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Hybrid multi-population traffic flow model: Optimal control for a
mean-field limit

Maria Teresa Chiri1, Xiaoqian Gong2, Benedetto Piccoli3

Abstract— Heterogeneous and multi-lane traffic flow modeling
is fundamental to understand the dynamics and control of complex
traffic systems. In this article, we consider three populations of ve-
hicles: two classes of human-driven vehicles (cars and trucks) and
autonomous vehicles. The latter is distinguished by the presence
of control in the acceleration. We model the multi-lane traffic by
hybrid systems because of its hybrid nature: the continuous dy-
namics on each lane and the discrete events due to lane-changing
maneuvers and study the optimal control problem associated with
the hybrid systems. In particular, we investigate controlled hybrid
systems from both a microscopic and macroscopic point of view.
Furthermore, using Γ-convergence, we prove the well-posedness
of an optimal control problem for a mean-field limit of a finite-
dimensional hybrid system modeling heterogeneous multi-lane
traffic with controlled autonomous vehicles.

Index Terms— Heterogeneous traffic, car-following mod-
els, autonomous vehicles, trucks, multi-lane traffic, hybrid
system, mean-field limit, optimal control, Γ-convergence

I. INTRODUCTION

A delicate problem in traffic flow modeling is how to represent
multi-lane traffic. The difficulty lies in its hybrid nature since it
presents continuous dynamics on each lane and discrete events for
lane-change. Moreover an accurate description requires taking into
account the multiplicity of vehicle types which constitute the traffic.
A step in this direction has been done in [12] where the authors
introduced mean-field equations coupled with ODEs to capture the
mixed nature of this type of traffic in presence of human-driven
vehicles and a limited number of autonomous vehicles. The system
was formally derived from a microscopic model based on a combined
dynamics of Bando ( [2]) and Follow-the-Leader (FtL) ( [26],
[25]) type together with some lane changing condition rules for
each vehicle inspired by [19]. More recently this model has been
generalized to the case of two populations of human-driven vehicles
(cars and trucks) and autonomous vehicles ( [6]).
In the present work, we aim to develop and study qualitative
properties of models for traffic which are motivated by the idea
of considering, simultaneously, two important aspects: lane-change
maneuvers and heterogeneous composition of the flow. The former
is one of the most common maneuvers, source of interaction and risk (
[16]) among vehicles on motorways. Currently, multi-lane traffic is
modeled either by two-dimensional models ( [15], [31]), in which
lane changing rules are not explicitly prescribed, or by treating lanes
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as discrete entities ( [17], [28]). The latter aspect, instead, is becoming
more and more important with the increasingly interest in automated-
driven vehicles and their effects within the vehicular traffic flow (
[18]). Experiments [8], [29] and mathematical models [9], [24] have
shown that a small number of controlled vehicles can stabilize traffic
flow damping unstable phenomena.
We consider an optimal control problem for a hybrid system ( [7],
[14]) which models the traffic on multi-lane with cars, trucks and au-
tonomous vehicles, extending in this way the analysis already started
in [13]. Specifically, the control is introduced in the acceleration of
autonomous vehicles with the idea that they can influence the general
dynamics of the other two population. The optimal control problem
consists in the minimization of a functional which depends on each
location, velocity, control and switching times. It can represent the
distance from a target desirable traffic profile or fuel consumption or
CO2 emissions ( [4], [30], [33]).
In general the optimal control of hybrid systems has attracted
enormous attention in recent years, we can mention for instance [3],
[5], [11], [22], [27] and [32]. The paper is organized as follows. In
Section II we present a microcopic model for heterogeneous traffic
involving cars, trucks and autonomous vehicles on L lanes, specify
the conditions in terms of acceleration and probability measure
under which a vehicle can perform a lane change and introduce
our model assumption on ”cool-down” time. In Section III we
introduce the notion of controlled finite-dimensional hybrid system
and the associated optimal control problem. The mean-field limit
is described in Section IV together with the correspondent optimal
control problem given by the Γ-limit of the finite dimensional case.
Section V contains the extension of the hybrid system to the case of
M + 1 vehicle populations and finally the last section summarizes
the contributions of this work, the applicative relevance of a model
with cars and trucks and future issues that need to be explored.

II. PRELIMINARY

In this section, we first introduce the convolutional form of a first
order car-following model, Bando-Follow-the-Leader, for heteroge-
neous traffic containing cars, trucks and autonomous vehicles. Then
we state the lane-changing rules for multi-lane traffic in both finite-
dimensional and infinite-dimensional cases. We point out that the
abundance of parameters considered comes from the necessity to
make the model sensitive to vehicle dimensions and to the interactions
of vehicles of different types. In the end, we emphasize our lane-
changing model assumption, the ”cool-down” time.

A. Car-following models for heterogeneous traffic
For convenience, we introduce now the notation used throughout

the paper. Let T > 0 be fixed, I be the set of indices for vehicles
on the open stretch road. Assume that the vehicles can move on
L lanes and K is the set of lane labels {1, . . . , L}. Denote with
IP ,IQ, IS the set of indices for cars, autonomous vehicles and
trucks respectively, and with IkP , IkQ, IkS the correspondent set of
indices on lane k ∈ K. Let (xi(t), vi(t)) be the position-velocity
for the vehicle i at time t ∈ [0, T ], and Pk(t), Qk(t), Sk(t) be the
number of cars, trucks and autonomous vehicles at time t ∈ [0, T ]
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Fig. 1. A schematic view of our setting: we consider autonomous
vehicles (red) cars and trucks (black) on L lanes. A vehicle can perform
lane-change with a probability given by (7) which depends on the
Incentive and Safety conditions (5)-(6).

on lane k ∈ K, respectively. Moreover we consider P space of
probability measures and M+ space of positive Borel measures.

The first order car-following model, Bando-Follow-the-Leader
(Bando-FtL), which was first introduced in [29], assumes that the
acceleration of the vehicle i ∈ I depends on its headway hi, the
difference between its current velocity vi and its leading vehicle’s
velocity vLi (Li is the label of the leading vehicle of vehicle i), and
the difference between its current velocity and its optimal velocity Vi.
In this paper, we consider the convolutional form of the Bando-FtL
model which allows a vehicle to modify its acceleration according
the positions and velocities of its nearby front vehicles instead of
only its leading vehicle’s. Consider the atomic measures supported
on absolutely continuous trajectories t ∈ [0, T ] → (xi(t), vi(t)) ∈
R× R≥0:

µkP (t) =
1

Pk(t)

∑
i∈Ik

P
(t)

δ(xi(t),vi(t)), (1)

µkQ(t) =
1

Qk(t)

∑
i∈Ik

Q
(t)

δ(xi(t),vi(t)), (2)

µkS(t) =
1

Sk(t)

∑
i∈Ik

S
(t)

δ(xi(t),vi(t)). (3)

Having in mind the four different combinations Car-Car, Car-Truck,
Truck-Car, Truck-Truck, we define the following convolution kernels

Hcf
1 :R× R≥0 → R with cf ∈ {cc, tc, ct, tt}

(x, v) 7→ αcfhcf (x)(Vcf (−x)− v)

where αcf are positive parameters denoting the speed of response,
Vcf is the optimal velocity function, and hcf : R 7→ R≥0 is a smooth
function with compact support [−εcf , 0] measuring the interaction of
two vehicles depending on their distance and types, where εcf > 0.
Then, for instance, for a car i ∈ IkP on lane k ∈ K, the Bando-term
of the Bando-FtL model can be written as(

Hcc
1 ∗1 (µkP + µkQ) +Htc

1 ∗1 µkS
)

(xi, vi), i ∈ IkP .

Similarly, we introduce the following convolution kernels for the

Follow-the-Leader term of the Bando-FtL term,

Hcf
2 :R× R≥0 → R with cf ∈ {cc, tc, ct, tt}

(x, v) 7→ βcfhcf (x)
−v
x2

where βcf is positive. The vehicles’ dynamic is described by the
following system

ẋi = vi i ∈ I

v̇i =



(
Hcc

1 ∗1 (µkP + µkQ) +Htc
1 ∗1 µkS

)
(xi, vi)

+
(
Hcc

2 ∗ (µkP + µkQ) +Htc
2 ∗ µkS

)
(xi, vi) i ∈ IkP

(
Hcc

1 ∗1 (µkP + µkQ) +Htc
1 ∗1 µkS

)
(xi, vi)

+
(
Hcc

2 ∗ (µkP + µkQ) +Htc
2 ∗ µkS

)
(xi, vi) + ui i ∈ IkQ

(
Hct

1 ∗1 (µkP + µkQ) +Htt
1 ∗1 µkS

)
(xi, vi)

+
(
Hct

2 ∗ (µkP + µkQ) +Htt
2 ∗ µkS

)
(xi, vi) i ∈ IkS

(4)

B. Lane-changing rules for multi-lane traffic

Now we will introduce the lane-changing rules used in this article
for the heterogeneus multi-lane traffic. We consider both the finite-
dimensional case when we have finitely many cars, trucks and
autonomous vehicles and the infinite-dimensional case when we still
consider finitely many autonomous vehicles but infinitely many cars
and trucks.

The finite-dimensional case
We consider P cars, Q autonomous vehicles and S trucks on the
road. Let aki be the acceleration of vehicle i ∈ I on lane k ∈ K
and āk

′
i the expected acceleration of vehicle i on its target lane k′ ∈

{k − 1, k + 1} ∩ K. Let ik
′
F be the index of the following vehicle

of vehicle i on its target lane k′ if vehicle i performs lane-changing
from lane k to lane k′. Let ∆cf > 0, cf ∈ {cc, tc, ct, tt}.

The ”incentive” and ”safety” conditions for lane-changing are
defined as follows:

Incentive: āk
′
i ≥


aki + ∆cc if i, ik

′
F ∈ IP ∪ IQ,

aki + ∆tc if i ∈ IP ∪ IQ, ik
′
F ∈ IS ,

aki + ∆ct if i ∈ IS , ik
′
F ∈ IP ∪ IQ,

aki + ∆tt if i, ik
′
F ∈ IS ;

(5)

Safety: āk
′
i ≥



−∆c and āk
′

ik
′
F

≥ −∆c if i, ik
′
F ∈ IP ∪ IQ,

−∆c and āk
′

ik
′
F

≥ −∆t if i ∈ IP ∪ IQ,∈ IS ,

−∆t and āk
′

ik
′
F

≥ −∆c if i ∈ IS , ik
′
F ∈ IP ∪ IQ,

−∆t and āk
′

ik
′
F

≥ −∆t if i, ik
′
F ∈ IS .

(6)

Let ∆ = min{∆cc,∆ct,∆tc,∆tt,∆c,∆t}. It can be proved that
there exists M ∈ R≥0, such that for every t ∈ [0, T ] and i ∈ I,
|ai(t)| < M , i.e. the acceleration is bounded. Define three probability
functions as follows

pj : (R≥0)5 → [0, 1]; (7)

pj(b1, b2, b3, b4, b5) =
1

Cj

(
1− e−γjb1b2b3b4b5

)
,
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where γj > 0, Cj are renormalization constants given by

Cj = max
[0,2M−∆]5

(
1− e−γjb1b2b3b4b5

)
= 1− e−γj(2M−∆)5 ,

and j = 1, 2, 3. The third probability function p3 will be used in the
infinite-dimensional case.

A car or an autonomous vehicle i ∈ IP ∪ IQ will perform lane-
change from lane k ∈ K to lane k′ ∈ {k− 1, k+ 1}∩K under both
the incentive and safety conditions with a probability given by

p1

(
[āk

′
i − a

k
i −∆cc]+, [ā

k′
i − a

k
i −∆tc]+,

[āk
′
i + ∆c]+, [āk

′

ik
′
F

+ ∆c]+, [ā
k′

ik
′
F

+ ∆t]+
)
.

The probability of a truck i ∈ IS performing lane-change is

p2

(
[āk

′
i − a

k
i −∆ct]+, [ā

k′
i − a

k
i −∆tt]+,

[āk
′
i + ∆t]+, [āk

′

ik
′
F

+ ∆c]+, [ā
k′

ik
′
F

+ ∆t]+
)
.

The infinite-dimensional case
Now we still consider Q autonomous vehicles but infinitely many cars
and trucks. In this case we investigate the lane-changing behavior of
all vehicles by looking into the following average acceleration of cars
AkP , and the average acceleration of trucks AkS , on lane k ∈ K:

AkP = Hcc
1 ∗1 (µkP + µkQ) +Htc

1 ∗1 µkS +Hcc
2 ∗ (µkP + µkQ) +Htc

2 ∗ µkS ,

AkS = Hct
1 ∗1 (µkP + µkQ) +Htt

1 ∗1 µkS +Hct
2 ∗ (µkP + µkQ) +Htt

2 ∗ µkS .

The probability of cars changing from lane k ∈ K to lane k′ ∈
{k − 1, k + 1} ∩ K lane is

p1

(
[Ak

′
P −A

k
P −∆cc]+, [A

k′
S −A

k
P −∆tc]+, [Ak

′
P + ∆c]+,

[Ak
′
S + ∆t]+, [Ak

′
S + ∆t]+

)
,

the probability of trucks performing lane-change from lane k ∈ K to
lane k′ ∈ {k − 1, k + 1} ∩ K is

p2

(
[Ak

′
P −A

k
S −∆ct]+, [A

k′
S −A

k
S −∆tt]+, [Ak

′
P + ∆c]+,

[Ak
′
S + ∆t]+, [Ak

′
S + ∆t]+

)
,

and finally the probability of an autonomous vehicle i ∈ IQ perform-
ing lane-change from lane k ∈ K to lane k′ ∈ {k − 1, k + 1} ∩ K
is

p3

(
[āk

′
i −A

k
P −∆cc]+, [ā

k′
i −A

k
S −∆tc]+, [āk

′
i + ∆c]+,

[Ak
′
S + ∆t]+, [Ak

′
P + ∆t]+

)
,

where the probability functions pj , j = 1, 2, 3 are defined in eq. (7).

C. Cool-down time

Now we introduce the model assumption, ”cool-down” time, which
is critical to describe the frequencies of the vehicles’ lane-changing
behavior and to prove the well-posedness of our heterogeneus multi-
lane traffic model.

By empirical observations, the lane-changing frequency of vehicles
on the highway is low. For instance, a study analyzing a two dimen-
sional dataset recorded on a German highway shows that only 15%
of the vehicles performed lane-change while traveling the recorded
road segment. For this reason, the chance of two vehicles performing
lane-change at exactly the same time is even lower. Therefore it is
reasonable to assume that there are not two vehicles changing lane
at the same time. To achieve this, we associate each vehicle i ∈ I a
timer τi and assume that the initial timers for two different vehicles
are different. We also introduce the ”cool-down” time τ̄ = T

Nτ
, where

Nτ ∈ N≥0 is large and assume that vehicle i ∈ I checks the lane-
changing conditions only when its timer reaches the cool-down time,
τ1. In addition, we reset the vehicle’s timer to 0 once its timer reaches
the cool-down time τ̄ . Specifically, for each vehicle i ∈ I, its timer
τi satisfies the following

τ̇i(t) = 1, τi(0) = τi,0, t ∈ [0, τ̄)

where τi1,0 6= τi2,0 if i1 6= i2 ∈ I. Note that one can also model
large lane-changing frequencies by choosing small cool-down time
τ̄ .

In the case of finitely many vehicles, the presence of the cool-down
time, τ̄ allows us to consider a small time interval [0, t1] when there
is no vehicle changing lane. Similarly, in the case of infinitely many
cars and trucks but finitely many autonomous vehicles, due to the
definition of the cool-down time, there is a small time interval [0, t2]
when there is no autonomous vehicle changing lane. In particular,
t1 = mini∈I{τ̄ − τi,0} and t2 = mini∈IQ{τ̄ − τi,0}.

III. THE OPTIMAL CONTROL PROBLEM ON A
FINITE-DIMENSIONAL HYBRID SYSTEM

In this subsection, we again consider the multi-lane and multi-
population traffic with P cars, S trucks and Q autonomous vehicles.
The continuous dynamics of the finitely many vehicles without lane-
change and the discrete events generated by the vehicles’ lane-
changing behaviors lead us to consider a finite-dimensional hybrid
system Σ1. We distinguish the autonomous vehicles from the others
by adding control terms to their accelerations.

Let X = R×R≥0× [0, τ̄) and L =
{
` = (`i)i∈I ∈ KP+Q+S

}
be the set of symbols that represent all possible lane labels of all ve-
hicles including cars, trucks and autonomous vehicles. Additionally,
before giving the definition of the finite-dimensional hybrid system
Σ1, we define the following two sets: the set A` containing the
position-velocity-timer vectors of all vehicles among which there are
at least two vehicles occupying the same lane and position at certain
time and the set LC(Σ1) representing the lane-changing mechanism
of the finitely many vehicles:

A` =
{(
xi, vi, τi

)
i∈I ∈ X : ∃t ∈ [0, T ], i1, i2 ∈ I, (8)

s.t., xi1(t) = xi2(t) ∧ `i1(t) = `i2(t), with `i1 , `i2 ∈ K
}
,

LC(Σ1) =
{

(`, (xi, vi, τi), `
′, (x′i, v

′
i, τ
′
i))i∈I ∈ (L ×X)2 : (9)

∃ i0 ∈ I, ∃ t0 ∈ [0, τ̄), s.t., j 6= i0, (`j(t0), xj(t0), vj(t0), τj(t0))

=(`′j(t0), x′j(t0), v′j(t0), τ ′j(t0)) ∧ (xi0(t0), vi0(t0))

=(x′i0(t0), v′i0(t0)), `′i0(t0) = `i0(t0)± 1, τ ′i0(t0) = 0
}
.

Now we are ready to define the controlled finite-dimensional hybrid
system.

Definition III.1 (The controlled finite-dimensional hybrid sys-
tem). A finite dimensional hybrid system is a 6-tuple Σ1 =
(L,M, U,U , g, SW ) where:

(1) L =
{
` = (`i)i∈I ∈ KP+Q+S

}
is a finite set of symbols

representing all possible lane labels of all vehicles including
cars, autonomous vehicles and trucks. Here we call ` ∈ L a
location of the hybrid system Σ1;

(2) M = {M`}`∈L, where M` = (X \ A`)P+Q+S is the
space of position-velocity-timer vectors of all vehicles, with
A` defined as in (8);

(3) U = {U`}`∈L represents the control space, U` = IQ, where
I ⊂ [−Umax, Umax] is compact with Umax > 0;
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(4) U = {U`}`∈L is such that U` = {u : [0, T ] ⊂ R+
0 →

U` measurable} which represents the set of admissible controls
at location `;

(5) g = {g`}`∈L with g` : M` × U` 7→ R3(P+Q+S), is
such that for every (xi, vi, τi, ui) ∈ M`i × U`i , it holds
g(`i)

(xi, vi, τi, ui) = (vi, ai, 1), where ai = v̇i is defined
as in systems (4);

(6) SW is a subset of LC(Σ1), where LC(Σ1) is the set of states
for which a lane-changing can occur, that is (9).

For the well-posedness of the above finite-dimensional hybrid
system see [6].

Now we are ready to introduce an optimal control problem
associated to the finite-dimensional hybrid system of definition III.1
on the time interval [0, t1) which can be extended to the whole time
interval [0, T ]. For more details, we refer again to [6].

Definition III.2 (Optimal control problem associated with a finite-di-
mensional hybrid system). Find u∗ ∈ L1([0, t1); I)Q, such that

FP,S(u∗) = min
u∈L1([0,t1),I)Q

FP,S(u). (10)

where the functional FP,S is given by

∑
k∈K

∫ t1

0

{
Lk(xk(t), vk(t), µkP (t), µkS(t)) + 1

Qk(t)

Qk(t)∑
j=1

|ukj (t)|

}
dt

(11)
where (xk, vk, µkP , µ

k
S) ∈ (R × R≥0)Qk(t) × P(R × R≥0)2 are

solutions to the finite dimensional hybrid system (III.1) on the time
interval [0, t1).

Notice that the cost functional defined in (11) contains two pieces
of different nature: the former is a classic Lagrangian involving
position and velocity of autonomous vehicles and the density measure
of cars and trucks; the latter is a weighted L1-norm of the vector of
controls. For the existence of the optimal control in the case of the
finite-dimensional hybrid system, we refer to [12].

IV. THE OPTIMAL CONTROL PROBLEM ON A
INFINITE-DIMENSIONAL HYBRID SYSTEMS

In the following we introduce a definition of controlled infinite-
dimensional hybrid system. The rigorous proof of the passage from
the finite to the infinite system is given in [6]. Here again the system
describes the dynamics of multi-lane traffic with cars, trucks an
autonomous vehicles. The difference is that the evolution for the
first two type of vehicle is given in term of their density, while
the number of autonomous vehicles is still finite. The lane changing
behavior of the autonomous vehicles generates discrete event of
the infinite dimensional hybrid system. Let (xi, vi) be the position-
velocity vector of the autonomous vehicle i ∈ IQ and νkc , ν

k
t ∈

M+(R × R≥0) the density distribution of cars and trucks on the
k-th lane with µkQ the empirical measure for autonomous vehicles
defined in (2). The continuous dynamics is given by

ẋi = vi i ∈ IQ
v̇i =

(
Hcc

1 ∗1 (νkc + µkQ) +Htc
1 ∗1 νkt

)
(xi, vi)

+
(
Hcc

2 ∗ (νkc + νkQ) +Htc
2 ∗ νkt

)
(xi, vi) + ui i ∈ IkQ

∂tν
k
c + v∂xν

k
c + ∂v

[(
Hcc

1 ∗1 (νkc + νkQ) +Hct
1 ∗1 νkt

+Hcc
2 ∗ (νkc + νkQ) +Hct

2 ∗ νkt
)
νkc

]
= G1(νkc , ν

k
t , ν

k′
c , ν

k′
t )

∂tν
k
t + v∂xν

k
t + ∂v

[(
Hct

1 ∗1 (νkc + νkQ) +Htt
1 ∗1 νkt

+Hct
2 ∗ (νkc + νkQ) +Htt

2 ∗ νkt
)
νkt

]
= G2(νkc , ν

k
t , ν

k′
c , ν

k′
t ),

(12)

where k ∈ K, the source terms G1 and G2 are generated by
the lane-changing behavior of the cars and trucks. To define the
infinite-dimensional controlled hybrid system we consider X =

R×R≥0×[0, τ̄) and L̃ =
{
` = (`i)i∈IQ ∈ K

Q
}

the set of symbols
representing all the possible lane labels for autonomous vehicles.
Moreover we introduce Ã` set of triples position-velocity-timer and
LC(Σ2) representing the lane-changing mechanism of the finitely
many autonomous vehicles:

Ã` =
{(
xi, vi, τi

)
i∈IQ

∈ X : ∃t ∈ [0, T ], i1, i2 ∈ IQ, (13)

s.t., xi1(t) = xi2(t) ∧ `i1(t) = `i2(t), with `i1 , `i2 ∈ K
}
,

LC(Σ2) =
{(
`, (xi, vi, τi), `

′, (x′i, v
′
i, τ
′
i)
)
i∈IQ

∈ (L̃ ×X)2 :

∃ i0 ∈ IQ, ∃ t0 ∈ [0, τ̄), s.t., j 6= i0, (`j(t0), xj(t0), vj(t0), τj(t0))

= (`′j(t0), x′j(t0), v′j(t0), τ ′j(t0)) ∧ (xi0(t0), vi0(t0))

= (x′i0(t0), v′i0(t0)), `′i0(t0) = `i0(t0)± 1, τ ′i0(t0) = 0
}
. (14)

Definition IV.1 (The controlled infinite-dimensional hybrid sys-
tem). A infinite dimensional hybrid system is a 6-tuple Σ2 =
(L,M, U,U , g, SW ) where:

(1) L̃ =
{
` = (`i)i∈IQ ∈ K

Q
}

is a finite set of symbols that
represent all possible lane labels of the autonomous vehicles;

(2) M = {M`}`∈L̃, where M` = (X \ Ã`)Q × (M+(R ×
R≥0))2L, with Ã` given by (13);

(3) U = {U`}`∈L̃ represents the control space;

(4) U = {U`}`∈L̃ is such that U` = {u : Dom(u) ⊂ R+
0 →

U` measurable} which represents the set of admissible controls
at location `;

(5) g = {g`}`∈L̃, g` : M` × U` 7→ R3Q, such
that for every (xi, vi, τi, νc, νt, ui) ∈ M`i × U`i ,
g(`i)

(xi, vi, τi, νc, νt, ui) = (vi, ai, 1), where ai = v̇i,
i ∈ IQ as defined in systems (12);

(6) S is a subset of LC(Σ2), where LC(Σ2) is the set of states
for which a lane-changing can occur, that is (14).

The well-posedness of the infinite-dimensional hybrid system is
again established in [6]. For the next results we consider the product
space

X : =
{

(x, v, µ, ν) ∈ (R× R≥0)M ×M+(R× R≥0)2
}

and endow it with the following metric: for any
(x1, v1, µ1, ν1), (x2, v2, µ2, ν2) ∈ X ,

‖(x1, v1, µ1, ν1)− (x2, v2, µ2, ν2)‖X =

=

M∑
j=1

(|x1,j − x2,j |+ |v1,j − v2,j |) +W1,1
1 (µ1, µ2) +W1,1

1 (ν1, ν2),

(15)
where M ∈ N0, W1,1

1 is the generalization of the standard Wasser-
stein distance (see [1]) introduced in [23].
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Definition IV.2 (Optimal control problem associated with an in-
finite-dimensional hybrid system). Find u∗ ∈ L1([0, t2); I)Q, such
that

F (u∗) = min
u∈L1([0,t2),I)Q

F (u). (16)

and the functional F is given by∑
k∈J

∫ t2

0

{
Lk(xk(t), vk(t), νkc (t), νkt (t)) + 1

Qk(t)

Qk(t)∑
j=1

|ukj (t)|

}
dt

(17)
where (xk, vk, νkc , ν

k
t ) ∈ (R × R≥0)Qk(t) ×M+(R × R≥0)2

are solutions to system (12) and each function Lk : X → R≥0 is
continuous with respect to the metric defined in (15).

Definition IV.3. Let X be a separable metric space and consider the
sequence of functionals FN : X 7→ (−∞,∞], N ∈ N. Then FN
Γ- converges to F : X 7→ (−∞,∞] if the following conditions are
satisfied:

1. ( Lim inf inequality ) For every u ∈ X and every sequence
uN → u,

F (u) ≤ lim inf
N→∞

FN (uN );

2. ( Lim sup inequality ) For every u ∈ X , there exists a sequence
uN → u, s.t.

F (u) ≥ lim sup
N→∞

FN (uN ).

Theorem IV.1. For every k ∈ J , the sequence of functionals
(F kP,S)P,S∈N+ on L1([0, t2),U)Q as defined in (11) Γ-converges
to the functional F k in (17).

Proof. We start showing that the Lim inf inequality is satisfied. Let
(uN )∞N=1 be a sequence in L1([0, t2))Q such that uN ⇀ u ∈
L1([0, t2))Q. Furthermore, we require that as N →∞, the number
of human-driven vehicles for each type goes to infinity (i.e. P, S →
∞). Then for each k ∈ J ,

F k(u) ≤ lim inf
P→∞, S→∞

F kP,S(uN ); (18)

For each N ∈ N≥1, there exists a unique solution
(xkN , v

k
N , µ

k
N,P , µ

k
N,S) ∈ (R× R≥0)Qk ×M+(R× R≥0), k ∈ J ,

to the finite-dimensional hybrid system.
The key property needed to prove (18) is

lim
N→∞

(xkN , v
k
N , µ

k
N,P , µ

k
N,S) = (xk(t), vk(t), νkc (t), νkt (t))

where the limit is in the norm defined in (15) and it holds by
construction. This indeed implies that

lim
N→∞

∫ t0

0
Lk(xkN (t), vkN (t), µkN,P (t), µkN,S(t))dt

=

∫ t0

0
Lk(xk(t), vk(t), νkc (t), νkt (t))dt

which together the lower-continuity of the L1-norm gives (18). The
Lim sup inequality follows easily by choosing uN constantly equal
to u.

Corollary IV.1.1. The optimal control problem in Definition (IV.2)
has solutions.

Proof. For each N ∈ N≥1, there is an optimal control u∗,N for
the finite dimensional system (see [10] for more details). Note that
since the sequence of controls (u∗,N ) is bounded in L1([0, t2), I)Q

which is compact in the week topology, there exists a subsequence
(for simplicity, we still use the same notaion), such that u∗,N ⇀

u∗ ∈ L1([0, t2), I)Q. By Theorem 7.8 in [21], u∗ minimizes F .

V. GENERALIZATION TO MULTI-POPULATION MODELS

In this section we derive a general formulation for both the finite
dimensional and the infinite dimensional hybrid system in the case
of M + 1 populations of vehicles. Indeed the theory built in the
preliminary papers of Gong, Piccoli and Visconti ( [12], [13]) can
be extended to more complex situations just by using the same
technique.

Consider Ak the number of autonomous vehicles on the lane k ∈
{1, . . . , L}, with Ik0 the correspondent sets of indices. On the other
side let Vn,k with n = 1, . . . ,M be the number of human-driven
vehicles on lane k with indices in Ikn.

The dynamic of this multi-population frame is given by the
following system of first order ODE representing the Bando-FtL
model in convolutional form:

ẋi = vi i ∈ I

v̇i =



( M∑
m=0

Hmn
1 ∗1 µkm +

M∑
m=0

Hmn
2 ∗ µkm

)
(xi, vi) + ui i ∈ Ik0 ,

( M∑
m=0

Hmn
1 ∗1 µkm +

M∑
m=0

Hmn
2 ∗ µkm

)
(xi, vi) i ∈ Ikn.

(19)

Here µkn, with n ∈ {0, . . . ,M}, represents again the atomic mea-
sures supported on absolutely continuous trajectories t ∈ [0, T ] →
(xi(t), vi(t)) ∈ R × R≥0 for each type of vehicle in the lane k,
explicitly we have:

µk0(t) =
1

Ak(t)

∑
i∈Ik0 (t)

δ(xi(t),vi(t)),

µk1(t) =
1

V1,k(t)

∑
i∈Ik1 (t)

δ(xi(t),vi(t)),

...

µkM (t) =
1

VM,k(t)

∑
i∈Ik

M
(t)

δ(xi(t),vi(t)),

The convolutional kernels in (19) are defined in such a way that they
can represents all the possible combinations of vehicles depending
on their order, indeed
Hmn
q : R× R≥0 → R with q ∈ {1, 2} , m, n ∈ {0, . . . ,M}

and the structure of these maps is the same described for the two
populations case in II-A. The control appears only in the acceleration
of autonomous vehicles and aims to influence the dynamic of the
other populations. Observe that in the case of M = 2, i.e. with
autonomous vehicles and two population of human-driven vehicles
(cars and trucks), if we assume that the convolutional kernel for the
first two types is the same, then we find again the dynamic (4)

We point out that the lane changing conditions (Incentive and
Safety), the probability for a vehicle of performing lane change
and the definition of controlled hybrid system can be formulated in
analogous way up to heavier notation. It can be also proved rigorously
that the mean field limit (i.e, assuming that the number of vehiches
for each class, apart AV, goes to +∞) for (19) is given by

ẋi = vi i ∈ I0

v̇i =
( M∑
m=0

Hm0
1 ∗1 νkm +

M∑
m=0

Hm0
2 ∗ νkm

)
(xi, vi) + ui i ∈ Ik0
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∂tν
k
n + v∂xν

k
n + ∂v

[( M∑
m=0

Hmn
1 ∗1 νkm +

M∑
m=0

Hmn
2 ∗ νkm

)
νkn

]
(20)

= Gn(νkn, ν
k
m, ν

k′
n , ν

k′
m ) n ∈ {1, . . . ,M}

with νkn ∈ M+(R × R≥0) representing the density of vehicles of
the class n. Observe that in the new source term the input νkm is the
density of vehicles of the class m 6= n entering the contiguous lane,
therefore it stands for M − 1 densities (same for νk

′
m ).

Similarly to what seen in the previous sections, we can associate
an optimal control problem both to the finite and infinite dimensional
hybrid system and study the well posedness . This extension of the
model to multiple populations allows for a fine analysis of traffic
including for example small, medium and large vehicles, motorcycles,
bicycles and so on.

VI. CONCLUSION AND FUTURE WORK

In this paper we have analyzed the existence of an optimal
control for a minimization problem associated to the dynamic of a
multi-population traffic model on multi-lane both on a microscopic
and macroscopic scale (through the mean-field limit). This is a
preliminary step towards a deep understanding of the mechanisms
regulating this type of traffic and how to improve it. A question still
open is, for instance, the identification of appropriate ranges for the
parameters in the convolution kernels and in the Incentive (5) and
Safety (6) conditions. For this purpose it is relevant to perform a
comparison with empirical data. Also the choice of the probability
(7) can be improved by including parameters which take into account
the position along the stretch of road, the proximity of intersections,
weather conditions and the time slots. Consequently it will be possible
to implement optimal control and develop numerical methods for
predictions. We emphasize that the control of traffic in the presence
of large vehicles is of vital importance also for safety purposes, in
fact studies and data show that their presence often increases the
number and extent of road accidents ( [20]).
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in metric spaces and in the space of probability measures. Springer
Science & Business Media, 2008.

[2] M Bando, K Hasebe, A Nakayama, A Shibata, and Y Sugiyama.
Structure stability of congestion in traffic dynamics. Japan Journal of
Industrial and Applied Mathematics, 11(2):203, 1994.

[3] Francesco Borrelli, Mato Baotić, Alberto Bemporad, and Manfred
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