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Abstract

We consider a Plateau problem in codimension 1 in the non-parametric setting, where a
Dirichlet boundary datum is assigned only on part of the boundary 92 of a bounded convex
domain € C R%. Where the Dirichlet datum is not prescribed, we allow a free contact with the
horizontal plane. We show existence of a solution, and prove regularity for the corresponding
area-minimizing surface. We compare these solutions with the classical minimal surfaces of
Meeks and Yau, and show that they are equivalent when the Dirichlet boundary datum is
assigned on at most 2 disjoint arcs of 0f.

Key words: Plateau problem, area functional, minimal surfaces, relaxation, Cartesian currents.

AMS (MOS) 2020 Subject Classification: 49J45, 49Q05, 49Q15, 28A75.

1 Introduction

The Plateau problem is a classical problem in the Calculus of Variations modelling configurations
of soap films obtained by immersing a wire frame into soapy water. Roughly speaking, it consists
in seeking for an area minimizing surface over all surfaces with prescribed boundary a given closed
Jordan curve in space. Over the years several approaches and variants were proposed, each corre-
sponding to a specific choice of the class of admissible surfaces. In the following we list just few
of them and we refer for example to [31] and references therein for a list of the main approaches
available in the literature. One of the first result is due to Weierstrass and Riemann who studied a
non-parametric Plateau problem in R3 obtained by minimizing the area over all cartesian surfaces;
this gave rise to theory of minimal surfaces. Successively Douglas and Radé developed indepen-
dently [23|38] the classical parametric approach for disk type solutions. This method was later
generalized by Jost [33] to study the Plateau problem for surfaces with higher genus (see also the
paper [36] by Meeks and Yau). A more general approach which accounts for a large class of surfaces
was instead proposed by Federer and Fleming [25], based on integral currents. Another remarkable
work is due to Reifenberg [40] which adopts completely different techniques involving the concept
of Cech homology. Relevant is also Almgren’s contribution with three different approaches, one of
these using the notion of varifolds [2]. Among all possible variants one might consider a partial
free boundary version of the Plateau problem where the boundary datum is partially fixed and

*Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Universita di Siena, 53100 Siena, Italy,
and International Centre for Theoretical Physics ICTP, Mathematics Section, 34151 Trieste, Italy. FE-mail: gio-
vanni.bellettini@Qunisi.it

"Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Universitd di Siena, 53100 Siena, Italy.
E-mail: roberta.marziani@unisi.it

Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Universitd di Siena, 53100 Siena, Italy.
E-mail: riccardo.scala@unisi.it



partially free to move within a given surfaces. This type of problem has been exhaustively studied
(see for instance [22]) in the parametric framework but never investigated, to our best knowledge,
with the non-parametric approach. To this aim, in the present paper we will analyse existence and
regularity of solutions of a non-parametric partial free boundary Plateau problem. More precisely,
we look for an area-minimizing surface which can be written as a graph over a bounded open con-
vex set Q C R?, and spanning a Jordan curve 'y = v U o C R? x [0, +00) that is partially fixed.
Namely, « is fixed (Dirichlet condition) and is given by a family {v;}; C 992 x [0,4+00) of n € N
curves each joining distinct pairs of points {(pi,qi)}7, of Q. Whereas o, which represents the
free boundary, is an unknown and consists of (the image of) n curves o1,..., 0, sitting in Q, and
joining the endpoints of 7 in order that vU ¢ forms a Jordan curve I'; in R3. We assume that each
v; is Cartesian, i.e., it can be expressed as the graph of a given nonnegative function ¢ defined
on a corresponding portion of 9. This allows to restrict ourselves to the Cartesian setting, and
to assume that the competitors for the Plateau problem are expressed by graphs of functions v
defined on a suitable subdomain of {2 depending on o; see Figure [l when n = 3. A peculiarity of
our problem is the presence of a free boundary.

The purpose of this paper is twofold. We start addressing the question of existence and regularity
of solutions. Our first main result (Theorems and asserts that there are always solutions
(which can be degenerate, in the sense that they may consist of more than one connected component,
see the example of the catenoid below) and that, under suitable hypotheses on the boundary datum,
there is at least one regular solution continuous up to the boundary. Next we compare our solutions
with solutions to a parametric Plateau problem when n = 1, 2. Roughly speaking, our second main
result (Theorems and shows that any regular solution to our minimization problem is
a minimal embedding in the sense of Meeks and Yau [36], and vice-versa.

Existence and regularity of solutions: We describe here our main results with few details,
referring to Section [2| for the precise description of the mathematical framework. We fix n € N
and 2n distinct points p1,q1, P2, G2, - .-, Pn, gn € 02 in clockwise order, and set g,+1 := p1. The
relatively open arc of 0€) between the points p; and ¢; is noted by QD Q, and the relatively open
arc between ¢; and p;11 by 87Q. We fix a nonnegative continuous function ¢: 9Q — [0, +00)
positive on 9PQ = UL ,0PQ and vanishing on {p;, ¢;}"; U 8°Q, wherej 0°Q := U"_,89Q. For
every i = 1,...,n we denote by ~; the graph of p over 97 and we consider curves o;: [0,1] — Q
with the following properties:

(i) o; is injective, 0;(0) = ¢; and 04(1) = pj+1, for all i = 1,...,n;
(ii) int(E(0;)) Nint(E(0j)) = O for i,j =1,...,n, i # j, where int denotes the interior part.

Note carefully that o; and o; are allowed to partially overlap.
We suppose the graph of ¢ over 97 to be a Lipschitz curve in R? (see Figure|l). Finally we set

n

E(o) == E(0v), (1.1)

i=1
and define the two classes
S = {a = (01,...,0) € (Lip([0, 1]; )" satisfies (i)-(ﬁ)}, (1.2)
Xy = {(0,9) €2 x WH(Q) : 4 =0 ace. in E(0) and ¢ = ¢ on 9°Q}. (1.3)

If (0,7) € X, then the graph of ¢ over Q\ E(0) is a surface spanning the curve I';. We look
for a pair (o,t) minimizing the area of such surfaces, that is, we want to find a solution to the
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Figure 1: An example of the setting (in 3D), when n = 3. On the boundary of the convex set 2
fix the points p;, ¢;; the arc of 9Q joining p; to ¢; is P Q, while the arc joining g; to p;+1 is 9P
(ps := p1). On 9PQ the Dirichlet boundary datum ¢ is imposed, whose graph has been depicted.
The dotted arcs are the free planar curves o; joining ¢; and p;41.

minimum problem

inf /‘ V1+ | V|2 da. (1.4)
O\E(0)

(0-7#])6‘)(%
We then prove the following result, accounting for existence and regularity of solutions to ([1.4]).

Theorem 1.1. Let Q be strictly convex. Then there exists a solution (o,v) € X, to such
that 1 is continuous on §, analytic in Q\ E(c), and QN OE(a) consists of a family of mutually
disjoint analytic curves (joining p; and q; in some order). Moreover each connected component of
E(o) is convewx.

We emphasize that convexity of €2 is necessary (even for the classical non-parametric Plateau
problem with no free boundary, existence of regular solutions is not guaranteed if €2 is not convex).
The proof of existence relies on direct methods; however, since the class &, is not closed under
weak™ convergence in BV, they cannot be applied directly to but rather to a suitable weak
formulation. For this reason we replace &, in with a larger class W of admissible pairs, and
relax accordingly the functional in . We set

Mh:hQWGEvamy¢:0aeme”. (1.5)

The weak formulation consists in looking for solutions to the problem
inf  F(o,v), 1.6
it Fow) (16)

where F is the functional defined by

Flo,h): = /Q VIt VO de+ [D°9|(Q) — |E(0)] + /a -l !
- / VIt VO do + [D*)(@) + / W — | dH, (L.7)
Q\E(0) a0



with D% the singular part of the measure Dy and |E(c0)| the Lebesgue measure of E (o). Observe
that F(o,1) equals the integral in when 1 € WH1(Q) attains the boundary value . The
existence of solutions to is shown in two steps. In the first step we prove existence of minimizers
of F in a smaller class Weony € W of admissible pairs (o,1), where compactness is easier and
allows to make use of the direct method. The class W,ony accounts only for specific geometries
of the free boundary o, namely, each set E(o;) is required to be convex (see for its precise
definition). In the second step we show, by means of a convexification procedure, that every
minimizer (o,1) € Weony is actually a solution to . Eventually we prove that there exists at
least a minimizer (o, 1) € Weony which satisfies certain regularity properties, and in particular is a
solution to ([1.4). The fact that, for minimizers, all connected components of E(o) are convex, is
somehow a consequence of the maximum principle, i.e., every minimal surface is contained in the
convex hull of its boundary. The existence and regularity of a solution to are contained in
Theorems [3.1] and [5.1] respectively, which in turn imply Theorem We stress that Theorems [3.1]
and are actually stated in the more general case of a convex planar domain ). However, if (2
is convex but not strictly convex it may happen that a solution to is “less regular”, in the
sense that ¢ may not achieve the boundary condition (as in the next example), thus failing to be

a solution to (|1.4]).

The example of the catenoid: Our prototypical example is given by (half of) the catenoid.
Consider a cylinder in R3 with basis a circle of radius r and height ¢. Choose Cartesian coordinates
for which the x122-plane contains the cylinder axis, and restrict attention to the half-space {3 > 0}
as in Figure [2) where Q = Ry := (0,¢) x (—r,r) and n = 2. Write

00 = oPQuUNQUIPQU N,

where 0PQ = {0} x (—r,7), Q0 = (0,0) x {r}, 0PQ = {¢} x (=r,r) and 39Q = (0,¢) x {—r}. On
the Dirichlet boundary 0PQ = 9P U 02 Q we prescribe the continuous function ¢ whose graph
consists of the two half-circles vy; and ~». The endpoints of 7; and 5 live on the free boundary plane
(the horizontal plane) and are p; = (0,—7), ¢ = (0,7), and p2 = (¢,r), g2 = (¢, —r), respectively.
The free boundary o consists of two curves o1 and o9 with endpoints ¢1, p2, and gs, p1, respectively,
constrained to stay in Q. The concatenation of v =1 U~ and o forms a Jordan curve

I's=mUo U")/QUO'QCR3. (18)

Therefore we look for an area-minimizer among all Cartesian surfaces S with boundary I', keeping
o free, i.e. we look for a solution to for this specific geometry. In this case a minimizing
sequence (ox,vr) C W of the weak formulation tends (in the sense of Definition [4.3]) to a
minimizer (o,v) € Weony which allows for two different possibilities. If £ is small, o1 and oy remain
disjoint and (o, 1) € X,. In particular the area-minimizing surface S (given by the graph of 9 over
2\ E(0)) is the classical (half) catenoid (namely the intersection between the catenoid and the
half-space {z3 > 0}). If instead ¢ is large, the two curves o; and oy merge, the region Q \ E(0)
collapses (i.e., it reduces to the two segments 0P QUL Q) and ¥ = 0 and therefore (0,v) ¢ X,,. In
particular the surface S is the union of two vertical (half) disks. We emphasize that this example is
classical and, due to the rotational symmetry of the curve I', it can be reduced to a 1-dimensional
problem (see [16,30]).
Let us now quickly describe the second part of the paper.

Comparison with embedded minimal surfaces: We recall that v; is the graph of the map
¢ on 0PQ. We consider sym(y;), namely the graph of —¢ on 97, which is symmetric to ~;
with respect to the plane containing Q. Setting I'; := ~; U sym(+;), this turns out to be a simple
Jordan curve in R3, for all i = 1,...,n. Hence we can consider the classical Plateau problem for




Figure 2: The setting for the catenoid: for ¢ large enough (the basis of the rectangle) the dotted

curves o1 and o9 merge and the (generalized) graph of ¢ reduces to two vertical half-circles on
oPQ = 0P U oL, In this case 9PQ C OE(01) U OE (o).

the curve I' :== U ;I';. In the case n = 1 a solution is an area minimizing disk-type surface S
spanning I' = I';. Whereas in the case n = 2 a solution is either an annulus-type surface spanning
[' =T'; UT'; or the union of two disjoint disks spanning I'y and I'y, respectively. Then the following
result holds true:

Theorem 1.2. Let Q2 be strictly convex. For n € {1,2} let (0,v) € X, be a minimizer as in
Theorem. Let ST be the graph of 1 over Q\ E(c) and let S~ be the symmetric of ST with respect
to the plane containing Q. Then the set S = ST US™ is a solution to the classical Plateau problem
associated to I' = U T';. Vice-versa every solution S to the classical Plateau problem associated
to T = UL\ I; is symmetric with respect to the plane containing Q. Moreover ST := SN {x3 > 0}
is the graph of ¢ over Q\ E(o) for some (0,) € X,, a minimizer as in Theorem [1.1]

The above theorem is rigorously stated in Theorems (n=1) and (n = 2) in the more
general case of 2 convex. In particular, if {2 is convex, we prove that there is a correspondence
between a regular solution to the weak formulation and a solution to the classical Plateau
problem (as in the example of the catenoid). A relevant consequence of this equivalence is that when
the boundary closed curve I' is symmetric with respect to the plane containing 2, and its upper
part is Cartesian, then the same property holds for the corresponding Meeks and Yau solution.

The proof of Theorem [I.2] for n = 1 is not difficult, whereas for n = 2 it is considerably more
complicated, and requires several lemmas: we strongly use the convexity of the domain €2, which
implies that the cylinder 2 x R, whose boundary contains I, is convex, and so the existence results
of Meeks and Yau [36] (see also Theorem are applicable.

The main steps of the proof are the following: if S is a Meeks-Yau annulus-type minimal surface,
we perform a Steiner symmetrization of the 3-dimensional finite perimeter set in 2 X R enclosed
by S to obtain a set (symmetric with respect to the plane containing €2) whose boundary is an
annulus-type minimal surface S spanning I' which is symmetric and such that ST := SN {x3 > 0}
is Cartesian. In turn, using standard results on the case of equality for the perimeter of a set and
its symmetrization, we show that the original surface S was already symmetric with respect to
the plane containing 2, so ST was already Cartesian, and the conclusion of the proof for n = 2 is
achieved. Note that the aim of Theorem [I.2]is not to provide new examples of minimal surfaces;
rather, it enlights (among other things) some interesting qualitative properties of the Meeks-Yau
solutions. Due to the highly nontrivial arguments, we have restricted our analysis to the cases



Figure 3: A possible configuration of the sets E(o;) in the case n = 3. On the (clockwise oriented)
arcs p1qi = 0PQ, paga = 0PQ, and p3gz = 9PQ the function ¢ is prescribed and positive. On
9°Q = q1p> U q2p3 U gsp1 and on E(0) = E(01) U E(02) U E(03) we prescribe ¢ = 0. The curves o;
joining ¢; to p;+1 (with the corresponding set FE(o;)) are indicated. On the dotted segment o1 and
o9 overlaps with opposite orientations. On the dark region Q\ E(0), ¢ is not necessarily null.

n € {1, 2}, since a generalization to the case n > 2 probably requires heavy modifications. Indeed,
some lemmas needed to prove Theorem employ crucially the fact that 9°€Q) consists of just two
connected components. For this reason we leave the case n > 2 for future investigations.

Some motivation: The setting of our problem models a cluster of soap films which are con-
strained to wet a given system of wires v emanating from a given free boundary plane (representing
a table, or a water surface, on which the soap films can freely moves). Our results show that if the
system of wires describes the graphs of functions on 02 as above, then the (Meeks and Yau) so-
lutions of the “parametric” Plateau problem are in fact Cartesian, and coincide with the solutions
obtained by the non-parametric approach. This result can be viewed as a generalization of the
well-known theorem of Radé stating that any minimal disk spanning a Jordan curve in R? whose
projection on a plane is a bijection with a convex Jordan curve is the graph of a function defined
on the plane [39].

However, the scope of this article goes beyond this generalization, and the solutions we look
for are strongly related with the vertical parts of Cartesian currents arising in the analysis of the
relaxation of the non parametric area functional in dimension 2 and codimension 2. We further
comment on this in Section [7| where we go more into details.

Structure of the paper: The paper is organized as follows. In Section [2] we introduce the
setting of the problem in detail. In Section [3| we show how to reduce the minimum problem from
the wider class W to the class Weony (Theorem . Next, in Section 4| we prove the existence of
minimizers in Weony. As a consequence, we gain the existence of minimizers in class W (Corollary
. In Section |5| we study the regularity of minimizers. Specifically, we state and prove Theorem
which, together with Theorem 3.1} generalize Theorem Theorem follows from Theorem
[41] Corollary .2 and Theorem [5.I] Eventually, in Section [6] we compare our solutions with the
classical minimal surfaces spanning I'. Here, as anticipated, we restrict the analysis to n = 1,2,
the case n = 2 essentially giving rise to either a catenoid-type minimal surface, or two disk-type
surfaces spanning I'1 and I's. The main theorems here are Theorems and In Section [7]
we briefly point out our motivations for the present study and some open problems. The paper
concludes with an appendix containing some rather classical results on convex sets and Hausdorff



distance, needed in Section

2 Preliminaries

2.1 Area of the graph of a BV function

Let U C R? be a bounded open set. For any 1 € BV (U) we denote by Dt its distributional
gradient, so that

Dy = VL2 + D%y,
where V1) is the approximate gradient of ¢ and D®i) denotes the singular part of Di). We recall
that the L'-relaxed area functional reads as [29]

A U) ::/U,/H\WP dz + | D*|(U). (2.1)

In what follows we denote by 0* A the reduced boundary of a set of finite perimeter A C R? (see [4]).
For any ¢ € BV(U) we denote by Ry, C U the set of regular points of 1, namely the set of points
x € U which are Lebesgue points for ¢, 1(x) coincides with the Lebesgue value of ¢ at z, and
is approximately differentiable at . We define the subgraph SGy, of ¥ as

SGy = {(r,y) € Ry x R: y <9(z)},

which is a finite perimeter set in U x R. Its reduced boundary in U x R is the generalised graph
Gy = {(z,9(z)): * € Ry} of ¥, which turns out to be 2-rectifiable. If [SGy] € D3(R3) denotes
the integral current given by integration over SG, and 9[SGy] € Da(R?) is its boundary in the
sense of currents, then

[Gy] = A[SGy]L(U x R),

with [Gy] the integer multiplicity 2-current given by integration over G, (suitably oriented; see [27]
for more details).

2.2 Setting of the problem

We fix Q C R? to be an open bounded convex set (strict convexity is not required) which will be
our reference domain. Given two points p,q € 9 in clockwise order, pg stands for the relatively
open arc on Jf) joining p and q.

Let n € N, n > 1, and let {p;}}*; be distinct points on 02 chosen in clockwise order; we set
Pne1:=p1. Foralli=1,...,n let ¢; be a point in p;p; 11 C 9. We set

oPQ = pig, N = Gpir1 fori=1,...,n, (2.2)
and . .
oPa:=JoPa,  o"a:=]on. (2.3)

i=1 i=1
Since 9P and 9YQ are relatively open in 99, so are 9PQ and 9°Q. It follows that O is the
disjoint union
o0 = U {pi,qi} UOPQU Q.
We fix a continuous function ¢ : 9Q — [0, +00) such that
¢ =0 on 8°Q and © >0 on 9PQ, (2.4)

see Figures We will make a further regularity assumption on ¢: we require that the graph
ngapo = {(x,p(z)) : z € IPQ} of p on 9P is a Lipschitz curve in R3, for alli = 1,...,n.

7



Remark 2.1. The hypothesis ¢ > 0 on 0”Q excludes from our analysis the example in Figure |§|
of the Introduction. We will further comment on this later on (see Section ; the presence of
pieces of 9P where ¢ = 0 brings to some additional technical difficulties that we prefer to avoid
here. However, the setting in Figure [6] can be achieved by an approximation argument. Namely,
one considers a suitable regularization ¢, of ¢ on 9P such that ¢, > 0, and then letting ¢ — 0
one obtains a solution to the problem with Dirichlet datum ¢.

Remark 2.2. By definition any o € X satisfies the injectivity property inwhich guarantees
that the sets E(o;) are simply connected (but not necessarily connected). Assumption |(ii)| means
essentially that the curves o; cannot cross transversally each other, but might overlap. Notice that
int(E(0;)) might be empty, the case 89 = ;([0, 1]) being not excluded.

In what follows we will study existence and regularity of solutions to problem (1.6)). A first step
in this direction is to show in Section [3] that

inf F(s,() = inf  F(s,(), 2.5
(s,0)eW ( O (8,0)EWeonv ( O ( )

where F is the functional in ([1.7]) and

Weony = {(U,¢) € Seony X BV(Q) : ¢ =0 ae. in E(J)},
(2.6)
Yconv = {o = (01,...,0,) € X : E(0;) is convex for all i = 1,... ,n}.

Notice that, by definition
Yeonv €2 and  Weony C W. (2.7)

Moreover, we already know that the sets int(E(o;)) might be empty, since from assumption |(i)| in
we cannot exclude that o; overlaps 99Q: Recalling that Q is convex, by and the convexity
of each E(0;), this can happen, only if g;p; 11 is a straight segmentﬂ Afterwards, in Section |4 we
prove the existence of (0,1%) € Weony which is a solution to by showing that there exists a
minimizer to

Flow)= it F(s0). (2.8)

Eventually in Section |5 we prove existence of solutions to ([2.8) which belong to &,.

Remark 2.3. Exploiting the characterization of the boundaries of convex sets given in Corollary
in the Appendix |8, we see that conditions |(i)li(ii)| and the convexity of E(o;) for the curves in
Yconv imply the following:

(P) Let 0 € Xcony; then for all ¢ = 1,...,n there are an injective (non-relabelled) reparametriza-

tion of o; in [0, 1], and a nondecreasing function 6;: [0, 1] — R with 6;(1) — 6;(0) < 2=, such
that, setting 7;(t) := (cos(0;(t)), sin(0;(t))) for all ¢ € [0, 1], we have

oi(t) = q + E(Ji)/o vi(s)ds Yt e|0,1],

where ¢(0;) denotes the length of o;.

'We will show that for a minimizer, o;([0,1]) cannot intersect 8°Q unless 9 is locally a segment (Theorem

51).



3 Reduction from W to W oy

The main result of this section is contained in Theorem [3.1] where we prove the equivalence given
in . The reason being that in minimizing the functional F on W one issue is that the class ¥
in is not closed under uniform convergence, since a uniform limit of elements in ¥ needs not
be formed by injective curves. However, we can always modify a minimizing sequence of curves to
curves in Yoy, since the modification can be done decreasing the energy.

The fact that the infimum of F over W coincides with that over Weopny is due to the following
geometric property: whenever a set E(o;) is not convex, we can always convexify it reducing the
energy. The procedure of convexification is described in Lemmas and Again, the
convexification of E(o;) is still contained in 2 thanks to the convexity of €.

Theorem 3.1 (Reduction from W to Weeny). For every (s,() € W there exists (0,1) € Weony
such that every connected component of E(o) is convex, and

Flo,) < F(s, Q). (3.1)

In particular (2.5) holds true. Further, if the connected components of E(C) are not convex, then
the strict inequality holds in (3.1)).

Remark 3.2. Since the o;’s may overlap, the convexity of each E(c;) does not imply in general
that every connected component of E(c) = U}, E(0;) is convex.

For the reader convenience we split the proof of Theorem into a sequence of intermediate
results: Lemmas and the conclusion. First we need to introduce some notation.

Let (0,79) € W. We fix an extension ¢ € WH1(B) of ¢ on an open ball B D Q, where we recall
¢ is the boundary datum in . Extending ¢ in B\ Q as @, and still denoting by v such an
extension, we can rewrite F(c,1)) as

Flo, ) = A(y; B) — |E(0)] — A(y; B\ Q). (3.2)

Lemma 3.3 (Trace estimate). Let u € BV (R x (0,4+00)) be a nonnegative function with compact
support in an open ball B, C R?. Then

/ u(s) dH(5) < Al By 1 (R x (0, +00)) — B, (3.3)
(Rx{0})NB,
where
Ep, :={z € B, N(R x (0,400)) : u(x) = 0}.
Moreover, inequality (3.3)) is always strict, unless u =10 a.e. on R x (0, +00).

Notice that the function w is defined only on the half-plane R x (0, +00), and in (3.3)) the symbol
u(s) denotes its trace on the line R x {0} (which is integrable).

Proof. We denote by z = (x1,72) € R? the coordinates in R2. Set H' := R x (0,+00), Z =
(B, NH*) x R C R3. Let

Ly :={(z,y) € Z: © € Ry, y € (~u(x),u(x))} C R,
where R, is the set of regular points of u. We have, recalling the notation in Section [2.1
2A(u; B, NH) = A(u; B, " H) + A(—u; B, N HY)
=H*(0*(Z N SGy)) + H*(9*(Z N SG_y)) (3.4)
=H*(ZNd*Ly) + 2|Eg,|.



Write B, N (R x {0}) = (a,b) x {0}. Then a slicing argument of the current [G,] yields
b
HA(ZNO*Ly) > / HYZ N {z) =t} NO*L,)dt

b
- / HY(Z A {21 = £} 0 (spt([Gu] — [G—u])))t (3.5)

b
> / 2u(t,0)dt = 2/ u(s) dH(s),
a (Rx{0})NB;

where the last inequality follows from the following fact: If we denote by [G,], the slice of the
current [G,] on {z1 = t}, then

OlGuly = Stt0,u(t,0) — Otsr0)  forae. t € (a,b),

where s; > 0 is such that (¢, s;) = B, N ({t} x R"), and in writing d(, s, o) we are using that u has
compact support in B,.. This can be seen, for instance, by approximating®| v with a sequence of
smooth functions. Therefore

8([[Qu]}t — [[Q_u]]t) = 5(t,0,u(t,0)) — (5(,5,07,”(,&70)) for a.e. t € (a, b)

This justifies the last inequality in and, using , the proof is achieved. Notice that, from
the last formula, it follows that the last inequality in is strict if [G,], — [G—u]; is not the
straight segment connecting (¢, 0, u(t,0)) and (¢,0, —u(t,0)) on a set of positive H!-measure. This
implies that inequality in is an equality if and only if u =0 a.e. on HT. O

We now turn to two technical lemmas needed to prove Theorem We introduce a class of
sets whose boundaries are regular enough to support the trace of a BV function. Precisely we
say that an open subset of R? is piecewise Lipschitz if it can be written as the union of a finite
family of (not necessarily disjoint) Lipschitz open sets. Using that, for a Lipschitz set £ C R?, the
symmetric difference (0* E)AOFE has null H! measure, one can seeE| that the same property holds
also for a piecewise Lipschitz set. In particular, by if V. CcC U is a piecewise Lipschitz subset
of a bounded open set U C R?, then

AW, V) = AW, V) + / |, (3.6)

ov
where 1 (respectively 1~) denotes the trace of ¢V (respectively ¥ (U \ V)) on 9V.

Lemma 3.4 (Reduction of energy, I). For N > 1 let F,..., Fx be nonempty connected subsets
of Q, each F; being the closure of a piecewise Lipschitz set, with F; N F; =0 fori,je{l,...,N},
i #j. Let ¢ € BV (B) satisfy

N
=0 ae in G::UFi and =9 a.e in B\Q. (3.7)

=1

2With respect to the strict convergence of BV (B, N (R x {0})), which guarantees the approximation also of the
trace of u on 9(B, N (R x {0})).

3The conclusion H!((6*V)AJV) = 0 for a piecewise Lipschitz set V = U, A;, with A; Lipschitz open sets, can
be proven by induction on m, using also the following fact: If By and Bz are open sets with Hl((a*Bi)AﬁBi) =0 for
i = 1,2, then B = B; U By satisfies H'((0* B)AOB) = 0. This follows by the identity (B U B2) = ((dB1) \ Bz) U
((0B2) \ B1) U ((0B1) N 0B2), which shows that 9(B1 U Bz) is a H'-measurable subset of B1 U 8 Bs.
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Then, for any i € {1,..., N},
A(W§; B) — |G| = A7 B\ Q) < A(y; B) — |G| — A(y; B\ Q), (3.8)

where

G} = U F;jUconv(F;) and vy :=
J#
Further, inequality in (3.8)) is strict unless ¢ = ¢} a.e..

{0 in conv(F;)

1 otherwise.

Proof. Fix i € {1,...,N}. By the convexity of ), we have 1) = ¥ in B\ Q, hence it suffices to
show that
AW} B) — |GY| < A(¢; B) — |G

We start by observing that we may assume F; to be simply connected. Indeed, if not, we can
replace it with the set obtained by filling the holes of F;, and by setting 1 equal to zero in the
holesﬂ This procedure reduces the energy since F; is piecewise Lipschitz, and any hole H of it has
the property that the external trace of ¢)L_(B \ H) on OH vanishes.

We have that (Oconv(F;)) \ OF; is a countable union of segments. We will next modify v by
iterating at most countably many operations, setting » = 0 in the region between each of these
segments and OF;.

Step 1: Base case. Let [ be one of such segments, and U be the open region enclosed between
OF; and [. We define ¢/ € BV (Q) as

. {o in U

1) otherwise.

We claim that
A(W'; B) = |G'| < A(y; B) - |G, (3.10)

with strict inequality unless ¢/’ = 1) a.e., where G’ := G UU. To prove the claim we introduce the
sets
H:=int(F;UU), V.= Uﬂ(Uj?giFj).

Note that H is a piecewise Lipschitz set. By construction
G| = [H| + | Ujps Fj| = V],
and (3.10) will follow if we show that
AW'; B) — [H| < A(¢; B) = | U; Fj| + | Ujs Fj| = [V = A(¢s B) = [F; U V],

with strict inequality unless ¢/ = ¢ a.e. in Q. Since |H| = |F; U V| + |U \ V|, this can also be
written as

A(W';B) < A(y; B) + U\ V].

In turn A(¢'; B) = A(W';U) + A(Y'; B\ U) (and similarly for v), so we have reduced ourselves
with proving

AWSU) < A U) + U\ V. (3.11)

If H is a hole of F; and it happens that F; C H for some j # 4, we redefine F; as the union of it with H, and set
F; = (). This procedure does not invalidate the following argument.
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In view of the definition of ¢/’ which is zero in U, we hav AW U) = [,|¢T|dH+|U| (¥ denoting
the trace of ¥ L(B \ U) on the segment [) implying that (3.11]) is equivalent to

/l WK < AT — V.

Finally, if ¢ denotes the trace of ¥ LU on [, we write A(¢;U) = A(y; U \ 1) + [, [v+ — Yy |dH!,
and the expression above is equivalent to

/l Wt < /l ot — i+ AT\ 1) — V. (3.12)

We now prove (3.12)). Fix a Cartesian coordinate system (z1,z2) so that [ belongs to the xj-axis
and U belongs to the half-plane {2 > 0}. Let u be an extension of 9 in R x (0, 400) which vanishes
outside U. Lemma [3.3] applied to u with the ball B, = B, implies

/|¢U]d7-[1 _ / wdHY < A B (R x (0, 400))) — | Ep| < AT\ 1) — V.
l {IQZO}OB

Here the last inequality follows by recalling that v (and thus u) vanishes on V. From this and the

inequality [; [0 |dH! < [ |vT —yldH! + [, [u|dH! the proof of is achieved, so that
follows. Notice that in applying Lemma the inequality holds strict when 7’ does not coincide
with ¢ a.e..

Step 2: Iterative case. We set d(conv(F;)) \ OF; = U2 l; with [; mutually disjoint segments.
For every h > 1 we define the pair (¢, G},) as follows:

e ifh=1

0 inU _
1 = U . and G1:=GUU,
1) otherwise,

where U is the open region enclosed between 0F; and ;. We also define Hy := int(F; U Uy);
e if h>2

0 in U, —
Py = mYn . and Gy :=Gp_1UUy,
Yp_1 otherwise,

where Uy, is the open region enclosed between 0Hj,_1 and I, and Hj := int(Hp_q U Up).

By construction each Hj, is simply connected and piecewise Lipschitz, Hy C Hj41, G, C Gpp1 CQ
for every h > 1, and moreover

pm |Hp| = [eonv(Ey)],  lim |Gyl = |G, (3.13)

where G := U2 |G}, = Uj Fj U conv(F;). For any h > 2 we apply step 1, and after h iterations
we get
A(bn; B) = |Gl < A(Yn-15B) = |Gpa| < - < A(1; B) — |G1| < A(y; B) — |G| (3.14)
Tn particular,
[Dynl(B) < A(yon; B) < A(y; B) + |Gh \ G| < A(¥; B) + [\ G,

SWe use the precise integral formula (3.6) thanks to the boundary regularity of U, where we have U \ I C 9F;.
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for all h > 1, and then we easily see that, up to a subsequence, ¥y, — Y* in BV (B), where ¢ is
defined as in (3.9). Now the lower semicontinuity of A(-; B) yields

lim inf A(ypn, B) 2 A(47; B) - (3.15)

Finally, gathering together (3.13))-(3.15)) we infer
A7 B) — |G| < liminf A(¢y; B) — lim[Gp| < A(y; B) — |G
h—+00 h—+00

Again we have strict inequality unless ¥, = ¢ _1 for all h a.e. in 2. This concludes the proof. [

Lemma 3.5 (Reduction of energy, II). Let N > 1, Fy,...,Fn,G and v be as in Lemma .

Then there exist n € {1,...,N} and mutually disjoint closed convexr sets Fy,...,Fy C Q with
nonempty interior such that

Gc|JF=0¢", (3.16)
i=1
and B B
A" B) — |G*| = A(p*; B\ Q) < A(Y; B) — |G| — A(¥; B\ Q), (3.17)
where
« _JO inG¥
V= {¢ otherwise . (3.18)

Finally, inequality in (3.17)) is strict unless 1 = ¢¥* a.e..

Proof. Base case: If N = 1 we set Fy := conv(Fy) = G* and the thesis follows by Lemma
Suppose N > 1. We take the sets

N
conv(Fy), Fy, ..., Fy and Gf:=|JF Uconv(F), (3.19)
=2

and let
. {0 in G%

1) otherwise.
Then by Lemma
AW B) — |G| — A(Y1; B\ Q) < A(y; B) — |G| = A(y; B\ Q) (3.20)

with strict inequality unless ¢ = a.e..
Tterative case: Let m, k, h be natural numbers such that 1 <k <m < N,1<h<2N —1, and
let Fy p, ...,y n be closed subsets of 2 with nonempty interior that satisfy the following property:

(1) Fip,...,Fyp are convex;
(2) FEnnEjp=0foralli,j#k, i#j,i,j=1,...,m.
Notice that for h = 2 and m = N the sets
Fio:=conv(F1), Fao:=Fy, ..., Fyo:=Fy,

satisfy with & = 1 by the base case (so the iterative step can be applied to these sets).

We then set Iy == {1 <i<m,i#k: F;,NFyp # O} If I, = © and k = m we are done,
otherwise we construct a new family of sets using the following algorithm, distinguishing the two
cases (a) and (b):

13



(a) if I, = © and k < m we define the sets

F; fori #£#k+1
Fi,h+13:{ bl orizk+ fori=1,...,m,

conv(Fpy1p) fori=k+1,
and Gy == U Fj pya;
(b) if I, # O, up to relabelling the indices, we may assume that
Iip = {kn1 <i <kpa}\{k},
for some kp 1 # kpo with 1 < kp 1 <k < kp2 < m, so that
{4, o omI\{kI\ Lk ={1<i<kp1 —1}U{kp2+1<i<m}.

Note that if kj, ; = 1 then {1 <i <kp; — 1} = O, and similarly if kj 2 = m then {kp2+1 <
i <m}=0. Then we set

Fz’,h fOI‘Z'Zl,...,khJ—l
Fipyq = COHV(Fkyh U (UjeIthj,h)) for i = kn1
Fivkpo—knh fori=rkp1+1,....m—kpa+kna,

—kp, o+k
_ inl h2 R

* .
and Gh+1 : i,h+1-

In both cases (a) and (b) a direct check shows that the produced sets satisfy properties (1) and (2)
with m, k+1, h+1 and m — kp 2 + kp 1, kn,1, h + 1 respectively.
In both cases we define also the function

: *
0 in Gh+1

Yy otherwise.

w;*m = {

Then, by induction, for all 1 < h < 2N — 1 we use Lemma and in view of (3.20) we infer

AWhi13 B) = [Ghyal — AWj 15 B\ Q) SA(Yf; B) — |GR — Ay B\ Q)
<A(¢; B) — |G| = A(¢; B\ Q)
with strict inequality unless ¢}, = 4 for all h a.e. in Q.
Conclusion. If N = 1 it is sufficient to apply the base case. If instead N > 1 after a finite

number A* < 2N — 1 of iterations we obtain a collections of mutually disjoint and closed convex
sets with nonempty interiors Fy := Fy p, ..., Fy := Fj j» with 1 <n < N such that

GCcULF=G*,

and
AW B) — |G*| = A(¢*: B\ Q) < A(¢; B) - |G| — A(y; B\ Q)
with
v % _J0 inG*
V= e = {¢ otherwise,
with strict inequality unless ¢¥* = ¢ a.e.. O
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Proof of Theorem[3.1. We start by observing that (2.5]) readily follows from (3.1). Indeed, this
implies
inf Flo,¢) < inf F(o,v).
(0,%)EWeonv (0.9) < (op)ew (@.9)

Whereas from (22.7)) it follows

inf F(o,) < inf  F(o,7).

(0,¢)€W (Uﬂp)ewconv

Thus, we only need to show (3.1). Take a pair (7,%) € W; we suitably modify (7,%) into a new
pair (0,1) € Weony such that every connected component of E(o) is convex and

Flo) < F(a,9),

and this will conclude the proof. Once again we notice that strict inequality holds unless ¢ = 1)
a.e..

Let E(51),...,E(dy,) be the closed sets with mutually disjoint interiors corresponding to o (as
in before (L.2)) and let G := U E(5;). Let Fi,...,Fy be the (closure of the) connected
components Ef G, N < n, which are piecewise Lipschitz. By Lemma there exist 1 < n < N
and Fi,...,F; C Q mutually disjoint closed and convex with nonempty interior satisfying ,
and . Therefore, by construction, for every ¢ = 1,...,n, ¢; and p;41 belong to F} for a
unique j € {1,...,n}. For every j = 1,...,n we denote by

9515 Pj1+15 - - - 7anj 7pjnj+1a

the ones that belong to F’J Then we conclude by taking (o,%) € Weony with o := (01, ...,0,) and

Qi Pjp+1 for k=1,...,n;-1
0, ([0,1]) = oF. i 50 Q) nj—l____ P k= n
J \ Uh:l Jn U Uh:l 45, Pjp+1 or = Ny,
for every j =1,...,n and ¢ := ¢*. O

4 Existence of minimizers of F in W,y

The main result of this section reads as follows.

Theorem 4.1 (Existence of a minimizer of F in Weony). Let F and Weony be as in (L.7)) and
(2.6) respectively. Then there is (,1) € Weony Such that

Flow) = min  F(s.0) (4.1)

Moreover, every minimizer (o,v) of F in Weony is such that every connected component of E(o)
18 CcOnver.

As a direct consequence of Theorem and Theorem (4.1)we have:

Corollary 4.2. Let (0,v) € Weony be a minimizer as in Theorem . Then (o,v) is also a
minimizer of F in the class W. Moreover, every minimizer (o,v) of F in W is such that every
connected component of E(o) is convex.

We prove Theorem using the direct method. To this aim we need to introduce a notion of
convergence in Weeopy -
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Definition 4.3 (Convergence in Weony). We say that the sequence ((0)g, Vi) € Weonv, with
(0)k = ((01)ks - - - (0n)k), converges to (,1) € Weony if:

(a) ((0i)k)s[[0,1]] converges to (0;)3[[0,1]] in the sense of currents in D1(R?), for alli =1,...,n;

(b) (¥r)r converges to 1 weakly* in BV (), i.e., 1y — 1 in LY () and D1y, — D1 weakly* in

Q) as measures as k — +oo.

In Definition |4.3| (0;)4[[0, 1]] denotes the push-forward by o; of the 1-current given by integration
on the segment [0, 1], standardly oriented (see [34] for details).

In the next lemma we show a compactness property of Weony. In particular given (o) C
Yeonv With equibounded energies, for all ¢ = 1,...,n, up to subsequences, a (not-relabelled)
reparametrization of (0;); converges uniformly to some &;, and there is a parametrization o; of
the support of (7;)4[[0,1]] such that o = (o1,...,0n) € Yconv. This, together with a uniform
bound on the lengths of (0;)g, implies the convergence of the push-forwards as currents. Notice
that (0;)3[[0, 1]] is invariant under reparametrization of o;.

Lemma 4.4 (Compactness of W,ony). Let ((a)k, wk)k C Weony be a sequence with
supy, F((0)g, i) < +o0o. Then ((U)k, wk)k admits a subsequence converging to an element of Weony -

Proof. We divide the proof in two steps.

Step 1: Compactness of (o). For simplicity we use the notation oy, = (0;)x for every k € N and
i € {1,...,n}. By condition (P) in Remark for every k € N and 7 € {1,...,n} there exists a
non-decreasing function 6 : [0,1] — R, 6;1(1) — 0;1(0) < 27, such that, for a reparametrization

of Ok, .

oi(t) = g +L(oix) | vir(s)ds, vir(t) := (cosOi(t), sin O (t)) Vt € [0,1],

S~

and with (1) = pi+1. We observe that

1
o) = / ot (1)|dt < H' (09), (4.2)
0
since the orthogonal projection Ilg;: 9\ 99Q — E(oi) is a contraction and H(9Q \ 8YQ) <

H1(09). Hence, up to a (not relabelled) subsequence, (o) — m; € RT as k — 4-o00. The number
m; is positive since, for all k and i, we have £(os) > |g; — pi+1| > 0. Moreover

1 1
| 16icolde = [ olyierar < 2
0 0
hence, up to a not relabelled subsequence, 85 — 6; in BV (0,1) and 6; is non-decreasing with
0;(1) — 6;(0) < 2m. Furthermore v, — 7; in BV((0,1); R?) with ~;(t) = (cos(8;(t)), sin(8;(t))).
Thus, arguing as in (8.2)) and using (4.2), we get 5 — ; in WH1([0, 1];R?), where

oi(t) =q + m,-/o vi(s)ds = ¢q; + £(0) /0 vi(s)ds. (4.3)

Thus limg_s o 0% = 0; uniformly, hence we also conclude that &; takes values in Q. Since by

dy(E(oi), E(oimn)) = du(0E(oik), 0E(0in)) < |0 — oinll=
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for all h, k > 0, the uniform convergence of (7;;) implies that (E(o;))x is a Cauchy sequence with
respect to the Hausdorfl distance. Hence, by there is K; € K such that dg(E (o), K;) — 0,
and Kj; is also convex by

We now show that o; is injective, unless a pathological case that might happen only if 8?(2 is
a straight Segmentﬁ Notice that, if G?Q is not straight, K; must have nonempty interior, since it
contains the region enclosed between g;p;+1 and 99).

First observe that 5;(]0,1]) € OK;. Assume by contradiction that o;(t1) = ;(t2) for some
t1,ty € [0,1], t1 < to. Since Kj; is convex, the curve g;L[t1,t2] is closed and its image is contained
in 0K;. If o;L_[t1,t2] is constant and equals to 7;(t1) we get a contradiction with and the
fact that |y;| = 1 a.e. in [t1,t2]. Hence there is a point t3 € (t1,t2) such that 7;(t3) # 0;(t1).
Let ¢%; and ¢5; denote the half-lines in R? with endpoint &;x(t3) and passing through & (t1) and
o:k(t2), respectively. Since E(oy) is convex, we infer that ;% ([0,¢1]) U 7% ([t2, 1]) is contained in
the closed angular sector of R? enclosed between (%, and ¢5;. Since (G;,) converges uniformly to
gi, we have 0;,(t;) — 05(t;) for j =1,2,3, and 0;(t3) # 04(t1) = 04(t2), so we easily conclude that
0k ([0, t1]) UTik([t2, 1]) must be contained in the line passing through &;(¢1) = 0;(t2) and 7;(t3). As
a consequence also K;, being convex, is a segment contained in such a line, and has empty interior.
Hence this leads to a contradiction if 8?9 is not a straight segment. In this case we set o; := ;.

If instead O?Q is a straight segment, it might happen that the image of 7; is contained in a line,
which must be the one passing through ¢; and p;;1. Since uniform convergence of (7;;) and the fact
that (o) — £(0;) imply that (0):[[0,1]] = (o ):[[0,1]] — (7:)4[[0,1]] as currents, and since
O(oir)s[[0,1]] = 6p,,, — dg; for all k, also 0(;)3[[0, 1]] = dp,,, — d;- We conclude that (7;)3[[0, 1]]
is the integration over the segment ¢;p;+1, and hence there is a Lipschitz injective curve o; which
parametrizes ¢;p;+1 such that

(03)3[[0,1]] = (@)3[[0,1]],  and (o )[[0, 1]] = (o4)4[[0, 1]]-

We next show that E(o;) is convex for any i € {1,...,n}. If 0; parametrizes the segment g;p;11
then F(o;) is that segment, and there is nothing to prove. Assume then that ¢;([0,1]) # Gpit1.
As shown above, the uniform limit o; of (G) is injective. We will show that K; = E(0;). Indeed,
the uniform convergence of (c;) yields

lim dH(aE(O'Zk),aE(O'l)) =0.

k—+o0

Fromwe get
dp(0K;,0E(0;)) < dg(0E (o), 0K;) + dug(0E (o), 0E(0;))
:dH(E(O'Z'k),KZ‘) + dH(aE(O'lk),aE(O'z)) —0 as k— +oo.

Thus 0K; = 0E(0;), so K; = E(0;) and the convexity is shown. This implies 0 € Y¢ony, and since
(oir)2[[0,1]] — (4)4[[0,1]] as currents, the compactness of (o) is achieved.

Step 2: Compactness of (¢,). Setting Fj, = U} ; E(0;;) we have
| DY () < A(r; Q) < F((0)g, ¥r) + | Fi| < C < +00 Yk >0,

where we used that |Fj,| < |Q|. Therefore, up to a subsequence, ¢, — 1 in BV (Q) and almost
everywhere in Q as k — +o00. To conclude it remains to show that ¢ = 0 in E(0) = U;E(0;). If
for some i € {1,...,n} it happens that 8?9 is straight and o; is the straight segment g;p;11, then

5This case corresponds to E(o;r) a possibly curvilinear triangle with vertices p;, gi+1 and a third point rp € Q
converging to a point r € 92 which is on the same line as p;, gi+1, but outside the segment p;Gi+1.-
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E(0;) has empty interior, and so there is nothing to prove. Otherwise, for the other indeces, by
limg 400 A (E(oix), E(04)) = 0, property ((H6)| yields
if z€int(E(o;)) then z € E(oy) for k sufficiently large,

and hence, since limg_, ¥ = ¥ a.e. in ), we infer ¢y = 0 a.e. in F(0). O

Remark 4.5. The previous proof shows a slightly stronger result: under the assumption of Lemma

for every ¢ = 1,...,n, we can find o; with 0 = (01,...,0,) € Zconv, 0; € Lip([0,1];Q2), and
reparametrizations oy of o, such that

(a\i)ﬁ[[[07 1“] = (Ui)ﬁ[[[ov 1]]]7
ok — 0; uniformly on [0, 1].
Moreover (o;1)3[[0, 1]] converges to (0;)3[[0, 1] in the sense of currents in Dy (R?). Finally F(o;) =
E(G;x) converges to E(c;) = E(0;) in (K,dp), and 5; = o; unless 89 is a straight segment. In the
latter case it might happen that &; is not injective, but this happens only if 7;(]0, 1]) is a segment,
o; is a parametrization of g;pir1, and E(0;) = Gipit1-

Remark 4.6. We have also shown that if () converges uniformly to o; € Yeony for some i =
1,...,n then

k—+o00
Lemma 4.7 (Lower semicontinuity of F in Wy ). Let ((U)k,wk)k C Weonv be a sequence
converging to (0,v) € Weony. Then

Flo, ) < liminf (o), ).

Proof. By a standard argument [29], the functional
v BV AW )+ [ [0 - gl
o0

is L' (2)-lower semicontinuous. We now show that the map o € Scony + |F(0)| is continuous. Let
(0)k C Zeconvs 0 € Zcony, and suppose that ((0;)x)3[[0, 1] converges to (a;):[[0,1]] in D;(R?) for
alli=1,...,n as k = +oo. Set F}, := U {E((0;)x) and recall that E(c) = U}, E(0;). Thanks
to Remark we can always assume that there are reparametrizations o;;, of o, such that oy
converges uniformly to &; with (c;)4[[0, 1]] = (0:)4[[0,1]]. Let us suppose first that o; is injective
forall i = 1,...,n, and so o; = 0;. By Remark limp 400 da(E((04)), E(0;)) = 0 for all
i=1,...,n and therefore dy (Fy, E(c)) =: e — 0T.
By invoking we have E(o) C (Fg)Z . Moreover, since dy((Fi)Z , E(0)) < 2, we get
()%, € (B(0))5,. and so
E(0)] < [(Fr)d,] < [(E(0))5.

2ep1°
This implies
limsup |Fy| < limsup |[(F},)Z,| < [E(0)|.
k——+o0 k——+o0

The converse inequality is a consequence of Fatou’s Lemma and |(H6)}, indeed

k—4o00

|E(0)] < / liminf xp, (z) dz < liminf/ XF, (z) de = liminf | Fy|.
Q k—+oo Q k—+o00
If instead &; is not injective for some i, we have 7; € Lip([0, 1]; Q) with (5;)4[[0, 1]] = (04)4[[0, 1]],
and we are in the case that E(5;) has empty interior (see Remark [1.5). Thus E(oy) = E(0:)
converges to a segment K; 2 E(o0;) in the Hausdorff distance. Since |K;| = 0, the thesis of the

lemma follows along the same argument above replacing the symbol E(o;) by K;. O

18



Proof of Theorem[/.1 By Lemmal[{.4and Lemmal[4.7]we can apply the direct method and conclude
that there exists (0,1) € Weony such that (4.1)) holds. Moreover, since Weony € W by Theorem

(3.1) we can choose (o,1) such that every connected component of F(o) is convex.
]

5 Regularity of minimizers

In this section we investigate regularity properties of minimizers of 7. We recall that our boundary
datum ¢ satisfies the conditions in (2.4), and $ € W1!(B) denotes a fixed extension of ¢ in the
open ball B D €. The main result here reads as follows.

Theorem 5.1 (Structure of minimizers). Every minimizer (o,%) € Weony of F in W, namely

Flo,) = (Srgiélw F(s,0),

satisfies the following properties:
1. Each connected component of E(o) is conve;
2. 1 is positive and real analytic in Q\ E(0);

3. If 0PQ is not a segment for some i = 1,...,n, then OE(c) NOPQ = @, 1 is continuous up
to @DQ, and Y = ¢ on 8ZDQ;

4. If OPQ is a segment for some i = 1,...,n, then either OE(c) NOPQ = @ or OE(c) NOPQ =
OPQ. In the first case 1 is continuous up to OPQ and 1 = ¢ on OPQ.

Moreover, there is a minimizer (,1) € Weony Such that

5. QN OE(o) consists of a finite number of disjoint analytic curves, and v is continuous and

null on OE (o) \ 9P Q.

Remark 5.2. If (9Z-DQ is a straight segment for some ¢ = 1,...,n, nothing ensures that dE (o) N
0PQ = (. However, if this intersection is nonempty, then necessarily 9°Q C dF(c). The proto-
typical example is given by the classical catenoid, as explained in the Introduction (see Figure
where, if the basis of the rectangle (2 = Ry is large enough, a solution v is identically zero, and
0PQ C OE(0). This also explains why in point [5.| of Theorem [5.1| we write dE (o) \ 9PQ.

A consequence of T heorem is that a regular solution ¥ belongs to W11(Q) and, if Q2 is strictly
convex, it also attains the boundary values. In particular Theorem implies Theorem
For the reader convenience we divide the proof in a number of steps.

Lemma 5.3. Every minimizer (o,v) € Weony of F in W satisﬁes and 1 = o on OPQ\OE (o).

Proof. Ttem [1.|follows by Theorem By [29, Theorem 14.13] we also have that v is real analytic
in Q\ E(o). Together with the strong maximum principle [29, Theorem C.4], this implies that, in
Q\ E(0), either 1) > 0 or ¢» = 0. On the other hand, since {2 is convex we can apply |29, Theorem
15.9] and get that 1 is continuous up to 9”Q \ dF(o); in particular

Yv=¢>0 ondPQ\IE(0), (5.1)

which in turn implies ¢ > 0 in Q \ E(o) . O
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Lemma 5.4. Let I' C R? be a rectifiable, simple, closed and non-planar curve satisfying the fol-
lowing properties:

(1) T € O(F x R) for some closed bounded convex set F C R? with nonempty interior;
(2) T is symmetric with respect to the horizontal plane R? x {0};

(3) There are a nonempty relatively open arc pg C OF with endpoints p and q, and f € C°(pgq U
{p,q};]0,+00)) such that f is positive in pq and

e >0} = Gr U ({p} x [0, F())) U ({g} x [0, F(9)])- (5:2)

Let S be a solution to the classical Plateau problem for T, i.e., a disk-type surface minimizing area
among all disk-type surfaces spanning I'. Then:

(1) Bpg:=SN(R2x {0}) C F is a simple analytic curve joining p and q with By, NOF = {p,q};
(2') S is symmetric with respect to R? x {0};

(3) The surface ST := SN {x3 > 0} is the graph of a function ¥ € WL U, ) NCY Uy \ {p,q}),
where Up 4 C int(F) is the open region enclosed between pq and B, 4. Moreover v is analytic
inUpgq, and if f(p) =0 (resp. f(q) =0) then 1 is also continuous at p (resp. at q);

(4") The curve By 4 is contained in the closed convex hull of T', and F \ Uy 4 is convez.

Remark 5.5. If the function f in is such that f(p) = f(q) = 0 then (5.2)) becomes I' N {z3 >
0} = Gy. For later convenience we prove Lemma under the more general assumption

Proof. Even though several arguments are standard, we give the proof for completeness.

Step 1: Bpq s a simple analytic curve joining p and q.
Let By C R? be the open unit disk centred at the origin. Let ® = (&1, ®9, ®3): B; - S CR3>be a
parametrization of S with ®(9B;) =T, that is harmonic, conformal, and therefore analytic in By,
continuous up to dB;. Further, by ® is an embedding (see [36] and also [22, page 343]).
By assumption we have {w € OB;1: ®3(w) = 0} = {®~1(p,0),® 1(q,0)}, so that ®3 changes
sign only twice on 0B;. By applying Rado’s lemma (see e.g. |22, Lemma 2, page 295]) to the
harmonic function ®3 we deduce that V®3 # 0 in B; and in particular {w € B;: ®3(w) > 0} and
{w € By: ®3(w) < 0} are connected, and {w € B;: ®3(w) = 0} is a simple smooth curve in By
joining ®~!(p,0) and ®~1(¢,0). By the injectivity of ® we have that SN (R? x {0}) = ®({w €
By : ®3(w) = 0}) is a simple analytic curve joining p and g.

Step 2: S is symmetric with respect to the horizontal plane R? x {0}.
By step 1 the sets {w € B;: ®3(w) > 0} and {w € By: ®3(w) < 0} are simply connected and the
two surfaces

St :=®({w € By: ®3(w) >0}), S :=®({w e By: ®3(w) <0})
have the topology of the disk. We assume without loss of generality that H?(ST) < H2(S™). Let
Sym(St) i= {(a', 23): (2, —w3) € ST}, §:= ST USym(ST).
Then S is a symmetric surface of disk-type with 98 =T and

H2(S) = 2H2(ST) < H2(SH) + H2(S7) = HA(S).
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In particular Sisa symmetric solution to the Plateau problem for I'. Further S = S on a relatively
open subset of S; hence, since they are real analytic surfaces, they must coincide, S = S.

Step 3: ST is the graph of a function ¢ € WL U, ) NCo(Up 4 \ {p,q})-
To show this it is enough to check the validity of the following

Claim: Every vertical plane II is tangent to int(S) at most at one point.

We prove the claim arguing by contradiction as in [8, page 97], that is we assume there is a
vertical plane II tangent to int(S) at 2’ and a” with 2’ # 2”. We define the linear map d,(z) :=
(z —2') - v with v a unit normal to II, so that clearly Il = {z € R3: d,(z) = 0}. Since F is convex,
IIN(OF x {0}) contains at most two points. By properties|(1)H(3)|each of these points is either the
projection on the horizontal plane of one or two points of IINT", or the projection on the horizontal
plane of one of the vertical segments {p} x [0, f(p)] and {q} x [0, f(q)]. Hence IINT contains either:
(a) at most two points and a segment, (b) two segments, (c) four points. Without loss of generality
we restrict our analysis to the last case (the others are simpler to treat), namely we assume that
there are four (clockwise ordered) points wy,...,ws € OB; such that INT = {®(wy),...,P(w4)},
that is dy o ®(w;) = 0 for ¢ = 1,...,4. We may also assume d, o & > 0 on wLws U wawy and
d, o ® < 0 on wowz U waw;. Here Ww] denotes the relatively open arc in 0B joining w; and w;
for i,5 € {1,...,4}. Notice that the function d, o ®: B; — R is harmonic in Bj, continuous up to
0B; and vanishes at wq, ..., ws; hence, by classical arguments [37, Section 437] we see that the set
{w € By: d, o® = 0}, in a neighbourhood of w’ := ®~1(2') (respectively w” := ®~1(z")), is the
union of a number m > 2 of analytic curves crossing at w’ (respectively w”). Thus near w’ and
w” the set {w € By: d, o ®(w) > 0} is the union of at least two disjoint open regions Aj 1, A1
and Ag 1, Az respectively such that Ay1 N Ay = {w'}, A21 N Ags = {w”}. Moreover each A, ;
belongs either to the connected component of {w € B;: d, o ®(w) > 0} containing wyws, or to the
one containing w3wy. Up to relabelling the indices we have two possibilities.

Case 1: Ay 1 and A; 2 belong to the same connected component containing wiws. Then we can find two
simple curves a1, az contained in A; 1 and A; 2 respectively, that connect w’ to a point in wyws;
and such that the region enclosed by the curve a; U ap intersects {w € By: d, o ®(w) < 0}.
Since d, o ® > 0 on a1 U @y by the maximum principle we have a contradiction.

Case 2: Ay ; and Ay ;1 belong to the connected component containing wyws while A; 5 and As 2 belong
to the connected component containing wsws. Then we can find four simple curves «; ;
(with ¢, j = 1, 2) contained respectively in A; ;, such that a; 1 (respectively as 1) connects w’
(respectively w”) to a point in wywsz and aq 2 (respectively oz 2) connects w’ (respectively w”)
to wzwy. Then the region enclosed by the curve U; ja ; intersects {w € By: d, o ®(w) < 0},
while d, o ® > 0 on U; ja; ;, which again by the maximum principle gives a contradiction.

Thus the claim follows. ~ Now, by step 2, the claim readily implies that int(ST) has no points
with vertical tangent plane and hence int(S™) is the graph of a function ¢ defined on U, ,. Since
QZ must minimize (locally) the area functional, it is also real analytic in U, 4. Moreover, the claim
also implies that {/; must vanish on (), and that it must attain the boundary values on pq. If f
vanishes on p or ¢, then also the continuity of {bv at these points is achieved.

Step 4: The curve B, 4 is contained in the closed convex hull of ', and the set F'\ Uy 4 is convex.
Let 7(I') C OF be the projection of I' onto the plane R? x {0}. By [22, Theorem 3, pag. 343] the
relative interior of S is strictly contained in the convex hull of I', thus in particular the curve 3, 4
(respectively Bp 4\ {p, ¢}) is contained (respectively strictly contained) in the same half-plane (with
respect to the line pg) that contains = (I").

Now, assume by contradiction that F'\ U, , is not convex. Then there are p', ¢’ € 5, , with the
following properties:
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e The open region U’ enclosed by 3, 4 and the segment p/q’ is nonempty and contained in Up.g;

e the points p and ¢ and the set U’ lie on the same side with respect to the line containing p/q’.

Let then dy: R?® — R be an affine function that vanishes on the vertical plane containing p’q’
and is positive in the half-space W containing p,q and U’. We now observe that I' N W™ is the
union of two connected subcurves fl and fg, containing p and q respectively. As a consequence
@‘1(f1) = W w3 and q)_l(fQ) = wszwy for some wy, wo, w3, wy € B; (clockwise oriented).

On the other hand since dy > 0 on U’ we can find t' € U’ \ p/q’ such that dy o ®(®~1(¢)) =
dw (') > 0 with ®~1(#') € B;. Once again by the harmonicity of dy o ®: B; — R we deduce the
existence of a curve a C {w € By: dy o ®(w) > 0} joining ®~1(¢') either to wyws or wswy. Hence
®(a) C ®(By) is a curve joining ¢’ either to Ty or T, say I';. This implies that the projection
7(®(a)) of ®(a) onto the horizontal plane R? x {0} is a curve contained in U, , that connects t'
to w(I'1). So in particular, the curve 7(®(a)) cannot be included in the half-space W*. But this
contradicts the fact that « C {w € By: dy o ®(w) > 0} (this is because the values of dyy at a point
x and 7w(z) are the same). O

We need also the following technical results on the distance function dp from a convex set F.
Recall the definition of EX given in in the Appendix, for ¢ > 0 and E C R2.

Lemma 5.6. Let F' C R? be bounded, closed and conver. Then Adp € L2 (R*\ F)NL'(B\ F)
for every ball B with I CC B.

Proof. By |18, Theorem 3.6.7 pag. 75| it follows that dp € C’ﬁ)’cl (R?\ F), hence V*dp € L2 (R?\
F;R?%2). Therefore we only have to check that Adr € L'(B\ F).
Let > 0 be fixed sufficiently small. Select (fi)reny C CL(R?R?) such that f — Vdp in

Wwhi(B\ F;;2) as k — +o00. By the divergence theorem we have

/ divfy, de = / fr - vy dH, (5.3)
B\F,f dBUA(F;))

with v, the outer unit normal to 0B U 8(Fq;r) By taking the limit as k — oo we get

lim divfi dox = / Adp dz, (5.4)
k—4o00 B\F,?_ B\F,T
and
lim fro vy dH' = / Vdp v, dH, (5.5)
k=+o0 JoBUd(F;) dBUS(F;)

where (5.5)) follows by using that d(F,") is of class C1! and hence fL(0BUJ(F,})) — V drL(dBU
O(F;F)) in L*(OBUA(F;)). Since dp is convex we have Adp > 0 a.e. in R?\ F', moreover |V dp| =1

in R?\ F; then gathering together (5.3)), (5.4), (5.5) we have
/ Ady] d:v:/ Adp dx:/ Vdp vy dH' < H (OB UB(ED)) < C,
B\F;f B\F;f dBUA(F;)

with C' > 0 independent of 7. By the arbitrariness of 7 > 0, the thesis follows. O

Corollary 5.7. Let U C R? be a bounded open set with Lipschitz boundary. Let F C R? be closed
and conver such that UNF = @ and let ¢y € WHL({U)NL®(U)NC®(U). Then the following formula
holds:

—/szdde:/w.VdFdx—/ by dH?,
U U ou

where v denotes the normal trace of V.dgr on OU.
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Proof. We have |V dp| = 1 in R?\ F, moreover since U N F = (), by Lemma [5.6| we deduce also
Adp € LY(U). Therefore the thesis readily follows by applying [5, Theorem 1.9]. O

Remark 5.8. The normal trace v of Vdr on OF equals 1 H'-a.e. on OF. Indeed, from Corollary
we have that for all ¢ € C!(R?;R?) it holds

_/ goAdFd:U:/ w-Vdpdx—/ prydH!
R2\F R2\F O(F)

:/ Vga-Vdpdx—/ ©dH?,
R2\F; a(F)

where we have used that 8(15’77r being a level set of dp, it results Vdr = v, on it. Letting n — 0

and using that Adr € LY(B\ F) for all balls B, we infer

—/ pAdpdxr = V(p'VdFd:E—/ wdH'.
R2\F R2\F OF

By the arbitrariness of ¢ and again by Corollary the claim follows.

Lemma 5.9. Let F C Q be closed and convex with nonempty interior, and let § > 0. Let 1) €
W ((FF\F)NQ)NLe(FF\F)NnQ)NCO((FF \ F)N Q). Then

lim Y dH? :/ YdH. (5.6)
QNA(F:) QNOF

e—0t

Proof. Let e € (0,6) and T := (FX \ F) N Q. Since T. N F = @, by Corollary [5.7 we get

—/ YA dpde = Vz/z-VdFd:c—/ YydH, (5.7)
£ 6T5

Te

which by Remark [5.8] becomes

— | YAdpde= [ Vi -Vdpdz
T T

(5.8)
+/ wcml—/ z/zd?—(l—/ Yy dH!.
QNOF QNA(F) (FZH\F)NoQ
Now
lim / V@Z)-Vdpda:‘ < lim / Vi dz =0, (5.9)
e—=0t 1 T, e—=0t J1,
and
lim / qmd%l‘ < lim bdH! = 0. (5.10)
=0t L J(FA\F)nog =01 J(FH\F)non
Moreover, since Adg € LY(T:) by Lemma we deduce also
lim ‘/ YN dx) < W)z lim / IAdp|dz =0. (5.11)
e—=0t 1 J1, e—0T J1.
Finally gathering together (5.8])-(5.11)) we infer ([5.6)). O
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Remark 5.10. Let F, ¢ and ¢ be as in Lemmal5.9] Let o be any connected component of QNOF,
and for every 0 < & < 4 let o be the corresponding component of N J(FF); namely, if 7 is the
orthogonal projection onto the convex closed set F, setting

Qe :={z € O(F) : mp(2) € a},

then one has o, := @, N Q. Arguing as in Lemma we can show that

lim/ YdH! = /mml
e—0Tt

Lemma 5.11. Let (0,1) € Weony be a minimizer of F in W as in Theorem . Then there is a
minimizer (o 1/1) € Weonv of F in W with the following properties:

1. (OE(0)) N0 = (0E(0)) N0OQY;
2. 4 is continuous and null on QN OE(0).

The second condition means essentially that 121\ vanishes on QN IF(d) when considering its trace
from the side of Q\ E(7).

Proof. We know by Lemma that (o,v), 0 = (01,...,0,), satisfies the following properties:
e Each connected component of E(o) is convex;
e 1 is positive and real analytic in Q \ F(0);
e )= on dPQ\ OE(0).

In what follows we are going to modify (o, 1)) near each arc of dF(o) using an iterative argument
in order to get a new minimizer (o, z/p\) € Weony that satisfies conditions and To this aim
we denote by Fi,...,F with 1 < k < n the closure of the connected components of E(c) and
set do := min;x; dist(F;, F;) > 0. Moreover by the first property we deduce that Q N 0FE(o) is
the union of an at most countable family of pairwise disjoint arcs with endpoints in 0f2, i.e.,
QNOE(o) = Ule U7, @ij, where a;j is a connected component of QN OF; for i € {1,...,k},
i > 1

Step 1: Base case. Let « be one of the connected components of Q N JF, with F := F; for
some i € {1,...,k}. In this step we construct a new minimizer (6%, ¢®) € Weony such that
(OE(0®)) N0 = (0E(0)) N 0N and ¥* is continuous and null on o', where o/ C QN OE(c®) is
a suitable curve that replaces a and has the same endpoints as a. For € € (0,99/2) we define the
stripe

To(a) == {z € Q\ F: dist(z,a) < £} CFM\F,

and consider the planar curve o in Q defined as in Remark - Let T:(«) be the connected
component of T. (o) whose boundary contains «.. Let L. be defined as

L. := (0Tx(a)) N O,

so that in particular 0T (o) = a U ae U L. . Let p, g € 092 be the endpoints of a (and then also the
endpoints of . U L, which are independent of £). We define the curves

Pe:=Tful;, I'f:= gw_agug@uguﬁ, I2:=G 4l 0. UG 1 U,

"Notice that at this stage we do not have any information about the geometry of the set (9E(c)) N9, and QNIF;
could a priori be the union of countably many connected components.
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where

"= ({p} < [0, o)) U ({a} x [0,0(q)]), 17 := ({p} x [=(p), 0]) U ({q} x [~¢(q),0]).

Observing that L. € 9PQ\ dE(o) and recalling that 1) = ¢ on 9PQ\ IE(s) we deduce that T’
is a closed non-planar curve in R? that satisfies assumptions of Lemma Therefore, a
solution S: to the classical Plateau problem corresponding to I'c is a disk-type surface such that:

L Bpqg:=80N (R% x {0}) is a simple analytic curve joining p and g;
2. S is symmetric with respect to the horizontal plane;

3. the surface St := S.N{x3 > 0} is the graph of a function ¢5 , € Wl’l(UIf,q)ﬂCo(U;q\{p, q}),
where U; . C F'UT.(«a) is the open region enclosed between a. U L. and 3, ;

4. the curve 3 , is contained in the closed convex hull of T'; and (F'UT:()) \ Uy, is convex.

We would like to compare the area of S with the area of the generalized graph of ¢ on T.(«).
This is not immediate since, due to the fact that ¢ is just BV, we cannot, a priori, conclude that
its generalized graph is of disk—typeﬂ Hence we proceed as follows. We fix & € (0,00/2); we claim
that

AW Ufg) < A Te(a)) + [ wLTo(@) M (512
Since 1 is analytic in Tx(a) C Q\ E(0), by Lemma and Remark it follows that
lim, / YL Te(a) dH' = / YL Te(ar) dH' . (5.13)
e—0 Qe a

We take

Tf(a) = Tg(a) \Tg(O&) and ng = SE U ngTf(Q) U g_wLng(a) .

Since S is a disk-type surface and 1 is analytic in 75 («) it turns out that Yz is also a disk-type
surface satisfying 0Yz = I's. Therefore using that Sz and S, are solutions to the Plateau problems
corresponding to I's and I'c respectively, we have

H2(S2) < HA(Ye) = 2H2 (G 12(a) + H2(S2)

asULe

= 21 (Gl 12 (a) +2/ YL T:(a) dH! +2/ YLT(a) dH".

Passing to the limit as ¢ — 0, by and the fact that H'(L.) — 0, we obtain
HA(S) < 2HGy o) +2 [ VL T@) M,
which yields
AWy giUpg) = H2(S3) < HA(Gyl1.(a) + / YL Tx(a) dH' = A(p; Tx(a)) + / YL Tx() dH,

and (5.12)) is proved.

8This is due to the jump of ¢ on OF which is, in general, not regular enough.
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We now define B := (E(0) UT:(a)) \ U

0 in B¢
V= vy, inUp,
P otherwise .

By (5.12) and using that U, ,U E* = E(0) U Te(ar) we derive

A5 Q) — [E®| = AW US,) + AW )\ (U7, UE®))
= AW UZ,) + AW\ (Te(a) U E(0)))
) (5.14)
< AW Te(a)) + / PLTe(a) dH' + A; 2\ Te(a)) — |E(0)
— AW:9) — |E(0)].

It remains to construct c% € Y .o,y. Without loss of generality we may assume

o1([0,1]), ..., 04([0,1) € Fand  0p41([0,1]),...,00(0,1]) ¢ F

for some h < n; notice that if h = n the second family of curves is empty. Then we define
0% = (of,...,00,0n41,...,0n) € Lip([0,1]; )" as follows: if A > 1

0‘([0 1]) qiPi+1 for Z'Zl,...,hfl
Uz ) = g — .
IF UT:(a) \ Upg) \ <(U?:13?Q) U (U?:fqz‘piﬂ)) for i =h,

where g;p;11 is the segment joining ¢; to p;41; if instead h = 1 we simply set
ot ([0,1]) = A(F U T=(a) \ U, ,) \ 970
Clearly the pair (0, 9®) belongs to Weonv, and by (5.14)) it satisfies

F(o* %) = F(o,v).
Moreover (OE(0®)) N0 = (OE (o)) N0 and ¢ is continuous and null on o', where
o =5, CQANIE(c?). (5.15)

Summarizing, we have replaced the curve « with o/, ensuring that the new function ¥® is now
continuous and null on «’.

Step 2: Iterative case. In this step we construct a minimizer (o, 12) € Weonv of F in W that
satisfies the thesis by iterating step one at most a countable number of times.
We first consider F' = Fy and apply step 1 for each oy ; with j > 1. More precisely we define the
pair (01,4, %¥1,j) € Weony as follows:

e if j =1 we set
(01,1,91,1) i= (0“1, 9*1),
where (0“1, *1) € Weony is @ minimizer constructed as in step 1 with a = oy 1;
e if j > 1 we set
aq 1,5
(Ulajvlbl,j) (01 ]]171/1173‘11),

a1,j

where (01 Sl ]71) € Weonv is a minimizer constructed as in step 1 with (o, v¢) = (1,j-1,%1,j-1)

and a = o ;.
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Since F(o1,5,¢1,;) = F(o,v) for all j > 1, by Lemma it follows that (01,1 ;) converges to
(01,1%1) € Weonv in the sense of Definition Moreover by construction we have that for every
J > 1 the pair (o1, 1,;) satisfies

(OE(01,5)) N0 = (0E(0)) N OSY,
and 1 ; is continuous and null on Ufz:lo/Lh C Q2N (0E(01,7)) N OF1, where o , are defined as in
(5.15). As a consequence (o1,11) satisfies

(0E(01)) N0Q = (OE(0)) N 0N,

and 11 is continuous and null on U207 ; C QN (9E(01)) N OF1. Moreover
QNIE(o1) = (U207 ;) U(Ufzz Ui @ij),

Now repeating the argument above for the pair (o1,11) and i = 2 we obtain a new minimizer
(02,%2) € Weony of F in W satisfying

(0E(02)) N 0Q = (9E(0)) N9,

with 92 continuous and null on U2, (a] ; U as ;) C QN (9E(01)) N ((0F1) U OF,) and

QN (0E(02)) = (UiLy Uiy af ;) U (Ufzg U2y aiyg).

-~

Iterating this process a finite number of times we finally get a minimizer (7,v) € Weony of F in W
with the required properties. O

We are finally in the position to conclude the proof of Theorem

Proof of Theorem[5.1 Let (0,1) € Weony be any minimizer of F in W as in Theorem By
Lemma we know that (o,v) satisfies properties and the boundary datum is attained,
namely

Yp=¢ on 0°Q\9E(0).
Moreover by Lemma there is a minimizer (7, 1,/[)\) € Weonv such that
OE(G) N O = 0E(0) NN, (5.16)

and 1 is continuous and null on Q2 N JE(3).
It remains to show that if 8iD Q) is not straight for some ¢ = 1,...,n, then

OE(o)NoPQ =0E(G)NdPQ =0,
and if instead 8iD Q) is straight for some ¢ = 1,...,n, then property |4.| holds. Eventually we show
that there is a minimizer that satisfies property This will be achieved in a number of steps.

Step 1: Assuming that there is i € {1,...,n} such that 8P is not straight, we show that
E()NoPQ = @. To prove this we proceed by analysing three different cases.

Case A: Suppose, to the contrary, that there is a non—straigh‘cﬂ arc ab (with endpoints a # b)
in 9°Q N OE(5) (Case A in Figure . Thus in particular ab C U7_;5;([0,1]). We may assume

without loss of generality that ab C 01([0,1]). Then we consider the curves

17t - + . + - . -
F=rtur™, =g Jult, T =g sul", (5.17)

9Namely, ab is not contained in a line.
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R
,
,

Case A N “ Case B

Figure 4: Case A. 9PQ N OE(6) = ab. The orange dotted curve represents I't in (5.17). Case B.
OPQNOE(6) = {c}. The orange dotted curve represents the curve I'" in (5.20).

where

= ({a} x [0,0(a)]) U ({0} x [0,0(0)]), 17 := ({a} x [=¢(a),0]) U ({0} x [~¢(b),0)).
In this way I" satisfies the assumptions of Lemmal5.4] and hence a solution S to the Plateau problem
spanning I" is a disk-type surface such that:

i. Bap:=S5N(R?x {0}) is a simple analytic curve joining a and b;
ii. S is symmetric with respect to R? x {0};

iii. the surface ST := SN {x3 > 0} is the graph of a function ¢, € WH(U, ;) NCO(Uap \ {a,b}),
where U, , C E(01) is the open region enclosed between ab and f,;

iv. the curve 3, is contained in the closed convex hull of I" and E(01) \ Uy is convex.

The inclusion U, C E(7) follows since ab C 71([0,1]), E(1) is convex, and S is contained in the
convex envelope of I'. Furthermore by the minimality of S one has

A(thap; Uap) = H*(ST) < /Agod’Hl = A|$—¢|dﬂl. (5.18)

ab

Here the strict inequality follows since the vertical wall spanning I" given by {(2/,z3): 2’ € cﬁ), T3 €
[—o(2'), p(2")]} is a disk-type surface but, since ab is not a segment, it cannot be a solution to the

Plateau problem. We now consider the pair (¢,%) € Weony given by

0 inkFE,
o= (51,6\'2,...,(/)’\”), Y= wa,b in Ua,ln (519)
P otherwise,

where 7 is such that ([0, 1]) = (a1([0, 1])\&)) U Bqp and E = E(0)\U,p = E(0). Then noticing
that ¢ = 0in Ugy, E(0) = E(0) U U,y, and recalling (5.18)), we get

FG,0) = AW Q) - [E@)| + /8 10—l
= A2\ Uny) + Ao Uas) — |E@)| + /6 19—l
— A(5;9) + A(thas; Uny) — |EG)| + / 1 — ol !
o0
< A($;9) — |E@) +/ D — ol dH! + /A 1 — | dH?
o0 ab

— A($;9) — |E@)| + /a =gl = FG.9).
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where the penultimate equality follows from the fact that w is continuous and equal to ¢ on ab
while the traces of ¢ and w coincide on 9\ ab. This contradicts the minimality of (7, w)

Case B: Suppose by contradiction that the set 8Z~D QN OFE(o) contains an isolated point ¢ or has
a straight segment cc’ as isolated connected component (Case B in Figure [4). Then there are two

arcs ab C oPQ and atl C OE(o) with either a # a’ or b # V' (and with endpoints a # b and o’ # V')
such that aa’ NbY = @ and abNa't) = {c} (respectively abna't = cc). Notice also that, since 9”0
is not straight, the segment c¢’ does not coincide with 9”7 and hence the arc ab can be chosen so
that it properly contains the segment cc’. We consider the curves

7t - + . -
F —F UF B F — g@L@Ugal_ng@Lw, F — g_(PLa)Ug_JLng_&Lw. (520)

Notice that I'* connect @’ to b'. By applying again Lemma to the nonplanar curve I" and
arguing as in case A we obtain the contradiction also in this case.

Case C: More generally, assume by contradiction that both the sets 97 QNIE(3) and 9P Q\0E(7)
are nonempty. Then we can find a not flat arc ab C 8D ) such that the followmg holds l there are
pairs of points {c;j,d;}jen C 072N IE(7) such that the arcs ady, cob, and {c]d }52, are mutually

disjoint and
ab\ 0E(0) = adg U (U5 1c]d U cob.

Without loss of generality, we might assume that all the points ¢;j,d; € 71([0,1]). For all j > 1
we denote by V; the region enclosed by E]‘d\ and OFE (o)l We now argue as in case B and choose
a b € a1(]0, 1]) Addltlonally, let Vo = Vg U VO, Wlth Vo (respectively V) be the region enclosed
between OE () and aa ad’Uad (OE(5) and bt/ Ucob, respectively). We finally define I" correspondingly,
as in . Again by Lemma-the solution S to the Plateau problem corresponding to I' satisfies
properties with @’ and b’ in place of a and b respectively. Moreover by the minimality of S
for every N > 1 there hold@

_a2/a+ 1 1 1
At U y) =S < [part = [ pant Z/ o M +2Aw, ). (5.21)

In particular by taking the limit as N — 400 in (5.21)) we get

doUCob

At s Uwy) = HA(SH) < /A pdH! + A UZV5). (5.22)
B\OE(5)

Let (7,1) € Weony be defined as in (5.19), then observing that ¥ =0 in Uap \ (U20V5), E(0) =

19This is a consequence of the fact that ab \ OF(0) is relatively open in ab, so it is an at most countable union of
disjoint relatively open arcs.
" These regions are simply connected since c;,d; € 71([0,1]).

12The rlght hand side is the area of the surface given by the (positive) subgraph of ¢ on ab \ L,lJ 1c]d and the

graph of 1/1 on the region UJ oV, which is of dlsc-type To see this we use that the trace of 1/1 on the subarcs of 0E(5)
between the points ¢; and d; is zero (and between a’ and do, and do and b').
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E(0) U (U p \ UZyV;) and using we deduce
F@D) = A0\ Uy ) + A sr; Uny) — |1E@)| + /a 19— gl
= A\ (U20V)) + A Un ) — |E@)| + /@ 19—l

< A\ (U20V)) — [E@)] + / 1D — | M + /A o dH! + AU V;)
00 BNIE(3)

-~

= A = [B@)|+ [ 17— pldH! = FG.5).
which in turn implies _ N
F(o,9) < F(0,¢). (5.23)

To conclude we need to show that the inequality in (5.23)) is strict. To this aim we choose ¢ €
{¢j}52,. Consider the curves I't and I'y defined as follows

Ip:=T{uly, T =6, &U G5 aw U I, Ty=6 L aU G jLaz Yl
Ty=T3UTy, T3 =0, 3UG; U™, Ty =0 | UG 5 mUI,
where
"= ({c} x [0,0(0)]), 17 :=({c} x [=p(c),0]).

Let S and S5 be the solutions to the Plateau problem corresponding to I'y and I's respectively, so
that properties are satisfied with ¢ in place of b’ and @’ respectively. By the minimality of S
we have

-A(T;Z)a’,b’; Ua/,b/) < A(d’aﬁc? Ua’,c) + A(¢c,b’? Uc,b’) . (5.24)
On the other hand by arguing as abovelﬂ we conclude
A(d}a’,c; Ua’7c) < / SOd,Hl + A(lzy Uth‘/j U ‘/E)a) ’ (525)
acUOE(5)
and
AWeiUe) < [ g+ AT Ueni U TE). (5.26)
HUIE(5)

where I 1= {j: E]‘d; C act and I := {j: gj‘d; C EZ\)} Gathering together ([5.24))-(5.26]) we derive

A(pg i Uy ) < /A @ dH + A(Y; UizoVi)

abUOE(T)

which in turn implies

F@,4) < F(3,9),
and thus the contradiction.

Step 2: Assuming there is i € {1,...,n} such that 9°Q is a straight segment, we show that
either (OE(5)) N9PQ = @ or (OE(F)) N 0PQ = oPA.
Suppose by contradiction that (OE(7)) N 9PN # @ and also 9PQ \ OE(G) # @. Without loss
of generality we can restrict to the case (OE(5)) N 9PQ = (OF) N OPQ with F any connected
component of E(5). Since F is convex and 9”Q is a segment (9F) N 9P Q has to be connected,

3With the arc ac (a), respectively) in place of ab.
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i.e., it is either a single point a or a segment aa’ # GiD Q. In both cases we then consider a (small
enough) ball B centred at a such that BN E(g) = BN F (in the second case we also require that
the radius of B is smaller than aa’).

If (OF)N0PQ = {a} we let {p,q} := (0B) N OF and {b,c} := (0B) N 9PQ (with b,p and ¢, q
lying on the same side with respect to a). Then we define the curves

7t - + . -

where @), cq denote the arcs in 0B joining b to p and ¢ to q respectively.
If (OF) N 0PQ = ad’ we let {p,q} := (0B) NOF and {b,c} := (OB) N 9P Q where we identify ¢
and c. Then we consider the curves

DimTHU0, T = G 500, pUUA XD ple) s T =0 5UG ) gUUelx[-¢(0).0).
By applying again Lemma to I' and arguing as above we get the contradiction.

__Step 3: We show that there is a minimizer (o, {/;) that satisfies property We first notice that
1 is continuous and null on OE(7) \ 9PQ. Moreover by steps 1 and 2 it follows that Q N IE(7) is
the union of a finite number of pairwise disjoint Lipschitz curves each of them joining each p; for
i =1,...,n to each of the ¢g; for some j =1,...,n. To conclude it is enough to replace each curve,
without increasing the energy, with an analytic one having the same endpoints. More precisely, let
v be any of such curves. Reasoning as in the proof of Lemma step 1, we can replace (7,)
with a new minimizer (¢7,97) € Weony such that (OE(c7)) N9Q = (OE(0)) NI and Y = 0
on v/, where v/ C (OFE(c7)) N Q is a suitable analytic curve that replaces v and has the same
endpoints of . In particular 17 is continuous and null on OE(c7) \ 0P Ryy. Eventually iterating
this procedure for each curve in 9E(d) \ 92 we can construct a new minimizer (o,v) with the
required properties. ]

5.1 The example of the catenoid containing a segment

Consider the setting of Figure @ Recall that Q = Ryy = (0,2¢) x (—1,1), n =1, 0PQ = ({0, 2¢} x
(—1,1)) U ((0,20) x {—1}) and 8°Q = (0,2¢) x {1}, p = (0,1), ¢ = (2¢,1). The map ¢ given in
is p(21,22) = 1/1 — 22 on 9P, and thus vanishes on [0,2(] x {—1}; for this reason this case
is not covered by our analysis. However we can find a solution as in Theorem also in this case,
by an approximation procedure. Precisely, for € > 0 consider an approximating sequence () of
continuous Dirichlet data, with G,_ Lipschitz, which tends to ¢ uniformly and satisfies . = 0 on
2°Q, . > 0 on OPQ. Let (0.,.) be a solution as in Theorem corresponding to the boundary
datum ¢.; since F(oe, 1) is equiboundedEl, arguing as in the proof of Lemma we can see
that, up to a subsequence, ((o¢,%:)) tends to some (0,1) € Weony, which minimizes the functional
F with Dirichlet condition ¢. In this case however we cannot guarantee that o does not touch
0P, even if this is not a straight segment. This is essentially due to the presence of the portion
[0,2¢] x {—1} of O where ¢ is zero, which does not allow to apply the arguments used in the proof
of Theorem [5.11

In particular, it can be seen that if ¢ is large enough, the solution (c,) splits and becomes
degenerate, being ¢ = 0 and the value of F is just the area of two vertical half-disks of radius 1.
For ¢ under a certain threshold, instead, the solution satisfies the regularity properties stated in
Theorem and in particular ) = ¢ on 97, and o is the graph of a smooth convex function
passing through p and q. We refer to [10] for details and comprehensive proofs of these facts; we
also notice that in this special case further regularity of solutions can be obtained.

We can bound it from above by || + fapﬂ lpe|dH? .
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6 Comparison with the parametric Plateau problem: The case
n=1,2

In this section we compare the solutions of Theorems and with the solutions to the classical
Plateau problem in parametric form. Specifically, motivated by the example of the catenoid, we
restrict our analysis to the classical disk-type and annulus-type Plateau problem. These configu-
rations correspond to the cases n = 1 and n = 2 respectively, i.e., the Dirichlet boundary 9P is
either an open arc or the union of two open arcs of 92 with disjoint closure. Due to the highly in-
volved geometric arguments, we do not discuss the case n > 2, which requires further investigation.
Thus, in this section we assume n = 1,2. We first discuss the case n = 1, which is a consequence
of Lemma [5.4] and next the case n = 2.

6.1 The casen=1

Let n = 1. Let p1,q1 € 99, 0PQ = 0PQ, ¢ be as in Section and consider the space curve
Vo= nga{pQ joining p1 to q1. We define the curve

I := 71 USym(y1),

where Sym(vy) := g_w_ oPQ; and consider the classical Plateau problem in parametric form span-
ning I'. More precisely we look for a solution to

I):= inf o B A Dy, @, 1
()= inf 100, 0,0l (61)

where

Py(T) = {cp € H'(By;R?) N C°(By;R?) such that ®L_9B;: 9B; — T 62)
is a weakly monotonic parametrization of F}.

By classical arguments, every solution to (6.1]) is a harmonic and conformal parametrization of an
area-minimizing surface spanning I'.

Theorem 6.1 (The disk-type Plateau problem (n = 1)). Assume I' is not planar, let ® €
P1(T') be a solution to (6.1) and let

St .= @(El) N {1‘3 > 0}, ST = ‘P(Pl) N {1’3 < 0}.
Then there exists a minimizer (0,1) € Weony of F in W satisfying properties of Theorem
and such that
+
5% =Gy amo) (6.3)

Conversely let (0,1) € Weony be a minimizer of F in W satisfying properties of Theorem ﬂ
Then the disk-type surface

S =0y @awo) Y I L@E@)

is a solution to the classical Plateau problem associated to I, i.e., there is a harmonic and conformal
map ® € P1(T) solving (6.1)) and such that ®(By) = S.

We have assumed I' is not planar, otherwise the classical solution is flat, and any solution to
Theorem [5.1| satisfies (OE (o)) N dPQ = oPQ.
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6.2 The case n =2

Let n = 2. Let Q, p1,q1,p2,q2 € 09, OPQ, 0PQ, 9Q, ¢ be as in Section and consider the
space curve y; := Q§D|_ aPq joining p; to g; for i = 1,2. We define the curves

Pi:=7USym(n),  Ta2:=72USym(y),

where Sym(y;) := g_<p|_ apq for i = 1,2. We consider the classical Plateau problem in parametric
form spanning the curve
I':=Tyuls.

Precisely we set Yann C R? to be an open annulus enclosed between two concentric circles Cj :=
0B1(0) and Cy := 0B»(0), and we look for a solution to

I):= inf o ® A Dy, ®|dw, 4
mo(t) = inf [ o A B (6.4)

where
Pyo(T) = {@ € H' (Sann; R?) N € (Sann; R?) such that ®(08an,) =T and LC; : C; — T
is a weakly monotonic parametrization of I'; for j =1, 2}.

Here the crucial assumption that we require is that the curves I'; have the orientation inherited
by the orientationﬁ of the graph of ¢ on 8]]-3 Q.
Due to the specific geometry of I' we can appeal to Theorem below (which is a consequence
of [36, Theorem 1 and Theorem 5]) to deduce the existence of a minimizer. This might not be true

for a more general I'. To this purpose for j = 1,2 we consider the minimization problem defined in
(6.1) for the curve I'j, namely

)= inf B ® A Doy, ®|dw, 6.5
i) = ot [ 100,00, 0ldv (65)

with Py (I';) defined as in (6.2)).

By standard arguments one sees that mo(T') < m1(I'1) +m1(T2). Indeed, two disk-type surfaces
can be joined by a thin tube (with arbitrarily small area) in order to change the topology of the
two disks into an annulus-type surface.

Definition 6.2 (M) solution). Let ® € Py(I") be a solution to (6.4). We say that ® is a MY
solution to jf@ is harmonic, conformal, and it is an embedding. In particular, in such a case,
ma(T) = HA(P(Zann))-

Theorem 6.3 (Meeks and Yau). Suppose ma(I') < m1(I'1) + m1(I2). Then there exists a MY
solution ® € Po(T") to (6.4). Furthermore, every minimizer of (6.4) is a MY solution.

Proof. See [36]. O
This result allows us to prove the following;:

Theorem 6.4 (The annulus-type Plateau problem (n = 2)). The following holds:

50Once we fix an orientation of dQ, the orientation of the graph G, of ¢ is inherited, since G, is standardly defined
as the push-forward of the current of integration on dp§2 by the map = — (z, p(z)).
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(1) Suppose ma(I') < m1(T'1) + m1(T'2). Let ® € Pa(T") be a MY solution to (6.4)) and let
S = ®(Zamm), S*:=8n{x3 >0}, S~ :=8Sn{x3 <0}

Then there exists a minimizer (o,1) € Weony of F in W satisfying properties of Theorem
[5.1] and such that

+
57 = Gyl @B (6.6)

(73) Suppose ma(I') = m1(T'1) + mi(T2), and assume that both Ty and Ty are not planar. For
j=1,2let ®; € P1(T;) be a solution to (6.5) and let Sj := ®;(B1). Let also

St .= (SlUSQ)ﬁ{iL‘g ZO} and ST = (SlLJSQ)ﬂ{CCg SO}
Then S1NSe = @ and there exists a minimizer (o,1) € Weonv of F in W satisfying properties
of Theorem [5.1] and such that holds.
(131) Conversely, let (0,v) € Weony be a minimizer of F in W satisfying properties of
Theorem [5.1. Then the surface
5= Gy @Ew) Y I L@ Ew)

1s either an annulus-type surface or the union of two disjoint disk-type surfaces, and is a
solution to the classical Plateau problem associated to I'. More precisely, either there is a
MY solution ® € Pa(T') to (6.4) with S = ®(Xann), or there are ®; € Pi(L';) solutions to
" for 3 =1,2, such that S = (I)l(Bl) U (I)Q(Bl) and (I)l(Bl) N CI)Q(Bl) = Q.

6.3 Toward the proof of Theorems and preliminary lemmas

In order to prove Theorems [6.1] and we collect some technical lemmas.

Lemma 6.5 (Graphicality of minimizers for n = 2). Let n = 2, and (0,v) € Weonv be a
minimizer of F in W satisfying properties of Theorem [5.1]

(a) Suppose that Q\ E(c) is connected. Then there exists an injective map ® € W (Zann; R3) N
C®(Zann; R?) such that

P (ann) = Gy anz@) Y I-sL@E@)
and ®L_Cj: Cj — I'; is a weakly monotonic parametrization of I'; for j =1,2.

(b) Suppose that Q \ E(o) consists of two connected components, whose closures Fy and Fj
are disjoint, with F; 2 8]1»)9 for 5 = 1,2. Then there exist two injective maps ®1,Ps €
WhY(B;R3) N CY(By1;R?) such that

®(B1) =Gyl p, UGyl r,  5=12,
and ®;L0By: 0B1 — I'; is a weakly monotonic parametrization of I'; for j =1,2.

Supposing that Q \ E(c) has two connected components as in (b), it readily follows that I'; and
I’y cannot be planar (otherwise the solution will be flat on 8]-D Qand F; =0 for j =1,2).
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Proof. (a). Since Q \ E(o) is simply connecte the maps
VEeWHQ\E()R) NCOQVE@)RY),  ¥5(p) = (p. £0(p)), (6.7)

are disk-type parametrizations of G WL (O\E@)) thanks to properties of Theorem
17

Now, using a homeomorphism of class H' between Q \ E(c) and a disk, we can parametriz
2\ E(o) with a half-annulus, obtained as the region enclosed between two concentric half-circles
with endpoints A1, As, A3, A4 (in the order) on the same diameter, and the two segments A; Ay and
Az A,. Then we construct a parametrization U+ of G L (@B 2 in from the half-annulus,
such that U+ (A1) = (q1,0), TT(A3) = (p2,0), ¥ (A3) = (¢2,0), YT (A4) = (p1,0), and mapping
weakly monotonically the two half-circles into v; and 2, and the two segments into o1([0, 1]) and
02([0, 1]), respectively. Similarly, we construct a parametrization ¥~ of G L (NE@) from another
copy of a half-annulus, just setting ¥~ := Sym(¥™), the symmetric of ¥ with respect to the plane
containing €.

Eventually, glueing the two half-annuli along the two segments, we obtain a parametrization ®
of gd)'—(m U gﬂb'_(m) defined on ¥,,,. By the continuity of ¢ on 9”Q we have that ®
parametrizes ['; on C;, 1 = 1, 2.

(b). It is sufficient to argue as in case (a), by replacing Q \ E(c) in turn with F; and F» and

Yann With Bj to find ®; and s, respectively. ]

Lemma 6.6. Let n =2, and (0,v) € Weonv be a minimizer of F in W satisfying properties
of Theorem (.1

(a) Suppose that Q\ E(o) is connected and

H Gy o) Y I-s@E@) < m2(T). (6.8)

Let ® be the parametrization given by Lemma (a). Then there exists a reparametrization of
the annulus Xan, such that, using it to reparametrize ®, the corresponding map (still denoted
by ®) belongs to P2(T') and solves (6.4)).

(b) Suppose that Q\ E(o) consists of two connected components whose closures Fy and F» are
disjoint, F; 2 GJDQ for j=1,2, and

HQ(gwl_Fj UG L) < ma(l), Jj=12

Let @1, 9 be the maps given by Lemma (b). Then, for j = 1,2, there is a reparametriza-
tion of ®; belonging to P1(I'j) and solving (6.5)).

Proof. (a). Fix a point p € Q \ E(0) and set Eg ;= U+ Hy, where U is defined in (6.7) and, for
k € N sufficiently large, Hj is the connected component of

Hy, = {pe Q\ E(o) : dist(p, 0(Q\ E(0))) > 1/k}

containing p. For k € N large enough Hy is simply connected with rectifiable boundary, thanks
to the simply-connectedness of 2\ E(c). In particular ‘liz parametrizes a disk-type surface,

and using the regularity of ¢ in Q\ E(o), it follows that @; is Lipschitz continuous. Further-
more, \I/;I_(‘)Hk parametrizes a Jordan curve, and these curves, suitably parametrized, converge

'$This is the region enclosed by 8°Q U ¢1([0, 1]) U o2([0, 1]).
"For instance, we can consider a (flat) disk-type Plateau solution spanning d(Q \ E(c)). Then we can employ a
Lipschitz homeomorphism between the disk and the half-annulus.
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in the sense of Fréchet (see |22, Theorem 4, Section 4.3]) as k — 400, to the curve having image
UH(9(Q\ E(0)))) =: A. Notice that

)\20'1([0, 1])UO’2([O, 1])U’)’1U’72. (6.9)
Call \; the image of the curve given by EXL@H;C. Let P1(Ag), P1(A), mi(Ax), mi(A) be defined as

in |D and (6.1) with Az and X in place of T respectively. Up to reparametrizing B; (see footnote
15), U} belongs to P1()y), therefore

HA(Gy 1) = /H 0 UF AU |dw > mi(h) Wk > L.
k

We claim that equality holds in the previous expression, namely
MGyl ) =mui(M) VR > 1. (6.10)

Indeed, assume by contradiction that HQ(QM_ cho) > my(Ag,) for some ko > 1, and pick 6 > 0 with
H2(Q¢I_Hko) > 0+ mi(Ag,)- (6.11)

Take @, € P1(Ag,) a solution to mi(A,). For k > ko, as Hy, C Hg, by a glueing argumenﬂ we
can find @ € P;(\) such that ®(B;) = P, (B1) U g¢I_(Hk\Hk0)' Thus by (6.11]) we have

HA Gyl ) 20 +mi(Mg) + H2(g¢|_(Hk\Hk0))
=0 + H?* (P, (B1)) + 7{2(g¢|_(Hk\Hko)) >6+mi(\)  Vk > ko

Letting k — +o00, since Ay — A in the sense of Fréchet, we have mq(Ax) — mi(A) [22, Theorem 4,
Section 4.3]. In particular, from the previous inequality we infer

Hence we conclude
IHQ(QTN—(W) U g_w_(m)) > 26 + 2m1(/\) > 26 + mg(r),

which contradicts (6.8). In the last inequality we have used that 2mi()\) > my(T); this follows
from the fact that a disk-type parametrization of a minimizer for m;(\) can be reparametrized on
a half-annulus (as in the proof of Lemma , and glued with another reparametrization of it on
the other half-annulus, so to obtain a parametrization of an annulus-type surface spanning I' which

is admissible for (6.4). Hence claim (6.10) follows.

Now, since v is Lipschitz continuous on Hy, for all k& € N sufficently large there exists a map
U, € HY(By;R?) N C°(By; R?) with U,(0B;) = \x monotonically which solves the classical disk-
type Plateau problem spanning A; and such that

Letting k — +o00 and using that the Dirichlet energy of Wy equals the area of G| 5 , we conclude
that (V) tends to a map ¥ € H(By;R3) N C°(By;R3) with ¥(9B;) = A weakly monotonically,
and that is a solution of the classical disk-type Plateau problem with

V(B1) = Gy @m)

8This is done, for instance, by glueing an external annulus to a disk, and using Py, from the disk, and a

reparametrization of gw L\ H ) from the annulus.
@\ ko
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Arguing as in the proof of Lemma we finally get a map ® : ¥, — R3 which belongs to Pa(I)
and parametrizes G L (@EB@) Y G oL (D E@)) This concludes the proof of (a).

(b). It is sufficient to argue as in case (a), by replacing Q \ E(o) in turn with F; and F» and
Yann With Bj to find ®; and s, respectively. O

Using the arguments above to show conditions (b) of Lemma and Lemma we deduce the
following:

Corollary 6.7. Let n = 1, assume that I' is not planar, and let (0,9) € Weony be a minimizer
of F in W satisfying properties of Theorem [5.1. Then there exists an injective map ® €
WHL(By;R?) N CO(By; R3) such that

®(B1) = Gy @Ew) Y Y- @E@)
and ®L0B: OBy — T is a weakly monotonic parametrization of T'. Moreover, if H*(G, aypz) U
g_wl_(m)) < mi(T) then there is a reparametrization of ® belonging to P1(I") and solving (6.5]).

Now we can start the proof of Theorems [6.1] and [6.4]

6.4 Proof of Theorem [6.1]

Proof of Theorem[6.1. Let ® € P1(I") be a solution to (6.1)). The curve I satisfies the assumptions
of Lemma [5.4] (notice in this case we have f(p1) = f(q1) = 0), hence the minimal disk-type surface
S := ®(By) satisfies the following properties:

e Boa = SN (R? x {0}) C Qis a simple analytic curve joining p; and ¢; and such that
Bp1,qn N O = {p1, e}

e S is symmetric with respect to R? x {0};

e the surface ST = SN {3 > 0} is the graph of a function ¥ € WL Uy, ) NCO(Up,.q1), where
Up.n C € is the open region enclosed between 0P and By, 4,. Moreover 1 is analytic in

Upr.ars
e the curve 3, 4, is contained in the closed convex hull of I', and Q \ Up, 4, is convex.

Let (0,%) € Weony be given by

0 =0 and P =

¢ m Upl»% )

where 01([0,1]) = Bp, 4, Clearly (6.3) holds, and H2(S) = 2F(o,9) = my(T'). It remains to
show that (o,1) is a minimizer of F. Let (0/,79') € Weony be a minimizer of F that satisfies
properties of Theorem and consider the disk-type surface with boundary I' given by
S = gw_(m) U gﬂ/}, L(@NE@)" Since (o, ) is admissible for F, we deduce

{o in Q\ Up, 0

H2(S') = 2F (o', ¢') < my(T).

Thus we are in the hypotheses of Corollary [6.7|and so there is a map ® € P;(T') with ®'(B1) = 5.
By minimality of (¢’,¢’) and of S we have

H2(S) < HE(S") = 2F (0, ¢') < 2F(0,9) = H2(S). (6.12)
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Hence (o,) is a minimizer of F in W and @’ is a solution to (6.1]).
Conversely, let (o,%) € Weony be a solution that satisfies properties of Theorem [5.1) and let
S = gzﬁL(fl\T(UD U gﬂ“_(m). Let ® be a solution to (6.1)); then we can find (7,v) € W whose

doubled graph S =G TL(NEG) ug ILO\EG) satisfies

H2(S) = 2F(0,1)) < 2F(F,9) = H2(S) = my (D).

Arguing as before we find a map ® € P;(I") parametrizing S. We conclude that ® is a solution to
(6.1)), and the theorem is proved. O

6.5 Proof of Theorem [6.4]

The proof of Theorem is much more involved, so we divide it in a number of steps. We start
with a result (which can be seen as the counterpart of Lemma for the Plateau problem defined
in (6.4)) that will be crucial to prove In what follows we denote by 7: R?® — R? x {0} the
orthogonal projection.

Theorem 6.8. Suppose ma(I') < mi(I'1) + mi1(I'2) and let & € Po(I') be a MY solution to (6.4).

Then the minimal surface ®(Xann) satisfies the following properties:

(1) The set m(®(Xann)) is simply connected in Q; QN On(P(Xann)) consists of two disjoint em-
bedded analytic curves 81 and PBs joining q1 to pa, and go to py, respectively. Moreover, for
i =1,2, the closed region E; enclosed between 0YQ and B; is conver;

(2) ®(Sann) is symmetric with respect to the plane R? x {0};
(3) ®(Zann) N (R x {0}) = B1 U fBa;

(4) St = ®(Samn) N {ws > 0} is Cartesian. Precisely, it is the graph of a function 1 €

W (int(7(®(Zann)))) N CO(m(P(Zann)))-

The proof of Theorem [6.8]is a consequence of Lemmas [6.10} [6.11][6.13], [6.14], and [6.15] below.

Lemma 6.9 (Simply connectedness). Suppose ma(I') < mi(I'1) +mi(I'2) and let & € Pa(T") be
a MY solution to (6.4). Then m(®(Xann)) is a simply connected region in Q and 7(P(Sann))NON =
oPauaba.

Proof. We recall that ® : ¥,,, — R3 is an embedding. The fact that 7(®(Zann)) is a subset of
and 7(®(Xann)) NN = 0P QU 0L Q follows from the fact that the interior of ®(Yann) is contained

in the convex hull of I". So it remains to show that 7(®(Xan,)) is simply connected.

Suppose by contradiction that m(®(Xan,)) is not simply connected. Let H be a hole of it, namely
a region in ) surrounded by a loop contained in 7(®(Zan,)) and such that H N m(®(Xann)) = O;
choose a point P € H. We will look for a contradiction by exploiting that ¥,,, is an annulus and
using that the map & is analytic and harmonic.

Let 6 be the angular coordinate of a cylindrical coordinate system (p, 6, z) in R? centred at P
and with z-axis the vertical line 7= (P). For 6 € [0,27) we consider the half-plane orthogonal to
R? x {0} defined by

Iy :={(p,0,2): p> 0,z € R}.

Now we fix two values #; and 6 so that Ilp, and Ilp, intersect (the interior of) 97Q and 950
respectively. The half—planesiﬂ Iy, +» and Ilg,;, might intersect oPQ (see Figure |5). However,

9The angles are considered (mod 27).
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Figure 5: The horizontal section of two half-planes Iy, and IIy, intersecting 90 and 992, respec-
tively.

since the points p1, q1, p2, g2, are in clockwise order on 0f2, and € is convex, it is not difficult to
conclude the following assertion:

The half-planes Iy, ;, and IIg, |, cannot intersect the two components 9PQ and 0L Q of 9P at
the same time.

In other words: If, for instance, Ilg, |, intersects 81D 2, then Ily,, does not intersect 85) Q. Let
us prove the assertion in the form of the last statement, being the other cases similar. This is trivial
since, if ITp, intersects 0YQ and IIy, ;. intersects P (as in Figure [5), we have that Iy intersects
oPQ U Y for all 6 € [61,6, + 7]. As either 65 or 6o + 7 belongs to [01,6; + 7], we have that
Iy, U Ty, intersects 0P Q U 3YQ. Since by hypothesis Ty, intersects 992, it follows that g,
does not intersect Q, and the statement follows.

Moreover, since ITp, intersects ) and Ily, intersects 99€2, it is straightforward that:

If ITp, +» intersects 8?9 then also Ilg,, intersects 8?(2.

We are now ready to conclude the proof of the lemma. We have to discuss the following cases:
(1) My, 1 intersects 9°€);
(2) Tlp, 4, intersects OPQ;

(3) Tlg, 4 intersects 9L Q.

By hypothesis on P, for all 6 € [0, 27) the intersection between ®(X,ny,) and Il consists of a family
of smooth simple curves, either closed or with endpoints on I'. Correspondingly, ® 1 (®(Zaun) N1lp)
is a family of closed curves in ..., possibly with endpoints on C; U Cy. In particular, since
Iy, NV # @, the se O~ H(®(Sann) NIy, ) is a family of closed curves in Yapny.

In case (1) also @~ 1(®(Xann) NIy, 1) consists of closed curves in Yu,,. Take two loops a and
o in @D (Sann) N1y, ) and in ®~1(®(Z,,) N1y, 4, ) Tespectively. Let di be the signed distance
function from the plane Ilp, U Iy, 1, positive on 0P€Q. Since d; o ® changes its sign when one
crosses transversally o and o/, we easily see that both « and o’ cannot be homotopically trivial in
Yann (by harmoniticy of dy o @, if for instance « is homotopically trivial in X,,,, by the maximum

principle d; o ® = 0 in the region enclosed by «, i.e. the image of ® is locally flat, contradicting

20Since IIs, N AP Q = @ these curves must be closed in Sann.
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the analyticity of ®). Hence, since ® is an embedding, they run exactly one time around Ci; as
a consequence, they must be homotopically equivalent to each other in ¥,,,. On the other hand,
they do not intersect each other (® is an embedding), so they bound an annulus-type region in
Yiann, and by harmonicity d; o ® is constantly null in this region. This would imply again that the
image by ® of this annulus is contained in ﬁgl U IIg, 4, a contradiction.

In case (2), from our assertion, we deduce that I1g,, might intersect either 9°Q or 9P Q. Further
we can exclude that Iy, intersects 9°Q) (otherwise, we repeat the argument for case (1) switching
the role of #; and #3). Therefore the only remaining possibility is that IIg,;, intersects 6D Q (see
Figure ' Let do be the signed distance function from the plane Iy, U Iy, positive on 82D Q. In
particular, d; o ®, i = 1,2, is positive on the circle Cy of Yan,. By hypothesis on d;, i = 1,2, we see
that d; is positive on Ily,, and dp is positive on 1lp, .

As in case (1), let & € @~ (®(Xann) N1lp,) and B C &~ 1(®(Zann) N1y,) be two loops. We know
that « and (8 are closed in ¥,,,. Again, we conclude that o and 8 are homotopically equivalent
in Xann, and both run one time around Cy. Assume without loss of generality that £ encloses «,
which in turn encloses C. Since do o @ is positive on both a and C5, dy o ® must be positive in
the region enclosed between them, contradicting the fact that it vanishes on S.

If instead we are in case (3) we can argue as in case (2) and get a contradiction. In all cases (1),
(2), and (3), we reach a contradiction which derives by assuming that m(®(Zau,)) is not simply
connected. The proof is achieved. ]

We next proceed to characterize the geometry of Q N Om(®(Zann)).

Lemma 6.10 (Trace on the horizontal plane). Suppose m2(I') < m1(T1) + m1(T2) and let
® € Po(I) be a MY solution to (6.4). Then QN Om(P(Sann)) consists of two disjoint Lipschitz
embedded curves B and Py joining q1 to p2, and qo to py, respectively. Moreover, the closed regions
E; enclosed between Y and B; are convex for i =1,2.

Proof. By Lemma. (Zann)) is simply connected in ©, and 7(®(Zann))NOQ = 0P Q. Therefore
Q\ 7(®(Xann)) consists of two simply connected components, one containing Y€ and the other

containing 89€). Let E; and Es be the closures of these two componente*ﬂ7 so that in particular
the boundary of E; is a simple Jordan curve of the form 5; U 8?(2 for some embedded curve 3; C Q
joining the endpoints of O?Q. We will prove that F; is convex for ¢ = 1,2. This will also imply that
(; are Lipschitz.

Take ¢ = 1, and assume by contradiction that E; is not convex. Thus we can find a line [ in R?
and three different points Ay, As, A3 on [, with Ay € A; A3, so that A is contained in 2\ Ey, and
Aq and Asz belong to the interior of FEj.

Consider the region 7(®(Xaun)) \/, which consists in several (open) connected components. There
is one of these connected components, say U, which does not intersect 9P and whose boundary
contains Ay. In addition, U N dPQ = @. Indeed, U is the union of a segment L (containing As)
and a curve v (contained in $; C 9(m(®(Xann))) joining its endpoints. Hence, U \ U = v U L, and
L cannot intersect 0P by the hypothesis on A1, Ao, and As.

Let II; € R? be the plane containing ! and orthogonal to the plane containing €; As usual,
II; N ®(Xann) is a family of closed curves, possibly with endpoints on I' N IT;. Now, pick a point P
on OU \ L, and let Q be a point on ®(X,n,) so that 7(Q) = P. Let d; : R3 — R be the signed
distance from II;, with d;(Q) = d;(P) > 0. We claim that, if D is the connected component of
{w € Bamn : dj o ®(w) > 0} containing the point ®~1(Q), then D N ¥,y = @. This would
contradict the harmonicity of d; o @, since d; o ® would be zero on D, but d;(Q) > 0, in contrast
with the maximum principle.

21The sets E; and E> have nonempty interior, since ®(Xann) is contained in the interior of the convex hull of
®(0%ann), hence contained in the cylinder Q2 x R.
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Assume by contradiction that the converse holds. Then there is an arc « : [0,1] = D U 03y
joining ®~1(Q) to 0Xann . The image of the map 7 o ® o v is an arc in Q joining P to 9°Q and
such that d; > 0 on it. Clearly this arc is a subset of 7(®(Xann)). Since o ® o a(0) = P, it follows
that the image of m o ® o a is contained in U. Now U does not intersect 9”Q, contradicting that

mo®oa(l) € 9PQ. This concludes the proof. O
In the next step we show that there exists a set £ C R? of finite perimeter such that
OF = 0"FE = ®(Zamm) U A U Ay,
where 0* denotes the reduced boundary, and
A;:={P=(P,P3) eR3: P =(P,P) € 9PQ, Py (—p(P),o(P"))}, i=1,2. (6.13)
In particular A; U Ay C (92) x R and (2 x R) NOE = ®(Xany).

We first fix some notation. We let [E] € D3(R3) be the 3-current given by integration over E
with E C R? a set of finite perimeter. To every MY solution ® € P2(T) to (6.4) we associate the
push-forward 2-current ®;[Sann] € D2(R?) given by integration over the (suitably oriented) surface
®(Sann) 34, Section 7.4.2]. Finally, if T € Dy(U) with U C R3 open and k = 2,3, we denote by
|7] the mass of T in U [24, p. 358].

Lemma 6.11 (Region enclosed by ®(X,,,)). Suppose ma(T') < my(T'1) + my1(T2) and let & €
Po(T) be a MY solution to (6.4). Then there is a closed finite perimeter set E C Q x R such that
OEN (2 xR) = ®(Xanm)-

Proof. As ®4[Yann] is a boundaryless integral 2-current in Q xR, there exists (see, e.g., [34, Theorem
7.9.1]) an integral 3-current £ € D3(2 x R) with 08 = ®4[¥,nn], and we might also assume that
the support of £ is compact in € x R. We claim that, up to switching the orientation of ®4[Mann],
& has multiplicity in {0,1}, and hence is the integration [E] over a bounded measurable set E.
Since 0 = ®4[Xann], this will be a finite perimeter set, and [(©2 x R) N 0*E] = ®4[Xann].

By Federer decomposition theorem [24, Section 4.2.25, p. 420] (see also [24, Section 4.5.9]
and [34, Theorem 7.5.5]) there is a sequence (E})xen of finite perimeter subsets of € x R such that

+00
&= Zak[[Ek’ﬂa Ok € {_17 1}a (614)
k=1
and
+00 +oo
E] =" |Ex|l and [9€] = H*(B(Tamn)) = > H*(0*Ej). (6.15)
k=1 k=1
We start by observing that
O*E C ®(Xanm) vk € N. (6.16)

Indeed, fixing & € N, by the second equation in , we have that 0*FEj is contained in the
support of €, which in turn is ®(X,n,). As a consequence, if P = (Pp, Py, P3) € (2 x R) N 0*Ey,
then P € ®(X,nn). Around P we can find suitable coordinates and a cube U = (P; — ¢, Py +¢€) X
(Py —e,Py+¢) x (P3 —e,P3 + ¢) such that ®(X,,,) N U is the graph G of a smooth function
h:(Py—¢e P +e)x(P—¢e,Py+¢) = (P3—¢,P3+¢). Moreover, ®;[Yan,] = [G1] in U.

We claim that

Vk either ExNU=UNSG, or E,NU=U)\SGy.
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Indeed, assume for instance that |Ex N U N SGy| > 0 and |(SG, \ Ex) NU| > 0; by the constancy
lemma [34] it follows that J[FE%] is nonzero in the simply connected open set SGj, contradicting
. As a consequence of the preceding claim, we have U N 9*Ey, = U N ®(X,n,). Since this
argument holds for any choice of P € (Q2xR)Nd* E},, we have proved that (2 xR)N9*E}, is relatively
open (and relatively closed at the same time) in ®(3,,,), which in turn being a connected open
set, implies

O(Sam) = B,  VkeN.

Denote by 7% := {k € N : g}, = £1}, with o, as in (6.14). Going back to the local behaviour
around P € ®(X,4y,), if U is a neighbourhood as above, we see that for all k € ZT either F, NU =
SG}, or E, = U\SGY}, (namely, all the E}’s coincide in U), since otherwise, there will be cancellations
in the series Y, 7+ O[E], in contradiction with the second formula in (6.15). Assume without
loss of generality that for all k € ZT we have E, NU = SG},; thus, arguing as before, for all k € 7~
we must have E, NU = U \ SG},.

We obtain that ELU = m[SG] — n[U \ SG;,] for some nonnegative integers n,m. Since
(0E)LU = (m + n)[Gr] and also (0E)LU = ®4[Sann] = [Gr] in U, we conclude m +n = 1.
Hence either m = 1 and n = 0, or m = 0 and n = 1. On the other hand, we know that
ELU =3 1eq+ [ExNU] = Y ez [Ex NU], from which it follows that Z* has cardinality m and
7~ has cardinality n. Namely, one of the sets Z* is empty, and the other contains one index only.

We conclude that the sum in involves one index only, that is, there is only one compact
set F in  x R such that (up to switching the orientation)

E=[FE].
This concludes the proof. ]

For later convenience, from now on we denote by E the closure of a precise representative of the
set found in Lemma [6.111

Remark 6.12. From the fact that (Q x R) NOE = ®(Z.nn) U A1 U Ag, we easily see that 7(F) =
7(®(Xann)) which, by Lemma is simply connected.

We denote by symg, (E) the set (symmetric with respect to the horizontal plane R? x {0}) obtained
applying to E the Steiner symmetrization with respect to R? x {0}.
Clearly symgy (E) N (0PQ x R) = A; with A; defined as in (6.13). We define

S = 0(symy (E))\ (A1 UAy), ST:=85n{x3>0}, S :=5n{x3<0}. (6.17)
Since P(symy (E)) < P(E) (here P(-) is the perimeter in R? [4]) we have H?(S) < H?(®(Zamn))-

Lemma 6.13 (Graphicality of d(symg(F)) and continuity up to the boundary). Suppose
that ma(T') < m1(T'1) + m1(L2)_and let & € Po(T) be a MY solution to (6.4). Let E be the finite
perimeter set given by Lemma and S* be as in (6.17). Then there is b € BV (int(n(E))) N
CO%n(E)) such that ST = G, g In particular SEN(R? x {0}) = QN a(n(E)).

Proof. Since E has finite perimeter, there exists a function 1 € BV (int(m(E))) such that $* = +3
[20]. So, we only need to show that v is continuous (note that m(E) is a closed set). Take a point
P in the interior of 7(E); if P’ = 7(®(w)) for some w, then w € Yann, since 7(®(C;)) C 9Q for
i =1,2 (recall Cy and C’gﬁform the boundary of ¥any,). If at none of the points of 7 Y (PYN®(Xann)

the tangent plane to ®(3,,y) is vertical, then ¢ is C* in a neighbourhood of P’ since it is the
linear combination of smooth functions (see the discussion after formula (6.21]) below, where details
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are given). Therefore we only have to check continuity of 1; at those points P’ for which there is
P € 771 (P") N ®(Tann) such that ®(X,,,) has a vertical tangent plane IT at P.

Consider a system of Cartesian coordinates centred at P, with the (x, y)-plane coinciding with II,
the z-axis coinciding with the line 771 (P’), and let z = z(x,y) (defined at least in a neighbourhood
of 0) be the analytic function whose graph coincides with ®(3.,,). This map, restricted to the
x-axis, is analytic and vanishes at © = 0; hence it is either identically zero or it has a discrete
set of zeroes (in the neighbourhood where it exists). We now exclude the former case: If z(-,0)
is identically zero, it means that around P there is a vertical open segment included in 7#~1(P’),
which is contained in ®(Xann). Let @ be an extremal point of this segment, and let Il be the
tangent plane to ®(X,,,) at Q. This plane must contain as tangent vector the above segment,
hence Il is vertical and contains 7~1(P’). Choosing again a suitable Cartesian coordinate system
centred at (Q we can express locally the surface @(fann) as the graph of an analytic function
defined in a neighbourhood of @ in Iy, and so the restriction of this map to 7—!(P’) is analytic
in a neighbourhood of @, hence it must be identically zero since it is zero in a left (or right)
neighbourhood of Q. What we found is that we can properly extend the segment PQ on the Q
side to a segment PR contained in ®(X,,,). This proves that ®(X,u,) N L(P') is relatively open
in 7=1(P"). Since it is also relatively closed, it coincides with the whole line 7=1(P’), which is
impossible since ®(X,,,) is bounded.

Hence the zeroes of the function z(+,0) are isolated, so we have shown:

Assertion A: Let P € 7Y (P') N ®(Zann). Then in a neighbourhood of P the only intersection
between ®(Xann) and 71 (P') is P itself.

Now, we can conclude the proof of the continuity of the function J Write 7= H(P) N ®(Zamn) =
{Q1,Qa,...,Qn} C Q xR. Tt follows that
2)(P') = H (=~ (P)NE) Zaj Q)3 (6.18)

where (Q);)3 is the vertical coordinate of @); and

-1 if Qj—le CR3 \ FE and Qij-i—l CE,
;=41 if ijle C F and QijJrl C R3 \ E, j=1...,m. (619)

0 otherwise,

Let (P}) C int(m(E)) be a sequence converging to P’, and write 7 (P))N®(Zann) = {QF, Q5,...,QF } C
Q0 x R. With a similar notation as above, we have

2)(PL) = H (=~ Y(PL) N E) Zg (@%)3. (6.20)

Now, if at every point @; the tangent plane to ®(Xann) is not vertical, then ®(Zan,) is a smooth
Cartesian surface in a neighbourhood of Q);, and so it is clear that, for k large enough,

m = my, Q?HQj, o*f%aj forall j =1,...,m, (6.21)

and the continuity of 1; at P’ follows. Therefore it remains to check continuity in the case that the
tangent plane to some @); is vertical.

Let @be one of these points, with associated sign & € {0,1}. By assertion A there is 6 > 0 so that
Q is the unique intersection between 7! (P") and ®(Xann) with vertical coordinate in [63—5, ag—i—(ﬂ.
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This means that the segments 7! (P’)N {@3 —0<wx3 < @3} and 7~ 1(P")N {63 < 13 < Q3 +4d} are
contained in either int(E) or R®\ E. In particular, there is a neighbourhood U C € of P’ such that
Ux{xs = Qs —0}and U x{z3 = 53%—5} are subsets of int(E) or of R?\ E. Suppose without loss of
generality that both are inside R?\ E (the other cases being similar), so that & = 0. We infer that,
for k large enough so that P| € U, there is a finite subfamily {Q;€ cj e J}of {QF,Q%, ..., ank}
contained in {@3 <xz < @3 + ¢} and which satisfies the following: The sum in restricted to
such subfamily reads as:

Do @)z = (@))s — (QF_ s+ -+ (@Q5)s — (@QF)s,

jed

where J = {j1,j2,...,51: j1 < Jo < -+ < ji} and ( )3>( G )s > > (Q s > ( ]1) (if
j1 = 1 necessarily 0;91 = 0 and the sum is zero). We have to show that this sum tends to an =0 as
k — 400, which is true, since each Q;“ tends to Cj Repeating this argument for each point Cj with
a vertical tangent plane to ®(3au,), the proof of continuity of ¢ in the interior of 7(E) follows.
Now, let P’ € 9(n(E)). If P' € QN d(n(F)) then every point in 7~ 1(P") N ®(T,nn) has vertical
tangent plane and we can argue as in the previous case. It remains to show continuity of J on
Or(E)NOQ. In this case we exploit the fact that the interior of ®(Z.,y,) is contained in  x R. We
sketch the proof without details since it is very similar to the previous argument. Let P’ € (91D Q,
thus 7=1(P") NIy consists of two distinct points Q1 and Q2. Let (P]) be a sequence of points in
7(E) converging to P. For P| € 9P it follows 7~ 1(P]) N1 = {Q%, @5} and the continuity of
¢ follows from the continuity of ¢ on OPQ, whereas if P/ is in the interior of (E) there holds
Y PNl = {QF, Q5 ..., Qﬁlk} Using the continuity of ® up to (', it is easily seen that all
such points must converge, as k — 400, either to @)1 or to Q2. Hence we can repeat an argument
similar to the one used before. O

Lemma 6.14. Suppose mo(I') < m1(I'1) + mq1(L'2) and let ® € Po(T') be a MY solution to (6.4)).
Let E be the finite perimeter set given in Lemma and let S be defined as in . Then there
is an injective map ® € H'(Dann; R?) N CY(Zann; R?) which maps 0Xann weakly monotonically to T
and such that &D(iann) =S5, and furthermore

H2(S) = / 100, & A Do, Bl = / 1000, ® A Do, Bl = (T, (6.22)
In particular, ® is a solution of (6.4)).
Proof. By Lemma [6.13] there is ¢ € BV (int(x(E))) N C%(w(E)) such that S* = L As a

consequence, for p € 9PN we have ¢(p) = (p) and for p € d(w(E)) N Q we have ¥ (p) =
By Lemma 7(E) is simply connected, and so the maps U% : 7(E) — R3 given by U¥(p) :=
(p, :I:qz(p)) are disk-type parametrizations of S*. Moreover ST and S~ glue to each other along
d(symy (E)) N (R? x {0}) = 1 U B2, where 81 and 3 are the curves given by Lemma @l .
Let (0,%) € Weony be a minimizer of 7 which satisfies properties of Theorem Setting
= (B4, f2) and extending ¥ to zero in Q\ 7(E) (still calling 9 such an extension), by minimality
we get

2F(0,4) < 2F(5,9) = H*(S),

whence

2F (0,1)) < HA(S) < HAH®(Zamn)) = / |0, @ A D, ®@|dw = mia(T). (6.23)

ann
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We are in the hypotheses of Lemma (a), therefore there exists a map ® € P,(T") parametrizing
g L@ E@)) Y g, L (NE@)) which is a minimizer of (6.4]). In particular, 2F (o, ) = ma(I'), and all

inequalities in ([6.23)) are equalities. We deduce also that (7,) is a minimizer of F in Weony, so that
by Theorem ‘ is analytic in int(7(F)). As a consequence it belongs to Wi !(int(r(E));R3).
Applying Lemma|6.5| (a) and Lemma (a), we get the existence of ® € Py(T') as in the statement,
and we have concluded. d

Lemma 6.15. Suppose ma(I') < mi(T'1) +m1(T2) and let & € Py(T") be a MY solution to .
Let E be the finite perimeter set given in Lemma and let S be defined as in . Then
D (Xann) = S and in particular

E= Symst(E)'

Proof. By Lemma we have H?(S) = ma(T') from which it follows P(symy (E)) = P(E). Then
we can apply [20, Theorem 1.1] to deduce the existence of two functions f,g : 7(E) — R of
bounded variation, such that *E = Gy UG, (up to H*-negligible sets). We will show that f = v

and g = —{Z. To this aim, thanks again to |20, Theorem 1.1], we know that for a.e. p € n(E), the
two unit (external to E) normal vectors v/ = (V{, Vg, 1/5:) and vy = (V],v3, 1) to Gy and G, at the

points (p, f(p)) and (p, g(p)), respectively, satisfy
(y{yygvyg):(yf,yg’—yg), (624)

To conclude the proof it is then sufficient to show that f = —g a.e. on m(E): indeed this would
readily imply F = symg (F) and hence f = . Let p € int(n(F)); if

Tr—l(p)mS:{PlaPQa"'ka}y (625)

then for a.e. p € int(n(FE)) it is k < 2. Now we show that, for all p € int(7(E)), if £ > 1, none of the
points {Py, Pa, ..., Py} has vertical tangent plane. Assume by contradiction that P; has vertical
tangent plane IT;. In this case II; NS consists, in a neighbourhood U of Py, of at least 2 curves
crossing transversally (see [37, Section 373]) at P;. These curves, by assertion A in the proof of
Lemma , intersect m~!(p) only at P;. Moreover, in a neighbourhood V of P, with UNV = @,
I1; N S consists of (at least) one curve passing through P. This curve is locally Cartesian if 71 (p)
crosses S transversally in P», otherwise it is locally the union of two curves ending at P,, with
vertical tangent plane, which lie on the same side of II; with respect to 7~ '(p). In both cases,
we deduce that there is a point ¢ € II; N (2 x {0}) for which 771(q) intersects transversally S in
at least three points. As a consequence, for all ¢’ in a neighbourhood of ¢ in €2, the line 771(¢’)
intersects S at more than two points, which is a contradiction. We have proved the following:

Assertion: for all p € int(w(E)) the line 7~ 1(p) intersects S either transversally at two points
Py, P>, or at only one point P;.

Now we see that the latter case cannot happen. Indeed, first one checks that in this case the
intersection cannot be transversaﬂ and that 7—!(p) must be tangent to S at P;. Let II; be the
vertical tangent plane to S at P;. Let II{ be the vertical plane orthogonal to II; passing through
P;. In a neighbourhood of P;, the unique curve in SN Hf must be the union of two curves joining
at P, and these curves must belong to the same half-plane of Hf‘ with boundary 7= 1(p). As a
consequence, if p’ € QN Hf is in that half-plane, then 7—!(p') consists of at least two points; if
p' lies in the opposite half-plane, then 7~!(p') is empty. This means that necessarily p € 97 (E).
Namely, the previous assertion can be strengthened to:

22This is a consequence of the fact that the line 7~ (p) must lie outside the set E, with the only exception of the
point P;. Indeed, otherwise, there must be some other point in 7r71(p) NS, E being compact in R3.
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For all p € int(E) the line 7~ 1(p) intersects S transversally at exactly two points Py, Ps.

The consequence of this is that f and g belong to Wl!(int(7(F))) and are also smooth in
int(w(F)). Indeed, let p € int(w(E)), so f(p) # g(p), and

)N S ={(p, f(p)), (p.9(p))}. (6.26)

Since S is locally the graph of smooth functions around (p, f(p)) and (p,g(p)), these functions
coincide with f and g, respectively. We can now conclude the proof of the lemma: let us choose a
simple curve a : [0,1] = 7(E) with a(0) € dPQ and (1) = p such that holds for H' a.e.
p € a([0,1]). Since f o« and g o a are differentiable in [0, 1], condition uniquely determines
the tangent planes to Gy and Gy, and hence it implies that the derivatives of f o« and g o « satisty

(foa)(t)+ (goa)(t) =0, for a.e. t € [0,1]. (6.27)

By continuity of f and g one infers foa +goa = ¢ a.e. on [0,1] (actually everywhere since
f + g is continuous), for some constant ¢ € R. To show that ¢ = 0 it is sufficient to observe that

foa(0) = ¢(a(0)) and g o a(0) = —p(a(0)). Hence f(p) = —g(p), and the thesis of Lemma [6.17]
is achieved. O

We are now in a position to conclude the proof of Theorem

Proof of Theorem[6.8, Property follows by Lemma and Lemma Properties |(2)H(4)
follow by Lemma[6.13]and Lemmal[6.15] To see that j; are C it is sufficient to observe that, since

St and S~ are Cartesian surfaces, their intersection coincides with the set SN {x3 = 0} which, by
standard arguments, is the image of the zero-set of ®3, which is smooth. O

Theorem 6.16. Assume n =2 and I'; not planar for j = 1,2. Then

2 in  F(s,¢) = ma(D). 6.28
pomn (s,¢) = ma(I') (6.28)

Proof. Step 1: 2ming, e)ew,on, F (8, ¢) < ma(D).
Suppose first mo(T') < my(T'1) + m1(F2). Let ® € Po(T") be a MY solution to (6.4) and let
S := ®(Xann). By Theorem the following properties hold:

e SN (R? x {0}) = B1 U By with #; and Bo disjoint embedded analytic curves joining q; to po
and g9 to p1, respectively;

e S is symmetric with respect to R? x {0};

e for ¢ = 1,2 the closed region F; enclosed between 8?(2 and f; is convex;

o St =8N {x3 >0} is the graph of ¢ € WhH(U) N CO(U), where U = Q\ (B, U Ey) is the
open region enclosed between 0P°Q and £ U fo.

Let (0,%) € Weony be given by

0 inQ\U
o:=(01,02) and v := {lZ 12 U,\ ’

where 0;([0,1]) = 8; for i = 1,2. Then clearly ST = gw'_(m) and

1
(Syggi/rvlconv f(sﬂ () S ‘F(a-7 d}) = H2(S+) - §m2(r‘)‘
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Now, suppose ma(I') = mi(I'1) + mi(I'2). For j = 1,2, let ®; € Pi(I';) be a solution to (6.1
and S; := @; (B1). Let Dj; be the closed convex hull of T';: clearly Dy N Dy = @. By Lemma
(with F' = ) each S; satisfies the following properties:

e S;N(R? x {0}) = B; C D; is a simple analytic curve joining p; to g¢;;
e S; is symmetric with respect to R? x {0};

. Sj_ := SN{x3 > 0} is the graph of a function {/;j e WhL(U;)nC%(U,), where U; C Dj is the
open region enclosed between (9JD Q and fj;

o O\ U, is convex.
J

Let (0,%) € Weony be given by

0 inQ\ (Ul
o= (0-1)0-2) and ”(/} = — ln \ ( 1 - 2),
Y; inUj for j=1,2,

where o1([0,1]) := p1gz and 02([0,1]) := B2 U @p1 U B1. Then ST := S USS = gw_(m) and

Lmin F(5.0) < Flo) = HAS) = (1) +m (o)) = gma),

and the proof of step 1 is concluded.

Step 2: 2ming, e)ew,on, F (5,¢) = ma(L).
Let (0,1) € Weony be a minimizer satisfying properties of Theorem If E(o1)UE(02) =
@, by Step 1 we can apply Lemma and find an injective parametrization ® € P(I") such that

®;(0¥ann) = I' weakly monotonically, ®(Xann) = Gy UG_y, and
2F(o,7¢) = / |0w, @ A Oy, @|dw > mao(T).

If instead E(01) U E(02) # O, similarly we find injective parametrizations ®; € P1(I'1) and @9 €
P1(T2) such that ®;(9B1) = I'j weakly monotonically for j = 1,2, ®1(B1) U ®2(B1) = Gy U G_y,
and

2.7:(0',1/1) = /B ‘811,1‘1)1 VAN 8w2<1>1|dw —l—/B !8w1<I>2 A an(I)Q‘dw > ml(f‘l) + ml(rg) > THQ(F).
1 1

This concludes the proof. O
Now the proof of Theorem [6.4] is easily achieved.

Proof of Theorem [6.4) Let ® € Po(T'), S, ST, S~ be as in the statement. By arguing as in the
proof of Theorem we can find (0,1) € Weony such that ST = G Lol (B Then by Theorem
6.16] we have

]:(Uﬂb) = imQ(F) - (s C{Iely\}lconv ]:(370 (629)

Hence (0,1)) is a minimizer for F in W; moreover by the properties of S it also satisfies properties

[CI5] of Theorem B.11
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(ii)l Let ®; € Pi(T'y), S; for j = 1,2, ST, S~ be as in the statement. Again arguing as in the
proof of Theorem [6.16] we can find (o, %) € Weony such that S* =G Lol (NE@) and (/6.29)) holds,
so that (o,) is a minimizer of F in W satisfying properties of Theorem ﬁ

Let (0,%) € Weony be a minimizer of F in W satisfying properties of Theorem 5.1
Let also

S= Gy @) Y I oL@Ew@):

Suppose first E(o1) N E(02) = . Then there is ® € Py(I') which is a MY solution to (6.4)) such
that ®(X,n,) = S: indeed, to see this, it is sufficient to apply Lemma since by Theorem

we have

2F(o,9) = ma(T). (6.30)
Now, suppose E(01) N E(02) # O; then with a similar argument we can construct ®; € Py(I';) for
j = 1,2 solutions to (6.1)) such that ®;(B1) U ®2(B1) = S. The proof is achieved. O

7 Final remarks and open problems

In this section we describe some motivations of the present study, possible applications and related
problems. Furthermore, we briefly comment on the hypotheses of our setting and on possible
extensions and generalizations of our results.

Connection with the Plateau problem in high codimension: The main motivation of
our study is related to the classical non-parametric Plateau problem in codimension greater than
1. Specifically, our setting is suited for the description of the singular part of the L!-relaxation
A(-,U) of the Cartesian 2-codimensional area functional

/ \/1 + |Vui|? + |Vug|? + (detVu)? du, u = (up,us) € CHU;R?), (7.1)
U

computed on nonsmooth maps. The functional A(-,U) computed out of C*(U, R?) is mostly un-
known [1,28], up to a few exceptions, see [1.[7,|8/14,41]. One of the remarkable exceptions is given
by the vortex map uy : By(0) \ {0} C R? — R? uy(x) := fz: in this case it can be proved [9-11]
that

A(uV,Bg(O))—/B(O)\/l—l—!VuV]? dz + inf F(o,10), (7.2)

where F(o,1) is as in (1.7) with Q = Ryy = (0,2¢) x (—1,1) and the Dirichlet datum ¢ : dRyy —

[0,4+00) is given by
\J1—22  on 0P Ry,
p(21,22) == 2 0 2 (7.3)
0 on J Rgg,

with 0P Ryy = ({0} x (—1,1)) U ([0,2€] x {—1}) U ({2¢} x (—1,1)) and 0°Ryp = (0,2¢) x {1}. Here
the infimum is taken over all pairs (7,1) € ¥ x BV (Rg,) with ¢ a unique curve in Ry joining (0, 1)
to (2¢,1) and ¢ = 0 a.e. in E(c). This setting is similar to the catenoid case, with the notable
difference that the Dirichlet boundary is here extended to include the basis (0,2¢) x {—1} and the
free curve is just one simple curve o (see Figure @

To construct a recovery sequence for , it is crucial to analyse the existence and regularity of
minimizers of F. In particular, it is necessary to show that there is at least one sufficiently regular
minimizer (o,1). The shape of the curve ¢ and the graph of ¢ are related to the vertical part
of a Cartesian 2-current in By(0) x R? ¢ R* which arises as a limit of (the graphs of) a recovery
sequence (vy) C CH(By(0); R?) for A(uy; Be(0)).

48



Figure 6: The domain Ry (example of the vortex map uy ). The graph of ¢ on P Ry is emphasized
(in particular ¢ = 0 on the lower horizontal side), together with an admissible curve o, which in
this specific case partially overlaps the Dirichlet boundary. In this example n = 1.

According to what happens for the catenoid, also in this case we have a dichotomy for the
behaviour of minimizers (o,1). When ¢ > 0 is small, the solution (o,) consists of a curve o
joining p and ¢ having relative interior contained in Rgy, and so that F(o) is convex; at the same
time the graph of ¢ on Ry \ E(0) is a sort of half-catenoid, so that if we double it considering
also its symmetric with respect to the plane containing Ray, it becomes a sort of catenoid spanning
two unit circles and constrained to contain the segment (0,2¢) x {—1}. When instead ¢ is larger
than a certain threshold, the solution reduces to two circles spanning the two unit parallel circles.
Notice however that in the setting of on a part of the Dirichlet boundary we have ¢ = 0. This
leads to a number of additional difficulties which must be treated separately with approximation
techniques (we refer to [10] for the details).

Another relevant case in which the relaxation is known, is for the so-called triple junction function
ur : Bi(0) ¢ R?> — R?, a map taking only three values, vertices of an equilateral triangle of
unit side-length (see [14,/41]). Also in this case, in order to compute the singular contribution of
A(ur; B1(0)), a Cartesian Plateau problem with a partial free boundary must be solved. Following
our approach, it is possible to reduce this problem to our setting. In genera]lﬂ7 given Q C R? and
u € BV (£;R?), the singular contribution of the relaxed area functional A(u; ) coincides with the
mass of vertical parts in the optimal Cartesian current 7T, with underlying map w that arises as
limit of the graphs G,, of a recovery sequence vy :  — R2. Generally, a few can be said on the
structure and properties of these vertical parts. However, for optimal Cartesian currents T, as
above, they enjoy minimality properties under suitable constraints. In the aforementioned known
cases (a suitable projectior@ of) these vertical parts is exactly the area minimizing solution of
Cartesian Plateau type problem with partial free boundary.

We emphasize that understanding the features of vertical parts of optimal Cartesian currents for
the relaxed graph area is crucial in order to detect the behaviour of the area functional. In more

23We restrict the discussion to the 2 dimensional case (and codimension 2), although this is valid for any dimension
and codimension.

24These currents live in Q x R2, but stands above 1-dimensional subsets of 2, so that, with suitable thecniques,
they can be identified with integral currents of codimension 1 (we refer to [9-11}/14}/41] for more detail).
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general setting and for general maps u : Q C R? — R? only partial results are currently available,
and specifically, without a finer analysis of the singularities of these Cartesian currents only upper
and lower bounds can be obtained (see e.g. [15,42], where some estimates are given for nonsmooth
St-valued maps).

Hypotheses: We assume that {2 is convex. Convexity is crucial to ensure existence of solutions
even in the classical non-parametric setting with no free boundary. Indeed, there are examples
in which € is not convex, and a minimizer of the area functional does not attain the Dirichlet
boundary datum.

We also point out that we assume injectivity of the free-boundary curves o; (see hypothesis (i)
in the Introduction). This assumption is crucial in order to define the sets F(o;) and then to solve
the problem in a non-parametric form. However, if one allows o; to have self-intersections, one can
look for a disk spanning the curve I', in (|1.8)) which is not a Jordan curve anymore. In this case
we have to face a singular Plateau problem such as the one recently studied in [21] using results
of [35]. Notice that in this case the curves o; will be also planar and some additional hint to face
this problem can be found in [19].

Further developments: In the present analysis we have assumed that the free boundary curves
are included in a plane. Of course, one may ask for domains 2 which are subset of a manifold (not
necessarily a plane), leading to additional difficulties, since the symmetrization with respect to the
plane is strongly used in our arguments.

Furthermore, the correspondence between the Meeks and Yau solutions is obtained in the special
cases n = 1,2, although we believe that it holds also for n > 3. However, due to technical difficulties
which renders the setting much more involved, we leave this generalization to future developments.

A further interesting question is the following. Suppose that 0f2 is smooth; then one may ask
whether each free boundary 0E(o;) is smooth up to 92, and moreover if there is some special kind
of contact angle condition at 9€2, due to minimality. This question should need further investigation
in the future.

The problem considered in this paper seems not directly related to the partial wetting phe-
nomenon, an interesting behaviour of soap films pointed out in [3], see also [17] and [12], [13],
where the soap film (typically in a non Cartesian context) does not attain the boundary condition,
leaving unwetted a part of the wire I'. However, when the boundary datum ¢ is allowed to vanish
(a case not covered by the results of the present paper), as in the case of the “catenoid” constrained
to contain the segment [0,2¢] x {—1} mentioned in Section it may happen that the singular
solution consisting of the two half-disks does not wet that segment.

We conclude this section with a couple of additional examples which are open problems and we
consider to be interesting, relating the problem (and suitable variants) studied in this paper with
the relaxation of the area functional in dimension 2 and codimension 2.

Let 4 : B;(0) C R? — S! be the map defined in polar coordinates

a(p7 9) _ 62i6,

i.e., the vortex map of degree 2. Our conjecture is that the relaxed area functional A(u; B,(0)) is
given by

/ V11 VAP de + int{Fi(o, 1) + Fa(6,12)). (7.4)
By(0)

where both F;, i = 1,2, are as the functional in (1.7]), but applied to different domains and variables.
Specifically, F7 is applied to Q = Ray, and ¢, 0 = (01) and ¢y = 1 are exactly as in the case of
uy (see (7.2) and (7.3))). Instead, for Fa, 2 = Ry while ¢ = (01,02) = (01,02), and ¢ are as in
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the example of the catenoid in the introduction. Notice that minimizations of 77 and F» are not
independent each other, since o1 = 77.

Another nontrivial example is given by a map u € BV (B,(0); R?) which we assume to jump on
three radii of By(0) (not necessarily at 120°-degrees angles). Depending on the trace values of u
on these radii, we consider the Plateau problem with partial free boundary as described below: we
take as domain 2 a triangle and o = (07, 09, 03) are three curves in {2 connecting the three pairs of
vertices. Let ¢ be a boundary datum on 9f2 that is null on the three vertices of {2, and denote by
H(o;) the region enclosed between o; and the side /; of Q with the same vertices. We conjecture
that the singular contribution in A(u; By(0)) is related to the infimum of the quantity

3
@\ U H @) + 30 ([ VIFIT0P do+1D761@) = 19\ H ()| + [ 10— ol ant)
=1 i

8 Appendix

We recall here some classical facts about convex sets and Hausdorff distance.

If A, B C R? are nonempty, the symbol dy (A, B) stands for the Hausdorff distance between A
and B, that is

di(A, B) := max {sup dgp(a), sup dA(b)} ,
acA beB

where dp(-) is the distance from the nonempty set F' C R2. If we restrict dy to the class of closed
sets, then dy defines a metric. Moreover:

(H1) da(z) < dp(z) + du (A, B) for every = € R?;

(H2) If K := {K C R?nonempty and compact} then (K, dpy) is a complete metric space;
(H3) If A, B € K are convex then dy(A, B) = dy(0A, 0B);
(H4)

H4) If A € K is convex, then there exists a sequence (A,,), C K of convex sets with boundary of
class C* such that dp(A,, A) = 0 as n — +00;

(H5) Let (A,), be a sequence of nonempty closed convex sets in R?, A C R? is nonempty and
dp(An, A) — 0 as n — +oo. Then A is convex as well;

(H6) Let A,, A € K be convex such that dy(A,, A) — 0 and let = € int(A); then x € A, for all
n € N sufficiently large;

(H7) Let A and B be nonempty closed subsets of R? with dy(A, B) = e. Then A C B and
B C A} where, for all nonempty E C R?, we have set Ef := {z € R?: dg(z) <&}

Remark 8.1. Property is straightforward, while |[(H2)|is well-known. Also property is
easily obtained (see, e.g. [43]). Concerning property we refer to, e.g., |6, Corollary 2]. To see
from we have that d4, — da pointwise, and therefore since d4, is convex, also d4 is
convex, which implies A convexlTj Let us now proveby contradiction; assume that there exists
a subsequence (ny) such that da, () > 0 for all k € N; then x € R2\ A, , da,, (z) = doa,, (),
and using |(H1)| twice,

doa(z) < doa,, () +du(9An,,04) = da,, (z) + dg(An,, A)
< dal@) +2dy (A, An,) = 2dg (A, Ap,) = 0,

#Gince A is closed, it coincides with the sublevel {x : d(z, A) < 0}, which is convex.
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the first equality following from |(H3)| This implies z € 0A, a contradiction. Finally property |(H7)
is immediate. Indeed if a € A then

dp(a) <supdp(z) <dy(A,B)=c¢,
z€A

hence a € B and so A C Bf. In a similar way we get B C A}.
We begin with the following standard result that will be useful later:

Lemma 8.2. Let K € IC be convex with nonempty interior. Then there exists a 1-periodic map
o € Lip(R; R?), injective on [0,1), such that 5([0,1]) = 0K and

~ ~

a(t) =a(0) —l—E(E)/O (s)ds, 7F(t) = (cos(A(t)), sin(A(t))) for all t € [0,1],

with 0: R — R a non-decreasing function satisfying @\(t +1) — g(t) = 27 for all t € R, and
(o) = fol |6’ (s)|ds the length of the curve.

Notice that ¢ is differentiable a.e. in R and o/(t) = £(5)7(t), so that the speed modulus of the
curve |6'(t)| = () is constant.

Proof. We start by approximating K by convex sets with C*° boundary. By for all n € N
there is a convex compact set K,, C R? with boundary of class C* and such that dg (K, K) — 0 as
n — +oo. For any n € N we let 5,, € C®°(R;R?) be a 1-periodic function injectively parametrizing
0K, on [0, 1); therefore 7,([0,1]) = 0K, and

Gn(t) = 3,(0) + £(5,) /0 Fn(s)ds,  An(t) = (cos(Bn(t)), sin(@,())) Vit € [0,1],

where 6,, € C*°(R) is a non-decreasing function with ,,(t + 1) — 6, (t) = 2, for all t € R. In view
of (H2), by construction we can find g € K, R > r > 0 such that B,(z¢) C K,, C Br(x¢) for all
n € N, and therefore H*(9B,(z¢)) < £(G,) = HY(0K,) < H'(OBgr(x0)); where the last inequality
follows since 0K,, = 7k, (0Br(xo)) and from the fact that, since K, is convex, the projection g,
on K, does not increase the lengths, thus, up to subsequence, ¢(7,,) — m € (0,400) as n — +oc.
Moreover, up to subsequence, we might assume ,(0) — p € K. On the other hand, observing
that

1 t+1
/ |67,(s)|ds = / 0! (s)ds = 2m, for all t € R,
¢ t

we have that, again up to subsequence, @\n A §A€ BVlOC(I@) and pointwise (by Helly selection
principle), with 6 a non-decreasing function with 6(¢ 4+ 1) — 6(t) = 27 for all t € R. We also have
An = 7 in BVioe(R; R?) where 3(t) = (cos(6(t)), sin(A(t))).
We let & € Lip(R; R?) be the 1-periodic curve, injective on [0, 1), defined as
t
a(t):=p+ ﬁ/ ~(s)ds VteR. (8.1)
0
Note that m = £(7). Then clearly &, — & in WH1([0, 1]; R?), since
1
15~ o) = [ 1700 — €@)R) e
1
< 166) ~ £@)| +3) [ () =70t .
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By the continuous embedding W1([0,1]; R?) c C°([0,1]; R?) (and by 1-periodicity, on R) we also
get 0, — ¢ uniformly on [0, 1]. This, together with property |(H3)| gives

dp(0K,5([0,1])) < du(0K,0K,) + du(o,([0,1]),0([0,1])) — 0,

which in turn implies ([0, 1]) = 0K. The injectivity of o on [0,1) follows from expression (8.1),
the fact that m > 0 and that K is convex with nonempty interior.
O

Corollary 8.3. Let K € K be convex with nonempty interior. Let q,p be two distinct points on
0K, and let pq C OK be the relatively open arc with endpoints q and p clockwise oriented. Then
there exists an injective curve o € Lip([0, 1];R?) such that o((0,1)) = pg, o(0) = q, o(1) = p, and

o(t)y=q+ E(U)/O v(s)ds, ~(t) = (cos(0(t)), sin(0(t))) for all t € [0,1],

with 6 a non-decreasing function satisfying 6(1) — 6(0) < 27.

Proof. Lemma provides & € Lip([0, 1]; R?) parametrizing K. Then there are two values t1,ty €
[0,1], t1 < ta, with ¢ = &(t1) and p = 0 (t2) so that the existence of o follows by reparametrizing
the interval [t1,t2], and all the properties follows from the corresponding properties of 7. O
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