1)

which in turn implies ψ > 0 in Ω \ E(σ) .
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Lemma 5.4. Let Γ ⊂ R3 be a rectifiable, simple, closed and non-planar curve satisfying the fol-
lowing properties:

(1) Γ ⊂ ∂(F × R) for some closed bounded convex set F ⊂ R2 with nonempty interior;

(2) Γ is symmetric with respect to the horizontal plane R2 × {0};

(3) There are a nonempty relatively open arc Ùpq ⊂ ∂F with endpoints p and q, and f ∈ C0(Ùpq ∪
{p, q}; [0,+∞)) such that f is positive in Ùpq and

Γ ∩ {x3 ≥ 0} = Gf ∪ ({p} × [0, f(p)]) ∪ ({q} × [0, f(q)]). (5.2)

Let S be a solution to the classical Plateau problem for Γ, i.e., a disk-type surface minimizing area
among all disk-type surfaces spanning Γ. Then:

(1′) βp,q := S ∩ (R2×{0}) ⊂ F is a simple analytic curve joining p and q with βp,q ∩ ∂F = {p, q};

(2′) S is symmetric with respect to R2 × {0};

(3′) The surface S+ := S∩{x3 ≥ 0} is the graph of a function ψ̃ ∈W 1,1(Up,q)∩C0(Up,q \{p, q}),
where Up,q ⊂ int(F ) is the open region enclosed between Ùpq and βp,q. Moreover ψ̃ is analytic
in Up,q, and if f(p) = 0 (resp. f(q) = 0) then ψ is also continuous at p (resp. at q);

(4′) The curve βp,q is contained in the closed convex hull of Γ, and F \ Up,q is convex.

Remark 5.5. If the function f in (3) is such that f(p) = f(q) = 0 then (5.2) becomes Γ ∩ {x3 ≥
0} = Gf . For later convenience we prove Lemma 5.4 under the more general assumption (3).

Proof. Even though several arguments are standard, we give the proof for completeness.
Step 1: βp,q is a simple analytic curve joining p and q.

Let B1 ⊂ R2 be the open unit disk centred at the origin. Let Φ = (Φ1,Φ2,Φ3) : B1 → S ⊂ R3 be a
parametrization of S with Φ(∂B1) = Γ, that is harmonic, conformal, and therefore analytic in B1,
continuous up to ∂B1. Further, by (1), Φ is an embedding (see [36] and also [22, page 343]).
By assumption (5.2) we have {w ∈ ∂B1 : Φ3(w) = 0} = {Φ−1(p, 0),Φ−1(q, 0)}, so that Φ3 changes
sign only twice on ∂B1. By applying Rado’s lemma (see e.g. [22, Lemma 2, page 295]) to the
harmonic function Φ3 we deduce that ∇Φ3 ̸= 0 in B1 and in particular {w ∈ B1 : Φ3(w) > 0} and
{w ∈ B1 : Φ3(w) < 0} are connected, and {w ∈ B1 : Φ3(w) = 0} is a simple smooth curve in B1

joining Φ−1(p, 0) and Φ−1(q, 0). By the injectivity of Φ we have that S ∩ (R2 × {0}) = Φ({w ∈
B1 : Φ3(w) = 0}) is a simple analytic curve joining p and q.

Step 2: S is symmetric with respect to the horizontal plane R2 × {0}.
By step 1 the sets {w ∈ B1 : Φ3(w) ≥ 0} and {w ∈ B1 : Φ3(w) ≤ 0} are simply connected and the
two surfaces

S+ := Φ({w ∈ B1 : Φ3(w) ≥ 0}) , S− := Φ({w ∈ B1 : Φ3(w) ≤ 0})

have the topology of the disk. We assume without loss of generality that H2(S+) ≤ H2(S−). Let

Sym(S+) := {(x′, x3) : (x′,−x3) ∈ S+} , S̃ := S+ ∪ Sym(S+) .

Then S̃ is a symmetric surface of disk-type with ∂S̃ = Γ and

H2(S̃) = 2H2(S+) ≤ H2(S+) +H2(S−) = H2(S) .
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In particular S̃ is a symmetric solution to the Plateau problem for Γ. Further S = S̃ on a relatively
open subset of S; hence, since they are real analytic surfaces, they must coincide, S = S̃.

Step 3: S+ is the graph of a function ψ̃ ∈W 1,1(Up,q) ∩ C0(Up,q \ {p, q}).
To show this it is enough to check the validity of the following

Claim: Every vertical plane Π is tangent to int(S) at most at one point.

We prove the claim arguing by contradiction as in [8, page 97], that is we assume there is a
vertical plane Π tangent to int(S) at x′ and x′′ with x′ ̸= x′′. We define the linear map dν(x) :=
(x− x′) · ν with ν a unit normal to Π, so that clearly Π = {x ∈ R3 : dν(x) = 0}. Since F is convex,
Π∩ (∂F ×{0}) contains at most two points. By properties (1)-(3) each of these points is either the
projection on the horizontal plane of one or two points of Π∩Γ, or the projection on the horizontal
plane of one of the vertical segments {p}× [0, f(p)] and {q}× [0, f(q)]. Hence Π∩Γ contains either:
(a) at most two points and a segment, (b) two segments, (c) four points. Without loss of generality
we restrict our analysis to the last case (the others are simpler to treat), namely we assume that
there are four (clockwise ordered) points w1, . . . , w4 ∈ ∂B1 such that Π ∩ Γ = {Φ(w1), . . . ,Φ(w4)},
that is dν ◦ Φ(wi) = 0 for i = 1, . . . , 4. We may also assume dν ◦ Φ > 0 on w̆1w2 ∪ w̆3w4 and
dν ◦ Φ < 0 on w̆2w3 ∪ w̆4w1. Here w̆iwj denotes the relatively open arc in ∂B1 joining wi and wj
for i, j ∈ {1, . . . , 4}. Notice that the function dν ◦ Φ: B1 → R is harmonic in B1, continuous up to
∂B1 and vanishes at w1, . . . , w4; hence, by classical arguments [37, Section 437] we see that the set
{w ∈ B1 : dν ◦ Φ = 0}, in a neighbourhood of w′ := Φ−1(x′) (respectively w′′ := Φ−1(x′′)), is the
union of a number m ≥ 2 of analytic curves crossing at w′ (respectively w′′). Thus near w′ and
w′′ the set {w ∈ B1 : dν ◦ Φ(w) > 0} is the union of at least two disjoint open regions A1,1, A1,2

and A2,1, A2,2 respectively such that A1,1 ∩ A1,2 = {w′}, A2,1 ∩ A2,2 = {w′′}. Moreover each Ai,j
belongs either to the connected component of {w ∈ B1 : dν ◦Φ(w) > 0} containing w̆1w2, or to the
one containing w̆3w4. Up to relabelling the indices we have two possibilities.

Case 1: A1,1 andA1,2 belong to the same connected component containing w̆1w2. Then we can find two
simple curves α1, α2 contained in A1,1 and A1,2 respectively, that connect w

′ to a point in w̆1w2

and such that the region enclosed by the curve α1 ∪ α2 intersects {w ∈ B1 : dν ◦ Φ(w) < 0}.
Since dν ◦ Φ > 0 on α1 ∪ α2 by the maximum principle we have a contradiction.

Case 2: A1,1 and A2,1 belong to the connected component containing w̆1w2 while A1,2 and A2,2 belong
to the connected component containing w̆3w4. Then we can find four simple curves αi,j
(with i, j = 1, 2) contained respectively in Ai,j , such that α1,1 (respectively α2,1) connects w

′

(respectively w′′) to a point in w̆1w2 and α1,2 (respectively α2,2) connects w
′ (respectively w′′)

to w̆3w4. Then the region enclosed by the curve ∪i,jαi,j intersects {w ∈ B1 : dν ◦ Φ(w) < 0},
while dν ◦ Φ > 0 on ∪i,jαi,j , which again by the maximum principle gives a contradiction.

Thus the claim follows. Now, by step 2, the claim readily implies that int(S+) has no points
with vertical tangent plane and hence int(S+) is the graph of a function ψ̃ defined on Up,q. Since

ψ̃ must minimize (locally) the area functional, it is also real analytic in Up,q. Moreover, the claim

also implies that ψ̃ must vanish on βp,q and that it must attain the boundary values on Ùpq. If f

vanishes on p or q, then also the continuity of ψ̃ at these points is achieved.

Step 4: The curve βp,q is contained in the closed convex hull of Γ, and the set F \Up,q is convex.
Let π(Γ) ⊂ ∂F be the projection of Γ onto the plane R2 × {0}. By [22, Theorem 3, pag. 343] the
relative interior of S is strictly contained in the convex hull of Γ, thus in particular the curve βp,q
(respectively βp,q \{p, q}) is contained (respectively strictly contained) in the same half-plane (with
respect to the line pq) that contains π(Γ).

Now, assume by contradiction that F \ Up,q is not convex. Then there are p′, q′ ∈ βp,q with the
following properties:
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• The open region U ′ enclosed by βp,q and the segment p′q′ is nonempty and contained in Up,q;

• the points p and q and the set U ′ lie on the same side with respect to the line containing p′q′.

Let then dW : R3 → R be an affine function that vanishes on the vertical plane containing p′q′

and is positive in the half-space W+ containing p, q and U ′. We now observe that Γ ∩W+ is the
union of two connected subcurves Γ̂1 and Γ̂2, containing p and q respectively. As a consequence
Φ−1(Γ̂1) = w̆1w2 and Φ−1(Γ̂2) = w̆3w4 for some w1, w2, w3, w4 ∈ ∂B1 (clockwise oriented).
On the other hand since dW > 0 on U ′ we can find t′ ∈ ∂U ′ \ p′q′ such that dW ◦ Φ(Φ−1(t′)) =
dW (t′) > 0 with Φ−1(t′) ∈ B1. Once again by the harmonicity of dW ◦ Φ: B1 → R we deduce the
existence of a curve α ⊂ {w ∈ B1 : dW ◦ Φ(w) > 0} joining Φ−1(t′) either to w̆1w2 or w̆3w4. Hence
Φ(α) ⊂ Φ(B1) is a curve joining t′ either to Γ̂1 or Γ̂2, say Γ̂1. This implies that the projection
π(Φ(α)) of Φ(α) onto the horizontal plane R2 × {0} is a curve contained in Up,q that connects t′

to π(Γ̂1). So in particular, the curve π(Φ(α)) cannot be included in the half-space W+. But this
contradicts the fact that α ⊂ {w ∈ B1 : dW ◦Φ(w) > 0} (this is because the values of dW at a point
x and π(x) are the same).

We need also the following technical results on the distance function dF from a convex set F .
Recall the definition of E+

ε given in (H7) in the Appendix, for ε > 0 and E ⊂ R2.

Lemma 5.6. Let F ⊂ R2 be bounded, closed and convex. Then ∆dF ∈ L∞
loc(R2 \ F ) ∩ L1(B \ F )

for every ball B with F ⊂⊂ B.

Proof. By [18, Theorem 3.6.7 pag. 75] it follows that dF ∈ C1,1
loc (R

2 \ F ), hence ∇2 dF ∈ L∞
loc(R2 \

F ;R2×2). Therefore we only have to check that ∆dF ∈ L1(B \ F ).
Let η > 0 be fixed sufficiently small. Select (fk)k∈N ⊂ C1

c (R2;R2) such that fk → ∇ dF in
W 1,1(B \ F+

η/2) as k → +∞. By the divergence theorem we have∫
B\F+

η

divfk dx =

∫
∂B∪∂(F+

η )
fk · νη dH1, (5.3)

with νη the outer unit normal to ∂B ∪ ∂(F+
η ). By taking the limit as k → ∞ we get

lim
k→+∞

∫
B\F+

η

divfk dx =

∫
B\F+

η

∆dF dx , (5.4)

and

lim
k→+∞

∫
∂B∪∂(F+

η )
fk · νη dH1 =

∫
∂B∪∂(F+

η )
∇ dF · νη dH1 , (5.5)

where (5.5) follows by using that ∂(F+
η ) is of class C1,1 and hence fk (∂B∪∂(F+

η )) → ∇dF (∂B∪
∂(F+

η )) in L1(∂B∪∂(F+
η )). Since dF is convex we have ∆dF ≥ 0 a.e. in R2\F , moreover |∇dF | = 1

in R2 \ F ; then gathering together (5.3), (5.4), (5.5) we have∫
B\F+

η

|∆dF | dx =

∫
B\F+

η

∆dF dx =

∫
∂B∪∂(F+

η )
∇ dF · νη dH1 ≤ H1(∂B ∪ ∂(F+

η )) ≤ C,

with C > 0 independent of η. By the arbitrariness of η > 0, the thesis follows.

Corollary 5.7. Let U ⊂ R2 be a bounded open set with Lipschitz boundary. Let F ⊂ R2 be closed
and convex such that U∩F = Ø and let ψ ∈W 1,1(U)∩L∞(U)∩C0(U). Then the following formula
holds:

−
∫
U
ψ∆dF dx =

∫
U
∇ψ · ∇ dF dx−

∫
∂U
ψ γ dH1,

where γ denotes the normal trace of ∇ dF on ∂U .
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Proof. We have |∇ dF | = 1 in R2 \ F , moreover since U ∩ F = Ø, by Lemma 5.6 we deduce also
∆dF ∈ L1(U). Therefore the thesis readily follows by applying [5, Theorem 1.9].

Remark 5.8. The normal trace γ of ∇ dF on ∂F equals 1 H1-a.e. on ∂F . Indeed, from Corollary
5.7 we have that for all φ ∈ C1

c (R2;R2) it holds

−
∫
R2\F+

η

φ∆dF dx =

∫
R2\F+

η

∇φ · ∇ dF dx−
∫
∂(F+

η )
φγ dH1

=

∫
R2\F+

η

∇φ · ∇ dF dx−
∫
∂(F+

η )
φdH1,

where we have used that ∂(F+
η ) being a level set of dF , it results ∇ dF = νη on it. Letting η → 0

and using that ∆dF ∈ L1(B \ F ) for all balls B, we infer

−
∫
R2\F

φ∆dF dx =

∫
R2\F

∇φ · ∇ dF dx−
∫
∂F
φdH1.

By the arbitrariness of φ and again by Corollary 5.7, the claim follows.

Lemma 5.9. Let F ⊂ Ω be closed and convex with nonempty interior, and let δ > 0. Let ψ ∈
W 1,1((F+

δ \ F ) ∩ Ω) ∩ L∞((F+
δ \ F ) ∩ Ω) ∩ C0((F+

δ \ F ) ∩ Ω). Then

lim
ε→0+

∫
Ω∩∂(F+

ε )
ψ dH1 =

∫
Ω∩∂F

ψ dH1 . (5.6)

Proof. Let ε ∈ (0, δ) and Tε := (F+
ε \ F ) ∩ Ω. Since Tε ∩ F = Ø, by Corollary 5.7 we get

−
∫
Tε

ψ∆dF dx =

∫
Tε

∇ψ · ∇ dF dx−
∫
∂Tε

ψ γ dH1 , (5.7)

which by Remark 5.8 becomes

−
∫
Tε

ψ∆dF dx =

∫
Tε

∇ψ · ∇ dF dx

+

∫
Ω∩∂F

ψ dH1 −
∫
Ω∩∂(F+

ε )
ψ dH1 −

∫
((F+

ε )\F )∩∂Ω
ψ γ dH1 .

(5.8)

Now

lim
ε→0+

∣∣∣ ∫
Tε

∇ψ · ∇ dF dx
∣∣∣ ≤ lim

ε→0+

∫
Tε

|∇ψ| dx = 0 , (5.9)

and

lim
ε→0+

∣∣∣ ∫
(F+
ε \F )∩∂Ω

ψ γ dH1
∣∣∣ ≤ lim

ε→0+

∫
(F+
ε \F )∩∂Ω

ψ dH1 = 0 . (5.10)

Moreover, since ∆dF ∈ L1(Tε) by Lemma 5.6, we deduce also

lim
ε→0+

∣∣∣ ∫
Tε

−ψ∆dF dx
∣∣∣ ≤ ∥ψ∥L∞ lim

ε→0+

∫
Tε

|∆dF | dx = 0 . (5.11)

Finally gathering together (5.8)-(5.11) we infer (5.6).
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Remark 5.10. Let F , δ and ψ be as in Lemma 5.9. Let α be any connected component of Ω∩∂F ,
and for every 0 < ε < δ let αε be the corresponding component of Ω ∩ ∂(F+

ε ); namely, if πF is the
orthogonal projection onto the convex closed set F , setting

α̂ε := {x ∈ ∂(F+
ε ) : πF (x) ∈ α},

then one has αε := α̂ε ∩ Ω. Arguing as in Lemma 5.9, we can show that

lim
ε→0+

∫
αε

ψ dH1 =

∫
α
ψ dH1 .

Lemma 5.11. Let (σ, ψ) ∈ Wconv be a minimizer of F in W as in Theorem 3.1. Then there is a
minimizer (σ̂, ψ̂) ∈ Wconv of F in W with the following properties:

1. (∂E(σ̂)) ∩ ∂Ω = (∂E(σ)) ∩ ∂Ω;

2. ψ̂ is continuous and null on Ω ∩ ∂E(σ̂).

The second condition means essentially that ψ̂ vanishes on Ω∩ ∂E(σ̂) when considering its trace
from the side of Ω \ E(σ̂).

Proof. We know by Lemma 5.3 that (σ, ψ), σ = (σ1, . . . , σn), satisfies the following properties:

• Each connected component of E(σ) is convex;

• ψ is positive and real analytic in Ω \ E(σ);

• ψ = φ on ∂DΩ \ ∂E(σ).

In what follows we are going to modify (σ, ψ) near each arc of ∂E(σ) using an iterative argument
in order to get a new minimizer (σ̂, ψ̂) ∈ Wconv that satisfies conditions 1 and 2. To this aim
we denote by F1, . . . , Fk with 1 ≤ k ≤ n the closure of the connected components of E(σ) and
set δ0 := mini ̸=j dist(Fi, Fj) > 0. Moreover by the first property we deduce that Ω ∩ ∂E(σ) is
the union of an at most countable family of pairwise disjoint arcs with endpoints in ∂Ω, i.e.,
Ω ∩ ∂E(σ) =

⋃k
i=1

⋃∞
j=1 αi,j , where αi,j is a connected component of Ω ∩ ∂Fi for i ∈ {1, . . . , k},

j ≥ 17.
Step 1: Base case. Let α be one of the connected components of Ω ∩ ∂F , with F := Fi for

some i ∈ {1, . . . , k}. In this step we construct a new minimizer (σα, ψα) ∈ Wconv such that
(∂E(σα)) ∩ ∂Ω = (∂E(σ)) ∩ ∂Ω and ψα is continuous and null on α′, where α′ ⊂ Ω ∩ ∂E(σα) is
a suitable curve that replaces α and has the same endpoints as α. For ε ∈ (0, δ0/2) we define the
stripe

T̂ε(α) := {x ∈ Ω \ F : dist(x, α) < ε} ⊂ F+
ε \ F ,

and consider the planar curve αε in Ω defined as in Remark 5.10. Let Tε(α) be the connected
component of T̂ε(α) whose boundary contains αε. Let Lε be defined as

Lε := (∂Tε(α)) ∩ ∂Ω,

so that in particular ∂Tε(α) = α ∪ αε ∪Lε . Let p, q ∈ ∂Ω be the endpoints of α (and then also the
endpoints of αε ∪ Lε, which are independent of ε). We define the curves

Γε := Γ+
ε ∪ Γ−

ε , Γ+
ε := Gψ αε

∪ Gφ Lε
∪ l+ , Γ−

ε := G−ψ αε
∪ G−φ Lε

∪ l− ,
7Notice that at this stage we do not have any information about the geometry of the set (∂E(σ))∩∂Ω, and Ω∩∂Fi

could a priori be the union of countably many connected components.
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where

l+ := ({p} × [0, φ(p)]) ∪ ({q} × [0, φ(q)]) , l− := ({p} × [−φ(p), 0]) ∪ ({q} × [−φ(q), 0]) .

Observing that Lε ⊂ ∂DΩ \ ∂E(σ) and recalling that ψ = φ on ∂DΩ \ ∂E(σ) we deduce that Γε
is a closed non-planar curve in R3 that satisfies assumptions (1)-(3) of Lemma 5.4. Therefore, a
solution Sε to the classical Plateau problem corresponding to Γε is a disk-type surface such that:

1. βεp,q := Sε ∩ (R2 × {0}) is a simple analytic curve joining p and q;

2. Sε is symmetric with respect to the horizontal plane;

3. the surface S+
ε := Sε∩{x3 ≥ 0} is the graph of a function ψεp,q ∈W 1,1(U εp,q)∩C0(U

ε
p,q \{p, q}),

where U εp,q ⊂ F ∪ Tε(α) is the open region enclosed between αε ∪ Lε and βεp,q;

4. the curve βεp,q is contained in the closed convex hull of Γε and (F ∪ Tε(α)) \ U εp,q is convex.

We would like to compare the area of S+
ε with the area of the generalized graph of ψ on Tε(α).

This is not immediate since, due to the fact that ψ is just BV , we cannot, a priori, conclude that
its generalized graph is of disk-type8. Hence we proceed as follows. We fix ε̄ ∈ (0, δ0/2); we claim
that

A(ψε̄p,q;U
ε̄
p,q) ≤ A(ψ;Tε̄(α)) +

∫
α
ψ Tε̄(α) dH1 . (5.12)

Since ψ is analytic in Tε̄(α) ⊂ Ω \ E(σ), by Lemma 5.9 and Remark 5.10 it follows that

lim
ε→0+

∫
αε

ψ Tε̄(α) dH1 =

∫
α
ψ Tε̄(α) dH1 . (5.13)

We take
T ε̄ε (α) := Tε̄(α) \ Tε(α) and Yε̄ := Sε ∪ Gψ T ε̄ε (α)

∪ G−ψ T ε̄ε (α)
.

Since Sε is a disk-type surface and ψ is analytic in T ε̄ε (α) it turns out that Yε̄ is also a disk-type
surface satisfying ∂Yε̄ = Γε̄. Therefore using that Sε̄ and Sε are solutions to the Plateau problems
corresponding to Γε̄ and Γε respectively, we have

H2(Sε̄) ≤ H2(Yε̄) = 2H2(Gψ T ε̄ε (α)
) +H2(Sε)

≤ 2H2(Gψ Tε̄(α)
) + 2

∫
αε∪Lε

ψ Tε̄(α) dH1

= 2H2(Gψ Tε̄(α)
) + 2

∫
αε

ψ Tε̄(α) dH1 + 2

∫
Lε

ψ Tε̄(α) dH1 .

Passing to the limit as ε→ 0+, by (5.13) and the fact that H1(Lε) → 0, we obtain

H2(Sε̄) ≤ 2H2(Gψ Tε̄(α)
) + 2

∫
α
ψ Tε̄(α) dH1,

which yields

A(ψε̄p,q;U
ε̄
p,q) = H2(S+

ε̄ ) ≤ H2(Gψ Tε̄(α)
) +

∫
α
ψ Tε̄(α) dH1 = A(ψ;Tε̄(α)) +

∫
α
ψ Tε̄(α) dH1,

and (5.12) is proved.

8This is due to the jump of ψ on ∂F which is, in general, not regular enough.
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We now define Eα := (E(σ) ∪ Tε̄(α)) \ U ε̄p,q and

ψα :=


0 in Eα

ψε̄p,q in U ε̄p,q
ψ otherwise .

By (5.12) and using that U ε̄p,q ∪ Eα = E(σ) ∪ Tε̄(α) we derive

A(ψα; Ω)− |Eα| = A(ψε̄p,q;U
ε̄
p,q) +A(ψ; Ω \ (U ε̄p,q ∪ Eα))

= A(ψε̄p,q;U
ε̄
p,q) +A(ψ; Ω \ (Tε̄(α) ∪ E(σ)))

≤ A(ψ;Tε̄(α)) +

∫
α
ψ Tε̄(α) dH1 +A(ψ; Ω \ Tε̄(α))− |E(σ)|

= A(ψ; Ω)− |E(σ)| .

(5.14)

It remains to construct σα ∈ Σconv. Without loss of generality we may assume

σ1([0, 1]), . . . , σh([0, 1]) ⊂ F and σh+1([0, 1]), . . . , σn([0, 1]) ̸⊂ F

for some h ≤ n; notice that if h = n the second family of curves is empty. Then we define
σα := (σα1 , . . . , σ

α
h , σh+1, . . . , σn) ∈ Lip([0, 1]; Ω)n as follows: if h > 1

σαi ([0, 1]) =

{
qipi+1 for i = 1, . . . , h− 1

∂(F ∪ Tε̄(α) \ U ε̄p,q) \
(
(∪hi=1∂

0
i Ω) ∪ (∪h−1

i=1 qipi+1)
)

for i = h,

where qipi+1 is the segment joining qi to pi+1; if instead h = 1 we simply set

σα1 ([0, 1]) = ∂(F ∪ Tε̄(α) \ U ε̄p,q) \ ∂01Ω.

Clearly the pair (σα, ψα) belongs to Wconv, and by (5.14) it satisfies

F(σα, ψα) = F(σ, ψ) .

Moreover (∂E(σα)) ∩ ∂Ω = (∂E(σ)) ∩ ∂Ω and ψα is continuous and null on α′, where

α′ := βε̄p,q ⊂ Ω ∩ ∂E(σα) . (5.15)

Summarizing, we have replaced the curve α with α′, ensuring that the new function ψα is now
continuous and null on α′.

Step 2: Iterative case. In this step we construct a minimizer (σ̂, ψ̂) ∈ Wconv of F in W that
satisfies the thesis by iterating step one at most a countable number of times.
We first consider F = F1 and apply step 1 for each α1,j with j ≥ 1. More precisely we define the
pair (σ1,j , ψ1,j) ∈ Wconv as follows:

• if j = 1 we set
(σ1,1, ψ1,1) := (σα1,1 , ψα1,1) ,

where (σα1,1 , ψα1,1) ∈ Wconv is a minimizer constructed as in step 1 with α = α1,1;

• if j > 1 we set
(σ1,j , ψ1,j) := (σ

α1,j

1,j−1, ψ
α1,j

1,j−1) ,

where (σ
α1,j

1,j−1, ψ
α1,j

1,j−1) ∈ Wconv is a minimizer constructed as in step 1 with (σ, ψ) = (σ1,j−1, ψ1,j−1)
and α = α1,j .
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Since F(σ1,j , ψ1,j) = F(σ, ψ) for all j ≥ 1, by Lemma 4.4 it follows that (σ1,j , ψ1,j) converges to
(σ1, ψ1) ∈ Wconv in the sense of Definition 4.3. Moreover by construction we have that for every
j ≥ 1 the pair (σ1,j , ψ1,j) satisfies

(∂E(σ1,j)) ∩ ∂Ω = (∂E(σ)) ∩ ∂Ω ,

and ψ1,j is continuous and null on ∪jh=1α
′
1,h ⊂ Ω ∩ (∂E(σ1,j)) ∩ ∂F1, where α

′
1,h are defined as in

(5.15). As a consequence (σ1, ψ1) satisfies

(∂E(σ1)) ∩ ∂Ω = (∂E(σ)) ∩ ∂Ω ,

and ψ1 is continuous and null on ∪∞
j=1α

′
1,j ⊂ Ω ∩ (∂E(σ1)) ∩ ∂F1. Moreover

Ω ∩ ∂E(σ1) = (∪∞
j=1α

′
1,j)

⋃
(∪ki=2 ∪∞

j=1 αi,j) ,

Now repeating the argument above for the pair (σ1, ψ1) and i = 2 we obtain a new minimizer
(σ2, ψ2) ∈ Wconv of F in W satisfying

(∂E(σ2)) ∩ ∂Ω = (∂E(σ)) ∩ ∂Ω ,

with ψ2 continuous and null on ∪∞
j=1(α

′
1,j ∪ α′

2,j) ⊂ Ω ∩ (∂E(σ1)) ∩ ((∂F1) ∪ ∂F2) and

Ω ∩ (∂E(σ2)) = (∪2
i=1 ∪∞

j=1 α
′
i,j) ∪ (∪ki=3 ∪∞

j=1 αi,j) .

Iterating this process a finite number of times we finally get a minimizer (σ̂, ψ̂) ∈ Wconv of F in W
with the required properties.

We are finally in the position to conclude the proof of Theorem 5.1.

Proof of Theorem 5.1. Let (σ, ψ) ∈ Wconv be any minimizer of F in W as in Theorem 3.1. By
Lemma 5.3 we know that (σ, ψ) satisfies properties 1., 2. and the boundary datum is attained,
namely

ψ = φ on ∂DΩ \ ∂E(σ) .

Moreover by Lemma 5.11 there is a minimizer (σ̂, ψ̂) ∈ Wconv such that

∂E(σ̂) ∩ ∂Ω = ∂E(σ) ∩ ∂Ω , (5.16)

and ψ̂ is continuous and null on Ω ∩ ∂E(σ̂).
It remains to show that if ∂Di Ω is not straight for some i = 1, . . . , n, then

∂E(σ) ∩ ∂Di Ω = ∂E(σ̂) ∩ ∂Di Ω = Ø ,

and if instead ∂Di Ω is straight for some i = 1, . . . , n, then property 4. holds. Eventually we show
that there is a minimizer that satisfies property 5.. This will be achieved in a number of steps.

Step 1: Assuming that there is i ∈ {1, . . . , n} such that ∂Di Ω is not straight, we show that
E(σ̂) ∩ ∂Di Ω = Ø. To prove this we proceed by analysing three different cases.

Case A: Suppose, to the contrary, that there is a non-straight9 arc Ùab (with endpoints a ̸= b)

in ∂Di Ω ∩ ∂E(σ̂) (Case A in Figure 4). Thus in particular Ùab ⊂ ∪nj=1σ̂j([0, 1]). We may assume

without loss of generality that Ùab ⊂ σ̂1([0, 1]). Then we consider the curves

Γ := Γ+ ∪ Γ− , Γ+ := G
φ ıab ∪ l+ , Γ− := G−φ ıab ∪ l− , (5.17)

9Namely, Ùab is not contained in a line.
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Case A Case B

a

Γ+ Γ+

b a b

a′ b′
c

Figure 4: Case A. ∂Di Ω ∩ ∂E(σ̂) = Ùab. The orange dotted curve represents Γ+ in (5.17). Case B.
∂Di Ω ∩ ∂E(σ̂) = {c}. The orange dotted curve represents the curve Γ+ in (5.20).

where

l+ := ({a} × [0, φ(a)]) ∪ ({b} × [0, φ(b)]) , l− := ({a} × [−φ(a), 0]) ∪ ({b} × [−φ(b), 0]) .

In this way Γ satisfies the assumptions of Lemma 5.4 and hence a solution S to the Plateau problem
spanning Γ is a disk-type surface such that:

i. βa,b := S ∩ (R2 × {0}) is a simple analytic curve joining a and b;

ii. S is symmetric with respect to R2 × {0};

iii. the surface S+ := S∩{x3 ≥ 0} is the graph of a function ψa,b ∈W 1,1(Ua,b)∩C0(Ua,b \{a, b}),
where Ua,b ⊂ E(σ̂1) is the open region enclosed between Ùab and βa,b;

iv. the curve βa,b is contained in the closed convex hull of Γ and E(σ̂1) \ Ua,b is convex.

The inclusion Ua,b ⊂ E(σ̂1) follows since Ùab ⊂ σ̂1([0, 1]), E(σ̂1) is convex, and S is contained in the
convex envelope of Γ. Furthermore by the minimality of S one has

A(ψa,b;Ua,b) = H2(S+) <

∫ıab φdH1 =

∫ıab |ψ̂ − φ| dH1 . (5.18)

Here the strict inequality follows since the vertical wall spanning Γ given by {(x′, x3) : x′ ∈ Ùab, x3 ∈
[−φ(x′), φ(x′)]} is a disk-type surface but, since Ùab is not a segment, it cannot be a solution to the
Plateau problem. We now consider the pair (σ̃, ψ̃) ∈ Wconv given by

σ̃ := (σ̃1, σ̂2, . . . , σ̂n) , ψ̃ :=


0 in ‹E ,
ψa,b in Ua,b ,

ψ̂ otherwise ,

(5.19)

where σ̃1 is such that σ̃1([0, 1]) = (σ̂1([0, 1])\Ùab)∪βa,b and ‹E := E(σ̂)\Ua,b = E(σ̃). Then noticing

that ψ̂ = 0 in Ua,b, E(σ̂) = E(σ̃) ∪ Ua,b, and recalling (5.18), we get

F(σ̃, ψ̃) = A(ψ̃; Ω)− |E(σ̃)|+
∫
∂Ω

|ψ̃ − φ| dH1

= A(ψ̂; Ω \ Ua,b) +A(ψa,b;Ua,b)− |E(σ̃)|+
∫
∂Ω

|ψ̃ − φ| dH1

= A(ψ̂; Ω) +A(ψa,b;Ua,b)− |E(σ̂)|+
∫
∂Ω

|ψ̂ − φ| dH1

< A(ψ̂; Ω)− |E(σ̂)|+
∫
∂Ω

|ψ̃ − φ| dH1 +

∫ıab |ψ̂ − φ| dH1

= A(ψ̂; Ω)− |E(σ̂)|+
∫
∂Ω

|ψ̂ − φ| dH1 = F(σ̂, ψ̂) ,
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where the penultimate equality follows from the fact that ψ̃ is continuous and equal to φ on Ùab
while the traces of ψ̃ and ψ̂ coincide on ∂Ω \ Ùab. This contradicts the minimality of (σ̂, ψ̂).

Case B : Suppose by contradiction that the set ∂Di Ω ∩ ∂E(σ̂) contains an isolated point c or has
a straight segment cc′ as isolated connected component (Case B in Figure 4). Then there are two

arcs Ùab ⊂ ∂Di Ω and ã′b′ ⊂ ∂E(σ̂) with either a ̸= a′ or b ̸= b′ (and with endpoints a ̸= b and a′ ̸= b′)

such that aa′∩bb′ = Ø and Ùab∩ ã′b′ = {c} (respectively Ùab∩ ã′b′ = cc′). Notice also that, since ∂Di Ω

is not straight, the segment cc′ does not coincide with ∂Di Ω and hence the arc Ùab can be chosen so
that it properly contains the segment cc′. We consider the curves

Γ := Γ+ ∪ Γ− , Γ+ := G
φ ıab ∪ G

ψ̂ aa′
∪ G

ψ̂ bb′
, Γ− := G−φ ıab ∪ G−ψ̂ aa′

∪ G−ψ̂ bb′
. (5.20)

Notice that Γ± connect a′ to b′. By applying again Lemma 5.4 to the nonplanar curve Γ and
arguing as in case A we obtain the contradiction also in this case.

Case C : More generally, assume by contradiction that both the sets ∂Di Ω∩∂E(σ̂) and ∂Di Ω\∂E(σ̂)

are nonempty. Then we can find a not flat arc Ùab ⊂ ∂Di Ω such that the following holds10: there are

pairs of points {cj , dj}j∈N ⊂ ∂Di Ω ∩ ∂E(σ̂) such that the arcs ãd0, ĉ0b, and {c̄jdj}∞j=1 are mutually
disjoint and Ùab \ ∂E(σ̂) = ãd0 ∪ (∪∞

j=1c̄jdj) ∪ ĉ0b .

Without loss of generality, we might assume that all the points cj , dj ∈ σ̂1([0, 1]). For all j ≥ 1

we denote by Vj the region enclosed by c̄jdj and ∂E(σ̂)11. We now argue as in case B and choose
a′, b′ ∈ σ̂1([0, 1]). Additionally, let V0 = V a

0 ∪ V b
0 , with V

a
0 (respectively V b

0 ) be the region enclosed

between ∂E(σ̂) and aa′∪ãd0 (∂E(σ̂) and bb′∪ĉ0b, respectively). We finally define Γ correspondingly,
as in (5.20). Again by Lemma 5.4 the solution S to the Plateau problem corresponding to Γ satisfies
properties i.-iv., with a′ and b′ in place of a and b respectively. Moreover by the minimality of S
for every N ≥ 1 there holds12

A(ψa′,b′ ;Ua′,b′) = H2(S+) ≤
∫ıab φdH1 −

∫
ãd0∪ĉ0b

φdH1 −
N∑
j=1

∫
c̄jdj

φdH1 +

N∑
j=0

A(ψ;Vj) . (5.21)

In particular by taking the limit as N → +∞ in (5.21) we get

A(ψa′,b′ ;Ua′,b′) = H2(S+) ≤
∫ıab\∂E(σ̂)

φdH1 +A(ψ̂;∪∞
j=0Vj) . (5.22)

Let (σ̃, ψ̃) ∈ Wconv be defined as in (5.19), then observing that ψ̂ = 0 in Ua′,b′ \ (∪∞
j=0Vj), E(σ̂) =

10This is a consequence of the fact that Ùab \ ∂E(σ̂) is relatively open in Ùab, so it is an at most countable union of
disjoint relatively open arcs.

11These regions are simply connected since cj , dj ∈ σ̂1([0, 1]).
12The right-hand side is the area of the surface given by the (positive) subgraph of φ on Ùab \ ∪Nj=1c̄jdj and the

graph of ψ̂ on the region ∪Nj=0Vj , which is of disc-type. To see this we use that the trace of ψ̂ on the subarcs of ∂E(σ̂)
between the points cj and dj is zero (and between a′ and d0, and d0 and b′).
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E(σ̃) ∪ (Ua′,b′ \ ∪∞
j=0Vj) and using (5.22) we deduce

F(σ̃, ψ̃) = A(ψ̂; Ω \ Ua′,b′) +A(ψa′,b′ ;Ua′,b′)− |E(σ̃)|+
∫
∂Ω

|ψ̃ − φ| dH1

= A(ψ̂; Ω \ (∪∞
j=0Vj)) +A(ψa′,b′ ;Ua′,b′)− |E(σ̂)|+

∫
∂Ω

|ψ̃ − φ| dH1

≤ A(ψ̂; Ω \ (∪∞
j=0Vj))− |E(σ̂)|+

∫
∂Ω

|ψ̃ − φ| dH1 +

∫ıab∩∂E(σ̂)
φdH1 +A(ψ̂;∪∞

j=0Vj)

= A(ψ̂; Ω)− |E(σ̂)|+
∫
∂Ω

|ψ̂ − φ| dH1 = F(σ̂, ψ̂) ,

which in turn implies
F(σ̃, ψ̃) ≤ F(σ̂, ψ̂) . (5.23)

To conclude we need to show that the inequality in (5.23) is strict. To this aim we choose c ∈
{cj}∞j=1. Consider the curves Γ1 and Γ2 defined as follows

Γ1 := Γ+
1 ∪ Γ−

1 , Γ+
1 := Gφ ıac ∪ G

ψ̂ aa′
∪ l+ , Γ−

1 := G−φ ıac ∪ G−ψ̂ aa′
∪ l− ,

Γ2 := Γ+
2 ∪ Γ−

2 , Γ+
2 := G

φ Ùcb ∪ G
ψ̂ bb′

∪ l+ , Γ−
2 := G−φ Ùcb ∪ G−ψ̂ bb′

∪ l− ,

where
l+ := ({c} × [0, φ(c)]) , l− := ({c} × [−φ(c), 0]) .

Let S1 and S2 be the solutions to the Plateau problem corresponding to Γ1 and Γ2 respectively, so
that properties i.-iv. are satisfied with c in place of b′ and a′ respectively. By the minimality of S
we have

A(ψa′,b′ ;Ua′,b′) < A(ψa′,c;Ua′,c) +A(ψc,b′ ;Uc,b′) . (5.24)

On the other hand by arguing as above13 we conclude

A(ψa′,c;Ua′,c) ≤
∫ıac∪∂E(σ̂)

φdH1 +A(ψ̂;∪j∈I1Vj ∪ V a
0 ) , (5.25)

and

A(ψc,b′ ;Uc,b′) ≤
∫Ùcb∪∂E(σ̂)

φdH1 +A(ψ̂;∪j∈I2Vi ∪ V b
0 ) , (5.26)

where I1 := {j : c̄jdj ⊂ Ùac} and I2 := {j : c̄jdj ⊂ Ùcb}. Gathering together (5.24)-(5.26) we derive

A(ψa′,b′ ;Ua′,b′) <

∫ıab∪∂E(σ̂)
φdH1 +A(ψ̂;∪∞

j=0Vj) ,

which in turn implies
F(σ̃, ψ̃) < F(σ̂, ψ̂) ,

and thus the contradiction.

Step 2: Assuming there is i ∈ {1, . . . , n} such that ∂Di Ω is a straight segment, we show that
either (∂E(σ̂)) ∩ ∂Di Ω = Ø or (∂E(σ̂)) ∩ ∂Di Ω = ∂Di Ω.
Suppose by contradiction that (∂E(σ̂)) ∩ ∂Di Ω ̸= Ø and also ∂Di Ω \ ∂E(σ̂) ̸= Ø. Without loss
of generality we can restrict to the case (∂E(σ̂)) ∩ ∂Di Ω = (∂F ) ∩ ∂Di Ω with F any connected
component of E(σ̂). Since F is convex and ∂Di Ω is a segment (∂F ) ∩ ∂Di Ω has to be connected,

13With the arc Ùac (Ùcb, respectively) in place of Ùab.
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i.e., it is either a single point a or a segment aa′ ̸= ∂Di Ω. In both cases we then consider a (small
enough) ball B centred at a such that B ∩ E(σ̂) = B ∩ F (in the second case we also require that
the radius of B is smaller than aa′).

If (∂F ) ∩ ∂Di Ω = {a} we let {p, q} := (∂B) ∩ ∂F and {b, c} := (∂B) ∩ ∂Di Ω (with b, p and c, q
lying on the same side with respect to a). Then we define the curves

Γ := Γ+ ∪ Γ− , Γ+ := Gφ bc ∪ G
ψ Ùbp ∪ Gψ Ùcq , Γ− := G−φ bc ∪ G−ψ Ùbp ∪ G−ψ Ùcq ,

where Ùbp, Ùcq denote the arcs in ∂B joining b to p and c to q respectively.
If (∂F ) ∩ ∂Di Ω = aa′ we let {p, q} := (∂B) ∩ ∂F and {b, c} := (∂B) ∩ ∂Di Ω where we identify q

and c. Then we consider the curves

Γ := Γ+∪Γ− , Γ+ := Gφ bc∪Gψ Ùbp∪({c}×[0, φ(c)]) , Γ− := G−φ bc∪G−ψ Ùbp∪({c}×[−φ(c), 0]) .

By applying again Lemma 5.4 to Γ and arguing as above we get the contradiction.

Step 3: We show that there is a minimizer (σ̃, ψ̃) that satisfies property 5.. We first notice that
ψ̂ is continuous and null on ∂E(σ̂) \ ∂DΩ. Moreover by steps 1 and 2 it follows that Ω ∩ ∂E(σ̂) is
the union of a finite number of pairwise disjoint Lipschitz curves each of them joining each pi for
i = 1, . . . , n to each of the qj for some j = 1, . . . , n. To conclude it is enough to replace each curve,
without increasing the energy, with an analytic one having the same endpoints. More precisely, let
γ be any of such curves. Reasoning as in the proof of Lemma 5.11 step 1, we can replace (σ̂, ψ̂)
with a new minimizer (σγ , ψγ) ∈ Wconv such that (∂E(σγ)) ∩ ∂Ω = (∂E(σ)) ∩ ∂Ω and ψγ = 0
on γ′, where γ′ ⊂ (∂E(σγ)) ∩ Ω is a suitable analytic curve that replaces γ and has the same
endpoints of γ. In particular ψγ is continuous and null on ∂E(σγ) \ ∂DR2ℓ. Eventually iterating
this procedure for each curve in ∂E(σ̂) \ ∂Ω we can construct a new minimizer (σ̃, ψ̃) with the
required properties.

5.1 The example of the catenoid containing a segment

Consider the setting of Figure 6. Recall that Ω = R2ℓ = (0, 2ℓ)× (−1, 1), n = 1, ∂DΩ = ({0, 2ℓ} ×
(−1, 1)) ∪ ((0, 2ℓ) × {−1}) and ∂0Ω = (0, 2ℓ) × {1}, p = (0, 1), q = (2ℓ, 1). The map φ given in

(7.3) is φ(z1, z2) =
»

1− z22 on ∂DΩ, and thus vanishes on [0, 2l]× {−1}; for this reason this case
is not covered by our analysis. However we can find a solution as in Theorem 1.1 also in this case,
by an approximation procedure. Precisely, for ε > 0 consider an approximating sequence (φε) of
continuous Dirichlet data, with Gφε Lipschitz, which tends to φ uniformly and satisfies φε = 0 on
∂0Ω, φε > 0 on ∂DΩ. Let (σε, ψε) be a solution as in Theorem 4.1 corresponding to the boundary
datum φε; since F(σε, ψε) is equibounded14, arguing as in the proof of Lemma 4.4, we can see
that, up to a subsequence, ((σε, ψε)) tends to some (σ, ψ) ∈ Wconv, which minimizes the functional
F with Dirichlet condition φ. In this case however we cannot guarantee that σ does not touch
∂DΩ, even if this is not a straight segment. This is essentially due to the presence of the portion
[0, 2ℓ]×{−1} of ∂Ω where φ is zero, which does not allow to apply the arguments used in the proof
of Theorem 5.1.

In particular, it can be seen that if ℓ is large enough, the solution (σ, ψ) splits and becomes
degenerate, being ψ ≡ 0 and the value of F is just the area of two vertical half-disks of radius 1.
For ℓ under a certain threshold, instead, the solution satisfies the regularity properties stated in
Theorem 5.1, and in particular ψ = φ on ∂DΩ, and σ is the graph of a smooth convex function
passing through p and q. We refer to [10] for details and comprehensive proofs of these facts; we
also notice that in this special case further regularity of solutions can be obtained.

14We can bound it from above by |Ω|+
∫
∂DΩ

|φε|dH1.

31



6 Comparison with the parametric Plateau problem: The case
n = 1, 2

In this section we compare the solutions of Theorems 3.1 and 5.1 with the solutions to the classical
Plateau problem in parametric form. Specifically, motivated by the example of the catenoid, we
restrict our analysis to the classical disk-type and annulus-type Plateau problem. These configu-
rations correspond to the cases n = 1 and n = 2 respectively, i.e., the Dirichlet boundary ∂DΩ is
either an open arc or the union of two open arcs of ∂Ω with disjoint closure. Due to the highly in-
volved geometric arguments, we do not discuss the case n > 2, which requires further investigation.
Thus, in this section we assume n = 1, 2. We first discuss the case n = 1, which is a consequence
of Lemma 5.4, and next the case n = 2.

6.1 The case n = 1

Let n = 1. Let p1, q1 ∈ ∂Ω, ∂DΩ = ∂D1 Ω, φ be as in Section 2.2 and consider the space curve
γ1 := Gφ ∂D1 Ω joining p1 to q1. We define the curve

Γ := γ1 ∪ Sym(γ1),

where Sym(γ1) := G−φ ∂D1 Ω, and consider the classical Plateau problem in parametric form span-
ning Γ. More precisely we look for a solution to

m1(Γ) := inf
Φ∈P1(Γ)

∫
B1

|∂w1Φ ∧ ∂w2Φ|dw, (6.1)

where

P1(Γ) :=
{
Φ ∈ H1(B1;R3) ∩ C0(B1;R3) such that Φ ∂B1 : ∂B1 → Γ

is a weakly monotonic parametrization of Γ
}
.

(6.2)

By classical arguments, every solution to (6.1) is a harmonic and conformal parametrization of an
area-minimizing surface spanning Γ.

Theorem 6.1 (The disk-type Plateau problem (n = 1)). Assume Γ is not planar, let Φ ∈
P1(Γ) be a solution to (6.1) and let

S+ := Φ(B1) ∩ {x3 ≥ 0}, S− := Φ(B1) ∩ {x3 ≤ 0}.

Then there exists a minimizer (σ, ψ) ∈ Wconv of F in W satisfying properties 1.-5. of Theorem 5.1
and such that

S± = G±ψ (Ω\E(σ))
. (6.3)

Conversely let (σ, ψ) ∈ Wconv be a minimizer of F in W satisfying properties 1.-5. of Theorem 5.1.
Then the disk-type surface

S := G
ψ (Ω\E(σ))

∪ G−ψ (Ω\E(σ))

is a solution to the classical Plateau problem associated to Γ, i.e., there is a harmonic and conformal
map Φ ∈ P1(Γ) solving (6.1) and such that Φ(B1) = S.

We have assumed Γ is not planar, otherwise the classical solution is flat, and any solution to
Theorem 5.1 satisfies (∂E(σ)) ∩ ∂DΩ = ∂DΩ.
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6.2 The case n = 2

Let n = 2. Let Ω, p1, q1, p2, q2 ∈ ∂Ω, ∂DΩ, ∂D1 Ω, ∂D2 Ω, φ be as in Section 2.2 and consider the
space curve γi := Gφ ∂Di Ω joining pi to qi for i = 1, 2. We define the curves

Γ1 := γ1 ∪ Sym(γ1), Γ2 := γ2 ∪ Sym(γ2),

where Sym(γi) := G−φ ∂Di Ω for i = 1, 2. We consider the classical Plateau problem in parametric
form spanning the curve

Γ := Γ1 ∪ Γ2.

Precisely we set Σann ⊂ R2 to be an open annulus enclosed between two concentric circles C1 :=
∂B1(0) and C2 := ∂B2(0), and we look for a solution to

m2(Γ) := inf
Φ∈P2(Γ)

∫
Σann

|∂w1Φ ∧ ∂w2Φ|dw, (6.4)

where

P2(Γ) :=
{
Φ ∈ H1(Σann;R3) ∩ C0(Σann;R3) such that Φ(∂Σann) = Γ and Φ Cj : Cj → Γj

is a weakly monotonic parametrization of Γj for j = 1, 2
}
.

Here the crucial assumption that we require is that the curves Γj have the orientation inherited
by the orientation15 of the graph of φ on ∂Dj Ω.
Due to the specific geometry of Γ we can appeal to Theorem 6.3 below (which is a consequence
of [36, Theorem 1 and Theorem 5]) to deduce the existence of a minimizer. This might not be true
for a more general Γ. To this purpose for j = 1, 2 we consider the minimization problem defined in
(6.1) for the curve Γj , namely

m1(Γj) = inf
Φ∈P1(Γj)

∫
B1

|∂w1Φ ∧ ∂w2Φ|dw, (6.5)

with P1(Γj) defined as in (6.2).
By standard arguments one sees that m2(Γ) ≤ m1(Γ1) +m1(Γ2). Indeed, two disk-type surfaces

can be joined by a thin tube (with arbitrarily small area) in order to change the topology of the
two disks into an annulus-type surface.

Definition 6.2 (MY solution). Let Φ ∈ P2(Γ) be a solution to (6.4). We say that Φ is a MY
solution to (6.4) if Φ is harmonic, conformal, and it is an embedding. In particular, in such a case,
m2(Γ) = H2(Φ(Σann)).

Theorem 6.3 (Meeks and Yau). Suppose m2(Γ) < m1(Γ1) +m1(Γ2). Then there exists a MY
solution Φ ∈ P2(Γ) to (6.4). Furthermore, every minimizer of (6.4) is a MY solution.

Proof. See [36].

This result allows us to prove the following:

Theorem 6.4 (The annulus-type Plateau problem (n = 2)). The following holds:

15Once we fix an orientation of ∂Ω, the orientation of the graph Gφ of φ is inherited, since Gφ is standardly defined
as the push-forward of the current of integration on ∂DΩ by the map x 7→ (x, φ(x)).
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(i) Suppose m2(Γ) < m1(Γ1) +m1(Γ2). Let Φ ∈ P2(Γ) be a MY solution to (6.4) and let

S := Φ(Σann), S+ := S ∩ {x3 ≥ 0}, S− := S ∩ {x3 ≤ 0}.

Then there exists a minimizer (σ, ψ) ∈ Wconv of F in W satisfying properties 1.-5. of Theorem
5.1 and such that

S± = G±ψ (Ω\E(σ))
. (6.6)

(ii) Suppose m2(Γ) = m1(Γ1) +m1(Γ2), and assume that both Γ1 and Γ2 are not planar. For
j = 1, 2 let Φj ∈ P1(Γj) be a solution to (6.5) and let Sj := Φj(B1). Let also

S+ := (S1 ∪ S2) ∩ {x3 ≥ 0} and S− := (S1 ∪ S2) ∩ {x3 ≤ 0}.

Then S1∩S2 = Ø and there exists a minimizer (σ, ψ) ∈ Wconv of F in W satisfying properties
1.-5. of Theorem 5.1 and such that (6.6) holds.

(iii) Conversely, let (σ, ψ) ∈ Wconv be a minimizer of F in W satisfying properties 1.-5. of
Theorem 5.1. Then the surface

S := G
ψ (Ω\E(σ))

∪ G−ψ (Ω\E(σ))

is either an annulus-type surface or the union of two disjoint disk-type surfaces, and is a
solution to the classical Plateau problem associated to Γ. More precisely, either there is a
MY solution Φ ∈ P2(Γ) to (6.4) with S = Φ(Σann), or there are Φj ∈ P1(Γj) solutions to
(6.5) for j = 1, 2, such that S = Φ1(B1) ∪ Φ2(B1) and Φ1(B1) ∩ Φ2(B1) = Ø.

6.3 Toward the proof of Theorems 6.1 and 6.4: preliminary lemmas

In order to prove Theorems 6.1 and 6.4, we collect some technical lemmas.

Lemma 6.5 (Graphicality of minimizers for n = 2). Let n = 2, and (σ, ψ) ∈ Wconv be a
minimizer of F in W satisfying properties 1.-5. of Theorem 5.1.

(a) Suppose that Ω \ E(σ) is connected. Then there exists an injective map Φ ∈W 1,1(Σann;R3)∩
C0(Σann;R3) such that

Φ(Σann) = G
ψ (Ω\E(σ))

∪ G−ψ (Ω\E(σ))
,

and Φ Cj : Cj → Γj is a weakly monotonic parametrization of Γj for j = 1, 2.

(b) Suppose that Ω \ E(σ) consists of two connected components, whose closures F1 and F2

are disjoint, with Fj ⊇ ∂Dj Ω for j = 1, 2. Then there exist two injective maps Φ1,Φ2 ∈
W 1,1(B1;R3) ∩ C0(B1;R3) such that

Φj(B1) = Gψ Fj
∪ G−ψ Fj

, j = 1, 2,

and Φj ∂B1 : ∂B1 → Γj is a weakly monotonic parametrization of Γj for j = 1, 2.

Supposing that Ω \E(σ) has two connected components as in (b), it readily follows that Γ1 and
Γ2 cannot be planar (otherwise the solution will be flat on ∂Dj Ω and Fj = Ø for j = 1, 2).
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Proof. (a). Since Ω \ E(σ) is simply connected16, the maps‹Ψ± ∈W 1,1(Ω \ E(σ);R3) ∩ C0(Ω \ E(σ);R3), ‹Ψ±(p) := (p,±ψ(p)), (6.7)

are disk-type parametrizations of G±ψ (Ω\E(σ))
, thanks to properties 1.-5. of Theorem 5.1.

Now, using a homeomorphism of class H1 between Ω \ E(σ) and a disk, we can parametrize17

Ω \ E(σ) with a half-annulus, obtained as the region enclosed between two concentric half-circles
with endpoints A1, A2, A3, A4 (in the order) on the same diameter, and the two segments A1A2 and
A3A4. Then we construct a parametrization Ψ+ of G

ψ (Ω\E(σ))
as in (6.7) from the half-annulus,

such that Ψ+(A1) = (q1, 0), Ψ
+(A2) = (p2, 0), Ψ

+(A3) = (q2, 0), Ψ
+(A4) = (p1, 0), and mapping

weakly monotonically the two half-circles into γ1 and γ2, and the two segments into σ1([0, 1]) and
σ2([0, 1]), respectively. Similarly, we construct a parametrization Ψ− of G−ψ (Ω\E(σ))

from another

copy of a half-annulus, just setting Ψ− := Sym(Ψ+), the symmetric of Ψ+ with respect to the plane
containing Ω.
Eventually, glueing the two half-annuli along the two segments, we obtain a parametrization Φ
of G

ψ (Ω\E(σ))
∪ G−ψ (Ω\E(σ))

defined on Σann. By the continuity of ψ on ∂DΩ we have that Φ
parametrizes Γi on Ci, i = 1, 2.

(b). It is sufficient to argue as in case (a), by replacing Ω \ E(σ) in turn with F1 and F2 and
Σann with B1 to find Φ1 and Φ2, respectively.

Lemma 6.6. Let n = 2, and (σ, ψ) ∈ Wconv be a minimizer of F in W satisfying properties 1.-5.
of Theorem 5.1.

(a) Suppose that Ω \ E(σ) is connected and

H2(G
ψ (Ω\E(σ))

∪ G−ψ (Ω\E(σ))
) ≤ m2(Γ). (6.8)

Let Φ be the parametrization given by Lemma 6.5 (a). Then there exists a reparametrization of
the annulus Σann such that, using it to reparametrize Φ, the corresponding map (still denoted
by Φ) belongs to P2(Γ) and solves (6.4).

(b) Suppose that Ω \ E(σ) consists of two connected components whose closures F1 and F2 are
disjoint, Fj ⊇ ∂Dj Ω for j = 1, 2, and

H2(Gψ Fj
∪ G−ψ Fj

) ≤ m1(Γj), j = 1, 2.

Let Φ1,Φ2 be the maps given by Lemma 6.5 (b). Then, for j = 1, 2, there is a reparametriza-
tion of Φj belonging to P1(Γj) and solving (6.5).

Proof. (a). Fix a point p̃ ∈ Ω \ E(σ) and set ‹Ψ+
k := ‹Ψ+ Hk, where ‹Ψ is defined in (6.7) and, for

k ∈ N sufficiently large, Hk is the connected component of‹Hk := {p ∈ Ω \ E(σ) : dist(p, ∂(Ω \ E(σ))) ≥ 1/k}

containing p̃. For k ∈ N large enough Hk is simply connected with rectifiable boundary, thanks
to the simply-connectedness of Ω \ E(σ). In particular ‹Ψ+

k parametrizes a disk-type surface,

and using the regularity of ψ in Ω \ E(σ), it follows that ‹Ψ+
k is Lipschitz continuous. Further-

more, ‹Ψ+
k ∂Hk parametrizes a Jordan curve, and these curves, suitably parametrized, converge

16This is the region enclosed by ∂DΩ ∪ σ1([0, 1]) ∪ σ2([0, 1]).
17For instance, we can consider a (flat) disk-type Plateau solution spanning ∂(Ω \ E(σ)). Then we can employ a

Lipschitz homeomorphism between the disk and the half-annulus.
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in the sense of Fréchet (see [22, Theorem 4, Section 4.3]) as k → +∞, to the curve having image‹Ψ+(∂(Ω \ E(σ)))) =: λ. Notice that

λ = σ1([0, 1]) ∪ σ2([0, 1]) ∪ γ1 ∪ γ2. (6.9)

Call λk the image of the curve given by ‹Ψ+
k ∂Hk. Let P1(λk), P1(λ), m1(λk), m1(λ) be defined as

in (6.2) and (6.1) with λk and λ in place of Γ respectively. Up to reparametrizing B1 (see footnote

15), ‹Ψ+
k belongs to P1(λk), therefore

H2(Gψ Hk
) =

∫
Hk

|∂w1
‹Ψ+
k ∧ ∂w2

‹Ψ+
k |dw ≥ m1(λk) ∀k ≥ 1.

We claim that equality holds in the previous expression, namely

H2(Gψ Hk
) = m1(λk) ∀k ≥ 1. (6.10)

Indeed, assume by contradiction that H2(Gψ Hk0
) > m1(λk0) for some k0 ≥ 1, and pick δ > 0 with

H2(Gψ Hk0
) ≥ δ +m1(λk0). (6.11)

Take Φk0 ∈ P1(λk0) a solution to m1(λk0). For k > k0, as Hk0 ⊂ Hk, by a glueing argument18, we
can find Φk ∈ P1(λk) such that Φk(B1) = Φk0(B1) ∪ Gψ (Hk\Hk0 )

. Thus by (6.11) we have

H2(Gψ Hk
) ≥δ +m1(λk0) +H2(Gψ (Hk\Hk0 )

)

=δ +H2(Φk0(B1)) +H2(Gψ (Hk\Hk0 )
) ≥ δ +m1(λk) ∀k > k0.

Letting k → +∞, since λk → λ in the sense of Fréchet, we have m1(λk) → m1(λ) [22, Theorem 4,
Section 4.3]. In particular, from the previous inequality we infer

F(σ, ψ) = H2(G
ψ (Ω\E(σ))

) ≥ δ +m1(λ).

Hence we conclude

H2(G
ψ (Ω\E(σ))

∪ G−ψ (Ω\E(σ))
) ≥ 2δ + 2m1(λ) ≥ 2δ +m2(Γ),

which contradicts (6.8). In the last inequality we have used that 2m1(λ) ≥ m2(Γ); this follows
from the fact that a disk-type parametrization of a minimizer for m1(λ) can be reparametrized on
a half-annulus (as in the proof of Lemma 6.5), and glued with another reparametrization of it on
the other half-annulus, so to obtain a parametrization of an annulus-type surface spanning Γ which
is admissible for (6.4). Hence claim (6.10) follows.

Now, since ψ is Lipschitz continuous on Hk, for all k ∈ N sufficently large there exists a map
Ψk ∈ H1(B1;R3) ∩ C0(B1;R3) with Ψk(∂B1) = λk monotonically which solves the classical disk-
type Plateau problem spanning λk and such that

Ψk(B1) = Gψ Hk
.

Letting k → +∞ and using that the Dirichlet energy of Ψk equals the area of Gψ Hk
, we conclude

that (Ψk) tends to a map Ψ ∈ H1(B1;R3) ∩ C0(B1;R3) with Ψ(∂B1) = λ weakly monotonically,
and that is a solution of the classical disk-type Plateau problem with

Ψ(B1) = G
ψ (Ω\E(σ))

.

18This is done, for instance, by glueing an external annulus to a disk, and using Φk0 from the disk, and a
reparametrization of G

ψ (Hk\Hk0
)
from the annulus.
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Arguing as in the proof of Lemma 6.5 we finally get a map Φ : Σann → R3 which belongs to P2(Γ)
and parametrizes G

ψ (Ω\E(σ))
∪ G−ψ (Ω\E(σ))

. This concludes the proof of (a).

(b). It is sufficient to argue as in case (a), by replacing Ω \ E(σ) in turn with F1 and F2 and
Σann with B1 to find Φ1 and Φ2, respectively.

Using the arguments above to show conditions (b) of Lemma 6.5 and Lemma 6.6, we deduce the
following:

Corollary 6.7. Let n = 1, assume that Γ is not planar, and let (σ, ψ) ∈ Wconv be a minimizer
of F in W satisfying properties 1.-5. of Theorem 5.1. Then there exists an injective map Φ ∈
W 1,1(B1;R3) ∩ C0(B1;R3) such that

Φ(B1) = G
ψ (Ω\E(σ))

∪ G−ψ (Ω\E(σ))
,

and Φ ∂B1 : ∂B1 → Γ is a weakly monotonic parametrization of Γ. Moreover, if H2(G
ψ (Ω\E(σ))

∪
G−ψ (Ω\E(σ))

) ≤ m1(Γ) then there is a reparametrization of Φ belonging to P1(Γ) and solving (6.5).

Now we can start the proof of Theorems 6.1 and 6.4.

6.4 Proof of Theorem 6.1

Proof of Theorem 6.1. Let Φ ∈ P1(Γ) be a solution to (6.1). The curve Γ satisfies the assumptions
of Lemma 5.4 (notice in this case we have f(p1) = f(q1) = 0), hence the minimal disk-type surface
S := Φ(B1) satisfies the following properties:

• βp1,q1 := S ∩ (R2 × {0}) ⊂ Ω is a simple analytic curve joining p1 and q1 and such that
βp1,q1 ∩ ∂Ω = {p1, q1};

• S is symmetric with respect to R2 × {0};

• the surface S+ = S∩{x3 ≥ 0} is the graph of a function ψ̃ ∈W 1,1(Up1,q1)∩C0(Up1,q1), where

Up1,q1 ⊂ Ω is the open region enclosed between ∂D1 Ω and βp1,q1 . Moreover ψ̃ is analytic in
Up1,q1 ;

• the curve βp1,q1 is contained in the closed convex hull of Γ, and Ω \ Up1,q1 is convex.

Let (σ, ψ) ∈ Wconv be given by

σ := σ1 and ψ :=

®
0 in Ω \ Up1,q1
ψ̃ in Up1,q1 ,

where σ1([0, 1]) = βp1,q1 . Clearly (6.3) holds, and H2(S) = 2F(σ, ψ) = m1(Γ). It remains to
show that (σ, ψ) is a minimizer of F . Let (σ′, ψ′) ∈ Wconv be a minimizer of F that satisfies
properties 1.-5. of Theorem 5.1 and consider the disk-type surface with boundary Γ given by
S′ := G

ψ′ (Ω\E(σ′)) ∪ G−ψ′ (Ω\E(σ′)). Since (σ, ψ) is admissible for F , we deduce

H2(S′) = 2F(σ′, ψ′) ≤ m1(Γ).

Thus we are in the hypotheses of Corollary 6.7 and so there is a map Φ′ ∈ P1(Γ) with Φ′(B1) = S′.
By minimality of (σ′, ψ′) and of S we have

H2(S) ≤ H2(S′) = 2F(σ′, ψ′) ≤ 2F(σ, ψ) = H2(S). (6.12)
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Hence (σ, ψ) is a minimizer of F in W and Φ′ is a solution to (6.1).
Conversely, let (σ, ψ) ∈ Wconv be a solution that satisfies properties 1.-5. of Theorem 5.1 and let

S := G
ψ (Ω\E(σ))

∪ G−ψ (Ω\E(σ))
. Let Φ̃ be a solution to (6.1); then we can find (σ̃, ψ̃) ∈ W whose

doubled graph S̃ = G
ψ̃ (Ω\E(σ̃))

∪ G−ψ̃ (Ω\E(σ̃))
satisfies

H2(S) = 2F(σ, ψ) ≤ 2F(σ̃, ψ̃) = H2(S̃) = m1(Γ).

Arguing as before we find a map Φ ∈ P1(Γ) parametrizing S. We conclude that Φ is a solution to
(6.1), and the theorem is proved.

6.5 Proof of Theorem 6.4

The proof of Theorem 6.4 is much more involved, so we divide it in a number of steps. We start
with a result (which can be seen as the counterpart of Lemma 5.4 for the Plateau problem defined
in (6.4)) that will be crucial to prove (i). In what follows we denote by π : R3 → R2 × {0} the
orthogonal projection.

Theorem 6.8. Suppose m2(Γ) < m1(Γ1) +m1(Γ2) and let Φ ∈ P2(Γ) be a MY solution to (6.4).
Then the minimal surface Φ(Σann) satisfies the following properties:

(1) The set π(Φ(Σann)) is simply connected in Ω; Ω ∩ ∂π(Φ(Σann)) consists of two disjoint em-
bedded analytic curves β1 and β2 joining q1 to p2, and q2 to p1, respectively. Moreover, for
i = 1, 2, the closed region Ei enclosed between ∂0i Ω and βi is convex;

(2) Φ(Σann) is symmetric with respect to the plane R2 × {0};

(3) Φ(Σann) ∩ (R2 × {0}) = β1 ∪ β2;

(4) S+ := Φ(Σann) ∩ {x3 ≥ 0} is Cartesian. Precisely, it is the graph of a function ψ̃ ∈
W 1,1(int(π(Φ(Σann)))) ∩ C0(π(Φ(Σann))).

The proof of Theorem 6.8 is a consequence of Lemmas 6.9, 6.10, 6.11, 6.13 , 6.14, and 6.15 below.

Lemma 6.9 (Simply connectedness). Suppose m2(Γ) < m1(Γ1)+m1(Γ2) and let Φ ∈ P2(Γ) be
a MY solution to (6.4). Then π(Φ(Σann)) is a simply connected region in Ω and π(Φ(Σann))∩∂Ω =
∂D1 Ω ∪ ∂D2 Ω.

Proof. We recall that Φ : Σann → R3 is an embedding. The fact that π(Φ(Σann)) is a subset of Ω
and π(Φ(Σann)) ∩ ∂Ω = ∂D1 Ω ∪ ∂D2 Ω follows from the fact that the interior of Φ(Σann) is contained
in the convex hull of Γ. So it remains to show that π(Φ(Σann)) is simply connected.
Suppose by contradiction that π(Φ(Σann)) is not simply connected. Let H be a hole of it, namely
a region in Ω surrounded by a loop contained in π(Φ(Σann)) and such that H ∩ π(Φ(Σann)) = Ø;
choose a point P ∈ H. We will look for a contradiction by exploiting that Σann is an annulus and
using that the map Φ is analytic and harmonic.

Let θ be the angular coordinate of a cylindrical coordinate system (ρ, θ, z) in R3 centred at P
and with z-axis the vertical line π−1(P ). For θ ∈ [0, 2π) we consider the half-plane orthogonal to
R2 × {0} defined by

Πθ := {(ρ, θ, z) : ρ > 0, z ∈ R}.

Now we fix two values θ1 and θ2 so that Πθ1 and Πθ2 intersect (the interior of) ∂01Ω and ∂02Ω
respectively. The half-planes19 Πθ1+π and Πθ2+π might intersect ∂DΩ (see Figure 5). However,

19The angles are considered (mod 2π).
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Figure 5: The horizontal section of two half-planes Πθ1 and Πθ2 intersecting ∂01Ω and ∂02Ω, respec-
tively.

since the points p1, q1, p2, q2, are in clockwise order on ∂Ω, and Ω is convex, it is not difficult to
conclude the following assertion:

The half-planes Πθ1+π and Πθ2+π cannot intersect the two components ∂D1 Ω and ∂D2 Ω of ∂DΩ at
the same time.

In other words: If, for instance, Πθ1+π intersects ∂D1 Ω, then Πθ2+π does not intersect ∂D2 Ω. Let
us prove the assertion in the form of the last statement, being the other cases similar. This is trivial
since, if Πθ1 intersects ∂01Ω and Πθ1+π intersects ∂D1 Ω (as in Figure 5), we have that Πθ intersects
∂D1 Ω ∪ ∂01Ω for all θ ∈ [θ1, θ1 + π]. As either θ2 or θ2 + π belongs to [θ1, θ1 + π], we have that
Πθ2 ∪ Πθ2+π intersects ∂D1 Ω ∪ ∂01Ω. Since by hypothesis Πθ2 intersects ∂02Ω, it follows that Πθ2+π
does not intersect ∂D2 Ω, and the statement follows.

Moreover, since Πθ1 intersects ∂01Ω and Πθ2 intersects ∂02Ω, it is straightforward that:

If Πθ1+π intersects ∂01Ω then also Πθ2+π intersects ∂01Ω.

We are now ready to conclude the proof of the lemma. We have to discuss the following cases:

(1) Πθ1+π intersects ∂0Ω;

(2) Πθ1+π intersects ∂D1 Ω;

(3) Πθ1+π intersects ∂D2 Ω.

By hypothesis on P , for all θ ∈ [0, 2π) the intersection between Φ(Σann) and Πθ consists of a family
of smooth simple curves, either closed or with endpoints on Γ. Correspondingly, Φ−1(Φ(Σann)∩Πθ)
is a family of closed curves in Σann, possibly with endpoints on C1 ∪ C2. In particular, since
Πθ1 ∩ ∂01Ω ̸= Ø, the set20 Φ−1(Φ(Σann) ∩Πθ1) is a family of closed curves in Σann.

In case (1) also Φ−1(Φ(Σann) ∩ Πθ1+π) consists of closed curves in Σann. Take two loops α and
α′ in Φ−1(Φ(Σann)∩Πθ1) and in Φ−1(Φ(Σann)∩Πθ1+π) respectively. Let d1 be the signed distance
function from the plane Πθ1 ∪ Πθ1+π, positive on ∂D2 Ω. Since d1 ◦ Φ changes its sign when one
crosses transversally α and α′, we easily see that both α and α′ cannot be homotopically trivial in
Σann (by harmoniticy of d1 ◦Φ, if for instance α is homotopically trivial in Σann, by the maximum
principle d1 ◦ Φ = 0 in the region enclosed by α, i.e. the image of Φ is locally flat, contradicting

20Since Πθ1 ∩ ∂DΩ = Ø these curves must be closed in Σann.
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the analyticity of Φ). Hence, since Φ is an embedding, they run exactly one time around C1; as
a consequence, they must be homotopically equivalent to each other in Σann. On the other hand,
they do not intersect each other (Φ is an embedding), so they bound an annulus-type region in
Σann, and by harmonicity d1 ◦Φ is constantly null in this region. This would imply again that the
image by Φ of this annulus is contained in Πθ1 ∪Πθ1+π, a contradiction.

In case (2), from our assertion, we deduce that Πθ2+π might intersect either ∂0Ω or ∂D1 Ω. Further
we can exclude that Πθ2+π intersects ∂0Ω (otherwise, we repeat the argument for case (1) switching
the role of θ1 and θ2). Therefore the only remaining possibility is that Πθ2+π intersects ∂D1 Ω (see
Figure 5). Let d2 be the signed distance function from the plane Πθ2 ∪Πθ2+π positive on ∂D2 Ω. In
particular, di ◦Φ, i = 1, 2, is positive on the circle C2 of Σann. By hypothesis on di, i = 1, 2, we see
that d1 is positive on Πθ2 , and d2 is positive on Πθ1 .

As in case (1), let α ⊆ Φ−1(Φ(Σann)∩Πθ1) and β ⊆ Φ−1(Φ(Σann)∩Πθ2) be two loops. We know
that α and β are closed in Σann. Again, we conclude that α and β are homotopically equivalent
in Σann, and both run one time around C1. Assume without loss of generality that β encloses α,
which in turn encloses C1. Since d2 ◦ Φ is positive on both α and C2, d2 ◦ Φ must be positive in
the region enclosed between them, contradicting the fact that it vanishes on β.

If instead we are in case (3) we can argue as in case (2) and get a contradiction. In all cases (1),
(2), and (3), we reach a contradiction which derives by assuming that π(Φ(Σann)) is not simply
connected. The proof is achieved.

We next proceed to characterize the geometry of Ω ∩ ∂π(Φ(Σann)).

Lemma 6.10 (Trace on the horizontal plane). Suppose m2(Γ) < m1(Γ1) + m1(Γ2) and let
Φ ∈ P2(Γ) be a MY solution to (6.4). Then Ω ∩ ∂π(Φ(Σann)) consists of two disjoint Lipschitz
embedded curves β1 and β2 joining q1 to p2, and q2 to p1, respectively. Moreover, the closed regions
Ei enclosed between ∂01Ω and βi are convex for i = 1, 2.

Proof. By Lemma 6.9, π(Φ(Σann)) is simply connected in Ω, and π(Φ(Σann))∩∂Ω = ∂DΩ. Therefore
Ω \ π(Φ(Σann)) consists of two simply connected components, one containing ∂01Ω and the other
containing ∂02Ω. Let E1 and E2 be the closures of these two components21, so that in particular
the boundary of Ei is a simple Jordan curve of the form βi ∪ ∂0i Ω for some embedded curve βi ⊂ Ω
joining the endpoints of ∂0i Ω. We will prove that Ei is convex for i = 1, 2. This will also imply that
βi are Lipschitz.

Take i = 1, and assume by contradiction that E1 is not convex. Thus we can find a line l in R2

and three different points A1, A2, A3 on l, with A2 ∈ A1A3, so that A2 is contained in Ω \E1, and
A1 and A3 belong to the interior of E1.

Consider the region π(Φ(Σann))\l, which consists in several (open) connected components. There
is one of these connected components, say U , which does not intersect ∂DΩ and whose boundary
contains A2. In addition, U ∩ ∂DΩ = Ø. Indeed, ∂U is the union of a segment L (containing A2)
and a curve γ (contained in β1 ⊆ ∂(π(Φ(Σann))) joining its endpoints. Hence, U \ U = γ ∪ L, and
L cannot intersect ∂DΩ by the hypothesis on A1, A2, and A3.

Let Πl ⊂ R3 be the plane containing l and orthogonal to the plane containing Ω; As usual,
Πl ∩ Φ(Σann) is a family of closed curves, possibly with endpoints on Γ ∩ Πl. Now, pick a point P
on ∂U \ L, and let Q be a point on Φ(Σann) so that π(Q) = P . Let dl : R3 → R be the signed
distance from Πl, with dl(Q) = dl(P ) > 0. We claim that, if D is the connected component of
{w ∈ Σann : dl ◦ Φ(w) > 0} containing the point Φ−1(Q), then D ∩ ∂Σann = Ø. This would
contradict the harmonicity of dl ◦ Φ, since dl ◦ Φ would be zero on D, but dl(Q) > 0, in contrast
with the maximum principle.

21The sets E1 and E2 have nonempty interior, since Φ(Σann) is contained in the interior of the convex hull of
Φ(∂Σann), hence contained in the cylinder Ω× R.
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Assume by contradiction that the converse holds. Then there is an arc α : [0, 1] → D ∪ ∂Σann

joining Φ−1(Q) to ∂Σann . The image of the map π ◦ Φ ◦ α is an arc in Ω joining P to ∂DΩ and
such that dl ≥ 0 on it. Clearly this arc is a subset of π(Φ(Σann)). Since π ◦Φ ◦α(0) = P , it follows
that the image of π ◦ Φ ◦ α is contained in U . Now U does not intersect ∂DΩ, contradicting that
π ◦ Φ ◦ α(1) ∈ ∂DΩ. This concludes the proof.

In the next step we show that there exists a set E ⊂ R3 of finite perimeter such that

∂E = ∂∗E = Φ(Σann) ∪∆1 ∪∆2,

where ∂∗ denotes the reduced boundary, and

∆i := {P = (P ′, P3) ∈ R3 : P ′ = (P1, P2) ∈ ∂Di Ω, P3 ∈ (−φ(P ′), φ(P ′))}, i = 1, 2. (6.13)

In particular ∆1 ∪∆2 ⊂ (∂Ω)× R and (Ω× R) ∩ ∂E = Φ(Σann).

We first fix some notation. We let 〚E〛 ∈ D3(R3) be the 3-current given by integration over E
with E ⊂ R3 a set of finite perimeter. To every MY solution Φ ∈ P2(Γ) to (6.4) we associate the
push-forward 2-current Φ♯〚Σann〛 ∈ D2(R3) given by integration over the (suitably oriented) surface
Φ(Σann) [34, Section 7.4.2]. Finally, if T ∈ Dk(U) with U ⊂ R3 open and k = 2, 3, we denote by
|T | the mass of T in U [24, p. 358].

Lemma 6.11 (Region enclosed by Φ(Σann)). Suppose m2(Γ) < m1(Γ1) +m1(Γ2) and let Φ ∈
P2(Γ) be a MY solution to (6.4). Then there is a closed finite perimeter set E ⊂ Ω× R such that
∂E ∩ (Ω× R) = Φ(Σann).

Proof. As Φ♯〚Σann〛 is a boundaryless integral 2-current in Ω×R, there exists (see, e.g., [34, Theorem
7.9.1]) an integral 3-current E ∈ D3(Ω × R) with ∂E = Φ♯〚Σann〛, and we might also assume that
the support of E is compact in Ω×R. We claim that, up to switching the orientation of Φ♯〚Σann〛,
E has multiplicity in {0, 1}, and hence is the integration 〚E〛 over a bounded measurable set E.
Since ∂E = Φ♯〚Σann〛, this will be a finite perimeter set, and 〚(Ω× R) ∩ ∂∗E〛 = Φ♯〚Σann〛.

By Federer decomposition theorem [24, Section 4.2.25, p. 420] (see also [24, Section 4.5.9]
and [34, Theorem 7.5.5]) there is a sequence (Ek)k∈N of finite perimeter subsets of Ω×R such that

E =
+∞∑
k=1

σk〚Ek〛, σk ∈ {−1, 1}, (6.14)

and

|E| =
+∞∑
k=1

|Ek| and |∂E| = H2(Φ(Σann)) =
+∞∑
k=1

H2(∂∗Ek). (6.15)

We start by observing that
∂∗Ek ⊆ Φ(Σann) ∀k ∈ N. (6.16)

Indeed, fixing k ∈ N, by the second equation in (6.15), we have that ∂∗Ek is contained in the
support of ∂E , which in turn is Φ(Σann). As a consequence, if P = (P1, P2, P3) ∈ (Ω× R) ∩ ∂∗Ek,
then P ∈ Φ(Σann). Around P we can find suitable coordinates and a cube U = (P1 − ε, P1 + ε)×
(P2 − ε, P2 + ε) × (P3 − ε, P3 + ε) such that Φ(Σann) ∩ U is the graph Gh of a smooth function
h : (P1 − ε, P1 + ε)× (P2 − ε, P2 + ε) → (P3 − ε, P3 + ε). Moreover, Φ♯〚Σann〛 = 〚Gh〛 in U .

We claim that

∀k either Ek ∩ U = U ∩ SGh or Ek ∩ U = U \ SGh.
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Indeed, assume for instance that |Ek ∩ U ∩ SGh| > 0 and |(SGh \ Ek) ∩ U | > 0; by the constancy
lemma [34] it follows that ∂〚Ek〛 is nonzero in the simply connected open set SGh, contradicting
(6.16). As a consequence of the preceding claim, we have U ∩ ∂∗Ek = U ∩ Φ(Σann). Since this
argument holds for any choice of P ∈ (Ω×R)∩∂∗Ek, we have proved that (Ω×R)∩∂∗Ek is relatively
open (and relatively closed at the same time) in Φ(Σann), which in turn being a connected open
set, implies

Φ(Σann) = ∂∗Ek ∀k ∈ N.

Denote by I± := {k ∈ N : σk = ±1}, with σk as in (6.14). Going back to the local behaviour
around P ∈ Φ(Σann), if U is a neighbourhood as above, we see that for all k ∈ I+ either Ek ∩U =
SGh or Ek = U\SGh (namely, all the Ek’s coincide in U), since otherwise, there will be cancellations
in the series

∑
k∈I+ ∂〚Ek〛, in contradiction with the second formula in (6.15). Assume without

loss of generality that for all k ∈ I+ we have Ek ∩U = SGh; thus, arguing as before, for all k ∈ I−

we must have Ek ∩ U = U \ SGh.
We obtain that E U = m〚SGh〛 − n〚U \ SGh〛 for some nonnegative integers n,m. Since

(∂E) U = (m + n)〚Gh〛 and also (∂E) U = Φ♯〚Σann〛 = 〚Gh〛 in U , we conclude m + n = 1.
Hence either m = 1 and n = 0, or m = 0 and n = 1. On the other hand, we know that
E U =

∑
k∈I+ 〚Ek ∩ U〛 −

∑
k∈I− 〚Ek ∩ U〛, from which it follows that I+ has cardinality m and

I− has cardinality n. Namely, one of the sets I± is empty, and the other contains one index only.
We conclude that the sum in (6.14) involves one index only, that is, there is only one compact

set E in Ω× R such that (up to switching the orientation)

E = 〚E〛.

This concludes the proof.

For later convenience, from now on we denote by E the closure of a precise representative of the
set found in Lemma 6.11.

Remark 6.12. From the fact that (Ω×R) ∩ ∂E = Φ(Σann) ∪∆1 ∪∆2, we easily see that π(E) =
π(Φ(Σann)) which, by Lemma 6.9, is simply connected.

We denote by symst(E) the set (symmetric with respect to the horizontal plane R2×{0}) obtained
applying to E the Steiner symmetrization with respect to R2 × {0}.
Clearly symst(E) ∩ (∂Di Ω× R) = ∆i with ∆i defined as in (6.13). We define

S := ∂(symst(E)) \ (∆1 ∪∆2), S+ := S ∩ {x3 ≥ 0}, S− := S ∩ {x3 ≤ 0}. (6.17)

Since P (symst(E)) ≤ P (E) (here P (·) is the perimeter in R3 [4]) we have H2(S) ≤ H2(Φ(Σann)).

Lemma 6.13 (Graphicality of ∂(symst(E)) and continuity up to the boundary). Suppose
that m2(Γ) < m1(Γ1) +m1(Γ2) and let Φ ∈ P2(Γ) be a MY solution to (6.4). Let E be the finite
perimeter set given by Lemma 6.11 and S± be as in (6.17). Then there is ψ̃ ∈ BV (int(π(E))) ∩
C0(π(E)) such that S± = G±ψ̃. In particular S± ∩ (R2 × {0}) = Ω ∩ ∂(π(E)).

Proof. Since E has finite perimeter, there exists a function ψ̃ ∈ BV (int(π(E))) such that S± = G±ψ̃
[20]. So, we only need to show that ψ̃ is continuous (note that π(E) is a closed set). Take a point
P ′ in the interior of π(E); if P ′ = π(Φ(w)) for some w, then w ∈ Σann, since π(Φ(Ci)) ⊂ ∂Ω for
i = 1, 2 (recall C1 and C2 form the boundary of Σann). If at none of the points of π

−1(P ′)∩Φ(Σann)
the tangent plane to Φ(Σann) is vertical, then ψ̃ is C∞ in a neighbourhood of P ′, since it is the
linear combination of smooth functions (see the discussion after formula (6.21) below, where details
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are given). Therefore we only have to check continuity of ψ̃ at those points P ′ for which there is
P ∈ π−1(P ′) ∩ Φ(Σann) such that Φ(Σann) has a vertical tangent plane Π at P .

Consider a system of Cartesian coordinates centred at P , with the (x, y)-plane coinciding with Π,
the x-axis coinciding with the line π−1(P ′), and let z = z(x, y) (defined at least in a neighbourhood
of 0) be the analytic function whose graph coincides with Φ(Σann). This map, restricted to the
x-axis, is analytic and vanishes at x = 0; hence it is either identically zero or it has a discrete
set of zeroes (in the neighbourhood where it exists). We now exclude the former case: If z(·, 0)
is identically zero, it means that around P there is a vertical open segment included in π−1(P ′),
which is contained in Φ(Σann). Let Q be an extremal point of this segment, and let ΠQ be the
tangent plane to Φ(Σann) at Q. This plane must contain as tangent vector the above segment,
hence ΠQ is vertical and contains π−1(P ′). Choosing again a suitable Cartesian coordinate system
centred at Q we can express locally the surface Φ(Σann) as the graph of an analytic function
defined in a neighbourhood of Q in ΠQ, and so the restriction of this map to π−1(P ′) is analytic
in a neighbourhood of Q, hence it must be identically zero since it is zero in a left (or right)
neighbourhood of Q. What we found is that we can properly extend the segment PQ on the Q
side to a segment PR contained in Φ(Σann). This proves that Φ(Σann)∩ π−1(P ′) is relatively open
in π−1(P ′). Since it is also relatively closed, it coincides with the whole line π−1(P ′), which is
impossible since Φ(Σann) is bounded.

Hence the zeroes of the function z(·, 0) are isolated, so we have shown:

Assertion A: Let P ∈ π−1(P ′) ∩ Φ(Σann). Then in a neighbourhood of P the only intersection
between Φ(Σann) and π

−1(P ′) is P itself.

Now, we can conclude the proof of the continuity of the function ψ̃. Write π−1(P ′) ∩Φ(Σann) =
{Q1, Q2, . . . , Qm} ⊂ Ω× R. It follows that

2ψ̃(P ′) = H1(π−1(P ′) ∩ E) =

m∑
j=1

σj(Qj)3, (6.18)

where (Qj)3 is the vertical coordinate of Qj and

σj =


−1 if Qj−1Qj ⊂ R3 \ E and QjQj+1 ⊂ E,

1 if Qj−1Qj ⊂ E and QjQj+1 ⊂ R3 \ E,
0 otherwise,

j = 1, . . . ,m. (6.19)

Let (P ′
k) ⊂ int(π(E)) be a sequence converging to P ′, and write π−1(P ′

k)∩Φ(Σann) = {Qk1, Qk2, . . . , Qkmk} ⊂
Ω× R. With a similar notation as above, we have

2ψ̃(P ′
k) = H1(π−1(P ′

k) ∩ E) =

mk∑
j=1

σkj (Q
k
j )3. (6.20)

Now, if at every point Qj the tangent plane to Φ(Σann) is not vertical, then Φ(Σann) is a smooth
Cartesian surface in a neighbourhood of Qj , and so it is clear that, for k large enough,

m = mk, Qkj → Qj , σkj → σj for all j = 1, . . . ,m, (6.21)

and the continuity of ψ̃ at P ′ follows. Therefore it remains to check continuity in the case that the
tangent plane to some Qj is vertical.

Let ‹Q be one of these points, with associated sign σ̃ ∈ {0, 1}. By assertion A there is δ > 0 so that‹Q is the unique intersection between π−1(P ′) and Φ(Σann) with vertical coordinate in [‹Q3−δ, ‹Q3+δ].

43



This means that the segments π−1(P ′)∩{‹Q3−δ < x3 < ‹Q3} and π−1(P ′)∩{‹Q3 < x3 < ‹Q3+δ} are
contained in either int(E) or R3 \E. In particular, there is a neighbourhood U ⊂ Ω of P ′ such that

U×{x3 = ‹Q3−δ} and U×{x3 = ‹Q3+δ} are subsets of int(E) or of R3\E. Suppose without loss of
generality that both are inside R3 \E (the other cases being similar), so that σ̃ = 0. We infer that,
for k large enough so that P ′

k ∈ U , there is a finite subfamily {Qkj : j ∈ J} of {Qk1, Qk2, . . . , Qkmk}
contained in {‹Q3 < x3 < ‹Q3 + δ} and which satisfies the following: The sum in (6.20) restricted to
such subfamily reads as:∑

j∈J
σkj (Q

k
j )3 = (Qkjl)3 − (Qkjl−1

)3 + · · ·+ (Qkj2)3 − (Qkj1)3,

where J = {j1, j2, . . . , jl : j1 < j2 < · · · < jl} and (Qkjl)3 > (Qkjl−1
)3 > · · · > (Qkj2)3 > (Qkj1)3 (if

jl = 1 necessarily σkj1 = 0 and the sum is zero). We have to show that this sum tends to σ̃‹Q3 = 0 as

k → +∞, which is true, since each Qkj tends to ‹Q. Repeating this argument for each point ‹Q with

a vertical tangent plane to Φ(Σann), the proof of continuity of ψ̃ in the interior of π(E) follows.

Now, let P ′ ∈ ∂(π(E)). If P ′ ∈ Ω ∩ ∂(π(E)) then every point in π−1(P ′) ∩ Φ(Σann) has vertical
tangent plane and we can argue as in the previous case. It remains to show continuity of ψ̃ on
∂π(E)∩ ∂Ω. In this case we exploit the fact that the interior of Φ(Σann) is contained in Ω×R. We
sketch the proof without details since it is very similar to the previous argument. Let P ′ ∈ ∂D1 Ω,
thus π−1(P ′) ∩ Γ1 consists of two distinct points Q1 and Q2. Let (P ′

k) be a sequence of points in
π(E) converging to P . For P ′

k ∈ ∂D1 Ω it follows π−1(P ′
k) ∩ Γ1 = {Qk1, Qk2} and the continuity of

ψ̃ follows from the continuity of φ on ∂D1 Ω, whereas if P ′
k is in the interior of π(E) there holds

π−1(P ′
k) ∩ Γ1 = {Qk1, Qk2, . . . , Qkmk}. Using the continuity of Φ up to C1, it is easily seen that all

such points must converge, as k → +∞, either to Q1 or to Q2. Hence we can repeat an argument
similar to the one used before.

Lemma 6.14. Suppose m2(Γ) < m1(Γ1) +m1(Γ2) and let Φ ∈ P2(Γ) be a MY solution to (6.4).
Let E be the finite perimeter set given in Lemma 6.11 and let S be defined as in (6.17). Then there
is an injective map Φ̃ ∈ H1(Σann;R3)∩C0(Σann;R3) which maps ∂Σann weakly monotonically to Γ
and such that Φ̃(Σann) = S, and furthermore

H2(S) =

∫
Σann

|∂w1Φ̃ ∧ ∂w2Φ̃|dw =

∫
Σann

|∂w1Φ ∧ ∂w2Φ|dw = m2(Γ). (6.22)

In particular, Φ̃ is a solution of (6.4).

Proof. By Lemma 6.13 there is ψ̃ ∈ BV (int(π(E))) ∩ C0(π(E)) such that S± = G±ψ̃. As a

consequence, for p ∈ ∂DΩ we have ψ̃(p) = φ(p) and for p ∈ ∂(π(E)) ∩ Ω we have ψ̃(p) = 0.

By Lemma 6.9 π(E) is simply connected, and so the maps ‹Ψ± : π(E) → R3 given by ‹Ψ±(p) :=
(p,±ψ̃(p)) are disk-type parametrizations of S±. Moreover S+ and S− glue to each other along
∂(symst(E)) ∩ (R2 × {0}) = β1 ∪ β2, where β1 and β2 are the curves given by Lemma 6.10 .

Let (σ, ψ) ∈ Wconv be a minimizer of F which satisfies properties 1.-5. of Theorem 5.1. Setting
σ̃ := (β1, β2) and extending ψ̃ to zero in Ω \π(E) (still calling ψ̃ such an extension), by minimality
we get

2F(σ, ψ) ≤ 2F(σ̃, ψ̃) = H2(S),

whence

2F(σ, ψ) ≤ H2(S) ≤ H2(Φ(Σann)) =

∫
Σann

|∂w1Φ ∧ ∂w2Φ|dw = m2(Γ). (6.23)
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We are in the hypotheses of Lemma 6.6 (a), therefore there exists a map Φ̂ ∈ P2(Γ) parametrizing
G
ψ (Ω\E(σ))

∪G−ψ (Ω\E(σ))
which is a minimizer of (6.4). In particular, 2F(σ, ψ) = m2(Γ), and all

inequalities in (6.23) are equalities. We deduce also that (σ̃, ψ̃) is a minimizer of F in Wconv, so that
by Theorem 5.1 ψ̃ is analytic in int(π(E)). As a consequence it belongs to W 1,1(int(π(E));R3).
Applying Lemma 6.5 (a) and Lemma 6.6 (a), we get the existence of Φ̃ ∈ P2(Γ) as in the statement,
and we have concluded.

Lemma 6.15. Suppose m2(Γ) < m1(Γ1) +m1(Γ2) and let Φ ∈ P2(Γ) be a MY solution to (6.4).
Let E be the finite perimeter set given in Lemma 6.11 and let S be defined as in (6.17). Then
Φ(Σann) = S and in particular

E = symst(E).

Proof. By Lemma 6.14 we have H2(S) = m2(Γ) from which it follows P (symst(E)) = P (E). Then
we can apply [20, Theorem 1.1] to deduce the existence of two functions f, g : π(E) → R of
bounded variation, such that ∂∗E = Gf ∪ Gg (up to H2-negligible sets). We will show that f = ψ̃

and g = −ψ̃. To this aim, thanks again to [20, Theorem 1.1], we know that for a.e. p ∈ π(E), the

two unit (external to E) normal vectors νf = (νf1 , ν
f
2 , ν

f
3 ) and νg = (νg1 , ν

g
2 , ν

g
3 ) to Gf and Gg at the

points (p, f(p)) and (p, g(p)), respectively, satisfy

(νf1 , ν
f
2 , ν

f
3 ) = (νg1 , ν

g
2 ,−ν

g
3 ). (6.24)

To conclude the proof it is then sufficient to show that f = −g a.e. on π(E): indeed this would
readily imply E = symst(E) and hence f = ψ̃. Let p ∈ int(π(E)); if

π−1(p) ∩ S = {P1, P2, . . . , Pk}, (6.25)

then for a.e. p ∈ int(π(E)) it is k ≤ 2. Now we show that, for all p ∈ int(π(E)), if k > 1, none of the
points {P1, P2, . . . , Pk} has vertical tangent plane. Assume by contradiction that P1 has vertical
tangent plane Π1. In this case Π1 ∩ S consists, in a neighbourhood U of P1, of at least 2 curves
crossing transversally (see [37, Section 373]) at P1. These curves, by assertion A in the proof of
Lemma 6.13 , intersect π−1(p) only at P1. Moreover, in a neighbourhood V of P2, with U ∩V = Ø,
Π1 ∩S consists of (at least) one curve passing through P2. This curve is locally Cartesian if π−1(p)
crosses S transversally in P2, otherwise it is locally the union of two curves ending at P2, with
vertical tangent plane, which lie on the same side of Π1 with respect to π−1(p). In both cases,
we deduce that there is a point q ∈ Π1 ∩ (Ω × {0}) for which π−1(q) intersects transversally S in
at least three points. As a consequence, for all q′ in a neighbourhood of q in Ω, the line π−1(q′)
intersects S at more than two points, which is a contradiction. We have proved the following:

Assertion: for all p ∈ int(π(E)) the line π−1(p) intersects S either transversally at two points
P1, P2, or at only one point P1.

Now we see that the latter case cannot happen. Indeed, first one checks that in this case the
intersection cannot be transversal22, and that π−1(p) must be tangent to S at P1. Let Π1 be the
vertical tangent plane to S at P1. Let Π⊥

1 be the vertical plane orthogonal to Π1 passing through
P1. In a neighbourhood of P1, the unique curve in S ∩Π⊥

1 must be the union of two curves joining
at P1, and these curves must belong to the same half-plane of Π⊥

1 with boundary π−1(p). As a
consequence, if p′ ∈ Ω ∩ Π⊥

1 is in that half-plane, then π−1(p′) consists of at least two points; if
p′ lies in the opposite half-plane, then π−1(p′) is empty. This means that necessarily p ∈ ∂π(E).
Namely, the previous assertion can be strengthened to:

22This is a consequence of the fact that the line π−1(p) must lie outside the set E, with the only exception of the
point P1. Indeed, otherwise, there must be some other point in π−1(p) ∩ S, E being compact in R3.
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For all p ∈ int(E) the line π−1(p) intersects S transversally at exactly two points P1, P2.

The consequence of this is that f and g belong to W 1,1(int(π(E))) and are also smooth in
int(π(E)). Indeed, let p ∈ int(π(E)), so f(p) ̸= g(p), and

π−1(p) ∩ S = {(p, f(p)), (p, g(p))}. (6.26)

Since S is locally the graph of smooth functions around (p, f(p)) and (p, g(p)), these functions
coincide with f and g, respectively. We can now conclude the proof of the lemma: let us choose a
simple curve α : [0, 1] → π(E) with α(0) ∈ ∂DΩ and α(1) = p such that (6.24) holds for H1 a.e.
p ∈ α([0, 1]). Since f ◦ α and g ◦ α are differentiable in [0, 1], condition (6.24) uniquely determines
the tangent planes to Gf and Gg, and hence it implies that the derivatives of f ◦α and g ◦α satisfy

(f ◦ α)′(t) + (g ◦ α)′(t) = 0, for a.e. t ∈ [0, 1]. (6.27)

By continuity of f and g one infers f ◦ α + g ◦ α = c a.e. on [0, 1] (actually everywhere since
f + g is continuous), for some constant c ∈ R. To show that c = 0 it is sufficient to observe that
f ◦ α(0) = φ(α(0)) and g ◦ α(0) = −φ(α(0)). Hence f(p) = −g(p), and the thesis of Lemma 6.15
is achieved.

We are now in a position to conclude the proof of Theorem 6.8.

Proof of Theorem 6.8. Property (1) follows by Lemma 6.9 and Lemma 6.10. Properties (2)–(4)
follow by Lemma 6.13 and Lemma 6.15. To see that βi are C

∞ it is sufficient to observe that, since
S+ and S− are Cartesian surfaces, their intersection coincides with the set S ∩ {x3 = 0} which, by
standard arguments, is the image of the zero-set of Φ3, which is smooth.

Theorem 6.16. Assume n = 2 and Γj not planar for j = 1, 2. Then

2 min
(s,ζ)∈Wconv

F(s, ζ) = m2(Γ). (6.28)

Proof. Step 1: 2min(s,ζ)∈Wconv
F(s, ζ) ≤ m2(Γ).

Suppose first m2(Γ) < m1(Γ1) + m1(Γ2). Let Φ ∈ P2(Γ) be a MY solution to (6.4) and let
S := Φ(Σann). By Theorem 6.8 the following properties hold:

• S ∩ (R2 × {0}) = β1 ∪ β2 with β1 and β2 disjoint embedded analytic curves joining q1 to p2
and q2 to p1, respectively;

• S is symmetric with respect to R2 × {0};

• for i = 1, 2 the closed region Ei enclosed between ∂0i Ω and βi is convex;

• S+ = S ∩ {x3 ≥ 0} is the graph of ψ̃ ∈ W 1,1(U) ∩ C0(U), where U = Ω \ (E1 ∪ E2) is the
open region enclosed between ∂DΩ and β1 ∪ β2.

Let (σ, ψ) ∈ Wconv be given by

σ := (σ1, σ2) and ψ :=

®
0 in Ω \ U,
ψ̃ in U,

where σi([0, 1]) = βi for i = 1, 2. Then clearly S+ = G
ψ (Ω\E(σ))

and

min
(s,ζ)∈Wconv

F(s, ζ) ≤ F(σ, ψ) = H2(S+) =
1

2
m2(Γ).
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Now, suppose m2(Γ) = m1(Γ1) +m1(Γ2). For j = 1, 2, let Φj ∈ P1(Γj) be a solution to (6.1)
and Sj := Φj(B1). Let Dj be the closed convex hull of Γj : clearly D1 ∩D2 = Ø. By Lemma 5.4
(with F = Ω) each Sj satisfies the following properties:

• Sj ∩ (R2 × {0}) = βj ⊂ Dj is a simple analytic curve joining pj to qj ;

• Sj is symmetric with respect to R2 × {0};

• S+
j := S ∩ {x3 ≥ 0} is the graph of a function ψ̃j ∈W 1,1(Uj)∩C0(U j), where Uj ⊂ Dj is the

open region enclosed between ∂Dj Ω and βj ;

• Ω \ Uj is convex.

Let (σ, ψ) ∈ Wconv be given by

σ := (σ1, σ2) and ψ :=

®
0 in Ω \ (U1 ∪ U2),

ψ̃j in Uj for j = 1, 2,

where σ1([0, 1]) := p1q2 and σ2([0, 1]) := β2 ∪ q2p1 ∪ β1. Then S+ := S+
1 ∪ S+

2 = G
ψ (Ω\E(σ))

and

min
(s,ζ)∈Wconv

F(s, ζ) ≤ F(σ, ψ) = H2(S+) =
1

2
(m1(Γ1) +m1(Γ2)) =

1

2
m2(Γ),

and the proof of step 1 is concluded.

Step 2: 2min(s,ζ)∈Wconv
F(s, ζ) ≥ m2(Γ).

Let (σ, ψ) ∈ Wconv be a minimizer satisfying properties 1.-5. of Theorem 5.1. If E(σ1)∪E(σ2) =
Ø, by Step 1 we can apply Lemma 6.6 and find an injective parametrization Φ ∈ P2(Γ) such that
Φi(∂Σann) = Γ weakly monotonically, Φ(Σann) = Gψ ∪ G−ψ, and

2F(σ, ψ) =

∫
Σann

|∂w1Φ ∧ ∂w2Φ|dw ≥ m2(Γ).

If instead E(σ1) ∪ E(σ2) ̸= Ø, similarly we find injective parametrizations Φ1 ∈ P1(Γ1) and Φ2 ∈
P1(Γ2) such that Φj(∂B1) = Γj weakly monotonically for j = 1, 2, Φ1(B1) ∪ Φ2(B1) = Gψ ∪ G−ψ,
and

2F(σ, ψ) =

∫
B1

|∂w1Φ1 ∧ ∂w2Φ1|dw +

∫
B1

|∂w1Φ2 ∧ ∂w2Φ2|dw ≥ m1(Γ1) +m1(Γ2) ≥ m2(Γ).

This concludes the proof.

Now the proof of Theorem 6.4 is easily achieved.

Proof of Theorem 6.4. (i). Let Φ ∈ P2(Γ), S, S
+, S− be as in the statement. By arguing as in the

proof of Theorem 6.16 we can find (σ, ψ) ∈ Wconv such that S± = G±ψ (Ω\E(σ))
. Then by Theorem

6.16 we have

F(σ, ψ) =
1

2
m2(Γ) = min

(s,ζ)∈Wconv

F(s, ζ). (6.29)

Hence (σ, ψ) is a minimizer for F in W; moreover by the properties of S it also satisfies properties
1.-5. of Theorem 5.1.
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(ii). Let Φj ∈ P1(Γj), Sj for j = 1, 2, S+, S− be as in the statement. Again arguing as in the
proof of Theorem 6.16, we can find (σ, ψ) ∈ Wconv such that S± = G±ψ (Ω\E(σ))

and (6.29) holds,

so that (σ, ψ) is a minimizer of F in W satisfying properties 1.-5. of Theorem 5.1.
(iii). Let (σ, ψ) ∈ Wconv be a minimizer of F in W satisfying properties 1.-5. of Theorem 5.1.

Let also
S := G

ψ (Ω\E(σ))
∪ G−ψ (Ω\E(σ))

.

Suppose first E(σ1) ∩ E(σ2) = Ø. Then there is Φ ∈ P2(Γ) which is a MY solution to (6.4) such
that Φ(Σann) = S: indeed, to see this, it is sufficient to apply Lemma 6.6, since by Theorem 6.16
we have

2F(σ, ψ) = m2(Γ). (6.30)

Now, suppose E(σ1) ∩E(σ2) ̸= Ø; then with a similar argument we can construct Φj ∈ P1(Γj) for
j = 1, 2 solutions to (6.1) such that Φ1(B1) ∪ Φ2(B1) = S. The proof is achieved.

7 Final remarks and open problems

In this section we describe some motivations of the present study, possible applications and related
problems. Furthermore, we briefly comment on the hypotheses of our setting and on possible
extensions and generalizations of our results.

Connection with the Plateau problem in high codimension: The main motivation of
our study is related to the classical non-parametric Plateau problem in codimension greater than
1. Specifically, our setting is suited for the description of the singular part of the L1-relaxation
A(·, U) of the Cartesian 2-codimensional area functional∫

U

»
1 + |∇u1|2 + |∇u2|2 + (det∇u)2 dx, u = (u1, u2) ∈ C1(U ;R2), (7.1)

computed on nonsmooth maps. The functional A(·, U) computed out of C1(U,R2) is mostly un-
known [1,28], up to a few exceptions, see [1,7,8,14,41]. One of the remarkable exceptions is given
by the vortex map uV : Bℓ(0) \ {0} ⊂ R2 → R2, uV (x) :=

x
|x| : in this case it can be proved [9–11]

that

A(uV , Bℓ(0)) =

∫
Bℓ(0)

»
1 + |∇uV |2 dx+ inf F(σ, ψ), (7.2)

where F(σ, ψ) is as in (1.7) with Ω = R2ℓ = (0, 2ℓ)× (−1, 1) and the Dirichlet datum φ : ∂R2ℓ →
[0,+∞) is given by

φ(z1, z2) :=

{»
1− z22 on ∂DR2ℓ,

0 on ∂0R2ℓ,
(7.3)

with ∂DR2ℓ = ({0} × (−1, 1)) ∪ ([0, 2ℓ]× {−1}) ∪ ({2ℓ} × (−1, 1)) and ∂0R2ℓ = (0, 2ℓ)× {1}. Here
the infimum is taken over all pairs (σ, ψ) ∈ Σ×BV (R2ℓ) with σ a unique curve in R2ℓ joining (0, 1)
to (2ℓ, 1) and ψ = 0 a.e. in E(σ). This setting is similar to the catenoid case, with the notable
difference that the Dirichlet boundary is here extended to include the basis (0, 2ℓ)× {−1} and the
free curve is just one simple curve σ (see Figure 6).

To construct a recovery sequence for (7.2), it is crucial to analyse the existence and regularity of
minimizers of F . In particular, it is necessary to show that there is at least one sufficiently regular
minimizer (σ, ψ). The shape of the curve σ and the graph of ψ are related to the vertical part
of a Cartesian 2-current in Bℓ(0) × R2 ⊂ R4 which arises as a limit of (the graphs of) a recovery
sequence (vk) ⊂ C1(Bℓ(0);R2) for A(uV ;Bℓ(0)).
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Figure 6: The domain R2ℓ (example of the vortex map uV ). The graph of φ on ∂DR2ℓ is emphasized
(in particular φ = 0 on the lower horizontal side), together with an admissible curve σ, which in
this specific case partially overlaps the Dirichlet boundary. In this example n = 1.

According to what happens for the catenoid, also in this case we have a dichotomy for the
behaviour of minimizers (σ, ψ). When ℓ > 0 is small, the solution (σ, ψ) consists of a curve σ
joining p and q having relative interior contained in R2ℓ, and so that E(σ) is convex; at the same
time the graph of ψ on R2ℓ \ E(σ) is a sort of half-catenoid, so that if we double it considering
also its symmetric with respect to the plane containing R2ℓ, it becomes a sort of catenoid spanning
two unit circles and constrained to contain the segment (0, 2ℓ) × {−1}. When instead ℓ is larger
than a certain threshold, the solution reduces to two circles spanning the two unit parallel circles.
Notice however that in the setting of (7.3) on a part of the Dirichlet boundary we have φ = 0. This
leads to a number of additional difficulties which must be treated separately with approximation
techniques (we refer to [10] for the details).

Another relevant case in which the relaxation is known, is for the so-called triple junction function
uT : Bl(0) ⊂ R2 → R2, a map taking only three values, vertices of an equilateral triangle of
unit side-length (see [14, 41]). Also in this case, in order to compute the singular contribution of
A(uT ;Bl(0)), a Cartesian Plateau problem with a partial free boundary must be solved. Following
our approach, it is possible to reduce this problem to our setting. In general23, given Ω ⊂ R2 and
u ∈ BV (Ω;R2), the singular contribution of the relaxed area functional A(u; Ω) coincides with the
mass of vertical parts in the optimal Cartesian current Tu with underlying map u that arises as
limit of the graphs Gvk of a recovery sequence vk : Ω → R2. Generally, a few can be said on the
structure and properties of these vertical parts. However, for optimal Cartesian currents Tu as
above, they enjoy minimality properties under suitable constraints. In the aforementioned known
cases (a suitable projection24 of) these vertical parts is exactly the area minimizing solution of
Cartesian Plateau type problem with partial free boundary.

We emphasize that understanding the features of vertical parts of optimal Cartesian currents for
the relaxed graph area is crucial in order to detect the behaviour of the area functional. In more

23We restrict the discussion to the 2 dimensional case (and codimension 2), although this is valid for any dimension
and codimension.

24These currents live in Ω × R2, but stands above 1-dimensional subsets of Ω, so that, with suitable thecniques,
they can be identified with integral currents of codimension 1 (we refer to [9–11,14,41] for more detail).
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general setting and for general maps u : Ω ⊂ R2 → R2 only partial results are currently available,
and specifically, without a finer analysis of the singularities of these Cartesian currents only upper
and lower bounds can be obtained (see e.g. [15,42], where some estimates are given for nonsmooth
S1-valued maps).

Hypotheses: We assume that Ω is convex. Convexity is crucial to ensure existence of solutions
even in the classical non-parametric setting with no free boundary. Indeed, there are examples
in which Ω is not convex, and a minimizer of the area functional does not attain the Dirichlet
boundary datum.

We also point out that we assume injectivity of the free-boundary curves σi (see hypothesis (i)
in the Introduction). This assumption is crucial in order to define the sets E(σi) and then to solve
the problem in a non-parametric form. However, if one allows σi to have self-intersections, one can
look for a disk spanning the curve Γσ in (1.8) which is not a Jordan curve anymore. In this case
we have to face a singular Plateau problem such as the one recently studied in [21] using results
of [35]. Notice that in this case the curves σi will be also planar and some additional hint to face
this problem can be found in [19].

Further developments: In the present analysis we have assumed that the free boundary curves
are included in a plane. Of course, one may ask for domains Ω which are subset of a manifold (not
necessarily a plane), leading to additional difficulties, since the symmetrization with respect to the
plane is strongly used in our arguments.

Furthermore, the correspondence between the Meeks and Yau solutions is obtained in the special
cases n = 1, 2, although we believe that it holds also for n ≥ 3. However, due to technical difficulties
which renders the setting much more involved, we leave this generalization to future developments.

A further interesting question is the following. Suppose that ∂Ω is smooth; then one may ask
whether each free boundary ∂E(σj) is smooth up to ∂Ω, and moreover if there is some special kind
of contact angle condition at ∂Ω, due to minimality. This question should need further investigation
in the future.

The problem considered in this paper seems not directly related to the partial wetting phe-
nomenon, an interesting behaviour of soap films pointed out in [3], see also [17] and [12], [13],
where the soap film (typically in a non Cartesian context) does not attain the boundary condition,
leaving unwetted a part of the wire Γ. However, when the boundary datum φ is allowed to vanish
(a case not covered by the results of the present paper), as in the case of the “catenoid” constrained
to contain the segment [0, 2ℓ] × {−1} mentioned in Section 5.1, it may happen that the singular
solution consisting of the two half-disks does not wet that segment.

We conclude this section with a couple of additional examples which are open problems and we
consider to be interesting, relating the problem (and suitable variants) studied in this paper with
the relaxation of the area functional (7.1) in dimension 2 and codimension 2.

Let û : Bℓ(0) ⊂ R2 → S1 be the map defined in polar coordinates

û(ρ, θ) = e2iθ,

i.e., the vortex map of degree 2. Our conjecture is that the relaxed area functional A(û;Bℓ(0)) is
given by ∫

Bℓ(0)

»
1 + |∇û|2 dx+ inf{F1(σ, ψ1) + F2(σ̂, ψ2)}, (7.4)

where both Fi, i = 1, 2, are as the functional in (1.7), but applied to different domains and variables.
Specifically, F1 is applied to Ω = R2ℓ, and φ, σ = (σ1) and ψ1 = ψ are exactly as in the case of
uV (see (7.2) and (7.3)). Instead, for F2, Ω = R2ℓ while σ̂ = (σ̂1, σ̂2) = (σ1, σ̂2), and φ are as in
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the example of the catenoid in the introduction. Notice that minimizations of F1 and F2 are not
independent each other, since σ1 = σ̂1.

Another nontrivial example is given by a map u ∈ BV (Bℓ(0);R2) which we assume to jump on
three radii of Bℓ(0) (not necessarily at 120o-degrees angles). Depending on the trace values of u
on these radii, we consider the Plateau problem with partial free boundary as described below: we
take as domain Ω a triangle and σ = (σ1, σ2, σ3) are three curves in Ω connecting the three pairs of
vertices. Let φ be a boundary datum on ∂Ω that is null on the three vertices of Ω, and denote by
H(σi) the region enclosed between σi and the side li of Ω with the same vertices. We conjecture
that the singular contribution in A(u;Bℓ(0)) is related to the infimum of the quantity

|Ω \ (∪3
i=1H(σi))|+

3∑
i=1

(∫
Ω

»
1 + |∇ψi|2 dx+ |Dsψi|(Ω)− |Ω \H(σi)|+

∫
li

|ψi − φ| dH1
)
.

8 Appendix

We recall here some classical facts about convex sets and Hausdorff distance.

If A,B ⊂ R2 are nonempty, the symbol dH(A,B) stands for the Hausdorff distance between A
and B, that is

dH(A,B) := max

ß
sup
a∈A

dB(a) , sup
b∈B

dA(b)

™
,

where dF (·) is the distance from the nonempty set F ⊆ R2. If we restrict dH to the class of closed
sets, then dH defines a metric. Moreover:

(H1) dA(x) ≤ dB(x) + dH(A,B) for every x ∈ R2;

(H2) If K := {K ⊂ R2 nonempty and compact} then (K, dH) is a complete metric space;

(H3) If A,B ∈ K are convex then dH(A,B) = dH(∂A, ∂B);

(H4) If A ∈ K is convex, then there exists a sequence (An)n ⊂ K of convex sets with boundary of
class C∞ such that dH(An, A) → 0 as n→ +∞;

(H5) Let (An)n be a sequence of nonempty closed convex sets in R2, A ⊂ R2 is nonempty and
dH(An, A) → 0 as n→ +∞. Then A is convex as well;

(H6) Let An, A ∈ K be convex such that dH(An, A) → 0 and let x ∈ int(A); then x ∈ An for all
n ∈ N sufficiently large;

(H7) Let A and B be nonempty closed subsets of R2 with dH(A,B) = ε. Then A ⊂ B+
ε and

B ⊂ A+
ε where, for all nonempty E ⊂ R2, we have set E+

ε := {x ∈ R2 : dE(x) ≤ ε}.

Remark 8.1. Property (H1) is straightforward, while (H2) is well-known. Also property (H3) is
easily obtained (see, e.g. [43]). Concerning property (H4) we refer to, e.g., [6, Corollary 2]. To see
(H5), from (H1) we have that dAn → dA pointwise, and therefore since dAn is convex, also dA is
convex, which implies A convex25. Let us now prove (H6) by contradiction; assume that there exists
a subsequence (nk) such that dAnk (x) > 0 for all k ∈ N; then x ∈ R2 \ Ank , dAnk (x) = d∂Ank (x),
and using (H1) twice,

d∂A(x) ≤ d∂Ank (x) + dH(∂Ank , ∂A) = dAnk (x) + dH(Ank , A)

≤ dA(x) + 2dH(A,Ank) = 2dH(A,Ank) → 0,

25Since A is closed, it coincides with the sublevel {x : d(x,A) ≤ 0}, which is convex.

51



the first equality following from (H3). This implies x ∈ ∂A, a contradiction. Finally property (H7)
is immediate. Indeed if a ∈ A then

dB(a) ≤ sup
x∈A

dB(x) ≤ dH(A,B) = ε ,

hence a ∈ B+
ε and so A ⊂ B+

ε . In a similar way we get B ⊂ A+
ε .

We begin with the following standard result that will be useful later:

Lemma 8.2. Let K ∈ K be convex with nonempty interior. Then there exists a 1-periodic map
σ̂ ∈ Lip(R;R2), injective on [0, 1), such that σ̂([0, 1]) = ∂K and

σ̂(t) = σ̂(0) + ℓ(σ̂)

∫ t

0
γ̂(s) ds, γ̂(t) = (cos(θ̂(t)) , sin(θ̂(t))) for all t ∈ [0, 1],

with θ̂ : R → R a non-decreasing function satisfying θ̂(t + 1) − θ̂(t) = 2π for all t ∈ R, and
ℓ(σ̂) :=

∫ 1
0 |σ̂′(s)|ds the length of the curve.

Notice that σ̂ is differentiable a.e. in R and σ̂′(t) = ℓ(σ̂)γ̂(t), so that the speed modulus of the
curve |σ̂′(t)| = ℓ(σ̂) is constant.

Proof. We start by approximating K by convex sets with C∞ boundary. By (H4) for all n ∈ N
there is a convex compact set Kn ⊂ R2 with boundary of class C∞ and such that dH(Kn,K) → 0 as
n→ +∞. For any n ∈ N we let σ̂n ∈ C∞(R;R2) be a 1-periodic function injectively parametrizing
∂Kn on [0, 1); therefore σ̂n([0, 1]) = ∂Kn, and

σ̂n(t) = σ̂n(0) + ℓ(σ̂n)

∫ t

0
γ̂n(s) ds, γ̂n(t) = (cos(θ̂n(t)) , sin(θ̂n(t))) ∀t ∈ [0, 1],

where θ̂n ∈ C∞(R) is a non-decreasing function with θ̂n(t+ 1)− θ̂n(t) = 2π, for all t ∈ R. In view
of (H2), by construction we can find x0 ∈ K, R > r > 0 such that Br(x0) ⊂ Kn ⊂ BR(x0) for all
n ∈ N, and therefore H1(∂Br(x0)) ≤ ℓ(σ̂n) = H1(∂Kn) ≤ H1(∂BR(x0)); where the last inequality
follows since ∂Kn = πKn(∂BR(x0)) and from the fact that, since Kn is convex, the projection πKn
on Kn does not increase the lengths, thus, up to subsequence, ℓ(σ̂n) → “m ∈ (0,+∞) as n → +∞.
Moreover, up to subsequence, we might assume σ̂n(0) → p ∈ ∂K. On the other hand, observing
that ∫ t+1

t
|θ̂′n(s)|ds =

∫ t+1

t
θ̂′n(s)ds = 2π, for all t ∈ R,

we have that, again up to subsequence, θ̂n
∗
⇀ θ̂ ∈ BVloc(R) and pointwise (by Helly selection

principle), with θ̂ a non-decreasing function with θ̂(t + 1) − θ̂(t) = 2π for all t ∈ R. We also have

γ̂n
∗
⇀ γ̂ in BVloc(R;R2) where γ̂(t) = (cos(θ̂(t)) , sin(θ̂(t))).

We let σ̂ ∈ Lip(R;R2) be the 1-periodic curve, injective on [0, 1), defined as

σ̂(t) := p+ “m∫ t

0
γ̂(s) ds ∀t ∈ R. (8.1)

Note that “m = ℓ(σ̂). Then clearly σ̂n → σ̂ in W 1,1([0, 1];R2), since

∥σ̂′n − σ̂′∥L1([0,1];R2) =

∫ 1

0
|ℓ(σ̂n)γ̂n(t)− ℓ(σ̂)γ̂(t)|dt

≤ |ℓ(σ̂n)− ℓ(σ̂)|+ ℓ(σ̂)

∫ 1

0
|γ̂n(t)− γ̂(t)|dt→ 0.

(8.2)
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By the continuous embedding W 1,1([0, 1];R2) ⊂ C0([0, 1];R2) (and by 1-periodicity, on R) we also
get σ̂n → σ̂ uniformly on [0, 1]. This, together with property (H3) gives

dH(∂K, σ̂([0, 1])) ≤ dH(∂K, ∂Kn) + dH(σ̂n([0, 1]), σ̂([0, 1])) → 0,

which in turn implies σ̂([0, 1]) = ∂K. The injectivity of σ̂ on [0, 1) follows from expression (8.1),
the fact that “m > 0 and that K is convex with nonempty interior.

Corollary 8.3. Let K ∈ K be convex with nonempty interior. Let q, p be two distinct points on
∂K, and let Ùpq ⊂ ∂K be the relatively open arc with endpoints q and p clockwise oriented. Then
there exists an injective curve σ ∈ Lip([0, 1];R2) such that σ((0, 1)) = Ùpq, σ(0) = q, σ(1) = p, and

σ(t) = q + ℓ(σ)

∫ t

0
γ(s) ds, γ(t) = (cos(θ(t)) , sin(θ(t))) for all t ∈ [0, 1],

with θ a non-decreasing function satisfying θ(1)− θ(0) ≤ 2π.

Proof. Lemma 8.2 provides σ̂ ∈ Lip([0, 1];R2) parametrizing ∂K. Then there are two values t1, t2 ∈
[0, 1], t1 < t2, with q = σ̂(t1) and p = σ̂(t2) so that the existence of σ follows by reparametrizing
the interval [t1, t2], and all the properties follows from the corresponding properties of σ̂.
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