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Abstract

In this paper we prove new rigidity results for complete, possibly non-compact, critical
metrics of the quadratic curvature functionals F2

t =
∫
|Ricg |2dVg + t

∫
R2

gdVg, t ∈ R, and
S2 =

∫
R2

gdVg. We show that (i) flat surfaces are the only critical points of S2, (ii) flat
three-dimensional manifolds are the only critical points of F2

t for every t > −1
3
, (iii) three-

dimensional scalar flat manifolds are the only critical points of S2 with finite energy and
(iv) n-dimensional, n > 4, scalar flat manifolds are the only critical points of S2 with finite
energy and scalar curvature bounded below. In case (i), our proof relies on rigidity results
for conformal vector fields and an ODE argument; in case (ii) we draw upon some ideas
of M. T. Anderson concerning regularity, convergence and rigidity of critical metrics; in
cases (iii) and (iv) the proofs are self-contained and depend on new pointwise and integral
estimates.

Keywords: Quadratic functionals, critical metrics, rigidity results. AMS subject
classification: 53C21, 53C24, 53C25

1. Introduction

It is a natural problem in Riemannian geometry to study canonical metrics arising
as solutions of the Euler-Lagrange equations for curvature functionals. In [3], Berger
commenced the study of Riemannian functionals which are quadratic in the curvature
(see [4, Chapter 4] and [21], [10] for surveys). To fix the notation, let Mn, n ≥ 2, be
a n–dimensional smooth manifold without boundary. Given a Riemannian metric g on
Mn, we denote with Riemg, Wg, Ricg and Rg, respectively, the Riemann curvature tensor,
the Weyl tensor, the Ricci tensor and the scalar curvature. Then a basis for the space of
quadratic curvature functionals, defined on the space of smooth metrics on Mn, is given
by

W2 =

∫
|Wg|2dVg , r2 =

∫
|Ricg|2dVg , S2 =

∫
R2

gdVg.
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It is well known that the only quadratic functional in the case n = 2 is given by S2, while
in dimension n = 3 one only has S2 and r2. From the standard decomposition of the
Riemann tensor, for every n ≥ 4, one has

R2 =

∫
|Riemg |2dVg =

∫ (
|Wg|2 +

4

n− 2
|Ricg|2 −

2

(n− 1)(n− 2)
R2

g

)
dVg .

All such functionals, which also arise naturally as total actions in certain gravitational
fields theories in physics, have been deeply studied in the last years by many authors; they
are also of great interest in the Kähler framework: in this case, restricting to metrics in a
given cohomology class, it is possible to show that each one of the three basis functionals
can be expressed affinely by any one of them (see the discussion in [4, Chapter 11.E.]).

In this paper we focus our attention on rigidity results for critical metrics of quadratic
curvature functionals which do not depend on W2, i.e. we will consider

F2
t =

∫
|Ricg|2dVg + t

∫
R2

gdVg ,

defined for some t ∈ R∪{+∞}, the case t = +∞ formally corresponding to the functional
S2.

Using variations with compact support, one finds that the Euler–Lagrange equation for
a critical metric of F2

t reads, in local coordinates, as

−∆Rij +(1+2t)∇2
ijRg −

1 + 4t

2
(∆Rg)gij +

1

2

(
|Ricg|2+ tR2

g

)
gij − 2RikjlRkl− 2tRgRij = 0 ,

(1.1)
which upon tracing yields(

n+ 4(n− 1)t
)
∆Rg = (n− 4)

(
|Ricg|2 + tR2

g

)
. (1.2)

In particular for S2 we obtain

Rg Ricg −∇2Rg =
3

4(n− 1)
R2

g g , (1.3)

∆Rg =
n− 4

4(n− 1)
R2

g , (1.4)

It is clear that for n = 2 and n = 3 one expects stronger results, since the systems of
equations (1.1) and (1.3) govern the full curvature of the manifold. On the other hand, in
dimensions n ≥ 4 one would surmise that information on the full Riemann tensor might
be needed, at least to study system (1.1).

Since in dimensions different from four F2
t is not scale-invariant, when Mn is compact

it is natural to restrict the functional on M1(M
n), the space of equivalence classes of

Riemannian metrics on Mn having unit volume. Equivalently, one can consider a modified
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functional properly normalized with the volume of the manifold. It was already observed
in [4] that every Einstein metric is critical for F2

t onM1(M
n), for every t ∈ R. The converse

in general is false, of course. For instance, in dimension four, every Bach-flat metric is
critical for F2

−1/3 and every Weyl and scalar flat metric is critical for F2
−1/4 on M1(M

4)

(see [4, Chapter 4]). Moreover, Lamontagne in [18] constructed a homogeneous non-
Einstein critical metric for R = 4F2

−1/4 on M1(S3). This construction can be generalized

to the case when t > −1
2
, see [14, section 7]. Other examples of compact critical metrics

were constructed by Gursky and Viaclovsky in [15], where they considered a manifold M4

which is the connected sum of some Einstein manifolds and constructed critical metrics for
F2
t on M1(M4), for t “close” to a given value depending on the topology of the Einstein

building blocks. It is then natural to ask under which conditions a critical metric for
F2
t must be Einstein. Typically, one assumes some curvature conditions (of pointwise or

integral type, positivity or negativity of the curvature, etc.) on the critical metric, in order
to prove rigidity properties; for results in this direction see e.g. [1, 16, 7, 17, 8, 5].

The problem of studying critical metrics for quadratic curvature functionals in the non-
compact setting has on the other hand received much less attention. It is easy to see that
all Ricci-flat metrics are critical points of the functional F2

t when t ∈ R, which are also
global minima of the functional when t ∈ [− 1

n
,+∞); similarly, scalar-flat metrics are global

minima for S2, and hence are critical.
Anderson in [2] proved that every complete three-dimensional critical metric for the

functional F2
t with non-negative scalar curvature is flat, if t = 0 or t = −1

3
. As an

auxiliary result, in Lemma 4.3 we observe that the same techniques allow to extend the
result to include the case t ∈ (−1

3
,+∞). In [7] the first author showed a characterization

of complete critical metrics for S2 with non-negative scalar curvature, in any dimension
n ≥ 3. On the other hand, in [11], we showed that, in dimension three, flat metrics are
the only complete metrics with non-negative scalar curvature which are critical for the
σ2-curvature functional F2

−3/8. All these results rely heavily on the sign condition on the
scalar curvature. We observe that, to the best of our knowledge, the only example of a
smooth critical metric for a functional F2

t was constructed by Gursky and Viaclovsky in
[16] when n = 3 and t = −3

8
; this example has strictly negative scalar curvature, and we

note for later reference that it does not belong to any Lq space.

We now proceed to describe our results. As already observed, when n = 2 the only
quadratic curvature functional is S2; we then show that the only critical metrics for such
functional are flat, without any further assumption. Indeed we have

Theorem 1.1. Let (M2, g) be a two-dimensional complete critical metric of S2. Then
(M2, g) is flat, and thus a global minimum of the functional.

The proof of this theorem relies on known results on gradient conformal solitons and
on an ODE argument.

When n = 3, we also prove the same result for critical metrics of the functional F2
t ,

with t ∈ (−1
3
,+∞); hence we have
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Theorem 1.2. Let (M3, g), be a three-dimensional complete critical metric of F2
t with

−1

3
< t < +∞.

Then (M3, g) is flat, and thus a global minimum of the functional.

For other values of t, in general this result may not hold, as the explicit example
constructed by Gursky and Viaclovsky in [16] shows for t = −3

8
. The proof of the theorem

follows essentially using arguments introduced by Anderson in [1, 2]. Notice that the
result in Theorem 1.2 holds also for t = −1

3
under the additional assumption that the

scalar curvature is non-negative, as it was shown by Anderson in [2].
We explicitly note that the rigidity results in Theorems 1.1 and 1.2 hold without any

extra assumption on the manifold and its curvature.
For the case of the functional S2 when n = 3, which formally corresponds to t = +∞,

we need an integrability assumption on Rg. Indeed Anderson’s techniques, which we used
in the proof of Theorem 1.2, cannot be directly applied to this functional, as detailed in
Remark 4.6.

Theorem 1.3. Let (M3, g), be a three-dimensional complete critical metric of S2 with
finite energy, i.e. Rg ∈ L2(M3). Then (M3, g) is scalar flat, and thus a global minimum
of the functional.

Remark 1.4. We actually prove a stronger result: let (M3, g) be a three-dimensional
complete, non-compact, critical metric of S2 with Rg ∈ Lq(M3) for some q ∈ (1,∞).
Then (M3, g) is scalar flat, and thus a global minimum of the functional.

We explicitly note that here we do not assume any sign condition on the scalar curvature.
In the compact case the result easily follows integrating the trace of the Euler-Lagrange
equation of the functional. In the non-compact case the proof consists in two steps: first,
using a test function argument, we show that under our hypotheses one must have that
Rg ≥ 0, then we conclude using a previous result for manifolds with non-negative scalar
curvature by the first author, see [7].

In dimension n = 4 the functionals F2
t and S2 are scaling-invariant. In particular for

t = −1
3
a metric is critical if and only if it is Bach-flat, and hence there are several well

known examples of solutions in the literature, both in the compact and in the complete non-
compact case, e.g. conformally Einstein metrics and (anti-)self-dual metrics. In particular,
in [22] the authors study complete, non-compact Bach-flat metrics with finite energy. In
case t ̸= −1

3
or t = +∞, from equations (1.2) and (1.4) one immediately sees that the

metric has harmonic scalar curvature. In particular, in the compact case one has that Rg

must be constant. We note that examples of compact critical metrics of F2
t for some values

of t ̸= −1
3
which are not Einstein have been constructed in [15]. On the other hand, one

can deduce from (1.3) that compact critical metrics of S2 are Einstein. In the non-compact
case a classical result of Yau [25] implies that a critical metric with Rg ∈ Lq(M4) for some
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q ∈ (1,+∞) must have constant scalar curvature; then (M4, g) is scalar flat or it has finite
volume. Moreover from equation (1.3) one has that a critical metric for S2 is either scalar
flat or Einstein with negative curvature and finite volume.

Finally, in the case n > 4, it is clear that one cannot hope to prove rigidity results for
critical metrics of F2

t without assuming further conditions on the full curvature tensor of
the metric. Therefore, we focus our attention on S2 and we prove that all critical metrics
are scalar flat, assuming that the scalar curvature is bounded below and that it satisfies
an integrability condition.

Theorem 1.5. Let (Mn, g), n > 4, be a complete critical metric of S2 with finite energy,
i.e. Rg ∈ L2(Mn), and with Rg bounded from below on Mn. Then (Mn, g) is scalar flat,
and thus a global minimum of the functional.

Remark 1.6. Actually we prove a stronger result: there exists q∗ > 2 such that if (Mn, g),
n > 4, is a complete critical metric of S2 with Rg bounded from below on Mn and with
Rg ∈ Lq(Mn) for some 1 < q < q∗, then (Mn, g) is scalar flat. See the proof of Theorem
1.5 and Remark 5.8.

We explicitly note that also in this case we do not assume any sign condition on Rg. The
proof of the result does not rely on previous works on critical metrics for quadratic curvature
functionals and is divided into three steps: first, using a test function argument, we show
that under our assumptions Rg must either vanish identically or be strictly negative on
Mn; then we prove a gradient estimate for the function Rg, under the assumption that
it is strictly negative on Mn, using the Omori-Yau maximum principle for the f -Laplace
operator and the f -Laplacian comparison theorem for the function f = − log |Rg|; the
third and final step, which relies on the previous gradient estimate, consists in showing
that the case Rg < 0 on Mn cannot occur, using another test function argument.

The rest of the paper is organized as follows: in Section 2 we derive the Euler-Lagrange
equations associated to F2

t and to S2, in any dimension; in Section 3 we consider the case
n = 2 and we prove Theorem 1.1; in Section 4 we study the case n = 3 and we provide the
proofs of Theorems 1.2 and 1.3 (including Remark 1.4); finally in Section 5 we consider
the case when n > 4 and we show Theorem 1.5 (including Remark 1.6).

Acknowledgments . The authors would like to thank Prof. M. T. Anderson for many
helpful discussions.

The first and second authors are members of the GNSAGA, Gruppo Nazionale per le
Strutture Algebriche, Geometriche e le loro Applicazioni of Indam. The third author is
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loro Applicazioni of Indam and has been partially supported by 2020 GNAMPA Project:
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2. Euler-Lagrange Equations

From now on we will drop the subscript g in the notation of geometric objects. In this
section we will follow closely the presentation in [8] and [10].

We fix the index range 1 ≤ i, j, . . . ≤ n and recall that the Einstein summation
convention will be in force throughout. The standard decomposition of the (0, 4)-version
of the Riemann tensor is given by the formula

Rijkt = Wijkt +
1

n− 2
(Rikgjt −Ritgjk +Rjtgik −Rjkgit)−

R

(n− 1)(n− 2)
(gikgjt − gitgjk),

(2.1)
where gij, Wijkt and Rij are the components, respectively, of the metric g, of the Weyl
tensor W and of the Ricci tensor Ric, while R is the scalar curvature. Note that Rij =
gklRikjl = Rkilj and R = gijRij, where gij are the components of the inverse of metric g,
g−1.

We consider the quadratic curvature functionals

F2
t =

∫
|Ric|2dV + t

∫
R2dV ,

defined for some constant t ∈ R (with t = +∞ formally corresponding to the functional
S). Using formulas for the variations of the Ricci tensor and of the scalar curvature
and integrating by parts (using compactly supported “directions” h), it is not difficult to
show that the so-called gradients of the functionals r2 and S2 are given by (see also [4,
Proposition 4.66])

(∇r2)ij = −∆Rij − 2RikjlRkl +∇2
ijR− 1

2
(∆R)gij +

1

2
|Ric|2gij ,

(∇S2)ij = 2∇2
ijR− 2(∆R)gij − 2RRij +

1

2
R2gij ;

hence, the gradient of F2
t reads

(∇F2
t )ij = −∆Rij+(1+2t)∇2

ijR− 1 + 4t

2
(∆R)gij+

1

2

(
|Ric|2+tR2

)
gij−2RikjlRkl−2tRRij ,

(2.2)
and consequently the Euler–Lagrange equation for a critical metric of F2

t are given by

−∆Rij+(1+2t)∇2
ijR− 1 + 4t

2
(∆R)gij+

1

2

(
|Ric|2+tR2

)
gij−2RikjlRkl−2tRRij = 0. (2.3)

Tracing the equation (∇F2
t ) = 0, we obtain(

n+ 4(n− 1)t
)
∆R = (n− 4)

(
|Ric|2 + tR2

)
. (2.4)
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Moreover, the Euler–Lagrange equation for a critical metric of S2 is given by

2RRic− 2∇2R + 2∆Rg =
1

2
R2 g ,

or, equivalently,

RRic−∇2R =
3

4(n− 1)
R2 g , (2.5)

∆R =
n− 4

4(n− 1)
R2 , (2.6)

where equation (2.6) is just the trace of (2.5).

3. Critical surfaces

Let (M2, g) be a two-dimensional complete critical metric of S2. Since Ric = 1
2
Rg,

equation (2.5) reads

∇2R = −1

4
R2 g. (3.1)

In particular (M2, g) is a special gradient conformal soliton with potential function R and
hence ∇R is a special conformal vector field. Complete Riemannian manifolds admitting
a vector field X satisfying

LXg = λg

for some smooth function λ, were studied by many authors in the late 60’s (see, for instance,
the discussion in [13, 9]).

Proof of Theorem 1.1. First of all, if M2 is compact, then the tracing equation (3.1) we
get

∆R = −3

4
R2,

thus, integrating over M2 we get R ≡ 0 on M2.

On the other hand, suppose that M2 is non-compact and g is not flat. By (3.1) the
potential function f := R is non-constant. Let Σ be a regular level set of the function
f : M2 → R, i.e. |∇f | ≠ 0 on Σ, which exists by Sard’s Theorem (and the fact that f is
non-constant). Following [9] (see also [13]), one can easily show that, in a neighborhood
U of Σ not containing any critical point of f , such potential function only depends on the
signed distance r to the hypersurface Σ. Moreover, the width of the neighborhood U is
uniform with respect to the points of Σ, namely we can assume U = {r∗ < r < r∗}, for
some maximal r∗ ∈ [−∞, 0) and r∗ ∈ (0,+∞]. By the scalar invariance of equation (3.1),
we can assume that f ′(0) = 1, possibly changing the function f . Hence, in U , the metric
can be written as

g = dr ⊗ dr + f ′(r)2 gΣ , (3.2)
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where gΣ denotes the induced metric on the level set Σ. Since the hessian of f is given by

∇2f = f ′′dr ⊗ dr + (f ′)2f ′′ gΣ,

from equation (3.1), we get that the potential function satisfies the following ODE

f ′′(r) = −1

4
(f(r))2, r ∈ (r∗, r

∗). (3.3)

It is then immediate to see that

(f ′(r))2 +
1

6
(f(r))3 = const, r ∈ (r∗, r

∗) (3.4)

is a conserved quantity of the ODE (3.3). One can then carry out a standard phase–plane
analysis and a qualitative study of the solutions of (3.3). Indeed one can rewrite (3.3) as
a system {

x′ = y,

y′ = −1
4
x2,

with f = x, f ′ = y, and note that by (3.4) all solutions must lie on level sets of the
function F (x, y) = y2 + 1

6
x3. Moreover one can estimate the maximal interval of existence

of solutions of (3.3) by rewriting (3.4) as

df√
c− 1

6
f 3

= ±dr,

for c ∈ R, and integrating. Then we see that all nontrivial solutions of the ODE can be
divided into three families, according to their qualitative behavior.

Solutions in the first family are bounded above and have maximal domain that is a
bounded open interval. If f : (r∗, r

∗) → R is one of these solutions, then

lim
r→r∗

f(r) = lim
r→r∗

f(r) = −∞,

f ′ is strictly monotone decreasing with

lim
r→r∗

f ′(r) = +∞, lim
r→r∗

f ′(r) = −∞,

f has a unique critical point r0 and f(r0) = max f(r) ̸= 0.
Solutions in the second family are strictly negative and have maximal domain that is

a half–line which is unbounded below, i.e. r∗ = −∞. If f : (−∞, r∗) → R is one of the
solutions in this family, then

lim
r→−∞

f(r) = 0, lim
r→r∗

f(r) = −∞,
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f ′ is strictly monotone decreasing with

lim
r→−∞

f ′(r) = 0, lim
r→r∗

f ′(r) = −∞

and f has no critical points.
Finally, solutions of the third family are strictly negative and have maximal domain

that is a half–line which is unbounded above, i.e. r∗ = +∞. If f : (r∗,+∞) → R is one of
these solutions, then

lim
r→r∗

f(r) = −∞, lim
r→+∞

f(r) = 0,

f ′ is strictly monotone decreasing with

lim
r→r∗

f ′(r) = +∞, lim
r→+∞

f ′(r) = 0

and f also in this case has no critical points.
Now, if f has no critical points, since (M2, g) is complete, non-compact, the width of

the maximal neighborhood U must be unbounded in both the negative and the positive
direction of the signed distance r (i.e. we must have r∗ = −∞ and r∗ = +∞). On the
other hand, if f has only one critical point, since (M2, g) is complete, the width of the
neighborhood U must be unbounded in the positive or in the negative direction of the
signed distance (i.e. we must have r∗ = −∞ or r∗ = +∞, while the other endpoint of the
maximal domain must be finite). This is clearly in contradiction with the above qualitative
study of the solutions of (3.3). Thus, we conclude that necessarily f = R ≡ 0 and (M2, g)
is flat.

4. Dimension three

4.1. Anderson’s theory

On a three-dimensional manifold M3 we consider the quadratic curvature functionals

F2
t =

∫
|Ric|2dV + t

∫
R2dV , t ∈ R.

From Section 2 (see equation (2.3)), in dimension three, usingW = 0 and the decomposition
(2.1), we have

RikjlRkl =
3

2
RRij +

(
|Ric|2 − 1

2
R2

)
gij − 2RikRkj;

thus, the Euler–Lagrange equation for a (smooth) critical metric of F2
t reads

−∆Rij+(1+2t)∇2
ijR−1 + 4t

2
(∆R)gij−

3

2
|Ric|2gij+

2 + t

2
R2gij−(3+2t)RRij+4RikRkj = 0,

(4.1)
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which upon tracing yields (
3 + 8t

)
∆R = −

(
|Ric|2 + tR2

)
. (4.2)

We will follow closely the theory developed by Anderson in [1]. We say that g is a weak L2,2

solution to the system (4.1)-(4.2) if, for every two-tensor h ∈ L2,2 with compact support,
we have ∫

M

〈
(∇F2

t )ij, hij

〉
dV =

∫
M

tr(∇F2
t ) tr(h) dV = 0,

where the L2,2 topology on the space of metrics is given by the norm

∥h∥2L2,2 =

∫
M

(∣∣∇2h
∣∣2 + |∇h|2 + |h|2

)
dV

(see [1, Section 1] for details). Of course here one must perform the appropriate (formal)
integration by parts to obtain well defined integrals. First of all we recall the following
regularity result for L2,2 weak solutions which is due to M. Anderson.

Lemma 4.1 ([1, Theorem 4.1, t = −1/4]). Let t ̸= −3
8
, U be a domain in a three-

dimensional manifold M3 and suppose g is a L2,2 weak solution of the Euler–Lagrange
equation ∇F2

t = 0 on U , i.e. g is an L2,2 critical metric of F2
t on U . Then g is smooth.

Proof (sketch). Due to the form of the system (4.1)-(4.2), the proof of this lemma is the
same as in [1, Theorem 4.1] for the case t = −1/4 for every t ∈ R and t ̸= −3

8
. We note

that, if t = −3
8
, we cannot gain regularity from the traced equation (4.2) and the proof

does not work.

The proof of Theorem 1.2 is by contradiction: assuming a critical metric of F2
t is non-

flat, one can construct another non-flat critical metric with bounded (Ricci) curvature. By
the Omori-Yau maximum principle the solution has non-negative scalar curvature which
in turn implies it must be flat, thus reaching a contradiction. The following lemmas are
technical steps which are used for the proof of Theorem 1.2 and are extension of results
(blow-up and rigidity) proved by M. Anderson for specific values of the parameter t.

Lemma 4.2 ([2, Lemma 2.1, t = 0]). Let (M3, g) be a complete, non-flat, critical solution
of F2

t for t ̸= −3
8
. Then there exists another complete, non-flat, critical solution of F2

t ,
(M̄3, ḡ), which has uniformly bounded curvature, i.e.

|Ricḡ|ḡ ≤ 1 on M̄3.

Proof (sketch). Given the local regularity result of Lemma 4.1, the proof of this lemma is
exactly the same as in [2, Lemma 2.1] for the case t = 0.

Lemma 4.3 ([2, Theorem 0.1, t = 0]). Let (M3, g) be a complete critical solution of F2
t

for

−1

3
< t < +∞

with non-negative scalar curvature. Then (M3, g) is flat.
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Proof (sketch). The proof is (substantially) contained in [2]. The case t = 0 is treated in
full detail, whereas when t = −1

3
in [2, Proposition 5.4] the author highlights the differences

between the two cases. An examination of the proof for the case t = 0 (i.e. [2, Theorem
0.1]) shows that all the arguments remain valid also if −1

3
< t < +∞. First of all, from

Lemma 4.1 and Lemma 4.2, local regularity of weak solutions and the possibility to use
a solution with bounded curvature are guaranteed. The second important observation is
that the traced equation (4.2) reads(

3 + 8t
)
∆R = −

(
|Ric|2 + tR2

)
= −

(
|

◦
Ric|2 + 1 + 3t

3
R2

)
≤ −1 + 3t

3
R2,

and therefore, if t > −1
3
, all the proofs still work. Here

◦
Ric = Ric − 1

3
Rg. In particular,

as observed also in the proof of [2, Proposition 5.4] for the case t = −1
3
, the following two

instances can be solved:

(i) The passage from (2.7) to (2.8) in the proof of [2, Proposition 2.2]. In the general
case, (2.7) and (2.8) must read as∫

η4
(
|

◦
Ric|2 + 1 + 3t

3
R2

)
≤ µ

∫
η4R2 + µ−1

∫
η2(η′)2(H+)2 + µ−1

∫
η2(η′′)2

and ∫
B(ρ)

(
|

◦
Ric|2 + 1 + 3t− 3µ

3
R2

)
≤ c2ρ

−2

∫
B(2ρ)

(H+)2 + c3ρ
−ε,

respectively. HereH+ is the positive part of the mean curvature of the geodesic sphere
centered at a fixed point and radius r. Therefore, if t > −1

3
and µ is sufficiently small,

arguing verbatim as in the original proof by M. Anderson [2], we obtain that (N, g)
satisfies

◦
Ric ≡ R ≡ 0,

and therefore must be flat, as required.

(ii) In the proof of [2, Lemma 2.9 (ii)], in our case, the condition ∆R(xi) → 0 implies

|
◦

Ric|(xi) → 0 and also R(xi) → 0, since t > −1
3
. Therefore the proof can be

completed following the same steps as in [2].

Remark 4.4. The result is true also if t = −1/3 (see [2, Section 5.2]). Moreover, a similar
result holds if t = +∞, i.e. for critical solution of S2, as it was shown in [7]. In this case
(M3, g) must be scalar flat.

Proof of Theorem 1.2. Suppose that (M3, g) is a three-dimensional complete, non-flat,
critical metric of F2

t with −1
3
< t < +∞. From Lemma 4.2 we can construct another
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complete, non-flat, critical solution of F2
t , (M̄

3, ḡ), which has uniformly bounded curvature,
i.e.

|Ricḡ|ḡ ≤ 1 on M̄3.

In particular the Ricci curvature of ḡ is bounded below. Therefore, we can apply the
classical Omori-Yau maximum principle (see for instance [24]) to the scalar curvature of ḡ
which is bounded below and satisfies the differential inequality

(3 + 8t)∆ḡRḡ = −
(
|

◦
Ricḡ|2ḡ +

1 + 3t

3
R2

ḡ

)
≤ −1 + 3t

3
R2

ḡ,

obtaining

inf
M̄

Rḡ ≥ 0.

Lemma 4.3 applied to (M̄3, ḡ) implies that (M̄3, ḡ) must be flat, a contradiction. Therefore
the critical solution (M3, g) is flat and Theorem 1.2 is proved.

4.2. Critical metrics of S2

The proofs of Theorem 1.3 and Remark 1.4 rely upon an integral estimate for critical
metrics of S2, that we now prove in general dimension n. We recall that a complete
Riemannian manifold (Mn, g) is critical for S2 if it satisfies (2.5) and (2.6), i. e.

RRic−∇2R =
3

4(n− 1)
R2 g .

and

∆R =
n− 4

4(n− 1)
R2 .

We have the following estimate:

Lemma 4.5. Let (Mn, g) be a complete critical metric of S2. Assume that there exists a
point O ∈ Mn such that R(O) < 0 and, for s > 0, define the open set

M−
s = {p ∈ Mn|R(p) < 0} ∩Bs(O) ,

where Bs(O) is the geodesic ball of radius s centered in O. Then, for every 0 < s1 < s2
and every α > −1, the following estimate holds:∫
M−

s1

|∇R|2|R|α dVg ≤
(n− 4)

2(n− 1)(1 + α)

∫
M−

s2

|R|α+3 dVg +
4

(1 + α)2(s2 − s1)2

∫
M−

s2

|R|α+2 dVg .

12



Proof. Let η be a smooth cutoff function such that η ≡ 1 on Bs1(O), η ≡ 0 on Bc
s2
(O),

0 ≤ η ≤ 1 on Mn and |∇η| ≤ c
s2−s1

, c > 0 independent of s1, s2. Integrating by parts one
obtains∫

M−
s2

|∇R|2|R|αη2 dVg =

∫
M−

s2

⟨∇R,∇R⟩(−R)αη2 dVg

= −
∫
M−

s2

R∆R(−R)αη2 dVg − α

∫
M−

s2

⟨∇R,∇R⟩(−R)αη2 dVg

+2

∫
M−

s2

⟨∇R,∇η⟩(−R)α+1η dVg

−
∫
∂M−

s2

|R|1+α⟨∇R, ν⟩η2

= −
∫
M−

s2

R∆R(−R)αη2 dVg − α

∫
M−

s2

⟨∇R,∇R⟩(−R)αη2 dVg

+2

∫
M−

s2

⟨∇R,∇η⟩(−R)α+1η dVg ,

since the boundary terms vanish because η has compact support in Bs2 , R ≡ 0 on the
boundary of the set {p : R(p) < 0} and α + 1 > 0. Thus, from equation (2.6), we get∫
M−

s2

|∇R|2|R|αη2 dVg = − 1

1 + α

∫
M−

s2

R∆R(−R)αη2 dVg +
2

1 + α

∫
M−

s2

⟨∇R,∇η⟩|R|α+1η dVg

=
n− 4

4(n− 1)(1 + α)

∫
M−

s2

|R|α+3η2 dVg +
2

1 + α

∫
M−

s2

⟨∇R,∇η⟩|R|α+1η dVg .

On the other hand, Schwartz inequality implies

2

1 + α

∫
M−

s2

⟨∇R,∇η⟩|R|α+1η dVg ≤
ε

1 + α

∫
M−

s2

|∇R|2|R|αη2 dVg+
1

ε(1 + α)

∫
M−

s2

|R|α+2|∇η|2 dVg ,

for every ε > 0. Choosing ε = (1 + α)/2 we get the result.

Proof of Theorem 1.3 and Remark 1.4. First of all, ifM3 is compact, then integrating (2.6)
over M3 we get R ≡ 0 on M3.

On the other hand, suppose that M3 is non-compact and let 1 < q < ∞. Using
Lemma 4.5 with n = 3, s2 = 2s1 = 2s > 0 and α = q − 2 > −1 we get∫

M−
s

|∇R|2|R|q−2 dVg ≤
4

(q − 1)2s2

∫
Mn

|R|q dVg −→ 0 as s → +∞.

Hence we have that (M3, g) has non-negative scalar curvature. It follows from [7, Theorem
1.2] that (M3, g) has to be scalar flat, and Theorem 1.3 and Remark 1.4 in this case are
proved.
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Remark 4.6. We explicitly note that the strategy used in the proof of Theorem 1.2 cannot
be applied in the case of critical metrics of S2. More precisely, even if the rigidity result
of Lemma 4.3 still holds (see Remark 4.4), the local regularity of L2,2-weak solutions given
by Lemma 4.1 could be proved (possibly with some effort, due to the presence of the
boundary set Σ = {R = 0}), and thus also the blow-up argument in Lemma 4.2 works, the
contradiction in the proof of Theorem 1.2 cannot be achieved, since the solution (M̄3, ḡ)
must only be scalar flat.

5. Higher dimensions

The aim of this section is to prove Theorem 1.5 and Remark 1.6.
First of all, we show the following

Lemma 5.1. Let (Mn, g), n > 4, be a complete, non-compact, critical metric of S2 with
R ∈ Lq(Mn) for some 1 < q < ∞. Then (Mn, g) has non-positive scalar curvature.

Proof. We prove this by contradiction. Assume that there exists a point O ∈ Mn such
that R(O) > 0. For s > 0, we define the open set

M+
s = {p ∈ Mn|R(p) > 0} ∩Bs(O) ,

where Bs(O) is the geodesic ball of radius s centered in O. Let η be a smooth cutoff
function such that η ≡ 1 on Bs(O), η ≡ 0 on Bc

2s(O), 0 ≤ η ≤ 1 on Mn and |∇η| ≤ c
s
,

c > 0 independent of s. From equation (2.6), an integration by part and an application of
Young’s inequality yield

∫
M+

2s

Rq+1η2 dVg =
4(n− 1)

n− 4

∫
M+

2s

Rq−1∆Rη2 dVg

= −4(n− 1)(q − 1)

n− 4

∫
M+

2s

|∇R|2Rq−2η2 dVg

−8(n− 1)

n− 4

∫
M+

2s

⟨∇R,∇η⟩Rq−1η dVg

≤ 4(n− 1)

(n− 4)(q − 1)

∫
M+

2s

Rq|∇η|2 dVg

≤ 4(n− 1)

(n− 4)(q − 1)s2

∫
Mn

|R|q dVg .

By letting s → +∞, we get that the set M+ = {p ∈ Mn|R(p) > 0} must have zero
measure, so it must be empty: this is a contradiction, since O ∈ M+.
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Now, if n > 4, then by (2.6) R is subharmonic, therefore Lemma 5.1 and the strong
maximum principle imply the following:

Corollary 5.2. Let (Mn, g), n > 4, be a complete, non-compact critical metric of S2 with
R ∈ Lq(Mn) for some 1 < q < ∞. Then (Mn, g) is either scalar flat or it has negative
scalar curvature.

From now on we will assume that (Mn, g), n > 4, is a complete, non-compact, critical
metric of S2 with R ∈ Lq(Mn) for some 1 < q < ∞ and with negative, bounded from
below scalar curvature. Let f = − log(−R); one has

∇f = −∇R

R
and ∇2f = −∇2R

R
+ df ⊗ df .

Hence, the structure equation (2.5) implies that the 1–Bakry–Emery Ricci tensor with
potential function f , i.e. Ric1f = Ric +∇2f − df ⊗ df (see e.g. [23]), satisfies

Ric1f = − 3

4(n− 1)
e−f g . (5.1)

We explicitly note that the (global) change of variable f = − log(−R), which is permitted
by Corollary 5.2, allows to read a critical metric as a special Einstein-type manifold, in the
sense of [12] (see also [10]). We now aim at proving gradient estimates for the function f ,
which satisfies the semilinear equation for the f -Laplacian

∆ff = ∆f − |∇f |2 = n− 4

4(n− 1)
e−f (5.2)

that one obtains by tracing (5.1). It is well known that this kind of results for the standard,
“unweighted” Laplacian can be obtained only assuming a lower bound on the Ricci tensor,
which ensure, in particular, the validity of the Laplacian comparison and of the Omori-Yau
maximum principle. Since R is bounded from below (or, equivalently, e−f is bounded from
above), we see that the “weighted” Ric1f tensor is bounded from below: this will allows us
to obtain the following Lemmas 5.3 and 5.5.

Lemma 5.3. Let (Mn, g), n > 4, be a complete, non-compact, critical metric of S2 with
negative, bounded from below scalar curvature. Then there exists a positive constant C,
only depending on n and the lower bound of the scalar curvature, such that, on Mn, there
holds

|∇R|2 ≤ C R2 . (5.3)

Proof. Let O ∈ Mn be some origin point, denote by Bs the geodesic ball with radius s > 0
centered in O and let

Z2
s := sup

Bs

e−f .
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We will show that there exist three positive constants c1, c2, c3, just depending on n, such
that

|∇f |2(p) ≤ c1
s2

+
(c2
s
+ c3Zs

)
Zs , (5.4)

for every s > 0 and every p ∈ Bs/2. The global statement will follow by letting s → ∞.
Using (5.1), (5.2) and the Bochner formula applied to f we get

1

2
∆f |∇f |2 = |∇2f |2 + g(∇∆ff,∇f) + Ric1f (∇f,∇f) + |∇f |4.

Now we use Newton inequalities and ∆f = ∆ff + |∇f |2 to obtain

1

2
∆f |∇f |2 = |∇2f |2 − n− 4

4(n− 1)
e−f |∇f |2 − 3

4(n− 1)
e−f |∇f |2 + |∇f |4

= |∇2f |2 − 1

4
e−f |∇f |2 + |∇f |4

≥ 1

n
(∆f)2 − 1

4
e−f |∇f |2 + |∇f |4

≥
(
1 +

1

n

)
|∇f |4 − 1

4
e−f |∇f |2,

and then we deduce

∆f |∇f |2 ≥ 2n+ 2

n
|∇f |4 − 1

2
e−f |∇f |2. (5.5)

We note that, on Bs(O),

Ric1f −
3

4(n− 1)
ef g ≥ − 3

4(n− 1)
Z2

sg .

Now we proceed exactly as in Theorem 4 on [19]. We include here the details for the sake
of completeness. Let ρ(x) := dist(O, x): using the Calabi trick ([6] and [7] for details) we
can suppose that ρ is smooth and consider on Bs(O) the function

F (x) =
[
s2 − ρ2(x)

]2 |∇f |2. (5.6)

If |∇f | ≡ 0 we have nothing to prove; if |∇f | ̸≡ 0, since F ≥ 0 and F |∂B(O,s) ≡ 0, there
exists a point x0 ∈ B(O, s) such that F (x0) = max

Bs(O)
F (x) > 0. At x0 we then have

∇F (x0) = 0, (5.7)

∆fF (x0) ≤ 0. (5.8)

A straightforward calculation shows that (5.7) is equivalent to

∇|∇f |2

|∇f |2
=

2∇ρ2

s2 − ρ2
at x0, (5.9)
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while, using (5.9) condition (5.8) is equivalent to

0 ≥ −2
∆fρ

2

s2 − ρ2
+

∆f |∇f |2

|∇f |2
− 24

ρ2

(s2 − ρ2)2
at x0. (5.10)

From the f -Laplacian comparison theorem (see [20], [23]), on Bs(O) we have

∆fρ
2 ≤ 2 [(n+ 1) + nY ρ] , (5.11)

where Y 2 := 3
4n(n−1)

Z2
s . Combining (5.5), (5.10) and (5.11) we find, at x0,

0 ≥ −4
[(n+ 1) + nY ρ]

s2 − ρ2
+

2n+ 2

n
|∇f |2 − 1

2
e−f − 24

ρ2

(s2 − ρ2)2
,

which implies, multiplying through by (s2 − ρ2)2, that at x0 we have

0 ≥ −4 [(n+ 1) + nY ρ] (s2 − ρ2) +
2n+ 2

n
F − 1

2
(s2 − ρ2)2e−f − 24ρ2. (5.12)

From this, claim (5.4) follows and this concludes the proof of the lemma.

Now we aim at improving the gradient estimate (5.3), and to obtain that under the
same assumptions of Lemma 5.3 one has

|∇R|2 ≤ C |R|3 on Mn (5.13)

for some positive constant C, only depending on n. We start with the following

Lemma 5.4. Let (Mn, g) be n-dimensional Riemannian manifold and let w ∈ C2(Mn).
Then, where |∇w| ≠ 0, it holds

|∇2w|2 ≥ 1

n− 1
(∆w)2 − 1

n− 1

∆w

|∇w|2
⟨∇|∇w|2,∇w⟩.

Proof. Let {e1, . . . , en} be a local orthonormal frame with e1 = |∇w|−1∇w. Then

|∇2w|2 ≥
n∑

i=2

(∇iiw)
2 ≥ 1

n− 1

(
n∑

i=2

∇iiw

)2

=
1

n− 1
(∆w −∇11w)

2

≥ 1

n− 1
(∆w)2 − 2

n− 1
∆w∇11w .

Now, noting that

∇11w = ∇2w(e1, e1) =
1

2
|∇w|−2

〈
∇|∇w|2,∇w

〉
,

we obtain the desired estimate.
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We can now prove the following

Lemma 5.5. Let (Mn, g), n > 4, be a complete, non-compact, critical metric of S2 with
negative, bounded from below scalar curvature. There exists a positive constant C, only
depending on n, such that, on Mn, there holds

|∇R|2 ≤ C |R|3 . (5.14)

Proof. Let again f = − log(−R) and let u = −R = e−f . By the Bochner formula, using
(5.1), (5.2) and Lemma 5.4, we see that at those points of Mn where |∇f | ≠ 0 we have

1

2
∆f |∇f |2 = |∇2f |2 + ⟨∇∆ff,∇f⟩+Ric1f (∇f,∇f) + |∇f |4

≥ 1

n− 1
(∆f)2 − 1

n− 1

∆f

|∇f |2
⟨∇|∇f |2,∇f⟩ − 3

4(n− 1)
u|∇f |2

+ |∇f |4 − n− 4

4(n− 1)
u|∇f |2

=
1

n− 1

(
n− 4

4(n− 1)
u+ |∇f |2

)2

− 1

n− 1

∆f

|∇f |2
⟨∇|∇f |2,∇f⟩

+ |∇f |4 − 1

4
u|∇f |2

= − 1

n− 1

∆f

|∇f |2
⟨∇|∇f |2,∇f⟩+ (n− 4)2

16(n− 1)3
u2 +

n

n− 1
|∇f |4

− n2 − 4n+ 9

4(n− 1)2
u|∇f |2

Moreover
1

2
∆fu = − n− 4

8(n− 1)
u2 +

1

2
u|∇f |2.

Now let
v := Au− |∇f |2,

where A > 0 is a suitable constant to be chosen later. We claim that we can find A > 0
such that v ≥ 0 on M .

By the above calculations we have

1

2
∆fv ≤ − n− 4

8(n− 1)
Au2 +

A

2
u|∇f |2 + 1

n− 1

∆f

|∇f |2
⟨∇|∇f |2,∇f⟩ (5.15)

− (n− 4)2

16(n− 1)3
u2 − n

n− 1
|∇f |4 + n2 − 4n+ 9

4(n− 1)2
u|∇f |2

By Lemma 5.3 we have that v is bounded below. Since u is bounded, by (5.1) we have that
the 1–Bakry–Emery Ricci curvature, Ric1f , is bounded below and hence the full Omori–Yau
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maximum principle holds for the operator ∆f , see e.g. [19] and references therein. Thus,
there exists a sequence of points {xk}k ⊂ Mn such that

v(xk) ≤ inf v +
1

k
, |∇v(xk)| ≤

1

k
, ∆fv(xk) ≥ −1

k
, for all k ∈ N.

Since by Lemma 5.3 we have that |∇f | is bounded, up to extracting a subsequence
{ym}m ⊂ {xk}k we can assume that

lim
m→+∞

|∇f(ym)| = l,

with

v(ym) ≤ inf v + o(1), |∇v(ym)| ≤ o(1), ∆fv(ym) ≥ −o(1), and o(1) > 0
(5.16)

as m tends to ∞.
Then one has

Au(ym)− |∇f(ym)|2 = v(ym) ≤ inf v + o(1)

as m tends to +∞. Since u is positive on Mn, if l = 0, passing to the limit as m tends to
∞ in the above equation yields inf v ≥ 0 (for any choice of A > 0).

From now on we assume by contradiction that l > 0, and without loss of generality
that |∇f(ym)| > 0 for every m ∈ N. Then, noting that

∇|∇f |2 = A∇u−∇v

and using (5.2), at ym we have

1

n− 1

∆f

|∇f |2
⟨∇|∇f |2,∇f⟩ = 1

n− 1

∆f

|∇f |2
(A⟨∇u,∇f⟩ − ⟨∇v,∇f⟩)

=
1

n− 1

1

|∇f |2

(
n− 4

4(n− 1)
u+ |∇f |2

)(
−Au|∇f |2 − ⟨∇v,∇f⟩

)
≤ − A

n− 1

(
n− 4

4(n− 1)
u2 + u|∇f |2

)
+ o(1)

as m tends to ∞. Here we have used that u is bounded, that |∇f(ym)| converges to l > 0
and that |∇v(ym)| ≤ o(1) as m tends to ∞. Inserting the above inequality into (5.15), we
obtain that at ym

1

2
∆fv ≤ − n− 4

16(n− 1)3
(2A(n2 − 1) + n− 4)u2 − n

n− 1
|∇f |4 (5.17)

+
1

4(n− 1)2
(2A(n− 1)(n− 3) + n2 − 4n+ 9)u|∇f |2 + o(1)

=

(
−α

(
u

|∇f |2

)2

+ β
u

|∇f |2
− γ

)
|∇f |4 + o(1),
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with

α =
(n− 4)(2A(n2 − 1) + n− 4)

16(n− 1)3
, β =

(2A(n− 1)(n− 3) + n2 − 4n+ 9)

4(n− 1)2
, γ =

n

n− 1
,

α, β, γ > 0 for n > 4. Now note that

∆1 = β2 − 4αγ =
1

16(n− 1)3
(aA2 − bA+ c),

with

a = 4(n− 1)(n− 3)2, b = 4(n3 + n2 − 29n+ 27), c = n3 − 11n2 + 55n− 81,

a, b, c > 0 for n > 4. Since for every n > 4

∆2 = b2 − 4ac = 64n(n− 1)(n− 4)(n(5n− 26) + 9) > 0

we can choose A > 0 such that ∆1 < 0. In particular, any A satisfying

A ∈
(
b−

√
∆2

2a
,
b+

√
∆2

2a

)
(5.18)

will do, since b−
√
∆2

2a
> 0. For every A satisfying (5.18) there exist a constant λ > 0 such

that
−αt2 + βt− γ ≤ −λ < 0 for every t ∈ R.

Hence from (5.16) and (5.17) we deduce that

−o(1) ≤ 1

2
∆fv(ym) ≤ −λ|∇f(ym)|4 + o(1),

which leads to the contradiction 0 ≤ −λl4 as m tends to ∞, since we assumed l > 0.
Thus for every A satisfying (5.18) one has l = 0 and hence v ≥ 0 on Mn, which implies

(5.14) with C = A.

Remark 5.6. As it is clear from the proof of Lemma 5.5, one has the gradient estimate
(5.14) where C can be chosen to be the infimum of the A′s for which the proof goes through,
i.e.

C =
b−

√
∆2

2a
=

4(n3 + n2 − 29n+ 27)−
√
64n(n− 1)(n− 4)(n(5n− 26) + 9)

8(n− 1)(n− 3)2

As a corollary of the gradient estimate (5.14), we obtain the following decay estimate at
infinity for R, which is the last technical result that we will need in the proof of Theorem
1.5.
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Corollary 5.7. Let (Mn, g), n > 4, be a complete, non-compact, Riemannian manifold
satisfying (2.5) and (2.6) with R < 0 on Mn. Let O ∈ Mn. For every x ∈ Mn we have

R(x) ≤ − c1
c2 + dg(x,O)2

(5.19)

for some positive constants ci = ci(n, u(O)), i=1,2.

Proof. Let u = −R. Inequality (5.14) is equivalent to

|∇u−1/2| ≤ c

for some positive constant c = c(n). Integrating along a geodesic, we get

u(x)−1/2 ≤ u(O)−1/2 + c dg(x,O),

i.e.
1

u(x)
≤
(

1

u(O)1/2
+ c dg(x,O)

)2

,

from which we immediately deduce (5.19).

Proof of Theorem 1.5 and Remark 1.6. First of all, if Mn is compact, then integrating
(2.6) over Mn we get R ≡ 0 on Mn.

On the other hand, suppose that Mn is non-compact. By Corollary 5.2 either (Mn, g)
is scalar flat, or R < 0 on Mn. We assume by contradiction that R < 0 and we recall that
u = −R satisfies

∆u = − n− 4

4(n− 1)
u2.

Let η be a smooth cutoff function such that η ≡ 1 on Bs(O), η ≡ 0 on Bc
2s(O), 0 ≤ η ≤ 1

on Mn and |∇η| ≤ c
s
for every s ≫ 1 with c > 0 independent of s. Then, using (5.14) we

get

n− 4

4(n− 1)

∫
M

uqη2 dVg = −
∫
M

∆uuq−2η2 dVg

= (q − 2)

∫
M

|∇u|2uq−3η2 dVg + 2

∫
M

uq−2⟨∇u,∇η⟩η dVg

≤ (q − 2)C

∫
M

uqη2 dVg +
c
√
C

s

∫
B2s(O)\Bs(O)

uq− 1
2 dVg,

with C as in (5.14). By Corollary 5.7

n− 4

4(n− 1)

∫
M

uqη2 dVg ≤ (q − 2)C

∫
M

uqη2 dVg + c
√
C
(1 + s2)

1
2

s

∫
Bc

s(O)

uq dVg. (5.20)
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Thus, if u ∈ Lq(Mn), we obtain(
n− 4

4(n− 1)
− (q − 2)C

)∫
M

uqη2 dVg ≤ c
√
C
(1 + s2)

1
2

s

∫
Bc

s(O)

uq dVg −→ 0 as s → +∞.

This yields u ≡ 0, if
n− 4

4(n− 1)
− (q − 2)C > 0,

i.e. if

1 < q < q∗ =
n− 4

4C(n− 1)
+ 2

with C as in (5.14), a contradiction. Hence, the proofs of Theorem 1.5 and Remark 1.6
are complete.

Remark 5.8. Note that q∗ > 2, and that using Remark 5.6 we have

q∗ = 2 +
2(n− 3)2(n− 4)

4(n3 + n2 − 29n+ 27)−
√

64n(n− 1)(n− 4)(n(5n− 26) + 9)
.
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