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Abstract
In the framework of (possibly non-smooth) metric measure spaces with Ricci curvature

bounded below by a positive constant in a synthetic sense, we establish a sharp and rigid
reverse-Hölder inequality for first eigenfunctions of the Dirichlet Laplacian. This generalises
to the positively curved and non-smooth setting the classical “Chiti Comparison Theorem”.
We also prove a related quantitative stability result which seems to be new even for smooth
Riemannian manifolds.

1 Introduction
The goal of the paper is to establish a reverse Hölder inequality for first eigenfunctions of the
Dirichlet Laplacian in the framework on (possibly non-smooth) spaces satisfying a positive Ricci
curvature lower bound in a synthetic sense. More precisely, the setting of the paper is given by
the so-called RCD(K,N) metric measure spaces: the real parameter N ∈ (1,∞) plays the role
of (synthetic) upper bound on the dimension, and the real parameter K ∈ R plays the role of
(synthetic) lower bound on the Ricci curvature. We refer the reader to Section 2 for a precise
definition. For the sake of the introduction, let us just recall that a metric measure space is a triplet
(X, d,m) where (X, d) is a complete separable metric space and m is a Borel non-negative measure;
for simplicity, we will assume that supp(m) = X and m(X) = 1 throughout. Let us also mention
that the class of RCD(K,N) metric measure spaces includes, as remarkable examples:

• (possibly weighted) Riemannian manifolds with (Bakry-Émery) Ricci curvature bounded
below and their pointed-measured-Gromov-Hausdorff limits;

• finite dimensional Alexandrov spaces with curvature bounded below.

When compared with the class of smooth Riemannian manifolds with Ricci curvature bounded
from below, a remarkable advantage (that will also be used to establish some of the results of this
note) of the class of RCD(K,N) metric measure spaces is that it is closed under natural operations
which typically create singularities, such as taking pointed-measured-Gromov-Hausdorff limits, or
taking quotients under groups of isometries.

On an RCD(K,N) metric measure space there is a naturally defined Laplacian operator (obtained
via integration by parts of the so-called Cheeger energy, see section Section 2 for more details).
Given an open subset Ω ⊂ X of an RCD(K,N) space (X, d,m), for some K > 0, N ∈ (1,∞), we
will consider solutions to the eigenvalue problem:{

−∆u = λu on Ω
u = 0 on ∂Ω .

(1.1)

Our aim will be to draw comparison results between a solution u of (1.1), with a solution to a cor-
responding eigenvalue problem on the one-dimensional model metric measure space, (I, deu,mK,N ),
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with parameters K > 0 and N ∈ (1,∞) given by:
IK,N =

[
0,
√

N−1
K π

]
⊂ R

mK,N = 1
cK,N

sinN−1
(
t
√

K
N−1

)
L1(dt)

deu(x, y) = |x− y| ,

(1.2)

where L1 denotes the standard Lebesgue measure on IK,N and cK,N is a normalizing constant so
that mK,N is a probability measure on IK,N . Notice that, in case N ≥ 2 is integer, the model
space (IK,N , deu,mK,N ) corresponds in a natural way to the N -dimensional round sphere of radius√

N−1
K .

We will be interested in the solution of the problem (1.1) for an open set Ω ⊂ X when λ is the
smallest positive real number such that a non-trivial solution exists, i.e. when λ is the first Dirichlet
eigenvalue, that we will denote by λX(Ω). The following variational characterization of λX(Ω) and
of the corresponding quantity in the model space is very useful:

Definition 1.1. Let (X, d,m) be an RCD(K,N) space with K > 0, N ∈ (1,∞) and let Ω ⊂ X be
open. The first Dirichlet eigenavalue on Ω is given by

λX(Ω) = inf
u

{∫
Ω |∇u|

2 dm∫
Ω u

2 dm

}
, (1.3)

where the infimum is taken over all (non-identically vanishing) functions u : Ω→ R that are Lipschitz
with compact support on Ω. Similarly, for v ∈ (0, 1), letting r(v) be such that mK,N [0, r(v)] = v,
the first Dirichlet eigenvalue on the model space ([0, r(v)], deu,mK,N ) is given by:

λK,N,v = inf
u

{∫ r(v)
0 |u′|2 dmK,N∫ r(v)
0 u2 dmK,N

}
, (1.4)

where the infimum is taken over all (non-identically vanishing) Lipschitz functions u : [0, r(v)]→
[0,∞) such that u(r(v)) = 0.

1.1 Main Theorems
Let (X, d,m) be an RCD(K,N) space for some K > 0, N ∈ (1,∞) and Ω ⊂ X be an open set such
that m(Ω) = v. It was proved in [MS20, Theorem 1.5] that:

λK,N,v ≤ λX(Ω).

From the variational characterization of the first eigenvalue (1.3), the fact that λK,N,t → ∞ as
t → 0, and that t 7→ λK,N,t is a continuous function, it follows that there exists α ∈ (0, v] such
that λK,N,α = λX(Ω). Furthermore (see for instance [MS20, Theorem 5.6]) the eigenfunction on
([0, r(α)], deu,mK,N ) corresponding to the first eigenvalue λK,N,α, which we will denote by z(x)
throughout the rest of the paper, is unique up to multiplication by a constant.
For simplicity of notation, the results will be stated in the case K = N − 1 and m(X) = 1. This
does not compromises generality, indeed every RCD(K,N) for some K > 0 is compact with finite
measure and can be scaled to become an RCD(N −1, N) space endowed with a probability measure.
More precisely, it holds that (X, d,m) is an RCD(K,N) space with K > 0, N ∈ (1,∞) if and
only if, letting d̃ =

√
N−1
K d and m̃ = m(X)−1 m, the scaled and normalised metric measure space

(X, d̃, m̃) satisfies the RCD(N − 1, N) condition.
We are finally in position to state the first main result of the note.

Theorem 1.2 (A reverse Hölder inequality for first Dirichlet eingenfunctions). Let (X, d,m) be
an RCD(N − 1, N) space, let Ω ⊂ X be an open set such that m(Ω) = v ∈ (0, 1). Let α ≤ v be
such that λN−1,N,α = λX(Ω). Let u be a first Dirichlet eigenfunction on Ω. Let p > 0 and let
z : [0, r(α)]→ R be the eigenfunction corresponding to λN−1,N,α, scaled so that:∫

Ω
up dm =

∫ r(α)

0
zp dmN−1,N . (1.5)
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Then, for all q ≥ p, it holds that:

(∫
Ω u

q dm
) 1

q(∫
Ω u

p dm
) 1

p

≤

(∫ r(α)
0 zq dmN−1,N

) 1
q

(∫ r(α)
0 zp dmN−1,N

) 1
p

. (1.6)

Further, if the equality holds for some q > p then (X, d,m) is isomorphic to a spherical suspension.

The second main result is a stable version of Theorem 1.2, when p = 1.

Theorem 1.3 (Quantitative stability in the reverse Hölder inequality). Let N ∈ (1,∞), v ∈ (0, 1)
and λ > 0 be given. Then there exists C = C(N, v, λ) > 0 and δ̃ = δ̃(N, v, λ) > 0 such that the
following holds.

Let (X, d,m) be an RCD(N −1, N) space. Let Ω ⊂ X be an open domain with m (Ω) = v ∈ (0, 1)
and λX(Ω) = λ. Let u and z be as in the assumptions of Theorem 1.2, scaled so that:∫

Ω
udm =

∫ r(α)

0
z dmN−1,N = 1 .

If there exist δ ∈ (0, δ̃) and an unbounded subset Q ⊂ (0,∞) such that

‖z‖Lq((0,r(α)),mN−1,N ) − ‖u‖Lq(Ω,m) < δ , for all q ∈ Q , (1.7)

then
(π − diam(X))N ≤ C

√
δ .

In particular, for all ε > 0 there exists δ = δ(N, v, λ, ε) > 0 such that if (1.7) holds then there exists
a spherical suspension (Z, dZ ,mZ) such that:

dmGH ((X, d,m), (Z, dZ ,mZ)) < ε ,

where dmGH is the measured-Gromov-Hausdorff distance between two metric measure spaces.

Related literature

The roots of the results presented in this note lie in a paper of 1972 by Payne and Rayner1 [PR72],
establishing the following reverse Hölder inequality for an eigenfunction u of the Dirichlet Laplacian
relative to the first eigenvalue λ1(Ω) for a bounded planar domain Ω ⊂ R2:

‖u‖L2(Ω)

‖u‖L1(Ω)
≤
√
λ1(Ω)
2
√
π

.

The inequality is sharp and rigid: indeed, equality occurs if and only if Ω is a disk. The inequality
was generalised to higher dimensional domains in 1973 by Payne and Rayner [PR73] and in 1981
by Kohler-Jobin [KJ81], who proved an isoperimetric-type comparison between the L2 and the L1

norms of a first eigenfunction of the Dirichlet Laplacian for bounded domains in Rn, n ≥ 3. The
inequality was generalised to arbitrary exponents q ≥ p > 0 for bounded domains in Rn, n ≥ 2, by
Chiti [Chi82] in 1982. Chiti’s Comparison Theorem was then extended to:

• domains in the hemisphere, by Ashbaugh-Benguria [AB01];

• bounded domains in the hyperbolic space by Benguria-Linde [BL07];

• smooth compact Riemannian manifolds with positive Ricci curvature by Gamara-Hasnaoui-
Makni [GHM15] and Colladay-Langford-McDonald [CLM18];

• smooth compact Riemannian manifold with an integral Ricci curvature bound by Chen [C21];
1A curiosity: Dr. Margaret Rayner has been a tutorial fellow in Mathematics at St. Hilda’s College-Oxford (the

college of the authors of the present note) from the 1960’ies up to her retirement in 1989.
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• smooth Riemannian manifolds with non-negative Ricci curvature and positive asymptotic
volume ratio by Chen-Li [CL21].

Let us mention that all the aforementioned papers deal with smooth ambient spaces and this note
seems to be the first extension of Chiti’s comparison result to a non-smooth framework.
Moreover, the stable version of Chiti’s comparison obtained in Theorem 1.3 seems to be new even in
the smooth setting, i.e. when the metric measure space (X, d,m) is a smooth Riemannian manifold.
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2 Preliminaries
2.1 Cheeger energy and isoperimetric profile
To state everything mentioned in the previous section in a more precise way, we will need a series
of definitions regarding RCD(K,N) spaces. Throughout this section, we will write Lip(X) for the
set of real valued functions on X that are Lipschitz, and B(X) to denote the set of Borel subsets
of X. We begin with an assumption that will be made throughout the paper.
Assumption 2.1. (X, d,m) will always denote a compact and separable metric measure space. Indeed,
via a generalization of Bonnet-Myers theorem to CD(K,N) spaces, having K > 0 guarantees that
(X, d) is in fact compact, and further that m(X) < ∞ so that we may assume without loss of
generality, which we henceforth do, that m is a probability measure on X.

We begin by defining the notion of slope on (X, d,m):

Definition 2.2. Given a function u : X → R we define its slope, denoted by |∇u| to be:

|∇u|(x0) =
{

lim supx→x0
|u(x)−u(x0)|

d(x,x0) when x0 is not isolated
0 when x0 is isolated .

(2.1)

Definition 2.3. Let B ⊂ X be a Borel set and A ⊂ X be an open set. Then we define the
perimeter of B with respect to A as:

Per(B,A) := inf
{un}n∈N

{
lim inf
n→∞

∫
A

|∇un|dm
}
, (2.2)

where the infimum is taken over sequences of functions {un}n∈N such that un ∈ Lip(X) for all
n ∈ N and they converge, in L1(A,m), to XA.
For simplicity of notation, we will write Per(B) := Per(B,X).

Definition 2.4. The isoperimetric profile corresponding to (X, d,m), denoted by I(X,d,m) : [0, 1]→
[0,∞), is given as:

I(X,d,m)(v) := inf {Per(E) : m(E) = v, E ∈ B(X)} . (2.3)
We will denote by IK,N , the isoperimetric profile of the model space (IK,N , deu,mK,N ) defined in
(1.2).

Definition 2.5. For u ∈ Lp(X,m) and 1 < p <∞ the p-Cheeger energy is defined as:

Chp(u) := inf
{

lim inf
n→∞

1
p

∫
X

|∇un|p dm : un ∈ Lip(X) ∩ Lp(X,m), lim
n→∞

‖un − u‖Lp = 0
}
. (2.4)

We note that the Sobolev spaceW 1,p(X, d,m), defined to be the set of functions with finite p-Cheeger
energy, is a Banach space when endowed with the norm:

‖u‖W 1,p(X,d,m) :=
{
‖u‖pLp(X,m) + pChp(u)

}1/p
.
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For Ω ⊂ X, W 1,p
0 (Ω) will denote the closure of the set Lipschitz functions with compact support on

Ω, with respect to this norm on W 1,p(X, d,m).
We also define, for u ∈ W 1,p(X, d,m), |∇u|w ∈ Lp(X,m) to be the function called minimal weak
upper gradient that gives the following representation for the p-Cheeger energy (see [AGS13]):

Chp(u) = 1
p

∫
X

|∇u|pw dm .

2.2 Geodesics, CD(K, N) and RCD(K, N) conditions
We let Geo(X) be the space of geodesics with constant speed. More precisely, we define:

Geo(X) := {γ : [0, 1]→ X | d(γ(α), γ(β)) = |α− β| d(γ(0), γ(1)), for all α, β ∈ [0, 1]} . (2.5)

For an arbitrary metric space (Z, dZ), we will write P(Z) to denote the set of Borel probability
measures on Z. For µ1, µ2 ∈P(Z), let W2(µ1, µ2) denote the quadratic transportation distance
defined by

W2(µ1, µ2) := inf
π

(∫
X×X

d2(x, y) dπ(x, y)
)1/2

, (2.6)

where the infimum is taken over all Borel probability measures π on Z × Z such that first and sec-
ond marginal distributions of π are µ1 and µ2 respectively. Recall that (P(Z),W2) is a metric space.

For fixed t ∈ [0, 1], we construct the evaluation map et : Geo(X) → X as et(γ) := γ(t). For
µ1, µ2 ∈P(X) we define the set OptGeo(µ1, µ2) ⊂P(Geo(X)) to be the set of measures ν such
that (e0, e1)]ν minimizes the set in (2.6), where we use the subscript ] to denote the pushforward
of a measure.
To be able to state the CD(K,N) condition we first need to introduce the so-called distortion
coefficients. For 0 ≤ t ≤ 1 and θ ∈ [0,∞), we define:

τ
(t)
K,N (θ) =



∞ when Kθ2 ≥ (N − 1)π2

t1/N
(

sin
(
tθ
√

K
N−1

)
sin
(
θ
√

K
N−1

) )N−1
N

when 0 < Kθ2 < Nπ2

tN when Kθ2 < 0 and N = 1 or when Kθ2 = 0

t1/N

 sinh
(
tθ
√
−K

N−1

)
sinh
(
θ
√
−K

N−1

) 
N−1

N

when Kθ2 ≤ 0 and N > 0 .

(2.7)

We also introduce the Rényi Entropy functional E : (1,∞)×P(X)→ [0,∞] as:

E(N, σ) :=
∫
X

ρ1− 1
N dm , (2.8)

where σ = ρm + σs, σs ⊥ m. We are finally in a position to recall the definition of the RCD(K,N)
condition. Let us briefly mention that the CD(K,N) condition was introduced independently by
Sturm [S06a, S06b] and Lott-Villani [LV09]; the RCD condition was later introduced by Ambrosio-
Gigli-Savaré [AGS14] in case N =∞ (see also [AGMR15]) as a refinement in order to single out
“Riemannian structures” out of the “possibly Finslerian CD structures”. The finite dimensional
counterparts subsequently led to the notions of RCD(K,N) and RCD∗(K,N) spaces, as the
“Riemannian refinements” of CD(K,N) and of the more general CD∗(K,N) respectively (see
[BS10] for the latter). The class RCD(K,N) was proposed in [G15]. The (a priori more general)
RCD∗(K,N) condition was thoroughly analysed in [EKS15] and (subsequently and independently)
in [AMS19]; see also [CM21] for the equivalence between RCD∗(K,N) and RCD(K,N) in the case
of finite reference measure.

Definition 2.6 (RCD(K,N) condition). Fix K ∈ R and 1 < N <∞. We say that (X, d,m) is a
CD(K,N) space if for all µ0, µ1 ∈P(X) that have bounded support and are aboslutely continuous
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with respect to m we can find ν ∈ OptGeo(µ0, µ1) and an optimal plan π ∈P(X ×X) such that
µt := (et)]ν is absolutely continuous with respect to m and for all 0 ≤ t ≤ 1 and N ′ ≥ N it holds:

E(N ′, µt) ≥
∫ {

τ
(1−t)
K,N ′ (d(x, y))ρ−

1
N′

0 + τ
(t)
K,N ′(d(x, y))ρ−

1
N′

1

}
dπ(x, y) . (2.9)

We say that (X, d,m) is an RCD(K,N) space if it is a CD(K,N) space and further W 1,2(X, d,m)
is a Hilbert space when endowed with an inner product corresponding to Ch2. In this case, we will
write Ch(·, ·) to denote this inner product.

Finally, we need to define what it means for a function u ∈W 1,2(X, d,m) to solve the problem
(1.1) weakly:

Definition 2.7. Let (X, d,m) be an RCD(K,N) space for some K ∈ (0,∞), N ∈ (1,∞), and let
Ω ⊂ X be an open domain. We say that u ∈W 1,2(X, d,m) is a weak solution of (1.1) if and only if
u ∈W 1,2

0 (Ω) and for all f ∈W 1,2
0 (Ω) we have that:

Ch(u, f) =
∫

Ω
λuf dm (2.10)

2.3 Schwartz symmetrization and the first Dirichlet eigenvalue
The notion of Schwartz symmetrization recalled below will play a key role in the paper, as it
makes an essential connection between a function on an arbitrary RCD(K,N) space and a suitable
function defined on (IK,N , deu,mK,N ), namely its Schwartz symmetrization.

Definition 2.8. Let (X, d,m) be an RCD(K,N) metric measure space with K > 0 and N ∈ (1,∞),
and let Ω ⊂ X be an open subset of volume m(Ω) = v ∈ (0, 1). Consider (IK,N , deu,mK,N ) defined
in (1.2) and let r(v) > 0 be such that mK,N [0, r(v)] = v.
For a Borel function u : Ω→ R, we define its distribution function µu : R+ → [0,m(Ω)] by:

µu(t) := m ({|u| > t}) .

The decreasing rearrangement u# : [0,m(Ω)]→ [0,∞] of u is defined as:

u#(s) :=
{

ess sup |u| for s = 0 ,
inf{t : µu(t) < s} for s > 0 .

(2.11)

Finally, for x ∈ [0,m(Ω)], we define the Schwartz symmetrization u∗ of u as:

u∗(x) = u# (mK,N [0, x]) .

It is immediate to check that u and u∗ admit the same distribution function (see for instance [MS20,
Proposition 3.5]); moreover, if u ∈ Lp(Ω,m) for some p ∈ [1,∞] then u∗ ∈ Lp([0, r(v)]),mK,N ) and
we have the equality:

‖u‖Lp(Ω,m) = ‖u∗‖Lp([0,r(v)],mK,N ) = ‖u#‖Lp([0,v],L1) . (2.12)

Remark 2.9. It is trivial to verify that µu, u# and u∗ are all non-increasing and left continuous.
With these tools in hand, we will mainly be interested in the solution of the problem (1.1) for

an open set Ω ⊂ X when λ is the smallest positive real number such that a solution exists. We will
denote such a λ as λX(Ω). Indeed, it is a well-known fact that the first Dirichlet eigenvalue λX(Ω)
in fact has the variational characterization recalled in Definition 1.1.

Next, to be able to talk about rigidity and almost rigidity in our results, we need to define what
it means for a metric measure space (X, d,m) to be a spherical suspension:

Definition 2.10. Let (Y, dY ,mY ) and (Z, dZ ,mZ) be geodesic metric measure spaces and let
f : Y → [0,∞) be Lipschitz. Let AC([0, 1];Y × Z) denote the set of absolutely continuous curves
γ = (γ1, γ2) : [0, 1]→ Y × Z. Let:

Lf (γ) :=
∫ 1

0

(
|γ′1|2(t) + (f(γ1(t)))2 |γ′2|2(t)

)1/2
dt .
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Define the distance d on Y × Z as:

df ((a, b), (c, d)) := inf {Lf (γ) : γ ∈ AC([0, 1];Y × Z), γ(0) = (a, b), γ(1) = (c, d)} .

Then, under the equivalence relation (a, b) ∼ (c, d) ⇐⇒ df ((a, b), (c, d)) = 0, we obtain a metric
space:

(Y × Z/ ∼, df ).

Furthermore, for N ∈ [1,∞), endowing this metric space with the measure mN := fNmY ⊗mZ , we
obtain the metric measure space:

Y ×Nf Z := (Y × Z/ ∼, df ,mN ).

We say that the metric measure space (X, d,m) is a spherical suspension over (Y, dY ,mY ) if (X, d,m)
is isomorphic to [0, π]×N−1

sin Y .

It was proved by Ketterer [K15] that [0, π]×N−1
sin Y is an RCD(N − 1, N) space if and only if

(Y, dY ,mY ) is an RCD(N − 2, N − 1) space.

3 Proofs of the results
Throughout this section, unless stated otherwise, we will let (X, d,m) be an RCD(N − 1, N) space
with supp(m) = X and m(X) = 1, Ω ⊂ X be an open set such that m(Ω) = v ∈ (0, 1), α ≤ v
be such that λN−1,N,α = λX(Ω), u be a first Dirichlet eigenfunction on Ω and z : [0, r(α)] → R
be an eigenfunction corresponding to λN−1,N,α. As already recalled in the introduction, such a
function z : [0, r(α)]→ R is uniquely determined, up to scaling by a real constant. We begin with
the following lemma:

Lemma 3.1. Let z : [0, r(α)]→ R as above be scaled so that

z(0) = u∗(0) . (3.1)

Then:

• either α = v and z(s) = u∗(s) for every s ∈ [0, r(v)];

• or α < v and z(s) ≤ u∗(s) for every s ∈ (0, r(α)].

Proof. If α = v, we have λX(Ω) = λN−1,N,v. From the rigidity in [MS20, Theorem 1.9] we know
that X is isomorphic to a spherical suspension and z(s) = u∗(s) for every s ∈ [0, r(v)].

Now we turn to the case α < v. By the proof of [MV20, Theorem 3.10], one can see that for
any 0 ≤ t′ < t ≤ ess supu it holds:

t− t′ ≤
∫ µ(t′)

µ(t)

λN−1,N,α

IN−1,N (ξ)2

(∫ ξ

0
u#(t) dt

)
dξ .

Hence, letting 0 ≤ s < s′ ≤ µ(0), setting t = u#(s)− ε, t′ = u#(s′) for ε > 0 and then taking ε→ 0
(noting that by manipulating equi-measurability, µ(u#(s′)) ≤ s′ and µ(u#(s)− ε) ≥ s):

u#(s)− u#(s′) ≤
∫ s′

s

λN−1,N,α

IN−1,N (ξ)2

(∫ ξ

0
u#(t) dt

)
dξ. (3.2)

By [MV20, Theorem 3.10] we can see that the right hand-side of (3.2) is in L1[0, t) for every
t ∈ (0, v) so that we may conclude that u# is absolutely continuous on [0, v) and thus almost
everywhere differentiable on (0, v). Hence, by (3.2) we have that the following estimate holds for
almost every s ∈ (0, v):

− d

ds
u#(s) ≤ λN−1,N,α

IN−1,N (s)2

∫ s

0
u#(t) dt . (3.3)
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Further, by [MV20, Proposition 2.7] we have the following equality,

− d

ds
z#(s) = λN−1,N,α

IN−1,N (s)2

∫ s

0
z#(t) dt , for every s ∈ (0, α). (3.4)

We claim that u#(α) > 0. Indeed, if by contradiction u#(α) = 0, it would follow that m ({u = 0}) =
v− α > 0 which gives a contradiction since u is an eigenfunction on Ω and thus needs to be strictly
positive (see [LMP06, Corollary 5.7]). Now, from the above estimates we know that u# and z# are
continuous functions on [0, α], with u# > 0 on [0, α]. Thus, z

#(s)
u#(s) is also a continuous function on

[0, α] and we can set:

a := max
s∈[0,α]

z#(s)
u#(s) .

Assume by contradiction that a > 1, and set:

s0 := inf{s ∈ (0, α] : au#(s) = z#(s)}. (3.5)

Clearly it holds that s0 > 0, since u#(0) = z#(0) and both functions are right-continuous at 0.
Next, define:

w#(s) :=
{
au#(s), for 0 ≤ s ≤ s0

z#(s), for s0 ≤ s ≤ α .
(3.6)

Letting w(x) := w#(mN−1,N [0, x]), we can see that:∫ r(α)

0
(w′)2 dmN−1,N =

∫ r(α)

0
sin2N−2(x)

(
w#′ (mN−1,N [0, x])

)2
dmN−1,N

=
∫ r(α)

0

(
w#′ (mN−1,N [0, x])

)2
IN−1,N (mN−1,N [0, x])2 dmN−1,N .

By (3.3) and (3.4), we have:

− d

ds
w#(s) ≤ λN−1,N,α

IN−1,N (s)2

∫ s

0
w#(t) dt, for a.e. s ∈ (0, s0) ∪ (s0, α) , (3.7)

and hence:∫ r(α)

0
(w′)2 dmN−1,N ≤ λN−1,N,α

∫ r(α)

0
(−w#′(mN−1,N [0, x]))

(∫ mN−1,N [0,x]

0
w#(ζ)dζ

)
dmN−1,N

= λN−1,N,α

∫ r(α)

0

(
w# (mN−1,N [0, x])

)2 dmN−1,N

= λN−1,N,α

∫ r(α)

0
w2 dmN−1,N ,

where we have used the estimate (3.7) and the fact w#′ ≤ 0 for the inequality, and integrated by
parts for the first equality noting that we have w#(α) = 0. Thus, we get the following inequality:

λN−1,N,α ≥
∫ r(α)

0 (w′)2 dmN−1,N∫ r(α)
0 w2 dmN−1,N

. (3.8)

It follows that w minimizes the Rayleigh quotient and therefore it is an eigenfunction associated
to λN−1,N,α on [0, r(α)]. Henceforth, w is a multiple of z and thus au#(s) = z#(s) on s ∈ [0, s0].
Since u#(0) = u∗(0) = z(0) = z#(0), we conclude that a = 1, contradicting that a > 1.

We can now state and prove the generalization of Chiti’s comparison Theorem to RCD(K,N)
spaces.
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Theorem 3.2 (Chiti’s Comparison Result in RCD(K,N) Spaces). Fix p > 0. Let (X, d,m) be
an RCD(N − 1, N) space, Ω ⊂ X be an open set such that m(Ω) = v ∈ (0, 1), α ≤ v be such
that λN−1,N,α = λX(Ω), u be a first Dirichlet eigenfunction on Ω and z : [0, r(α)] → R be an
eigenfunction corresponding to λN−1,N,α scaled so that:∫

Ω
up dm =

∫ r(v)

0
u∗p dmN−1,N =

∫ r(α)

0
zp dmN−1,N . (3.9)

Then there exists r1 ∈ (0, r(α)) such that:{
u∗(s) ≤ z(s) for 0 ≤ s ≤ r1,

z(s) ≤ u∗(s) for r1 ≤ s ≤ r(α).

Proof. The case α = v is trivial since it implies, as mentioned above, that z(s) = u∗(s) for every
s ∈ [0, r(v)]. Thus suppose α < v. If z(0) < u∗(0), then there exists a > 1 such that az(0) = u∗(0).
But then in that case, by Lemma 3.1, it holds az(s) ≤ u∗(s) for all s ∈ [0, r(α)] in which case the
equality of integrals in (3.9) would contradict that a > 1. Hence, we must have z(0) ≥ u∗(0).
Assume z(0) = u∗(0). Then by Lemma 3.1, we see that the second equality in (3.9) can hold only
if α = v, in which case the statement trivially holds as we discussed above.

Now let us focus on the case z(0) > u∗(0), where we know α < v holds. Firstly, note that if z(s)
minimizes the Rayleigh quotient, so does z∗(s), thus we must have z = z∗. Recall, by the estimate
in (3.3) and the corresponding estimate for z#, that u# and z# are both absolutely continuous on
[0, α). Next, define the set:

S1 := {s ∈ [0, α] : u#(s) = z#(s), u#(t) ≤ z#(t) for all t ∈ [0, s]}.

and let s1 be the supremum of this set. Since u# and z# are both continuous and z#(α) = 0 and
u#(α) > 0 (see the proof of Lemma 3.1), clearly this set is non-empty and closed so that it includes
its maximal element s1 ∈ (0, α).

We further define:
S2 := {s ∈ (s1, α) : u#(s) = z#(s)} . (3.10)

Suppose this set is non-empty and let s2 be the infimum of it. By the continuity of the rearrangements,
we infer that the set S2 is closed and thus it contains its minimal element s2.

We claim that s2 > s1. Indeed, by continuity of the rearrangements, for ε > 0 small enough, we
have: ∫ s

0
u#(t)− z#(t) dt < 0 , for all s ∈ (0, s1 + ε] .

Hence, using (3.3) and (3.4), we obtain that for all s ∈ (s1, s1 + ε] it holds:

z#(s)− u#(s) =
∫ s

s1

d

dt
(
z#(t)− u#(t)

)
dt ≤

∫ s

s1

λN−1,N,α

IN−1,N (t)2

(∫ t

0
u#(ξ)− z#(ξ) dξ

)
dt < 0 .

Thus z#(s) < u#(s) on (s1, s1 + ε] and hence, by definition, s2 > s1.
We next claim it must hold

u#(t) > z#(t), for all t ∈ (s1, s2) .

Indeed, otherwise we would have u#(t) < z#(t) for all t ∈ (s1, s2), which would contradict the
definition of s1 since s2 > s1. Set:

w#(s) :=
{
z#(s), for s ∈ [0, s1] ∪ [s2, α]
u#(s), for s ∈ [s1, s2] .

Again, by (3.3), (3.4), we see that for a.e. s ∈ (0, s1) ∪ (s1, s2) ∪ (s2, α) it holds:

− d

ds
w#(s) ≤ λN−1,N,α

IN−1,N (s)2

∫ s

0
w#(t) dt . (3.11)
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Thus, setting w(x) := w#(mN−1,N [0, x]) and proceeding as in the proof of Lemma 3.1, it follows
that w : [0, r(α)] → R also minimizes the Rayleigh quotient corresponding to λN−1,N,α, thus
w# = z# which in turn implies that u#(s) = z#(s) for all s ∈ [s1, s2], which again contradicts the
definition of s1.
Therefore the set S2 in (3.10) must be empty, i.e. it must be the case that u#(s) > z#(s) on
s ∈ (s1, α].

To obtain the reverse Hölder inequality as a corollary of the theorem above, one can use the
following Lemma:

Lemma 3.3. Let b > 0, and let ϕ : R → R be a convex function. Let f, g : R → R be functions
that satisfy the following conditions for all y ∈ R:∫ b

0
g(x) dx =

∫ b

0
f(x) dx (3.12)∫ b

0
{g(x)− y}+ dx ≤

∫ b

0
{f(x)− y}+ dx (3.13)

where {h(x)}+ := max(h(x), 0), then:∫ b

0
ϕ (g(x)) dx ≤

∫ b

0
ϕ (f(x)) dx. (3.14)

Proof. This is a special case of [HLP29, Theorem 9].

Now, we are finally in a position to prove our first main result.

Proof of Theorem 1.2. As in the previous arguments, the case α = v means (X, d,m) is a spherical
suspension and hence the result is trivial. Now let us focus on the case α < v. Extend z#(s)
to [0, v] by taking it to be 0 on (α, v). By Theorem 3.2, we know that there exists s1 such that
u#(s) ≤ z#(s) for s ∈ [0, s1] and z#(s) ≤ u#(s) for s ∈ [s1, v].
Now, if s ∈ [0, s1]: ∫ s

0

(
u#(t)

)p dt ≤
∫ s

0

(
z#(t)

)p dt.

If instead s ∈ [s1, v]:∫ s

0

(
u#(t)

)p dt =
∫ v

0

(
u#(t)

)p dt−
∫ v

s

(
u#(t)

)p dt ≤
∫ v

0

(
u#(t)

)p dt−
∫ v

s

(
z#(t)

)p dt

=
∫ v

0

(
z#(t)

)p dt−
∫ v

s

(
z#(t)

)p dt =
∫ s

0

(
z#(t)

)p dt .

Hence, ∫ s

0

(
u#(t)

)p dt ≤
∫ s

0

(
z#(t)

)p dt, for all s ∈ [0, v] . (3.15)

From the fact that u# is non-increasing, it follows that for every y ∈ R there exists ξ ∈ [0, v] such
that: ∫ v

0
{
(
u#(t)

)p − y}+ dt =
∫ ξ

0

(
u#(t)

)p − y dt ≤
∫ ξ

0

(
z#(t)

)p − y dt (3.16)

≤
∫ ξ

0
{
(
z#(t)

)p − y}+ dt ≤
∫ v

0
{
(
z#(t)

)p − y}+ dt. (3.17)

Thus the conditions of Lemma 3.3 are satisfied. Taking ϕ(x) = x
q
p for q ≥ p, we can conclude that:∫ v

0

(
u#(t)

)q dt ≤
∫ v

0

(
z#(t)

)q dt, (3.18)
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from which the inequality (1.6) follows.
To get the rigidity statement, assume that equality holds for some fixed q > p. We claim that then
equality holds for all p′ ∈ (p, q). To see this, note that if∫ v

0

(
u#(t)

)q dt =
∫ α

0

(
z#(t)

)q dt , (3.19)

then applying Lemma 3.3 with ϕ(x) = −x
p′
q (conditions of the lemma are satisfied again as shown

above) for any p′ ∈ (p, q) we get that:∫ v

0

(
z#(t)

)p′ dt ≤ ∫ v

0

(
u#(t)

)p′ dt .
Combining this with inequality (1.6) we get, for all p′ ∈ (p, q) that:

‖u‖Lp′ (Ω,m) = ‖z‖Lp′ ([0,α],mN−1,N ) . (3.20)

Thus, by virtue of [K20, Theorem 1], it must be the case that u and z have the same distribution
functions so that, in fact, u#(s) = z#(s). But if α < v we have that u#(α) > 0 and z#(α) = 0.
Thus, we must have α = v, in which case X is isomoprhic to a spherical suspension. The proof of
Theorem 1.2 is now complete.

In the proof the Stability Theorem 1.3, we will make use of the co-area formula stated as in
the next proposition (see for instance [MV20, Proposition 3.7] and [MM03, Remark 4.3] for more
details).

Proposition 3.4 (Coarea formula). Let K ∈ R and N ∈ (1,∞), let (X, d,m) be an RCD(K,N)
space and let Ω ⊂ X be an open domain. If u : Ω→ [0,∞) is an element of W 1,2

0 (Ω), then for any
t > 0 we have: ∫

{u>t}
|∇u|w dm =

∫ ∞
t

Per ({u > s}) ds . (3.21)

We are now in position to prove Theorem 1.3.

Proof of Theorem 1.3. Firstly note that if Q is an unbounded subset of (1,∞), then having

‖z‖Lq((0,r(α)),mN−1,N ) − ‖u∗‖Lq(0,r(v)),mN−1,N ) < δ

for all q ∈ Q implies:

z#(0)− u#(0) = ‖z‖L∞(0,r(α)) − ‖u∗‖L∞(0,r(v)) < δ. (3.22)

Now by the assumptions of the theorem, there exists s1 ∈ (0, v) such that:∫ s1

0
z#(s)− u#(s) ds =

∫ v

s1

u#(s)− z#(s) ds. (3.23)

Furthermore, using the estimates (3.3) and (3.4) and applying (3.15) with p = 1 one can infer:

d

ds

(
z#(s)− u#(s)

)
≤ λN−1,N,α

IN−1,N (s)2

∫ s

0
u#(t)− z#(t) dt ≤ 0, for a.e. s ∈ [0, v].

Thus z#(s)− u#(s) is decreasing and, using (3.22) -(3.23), we get the estimate:

∫ α+
√
δ

α

u#(s) ds =
∫ α+

√
δ

α

u#(s)− z#(s) ds ≤
∫ v

s1

u#(s)− z#(s) ds

=
∫ s1

0
z#(s)− u#(s) ds ≤ s1(z#(0)− u#(0)) ≤ vδ.
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Hence, since u# is continuous, by the mean value theorem for integrals, there exists y ∈ (α, α+
√
δ)

such that:

u#(y) = 1√
δ

∫ α+
√
δ

α

u#(s) ds ≤ v
√
δ . (3.24)

Differentiating both sides of (3.21) one can see that:

− d

dt

(∫
{u>t}

|∇u|w dm
)

= Per ({u > t}) , for a.e. t . (3.25)

In particular, display (41) in [MV20] reads (from here on, for simplicity of notation, we write λ to
denote λX(Ω) = λN−1,N,α):

IN−1,N (µu(t))2 ≤ (Per ({u > t}))2 ≤ −λµ′u(t)
∫ µu(t)

0
u#(s) ds .

Dividing the inequality by IN−1,N (µu(t))2, we obtain:

(Per ({u > t}))2

IN−1,N (µu(t))2 ≤
−λµ′u(t)

IN−1,N (µu(t))2

∫ µu(t)

0
u#(s) ds .

Integrating from u#(y) to u#(0) yields:∫ u#(0)

u#(y)

(Per ({u > t}))2

IN−1,N (µu(t))2 dt ≤
∫ u#(0)

u#(y)

−λµ′u(t)
IN−1,N (µu(t))2

∫ µu(t)

0
u#(s) dsdt .

Performing the change of variable ξ = µu(t), noting that µu(u#(y)) ≤ y ≤ α+
√
δ and applying

(3.15) it follows that:∫ u#(0)

u#(y)

(Per ({u > t}))2

IN−1,N (µu(t))2 dt ≤
∫ α+

√
δ

0

λ

IN−1,N (ξ)2

∫ ξ

0
z#(s) dsdξ . (3.26)

We next estimate the right hand side of (3.26) by splitting the integral in the two contributions: on
[0, α] and on [α, α+ δ]. The former contribution is controlled by using (3.4):∫ α

0

λ

IN−1,N (ξ)2

∫ ξ

0
z#(s) dsdξ = z#(0)− z#(α) = z#(0). (3.27)

Noting that z# = 0 on (α, α+
√
δ) and that anything that depends on α is in fact fixed by fixing λ,

the latter contribution can be estimate as:∫ α+
√
δ

α

λ

IN−1,N (ξ)2

∫ ξ

0
z#(s) dsdξ =

∫ α+
√
δ

α

λ

IN−1,N (ξ)2

∫ α

0
z#(s) dsdξ

≤ C(N, v, λ)
√
δ , (3.28)

where in the last equality we used that IN−1,N does not vanish on the compact set [α, v] and hence
is bounded below by a constant that only depends on N,λ, v. Combining (3.26), (3.27) and (3.28)
gives that (from here on C(N, v, λ) may change from line to line):

1
u#(0)− u#(y)

∫ u#(0)

u#(y)

(Per ({u > t}))2

IN−1,N (µu(t))2 dt ≤ z#(0) + C(N, v, λ)
√
δ

u#(0)− u#(y) ,

so that there exists t0 ∈ (u#(y), u#(0)) such that:

(Per ({u > t0}))2

IN−1,N (µu(t0))2 ≤
z#(0) + C(N, v, λ)

√
δ

u#(0)− u#(y)

≤ u#(0) + δ + C(N, v, λ)
√
δ

u#(0)− u#(y) = 1 + u#(y) + δ + C(N, v, λ)
√
δ

u#(0)− u#(y) . (3.29)
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Now, pick δ̃ > 0 in the statement of Theorem 1.3 such that

z#(0)− δ̃ > z#(0)
2 and z#(0)

2 − v
√
δ̃ >

z#(0)
4 .

Note that δ̃ > 0 depends only on N, v, λ. Then, using (3.22) and (3.24), we get:

u#(0)− u#(y) > z#(0)− δ − u#(y) ≥ z#(0)
2 − v

√
δ ≥ z#(0)

4 , for any δ ∈ (0, δ̃) .

Plugging (3.24) and the last estimate into (3.29) yields:

(Per ({u > t0}))2

IN−1,N (µu(t0))2 ≤ 1 + C(N, v, λ)(
√
δ + δ) , for any δ ∈ (0, δ̃) .

Picking δ̃ > 0 smaller if necessary, but again only depending on N, v, λ, we infer that

(Per ({u > t0}))2

IN−1,N (µu(t0))2 ≤ 1 + C(N, v, λ)
√
δ , for any δ ∈ (0, δ̃) . (3.30)

Combining (3.30) with the Bérard-Besson-Gallot-type quantitative improvement of the Lévy-Gromov
isoperimetric inequality obtained for the present non-smooth framework in [CMS19][Lemma 3.1,
3.2], gives that there exists some constant B = B(N) > 0 and δ̃ = δ̃(N, v, λ) > 0 such that

B (π − diam(X))N ≤ C(N, v, λ)
√
δ , for any δ ∈ (0, δ̃) . (3.31)

This proves the first part of the statement. The second part follows from the first one by
a standard compactness/contradiction argument, which uses the compactness of the class of
RCD(N − 1, N) spaces with respect to the measured-Gromov-Hausdorff topology and the maximal
diameter Theorem [K15, Theorem 1.4].
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