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Abstract. We prove that the first eigenvalue of the fractional Dirichlet-Laplacian of order s on
a simply connected set of the plane can be bounded from below in terms of its inradius only. This

is valid for 1/2 < s < 1 and we show that this condition is sharp, i. e. for 0 < s ≤ 1/2 such a
lower bound is not possible. The constant appearing in the estimate has the correct asymptotic

behaviour with respect to s, as it permits to recover a classical result by Makai and Hayman in

the limit s↗ 1. The paper is as self-contained as possible.
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1. Introduction

1.1. Background. For an open set Ω ⊂ RN , we indicate by W 1,2
0 (Ω) the closure of C∞0 (Ω) in the

Sobolev space W 1,2(Ω). We then consider the following quantity

λ1(Ω) := inf
u∈W 1,2

0 (Ω)\{0}

ˆ
Ω

|∇u|2 dx
ˆ

Ω

|u|2 dx
,

which coincides with the bottom of the spectrum of the Dirichlet-Laplacian on Ω. Observe that for
a general open set, such a spectrum may not be discrete and the infimum value λ1(Ω) may not be

attained. Whenever a minimizer u1 ∈W 1,2
0 (Ω) of the problem above exists, we call λ1(Ω) the first

eigenvalue of the Dirichlet-Laplacian on Ω.
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By definition, such a quantity is different from zero if and only if Ω supports the Poincaré
inequality

c

ˆ
Ω

|u|2 dx ≤
ˆ

Ω

|∇u|2 dx, for every u ∈ C∞0 (Ω).

It is well-known that this happens for example if Ω is bounded or with finite measure or even
bounded in one direction only. However, in general it is quite complicate to give more general
geometric conditions, assuring positivity of λ1. In this paper, we will deal with the two-dimensional
case N = 2.

In this case, there is a by now classical result which asserts that

(1.1) λ1(Ω) ≥ C

r2
Ω

,

for every simply connected set Ω ⊂ R2. Here C > 0 is a universal constant and the geometric
quantity rΩ is the inradius of Ω, i.e. the radius of a largest disk contained in Ω. More precisely,
this is given by

rΩ := sup
{
ρ > 0 : ∃x ∈ Ω such that Bρ(x) ⊂ Ω

}
.

Inequality (1.1) is in scale invariant form, by recalling that λ1 scales like a length to the power −2,
under dilations.

Such a result is originally due to Makai (see [25, equation (5)]). It permits in particular to prove
that for a simply connected set in the plane, we have the following remarkable equivalence

(1.2) λ1(Ω) > 0 ⇐⇒ rΩ < +∞.

Indeed, if the inradius is finite, we immediately get from (1.1) that λ1(Ω) must be positive. The
converse implication is simpler and just based on the easy (though sharp) inequality

λ1(Ω) ≤ λ1(B1)

r2
Ω

.

Here B1 ⊂ R2 is any disk with radius 1 and the estimate simply follows from the monotonicity with
respect to set inclusion of λ1, together with its scaling properties.

The proof in [25] runs very similarly to that of the Faber-Krahn inequality, based on symmetrization
techniques (see [20, Chapter 3]). It starts by rewriting the Dirichlet integral and the L2 norm by
using the Coarea Formula; then the key ingredient is a clever use of a particular quantitative
isoperimetric inequality in R2 (a Bonnesen–type inequality), which permits to obtain a lower bound
in terms of rΩ only.

It should be noticed that Makai’s result has been overlooked or neglected for some years and then
rediscovered independently by Hayman, by means of a completely different proof, see [19, Theorem
1]. For this reason, we will call (1.1) the Makai-Hayman inequality.

It is interesting to remark that the result by Makai is quantitatively better than the one by
Hayman: indeed, the former obtains (1.1) with C = 1/4, while the latter is only able to get the
poorer constant C = 1/900 by his method of proof.

This could suggest that the attribution of this result to both authors is maybe too generous. On
the contrary, we will show in this paper that, in despite of providing a poorer constant, the method
of proof by Hayman is elementary, flexible and robust enough to be generalized to other situations,
where Makai’s and other approaches become too complicate or do not seem feasible.
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In any case, we point out that the exact determination of the sharp constant in (1.1), i. e.

CMH := inf
{
λ1(Ω) r2

Ω : Ω ⊂ R2 simply connected with rΩ < +∞
}
,

is still a challenging open problem. The best result at present is that

0.6197 < CMH < 2.13,

obtained by Bañuelos and Carroll (see [2, Corollary 1] for the lower bound and [2, Theorem 2] for
the upper bound). The upper bound has then been slightly improved by Brown in [14], by using a
refinement of the method by Bañuelos and Carroll.

The inequality (1.1) has also been obtained by Ancona in [1], by using yet another proof. His
result comes with the constant C = 1/16, much better than Hayman’s one, but still worse than
that obtained by Makai. The proof by Ancona is quite elegant: it is based on the use of conformal
mappings and the so-called Koebe’s one quarter Theorem (see [22, Chapter 12]), which permits to
obtain the following Hardy inequality for a simply connected set in the plane

1

16

ˆ
Ω

|ϕ|2

dist(x, ∂Ω)2
dx ≤

ˆ
Ω

|∇ϕ|2 dx, for every ϕ ∈ C∞0 (Ω).

From this, inequality (1.1) is easily obtained (with C = 1/16), by observing that

rΩ = sup
x∈Ω

dist(x, ∂Ω),

and then using the definition of λ1(Ω). The conformality of the Dirichlet integral plays a central
role in this proof. The result by Ancona is quite remarkable, as the Hardy inequality is proved
without any regularity assumption on ∂Ω. A generalization of this result can be found in [23].

1.2. Goal of the paper and main results. Our work is aimed at investigating the validity of a
result analogous to (1.1) for fractional Sobolev spaces. In order to be more precise, we need some
definitions at first. Let 0 < s < 1 and let us recall the definition of Gagliardo-Slobodeckĭı seminorm

[u]W s,2(RN ) =

(¨
RN×RN

|u(x)− u(y)|2

|x− y|N+2 s
dx dy

) 1
2

.

Accordingly, we consider the fractional Sobolev space

W s,2(RN ) =
{
u ∈ L2(RN ) : [u]W s,2(RN ) < +∞

}
,

endowed with the norm

‖u‖W s,2(RN ) = ‖u‖L2(RN ) + [u]W s,2(RN ).

Finally, we consider the space W̃ s,2
0 (Ω), defined as the closure of C∞0 (Ω) in W s,2(RN ). Observe

that by definition the elements of W̃ s,2
0 (Ω) have to be considered on the whole RN and they come

with a natural nonlocal homogeneous Dirichlet condition “at infinity”, i.e. they identically vanish
on the complement RN \ Ω.

We then consider the quantity

(1.3) λs1(Ω) := inf
u∈W̃ s,2

0 (Ω)\{0}

[u]2W s,2(RN )

‖u‖2L2(Ω)

.
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Again by definition, this quantity is non-zero if and only if the open set Ω supports the fractional
Poincaré inequality

c

ˆ
Ω

|u|2 dx ≤
¨

RN×RN

|u(x)− u(y)|2

|x− y|N+2 s
dx dy, for every u ∈ C∞0 (Ω).

This happens, for example, if Ω is an open bounded set (see [9, Lemma 2.4]). As in the local
case, whenever the infimum in (1.3) is attained, this quantity will be called first eigenvalue of the
fractional Dirichlet-Laplacian of order s. We recall that the latter is the linear operator denoted
by the symbol (−∆)s and defined in weak form by

〈(−∆)su, ϕ〉 =

¨
RN×RN

(u(x)− u(y)) (ϕ(x)− ϕ(y))

|x− y|N+2 s
dx dy, for every ϕ ∈ C∞0 (Ω).

In this paper we want to inquire to which extent the Makai-Hayman inequality (1.1) still holds for
λs1 defined above, still in the case of simply connected sets in the plane. Our main results assert that
such an inequality is possible, provided s is “large enough”. More precisely, we have the following

Theorem 1.1 (Fractional Makai-Hayman inequality). Let 1/2 < s < 1 and let Ω ⊂ R2 be an open
simply connected set, with finite inradius rΩ. There exists an explicit universal constant Cs > 0
such that

(1.4) λs1(Ω) ≥ Cs
r2 s
Ω

.

Moreover, Cs has the following asymptotic behaviours1

Cs ∼
(
s− 1

2

)
, for s↘ 1

2
and Cs ∼

1

1− s
, for s↗ 1.

Remark 1.2. We point out that the constant Cs appearing in the above estimate exhibits the
sharp asymptotic dependence on s, as s↗ 1. Indeed, by recalling that for every open set Ω ⊂ RN
we have (see [8, Lemma A.1])

(1.5) lim sup
s↗1

(1− s)λs1(Ω) ≤ CN λ1(Ω),

from Theorem 1.1 we can obtain the usual Makai-Hayman inequality for the Dirichlet-Laplacian,
possibly with a worse constant. We recall that (1.5) is based on the fundamental asymptotic result
by Bourgain, Brezis and Mironescu for the Gagliardo-Slobodeckĭı seminorm, see [6]. We refer to
[13] for some interesting refinements of such a result.

The previous result is complemented by the next one, asserting that for 0 < s ≤ 1/2 a fractional
Makai-Hayman inequality is not possible. In this way, we see that even for s↘ 1/2 the asymptotic
behaviour of Cs is optimal, in a sense.

1Throughout the paper, the writing

f(s) ∼ g(s), for s→ s0,

has to be intended in the following sense: there exists C ∈ R \ {0} such that

lim
s→s0

f(s)

g(s)
= C.
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Theorem 1.3 (Counter-example for 0 < s ≤ 1/2). There exists a sequence {Qn}n∈N ⊂ R2 of open
bounded simply connected sets such that

0 < rQn ≤ C, for every n ∈ N,

and

lim
n→∞

λs1(Qn) = 0, for every 0 < s ≤ 1

2
.

Remark 1.4. In [16, Theorem 1.1], a different counter-example for 0 < s < 1/2 is given. Apart
from the fact that in [16] the borderline case s = 1/2 is not considered, one could observe that
strictly speaking the counter-example in [16] is not a simply connected set, since it is made of
countably many connected components.

As it will be apparent to the experienced reader, our example will clearly display the role of
fractional s−capacity in the failure of the Makai-Hayman inequality for 0 < s ≤ 1/2 (see for
example [26, Chapter 10, Section 4] for fractional capacities). Indeed, the range 0 < s ≤ 1/2 is
precisely the one for which lines have zero fractional s−capacity. This implies that, by removing
a finite number of segments from an open set, the first eigenvalue λs1 remains unchaged, while this
operation heavily affects the inradius. However, even if this is the ultimate reason for such a failure,
our proof will be elementary and will not explicitly appeal to the properties of capacities.

We point out that, for practical reasons, our sequence {Qn}n∈N is given by a square with side
length 2n, from which a periodical array of segments is removed. If we scale this sequence by a
factor 1/n, we could produce another sequence contradicting the fractional Makai-Hayman, with
the additional property of being equi-bounded.

Remark 1.5. Geometric estimates for eigenvalues of (−∆)s aroused great interest in the last
years, also in the field of stochastic processes. Indeed, it is well-known that this operator is the
infinitesimal generator of a symmetric (2 s)−stable Lévy process. We recall that the nonlocal
homogeneous Dirichlet boundary condition considered above (i. e. u ≡ 0 on RN \Ω) corresponds to
a process where particles are “killed” upon reaching the complement of the set Ω. The Gagliardo-
Slobodeckĭı seminorm corresponds to the so-called Dirichlet form associated to this process. For
more details, we refer for example to [5, Section 2] and the references therein.

In this context, we wish to mention the papers [3, 4] and [28], where some geometric estimates
for λs1 are obtained, by exploiting this probabilistic approach. In particular, the paper [4] is very
much related to ours, since in [4, Corollary 1] it is proved the lower bound

λs1(Ω) ≥ C

r2 s
Ω

,

in the restricted class of open convex subsets of the plane, with the sharp constant C. This result
can be seen as the fractional counterpart of a well-known result for the Laplacian, which goes under
the name of Hersch-Protter inequality, see [21, 30].

1.3. Method of proof. As already announced at the beginning, we will achieve the result of
Theorem 1.1 by adapting to our setting Hayman’s proof. It is then useful to recall the key ingredients
of such a proof. These are essentially two:

1. a covering lemma, asserting that it is possible to cover an open subset Ω ⊂ R2 with rΩ < +∞
by means of boundary disks, whose radius is universally comparable to rΩ and which do
not overlap “too much” with each other. Here by boundary disk we simply mean a disk
centered at the boundary ∂Ω;
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2. a Poincaré inequality for boundary disks in a simply connected set.

Point 1. is purely geometrical and thus it can still be used in the fractional setting.
On the contrary, the proof of point 2. is very much local. Indeed, an essential feature of the

proof in [19] is the fact that

(1.6) |∇u|2 ≥ 1

%2
|∂θu|2,

where (%, θ) denote the usual polar coordinates. Then one observes that a boundary circle always
meets the complement of Ω, when the latter is simply connected. Thus, taken a function u ∈ C∞0 (Ω),
the periodic function θ 7→ u(%, θ) vanishes somewhere in [0, 2π]. Consequently, it satisfies the
following one-dimensional Poincaré inequality on the interval

(1.7)

ˆ 2π

0

|u(%, θ)|2 dθ ≤ C
ˆ 2π

0

|∂θu(%, θ)|2 dθ.

In a nutshell, this permits to prove point 2. by “foliating” the boundary disk with concentric bound-
ary circles, using (1.7) on each of these circles, then integrating with respect to the radius of the
circle and finally appealing to (1.6).

In the fractional case, the property (1.6) has no counterpart, because of the nonlocality of
the Gagliardo-Slobodeckĭı seminorm. Consequently, adapting this method to prove a fractional
Poincaré inequality for boundary disks is a bit involved. We will achieve this through a lengthy
though elementary method, which we believe to be of independent interest.

Remark 1.6 (Other proofs?). We conclude the introduction, by observing that it does not seem
easy to prove (1.4) by adapting Makai’s proof, because of the lack of a genuine Coarea Formula for
Gagliardo-Slobodeckĭı seminorms. The proof by Ancona seems to be even more prohibitive to be
adapted, because of the rigid machinery of conformal mappings on which is based. In passing, we
mention that it would be interesting to know whether his Hardy inequality for simply connected
sets in the plane could be extended to fractional Sobolev spaces. For completeness, we refer to [17]
for some fractional Hardy inequalities under minimal regularity assumptions.

1.4. Plan of the paper. In Section 2 we set the main notations and present some technical tools,
needed throughout the paper. In particular, we recall Hayman’s covering lemma from [19] and
present a couple of technical results on fractional Sobolev spaces.

In Section 3 we prove a Poincaré inequality for boundary disks. This is the main ingredient for
the proof of the fractional Makai-Hayman inequality.

Section 4 is then devoted to the proof of Theorem 1.1, while the construction of the counter-
example of Theorem 1.3 is contained in Section 5.

Finally, in Section 6 we highlight some consequences of our main result. Among these, we record
a Cheeger-type inequality, a comparison result for λs1 and λ1 and the fractional analogue of the
characterization (1.2).

The paper concludes with Appendix A, containing a one-dimensional fractional Poincaré inequal-
ity for periodic functions vanishing at one point (see Proposition A.2). This is the cornerstone on
which the result in Section 3 is built.
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atica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica
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Finanziamento delle attività di base. We thank an anonymous referee for his careful reading and
suggestions.
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2. Preliminaries

2.1. Notations. Given x0 ∈ RN and R > 0, we will denote by BR(x0) the N−dimensional open
ball with radius R and center x0. When the center coincides with the origin, we will simply write
BR. We indicate by ωN the N−dimensional Lebesgue measure of B1, so that by scaling

|BR(x0)| = ωN R
N .

If E ⊂ RN is a measurable set with positive measure and u ∈ L1(E), we will use the notation

uE :=

 
E

u(x) dx =
1

|E|

ˆ
E

u(x) dx.

For 0 < s < 1 and for a measurable set E ⊂ RN , we will indicate by

W s,2(E) =
{
u ∈ L2(E) : [u]W s,2(E) < +∞

}
,

where

[u]W s,2(E) =

(¨
E×E

|u(x)− u(y)|2

|x− y|N+2 s
dx dy

) 1
2

.

This space will be endowed with the norm

‖u‖W s,2(E) = ‖u‖L2(E) + [u]W s,2(E).

We observe that the following Leibniz–type rule holds

(2.1) [u v]W s,2(E) ≤ [u]W s,2(E) ‖v‖L∞(E)+[v]W s,2(E) ‖u‖L∞(E), for every u, v ∈W s,2(E)∩L∞(E).

This will be useful somewhere in the paper.
Finally, by W s,2

loc (RN ) we mean the collection of functions which are in W s,2(BR), for every
R > 0.

2.2. Technical tools. In order to prove Theorem 1.1, we will need the following covering Lemma,
whose proof can be found in [19, Lemma 2]. The result in [19] is stated for bounded sets and,
accordingly, the relevant covering is made of a finite number of balls. However, a closer inspection
of the proof in [19] easily shows that the same result still holds by removing the boundedness
assumption. In this case, the covering could be made of countably infinitely many balls: this is still
enough for our purposes. We omit the proof, since it is exactly the same as in [19].

Lemma 2.1. Let Ω ⊂ R2 be an open set, with finite inradius rΩ. Then there exist at most countably
many distinct points {zn}n∈N ⊂ ∂Ω such that the family of disks

B =
{
Br(zn)

}
n∈N, with r = rΩ

(
1 +
√

2
)
,

is a covering of Ω. Moreover, B can be split in at most 36 subfamilies B1, . . . ,B36 such that

Br(zn) ∩Br(zm) = ∅ if Br(zn), Br(zm) ∈ Bk, with m 6= n,

for every k = 1, . . . , 36.
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In the following technical result, we explicitly construct a continuous extension operator for
fractional Sobolev spaces defined on a ball. The result is certainly well-known (see for example [18,
Theorem 5.4]), but here we pay particular attention to the constant appearing in the continuity
estimate (2.2) below: indeed, this can be taken to be independent of the differentiability index s.

Lemma 2.2. Let 0 < s < 1, there exists a linear extension operator

E : W s,2(B1(x0))→W s,2
loc (RN ),

such that for every u ∈W s,2(B1(x0)) and every R > 1 we have

(2.2)
[
E [u]

]
W s,2(BR(x0))

≤ 4R4N [u]W s,2(B1(x0)), ‖E [u]‖L2(BR(x0)) ≤ 2R2N ‖u‖L2(B1(x0)).

Proof. Without loss of generality, we can suppose that x0 coincides with the origin. Then, let us
recall the definition of inversion with respect to SN−1: this is the bijection K : RN \{0} → RN \{0},
given by

K(x) =
x

|x|2
, for every x ∈ RN \ {0}.

It is easily seen that if x ∈ BR \B1, then K(x) ∈ B1 \B1/R. Moreover, we have

K−1(x) = K(x) and |det(DK(x))| = 1

|x|2N
, for every x ∈ RN \ {0}.

For every u ∈W s,2(B1), we define the extended function E [u] given by

(2.3) E [u](x) =


u(x), if x ∈ B1,

u(K(x)) if x ∈ RN \B1.

It is easily seen that the operator u 7→ E [u] is linear. In order to prove that E [u] ∈ W s,2
loc (RN ),

together with the claimed estimate (2.2), we take R > 1 and we split the seminorm of E [u] as
follows [

E [u]
]2
W s,2(BR)

= [u]2W s,2(B1)

+

¨
(BR\B1)×(BR\B1)

|u(K(x))− u(K(y))|2

|x− y|N+2 s
dx dy

+ 2

¨
B1×(BR\B1)

|u(x)− u(K(y))|2

|x− y|N+2 s
dx dy.

By performing the change of variable z = K(x) in the second term on the right-hand side and the
change of variable w = K(y) in the second and third terms, we get[
E [u]

]2
W s,2(BR)

= [u]2W s,2(B1)

+

¨
(B1\B 1

R
)×(B1\B 1

R
)

|u(z)− u(w)|2

|K−1(z)−K−1(w)|N+2 s
|detDK−1(z)| |detDK−1(w)| dz dw

+ 2

ˆ
B1×(B1\B 1

R
)

|u(x)− u(w)|2

|x−K−1(w)|N+2 s
|detDK−1(w)| dx dw.
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By using the expression for the Jacobian determinant, we then obtain[
E [u]

]2
W s,2(BR)

≤ [u]2W s,2(B1)

+R4N

¨
(B1\B 1

R
)×(B1\B 1

R
)

|u(z)− u(w)|2

|K−1(z)−K−1(w)|N+2 s
dz dw

+ 2R2N

¨
B1×(B1\B 1

R
)

|u(x)− u(w)|2

|x−K−1(w)|N+2 s
dx dw.

(2.4)

In order to estimate the last two integrals, it is sufficient to use that

(2.5) |K−1(z)−K−1(w)| =
∣∣∣∣ 1

|z|2
z − 1

|w|2
w

∣∣∣∣ ≥ |z − w|, for every z, w ∈ B1 \ {0},

and

(2.6) |x−K−1(w)| =
∣∣∣∣x− 1

|w|2
w

∣∣∣∣ ≥ |x− w|, for every x,w ∈ B1 \ {0}.

Indeed, by taking the square, we see that (2.5) is equivalent to(
1

|z|2
− |z|2

)
+

(
1

|w|2
− |w|2

)
≥ 2

(
1

|z|2 |w|2
− 1

)
〈z, w〉.

This in turn follows from Young’s inequality

2 〈z, w〉 ≤ |z|2 + |w|2,

once we multiply both sides by the positive quantity(
1

|z|2 |w|2
− 1

)
.

As for inequality (2.6), by taking again the square we see that the latter is equivalent to

(2.7)
1

|w|2
− |w|2 ≥ 2

(
1

|w|2
− 1

)
〈x,w〉.

This in turn follows again from Young’s inequality: more precisely, by using that |x| < 1, we have

2 〈x,w〉 ≤ |x|2 + |w|2 ≤ 1 + |w|2,

and if we now multiply both sides by the positive quantity (here we use that |w| < 1)(
1

|w|2
− 1

)
,

we get (2.7), with some simple algebraic manipulations.
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By applying the estimates (2.5) and (2.6) in (2.4), we finally get[
E [u]

]2
W s,2(BR)

≤ [u]2W s,2(B1)

+R4N

¨
(B1\B 1

R
)×(B1\B 1

R
)

|u(z)− u(w)|2

|z − w|N+2 s
dz dw

+ 2R2N

¨
B1×(B1\B 1

R
)

|u(x)− u(w)|2

|x− w|N+2 s
dx dw

≤
(
1 +R4N + 2R2N

)
[u]2W s,2(B1),

which proves the first estimate in (2.2).
We are left with estimating the L2 norm of E [u]. This is simpler and can be done as followsˆ

BR

|E [u](x)|2 dx =

ˆ
B1

|u(x)|2 dx+

ˆ
BR\B1

|u(K(x))|2 dx

≤
ˆ
B1

|u(x)|2 dx+R2N

ˆ
B1\B 1

R

|u(z)|2 dz ≤
(
1 +R2N

) ˆ
B1

|u(x)|2 dx.

This concludes the proof. �

Remark 2.3. Another important feature of the previous result is that, rather than the usual
continuity estimate ∥∥E [u]

∥∥
W s,2(BR)

≤ C ‖u‖W s,2(B1),

for the extension operator, we obtained the more precise estimate (2.2). This will be useful in the
next result.

Proposition 2.4. Let 0 < s < 1 and let E ⊆ BR(x0) ⊂ RN be a measurable set, with positive
measure. There exists a constant M =M(N) > 0 such that for every u ∈W s,2(BR(x0)) we have

‖u− uE‖2L2(BR(x0)) ≤M (1− s)R
N

|E|
R2 s [u]2W s,2(BR(x0)).

Proof. By a standard scaling argument, it is sufficient to prove the result for R = 1 and x0 = 0.
For every t > 0, we denote by Qt = (−t/2, t/2)N the N−dimensional open cube centered at the
origin, with side length t.

We consider the extension E [u] of u to the whole RN , as in (2.3). For ease of notation, we will
simply write ũ := E [u]. By using the triangle inequality and the fact that B1 ⊂ Q2, we have

‖u− uE‖2L2(B1) ≤ ‖ũ− uE‖
2
L2(Q2)

≤ 2 ‖ũ− ũQ2
‖2L2(Q2) + 2 ‖ũQ2

− uE‖2L2(Q2).
(2.8)

By using Jensen’s inequality and the fact that |Q2| = 2N , we can estimate the second term as
follows

‖ũQ2
− uE‖2L2(Q2) = 2N |ũQ2

− uE |2

= 2N
∣∣∣∣ 
E

(ũ(x)− ũQ2) dx

∣∣∣∣2
≤ 2N

 
E

|ũ(x)− ũQ2
|2 dx ≤ 2N

|E|
‖ũ− ũQ2

‖2L2(Q2).
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Thus from (2.8) we get

‖u− uE‖2L2(B1) ≤ 2

(
1 +

2N

|E|

)
‖ũ− ũQ2

‖2L2(Q2).

We can now apply the following fractional Poincaré inequality2 proved by Maz’ya and Shaposnikova
(see [27, page 300])

(2.9) ‖ϕ− ϕQ2
‖2L2(Q2) ≤ CN (1− s) [ϕ]2W s,2(Q2), for every ϕ ∈W s,2(Q2).

Here CN is an explicit dimensional constant. This yields

‖u− uE‖2L2(B1) ≤ 2

(
1 +

2N

|E|

)
CN (1− s) [ũ]2W s,2(Q2)

≤ 2
ωN + 2N

|E|
CN (1− s) [ũ]2W s,2(B√2),

where we used that Q2 ⊂ B√2. It is now sufficient to apply Lemma 2.2 with R =
√

2, to get the
claimed conclusion. �

3. An expedient Poincaré inequality

The following result is a nonlocal counterpart of [19, Lemma 1] in Hayman’s paper. In the proof
we pay due attention to the dependence of the constant on the fractional parameter s, as always.

Proposition 3.1 (Poincaré for boundary disks). Let 1/2 < s < 1 and let Ω ⊂ R2 be an open
simply connected set, with ∂Ω 6= ∅. There exists a constant Ts > 0 depending on s only, such that
for every r > 0 and every x0 ∈ ∂Ω, we have

Ts
r2 s

ˆ
Br(x0)

|u(x)|2 dx ≤
¨
Br(x0)×R2

|u(x)− u(y)|2

|x− y|2+2 s
dx dy, for every u ∈ C∞0 (Ω).

Moreover, Ts has the following asymptotic behaviours

Ts ∼
(
s− 1

2

)
, for s↘ 1

2
and Ts ∼

1

1− s
, for s↗ 1.

Proof. Up to scaling and translating, we can assume without loss of generality that r = 1 and that
x0 coincides with the origin.

We split the proof in three main steps: we first show that it is sufficient to prove the claimed
estimate for the boundary ring B1 \ B1/2. Then we prove such an estimate and at last we discuss
the asymptotic behaviour of the constant obtained.

2We remark that the presence of the factor (1− s) is important for our scopes. If one is not interested in keeping
track of this factor, actually the proof of (2.9) would be much simpler, see for example [29, page 297].
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Step 1: reduction to a ring. Let u ∈ C∞0 (Ω), we then estimate the L2 norm on B1 as followsˆ
B1

|u(x)|2 dx =

ˆ
B1\B1/2

|u(x)|2 dx+

ˆ
B1/2

|u(x)|2 dx

≤
ˆ
B1\B1/2

|u(x)|2 dx+ 2

ˆ
B1/2

|u(x)− uB1\B1/2
|2 dx+ 2

ˆ
B1/2

|uB1\B1/2
|2 dx

≤
ˆ
B1\B1/2

|u(x)|2 dx+ 2

ˆ
B1

|u(x)− uB1\B1/2
|2 dx+ 2

ˆ
B1/2

|uB1\B1/2
|2 dx

≤
ˆ
B1\B1/2

|u(x)|2 dx+ 2

ˆ
B1

|u(x)− uB1\B1/2
|2 dx+

2

3

ˆ
B1\B1/2

|u(x)|2 dx,

where we used the elementary inequality (a + b)2 ≤ 2 a2 + 2 b2 and Jensen’s inequality. If we now
apply Proposition 2.4 with R = 1 and E = B1 \B1/2, we getˆ

B1

|u(x)|2 dx ≤ 5

3

ˆ
B1\B1/2

|u(x)|2 dx+
8

3π
M (1− s) [u]2W s,2(B1).

Thus, in order to conclude, it is sufficient to prove that there exists a constant C = C(s) > 0 such
that

(3.1)

ˆ
B1\B1/2

|u(x)|2 dx ≤ C
¨
B1×R2

|u(x)− u(y)|2

|x− y|2+2 s
dx dy, for every u ∈ C∞0 (Ω).

Step 2: estimate on the ring. We start with a topological observation. Since we are assuming
that 0 ∈ ∂Ω and that Ω is simply connected, we have the following crucial property

(3.2) ∂B% ∩ (R2 \ Ω) 6= ∅, for every % > 0.

Indeed, if this were not true, we would have existence of a circle entirely contained in Ω and centered
on the boundary of ∂Ω. Such a circle could not be null-homotopic in Ω, thus contradicting our
topological assumption.

In the rest of the proof, we will use polar coordinates (%, θ) and we will make the slight abuse of
notation of writing u(%, θ). Then, in light of the property (3.2), for each % ∈ (1/2, 1) there exists
θ% ∈ [0, 2π) such that θ 7→ u(%, θ) must vanish at θ%. Hence, for every 1/2 < % < 1 we can apply
Proposition A.2 to the function θ 7→ u(%, θ) and get

ˆ 2π

0

|u(%, θ)|2 dθ ≤ 1

µs

ˆ 2π

0

ˆ 2π

0

|u(%, θ)− u(%, ϕ)|2

|θ − ϕ|1+2 s
S1

dθ dϕ.

The constant µs is the same as in Proposition A.2 and

|θ − ϕ|S1 := min
k∈Z
|θ − ϕ+ 2 k π|, for every θ, ϕ ∈ R.

If we now multiply both sides by %, integrate over the interval (1/2, 1) and write the L2 norm in
polar coordinates, we get

ˆ
B1\B1/2

|u(x)|2 dx ≤ 1

µs

ˆ 1

1
2

ˆ 2π

0

ˆ 2π

0

|u(%, θ)− u(%, ϕ)|2

%1+2 s |θ − ϕ|1+2 s
S1

% d% dθ dϕ.(3.3)

Observe that we further used the fact that % ≤ 1, to let the term %−1−2 s appear.
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Figure 1. The partition of [0, 2π]× [0, 2π] needed to define the midpoint function.

In order to achieve (3.1), we need to show that the term on the right-hand side can be estimated
by a two-dimensional Gagliardo-Slobodeckĭı seminorm. To this aim, we follow an argument similar
to that of [7, Lemma B.2]. At first, it is easily seen that

(% |θ − ϕ|S1)
−1−2 s

= (1 + 2 s)

ˆ +∞

0

(t+ % |θ − ϕ|S1)
−2−2 s

dt.

By inserting this in (3.3), we end up withˆ
B1\B1/2

|u(x)|2 dx

≤ 1 + 2 s

µs

ˆ 2π

0

ˆ 2π

0

ˆ 1

1
2

ˆ +∞

0

|u(%, θ)− u(%, ϕ)|2

(t+ % |θ − ϕ|S1)2+2 s
% dθ dϕ d% dt

≤ 2 (1 + 2 s)

µs

ˆ 2π

0

ˆ 2π

0

ˆ 1

1
2

ˆ +∞

0

|u(%, θ)− u(%, ϕ)|2

(t+ % |θ − ϕ|S1)2+2 s
% (%+ t) dθ dϕ d% dt,

(3.4)

where we have used that 1/2 ≤ %+ t. We now split the set [0, 2π]× [0, 2π] = J−1 ∪ J0 ∪ J1, where

J−1 =
{

(θ, ϕ) : θ ∈ [0, π], θ + π < ϕ ≤ 2π
}
, J1 =

{
(θ, ϕ) : θ ∈ [π, 2π], 0 ≤ ϕ < θ − π

}
,

and

J0 =
{

(θ, ϕ) : θ ∈ [0, 2π], max{0, θ − π} ≤ ϕ ≤ min{2π, θ + π}
}
,

see Figure 1. Then, we define the midpoint function by

(3.5) θ ϕ =
θ + ϕ

2
+ ` π, if (θ, ϕ) ∈ J`, with ` = −1, 0, 1.

Thanks to the triangle inequality, we estimate the numerator in the right-hand side of (3.4) as
follows

|u(%, θ)− u(%, ϕ)|2 ≤ 2
∣∣u (%, θ)− u

(
%+ t, θ ϕ

)∣∣2 + 2
∣∣u (%, ϕ)− u

(
%+ t, θ ϕ

)∣∣2 .
As for the denominator, we observe that |θ − θ ϕ|S1 = |ϕ− θ ϕ|S1 , thus we get

|θ − ϕ|S1 = 2 |θ − θ ϕ|S1 ≥ 2 |ei θ − ei θ ϕ| and |θ − ϕ|S1 = 2 |ϕ− θ ϕ|S1 ≥ 2 |ei ϕ − ei θ ϕ|,
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where the inequalities come from Lemma A.1. By using this fact, the identity |eiθ ϕ| = 1 and the
triangle inequality again, we can estimate the denominator as

t+ % |θ − ϕ|S1 ≥ t+ % |eiθ − ei θ ϕ|

≥
∣∣∣% (ei θ − ei θ ϕ)− t ei θ ϕ

∣∣∣ =
∣∣∣% ei θ − (%+ t) ei θ ϕ

∣∣∣ ,
and similarly

t+ % |θ − ϕ|S1 ≥
∣∣∣% ei ϕ − (%+ t) ei θ ϕ

∣∣∣ .
These allow us to estimate the right-hand side in (3.4) in the following way:ˆ

B1\B1/2

|u(x)|2 dx

≤ 4 (1 + 2 s)

µs

ˆ 2π

0

ˆ 2π

0

ˆ 1

1
2

ˆ +∞

0

∣∣u (%, θ)− u
(
%+ t, θ ϕ

)∣∣2∣∣∣% ei θ − (%+ t) ei θ ϕ
∣∣∣2+2 s % (%+ t) dθ dϕ d% dt

+
4 (1 + 2 s)

µs

ˆ 2π

0

ˆ 2π

0

ˆ 1

1
2

ˆ +∞

0

∣∣u (%, ϕ)− u
(
%+ t, θ ϕ

)∣∣2∣∣∣% ei ϕ − (%+ t) ei θ ϕ
∣∣∣2+2 s % (%+ t) dθ dϕ d% dt

=
8 (1 + 2 s)

µs

ˆ 2π

0

ˆ 2π

0

ˆ 1

1
2

ˆ +∞

0

∣∣u (%, θ)− u
(
%+ t, θ ϕ

)∣∣2∣∣∣% ei θ − (%+ t) ei θ ϕ
∣∣∣2+2 s % (%+ t) dθ dϕ d% dt.

In the last identity we used that both multiple integrals coincide, by symmetry of the integrands.
If we now make the change of variable τ = % + t and use the decomposition [0, 2π] × [0, 2π] =
J−1 ∪ J0 ∪ J1, we obtainˆ

B1\B1/2

|u(x)|2 dx

≤ 8 (1 + 2 s)

µs

1∑
`=−1

¨
J`

ˆ 1

1
2

ˆ +∞

%

∣∣u (%, θ)− u(τ, θ ϕ)
∣∣2∣∣∣% ei θ − τ ei θ ϕ∣∣∣2+2 s % τ dθ dϕ d% dτ.

(3.6)

If we now denote

J̃−1 =
{

(θ, ϕ) : θ ∈ [0, π], θ − π < ϕ ≤ 0
}

and J̃1 =
{

(θ, ϕ) : θ ∈ [π, 2π], 2π ≤ ϕ < θ + π
}
,

use the definition of midpoint function (3.5) and make the change of variables

J−1 → J̃−1

(θ, ϕ) 7→ (θ, ϕ− 2π)
and

J1 → J̃1

(θ, ϕ) 7→ (θ, ϕ+ 2π),

we obtain from (3.6)

ˆ
B1\B1/2

|u(x)|2 dx ≤ 8 (1 + 2 s)

µs

¨
J̃−1∪J0∪J̃1

ˆ 1

1
2

ˆ +∞

%

∣∣∣u (%, θ)− u
(
τ, θ+ϕ2

)∣∣∣2∣∣∣% ei θ − τ ei θ+ϕ2

∣∣∣2+2s % τ dθ dϕ d% dτ.
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For every θ ∈ [0, 2π], we now make the change of variable γ = (θ + ϕ)/2, thus the above estimate
becomes

(3.7)

ˆ
B1\B1/2

|u(x)|2 dx ≤ 16 (1 + 2 s)

µs

1∑
`=−1

¨
Ĵ`

ˆ 1

1
2

ˆ +∞

%

|u (%, θ)− u (τ, γ)|2

|% ei θ − τ ei γ |2+2s % τ dθ dγ d% dτ,

where

Ĵ−1 =
{

(θ, γ) : θ ∈
[
0,
π

2

]
, θ − π

2
< γ ≤ 0

}
, Ĵ1 =

{
(θ, γ) : θ ∈

[
3

2
π, 2π

]
, 2π ≤ γ < θ +

π

2

}
,

and

Ĵ0 =
{

(θ, γ) : θ ∈ [0, 2π], max
{

0, θ − π

2

}
≤ γ ≤ min

{
2π, θ +

π

2

}}
.

If we now exploit the 2π−periodicity of the integrand, we have

¨
Ĵ−1

ˆ 1

1
2

ˆ +∞

%

|u (%, θ)− u (τ, γ)|2

|% ei θ − τ ei γ |2+2s % τ dθ dγ d% dτ

=

¨
Ĵ−1

ˆ 1

1
2

ˆ +∞

%

|u (%, θ)− u (τ, γ + 2π)|2∣∣% ei θ − τ ei (γ+2π)
∣∣2+2s % τ dθ dγ d% dτ

=

¨
I−1

ˆ 1

1
2

ˆ +∞

%

|u (%, θ)− u (τ, ϕ)|2

|% eiθ − τ ei ϕ|2+2s % τ dθ dϕ d% dτ,

(3.8)

where we set ϕ = γ + 2π and

I−1 =

{
(θ, ϕ) : θ ∈

[
0,
π

2

]
, θ +

3

2
π < ϕ ≤ 2π

}
.

Similarly, we can obtain

¨
Ĵ1

ˆ 1

1
2

ˆ +∞

%

|u (%, θ)− u (τ, γ)|2

|% ei θ − τ ei γ |2+2 s % τ dθ dγ d% dτ

=

¨
I1

ˆ 1

1
2

ˆ +∞

%

|u (%, θ)− u (τ, ϕ)|2

|% ei θ − τ ei ϕ|2+2s % τ dθ dϕ d% dτ,

(3.9)

with the change of variable ϕ = γ − 2π and

I1 =

{
(θ, ϕ) : θ ∈

[
3

2
π, 2π

]
, 0 ≤ ϕ < θ − 3

2
π

}
.

By observing that I−1∪ Ĵ0∪I1 ⊂ [0, 2π]× [0, 2π] and that the three sets I−1, Ĵ0 and I1 are pairwise
disjoint, from (3.7), (3.8) and (3.9) we finally obtain

ˆ
B1\B1/2

|u(x)|2 dx ≤ 16 (1 + 2 s)

µs

¨
[0,2π]×[0,2π]

ˆ 1

1
2

ˆ +∞

%

|u (%, θ)− u (τ, ϕ)|2

|% ei θ − τ ei ϕ|2+2 s % τ dθ dϕ d% dτ

≤ 16 (1 + 2 s)

µs

¨
B1×R2

|u(x)− u(y)|2

|x− y|2+2 s
dx dy.

This concludes the proof of (3.1).
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Step 3: asymptotics for the constant. From Step 1 and Step 2, we obtained the Poincaré
inequality claimed in the statement, with constant

Ts =

(
80 (1 + 2 s)

3µs
+

8

3π
M (1− s)

)−1

.

By using the asymptotics for the constant µs (see Proposition A.2 below), we get the desired
conclusion. �

Remark 3.2. The previous result can not hold for 0 < s ≤ 1/2. Indeed, if the result were true for
0 < s ≤ 1/2, this would permit to extend the fractional Makai-Hayman inequality to this range, as
well (see the next section). However, this would contradict Theorem 1.3.

4. Proof of Theorem 1.1

Without loss of generality, we can consider rΩ = 1. We take B and B1, . . . ,B36 to be respectively
the covering of Ω and the subclasses given by Lemma 2.1, made of ball with radius r = 1 +

√
2.

We take an index k ∈ {1, . . . , 36}, then we know that Bk is composed of (possibly) countably
many disjoint balls with radius r, centered on ∂Ω. We indicate by Bj,k each of these balls.

Then, for every u ∈ C∞0 (Ω) \ {0} we have

(4.1)

¨
R2×R2

|u(x)− u(y)|2

|x− y|2+2 s
dx dy ≥

∑
Bj,k∈Bk

¨
Bj,k×R2

|u(x)− u(y)|2

|x− y|2+2 s
dx dy.

For each ball Bj,k, we can apply Proposition 3.1 so to obtain that∑
Bj,k∈Bk

¨
Bj,k×R2

|u(x)− u(y)|2

|x− y|2+2 s
dx dy ≥ Ts

(1 +
√

2)2 s

∑
Bj,k∈Bk

ˆ
Bj,k
|u(x)|2 dx.

We insert this estimate in (4.1) and then sum over k = 1, . . . , 36. We get

36

¨
R2×R2

|u(x)− u(y)|2

|x− y|2+2 s
dx dy ≥

36∑
k=1

∑
Bj,k∈Bk

¨
Bj,k×R2

|u(x)− u(y)|2

|x− y|2+2 s
dx dy

≥ Ts
(1 +

√
2)2 s

36∑
k=1

∑
Bj,k∈Bk

ˆ
Bj,k
|u(x)|2 dx

≥ Ts
(1 +

√
2)2 s

ˆ
Ω

|u(x)|2 dx.

In the last inequality we used that B is a covering of Ω. By recalling the definition of λs1(Ω), from
the previous chain of inequalities we thus get the claimed estimate (1.1), with constant

Cs :=
Ts

36 (1 +
√

2)2 s
.

The asymptotic behaviour of Cs can now be inferred from that of Ts, which in turn is contained in
Proposition 3.1.

Remark 4.1. For suitable classes of open sets in RN and every 0 < s < 1, it is possible to
give a Makai-Hayman–type lower bound on λs1, by taking advantage of the nonlocality of the
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Gagliardo-Slobodeckĭı seminorm. More precisely, this is possible provided Ω satisfies the following
mild regularity assumption: there exist3 σ > 1 and α > 0 such that

(4.2)
|Bσ rΩ(x) \ Ω|
|Bσ rΩ(x)|

≥ α, for every x ∈ Ω.

Indeed, in this case for every u ∈ C∞0 (Ω) we can simply estimate

¨
RN×RN

|u(x)− u(y)|2

|x− y|N+2 s
dx dy ≥

ˆ
Ω

(ˆ
Bσ rΩ (x)\Ω

|u(x)|2

|x− y|N+2 s
dy

)
dx

≥ 1

(σ rΩ)N+2 s

ˆ
Ω

|Bσ rΩ(x) \ Ω| |u(x)|2 dx

≥ αωN

(σ rΩ)
2 s

ˆ
Ω

|u(x)|2 dx,

where in the last inequality we used the additional condition (4.2). By arbitrariness of u, we get

λs1(Ω) ≥ αωN
σ2 s

1

r2 s
Ω

.

One could observe that the additional condition (4.2) does not always hold for a simply connected
set in the plane. Moreover, the constant obtained in this way is quite poor: first of all, it is not
universal. It depends on the parameters α and σ and it deteriorates as σ ↘ 1, since in this case we
must have α↘ 0. Secondly, it does not exhibit the correct asymptotic behaviour as s goes to 1.

5. Proof of Theorem 1.3

Let 0 < s ≤ 1/2 and {Qk}k∈N ⊂ R2 be the sequence of open squares Qk = (−k, k)2, with
k ∈ N \ {0, 1}. We introduce the one-dimensional set

Σ =
⋃
i∈Z

Σ(i), where Σ(i) :=
⋃
i∈Z

{
(x1, i) ∈ R2 : |x1| ≥ 1

}
,

and then define, for every fixed k ∈ N \ {0, 1}, the “cracked” square Q̃k = Qk \ Σ (see Figure 2).
First of all, we observe that

rQ̃k =

√
5

2
, for every k ≥ 2.

Thus, if we can show that

(5.1) lim
k→∞

λs1(Q̃k) = 0,

we would automatically get the desired counter-example. We will obtain (5.1) by proving that

(5.2) λs1(Q̃k) = λs1(Qk), for every k ≥ 2.

Indeed, if this were true, we would have

lim
k→∞

λs1(Q̃k) = lim
k→∞

λs1(Qk) = lim
k→∞

k−2 s λs1(Q1) = 0,

by the scale properties of λ1
s. This would prove (5.1), as claimed.

3It is not difficult to see that this property never holds for σ = 1.
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Figure 2. The set Q̃k with k = 2. In dashed line, a disk of maximal radius.

We are thus left with proving (5.2). We already know that

λs1(Q̃k) ≥ λs1(Qk),

thanks to the fact that λs1 is monotone with respect to set inclusion. In the remaining part of the
proof, we focus our attention in proving the opposite inequality.

At this aim, for every n ∈ N \ {0} we introduce the neighborhoods

Σ
(i)
k,n =

{
x ∈ R2 : dist(x,Σ(i) ∩Qk) ≤ 1

n+ 1

}
, for i ∈ {−(k − 1), . . . , k − 1},

and consider a sequence of cut-off functions {ϕ(i)
n }n∈N\{0} ⊂ C∞0 (Σ

(i)
k,2n) such that

0 ≤ ϕ(i)
n ≤ 1, ϕ(i)

n ≡ 1 on Σ
(i)
k,4n, |∇ϕ(i)

n (x)| ≤ C n,
for some constant C > 0, independent of n. Observe that by construction we have

spt(ϕ(i)
n ) ∩ spt(ϕ(j)

n ) = ∅, for i 6= j,

By using an interpolation inequality (see [10, Corollary 2.2]) and the properties of the cut-off

functions, we can estimate the energy of each ϕ
(i)
n as follows

[ϕ(i)
n ]2W s,2(R2) ≤ C

(ˆ
Σ

(i)
k,2n

|ϕ(i)
n |2 dx

)1−s (ˆ
Σ

(i)
k,2n

|∇ϕ(i)
n |2 dx

)s
≤ C |Σ(i)

k,2n|
1−s |Σ(i)

k,2n|
s n2 s ≤ C n2 s−1,

for a constant C > 0 independent4 of n. In particular, for every i ∈ {−(k − 1), . . . , k − 1} we have

(5.3) lim
n→+∞

[ϕ(i)
n ]2W s,2(R2) = 0, if 0 < s <

1

2
,

while

(5.4) sup
n≥1

[ϕ(i)
n ]2W s,2(R2) ≤ C, if s =

1

2
.

4Observe that such a constant depends on k, through the length of the set Σ(i) ∩ Qk. However this is not a
problem, since in this part k is now fixed.
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Figure 3. The dashed line encloses one of the set Σ
(i)
k,n.

From now on, for ease of notation, we denote

Φk,n =

k−1∑
i=−(k−1)

ϕ(i)
n ∈ C∞0 (Q2 k).

Due to the different behaviours (5.3) and (5.4), we need to consider the cases 0 < s < 1/2 and
s = 1/2 separately.

Case 0 < s < 1/2. For every u ∈ C∞0 (Qk) \ {0}, we simply take

un = (1− Φk,n) u,

and observe that un ∈ C∞0 (Q̃k) for every n ∈ N \ {0}. Since each un is admissible for the problem
(1.3), we get

(5.5)

√
λs1(Q̃k) ≤

[un]W s,2(R2)

‖un‖L2(Q̃k)

≤
[u]W s,2(R2) + ‖u‖L∞(R2) [1− Φk,n]W s,2(R2)

‖u (1− Φk,n)‖L2(Q̃k)

,

where in the last inequality we have used the Leibniz–type rule (2.1) and the fact |1 − Φk,n| ≤ 1.
We now observe that

lim
n→∞

‖u (1− Φk,n)‖L2(Q̃k) = ‖u‖L2(Qk),

which follows from a standard application of the Lebesgue Dominated Convergence Theorem, to-
gether with the properties of Φk,n. Moreover, it holds

lim
n→∞

[1− Φk,n]W s,2(R2) = 0.

This simply follows by using the definition of Φk,n, the triangle inequality and (5.3). By using these
two limits in (5.5), we get√

λs1(Q̃k) ≤ lim
n→∞

[u]W s,2(R2) + ‖u‖L∞(R2) [1− Φk,n]W s,2(R2)

‖u (1− Φk,n)‖L2(Q̃k)

=
[u]W s,2(R2)

‖u‖L2(Qk)
.

By arbitrariness of u ∈ C∞0 (Qk) \ {0}, we get

λs1(Q̃k) ≤ λs1(Qk).



20 BIANCHI AND BRASCO

and thus the desired conclusion (5.2).

Borderline case s = 1/2. This is more delicate, we can not use directly the sequence {Φk,n}n∈N\{0}
to construct an approximation of u ∈ C∞0 (Qk). Indeed, by owing to (5.4), we can now guarantee
that {Φk,n}n∈N\{0} only converges weakly to 0 in W 1/2,2(R2) as n goes to ∞, up to a subsequence.

In order to “boost” such a sequence, we make a suitable application of Mazur’s Lemma (see for
example [24, Theorem 2.13]). More precisely, we define the sequence {Fk,n}n∈N\{0} ⊂ L2(R2×R2),
given by

Fk,n(x, y) =
Φk,n(x)− Φk,n(y)

|x− y|1+ 1
2

.

By construction, we have that

‖Fk,n‖L2(R2×R2) = [Φk,n]
W

1
2
,2(R2)

≤ C,

and {Fk,n}n∈N\{0} converges weakly to 0 in L2(R2 ×R2), up to a subsequence. Thanks to Mazur’s
Lemma, we can enforce this weak convergence to the strong one, by passing to a sequence of convex
combinations. More precisely, we know that for every n ∈ N \ {0} there exists{

t`(n)
}n
`=1
⊂ [0, 1], such that

n∑
`=1

t`(n) = 1,

and such that the new sequence made of convex combinations

F̃k,n(x, y) =

n∑
`=1

t`(n)Fk,`(x, y),

strongly converges in L2(R2 × R2) to 0, as n goes to ∞. Observe that by construction we have

‖F̃k,n‖2L2(R2×R2) =

∥∥∥∥∥
n∑
`=1

t`(n)Fk,`

∥∥∥∥∥
2

L2(R2×R2)

=

¨
R2×R2

∣∣∣∣∣
n∑
`=1

t`(n)
Φk,`(x)− Φk,`(y)

|x− y|1+ 1
2

∣∣∣∣∣
2

dx dy

=

¨
R2×R2

|
∑n
`=1 t`(n) Φk,`(x)−

∑n
`=1 t`(n) Φk,`(y)|2

|x− y|3
dx dy.

Thus, if we set

Φ̃k,n =

n∑
`=1

t`(n) Φk,` ∈ C∞0 (Q2 k),

the previous observations give that

(5.6) lim
n→∞

[Φ̃k,n]2
W

1
2
,2(R2)

= lim
n→∞

‖F̃k,n‖2L2(R2×R2) = 0.

Moreover, by using the fractional Poincaré inequality with s = 1/2 for the open bounded set Q2 k,
we also have

(5.7) lim
n→∞

‖Φ̃k,n‖2L2(Q2 k) ≤
1

λ
1
2
1 (Q2 k)

lim
n→∞

[Φ̃k,n]2
W

1
2
,2(R2)

= 0.
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We take as in the previous case u ∈ C∞0 (Qk) \ {0}. In order to approximate u with functions

compactly supported in Q̃k, we now define

ũn = (1− Φ̃k,n)u.

We observe that this function belongs to C∞0 (Q̃k). Indeed, observe that

Φk,`(x) = 1, for every x ∈ Σ
(i)
k,4 `, i ∈ {−(k − 1), . . . , k − 1} and ` ∈ {1, . . . , n},

thus in particular

Φ̃k,n(x) =

n∑
`=1

t`(n) Φk,`(x) =

n∑
`=1

t`(n) = 1, for every x ∈ Σ
(i)
k,4n, i ∈ {−(k − 1), . . . , k − 1},

thanks to the fact that

Σ
(i)
k,4n ⊂ Σ

(i)
k,4 `, for ` ∈ {1, . . . , n}.

Clearly, we still have

(5.8) |1− Φ̃k,n| ≤ 1 and lim
n→∞

‖ũn‖L2(Q̃k) = ‖u‖L2(Qk).

The second fact in (5.8) can be proved by observing that∣∣∣∣ˆ
Q̃k

|ũn|2 dx−
ˆ
Qk

|u|2 dx
∣∣∣∣ =

∣∣∣∣ˆ
Q̃k

|u|2
[
|1− Φ̃k,n|2 − 1

]
dx

∣∣∣∣
≤
ˆ
Q̃k

|u|2
[
1− |1− Φ̃k,n|2

]
dx

≤ 2

ˆ
Q̃k

|u|2
[
1− |1− Φ̃k,n|

]
dx ≤ 2 ‖u‖2L∞(Qk)

ˆ
Q̃k

|Φ̃k,n| dx,

and then using (5.7).

We can now use ũn as a competitor for the variational problem defining λs1(Q̃k) and proceed
exactly as in the case 0 < s < 1/2, by using (5.6) and (5.8). This finally concludes the proof.

Remark 5.1. With the notation above, we obtain in particular that the infinite complement comb
Θ := R2 \ Σ is an open simply connected set such that

rΘ =

√
5

2
and λs1(Θ) = 0, for 0 < s ≤ 1

2
.

Indeed, by domain monotonicity and (5.1), we have

0 ≤ λs1(Θ) ≤ lim
k→∞

λs1(Q̃k) = 0.

6. Some consequences

We highlight in this section some consequences of our main result, by starting with a fractional
analogue of property (1.2) seen in the Introduction.

Corollary 6.1. Let Ω ⊂ R2 be an open simply connected set. Then we have:

• for 1/2 < s < 1

λs1(Ω) > 0 ⇐⇒ rΩ < +∞;
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• for 0 < s ≤ 1/2
λs1(Ω) > 0 =⇒ rΩ < +∞,

but
rΩ < +∞ 6=⇒ λs1(Ω) > 0.

Proof. Let 0 < s < 1 and assume that λs1(Ω) > 0. Let r > 0 be such that there exists x0 ∈ Ω with
Br(x0) ⊂ Ω. By using the monotonicity of λs1 with respect to set inclusion, we get

λs1(Ω) ≤ λs1(Br(x0)) =
λs1(B1)

r2 s
.

The previous estimate gives

r <

(
λs1(B1)

λs1(Ω)

) 1
2 s

.

By taking the supremum over admissible r, we get rΩ < +∞ by definition of inradius.
For the converse implication in the case s > 1/2, it is sufficient to apply Theorem 1.1. Finally,

by taking Θ as in Remark 5.1, we get an open set with finite inradius, but vanishing λs1 for
0 < s ≤ 1/2. �

Our main results permit to compare two different Sobolev spaces, built up of functions “vanishing
at the boundary”. More precisely, let us denote by Ds,20 (Ω) the completion of C∞0 (Ω) with respect
to the norm

u 7→ [u]W s,2(RN ), for every u ∈ C∞0 (Ω).

Observe that this is indeed a norm on C∞0 (Ω). We refer to [11] for more details on this space. We

also recall that by W̃ s,2
0 (Ω) we denote the closure of C∞0 (Ω) in W s,2(RN ).

We have the following

Corollary 6.2. Let 1/2 < s < 1 and let Ω ⊂ R2 be an open simply connected set, with finite
inradius. Then

Ds,20 (Ω) = W̃ s,2
0 (Ω).

On the contrary, for 0 < s ≤ 1/2 and Θ the infinite complement comb of Remark 5.1, the two
spaces

Ds,20 (Θ) and W̃ s,2
0 (Θ),

can not be identified with each other.

Proof. For 1/2 < s < 1 and an open simply connected set Ω ⊂ R2, by Theorem 1.1 the two norms

[u]W s,2(R2) and ‖u‖W s,2(R2),

are equivalent on C∞0 (Ω). This proves the first point.

As for the second statement, it is sufficient to observe that W̃ s,2
0 (Θ) is always continuously embedded

in L2(Θ), by its very definition. On the other hand, for 0 < s ≤ 1/2 such an embedding does not

hold for Ds,20 (Θ), since λs1(Θ) = 0 by Remark 5.1. �

We now show how Theorem 1.1 implies some fractional versions of the classical Cheeger’s in-
equality, a fundamental result in Spectral Geometry. At this aim, for an open set Ω ⊂ RN we recall
the definition of Cheeger constant

h1(Ω) = inf

{
P (E)

|E|
: E ⊂ Ω bounded and measurable with |E| > 0

}
,
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and s−Cheeger constant (for 0 < s < 1)

hs(Ω) = inf

{
Ps(E)

|E|
: E ⊂ Ω bounded and measurable with |E| > 0

}
,

see [9] for some properties of this constant. Here P stands for the perimeter of a set in the sense of
De Giorgi, while Ps is the s−perimeter of a set, defined by

Ps(E) = [1E ]W s,1(RN ) =

¨
RN×RN

|1E(x)− 1E(y)|
|x− y|N+s

dx dy,

for any measurable set E ⊂ RN . Then we have the following

Corollary 6.3 (Fractional Cheeger inequality). Let 1/2 < s < 1 and let Ω ⊂ R2 be an open simply
connected set, with finite inradius. Then we have

λs1(Ω) ≥ Cs
(
h1(Ω)

2

)2 s

,

and

λs1(Ω) ≥ Cs
(

π

Ps(B1)
hs(Ω)

)2

.

where Cs is the same constant as in Theorem 1.1.

Proof. Let r < rΩ, by definition of inradius there exists a disk Br(x0) ⊂ Ω. By using this disk as a
competitor for the minimization problem defining h1(Ω), we get

h1(Ω) ≤ 2π r

π r2
=

2

r
.

By taking the supremum over admissible r, we get

h1(Ω) ≤ 2

rΩ
.

By raising to the power 2 s and using Theorem 1.1, we get the first inequality. The second one can
be obtained in exactly the same way. �

Finally, we have the following result, which permits to compare λs1(Ω) and λ1(Ω), for simply
connected sets in the plane. We refer to [12, Theorem 6.1] and [15, Theorem 4.5] for a similar result
in general dimension N ≥ 2, under stronger regularity assumptions on the sets.

Corollary 6.4 (Comparison of eigenvalues). Let 1/2 < s < 1 and let Ω ⊂ R2 be an open simply
connected set, with finite inradius. Then we have

(6.1) αs

(
λ1(Ω)

)s
≤ λs1(Ω) ≤ βs

(
λ1(Ω)

)s
,

where αs, βs are two positive constants depending on s only, such that

αs ∼
(
s− 1

2

)
, for s↘ 1

2
, and αs ∼

1

1− s
, for s↗ 1,

βs ∼
1

1− s
, for s↗ 1.
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Proof. The upper bound follows directly from the general result of [12, Theorem 6.1], see equation
(6.1) there. From this reference, we can also extract a value for the constant βs, which is given by

βs =
41−s

s (1− s)
π.

For the lower bound, the proof is similar to that of Corollary 6.3, it is sufficient to join the estimate

λ1(Ω) ≤ λ1(B1)

r2
Ω

,

with Theorem 1.1. This gives the claimed estimate, with constant

αs =
Cs

(λ1(B1))s
,

and Cs is the same as in (1.4). �

Remark 6.5. The lower bound in estimate (6.1) degenerates as s approaches 1/2. This behaviour
is optimal: indeed, observe that for the set Θ of Remark 5.1 we have

λ1(Θ) > 0 and λs1(Θ) = 0, for 0 < s ≤ 1

2
.

The first fact follows from the classical Makai-Hayman inequality (1.1), for example. Thus the
lower bound can not hold for this range of values.

Appendix A. A one-dimensional Poincaré inequality

In what follows, we recall the definition of the following norm on the one-dimensional torus
S1 = R/(2π Z)

|α|S1 := min
k∈Z
|α+ 2 k π|, for every α ∈ R.

We observe that in particular for α ∈ [0, 2π] this quantity is given by

(A.1) |α|S1 =

{
α, if 0 ≤ α ≤ π,

2π − α, if π < α ≤ 2π.

Lemma A.1. We have

2

π
|θ − ϕ|S1 ≤ |ei θ − ei ϕ| ≤ |θ − ϕ|S1 , for every θ, ϕ ∈ R.

Moreover, both inequalities are sharp.

Proof. We first observe that we can write

|ei θ − ei ϕ| = |ei ϕ| |ei (θ−ϕ) − 1|

= |ei (θ−ϕ) − 1|

=

√
(1− cos(θ − ϕ))2 + sin2(θ − ϕ) = 2

∣∣∣∣sin(θ − ϕ2

)∣∣∣∣ ,
(A.2)

thanks to standard trigonometric formulas. In order to conclude the proof, it is sufficient to prove
that

(A.3)
2

π
|α|S1 ≤ 2

∣∣∣sin(α
2

)∣∣∣ ≤ |α|S1 , for every α ∈ R.
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It is easily seen that both functions

α 7→ |α|S1 and α 7→
∣∣∣sin(α

2

)∣∣∣ ,
are 2π−periodic, thus is it sufficient to prove (A.3) for α ∈ [0, 2π]. We thus seek for the maximum
and the minimum on [0, 2π] of the function

α 7→ 2
| sin(α/2)|
|α|S1

,

extended by continuity to the whole interval. By keeping in mind (A.1), on [0, 2π] this function
can be rewritten as

α 7→


2

sin(α/2)

α
, if 0 ≤ α ≤ π,

2
sin(α/2)

2π − α
, if π ≤ α ≤ 2π,

=


sin(α/2)

α/2
, if 0 ≤ α ≤ π,

sin(π − α/2)

π − α/2
, if π ≤ α ≤ 2π.

By recalling that the sinc function t 7→ (sin t)/t is monotone decreasing on the interval [0, π/2], in
light of the above discussion we now easily obtain

2

π
≤ 2
| sin(α/2)|
|α|S1

≤ 1.

This gives (A.3), thus concluding the proof. �

The main result of this appendix is the following one-dimensional Poincaré inequality, for periodic
functions vanishing at a point. The result is probably well-known, but as always we want to pay
particular attention to the dependence of the constant on the parameter s. For T > 0, we define
the one-dimensional torus S1

T = R/(T Z), endowed with the norm

|θ − ϕ|S1
T

= min
k∈Z
|θ − ϕ+ k T |, for θ, ϕ ∈ R.

Proposition A.2. Let 1/2 < s < 1 and T > 0. Let θ0 ∈ [0, T ], there exists a constant µs > 0
depending on s only such that for every Lipschitz function w : R → R which is T−periodic and
vanishing at θ0, we have

(A.4) µs

(
2π

T

)2 s ˆ T

0

|w(θ)|2 dθ ≤
¨

[0,T ]×[0,T ]

|w(θ)− w(ϕ)|2

|θ − ϕ|1+2 s
S1
T

dθ dϕ,

Moreover, the constant µs has the following asymptotic behaviours

µs ∼
(
s− 1

2

)
, for s↘ 1

2
and µs ∼

1

1− s
, for s↗ 1.

Proof. Without loss of generality, we can assume that θ0 = 0 and T = 2π. Thus, in this case we
have | · |S1

2π
= | · |S1 , with the notation of Lemma A.1.

Thanks to the periodicity of w, we can expand it in Fourier series, i.e. we can write

w(θ) =
∑
n∈Z

ŵ(n) einθ, where ŵ(n) =
1

2π

ˆ 2π

0

w(θ) e−i n θ dθ.
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The series is uniformly converging, thanks to the assumption on w. We will achieve the claimed
result by joining the following two estimates

(A.5)

¨
[0,2π]×[0,2π]

|w(θ)− w(ϕ)|2

|θ − ϕ|1+2 s
S1

dθ dϕ ≥ C1,s

∑
n∈Z
|n|2 s |ŵ(n)|2,

and

(A.6)

ˆ 2π

0

|w(θ)|2 dθ ≤ C2,s

∑
n∈Z
|n|2 s |ŵ(n)|2,

that we prove separately. This would give (A.4), with constant µs = C1,s/C2,s. In the last part of
the proof, we will then prove that such a constant has the claimed asymptotics.

Proof of (A.5). We proceed similarly as in the proof of [18, Proposition 3.4], with suitable
adaptations. The latter deals with W s,2 functions on R and their Fourier transform.

First of all, we rewrite the Gagliardo-Slobodeckĭı seminorm as follows: let us apply the change
of variable h = ϕ− θ, so to getˆ 2π

0

ˆ 2π

0

|w(ϕ)− w(θ)|2

|ϕ− θ|1+2 s
S1

dθ dϕ =

ˆ 2π

0

ˆ 2π−θ

−θ

|w(θ + h)− w(θ)|2

|h|1+2 s
S1

dθ dh

=

ˆ 2π

0

ˆ 0

−θ

|w(θ + h)− w(θ)|2

|h|1+2 s
S1

dθ dh

+

ˆ 2π

0

ˆ 2π

0

|w(θ + h)− w(θ)|2

|h|1+2 s
S1

dθ dh

−
ˆ 2π

0

ˆ 2π

2π−θ

|w(θ + h)− w(θ)|2

|h|1+2 s
S1

dθ dh.

On the third integral, we can use that the integrand is 2π−periodic, thus we getˆ 2π

0

ˆ 2π

2π−θ

|w(θ + h)− w(θ)|2

|h|1+2 s
S1

dθ dh =

ˆ 2π

0

ˆ 2π

2π−θ

|w(θ + h− 2π)− w(θ)|2

|h− 2π|1+2 s
S1

dθ dh

=

ˆ 2π

0

ˆ 0

−θ

|w(θ + η)− w(θ)|2

|η|1+2 s
S1

dθ dη.

This finally permits to infer thatˆ 2π

0

ˆ 2π

0

|w(ϕ)− w(θ)|2

|ϕ− θ|1+2 s
S1

dθ dϕ =

ˆ 2π

0

ˆ 2π

0

|w(θ + h)− w(θ)|2

|h|1+2 s
S1

dθ dh.

By recalling (A.1), we can conclude thatˆ 2π

0

ˆ 2π

0

|w(θ + h)− w(θ)|2

|h|1+2 s
S1

dθ dh =

ˆ π

0

1

h1+2 s

(ˆ 2π

0

|w(θ + h)− w(θ)|2 dθ
)
dh

+

ˆ 2π

π

1

(2π − h)1+2 s

(ˆ 2π

0

|w(θ + h)− w(θ)|2 dθ
)
dh.

(A.7)

Now, for every h we denote by wh(θ) the translation wh(θ) = w(θ + h). Thanks to the well-known
properties of the Fourier coefficients, we have

ŵh(n) = ei h n ŵ(n), for every n ∈ Z.(A.8)
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By using Plancherel’s identity in (A.7) and then applying (A.8), we finally obtainˆ 2π

0

ˆ 2π

0

|w(θ + h)− w(θ)|2

|h|1+2 s
S1

dθ dh =

= 2π
∑

n∈Z\{0}

(ˆ π

0

|ei h n − 1|2

h1+2 s
dh+

ˆ 2π

π

|ei h n − 1|2

(2π − h)1+2 s
dh

)
|ŵ(n)|2.

(A.9)

By recalling the identities (A.2), we have

|ei h n − 1|2 = 2 (1− cos(hn)),

and applying the change of variable τ = hn with n ∈ Z \ {0}, we can rewrite the first integral on
the right-hand side of (A.9) asˆ π

0

|ei h n − 1|2

h1+2 s
dh = 2

ˆ π

0

1− cos(hn)

h1+2 s
dh

= 2

ˆ π n

0

1− cos τ( τ
n

)1+2 s

dτ

n
≥ 2 |n|2 s

ˆ π

0

1− cos τ

τ2 s

dτ

τ
.

For the second integral, it is sufficient to observe that by periodicityˆ 2π

π

|ei h n − 1|2

(2π − h)1+2 s
dh = 2

ˆ 2π

π

1− cos(hn)

(2π − h)1+2 s
dh

= 2

ˆ 2π

π

1− cos(2π n− hn)

(2π − h)1+2 s
dh

= 2

ˆ π

0

1− cos(hn)

h1+2 s
dh ≥ 2 |n|2 s

ˆ π

0

1− cos τ

τ2 s

dτ

τ
.

Thus, from (A.9) we get in particularˆ 2π

0

ˆ 2π

0

|w(θ + h)− w(θ)|2

|h|1+2 s
S1

dθ dh ≥ 8π

(ˆ π

0

1− cos τ

τ2 s

dτ

τ

) ∑
n∈Z
|n|2 s |ŵ(n)|2.

This finally proves (A.5), with constant

C1,s = 8π

ˆ π

0

1− cos τ

τ2 s

dτ

τ
.

Proof of (A.6): from Plancherel’s identity, we know that

(A.10)
1

2π

ˆ 2π

0

|w(θ)|2 dθ =
∑
n∈Z
|ŵ(n)|2.

By using the Fourier expansion for w and the assumption w(0) = w(2π) = 0, we can infer that

0 = w(0) =
∑
n∈Z

ŵ(n).

This in turn implies that

|ŵ(0)| =

∣∣∣∣∣∣
∑

n∈Z\{0}

ŵ(n)

∣∣∣∣∣∣ ≤
∑

n∈Z\{0}

|ŵ(n)|,
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and so we can obtain

∑
n∈Z
|ŵ(n)|2 =

∑
n∈Z\{0}

|ŵ(n)|2 + |ŵ(0)|2 ≤
∑

n∈Z\{0}

|ŵ(n)|2 +

 ∑
n∈Z\{0}

|ŵ(n)|

2

.(A.11)

We now estimate the last term in (A.11) by using Hölder’s inequality

∑
n∈Z
|an| |bn| ≤

(∑
n∈Z
|an|2

) 1
2
(∑
n∈Z
|bn|2

) 1
2

,

with the choices |an| = 1/|n|s and |bn| = |ŵ(n)| |n|s. This yields

∑
n∈Z
|ŵ(n)|2 ≤

∑
n∈Z\{0}

|ŵ(n)|2 +

 ∑
n∈Z\{0}

1

|n|2 s

  ∑
n∈Z\{0}

|n|2 s |ŵ(n)|2


≤ C

 ∑
n∈Z\{0}

|n|2s |ŵ(n)|2
 ,

where we set

C = 1 + 2

∞∑
n=1

1

n2 s
.

Observe that this is a finite quantity, thanks to the crucial assumption s > 1/2. By using this
estimate in (A.10), we then obtain the claimed inequality (A.6), with constant

C2,s = 2π

(
1 + 2

∞∑
n=1

1

n2 s

)
.

Asymptotic behaviour of the constant. As we said, from the above discussion we get the
inequality (A.4), with µs = C1,s/C2,s. It is easily seen that

lim
s→( 1

2 )
+
C1,s = 8π

ˆ π

0

1− cos τ

τ

dτ

τ
< +∞,

while

lim
s→( 1

2 )
+

(2 s− 1)C2,s = 2π lim
s→( 1

2 )
+

(2 s− 1)

(
1 + 2

∞∑
n=1

1

n2 s

)
= 4π,

by using the fact that the Riemann zeta function has a simple pole with residue 1 at z = 1 (see [22,
Section 13.2.6]). This proves that µs has the claimed asymptotic behaviour, as s goes to 1/2.

As for the behaviour at s↗ 1, we observe that

lim
s→1−

C2,s = 2π

(
1 + 2

∞∑
n=1

1

n2

)
= 2π

(
1 +

π2

3

)
,
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while

lim
s→1−

(1− s)C1,s = 8π lim
s→1−

(1− s)
ˆ π

0

1− cos τ

τ2 s

dτ

τ

= 4π lim
s→1−

(1− s)
ˆ π

0

τ2−2 s dτ

τ

− 4π lim
s→1−

(1− s)
ˆ π

0

´ τ
0

(τ − `)2 sin ` d`

τ2 s

dτ

τ
= 2π,

where we used the third order Taylor expansion

f(τ) = f(0) + f ′(0) τ +
1

2
f ′′(0) τ2 +

1

2

ˆ τ

0

f ′′′(`) (τ − `)2 d`,

for the cosine function. This eventually leads to the conclusion of the proof. �
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(2010), 4026–4051. 5
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