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Abstract. Let Y be a smooth compact oriented Riemannian manifold without boundary, and assume that its 1-

homology group has no torsion. Weak limits of graphs of smooth maps uk : Bn → Y with equibounded total variation

give rise to equivalence classes of Cartesian currents in cart1,1(Bn×Y) for which we introduce a natural BV -energy.

Assume moreover that the first homotopy group of Y is commutative. In any dimension n we prove that every

element T in cart1,1(Bn×Y) can be approximated weakly in the sense of currents by a sequence of graphs of smooth

maps uk : Bn → Y with total variation converging to the BV -energy of T . As a consequence, we characterize the

lower semicontinuous envelope of functions of bounded variations from Bn into Y.

In this paper we deal with sequences of smooth maps uk : Bn → Y with equibounded total variation

sup
k
E1,1(uk) < ∞ , E1,1(uk) :=

∫

Bn

|Duk| dx

and their limit points. Here Bn is the unit ball in Rn and Y is a smooth oriented Riemannian manifold
of dimension M ≥ 1, isometrically embedded in RN for some N ≥ 2. We shall assume that Y is compact,
connected, without boundary. In addition, we assume that the integral 1-homology group H1(Y) := H1(Y;Z)
has no torsion.

Modulo passing to a subsequence the (n, 1)-currents Guk
, integration over the graphs of uk of n-forms

with at most one vertical differential, converge to a current T ∈ cart1,1(Bn × Y), see Sec. 2 below. To
every T ∈ cart1,1(Bn × Y) it corresponds a function uT ∈ BV (Bn,Y), i.e., uT ∈ BV (Bn,RN ) such that
uT (x) ∈ Y for Ln-a.e. x ∈ Bn, compare [14, Vol. I, Sec. 4.2] [14, Vol. II, Sec. 5.4]. Also, the weak
convergence Guk

⇀ T yields the convergence uk ⇀ uT weakly in the BV -sense.
In order to analyze the weak limit currents, it is relevant first to consider the case n = 1. Therefore

in Sec. 1 we study some of the structure properties of 1-dimensional Cartesian currents in B1 × Y, i.e., of
currents in cart(B1 × RN ) with support spt T ⊂ B

1 × Y, compare [14, Vol. I]. In the simple case Y = S1,
the unit circle in R2, and in any dimension n, for any current T ∈ cart(Bn×S1) we can find a sequence of
smooth maps {uk} ⊂ C1(Bn, S1) such that Guk

weakly converges to T and the area of the graph of the
uk’s converges to the mass of T , i.e., M(Guk

) → M(T ), see [13] and [14, Vol. II, Sec. 6.2.2]. However, in
case of general target manifolds, and even in dimension n = 1, a gap phenomenon occurs. More precisely,
setting

M̃(T ) := inf{lim inf
k→∞

M(Guk
) | {uk} ⊂ C1(B1,Y) , Guk

⇀ T weakly in D1(B1 × Y)} ,

there exist currents T ∈ cart(B1 × Y) for which

M(T ) < M̃(T ) ,

i.e., for every smooth sequence {uk} ⊂ C1(B1,Y) such that Guk
⇀ T weakly in D1(B1×Y) we have that

lim inf
k→∞

M(Guk
) ≥ M(T ) + C ,

where C > 0 is an absolute constant and, we recall, the mass of Guk
is the area of the graph of uk

M(Guk
) = A(uk) :=

∫

B1

√
1 + |Duk|2 dx .
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In order to deal with this gap phenomenon, we introduce the class cart1,1(B1×Y) of equivalence classes
of currents in cart(B1 × Y), where the equivalence relation is given by

T ∼ T̃ ⇐⇒ T (ω) = T̃ (ω) ∀ω ∈ Z1,1(B1 × Y) ,

see Definition 1.6. Here Z1,1(B1 × Y) denotes the class of smooth forms ω ∈ D1(B1 × Y) such that
dyω(1) = 0, where d = dx + dy denotes the splitting into a horizontal and a vertical differential, and ω(1)

is the component of ω with exactly one vertical differential. In other words cart1,1(B1 × Y) is the class
of vertical homological representatives of the elements of cart(B1 × Y). Notice that if Y = S1, actually
cart1,1(B1 × S1) agrees with the class cart(B1 × S1). We then introduce on cart1,1(B1 × Y) the following
energy

A(T ) :=
∫

B1

√
1 + |∇uT (x)|2 dx + |DCuT |(B1) +

∑

x∈Jc(T )

LT (x) ,

where ∇uT and DCuT are respectively the absolutely continuous and the Cantor part of the distributional
derivative of the underlying function uT ∈ BV (B1,Y), and the countable set Jc(T ) is the union

Jc(T ) := JuT ∪ {xi : i = 1, . . . , I}

of the discontinuity set JuT
of uT and of the finite set of points xi where the mass of T concentrates. In

the above formula, LT (x) denotes the minimal length L(γ) among all Lipschitz curves γ : [0, 1] → Y, with
end points equal to the one-sided approximate limits of uT on x ∈ Jc(T ), such that their image current
γ#[[ (0, 1) ]] is equal to the 1-dimensional restriction π̂#(T {x} × Y) of T over the point x. In the case
Y = S1, it turns out that A(T ) agrees with the mass of T , compare [13] and [14, Vol. II, Sec. 6.2.2].

We will show that the functional T 7→ A(T ) is lower semicontinuous in cart1,1(B1 × Y), Theorem 1.7,
and that for every T there exists a sequence of smooth maps {uk} ⊂ C1(B1,Y) such that Guk

⇀ T and
M(Guk

) → A(T ) as k → ∞, Theorem 1.8. As a consequence, we conclude that A(T ) coincides with the
relaxed area functional

Ã(T ) := inf{lim inf
k→∞

A(uk) | {uk} ⊂ C1(B1,Y) , Guk
⇀ T} .

In Sec. 2, we deal with the n-dimensional case, n ≥ 2, introducing the class cart1,1(Bn × Y) of vertical
homological representatives. The BV -energy of a current T ∈ cart1,1(Bn × Y) is then defined by

E1,1(T ) :=
∫

Bn

|∇uT (x)| dx + |DCuT |(Bn) +
∫

Jc(T )

LT (x) dHn−1(x) ,

see Definition 2.10, where Jc(T ) is the countably Hn−1-rectifiable subset of Bn given by the union of the
Jump set JuT

of uT and of the (n − 1)-rectifiable set of mass-concentration of T . Finally, the integrand
LT (x) is defined as above, by taking into account that the 1-dimensional restriction π̂#(T {x} × Y) of T
is well-defined for Hn−1-a.e. point x ∈ Jc(T ).

Notice that, if T = Gu, where u : Bn → Y is smooth or at least in W 1,1, then E1,1(Gu) = E1,1(u).
Moreover, in the case Y = S1, we have cart1,1(Bn × S1) = cart(Bn × S1) and, due to the absence of gap
phenomenon, the functional E1,1(T ) agrees with the parametric variational integral associated to the total
variation integral, see Definition 2.5, and can be dealt with as in [13], see also [14, Vol. II, Sec. 6.2], [8], [19].

The functional T 7→ E1,1(T ) turns out to be lower semicontinuous in cart1,1(Bn×Y), see Theorem 2.12
and Sec. 3. Moreover, assuming in addition that the first homotopy group π1(Y) is commutative, in Sec. 4
and Sec. 5 we will prove in any dimension n ≥ 2 that for every T ∈ cart1,1(Bn×Y) there exists a sequence
of smooth maps {uk} ⊂ C1(Bn,Y) such that Guk

⇀ T and E1,1(uk) → E1,1(T ) as k →∞, Theorem 2.13.
Consequently, we show that a closure-compactness property holds in cart1,1(Bn × Y), Theorem 2.17. We
stress that the commutativity hypothesis on π1(Y) cannot be removed, see Remark 5.2.

In Sec. 6, extending the classical notion of total variation of vector-valued maps, compare e.g. [1], we
introduce in a natural way the total variation of functions u ∈ BV (Bn,Y), given by

ETV (u) :=
∫

Bn

|∇u(x)| dx + |DCu|(Bn) +
∫

Ju

H1(lx) dHn−1(x) ,
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where, for any x ∈ Ju, we let H1(lx) denote the length of a geodesic arc lx in Y with initial and final
points u−(x) and u+(x). Extending the density result of Bethuel [5], in Theorem 6.5 we will show that for
every u ∈ BV (Bn,Y) we can find a sequence of maps {uk} ⊂ R∞1 (Bn,Y) such that uk ⇀ u as k → ∞
weakly in the BV -sense and

lim
k→∞

∫

Bn

|Duk| dx = ETV (u) .

If n = 1, the class R∞1 (Bn,Y) agrees with C1(Bn,Y). If n ≥ 2, it is given by all the maps u ∈ W 1,1(Bn,Y)
which are smooth except on a singular set which is discrete, if n = 2, and is the finite union of smooth
(n− 2)-dimensional subsets of Bn with smooth boundary, if n ≥ 3. Therefore, if π1(Y) = 0, we obtain that
smooth maps in C1(Bn,Y) are dense in BV (Bn,Y) in the strong sense above mentioned.

However, in Sec. 7 we will show that ETV (u) does not agree with the relaxed of the total variation

ẼTV (u) := inf
{

lim inf
k→∞

∫

Bn

|Duk| dx | {uk} ⊂ C1(Bn,Y) , uk ⇀ u weakly in the BV -sense
}

if n ≥ 2, and we have ẼTV (u) < ∞, Theorem 7.3, and that

ẼTV (u) = inf{E1,1(T ) | T ∈ Tu} ,

Theorem 7.4, where Tu is the class of Cartesian current T in cart1,1(Bn×Y) with underlying BV -function
uT equal to u, this way obtaining the representation formula

ẼTV (u) =
∫

Bn

|∇u(x)| dx + |DCu|(Bn) + inf

{∫

Jc(T )

LT (x) dHn−1(x) | T ∈ Tu

}
.

We finally specify the above relaxation results to u ∈ W 1,1(Bn,Y) and/or Y = S1, recovering in
particular previous results in [13], [8], and [19].

1 Cartesian currents in dimension one

In this section we discuss some features of 1-dimensional Cartesian currents in B1 × Y and, in particular,
we discuss a gap phenomenon and the relaxed area functional.

First let us introduce a few notation about BV -functions and Cartesian currents in the general context
Bn × Y.

Vector valued BV -functions. Let u : Bn → RN be a function in BV (Bn,RN ), i.e., u = (u1, . . . uN )
with all components uj ∈ BV (Bn). The Jump set of u is the countably Hn−1-rectifiable set Ju in Bn given
by the union of the complements of the Lebesgue sets of the uj ’s. Let ν = νu(x) be a unit vector in Rn

orthogonal to Ju at Hn−1-a.e. point x ∈ Ju. Let u±(x) denote the one-sided approximate limits of u on
Ju, so that for Hn−1-a.e. point x ∈ Ju

lim
ρ→0+

ρ−n

∫

B±ρ (x)

|u(x)− u±(x)| dx = 0 ,

where B±
ρ (x) := {y ∈ Bρ(x) : ±〈y− x, ν(x)〉 ≥ 0}. Note that a change of sign of ν induces a permutation of

u+ and u− and that only for scalar functions there is a canonical choice of the sign of ν which ensures that
u+(x) > u−(x). The distributional derivative of u is the sum of a ”gradient” measure, which is absolutely
continuous with respect to the Lebesgue measure, of a ”jump” measure, concentrated on a set that is σ-finite
with respect to the Hn−1-measure, and of a ”Cantor-type” measure. More precisely,

Du = Dau + DJu + DCu ,

where
Dau = ∇u · dx , DJu = (u+(x)− u−(x))⊗ ν(x)Hn−1 Ju ,
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∇u := (∇1u, . . . ,∇nu) being the approximate gradient of u, compare e.g. [2] or [14, Vol. I]. We also recall
that {uk} is said to converge to u weakly in the BV -sense, uk ⇀ u, if uk → u strongly in L1(Bn,RN )
and Duk ⇀ Du weakly in the sense of (vector-valued) measures. We will finally denote

BV (Bn,Y) := {u ∈ BV (Bn,RN ) | u(x) ∈ Y for Ln-a.e. x ∈ Bn} .

Cartesian currents. The class of Cartesian currents cart(Bn × RN ), compare [14, Vol. I], is defined as
the class of integer multiplicity (say i.m.) rectifiable currents T in Rn(Bn × RN ) which have no inner
boundary, ∂T Bn × RN = 0, have finite mass, M(T ) < ∞, and are such that

‖T‖1 < ∞ , π#(T ) = [[Bn ]] and T 00 ≥ 0 ,

where
‖T‖1 := sup{T (ϕ(x, y)|y| dx) | ϕ ∈ C0

c (Bn × RN ) and ‖ϕ‖ ≤ 1}
and T 00 is the Radon measure in Bn × RN given by

T 00(ϕ(x, y)) = T (ϕ(x, y) dx) ∀ϕ ∈ C0
c (Bn × RN ) .

Finally, here and in the sequel π : Rn+N → Rn and π̂ : Rn+N → RN denote the projections onto the first
n and the last N coordinates, respectively.

It is shown in [14, Vol. I] that for every T ∈ cart(Bn × RN ) there exists a function uT ∈ BV (Bn,RN )
such that

T (φ(x, y) dx) =
∫

Bn

φ(x, uT (x)) dx (1.1)

for all φ ∈ C0(Bn × RN ) such that |φ(x, y)| ≤ C (1 + |y|), and

(−1)n−iT (ϕ(x)d̂xi ∧ dyj) = 〈Diu
j
T , ϕ〉 := −

∫

Bn

uj
T (x) ·Diϕ(x) dx

for all ϕ ∈ C1
c (Bn), where

d̂xi := dx1 ∧ · · · dxi−1 ∧ dxi−1 ∧ · · · ∧ dxn .

In particular, we have ‖T‖1 = ‖uT ‖L1(Bn,RN ).

Definition 1.1 If n = 1 we set

cart(B1 × Y) := {T ∈ cart(B1 × RN ) | spt T ⊂ B
1 × Y} .

Notice that the class cart(B1 × Y) contains the weak limits of sequences of graphs of smooth maps uk :
B1 → Y with equibounded W 1,1-energies. Moreover, it is closed under weak convergence in D1(B1 × Y)
with equibounded masses. Finally, the BV -function uT associated to currents T in cart(B1 × Y) clearly
belongs to BV (B1,Y).

Restriction over one point. Let T ∈ cart(B1 × Y). Since T has finite mass, η 7→ T (χBr(x) ∧ η), where
x ∈ B1 and 0 < r < 1− |x|, defines a current in D1(Y). The 1-dimensional restriction of T over the point
x

π̂#(T {x} × Y) ∈ D1(Y)

is the limit
π̂#(T {x} × Y)(η) := lim

r→0+
T (χBr(x) ∧ η) , η ∈ D1(Y) .

Canonical decomposition. There is a canonical way to decompose a current T ∈ cart(B1 ×Y). We first
observe that the 1-dimensional restriction of T over any point x in the jump set JuT

of uT is given by

π̂#(T {x} × Y) = Γx ,

Γx being a 1-dimensional integral chain on Y such that ∂Γx = δu+
T (x) − δu−T (x), where u+

T (x) and u−T (x)
here and in the sequel denote the right and left limits of uT at x, respectively. Therefore, by applying
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Federer’s decomposition theorem [9], we find an indecomposable 1-dimensional integral chain γx on Y,
satisfying ∂γx = δu+

T (x) − δu−T (x), and an integral 1-cycle Cx in Y, satisfying ∂Cx = 0, such that

Γx = γx + Cx and M(Γx) = M(γx) + M(Cx) . (1.2)

Currents associated to graphs of BV -functions. Next we associate to any T ∈ cart(B1×Y) a current
GT ∈ D1(B1×Y) carried by the graph of the function uT ∈ BV (B1,Y) corresponding to T , and acting in
a linear way on forms ω in D1(B1 ×Y) as follows. We first split ω = ω(0) + ω(1) according to the number
of vertical differentials, so that

ω(0) = φ(x, y) dx and ω(1) =
N∑

j=1

φj(x, y) dyj

for some φ, φj ∈ C∞0 (B1 × Y). We then decompose GT into its absolutely continuous, Cantor, and Jump
parts

GT := T a + TC + T J

and define TC(ω(0)) = T J(ω(0)) = 0 and

T a(ω(0)) :=
∫

B1
φ(x, uT (x)) dx

T a(ω(1)) :=
N∑

j=1

∫

B1
φj(x, uT (x))∇uj

T (x) dx

TC(ω(1)) :=
N∑

j=1

〈DCuj
T , φj(·, uT (·))〉

T J(ω(1)) :=
N∑

j=1

∫

JuT

(∫

γx

φj(x, y) dyj

)
· ν(x) dH0(x) .

Here, γx is the indecomposable 1-dimensional integral chain defined by means of the 1-dimensional restriction
of T over the point x ∈ JuT , see (1.2).

Notice that the definition of GT obviously depends on γx and hence, in conclusion, on the current
T ∈ cart(B1 × Y). Moreover, we readily infer that the mass of GT is given by

M(GT ) = M(T a) + M(TC) + M(T J ) ,

where

M(T a) =
∫

B1

√
1 + |∇uT (x)|2 dx , M(TC) = |DCuT |(B1) , M(T J) =

∫

JuT

H1(γx) dH0(x) .

A density result. We recall from [14] that if u : B1 → Y is smooth, or at least e.g. u ∈ W 1,1(B1,Y),
the current Gu integration of 1-forms in D1(B1 × Y) over the rectifiable graph of u is defined in a weak
sense by Gu := (Id ./ u)#[[ B1 ]], i.e., by letting Gu(ω) = (Id ./ u)#(ω) for every ω ∈ D1(B1 × Y), where
(Id ./ u)(x) := (x, u(x)). Moreover, the mass of Gu agrees with the area A(u) of the graph of u

M(Gu) = A(u) :=
∫

B1

√
1 + |Du(x)|2 dx .

By a straightforward adaptation of the proof of Theorem 1.8 below, we readily obtain the following strong
density result for the mass of GT .

Proposition 1.2 For every T ∈ cart(B1 × Y) there exists a sequence of smooth maps {uk} ⊂ C1(B1,Y)
such that uk ⇀ uT weakly in the BV -sense, Guk

⇀ GT weakly in D1(B1 × Y) and M(Guk
) → M(GT )

as k →∞.
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Vertical Homology. Let now Z1,1(B1 × Y) denote the class of vertically closed forms

Z1,1(B1 × Y) := {ω ∈ D1(B1 × Y) | dyω(1) = 0} ,

where d = dx + dy denotes the splitting of the exterior differential d into a horizontal and a vertical
differential. We say that Tk ⇀ T weakly in Z1,1(B1 × Y) if Tk(ω) → T (ω) for every ω ∈ Z1,1(B1 × Y).

Homological vertical part. By Proposition 1.2, since by Stokes’ theorem ∂Guk
B1 × Y = 0, whereas

Guk
⇀ GT , we obtain that

∂GT B1 × Y = 0 .

Remark 1.3 In higher dimension n ≥ 2 in general GT has a non-zero boundary, i.e., ∂GT Bn ×Y 6= 0,
see Remark 2.2.

Setting then
ST := T −GT ,

by (1.1) we infer that ST (φ(x, y) dx) = 0 and ST (dφ) = 0 for every φ ∈ C∞0 (B1 × Y). Therefore, by
homological reasons, since

inf{M(C) | C ∈ Z1(Y) , C is non trivial in Y} > 0 ,

similarly to [14, Vol. II, Sec. 5.3.1] we infer that

ST =
I∑

i=1

δxi × Ci on Z1,1(B1 × Y) ,

where {xi : i = 1, . . . , I} is a finite disjoint set of points in B1, possibly intersecting the Jump set JuT , and
Ci is a non-trivial homological integral 1-cycle in Y. Notice that the integral 1-homology group H1(Y) is
finitely generated.

Remark 1.4 Setting

ST,sing := T −GT −
I∑

i=1

δxi × Ci ,

it turns out that ST,sing is nonzero only possibly on forms ω with non-zero vertical component, ω(1) 6= 0,
and such that dyω(1) 6= 0. Therefore, ST,sing is a homologically trivial i.m. rectifiable current in R1(B1×Y).

Consequently, setting for T ∈ cart(B1 × Y)

TH :=
I∑

i=1

δxi × Ci , (1.3)

T decomposes into the absolutely continuous, Cantor, Jump, Homological, and Singular parts,

T = T a + TC + T J + TH + ST,sing .

Gap phenomenon. However, a gap phenomenon occurs in cart(B1 × Y). More precisely, if we set

M̃(T ) := inf{lim inf
k→∞

M(Guk
) | {uk} ⊂ C1(B1,Y) , Guk

⇀ T weakly in D1(B1 × Y)} ,

we see that there exist Cartesian currents T ∈ cart(B1 × Y) for which

M(T ) < M̃(T ) .

For example, as in [14, Vol. I, Sec. 4.2.5], if T = Gu + δ0 × C, where u ≡ P ∈ Y is a constant map and
C ∈ Z1(Y) is a 1-cycle in Y, it readily follows that for every smooth sequence {uk} ⊂ C1(B1,Y) such that
Guk

⇀ T weakly in D1(B1 × Y) we have that

lim inf
k→∞

M(Guk
) ≥ M(T ) + 2d , d := distY(P, spt C) ,

where distY denotes the geodesic distance in Y.
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Remark 1.5 This gap phenomenon is due to the structure of the area integrand u 7→
√

1 + |Du|2, and
it is typical of integrands with linear growth of the gradient, e.g., the total variation integrand u 7→ |Du|,
since the images of smooth approximating sequences may have to ”connect” the point P to the cycle C,
this way paying a cost in term of the distance d. This does not happen e.g. for the Dirichlet integrand
u 7→ 1

2 |Du|2 in dimension 2, compare [15]. In this case, in fact, the connection from one point P to any
2-cycle C ∈ Z2(Y) can be obtained by means of ”cylinders” of small 2-dimensional mapping area and,
therefore, of small Dirichlet integral, on account of Morrey’s ε-conformality theorem.

Homological theory. In order to study the currents which arise as weak limits of graphs of smooth maps
uk : B1 → Y with equibounded total variations, supk ‖Duk‖L1 < ∞, the previous facts lead us to consider
vertical homology equivalence classes of currents in cart(B1 × Y). More precisely, we give the following

Definition 1.6 We denote by cart1,1(B1 × Y) the set of equivalence classes of currents in cart(B1 × Y),
where

T ∼ T̃ ⇐⇒ T (ω) = T̃ (ω) ∀ω ∈ Z1,1(B1 × Y) .

If T ∼ T̃ , then the underlying BV -functions coincide, i.e., uT = ueT . Therefore, we have T a = T̃ a and
TC = T̃C , whereas in general T J 6= T̃ J . However, we have that

T J + TH = T̃ J + T̃H on Z1,1(B1 × Y) .

Jump-concentration points. For future use, we let

Jc(T ) := JuT ∪ {xi : i = 1, . . . , I} (1.4)

denote the set of points of jump and concentration , where the xi’s are given by (1.3). We infer that Jc(T )
is an at most countable set which does not depend on the representative T , i.e., Jc(T ) = Jc(T̃ ) if T ∼ T̃ .
By extending the notion of 1-dimensional restriction π̂#(T {x} × Y) to equivalence classes, we infer that
π̂#(T {x} × Y) = 0 if x /∈ Jc(T ). As to jump-concentration points, letting

Z1(Y) := {η ∈ D1(Y) | dyη = 0} ,

if x ∈ JuT
, with x 6= xi, we infer that

π̂#(T {x} × Y) = γx on Z1(Y) ,

where γx is the indecomposable 1-dimensional integral chain defined by (1.2), and if x = xi, see (1.4),

π̂#(T {x} × Y) = γxi + Ci on Z1(Y) ,

where Ci ∈ Z1(Y) is the non-trivial 1-cycle defined by (1.3), and γxi = 0 if xi /∈ JuT
.

Vertical minimal connection. For every Cartesian current T ∈ cart1,1(B1×Y) and every point x ∈ Jc(T )
we will denote by

ΓT (x) := {γ ∈ Lip([0, 1],Y) | γ(0) = u−T (x) , γ(1) = u+
T (x) ,

γ#[[ (0, 1) ]](η) = π̂#(T {x} × Y)(η) ∀ η ∈ Z1(Y)} (1.5)

the family of all smooth curves γ in Y, with end points u±T (x), such that their image current γ#[[ (0, 1) ]]
agrees with the 1-dimensional restriction π̂#(T {x}×Y) on closed 1-forms in Z1(Y). Moreover, we denote
by

LT (x) := inf{L(γ) | γ ∈ ΓT (x)} , x ∈ Jc(T ) , (1.6)

the minimal length of curves γ connecting the ”vertical part” of T over x to the graph of uT . For future
use, we remark that the infimum in (1.6) is attained, i.e.,

∀x ∈ Jc(T ) , ∃ γ ∈ ΓT (x) : L(γ) = LT (x) . (1.7)
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Relaxed area functional. We finally introduce the functional

A(T, B) :=
∫

B

√
1 + |∇uT (x)|2 dx + |DCuT |(B) +

∫

Jc(T )∩B

LT (x) dH0(x)

for every Borel set B ⊂ B1, and we let
A(T ) := A(T, B1) .

Notice that for every T ∈ cart1,1(B1 × Y) we have

min{M(T̃ ) : T̃ ∼ T} ≤ A(T ) . (1.8)

Main results. We first prove the following lower semicontinuity property.

Theorem 1.7 Let T ∈ cart1,1(B1 × Y). For every sequence of smooth maps {uk} ⊂ C1(B1,Y) such that
Guk

⇀ T weakly in Z1,1(B1 × Y), we have

lim inf
k→∞

M(Guk
) ≥ A(T ) .

Then we prove the following density result.

Theorem 1.8 Let T ∈ cart1,1(B1 × Y). There exists a sequence of smooth maps {uk} ⊂ C1(B1,Y) such
that Guk

⇀ T weakly in Z1,1(B1 × Y) and M(Guk
) → A(T ) as k →∞.

As a consequence, if we denote, in the same spirit as Lebesgue’s relaxed area,

Ã(T ) := inf{lim inf
k→∞

A(uk) | {uk} ⊂ C1(B1,Y) , Guk
⇀ T weakly in Z1,1(B1 × Y)} ,

by Theorems 1.7 and 1.8 we readily conclude that

A(T ) = Ã(T ) ∀T ∈ cart1,1(B1 × Y) .

Properties. From Theorems 1.7 and 1.8, (1.8) and the closure of the class cart(B1 × Y) we infer:

(i) the functional T 7→ A(T ) is lower semicontinuous in cart1,1(B1 × Y) w.r.t. the weak convergence in
Z1,1(B1 × Y);

(ii) the class cart1,1(B1 × Y) is closed and compact under weak convergence in Z1,1(B1 × Y) with equi-
bounded A-energies.

We finally notice that similar properties hold if one considers the total variation integrand u 7→ |Du|
instead of the area integrand u 7→

√
1 + |Du|2. In particular, setting

E1,1(T ) :=
∫

B1
|∇uT (x)| dx + |DCuT |(B1) +

∫

Jc(T )

LT (x) dH0(x) ,

for every T ∈ cart1,1(B1 × Y) we have

E1,1(T ) = inf
{

lim inf
k→∞

∫

B1
|Duk| dx | {uk} ⊂ C1(B1,Y) , Guk

⇀ T weakly in Z1,1(B1 × Y)
}

.

Remark 1.9 For future use, we denote

Yε := {y ∈ RN | dist(y,Y) ≤ ε}
the ε-neighborhood of Y and we observe that, since Y is smooth, there exists ε0 > 0 such that for 0 < ε ≤ ε0

the nearest point projection Πε of Yε onto Y is a well defined Lipschitz map with Lipschitz constant Lε → 1+

as ε → 0+. Note that for 0 < ε ≤ ε0 the set Yε is equivalent to Y in the sense of the algebraic topology. In
particular, we have

π1(Yε) = π1(Y) .
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Proof of Theorem 1.7: Let {xi}i>I ⊂ B1 be the at most countable set of discontinuity points in
JuT

\ {xi : i = 1, . . . , I}, see (1.4). By the properties of Y we have

LT (xi) ≤ C · |u+
T (xi)− u−T (xi)| ∀ i > I ,

where C = C(Y) > 0 is an absolute constant, see (1.6). Therefore, since

|DJuT |(B1) =
∞∑

i=1

|u+
T (xi)− u−T (xi)| < ∞ ,

for every ε > 0 we find l(ε) > I such that

∞∑

i=l(ε)+1

LT (xi) < ε . (1.9)

After rearranging in an increasing way the set {xi : i ≤ l(ε)}, and setting x0 = −1, xl(ε)+1 = 1, we let

2δ = 2δ(ε) := min{|xi − xi+1| : i = 0, . . . , l(ε)} > 0 .

For i ∈ {1, . . . , l(ε)}, due to the weak convergence uk ⇀ uT in the BV -sense, possibly passing to a
subsequence, we find the existence of sequences of points ai

k ∈]xi− δ/k, xi[ and bi
k ∈]xi, xi + δ/k[ such that

distY
(
uk(ai

k), u−T (xi)
)

<
1
k

and distY
(
uk(bi

k), u+
T (xi)

)
<

1
k

(1.10)

for every k, where distY denotes the geodesic distance in Y.
Let γi

k : [0, 1] → Y be the Lipschitz reparametrization with constant velocity of the smooth curve
uk|[ai

k,bi
k]. From the weak convergence Guk

⇀ T we infer that

γi
k#[[ (0, 1) ]](η) → π̂#(T {x} × Y)(η) ∀ η ∈ Z1(Y) (1.11)

as k → ∞, where π̂#(T {x} × Y) is the previously defined restriction of T over x. Moreover, by
connecting the end points uk(ai

k) and uk(bi
k) with u−T (xi) and u+

T (xi), respectively, due to (1.10) we find
a sequence of Lipschitz arcs γ̃i

k : [0, 1] → Y, with end points γ̃i
k(0) = u−T (xi) and γ̃i

k(1) = u+
T (xi), such that(

γ̃i
k#[[ (0, 1) ]]− γi

k#[[ (0, 1) ]]
)
(η) → 0 for every η ∈ Z1(Y) as k →∞ and

L(γ̃i
k) ≤ L(γi

k) +
2
k

∀ k .

By the construction we also infer that {γ̃i
k}k is a sequence of equibounded and equicontinuous maps.

Therefore, by Ascoli’s theorem, possibly passing to a subsequence, we find that γ̃i
k converges uniformly to

a Lipschitz arc γ̃i : [0, 1] → Y, with end points u∓T (xi), satisfying by (1.11)

γ̃i
#[[ (0, 1) ]](η) = π̂#(T {x} × Y)(η) ∀ η ∈ Z1(Y) .

We then obtain that γ̃i ∈ ΓT (xi), according to the definition (1.5). Moreover, by the lower semicontinuity
of the length functional w.r.t. the uniform convergence, we have

L(γ̃i) ≤ lim inf
k→∞

L(γ̃i
k) .

By (1.6) and by the above estimates we conclude that

LT (xi) ≤ lim inf
k→∞

L(γi
k) ∀ i = 1, . . . , l(ε) . (1.12)

Now, since by the weak BV -convergence of uk ⇀ uT we have
∫

B1

√
1 + |∇uT (x)|2 dx + |DCuT |(B1) ≤ lim inf

k→∞
A(uk) ,
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by the previous argument, taking into account (1.9) and (1.12), we readily infer that

A(T )− ε ≤ lim inf
k→∞

A(uk)

and hence the assertion, by letting ε ↘ 0. ¤

Proof of Theorem 1.8: Let {xi}i>I , l(ε) and δ = δ(ε) be defined as in the proof of Theorem 1.7, so
that (1.9) holds true. Let γi ∈ ΓT (xi) be such that L(γi) ≤ LT (xi) + ε · 2−i, see (1.5) and (1.6). For fixed
δ ∈ (0, δ(ε)), and for every i = 1, . . . , l(ε), we first define uε

δ : [xi − δ, xi + δ] → Y by reparametrising with
the same orientation the arc γi, i.e.,

uε
δ(x) := γi

(
1
2

+
1
2δ

(x− xi)
)

.

Setting Ii :=]xi + δ, xi+1 − δ[ if i = 1, . . . , l(ε)− 1, and I1 :=]− 1, x1 − δ[ , Il(ε) :=]xl(ε) + δ, 1[, we then
extend uε

δ to the whole of B1 by letting uε
δ(x) := uT (Ψi(x)) if x ∈ Ii for some i = 0, . . . , l(ε), where Ψi is

the bijective and increasing affine map between the intervals Ii and ]xi, xi+1[. We then apply a mollification
procedure to the function uε

δ, defining this way a smooth map vε
δ : B1 → RN such that

‖vε
δ − uε

δ‖L1(B1) ≤ δ and
∫

B1
|Dvε

δ | dx ≤ |Duε
δ|(B1) + δ .

Since uT is continuous outside the Jump set JuT and (1.9) holds true, for every σ > 0 we find η =
η(σ, δ, ε) > 0 such that, in the a.e. sense,

∀x, y ∈ B1 , |x− y| < η =⇒ |uε
δ(x)− uε

δ(y)| < σ + ε .

As a consequence, we may and do define vε
δ in such a way that in particular

dist(vε
δ(x),Y) < ε ∀x ∈ B1 .

Setting now wε
δ := Πε ◦ vε

δ : B1 → Y, compare Remark 1.9, taking first δ small w.r.t. ε, and letting then
ε → 0, by a diagonal procedure we find a smooth approximating sequence. ¤

2 Cartesian currents, BV -energy and weak limits

In this section we deal with the weak limits of graphs of smooth maps uk : Bn → Y with equibounded
W 1,1-energies. We first state a few preliminary results.

Homological facts. Since H1(Y) has no torsion, there are generators [γ1], . . . , [γs], i.e. integral 1-cycles
in Z1(Y), such that

H1(Y) =

{
s∑

s=1

ns [γs] | ns ∈ Z
}

,

see e.g. [14], Vol. I, Sec. 5.4.1. By de Rham’s theorem the first real homology group is in duality with the
first cohomology group H1

dR(Y), the duality being given by the natural pairing

〈[γ], [ω]〉 := γ(ω) =
∫

γ

ω , [γ] ∈ H1(Y;R) , [ω] ∈ H1
dR(Y) .

We will then denote by [ω1], . . . , [ωs] a dual basis in H1
dR(Y) so that γs(ωr) = δsr, where δsr denotes the

Kronecker symbols.

Dn,1-currents. For p = 1, . . . , n, every differential p-form ω ∈ Dp(Bn×Y) splits as a sum ω =
∑p

j=0
ω(j),

where p := min(p, M), M = dim(Y), and the ω(j)’s are the p-forms that contain exactly j differentials in
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the vertical Y variables. We denote by Dp,1(Bn × Y) the subspace of Dp(Bn × Y) of p-forms of the type
ω = ω(0)+ω(1), and by Dp,1(Bn×Y) the dual space of Dp,1(Bn×Y). Every (p, 1)-current T ∈ Dp,1(Bn×Y)
splits as T = T(0) + T(1), where T(j)(ω) := T (ω(j)). For example, if u ∈ W 1,1(Bn,Y), then Gu is an (n, 1)-
current in Dn,1(Bn × Y) defined in an approximate sense by

Gu := (Id ./ u)#[[ Bn ]] , (2.1)

where (Id ./ u)(x) := (x, u(x)), compare [14], see also [4].

Weak Dn,1-convergence. If {Tk} ⊂ Dn,1(Bn×Y), we say that {Tk} converges weakly in Dn,1(Bn×Y),
Tk ⇀ T , if Tk(ω) → T (ω) for every ω ∈ Dn,1(Bn × Y). Trivially, the class Dn,1(Bn × Y) is closed under
weak convergence.

E1,1-norm. For ω ∈ Dn,1(Bn × Y) and T ∈ Dn,1(Bn × Y) we set

‖ω‖E1,1 := max
{

sup
x,y

|ω(0)(x, y)|
1 + |y| ,

∫

Bn

sup
y
|ω(1)(x, y)| dx

}
,

‖T‖E1,1 := sup
{

T (ω) | ω ∈ Dn,1(Bn × Y) , ‖ω‖E1,1 ≤ 1
}

.

It is not difficult to show that ‖T‖E1,1 is a norm on {T ∈ Dn,1(Bn ×Y) : ‖T‖E1,1 < ∞}. Moreover, ‖ · ‖E1,1

is weakly lower semicontinuous in Dn,1, so that {T ∈ Dn,1(Bn × Y) : ‖T‖E1,1 < ∞} is closed under weak
Dn,1-convergence with equibounded E1,1-norms. Finally, if supk ‖Tk‖E1,1 < ∞ there is a subsequence that
weakly converges to some T ∈ Dn,1(Bn × Y) with ‖T‖E1,1 < ∞.

Boundaries. The exterior differential d splits into a horizontal and a vertical differential d = dx + dy. Of
course ∂xT (ω) := T (dxω) defines a boundary operator ∂x : Dn,1(Bn×Y) → Dn−1,1(Bn×Y). Now, for any
ω ∈ Dn−1,1(Bn ×Y), dyω belongs to Dn,1(Bn×Y) if and only if dyω(1) = 0. Then ∂yT makes sense only
as an element of the dual space of Zn−1,1(Bn × Y), where

Zp,1(Bn × Y) := {ω ∈ Dp,1(Bn × Y) | dyω(1) = 0} .

Graphs of BV -maps. We introduce a class of Dn,1-currents associated to the graphs of BV -functions.
To this aim, we observe that any form ω = ω(1) ∈ Dn,1(Bn × Y) can be written as

ω(1) =
n∑

i=1

N∑

j=1

(−1)n−iφj
i (x, y) d̂xi ∧ dyj (2.2)

for some φj
i ∈ C∞0 (Bn × Y), and we will set φj := (φj

1, . . . , φ
j
n).

Definition 2.1 We say that a current G ∈ Dn,1(Bn ×Y) is in BV −graph(Bn ×Y) if it decomposes into
its absolutely continuous, Cantor, and Jump parts

G := Ga + GC + GJ ,

where GC
(0) = GJ

(0) = 0, and its action on forms in Dn,1(Bn × Y) is given for any φ ∈ C∞c (Bn × Y) by

G(φ(x, y) dx) = Ga(φ(x, y) dx) :=
∫

Bn

φ(x, u(x)) dx

for some function u = u(G) ∈ BV (Bn,Y) and, on forms ω = ω(1) satisfying (2.2), by

Ga(ω(1)) :=
N∑

j=1

∫

Bn

〈∇uj , φj(x, u(x))〉 dx

GC(ω(1)) :=
N∑

j=1

∫

Bn

φj(x, u(x)) dDCuj

GJ(ω(1)) :=
N∑

j=1

n∑

i=1

∫

Ju

(∫

γx

φj
i (x, y) dyj

)
νi dHn−1(x) ,

11



where γx is a 1-dimensional integral chain in Y satisfying ∂γx = δu+(x) − δu−(x) and ν = (ν1, . . . , νn) is
the unit normal to Ju at x, for Hn−1-a.e. x ∈ Ju.

Remark 2.2 If n ≥ 2 in general the current G has a non-zero boundary in Bn × Y , even if u ∈
W 1,1(Bn,Y), i.e., if G = Ga. Take for example n = 2, Y = S1 ⊂ R2, and u(x) = x/|x|, so that
G = Gu := (Id ./ u)#[[B2 ]] and hence

∂G B2 × S1 = −δ0 × [[S1 ]] ,

where δ0 is the unit Dirac mass at the origin. However, as we shall see in Remark 6.10 below, the boundary
∂G is null on every (n− 1)-form ω̃ in Bn × Y which has no ”vertical” differentials.

Weak limits of smooth graphs. Let {uk} ⊂ C1(Bn,Y) be a sequence of smooth maps with equibounded
W 1,1-energies, supk ‖Duk‖L1 < ∞. The currents Guk

carried by the graphs of the uk’s are well defined
currents in Dn,1(Bn × Y) with equibounded E1,1-norms. Therefore, possibly passing to a subsequence, we
infer that Guk

⇀ T weakly in Dn,1(Bn × Y) to some current T ∈ Dn,1(Bn × Y), and uk ⇀ uT weakly in
the BV -sense to some function uT ∈ BV (Bn,Y). Therefore, we clearly have that

T (φ(x, y) dx) =
∫

Bn

φ(x, uT (x)) dx ∀φ ∈ C∞c (Bn × Y) . (2.3)

Moreover, by lower semicontinuity we have ‖T‖E1,1 < ∞ whereas, since the Guk
’s have no boundary in

Bn × Y, by the weak convergence we also infer

∂T = 0 on Zn−1,1(Bn × Y) . (2.4)

Currents associated to graphs of BV -functions. Arguing as in Sec. 1, we associate to the weak limit
current T a current GT ∈ BV −graph(Bn × Y), see Definition 2.1, where the function u = u(GT ) ∈
BV (Bn,Y) is given by uT and the γx’s in the definition of the jump part GJ

T are the indecomposable 1-
dimensional integral chains defined as in the previous section, but for Hn−1-a.e. x ∈ JuT

, since ‖T‖E1,1 < ∞,
compare (1.2) and Definition 2.8 below. In general ∂GT Bn × Y 6= 0. However, setting

ST := T −GT ,

we clearly have ST (φ(x, y) dx) = 0 for every φ ∈ C∞c (Bn × Y). Moreover, we also have:

Proposition 2.3 ST (ω) = 0 for every form ω = ω(1) such that ω = dyω̃ for some ω̃ ∈ Dn−1,0(Bn × Y).

Proof: Write ω̃ := ωϕ ∧ η for some η ∈ C∞0 (Y) and ϕ = (ϕ1, . . . , ϕn) ∈ C∞0 (Bn,Rn), where

ωϕ :=
n∑

i=1

(−1)i−1ϕi(x) d̂xi. (2.5)

Since
d(ωϕ ∧ η) = divϕ(x)η(y) dx + (−1)n−1ωϕ ∧ dyη

and T (d(ωϕ ∧ η)) = ∂T (ωϕ ∧ η) = 0, we have

(−1)nT (divϕ(x)η(y) dx) = T (ωϕ ∧ dyη) ,

so that
ST (ωϕ ∧ dyη) = (−1)nT (divϕ(x)η(y) dx)−GT (ωϕ ∧ dyη) .

Moreover, since T(0) = GT (0), by (2.3) we have

T (divϕ(x)η(y) dx) =
∫

Bn

divϕ(x)η(uT (x)) dx = −〈D(η ◦ uT ), ϕ〉
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whereas, taking φj
i = ϕi Dyj

η in (2.2), by the definition of GT , since ∂γx = δu+
T (x) − δu−T (x) we infer

(−1)n−1GT (ωϕ ∧ dyη) =
N∑

j=1

∫

Bn

∂η

∂yj
(uT (x))〈∇uj

T (x), ϕ(x)〉 dx

+
N∑

j=1

∫

Bn

∂η

∂yj
(uT (x)) ϕ(x) dDCuj

T

+
∫

JuT

(
η(u+

T (x))− η(u−T (x)
)〈ϕ(x), ν(x)〉 dHn−1 .

Finally, by the chain rule for the derivative D(η ◦ uT ) we obtain

(−1)n−1GT (ωϕ ∧ dyη) = 〈D(η ◦ uT ), ϕ〉

and hence that ST (ωϕ ∧ dyη) = 0. ¤

In conclusion, similarly to [14], Vol. II, Sec. 5.4.3, we infer that the weak limit current T is given by

T = GT + ST , ST =
s∑

s=1

Ls(T )× γs on Zn,1(Bn × Y) , (2.6)

where Ls(T ) ∈ Dn−1(Bn) is defined by

Ls(T ) = (−1)n−1π#(ST π̂#ωs) , s = 1, . . . , s , (2.7)

so that
Ls(T )(φ) = ST (π#φ ∧ π̂#ωs) ∀φ ∈ Dn−1(Bn) .

Notice that by (2.4) we have

∂ Ls(T ) Bn = (−1)n−1π#((∂GT ) π̂#ωs) ∀ s = 1, . . . , s .

Finally, setting

ST,sing := T −GT −
s∑

s=1

Ls(T )× γs , (2.8)

see Remark 1.4, it turns out that ST,sing is nonzero only possibly on forms ω with non-zero vertical
component, ω(1) 6= 0, and such that dyω(1) 6= 0.

Parametric polyconvex l.s.c. extension of the total variation. Following [14], Vol. II, Sec. 1.2, we
recall that the parametric polyconvex l.s.c. extension ‖ · ‖TV of the total variation integrand of mappings
from Bn to RN has the form

‖ξ‖TV := |ξ(1)| ∀ξ ∈ ΛnRn+N such that ξ00 ≥ 0 , (2.9)

where ξ00 denotes the coefficient of the first component of any n-vector ξ ∈ ΛnRn+N and |ξ(1)| is the
euclidean norm of the component ξ(1) of ξ in Λn−1Rn ⊗ Λ1RN . We have

Proposition 2.4 The parametric polyconvex l.s.c. extension F (x, u, ξ) : Bn×RN ×ΛnRn+N → R+
of the

total variation integrand of mappings from Bn into any smooth manifold Y ⊂ RN is given by

F (x, u, ξ) :=
{ ‖ξ‖TV if u ∈ Y, ξ ∈ Λn(Rn × TuY)

+∞ otherwise ,
(2.10)

where ‖ξ‖TV is given by (2.9) and TuY is the tangent space to Y at u.
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Parametric total variation. If T ∈ Dn,1(Bn × Y) is such that ‖T‖E1,1 < ∞, we denote by

T = ‖T‖E1,1

−→
T

the Radon-Nikodym decomposition of T with respect to the E1,1-norm, T being identified with the R1+Nn-
valued linear functional

T :=
(
T 00, (T ij)RNn

)
, i = 1, . . . n , j = 1, . . . N ,

where
T 00(φ) := T (φdx) , T ij(φ) := T (φ d̂xi ∧ dyj) , φ ∈ C∞0 (Bn × Y) .

Definition 2.5 The parametric variational integral associated to the total variation integral is defined for
every Borel set B ⊂ Bn by

F1,1(T, B × Y) :=
∫

B×Y
F

(
π(z), π̂(z),

−→
T (z)

)
d‖T‖E1,1(z)

where F (x, u, ξ) is given by (2.10), and we let F1,1(T ) := F1,1(T, Bn × Y).

Gap phenomenon. If T ∈ Dn,1(Bn × Y) is the weak limit of a sequence {Guk
} of graphs of smooth

maps {uk} ⊂ C1(Bn,Y) with equibounded W 1,1-energies, since F1,1(Guk
) = ‖Duk‖L1 , by the lower

semicontinuity of F1,1 with respect to the weak convergence in Dn,1 we infer that F1,1(T ) < ∞. Moreover,
if T decomposes as in (2.6) on the whole of Dn,1(Bn × Y), i.e., the singular part ST,sing defined in (2.8)
vanishes, and if the Ls(T )’s are i.m. rectifiable currents, an explicit formula can be obtained. However,
similarly to the case of dimension n = 1, a gap phenomenon occurs. More precisely, in general for every
smooth sequence {uk} ⊂ C1(Bn,Y) such that Guk

⇀ T weakly in Dn,1(Bn × Y) we have that

lim inf
k→∞

F1,1(Guk
) ≥ F1,1(T ) + C

for some absolute constant C > 0, see Remark 1.5.

Vertical homology classes. As in Definition 1.6, we are therefore led to consider vertical homology
equivalence classes of currents satisfying the same structure properties as weak limits of graphs of smooth
maps uk : Bn → Y with equibounded total variation, supk ‖Duk‖L1 < ∞. More precisely, we say that

T ∼ T̃ ⇐⇒ T (ω) = T̃ (ω) ∀ω ∈ Zn,1(Bn × Y) . (2.11)

Moreover, we will say that Tk ⇀ T weakly in Zn,1(Bn×Y) if Tk(ω) → T (ω) for every ω ∈ Zn,1(Bn×Y).

Definition 2.6 We denote by E1,1−graph(Bn×Y) the set of equivalence classes, in the sense of (2.11), of
currents T in Dn,1(Bn × Y) which have no interior boundary,

∂T = 0 on Zn−1,1(Bn × Y) ,

finite E1,1-norm, i.e.

‖T‖E1,1 := sup
{

T (ω) | ω ∈ Zn,1(Bn × Y) , ‖ω‖E1,1 ≤ 1
}

< ∞ ,

and decompose as

T = GT + ST , ST =
s∑

s=1

Ls(T )× γs on Zn,1(Bn × Y) ,

where GT ∈ BV −graph(Bn×Y), see Definition 2.1, and Ls(T ) is an i.m. rectifiable current in Rn−1(Bn)
for every s.
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Remark 2.7 If T̃ ∼ T , in general GeT 6= GT . However, the corresponding BV -functions coincide, i.e.,
u(GT ) = u(GeT ), see Definition 2.1. This yields that we may refer to the underlying functions uT ∈
BV (Bn,Y) associated to currents T in E1,1−graph(Bn × Y).

Jump-concentration set. Moreover, if L(T ) denotes the (n− 1)-rectifiable set given by the union of the
sets of positive multiplicity of the Ls(T )’s, we infer that the union

Jc(T ) := JuT
∪ L(T ) (2.12)

does not depend on the choice of the representative in T . As in dimension one, the countablyHn−1-rectifiable
set Jc(T ) is said to be the set of points of jump-concentration of T .

Restriction over points of jump-concentration. Let T ∈ E1,1−graph(Bn × Y) and let νT : Jc(T ) →
Sn−1 denote an extension to Jc(T ) of the unit normal νuT to the Jump set JuT . For any k = 1, . . . , n− 1,

let P be an oriented k-dimensional subspace in Rn and Pλ := P +
∑n−k

i=1
λiνi the family of oriented k-planes

parallel to P , where λ := (λ1, . . . , λn−k) ∈ Rn−k, span(ν1, . . . , νn−k) being the orthogonal space to P . Since
T has finite E1,1-norm, similarly to the case of normal currents, for Ln−k-a.e. λ such that Pλ ∩Bn 6= ∅, the
slice T π−1(Pλ) of T over π−1(Pλ) is a well defined k-dimensional current in E1,1−graph((Bn ∩Pλ)×Y)
with finite E1,1-norm. Moreover, for any such λ we have

Jc(T π−1(Pλ)) = Jc(T ) ∩ Pλ in the Hk−1-a.e. sense ,

whereas the BV -function associated to T π−1(Pλ) is equal to the restriction uT |Pλ
of uT to Pλ. Therefore,

in the particular case k = 1, as in Sec. 1 the 1-dimensional restriction

π̂#

(
(T π−1(Pλ)) {x} × Y) ∈ D1(Y) (2.13)

of the 1-dimensional current T π−1(Pλ) over any point x ∈ Jc(T ) ∩ Pλ such that νT (x) does not belong
to P is well defined. In this case, from the slicing properties of BV -functions, if x ∈ (Jc(T ) \ JuT

)∩ Pλ we
have uT |Pλ

(x) = uT (x). Moreover, if x ∈ JuT
∩ Pλ, the one-sided approximate limits of uT are equal to

the one-sided limits of the restriction uT |Pλ
, i.e.

u+
T |Pλ

(x) = u+
T (x) and u−T |Pλ

(x) = u−T (x) ,

provided that 〈ν, νuT (x)〉 > 0, where ν is an orienting unit vector to P , compare Theorem 3.2. We finally
infer that for Hn−1-a.e. point x ∈ Jc(T ) the 1-dimensional restriction (2.13), up to the orientation, does
not depend on the choice of the oriented 1-space P and on λ ∈ Rn−1, provided that x ∈ Pλ and νT (x)
does not belong to P . As a consequence we may and do give the following

Definition 2.8 For Hn−1-a.e. point x ∈ Jc(T ), the 1-dimensional restriction π̂#(T {x} × Y) is well-
defined by (2.13) for any oriented 1-space P and λ ∈ Rn−1 such that x ∈ Pλ and 〈ν, νT (x)〉 > 0, where ν
is the orienting unit vector to P .

BV -energy. The gap phenomenon and the properties previously described lead us to define the BV -energy
of a current T ∈ E1,1−graph(Bn × Y) as follows.

Definition 2.9 For Hn−1-a.e. point x ∈ Jc(T ) we define ΓT (x) and LT (x) by (1.5) and (1.6), respec-
tively, where this time π̂#(T {x} × Y) is the 1-dimensional restriction given by Definition 2.8.

Definition 2.10 The BV -energy of a current T ∈ E1,1−graph(Bn × Y) is defined for every Borel set
B ⊂ Bn by

E1,1(T,B × Y) :=
∫

B

|∇uT (x)| dx + |DCuT |(B) +
∫

Jc(T )∩B

LT (x) dHn−1(x) .

We also let
E1,1(T ) := E1,1(T,Bn × Y) .
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Of course, if T = Gu is the current integration of n-forms in Dn,1(Bn ×Y) over the graph of a smooth
W 1,1-function u : Bn → Y, then

E1,1(u) = E1,1(Gu) = ‖Du‖L1 .

Definition 2.11 We denote by cart1,1(Bn×Y) the class of currents T in E1,1−graph(Bn×Y) such that
E1,1(T ) < ∞.

Lower semicontinuity. Using the lower semicontinuity result in dimension n = 1, see Theorem 1.7, and
applying arguments as for instance in [7], in Sec. 3 we will prove in any dimension

Theorem 2.12 Let n ≥ 2 and T ∈ cart1,1(Bn×Y). For every sequence of smooth maps {uk} ⊂ C1(Bn,Y)
such that Guk

⇀ T weakly in Zn,1(Bn × Y), we have

lim inf
k→∞

E1,1(uk) ≥ E1,1(T ) .

A strong density result. In all the results stated below, we shall always assume that the first homotopy
group π1(Y) is commutative. We shall prove in any dimension n ≥ 2

Theorem 2.13 Let T ∈ cart1,1(Bn×Y). There exists a sequence of smooth maps {uk} ⊂ C1(Bn,Y) such
that Guk

⇀ T weakly in Zn,1(Bn × Y) and E1,1(uk) → E1,1(T ) as k →∞.

More precisely, in Sec. 4 we will prove

Theorem 2.14 Let T ∈ cart1,1(Bn×Y). We can find a sequence of currents {Tk} ⊂ cart1,1(Bn×Y) such
that

Tk ⇀ T weakly in Zn,1(Bn × Y) , E1,1(Tk) → E1,1(T )

and for all k the corresponding function uk := uTk
in BV (Bn,Y) has no Cantor part, i.e, |DCuk| = 0 for

every k. Moreover, uk weakly converges to uT in the BV -sense and

lim
k→∞

|Duk|(Bn) = |DuT |(Bn) .

In Sec. 5 we will then prove

Theorem 2.15 Let T ∈ cart1,1(Bn × Y) be such that the corresponding BV -function uT ∈ BV (Bn,Y)
has no Cantor part, i.e, |DCuT | = 0. There exists a sequence of smooth maps {uk} ⊂ C1(Bn,Y) such that
Guk

⇀ T weakly in Zn,1(Bn × Y) and the energy E1,1(uk) → E1,1(T ) as k →∞.

By a diagonal argument we then clearly obtain Theorem 2.13.

Relaxed total variation functional. As a consequence, setting

Ẽ1,1(T ) := inf
{

lim inf
k→∞

∫

Bn

|Duk| dx : {uk} ⊂ C1(Bn,Y) , Guk
⇀ T weakly in Zn,1(Bn × Y)

}
,

by Theorems 2.12 and 2.13 we conclude that

E1,1(T ) = Ẽ1,1(T ) ∀T ∈ cart1,1(Bn × Y) .

Properties. By Theorems 2.12 and 2.13 we readily infer the following lower semicontinuity result.

Proposition 2.16 Let {Tk} ⊂ cart1,1(Bn × Y) converge weakly in Zn,1(Bn × Y), Tk ⇀ T , to some
T ∈ cart1,1(Bn × Y). Then

E1,1(T ) ≤ lim inf
k→∞

E1,1(Tk) .

As a consequence of Theorem 2.13, in the final part of this section we prove that the class of Cartesian
currents cart1,1(Bn × Y) is closed under weak convergence with equibounded energies.

Theorem 2.17 Let {Tk} ⊂ cart1,1(Bn × Y) converge weakly in Zn,1(Bn × Y), Tk ⇀ T , to some T ∈
Dn,1(Bn × Y), and supk E1,1(Tk) < ∞. Then T ∈ cart1,1(Bn × Y).
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By the relative compactness of E1,1-bounded sets in Dn,1(Bn × Y), we then readily infer the following
compactness property.

Proposition 2.18 Let {Tk} ⊂ cart1,1(Bn × Y) be such that supk E1,1(Tk) < ∞. Then, possibly passing to
a subsequence, Tk ⇀ T weakly in Zn,1(Bn × Y) to some T ∈ cart1,1(Bn × Y).

Proof of Theorem 2.17: By Theorem 2.13, and by a diagonal procedure, we may and will assume that
Tk = Guk

for some smooth sequence {uk} ⊂ C1(Bn,Y). As a consequence, by the first part of this section
we infer that T satisfies (2.4) and (2.6). It then remains to show that the Ls(T )’s in (2.6) are i.m. rectifiable
current in Rn−1(Bn). In this case, in fact, since ‖T‖E1,1 < ∞, we obtain that T ∈ E1,1−graph(Bn×Y), see
Definition 2.6, and hence, by lower semicontinuity, Theorem 2.12, and the condition supk E1,1(Guk

) < ∞,
we conclude that E1,1(T ) < ∞, which yields T ∈ cart1,1(Bn × Y), according to Definition 2.11. To prove
that the Ls(T )’s are i.m. rectifiable currents we make use of the following slicing argument.

As before, let P be an oriented 1-space in Rn and {Pλ}λ∈Rn−1 the family of oriented straight lines parallel
to P . For Hn−1-a.e. λ the slice T π−1(Pλ) of T over π−1(Pλ) is well defined on Z1,1((Bn∩Pλ)×Y) and
Guk

π−1(Pλ) belongs to cart1,1((Bn∩Pλ)×Y) for every k. Moreover, since Guk
⇀ T weakly in Zn,1, for

Hn−1-a.e. λ, passing to a subsequence we have Guk
π−1(Pλ) ⇀ T π−1(Pλ) weakly in Z1,1((Bn∩Pλ)×Y),

with supk M(Guk
π−1(Pλ)) < ∞, so that by the closure-compactness of cart1,1 on 1-dimensional domains,

we infer that T π−1(Pλ) ∈ cart1,1((Bn ∩ Pλ)× Y).
Therefore, the 0-dimensional slices Ls(T ) π−1(Pλ) are rectifiable in R0(Bn ∩ Pλ), as T π−1(Pλ)

belongs to cart1,1((Bn ∩ Pλ) × Y) and Ls(T ) π−1(Pλ) = Ls(T π−1(Pλ)). Since the Ls(T )’s are flat
chains, see Lemma 2.19 below, arguing as in [12], by White’s rectifiability criterion [23], see also [3], we infer
that Ls(T ) is an i.m. rectifiable current in Rn−1(Bn) for every s, as required. ¤

Lemma 2.19 The Ls(T )’s are flat chains in Bn.

Proof: By Theorem 2.13, we may and will assume that T is the weak limit of Guk
for some smooth

sequence {uk} ⊂ C1(Bn,Y) such that supk ‖uk‖W 1,1 < ∞. The proof follows the same lines as the proof of
[17, Thm. 2.15]. Since uk ∈ BV (Bn,Y) is smooth, for all k and s we infer that Ls(Guk

) := π#(Guk
π̂#ωs)

is a flat chain with equibounded flat norms. Recall that the flat norm F
(
Ls(Guk

)
)

of Ls(Guk
) is given by

F
(
Ls(Guk

)
)

:= sup{Ls(Guk
)(φ) | φ ∈ Dn−1(Bn) , F(φ) ≤ 1} ,

where

F(φ) := max
{

sup
x∈Bn

‖φ(x)‖ , sup
x∈Bn

‖dφ(x)‖
}

.

Next, since uk ⇀ uT weakly in the BV -sense, we deduce that {Ls(Guk
)(φ)}k is a Cauchy sequence for every

φ such that F(φ) ≤ 1. If Fn−1(Bn) denotes a countable dense subset of smooth forms φ in Dn−1(Bn)
satisfying F(φ) ≤ 1, by a diagonal argument we infer that

sup{(Ls(Guk
)− Ls(Guh

)
)
(φ) | φ ∈ Fn−1(Bn)}

is small for k, h large. This yields that {Ls(Guk
)}k is a Cauchy sequence w.r.t. the flat norm, i.e., that

F
(
Ls(Guk

)− Ls(Guh
)
)

:= sup{(Ls(Guk
)− Ls(Guh

)
)
(φ) | φ ∈ Dn−1(Bn) , F(φ) ≤ 1}

is small for k, h large and therefore, due to weak convergence of Guk
to T , that Rs := π#(T π̂#ωs) is a

flat chain. Similarly, by using a trivial extension of Theorem 6.7 below, we infer that Ds := π#(GT π̂#ωs)
is a flat chain and hence, since (−1)n−1 Ls(T ) = Rs−Ds, compare (2.6) and (2.7), we conclude that Ls(T )
is a flat chain, too. ¤

3 Lower semicontinuity

In this section we prove Theorem 2.12, by recovering it from the one dimensional case. To this aim, we recall
the following properties from BV -functions theory, compare [2, Sec. 3.11].
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One-dimensional restrictions of BV -functions. Let Ω ⊂ Rn be an open set. Given ν ∈ Sn−1 we
denote by πν the hyperplane in Rn orthogonal to ν and by Ων the orthogonal projection of Ω on πν .
For any y ∈ Ων we let

Ων
y := {t ∈ R | y + tν ∈ Ω}

denote the (non-empty) section of Ω corresponding to y. Accordingly, for any function u : B ⊂ Ω → RN

and any y ∈ Bν the function uν
y : Bν

y → RN is defined by

uν
y(t) := u(y + tν) .

Proposition 3.1 Let u ∈ L1(Ω,RN ). Then u ∈ BV (Ω,RN ) if and only if there exist n linearly independent
unit vectors νi such that uνi

y ∈ BV (Ωνi
y ,RN ) for Ln−1-a.e. y ∈ Ωνi and

∫

Ωνi

|Duνi
y |(Ωνi

y ) dLn−1(y) < ∞ ∀ i = 1, . . . , n .

Theorem 3.2 If u ∈ BV (Ω,RN ) and ν ∈ Sn−1, then

〈Du, ν〉 = Ln−1 Ων ⊗Duν
y , 〈Dau, ν〉 = Ln−1 Ων ⊗Dauν

y ,
〈DJu, ν〉 = Ln−1 Ων ⊗DJuν

y , 〈DCu, ν〉 = Ln−1 Ων ⊗DCuν
y .

In addition, for Ln−1-a.e. y ∈ Ων the precise representative u∗ has classical directional derivatives along
ν L1-a.e. in Ων

y, the function (u∗)ν
y is a good representative in the equivalence class of uν

y, its Jump set is
(Ju)ν

y and
∂u∗

∂ν
(y + tν) = 〈∇u(y + tν), ν〉 for L1-a.e. t ∈ Ων

y .

Finally, σ(t) := 〈ν, νu(y + tν)〉 6= 0 for Ln−1-a.e. y ∈ Ων and L1-a.e. t ∈ Ων
y , and





lim
s↓t

u∗(y + sν) = u+(y + tν) , lim
s↑t

u∗(y + sν) = u−(y + tν) if σ(t) > 0

lim
s↓t

u∗(y + sν) = u−(y + tν) , lim
s↑t

u∗(y + sν) = u+(y + tν) if σ(t) < 0 .

One-dimensional restrictions of Cartesian currents. If T ∈ cart1,1(Bn,Y), taking Ω = Bn, for any
ν ∈ Sn−1 the 1-dimensional slice

T ν
y := T (Bn)ν

y × Y
defines a Cartesian current T ν

y ∈ cart1,1((Bn)ν
y × Y) for Ln−1-a.e. y ∈ (Bn)ν . Also, by Theorem 3.2 and

by Definition 2.10, we infer that the BV -energy of T ν
y is given for Ln−1-a.e. y ∈ (Bn)ν by

E1,1(T ν
y , Aν

y × Y) =
∫

Aν
y

|〈∇uT (y + tν), ν〉| dt + |DC(uT )ν
y |(Aν

y) +
∑

t∈(Jc(T )∩A)ν
y

LT (y + tν) (3.1)

for any open set A ⊂ Bn.

Proof of Theorem 2.12: We follow [2, Thm. 5.4], [7]. Since {uk} ⊂ C1(Bn,Y) is such that Guk
⇀ T

weakly in Zn,1(Bn × Y), for Ln−1-a.e. y ∈ (Bn)ν we infer that

(Guk
)ν
y ⇀ T ν

y weakly in Z1,1((Bn)ν
y × Y) ,

where
(Guk

)ν
y = G(uk)ν

y
, (uk)ν

y(t) := uk(y + tν) ∈ C1((Bn)ν
y ,Y) .

Therefore, arguing as in the proof of Theorem 1.7, we readily infer that

E1,1(T ν
y , Aν

y × Y) ≤ lim inf
k→∞

E1,1((uk)ν
y , Aν

y) (3.2)
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for any open set A ⊂ Bn, where

E1,1((uk)ν
y , Aν

y) = E1,1(G(uk)ν
y
, Aν

y × Y) =
∫

Aν
y

|〈∇uk(y + tν), ν〉| dt .

We now denote by νT an extension to the countably Hn−1-rectifiable set Jc(T ) of the outward unit
normal to the Jump set JuT

. By the coarea formula, for any ν ∈ Sn−1 and any open set A ⊂ Bn, we have
∫

Jc(T )∩A

|〈νT (x), ν〉| f(x) dHn−1(x) =
∫

πν

∑

t∈(Jc(T )∩A)ν
y

f(y + tν) dLn−1(y)

for any Borel function f : Jc(T ) ∩A → [0, +∞]. Moreover, Theorem 3.2 gives
∫

A

|〈∇uT , ν〉| dx =
∫

πν

(∫

Aν
y

|∇(uT )ν
y(t)| dt

)
Ln−1(y)

|〈DCuT , ν〉|(A) =
∫

πν

|DC(uT )ν
y |(Aν

y) dLn−1(y) .

Therefore, setting for every open set A ⊂ Bn and ν ∈ Sn−1

E1,1(T, A× Y, ν) :=
∫

A

|〈∇uT , ν〉| dx + |〈DCuT , ν〉|(A) +
∫

Jc(T )∩A

|〈νT (x), ν〉| LT (x) dHn−1(x) ,

by (3.1) we obtain the identity

E1,1(T,A× Y, ν) =
∫

πν

E1,1(T ν
y , Aν

y × Y) dLn−1(y) . (3.3)

Similarly, for every k we obtain

E1,1(uk, A, ν) :=
∫

A

|〈∇uk, ν〉| dx =
∫

πν

E1,1((uk)ν
y , Aν

y) dLn−1(y) . (3.4)

We also notice that

E1,1(T, A× Y, ν) ≤ E1,1(T, A× Y) and E1,1(uk, A, ν) ≤ E1,1(uk, A) .

Since

lim
k→∞

∫

πν

(∫

Aν
y

|(uk)ν
y − (uT )ν

y | dt

)
dLn−1(y) = lim

k→∞

∫

A

|uk − uT | dx = 0 ,

we can find a sequence {k(h)} such that

lim inf
k→∞

E1,1(uk, A, ν) = lim
h→∞

E1,1(uk(h), A, ν)

and (Guk(h))
ν
y converges to T ν

y weakly in Z1,1(Aν
y × Y) as h → ∞ for Ln−1-a.e. y ∈ πν . The lower

semicontinuity property in dimension one, see (3.2), implies then

lim inf
h→∞

E1,1((uk(h))ν
y , Aν

y) ≥ E1,1(T ν
y , Aν

y × Y)

for Ln−1-a.e. y ∈ πν . Integrating both sides on πν , using Fatou’s lemma and (3.3), (3.4), we get

lim inf
k→∞

E1,1(uk, A, ν) = lim
h→∞

E1,1(uk(h), A, ν) ≥ E1,1(T,A× Y, ν) .

Let λ := Ln + LT (·)Hn−1 Jc(T ) + |DCuT | and let {νi} ⊂ Sn−1 be a countable dense sequence.
Choosing an Ln-negligible set E ⊂ Bn \ Jc(T ) on which |DCuT | is concentrated, we can define

ϕi(x) :=





|〈∇uT (x), νi〉| if x ∈ Bn \ (E ∪ Jc(T ))
|〈νT (x), νi〉| LT (x) if x ∈ Jc(T )
|〈DCuT , νi〉|
|DCuT | (x) if x ∈ E

19



and obtain from (3.3) that

lim inf
k→∞

E1,1(uk, A) ≥ lim inf
k→∞

E1,1(uk, A, νi) ≥ E1,1(T,A× Y, νi) =
∫

A

ϕi dλ

for any i ∈ N and any open set A ⊂ Bn. By the superadditivity of the lim inf operator, we obtain that

lim inf
k→∞

E1,1(uk, Bn) ≥
∑

i

∫

Ai

ϕi dλ

for any finite family of pairwise disjoint open sets Ai ⊂ Bn. We now recall that by [2, Lemma 2.35]
∫

Bn

sup
i∈N

ϕi dλ = sup
{∑

i∈I

∫

Ai

ϕi dλ

}
,

where the supremum is taken over all finite sets I ⊂ N and all families {Ai}i∈I of pairwise disjoint open
sets with compact closure in Bn. We then conclude that

lim inf
k→∞

E1,1(uk, Bn) ≥
∫

Bn

sup
i∈N

ϕi dλ

=
∫

Bn

|∇uT (x)| dx + |DCuT |(Bn) +
∫

Jc(T )

LT (x) dHn−1(x)

= E1,1(T, Bn × Y) .

¤

4 The density theorem: part I

In this section we prove Theorem 2.14. To this aim we first recall that every T ∈ cart1,1(Bn×Y) decomposes
as

T = GT + ST , ST =
s∑

s=1

Ls(T )× γs on Zn,1(Bn × Y) ,

see Definition 2.11. Let u = uT ∈ BV (Bn,Y) be the BV -function associated to T , according to Remark 2.7.
For every Borel set B ⊂ Bn we have

E1,1(T, B × Y) =
∫

B

|∇u(x)| dx + |DCu|(B) +
∫

Jc(T )∩B

LT (x) dHn−1(x) ,

where Jc(T ), ΓT (x), and LT (x) are given by (2.12), (1.5), and (1.6), respectively, compare Definition 2.10.

Slicing properties. Similarly to the case of normal currents, for every point x0 ∈ Bn and for a.e. radius
r ∈ (0, r0), where 2r0 := dist(x0, ∂Bn), the slice

〈T, dx0 , r〉 = 〈GT , dx0 , r〉+ 〈ST , dx0 , r〉 ,
where dx0(x, y) := |x − x0|, is a well-defined Cartesian current in cart1,1(∂Br(x0) × Y). More precisely,
let u(r,x0) := u|∂Br(x0) be the restriction of u to ∂Br(x0), which is a function in BV (∂Br(x0),Y) with
jump set satisfying Ju(r,x0) = Ju ∩ ∂Br(x0) in the Hn−1-a.e. sense. The slice 〈GT , dx0 , r〉 is an (n − 1)-
dimensional current in BV −graph(∂Br(x0) × Y) such that its action on forms in Dn−1,1(∂Br(x0) × Y),
according to a straightforward extension of Definition 2.1, depends on the restriction u(r,x0) and on the
1-dimensional integral chains γx in Y associated to the current GT ∈ BV −graph(Bn × Y), so that in
particular ∂γx = δu+

(r,x0)(x) − δu−(r,x0)(x) for Hn−1-a.e. x ∈ Ju(r,x0) . Also,

〈ST , dx0 , r〉 =
s∑

s=1

〈Ls(T ), δx0 , r〉 × γs on Zn−1,1(∂Br(x0)× Y) ,
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where δx0(x) := |x− x0|. Finally, letting

Jc(〈T, dx0 , r〉) := Ju(r,x0) ∪ L(〈T, dx0 , r〉) ,

where L(〈T, dx0 , r〉) denotes the (n− 2)-rectifiable set given by the union of the sets of positive multiplicity
of the 〈Ls(T ), δx0 , r〉’s, we have, in the Hn−1-a.e. sense,

Jc(〈T, dx0 , r〉) = Jc(T ) ∩ ∂Br(x0) ,

where Jc(T ) is given by (2.12). In this case we say that r is a good radius for T at x0. Moreover, by the
argument preceding Definition 2.8, we also infer that for any good radius

L〈T,dx0 ,r〉(x) = LT (x) for Hn−1-a.e. x ∈ Jc(〈T, dx0 , r〉) .

As a consequence, according to Definition 2.10, we infer that the BV -energy of 〈T, dx0 , r〉 is given by

E1,1(〈T, dx0 , r〉, ∂Br(x0)× Y) =
∫

∂Br(x0)

|∇τu(r,x0)| dHn−1 + |DC
τ u|(∂Br(x0))

+
∫

Jc(T )∩∂Br(x0)

LT (x) dHn−2(x) ,
(4.1)

where Dτ and ∇τ denote the distributional derivative and the approximate gradient w.r.t. an orthonormal
frame τ tangential to ∂Br(x0), respectively.

Proof of Theorem 2.14: We make use of an inductive argument on the dimension n. More precisely, we
will assume that Theorem 2.13 holds true in dimension n − 1, and we use Theorem 1.7 in the case n = 2.
Therefore, taking into account the slicing properties previously outlined, we may and will assume that for
every x0 ∈ Bn and for a.e. radius r ∈ (0, r(x0)), where r(x0) > 0 is suitably chosen, by the inductive
hypothesis we find a sequence of smooth functions {vk} ⊂ C1(∂Br(x0),Y) such that

Gvk
⇀ 〈T, dx0 , r〉 weakly in Zn−1,1(∂Br(x0)× Y)

and ∫

∂Br(x0)

|Dτvk| dHn−1 → E1,1(〈T, dx0 , r〉, ∂Br(x0)× Y) . (4.2)

In particular, we have that vk ⇀ u(r,x0) weakly in the BV -sense. We divide the proof of Theorem 2.14 in
six steps.

Step 1: Definition of the fine cover Fm. We define for every m ∈ N a suitable fine cover Fm of Bn \Jc(T )
consisting of closed balls of radius smaller than 1/m. To this aim, let µd and µJc be the mutually singular
Radon measures on Bn given for every Borel set B ⊂ Bn by

µd(B) :=
∫

B

|∇uT (x)| dx + |DCuT |(B) , µJc(B) :=
∫

Jc(T )∩B

LT (x) dHn−1(x) . (4.3)

Definition 2.10 yields that the BV -energy of T decomposes into the ”diffuse” and ”jump-concentration”
part, i.e., setting

µT := µd + µJc ,

for every Borel set B ⊂ Bn we have

E1,1(T, B × Y) = µT (B) = µd(B) + µJc(B) .

By the decomposition of the derivative DuT , compare [2, Prop. 3.92], we infer that for any point x0 in
Bn \ Jc(T ) we have

lim inf
r→0

µT (Br(x0))
rn−1

= lim inf
r→0

|Du|(Br(x0))
rn−1

= 0 .
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Moreover, since µJc = µJc Jc(T ), where Jc(T ) is a countably Hn−1-rectifiable set, and µT (Jc(T )) < ∞,
for every m ∈ N we find a closed subset Jm ⊂ Jc(T ) such that

Jm ⊂ Jm+1 and µT (Jc(T ) \ Jm) = µJc(Jc(T ) \ Jm) <
1
m

∀m.

This yields in particular that

|DJuT |(JuT
\ Jm) <

1
m

.

Setting now
Ω := Bn \ Jc(T ) ,

Jm being closed, for every x0 ∈ Ω there exists a positive radius r = r(x0,m), smaller than the distance of
x0 to the boundary ∂Bn, such that for every 0 < r < r(x0,m)

Br(x0) ∩ Jm = ∅ .

Finally, by (4.1), if x0 ∈ Ω, for every 0 < r < r(x0, m) we find a good radius ρ ∈ (r/2, r) such that

E1,1(〈T, dx0 , ρ〉, ∂Bρ(x0)× Y) ≤ 2
r
E1,1(T,Br(x0)× Y) .

We then denote by Fm the union of all the closed balls centered at points x0 ∈ Ω and with good radii
0 < r < min{r(x0,m)/2, 1/m} such that

E1,1(〈T, dx0 , r〉, ∂Br(x0)× Y) ≤ 2
r
E1,1(T, B2r(x0)× Y) (4.4)

and
1

(2r)n−1 E1,1(T, B2r(x0)× Y) ≤ 1
m

. (4.5)

The above construction yields that Fm is a fine cover of Ω such that

⋃
Fm ⊂ Bn \ Jm .

Step 2: Covering argument. We apply the following extension of the classical Vitali-Besicovitch covering
theorem, see e.g. [2, Thm. 2.19], with respect to the positive Radon measure

µ := Ln + µT = Ln + µd + µJc ,

where Ln is the Lebesgue measure and µd, µJc are given by (4.3). In the sequel, for any closed ball B we
will denote by B̃ the closed ball centered as B and with radius twice the radius of B, i.e.,

B̃ := B2r(x0) if B = Br(x0) .

Theorem 4.1 (Vitali-Besicovitch) Let Ω ⊂ Rn be a bounded Borel set, and let F be a fine cover of Ω
made of closed balls. For every positive Radon measure µ in Rn there is a disjoint countable family F ′ of
F such that

µ
(
Ω \

⋃
F ′

)
= 0 .

Moreover, we have ∑

B∈F ′
µ(B̃) ≤ C · µ(Ω) ,

where C = C(n) > 0 is an absolute constant, only depending on the dimension n.
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Proof: Following the notation in [2, Thm. 2.19], setting A0 := Ω, for every h ∈ N+, at the hth step we
may and do apply the Besicovitch theorem [2, Thm. 2.17] by selecting the fine cover of Ah−1 given by all
the closed balls B of F such that the corresponding balls B̃ are contained in Ah−1. Besicovitch’s theorem
yields the existence of a countable family made of closed balls B which do not intersect more than ξ times
and such that their doubles B̃ do not intersect more that η times, where ξ = ξ(n) and η = η(n) are
absolute constants. Therefore, the disjoint family Gh satisfies

∑

B∈Gh

µ(B̃) ≤ η · µ(Ah−1)

whereas, letting Ah := Ah−1 \
⋃Gh, we have

µ(Ah) ≤ δ µ(Ah−1) , δ := 1− 1
2ξ

< 1.

Therefore, since µ(Ah) ≤ δh · µ(A0) for every h, we obtain
∑

B∈Gh

µ(B̃) ≤ η · δh−1 · µ(Ω)

and finally
∑

B∈F ′
µ(B̃) =

∞∑

h=1

∑

B∈Gh

µ(B̃) ≤
∞∑

h=1

η · δh−1 · µ(Ω)

which yields the assertion, by taking C := η/(1− δ). ¤

By Theorem 4.1 we obtain for every m a suitable denumerable disjoint family F ′m of closed balls
contained in Bn \ Jm and with radii smaller than 1/m. We finally label

F ′m =
{
Bj

}∞
j=1

, Ωm :=
∞⋃

j=1

Bj

and notice that
µJc(Ωm) ≤ µJc(Bn \ Jm) <

1
m

and µd(Bn \ Ωm) = 0 . (4.6)

Step 3: Smoothing of the boundary data. If Bj = Br(x0) ∈ F ′m, arguing as in Gagliardo’s theorem [11,
Thm. 1.II], that states the existence of a W 1,1-extension of any L1-function, we are able to modify the
boundary datum 〈T, dx0 , r〉 to a smooth W 1,1-map with values into Y. This can be done by paying an
arbitrary small amount of energy.

More precisely, due to the inductive hypothesis, see (4.2), we find a sequence of smooth maps {v(j)
h } ⊂

W 1,1(∂Bj ,Y) such that ‖v(j)
h − u|∂Bj

‖L1(∂Bj) → 0,

G
v
(j)
h

⇀ 〈T, dx0 , r〉 weakly in Zn−1,1(∂Bj × Y) (4.7)

as h →∞ and ∫

∂Bj

|Dτv
(j)
h | dHn−1 ≤ E1,1(〈T, dx0 , r〉, ∂Bj × Y) · (1 + 2−h) (4.8)

for every h. Taking k sufficiently large, we now define a map W
(j)
k ∈ W 1,1(Ar

ρk
,RN ) , where 0 < ρk < r

and Ar
ρ denotes the annulus

Ar
ρ := Br(x0) \Bρ(x0) , 0 < ρ < r ,

in such a way that W
(j)
k|∂Br(x0)

= u|∂Br(x0) in the sense of traces,

W
(j)
k

(
x0 + ρk

x− x0

|x− x0|
)

= v
(j)
k

(
x0 + r

x− x0

|x− x0|
)
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and the energy
∫

Ar
ρk

|DW
(j)
k | dx is arbitrarily small, if ρk ↗ r sufficiently rapidly.

The function W
(j)
k is obtained by parametrizing in a sequence of annuli of the type A

ρh+1
ρh , for a suitable

sequence {ρh}h≥k of radii ρh ↗ r, the affine homotopies

th v
(j)
h + (1− th) v

(j)
h+1 , th = th(ρ) ∈ [0, 1] , ρ := |x− x0| ,

where th(ρ) is the affine map such that th(ρh) = 1 and th(ρh+1) = 0. Therefore, if we show that for every
t ∈ [0, 1] and h ≥ k the L∞-distance of t v

(j)
h + (1− t) v

(j)
h+1 from Y is small, we find that

dist(W (j)
k (x),Y) < ε0 for Ln-a.e. x ∈ Ar

ρk
(4.9)

and hence we may and do define w
(j)
k := Πε0 ◦W

(j)
k on Ar

ρk
, where Πε0 is the Lipschitz projection on Y

given by Remark 1.9.
To prove (4.9), due to the L1-convergence and to (4.8), by applying Poincaré inequality we find an

absolute constant cn > 0 such that, if k is sufficiently large, for Hn−1-a.e. x ∈ ∂Br(x0) and every h ≥ k
we have ∫

∂Br(x0)

|v(j)
h (x)− u(y)| dHn−1(y)

≤
∫

∂Br(x0)

|v(j)
h (x)− v

(j)
h (y)| dHn−1(y) + ‖v(j)

h − u‖L1(∂Br(x0))

≤ cn r

∫

∂Br(x0)

|Dτv
(j)
h | dHn−1 + ‖v(j)

h − u‖L1(∂Br(x0))

≤ 2 cn r · E1,1(〈T, dx0 , r〉, ∂Bj × Y) .

As a consequence, by (4.4) and (4.5) we obtain
∫

∂Br(x0)

|v(j)
h (x)− u(y)| dHn−1(y) ≤ 2n+1 · cn · rn−1

m

and hence, by convexity, for any t ∈ [0, 1] we have
∫

∂Br(x0)

|t v
(j)
h (x) + (1− t) v

(j)
h+1(x)− u(y)| dHn−1(y)

≤
∫

∂Br(x0)

|v(j)
h (x)− u(y)| dHn−1(y) +

∫

∂Br(x0)

|v(j)
h+1(x)− u(y)| dHn−1(y)

< Hn−1(∂Br(x0)) · ε0

provided that m ∈ N is large enough so that 2n+2 · cn · 1/m < ε0 · n · ωn, where ωn is the measure of the
unit n-ball. Therefore, arguing as in Schoen-Uhlenbeck density theorem [21], we obtain

dist(t v
(j)
h (x) + (1− t) v

(j)
h+1(x),Y) < ε0 for Hn−1-a.e. x ∈ ∂Br(x0) , (4.10)

which yields (4.9), as required.
We remark that due to the strong convergence (4.7) (4.8), the sequence {w(j)

k }
k

this way obtained also
satisfies the boundary condition

〈G
w

(j)
k

, dx0 , r〉 = 〈T, dx0 , r〉 . (4.11)

Finally, for future use, we extend w
(j)
k to the whole ball Bj by the map w̃

(j)
k : Bρk

(x0) → Y given by

w̃
(j)
k (x) :=

{
w

(j)
k ◦ ψ(r,σ)(x) if x ∈ Ar−σ

r−2σ

u ◦ φ(r,σ)(x) if x ∈ Br−2σ(x0) ,
(4.12)

where σ := r − ρk, ψ(r,σ) : Ar−σ
r−2σ → Ar

r−σ is the reflection map

ψ(r,σ)(x) :=
(−|x− x0|+ 2 (r − σ)

) x− x0

|x− x0|
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and φ(r,σ) : Br−2σ(x0) → Br(x0) is the homothetic map

φ(r,σ)(x) := x0 +
r

r − 2σ
(x− x0) .

Notice that w̃
(j)
k is smooth on Ar−σ

r−2σ and that, taking σ small, by the property above we may and do
assume that

|Dw̃
(j)
k |(Bρk

(x0)) ≤ 2|Du|(Br(x0)) . (4.13)

Step 4: Approximation on the balls of F ′m. Let Bj = Br(x0) ∈ F ′m. Making use of arguments from [5], we
now define an approximating sequence on Bj .

We first fix some notation. For any ρ > 0, we let

Qn
ρ := [−ρ, ρ]n ⊂ Rn

denote the n-dimensional cube of side 2ρ and Σi
ρ the i-dimensional skeleton of Qn

ρ , so that
⋃

Σn−1
ρ = ∂Qn

ρ .
Let ‖x‖ := max{|x1|, . . . , |xn|}, so that

Qn
ρ = {x ∈ Rn : ‖x‖ ≤ ρ} , ∂Qn

ρ = {x ∈ Rn : ‖x‖ = ρ} .

If v : Qn
ρ → RN is any given BV -function, and F is any i-face of Σi

ρ, in the sequel we will denote

E1,1(v, F ) := |Dv|F |(F )

where Dv|F is the distributional derivative of the restriction v|F of v to F , and we let

E1,1(v,Σi
ρ) :=

∑

F∈Σi
ρ

E1,1(v, F ) .

Recall that Y ⊂ RN , and denote by
BY(y, ε) := B

N
(y, ε) ∩ Y

the intersection of Y with the closed N -ball of radius ε centered at y. If y ∈ Y and 0 < ε < ε0, we let
Ψ(y,ε) : RN → BY(y, ε) be the retraction map given by Ψ(y,ε)(z) := Πε ◦ ξ(y,ε), where

ξ(y,ε)(z) :=





z if z ∈ B
N

(y, ε)

ε
z − y

|z − y| if z ∈ RN \B
N

(y, ε)

and Πε : Yε → Y is the projection map given by Remark 1.9. Of course, Ψ(y,ε) is a Lipschitz continuous
function with Lip Ψ(y,ε) = LipΠε → 1+ as ε → 0+.

First, letting ρ = ρk from Step 3, by means of a deformation and slicing argument, we may and do
define a bilipschitz homeomorphism ψj : Bρ(x0) → Qn

ρ such that ‖Dψj‖∞ ≤ K, ‖Dψ−1
j ‖∞ ≤ K for some

absolute constant K > 0, only depending on n. Moreover, we may and do define ψj in such a way that

ψj(BR(x0)) = Qn
R ∀R ∈ (ρ/2, ρ) . (4.14)

Finally, for any given BV -function ṽ : Bρ(x0) → Y, smooth on ∂Bρ(x0), if vj : Qn
ρ → Y is the corresponding

map given by vj := ṽ ◦ ψ−1
j , we also may and do define ψj in such a way that

E1,1(vj , Σi
ρ) ≤ C · 1

ρ
· E1,1(vj , Σi+1

ρ ) ∀ i = 1, . . . , n− 2 , (4.15)

where C > 0 is an absolute constant, not depending on ṽ.
Taking ṽ = ṽj := w̃

(j)
k from (4.12), i.e., letting

vj := w̃
(j)
k ◦ ψ−1

j : Qn
ρ → Y , (4.16)
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by (4.8) and (4.15) we readily infer that

E1,1(vj , Σi
ρ) ≤ 2 C K ρi−n+1 E1,1(〈T, dx0 , r〉, ∂Bj × Y) ∀ i = 1, . . . , n− 1

and hence, by (4.4), that

E1,1(vj , Σi
ρ) ≤ C̃ ρi−n E1,1(T, B2r(x0)× Y) ∀ i = 1, . . . , n− 1 . (4.17)

On the other hand, since we may assume ρ > r/2, due to (4.5) and (4.13), by (4.17) we also obtain

1
ρi−1

E1,1(vj , Σi
ρ) ≤ C̃

1
m

∀ i = 1, . . . , n , (4.18)

where in the above formulas C̃ > 0 is an absolute constant.

Remark 4.2 Let εm := 1/
√

m. By the Sobolev embedding theorem, if m ∈ N is sufficiently large, e.g.,
m ≥ 4C̃2, the inequality (4.18), with i = 1, yields that the oscillation of vj on the 1-skeleton Σ1

ρ is smaller
than εm/2, if vj is smooth. Therefore, the image vj(Σ1

ρ) is contained in a small geodesic ball BY(yj , εm/2)
centered at some given point yj ∈ Y . Actually, since the total variation of 1-dimensional BV -functions
estimates the oscillation, we infer that the above property holds for BV -function vj , provided that in (4.18)
we consider the total variation of the 1-dimensional restriction of v to Σ1

ρ. We also notice that

lim
m→+∞

εm ·m = +∞

whereas, on account of Remark 1.9,

LipΨ(yj ,εm) = Lip Πεm → 1+ as m → +∞ .

The case n = 2. In case of dimension n = 2, we define wj : Q2
ρ → BY(yj , εm) by

wj := Ψ(yj ,εm) ◦ vj ,

where vj is given by (4.16), so that

|Dwj |(Q2
ρ) =: E1,1(wj , Q

2
ρ) ≤ (LipΠεm) · E1,1(vj , Q

2
ρ) .

Remark 4.2 yields that wj agrees with vj on the boundary of Q2
ρ. Moreover, letting R := ρ− σ, by (4.12),

(4.14) and (4.16) we infer that wj is smooth on Q2
ρ \Q2

R and that

wj(x) = Ψ(yj ,εm) ◦ (u ◦ φ(r,σ)) ◦ ψ−1
j (x) ∀x ∈ Q2

R .

Since the image of Q2
R by wj is contained in the geodesic ball BY(yj , εm), by means of a convolution

argument we can approximate wj on Q2
R by a smooth sequence v

(j)
ε : Q2

R → B
N

(yj , εm) which converges
in the L1-sense to wj|Q2

R
and with total variation converging to the total variation |Dwj |(Q2

R). We finally set

w
(j)
ε := Πεm ◦ v

(j)
ε : Q2

R → Y, see Remark 1.9, so that clearly w
(j)
ε ⇀ wj weakly in BV (Q2

R,RN ), whereas

E1,1(w(j)
ε , Q2

R) ≤ (LipΠεm) · E1,1(v(j)
ε , Q2

R) ,

so that
lim sup

ε→0
E1,1(w(j)

ε , Q2
R) ≤ (Lip Πεm)2 · E1,1(vj , Q

2
R) . (4.19)

Moreover, by suitably defining the convolution kernel, we may and do assume that the traces are equal, so
that w

(j)

ε|∂Q2
R

= v
(j)

ε|∂Q2
R

= wj|∂Q2
R
. Most importantly, by the construction we may and do assume that the

boundaries of the graphs agree on ∂Q2
R, so that

∂G
w

(j)
ε

∂Q2
R × Y = ∂G

v
(j)
ε

∂Q2
R × Y = ∂Gwj ∂Q2

R × Y . (4.20)
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Finally, letting w
(j)
ε = wj on Q2

ρ \Q2
R, we define u

(j)
k : Br(x0) → Y by

u
(j)
k (x) :=

{
w

(j)
εk ◦ ψj(x) if x ∈ Bρ(x0)

w
(j)
k (x) if x ∈ Br(x0) \Bρ(x0) ,

where ρ = ρk and εk ↘ 0 along a sequence.

The case n ≥ 3. For δ := ρ(1− η), where η := 1/q and q ∈ N+, we let Φ(ρ,δ) : Qn
ρ → Qn

δ be given by

Φ(ρ,δ)(x) := (1− η)x .

Note that
E1,1(vj ◦ Φ−1

(ρ,δ),Σ
i
δ) = (1− η)i−1 E1,1(vj ,Σi

ρ) , (4.21)

so that (4.18) yields
1

δi−1
E1,1(vj ◦ Φ−1

(ρ,δ), Σ
i
δ) ≤ C̃

1
m

∀ i = 1, . . . , n . (4.22)

Define wj : Qn
δ → BY(yj , εm) by

wj := Ψ(yj ,εm) ◦ vj ◦ Φ−1
(ρ,δ) , (4.23)

where vj is given by (4.16), so that

|Dwj |(Qn
δ ) =: E1,1(wj , Q

n
δ ) ≤ (LipΠεm) · E1,1(vj ◦ Φ−1

(ρ,δ), Q
n
δ ) .

Remark 4.2 yields that wj agrees with vj ◦ Φ−1
(ρ,δ) on the 1-skeleton Σ1

δ of Qn
δ . Moreover, letting R :=

(ρ− σ)(1− η), by (4.12) and (4.14) we infer that wj is smooth on Qn
δ \Qn

R and that

wj(x) = Ψ(yj ,εm) ◦ (u ◦ φ(r,σ)) ◦ ψ−1
j ◦ Φ−1

(ρ,δ)(x) ∀x ∈ Qn
R .

Now, since the image of Qn
R by wj is contained in the geodesic ball BY(yj , εm), as in the case of dimension

n = 2, we approximate wj by a smooth sequence v
(j)
ε : Qn

R → B
N

(yj , εm) which converges in the L1-sense to
wj|Qn

R
, with total variation converging to the total variation |Dwj |(Qn

R). Setting w
(j)
ε := Πεm◦v(j)

ε : Qn
R → Y,

we have w
(j)
ε ⇀ wj weakly in BV (Qn

R,RN ), whereas

E1,1(w(j)
ε , Qn

R) ≤ (LipΠεm) · E1,1(v(j)
ε , Qn

R) ,

so that again we have

lim sup
ε→0

E1,1(w(j)
ε , Qn

R) ≤ (LipΠεm)2 · E1,1(vj ◦ Φ−1
(ρ,δ), Q

n
R) . (4.24)

Moreover, we may and do assume that the traces of w
(j)
ε and wj on ∂Qn

R are equal, w
(j)
ε|∂Qn

R
= wj|∂Qn

R
,

and that the boundaries of the graphs agree on ∂Qn
R, i.e.,

∂G
w

(j)
ε

∂Qn
R × Y = ∂Gwj ∂Qn

R × Y . (4.25)

Finally set w
(j)
ε = wj on Qn

δ \Qn
R.

In order to extend the approximating map to Qn
ρ \Qn

δ , we use an argument from [5]. If Sh is one of the
(n − 1)-faces of Σn−1

ρ , where h = 1, . . . , 2n, we may and do define a partition of Sh into (q + 1)n−1 small
(n− 1)-dimensional ”cubes” Cl,h in such a way that the following facts hold:

i) If [Cl,h]i denotes the i-dimensional skeleton of the boundary of Cl,h, the restriction of vj to [Cl,h]i
belongs to W 1,1, for every i = 1, . . . , n− 2; in particular, vj is continuous on the 1-skeleton [Cl,h]i.
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ii) If n = 3, we have

(q+1)2∑

l=1

E1,1(vj , ∂Cl,h) ≤ K

(
E1,1(vj , ∂Sh) +

q

ρ
E1,1(vj , Sh)

)
, (4.26)

where K > 0 is an absolute constant.

iii) If n ≥ 4, and [Sh]i denotes the i-dimensional skeleton of Sh, for every i = 1, . . . , n− 2 we have

(q+1)n−1∑

l=1

E1,1(vj , [Cl,h]i) ≤ K ·
n−1∑

t=i

(
q

ρ

)t−i

· E1,1(vj , [Sh]t) , (4.27)

where K > 0 is an absolute constant.

iv) All the Cl,h’s are bilipschitz homeomorphic to the (n − 1)-cube [−ρ/q, ρ/q]n−1 by linear maps fl,h

such that ‖Dfl,h‖∞ ≤ K, ‖Df−1
l,h ‖∞ ≤ K.

Moreover, the inequality (4.18), with i = 2, . . . , n − 1, yields that if m ∈ N is sufficiently large, and q
satisfies

q <
1

5(n− 2) C̃
· εm

2
·m,

we may and do define the partition of Sh in such a way that

E1,1(vj , [Cl,h]1) ≤ εm

2
∀ l = 1, . . . , (q + 1)n−1 , ∀h = 1, . . . , 2n . (4.28)

Therefore, in the sequel we will take

q := integer part of (Ĉ · εm ·m) (4.29)

for some fixed constant Ĉ > 0, say Ĉ := 1/(12 (n− 2) C̃).

Remark 4.3 Again by Remark 4.2, since the image vj(Σ1
ρ) is contained in BY(yj , εm/2), the inequalities

in (4.28) yield that the image of [Cl,h]1 by vj is contained in the geodesic ball BY(yj , εm) for every l and
h. By (4.23), this yields that the function wj , and hence the w

(j)
ε ’s, agrees with vj ◦Φ−1

(ρ,δ) on the 1-skeleton

Σ̃1
δ of ∂Qn

δ given by

Σ̃1
δ := Φ(ρ,δ)

( 2n⋃

h=1

(q+1)n−1⋃

l=1

[Cl,h]1

)
.

Finally, if π(ρ,δ) : Qn
ρ \Qn

δ → ∂Qn
ρ is the projection map π(ρ,δ)(x) := ρ x/‖x‖, setting

M(ρ,δ) := π−1
(ρ,δ) ◦ Φ(ρ,δ)

( 2n⋃

h=1

(q+1)n−1⋃

l=1

∂Cl,h

)

it turns out that the (n− 1)-skeleton

N(ρ,δ) := M(ρ,δ) ∪ ∂Qn
ρ ∪ ∂Qn

δ

is the union of boundary of n-dimensional ”cubes” Ql,h, satisfying Cl,h ⊂ ∂Ql,h for every l and h, that
partition Qn

ρ \Qn
δ . Moreover, each Ql,h is bilipschitz homeomorphic to the n-cube [−ρ/q, ρ/q]n by linear

maps f̃l,h such that ‖Df̃l,h‖∞ ≤ K, ‖Df̃−1
l,h ‖∞ ≤ K, where K > 0 is an absolute constant.

We now extend the approximating map to the interior of Qn
ρ \ Qn

δ , first considering the simpler case
n = 3.
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The case n = 3. We first set wj := vj on ∂Q3
ρ and

wj := vj ◦ π(ρ,δ)(x) on M(ρ,δ) .

By Remark 4.3, the function wj is smooth on the 2-skeleton N(ρ,δ). We then extend wj to the whole of
Q3

ρ \Q3
δ by means of a radial extension on each cube Ql,h, i.e., by setting

wj(x) := wj

(
f̃−1

l,h

(
ρ

q
· f̃l,h(x)

‖f̃l,h(x)‖

))
, x ∈ Ql,h , ∀ l, h . (4.30)

The function wj this way constructed is smooth on the closure of Q3
ρ \ Q3

δ , up to a discrete set of points.
Moreover, denoting by C > 0 an absolute constant, possibly varying from line to line, but not depending
on ρ or m, we have

E1,1(wj , Ql,h) ≤ C
ρ

q
E1,1(wj , ∂Ql,h) ,

whereas

E1,1(wj , ∂Ql,h) ≤ C

(
E1,1(vj , Cl,h) +

ρ

q
E1,1(vj , ∂Cl,h)

)
.

Therefore, by (4.26), and by summing on l and h, we estimate

E1,1(wj , Q
3
ρ \Q3

δ) ≤ C

(
ρ

q
E1,1(vj , Σ2

ρ) +
(

ρ

q

)2

E1,1(vj ,Σ1
ρ)

)
.

Finally, by (4.29) and (4.17) we obtain, for m > 1/Ĉ2,

E1,1(wj , Q
3
ρ \Q3

δ) ≤ C
1

εm ·m E1,1(T, B2r(x0)× Y) . (4.31)

The case n ≥ 4. According to Remark 4.3, we first set wj := vj on ∂Qn
ρ and

wj := vj ◦ π(ρ,δ)(x) on π−1
(ρ,δ)(Σ̃

1
δ) .

To extend wj to the whole of Qn
ρ \Qn

δ , we argue by iteration on the dimension i = 3 . . . , n. More precisely,
if F is any i-dimensional face of [Ql,h]i with disjoint interior from both ∂Qn

ρ and ∂Qn
δ , we extend wj to

the interior of F by means of a suitable radial extension of the boundary datum of wj on ∂F similar to the
one in (4.30), so that

E1,1(wj , F ) ≤ C
ρ

q
E1,1(wj , ∂F ) .

Therefore, by the construction, and for (4.27), we readily infer that

E1,1(wj , Q
n
ρ \Qn

δ ) ≤ C

n−1∑

i=1

(
ρ

q

)n−i

E1,1(vj , Σi
ρ) ,

so that by (4.29) and (4.17) we obtain again, for m > 1/Ĉ2,

E1,1(wj , Q
n
ρ \Qn

δ ) ≤ C
1

εm ·m E1,1(T,B2r(x0)× Y) . (4.32)

Remark 4.4 For future use, we notice that for any n ≥ 3 the function wj this way constructed is smooth
on the closure of Qn

ρ \Qn
δ , up to a ”smooth” closed (n − 3)-dimensional set. This yields that the graph of

wj has no boundary in the interior of Qn
ρ \Qn

δ , i.e.,

∂Gwj = 0 on Zn−1,1(int(Qn
ρ \Qn

δ )× Y) .
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We finally set for any n ≥ 3

w̃(j)
ε (x) :=

{
w

(j)
ε (x) if x ∈ Qn

δ

wj(x) if x ∈ Qn
ρ \Qn

δ

and define u
(j)
k : Br(x0) → Y by

u
(j)
k (x) :=

{
w̃

(j)
εk ◦ ψj(x) if x ∈ Bρ(x0)

w
(j)
k (x) if x ∈ Br(x0) \Bρ(x0) ,

where ρ = ρk and εk ↘ 0 along a sequence.

Step 5: Approximating maps on the whole domain. For any n ≥ 2 we define now u
(m)
k : Bn → Y by

u
(m)
k (x) :=

{
u

(j)
k (x) if x ∈ Bj , j ∈ N

uT (x) if x ∈ Bn \ Ωm ,
Ωm :=

∞⋃

j=1

Bj . (4.33)

By Step 4 we know that u
(j)
k ∈ W 1,1(Bj ,Y) for every j and k. Moreover, by (4.6), and since u

(j)
k = uT

on ∂Bj for every j, we infer that u
(m)
k is for every k a function in BV (Bn,Y), with null Cantor part,

|DCu
(m)
k | = 0.

We now deal with the energy estimates of u
(m)
k , first considering the simpler case n = 2.

The case n = 2. By (4.19) and Step 3 we infer that

lim sup
k→∞

E1,1(u
(m)
k , Ωm) ≤ (LipΠεm)2 · |DuT |(Ωm) ,

whereas by (4.6)

|DuT |(Ωm) ≤ µd(Ωm) +
1
m

.

By a diagonal argument, setting um := u
(m)
km

for a suitable sequence km →∞ as m →∞, we infer that

lim
m→∞

|Dum|(B2) = |DuT |(B2) .

The case n ≥ 3. By (4.31) and (4.32) we infer that

∞∑

j=1

E1,1(u
(m)
k , ψ−1

j (Qn
ρ \Qn

δ )) ≤ C
1

εm ·m
∞∑

j=1

E1,1(T, B̃j × Y) ,

whereas by Theorem 4.1, on account of (4.3), we obtain

∞∑

j=1

E1,1(T, B̃j × Y) ≤ C ·
(
E1,1(T, Bn × Y) + Ln(Bn)

)
< ∞ ,

and 1/(εm ·m) → 0 as m →∞, see Remark 4.2. On the other hand, by (4.24), and since η → 0 as m →∞
in (4.21), as in the case n = 2 we estimate the energy of u

(m)
k on the sets ψ−1

j (Qn
δ ). In particular, setting

um := u
(m)
km

for suitable sequence km →∞ as m →∞, we infer that

lim
m→∞

∞∑

j=1

E1,1(um, ψ−1
j (Qn

δ )) = µd(Bn)

and hence, by Step 3, that for any n ≥ 2

lim
m→∞

|Dum|(Bn) = |DuT |(Bn) . (4.34)
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Moreover, in any dimension n ≥ 2, since for every j the radius of the ball Bj in F ′m is smaller than 1/m,
and u

(m)
k = uT on ∂Bj , the above energy estimates and the Poincaré inequality yield that for m sufficiently

large

∫

Bn

|um − uT | dx =
∞∑

j=1

∫

Bj

|u(m)
km

− uT | dx ≤
∞∑

j=1

Cn · 1
m
· |DuT |(Bj) ≤ Cn · 1

m
· |DuT |(Bn) ,

where Cn > 0 is an absolute constant. This proves the L1-convergence of um to uT as m →∞, and hence
weakly in the BV -sense.

Finally, for future use, we observe that by the definition of um, on account of (4.6), the previous con-
struction yields that the jump part of Dum strictly converges to the jump part of DuT . Therefore, denoting
by

D̃um := Daum + DCum , D̃uT := DauT + DCuT ,

the diffuse part of Dum and DuT , where we recall that the Cantor part |DCum|(Bn) = 0 for every m, by
(4.34) we have

D̃um ⇀ D̃uT and |D̃um|(Bn) → |D̃uT |(Bn) . (4.35)

Step 6: Approximating currents. For every m and k let T
(m)
k ∈ Dn,1(Bn × Y) be given by

T
(m)
k :=

∞∑

j=1

G
u

(j)
k

int(Bj)× Y + T (Bn \ Ωm)× Y ,

where u
(j)
k ∈ W 1,1(Bj ,Y) is defined by (4.33). Since the boundary ∂G

u
(j)
k

int(Bj)× Y = 0, whereas

∂(G
u

(j)
k

int(Bj)× Y) = 〈T, dx0 , r〉 ,

we readily infer that T
(m)
k ∈ cart1,1(Bn × Y), with corresponding function in BV (Bn,Y) given by u

(m)
k ,

see (4.33). Setting Tm := T
(m)
km

, where the sequence km → ∞ is defined as in Step 5, by (4.6) and (4.35)
we readily infer that

lim
m→∞

E1,1(Tm, Ωm × Y) = |D̃uT |(Bn) , (4.36)

which clearly yields that
lim

m→∞
E1,1(Tm, Bn × Y) = E1,1(T, Bn × Y) .

It therefore remains to show that, possibly taking a subsequence,

Tm ⇀ T weakly in Zn,1(Bn × Y) . (4.37)

By applying Theorem 2.15, the proof of which is independent of the one of Theorem 2.14, every Tm is
the weak limit of a sequence of smooth graphs of maps v

(m)
k ∈ C1(Bn,Y), with energies converging to the

energy of Tm. Therefore, since supm E1,1(Tm, Bn × Y) < ∞, arguing as in the first part of Sec. 2, by a
diagonal argument we may and do assume that, possibly passing to a subsequence, Tm weakly converges
in Zn,1(Bn × Y) to some current T̃ ∈ cart1,1(Bn × Y). Similarly, by the lower semicontinuity theorem for
smooth graphs, Theorem 2.12, we infer that for any open set A ⊂ Bn we have

E1,1(T̃ , A× Y) ≤ lim inf
m→∞

E1,1(Tm, A× Y) . (4.38)

Moreover, since the sequence of functions {um} ⊂ BV (Bn,Y) corresponding to the Tm’s weakly converges
in the BV -sense to uT ∈ BV (Bn,Y), we infer that uT is the BV -function corresponding to T̃ .

We first show that T̃ agrees with T on Ω× Y, where

Ω := Bn \ Jc(T ) ,
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Jc(T ) being the set of points of jump-concentration of T . Fix m0 ∈ N. Since

Ω ⊂ Ωm ⊂ Am , Am := Bn \ Jm ,

and {Jm} is an increasing sequence of closed sets, for any m ≥ m0 we infer that

Am0 = Ωm ∪ [(Jc(T ) \ Jm0) \ Ωm] ,

with disjoint union. Moreover, we recall that Tm is equal to T out of Ωm × Y. Therefore, since by (4.6)

E1,1(T, [(Jc(T ) \ Jm0) \ Ωm]× Y) ≤ 1
m0

,

by (4.38) and (4.36) we obtain

E1,1(T̃ , Am0 × Y) ≤ |D̃uT |(Bn) + lim inf
m→∞

E1,1(Tm, [(Jc(T ) \ Jm0) \ Ωm]× Y)

≤ |D̃uT |(Bn) + lim inf
m→∞

E1,1(T, [(Jc(T ) \ Jm0) \ Ωm]× Y)

≤ |D̃uT |(Bn) + 1/m0 .

By outer regularity, since |D̃uT |(Jc(T )) = 0 and Am ↘ Ω as m →∞, we infer that

E1,1(T̃ , Ω× Y) ≤ |D̃uT |(Ω) .

Therefore, decomposing the energy of T̃ into its diffuse and jump-concentration part, see (4.3), we infer
that the jump-concentration part is concentrated in the jump-concentration set of T , so that

Jc(T̃ ) ⊂ Jc(T ) and T̃ Ω× Y = T Ω× Y .

We now show that T̃ agrees with T on Jc(T )× Y, which concludes the proof. As before, since Tm is
equal to T out of Ωm × Y, and Ωm ∩ Jm0 = ∅ if m ≥ m0, for every form ω ∈ Zn,1(Bn × Y) we have

((T̃ − T ) Jm0 × Y)(ω) = ((T̃ − Tm) Jm0 × Y)(ω) + ((Tm − T ) Jm0 × Y)(ω)
= ((T̃ − Tm) Jm0 × Y)(ω) → 0

as m →∞, by the weak convergence of Tm to T̃ . This yields that

T̃ Jm0 × Y = T Jm0 × Y

and finally the assertion, by inner regularity, since Jm ↗ Jc(T ) in the Hn−1-sense as m →∞. ¤

5 The density theorem: part II

In this section we prove Theorem 2.15. Extending the notation from the previous section, see (4.3), in the
sequel for every current T̃ ∈ cart1,1(Bn ×Y) we will denote by µJc,eT the Radon measure on Bn given for
every Borel set B ⊂ Bn by

µJc,eT (B) :=
∫

Jc(eT )∩B

LeT (x) dHn−1(x) , (5.1)

that corresponds to the jump-concentration part of the BV -energy E1,1(T̃ , B × Y). We also recall that if
T̃ ∈ cart1,1(Bn × Y) satisfies |DCueT | = 0, for every Borel set B ⊂ Bn

E1,1(T̃ , B × Y) =
∫

B

|∇ueT (x)| dx + µJc,eT (B) .
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Moreover, for any T̃ as above, in this section we will denote by F(T̃ ) the flat norm given by

F(T̃ ) := sup{T̃ (φ) | φ ∈ Zn−1(Bn × Y) , F(φ) ≤ 1} ,

where

F(φ) := max
{

sup
z∈Bn×Y

‖φ(z)‖ , sup
z∈Bn×Y

‖dφ(z)‖
}

,

and we notice that the flat convergence F(Tk − T ) → 0 yields the weak convergence Tk ⇀ T weakly in
Zn,1(B̃n × Y), compare [22].

Proof of Theorem 2.15: It is based on the following

Proposition 5.1 Let T̃ ∈ cart1,1(Bn×Y) be such that |DCueT |(Bn) = 0. Let ε ∈ (0, 1/2) and k ∈ N. We
can find a current T̂ ∈ cart1,1(Bn × Y) such that

E1,1(T̂ , Bn × Y) ≤ E1,1(T̃ , Bn × Y) + εk , F(T̂ − T̃ ) ≤ εk ,

µJc,bT (Bn) ≤ 1
2
· µJc,eT (Bn) and |DCubT | = 0 .

(5.2)

In fact, for any ε ∈ (0, 1/2) we apply iteratively Proposition 5.1 as follows. Letting T ε
0 := T , at the kth

step, in correspondence of T̃ := T ε
k−1 we find T̂ := T ε

k such that (5.2) holds true. By induction on k ∈ N,
we define T ε := T ε

∞ ∈ cart1,1(Bn × Y) such that

E1,1(T ε, Bn × Y) ≤ E1,1(T,Bn × Y) +
∞∑

k=1

εk ≤ E1,1(T, Bn × Y) + 2ε

and |DCuT ε | = 0. Moreover, since for every k

µJc,T ε
k
(Bn) ≤ 2−k · µJc,T (Bn) ,

letting k →∞ we obtain that µJc,T ε(Bn) = 0. Finally, since

F(T ε − T ) ≤
∞∑

k=1

F(T ε
k − T ε

k−1) ≤
∞∑

k=1

εk ≤ 2ε ,

letting Tk := T εk for some sequence εk ↘ 0, and uk := uTk
, we infer that the sequence {Tk} ⊂ cart1,1(Bn×

Y) weakly converges to T with E1,1(Tk) → E1,1(T ) as k → ∞. Moreover, since |DCuk|(Bn) = 0 and
µJc,Tk

(Bn) = 0 for every k, we obtain that uk ∈ W 1,1(Bn,Y) and that Tk agrees with the current Guk

given by the integration of forms in Zn,1(Bn × Y) over the rectifiable graph of uk, see (2.1), so that
E1,1(Tk) = E1,1(uk).

By means of Bethuel’s density theorem [5], for every k we find a smooth sequence {u(k)
h }h ⊂ C1(Bn,Y)

that strongly converges to uk in the W 1,1-sense as h →∞. In fact, even if the first homotopy group π1(Y)
is non-trivial, being commutative it is homeomorphic to the first homology group H1(Y). Therefore, the
null-boundary condition

∂Guk
= 0 on Zn−1,1(Bn × Y) (5.3)

allows to remove the (n− 2)-dimensional singularities, compare [6] and e.g. [16]. Lower dimensional singu-
larities are removed as in [5]. Since the strong convergence yields G

u
(k)
h

⇀ Guk
with E1,1(u

(k)
h ) → E1,1(uk),

the assertion follows by means of a diagonal argument. ¤

Remark 5.2 This is the exact point where the commutativity hypothesis on the first homotopy group
π1(Y) is used, in addition to (5.3). If π1(Y) is non-abelian, even in dimension n = 2 we find functions
u ∈ W 1,1(B2,Y), smooth outside the origin and satisfying (5.3), such that for every sequence of smooth
maps uh : Bn → Y for which Guh

⇀ Gu weakly in Zn,1(Bn × Y) we have

lim inf
h→∞

∫

B2
|Duh| dx ≥ C +

∫

B2
|Du| dx

for some absolute constant C > 0, compare [17].
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Proof of Proposition 5.1: We set T̃ = T , for simplicity, and divide the proof in four steps.

Step 1: Blow-up argument. We apply the argument by Federer [9, 4.2.19]. The rectifiable measure µJc,T

can be written as
µJc,T = LT Hn−1 Jc(T ) ,

where the jump-concentration set Jc(T ) is countably Hn−1-rectifiable and the density LT (x) is a non-
negative Hn−1 Jc(T )-summable function on Jc(T ). Therefore, by [9, 3.2.29] there exists a countable
family G of (n− 1)-dimensional C1-submanifolds Mj of Bn such that µJc,T -almost all of Bn is covered
by G. Moreover, since µJc,T (Bn) < ∞, we can find a positive number θ > 0 so that the subset

J := {x ∈ Jc(T ) | LT (x) > θ}
satisfies the following properties:

Hn−1(J) < ∞ and µJc(Bn \ J) <
1
4
· µJc,T (Bn) . (5.4)

Let σ > 0 to be fixed. By [9, 2.10.19], by the Vitali-Besicovitch theorem, Theorem 3.2, and by the
properties of the class cart1,1(Bn × Y) we can find a number tσ ∈ (0, 1), a countable disjoint family of
closed balls Bj , contained in Bn and centered at points in J , and a bilipschitz homeomorphism ψσ from
Bn onto itself satisfying the properties listed below, where c > 0 is an absolute constant, possibly varying
from line to line, which is independent of σ and of the radii rj of the balls Bj .

i) µJc,T (Bn \⋃
j Bj) = 0.

ii) If Bj := B(pj , rj), for every j there is a manifold Mj of G such that pj ∈Mj .

iii) Since Hn−1(J) < ∞, then
∞∑

j=1

rj
n−1 ≤ c · Hn−1(J) < ∞ . (5.5)

iv) Letting Cj := B(pj , tσrj) ∩Mj , we have

µJc,T (B(pj , rj) \ Cj) ≤ σ · µJc,T (B(pj , rj)) ∀ j . (5.6)

v) If pj /∈ JuT , it is a Lebesgue point of uT whereas, if pj ∈ JuT , the one-sided approximate limits of
uT at pj are well-defined.

vi) The 1-dimensional restriction π̂#(T {pj} × Y) is well-defined, compare Definition 2.8, and

π̂#(T {pj} × Y) = Γj

for some integral chain Γj ∈ D1(Y).

vii) If ηpj ,λ : Rn × RN → Rn × RN denotes the ”blow-up” map ηpj ,λ(x, y) :=
(

x− pj

λ
, y

)
, the limit

current
Sj(ω) := lim

λ→0+
ηpj ,λ#T (ω) , ω ∈ Zn,1(Bn × Y)

is well-defined, and the flat distance of T from Sj is small on Bj × Y, i.e.

F(Sj Bj × Y − T Bj × Y) ≤ c · σ · rj
n−1 . (5.7)

viii) Since |DuT |(B) ≤ µT (B), we have

|DuT |(B(pj , rj) \ Cj)
ωn−1rj

n−1
≤ c · σ , (5.8)

where ωn−1 is the measure of the (n− 1)-dimensional unit ball.
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ix) Since LT (pj) is the (n− 1)-dimensional density of µJc,T at pj , we have

|µJc,T (Bj)− LT (pj) · ωn−1 rj
n−1| ≤ σ · ωn−1 rj

n−1 . (5.9)

x) Lipψσ ≤ 2 and Lip ψ−1
σ ≤ 2. Moreover, ψσ maps bijectively Bj onto Bj , with ψσ|∂Bj

= Id|∂Bj
and

ψσ(pj) = pj for all j, and ψσ is equal to the identity outside the union of the balls Bj .

xi) ψσ(Cj) = B(pj , ρj) ∩ (pj + Tan(Mj , pj)) for every j, where Tan(Mj , pj) is the (n − 1)-dimensional
tangent space to Mj at pj and ρj ∈ (rj/2, rj).

As a consequence, defining Tσ
j ∈ Dn,1(int(Bj)× Y) for any j by

Tσ
j := (ψσ ./ IdRN )#(T int(Bj)× Y) ,

we infer that T σ
j belongs to cart1,1(int(Bj)×Y) and its corresponding function uσ

j := uT σ
j
∈ BV (int(Bj),Y)

is given by
uσ

j := (uT ◦ ψ−1
σ )| int(Bj) .

Moreover, we clearly have
µJc,T σ

j
= ψσ#(µJc,T int(Bj)) .

Step 2: Approximation on the balls Bj. We now apply for every j a ”dipole construction” to approximate
almost all the Jump-concentration part of Tσ

j . Set

x = (x̃, xn) ∈ Rn−1 × R .

Without loss of generality we may and will assume that

Bj = B
n

R , B(pj , ρj) = Bn
r , 0 < r < R ,

where Bn
r := Bn(0, r), so that R = rj and r = ρj , and

B(pj , ρj) ∩ (pj + Tan(Mj , pj)) = Dr × {0} ⊂ Rn−1 × R , Dr := Bn−1(0Rn−1 , r) .

Let y(x̃) := (r− |x̃|) denote the distance of x̃ from the boundary of the (n− 1)-disk Dr. For δ > 0 small,
let

φδ(x) := (x̃, ϕδ(y(x̃))xn) , x ∈ Dr × [−1, 1] , ϕδ(y) := min{y, δ} .

Let Ωδ := φδ(Dr × [−1, 1]) be the ”neighborhood” of Dr × {0} in Bn
R given by

Ωδ = {(x̃, xn) | x̃ ∈ Dr , ρ ≤ ϕδ(y(x̃))} ,

where ρ := |xn|, and let

Ω̃δ := φδ(Dr × [−1/2, 1/2]) = {(x̃, xn) | x̃ ∈ Dr , ρ ≤ ϕδ(y(x̃))/2} .

Also, set
Ω(r,δ) := Ωδ \ (Dr × {0}) .

Let vσ
j : (Ωδ \ Ω̃δ) → Y be given by vσ

j (x) := uσ
j ◦ ψσ

j (x), where ψσ
j : Ωδ \ Ω̃δ → Ω(r,δ) is the bijective

map

ψσ
j (x̃, xn) :=

(
x̃,

(
2− ϕδ(y(x̃))

ρ

)
xn

)
.

Since we have
|∇vσ

j (x)| ≤ c |∇uσ
j (x̃, (2− ϕδ(y(x̃))/ρ)xn)| · (1 + ϕδ(y(x̃))/ρ) ,

and ϕδ(y(x̃))/ρ ∈]1/2, 1], we infer that vσ
j ∈ BV (Ωδ \ Ω̃δ,Y), with

∫

Ωδ\eΩδ

|∇vσ
j | dx ≤ c

∫

Ωδ

|∇uσ
j | dx . (5.10)
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Moreover, the current
T

σ

j := ((ψσ
j )−1 ./ IdRN )#(T σ

j (int(Ω(r,δ))× Y))

belongs to cart1,1(int(Ωδ \ Ω̃δ)× Y), its underlying BV -function is vσ
j , and T

σ

j satisfies

µJc,T
σ
j
(int(Ωδ \ Ω̃δ)) ≤ µJc,T σ

j
(int(Ω(r,δ))) ,

so that by (5.6) we have
µT

σ
j
(int(Ωδ \ Ω̃δ)) ≤ c σµT σ

j
(Bn

r ) . (5.11)

We now define wσ
j : (Ωδ \ Ω̃δ) → RN by

wσ
j (x) :=

(
2ρ

ϕδ(y(x̃))
− 1

)
· vσ

j (x̃, xn) +
(

2− 2ρ

ϕδ(y(x̃))

)
· z±j ,

where ± is the sign of xn and z±j are the one-sided approximate limits of uσ
j at the point 0 ∈ Juσ

j
, so that

lim
ρ→0+

ρ−n

∫

B±ρ
|uσ

j (x)− z±j | dx = 0 ,

if pj belongs to the jump set of uσ
j , and they agree with the Lebesgue value of uσ

j at pj , otherwise.
If r − δ ≤ |x̃| ≤ r and (r − |x̃|)/2 < ρ < (r − |x̃|), then

|∇wσ
j |(x) ≤ c

r − |x̃| |v
σ
j (x)− z±j |+ c |∇vσ

j (x)| ,

whereas if |x̃| ≤ r − δ and δ/2 < ρ < δ, we estimate

|∇wσ
j |(x) ≤ c

δ
|vσ

j (x)− z±j |+ c |∇vσ
j (x)| .

Moreover, by (5.8) and the Poincaré inequality we infer that the oscillation of uσ
j on the upper and lower

half-balls
B±

r := {x ∈ Bn
r | ±xn > 0}

is smaller than c σ, so that
‖vσ

j (x)− z±j ‖∞,Ωδ\eΩδ
≤ c σ .

As a consequence, on account of (5.10) we obtain
∫

Ωδ\eΩδ

|∇wσ
j | dx ≤ c σLn(Ωδ \ Ω̃δ) + c

∫

Ωδ\eΩδ

|∇vσ
j | dx

≤ c σLn(Ωδ \ Ω̃δ) + c

∫

Ωδ

|∇uσ
j | dx

(5.12)

which is small if δ and σ are small, by the absolute continuity. Also, since the oscillation of wσ
j is smaller

than c σ, by projecting wσ
j into the manifold Y, see Remark 1.9, we may and will assume that wσ

j is a
function in BV (Ωδ \ Ω̃δ,Y). We finally observe that

wσ
j (x̃,±ϕδ(y(x̃))/2) = z±j ∀ x̃ ∈ Dr .

Now, by means of the vertical part of the current T
σ

j , we may and do define a current T̃σ
j ∈ cart1,1(int(Ωδ\

Ω̃δ)× Y), with underlying BV -function wσ
j , such that

µJc,eT σ
j
(int(Ωδ \ Ω̃δ)) ≤ c µJc,T

σ
j
(int(Ωδ \ Ω̃δ))

and T̃σ
j satisfies the boundary condition

∂T̃σ
j = ∂Tσ

j ∂Ωδ × Y + [[ ∂Ω̃δ ∩B+
r ]]× δz+

j
− [[ ∂Ω̃δ ∩B−

r ]]× δz−j
.
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In particular, by (5.11) and (5.12), taking δ small, we infer that T̃σ
j satisfies the energy estimate

E1,1(T̃σ
j , int(Ωδ \ Ω̃δ)× Y) =

∫

Ωδ\eΩδ

|∇wσ
j | dx + µJc,eT σ

j
(int(Ωδ \ Ω̃δ))

≤ c σ rn−1 + c σµJc,T σ
j
(Bn

r ) .

Due to the property vi) above, setting

T̂ σ
j := T̃σ

j + Tσ
j (Bn

R \ Ωδ)× Y ,

we infer that T̂ σ
j belongs to cart1,1((Bn

R \ Ω̃δ)× Y), satisfies the boundary condition

∂T̂σ
j = ∂T σ

j ∂Bn
R × Y − [[ ∂Dr × {0} ]]× Γj

+ [[ ∂Ω̃δ ∩B+
r ]]× δz+

j
− [[ ∂Ω̃δ ∩B−

r ]]× δz−j

(5.13)

and the energy estimate

E1,1(T̂ σ
j , (Bn

R \ Ω̃δ)× Y) ≤
∫

Bn
R

|∇uσ
j | dx

+ c σ rn−1 + c σµJc,T σ
j
(Bn

r ) .
(5.14)

To extend T̂σ
j to a current in cart1,1(int(Bj) × Y), we notice that Jc(Tσ

j ) = ψσ(Jc(T ) ∩ int(Bj)).
Moreover, if γj ∈ ΓT (pj) satisfies (1.7), of course γj belongs to ΓT σ

j
(pj) and satisfies

L(γj) = LT σ
j
(pj) = LT (pj)

and γj#[[ (0, 1) ]] = Γj , see property vi). We define vσ
j : Ω̃δ → Y by setting

vσ
j (x) := γj

(1
2

+
xn

ϕδ(y(x̃))

)
, x̃ ∈ Dr , ρ ≤ ϕδ(y(x̃))/2 ,

where the orientation of γj is chosen in such a way that γj(0) = z−j and γ0(1) = z+
j , so that ∂[[ γj ]] =

δz+ − δz− . Since
vσ

j (x) := (v ◦ φ−1
δ )(x) , x ∈ φδ(Dr × [−1/2, 1/2]) ,

where v : Dr × [−1/2, 1/2] → Y is given by v(x̃, t) := γ̃j(1/2 + t), we readily estimate
∫
eΩδ

|Dvσ
j | dx ≤ L(γj) · (Ln−1(Dr−δ) + cLn−1(Dr \Dr−δ))

≤ σ rn−1 + Ln−1(Dr) · LT σ
j
(pj)

(5.15)

if δ > 0 is small. Setting now
T̃

(σ)
j := T̂σ

j + Gvσ
j

,

where Gvσ
j

is the current integration over the graph of vσ
j , the above construction and the boundary

condition (5.13) yield that T̃
(σ)
j has no boundary in int(Bj)×Y, so that T̃

(σ)
j belongs to cart1,1(int(Bj)×Y).

Moreover, by (5.14) and (5.15), on account of the property vi) above, we obtain that

E1,1(T̃
(σ)
j , int(Bj)× Y) ≤ E1,1(Tσ

j , Bn
R × Y)

+ c σ rn−1 + c σµJc,T σ
j
(Bn

r ) .
(5.16)

We finally notice that T̃
(σ)
j agrees with Tσ

j outside Ωδ × Y.

Step 3: Flat distance. We now show that for δ small enough

F(T̃ (σ)
j Bn

R × Y − T σ
j Bn

R × Y) ≤ c · σ ·Rn−1 . (5.17)
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In fact, by the property vii) above the blow-up current

S̃j(ω) := lim
λ→0+

η0,λ#Tσ
j (ω) , ω ∈ Zn,1(Bn

R × Y)

is well-defined, and by property vi) it satisfies

S̃j = [[B+
R ]]× δz+ + [[B−

R ]]× δz− + [[Dr ]]× Γj ,

where ∂Γj = δz+ − δz− . On the other hand, (5.7) yields that

F(S̃j Bn
R × Y − Tσ

j Bn
R × Y) ≤ c · σ ·Rn−1 . (5.18)

Also, by the definition of vσ
j we infer that for δ > 0 small

F(S̃j Ω̃δ × Y −Gvσ
j

Ω̃δ × Y) ≤ c · σ · rn−1 .

Moreover, the BV -energy of T̃
(σ)
j on (Ωδ \ Ω̃δ) × Y is small if δ is small, whereas T̃

(σ)
j agrees with Tσ

j

outside Ωδ × Y. By (5.18) we then obtain

F(S̃j (Bn
R \ Ω̃δ)× Y − T̃

(σ)
j (Bn

R \ Ω̃δ)× Y) ≤ c · σ ·Rn−1

and finally (5.17), as r ∈ (R/2, R).

Step 4: Approximation on the whole domain. Setting now

T
(σ)
j := (ψ−1

σ ./ IdRN )#(T̃ (σ)
j int(Bj)× Y) ,

by (5.16), since r = ρj ∈ (rj/2, rj), we infer that for every j

E1,1(T
(σ)
j , int(Bj)× Y) ≤

∫

Bj

|∇uT | dx + (1 + c σ) µJc,T (Bj) + c σ rj
n−1 , (5.19)

whereas by (5.17), since R = rj , we obtain that

F(T (σ)
j int(Bj)× Y − T int(Bj)× Y) ≤ c · σ · rj

n−1 . (5.20)

Let now T σ ∈ cart1,1(Bn × Y) be given by

Tσ :=
∞∑

j=1

T
(σ)
j + T

(
Bn \

∞⋃

j=1

int(Bj)
)× Y .

By (5.19) and (5.5) we obtain that

E1,1(T σ, Bn × Y) ≤
∫

Bn

|∇uT | dx + (1 + c σ)µJc,T (Bn) + c σHn−1(J) ,

so that if σ = σ(ε, k, J, µJc,T ) > 0 is small, we have

E1,1(Tσ, Bn × Y) ≤ E1,1(T, Bn × Y) + εk .

Moreover, by (5.4) and (5.6), taking σ small, the above construction yields that

µJc,T σ (Bn) ≤ c

∞∑

j=1

µJc,T (Bj \ Cj) + µJc,T (Bn \ J)

≤ c σ µJc,T (Bn) +
1
4

µJc,T (Bn) <
1
2
· µJc,T (Bn) .
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Finally, by (5.20) we have

F(T σ − T ) ≤
∞∑

j=1

F(T (σ)
j int(Bj)× Y − T int(Bj)× Y)

≤ c · σ
∞∑

j=1

rj
n−1 < εk

if σ = σ(ε, k) > 0 is small. Since DuT σ has no Cantor part, the proof is complete. ¤

6 The total variation of BV -functions

Extending the classical notion of total variation of vector-valued maps, to every map u ∈ BV (Bn,Y) we
associate in a natural way its total variation, essentially in the sense of Jordan, given for every Borel set
B ⊂ Bn by

ETV (u, B) :=
∫

B

|∇u(x)| dx + |DCu|(B) +
∫

Ju∩B

H1(lx) dHn−1(x) . (6.1)

Here, for any x ∈ Ju, we let H1(lx) denote the length of a geodesic arc lx in Y with initial and final points
u−(x) and u+(x). Moreover we set

ETV (u) := ETV (u,Bn) .

Note that if u is smooth, at least in W 1,1(Bn,Y), then

ETV (u, B) = E1,1(u, B) :=
∫

B

|Du| dx .

Moreover, clearly for every u ∈ BV (Bn,Y) we have

|Du|(B) ≤ ETV (u,B) .

Lower semicontinuity. In a way similar to Theorems 1.7 and 2.12, it is not difficult to prove in any
dimension n the following

Proposition 6.1 Let u ∈ BV (Bn,Y). For every sequence of smooth maps {uk} ⊂ C1(Bn,Y) such that
uk ⇀ u weakly in the BV -sense, we have

ETV (u) ≤ lim inf
k→∞

ETV (uk) .

The previous definition is motivated by the 1-dimensional case, n = 1. In fact, similarly to Theorem 1.8,
we can prove the following

Theorem 6.2 For every u ∈ BV (B1,Y) there exists a sequence of smooth maps {uk} ⊂ C∞(B1,Y) such
that uk ⇀ u weakly in the BV -sense and ETV (uk) → ETV (u) as k →∞.

Density results for Sobolev maps. If n ≥ 2, we denote by R∞1 (Bn,Y) the set of all the maps u ∈
W 1,1(Bn,Y) which are smooth except on a singular set Σ(u) of the type

Σ(u) =
r⋃

i=1

Σi , r ∈ N ,

where Σi is a smooth (n− 2)-dimensional subset of Bn with smooth boundary, if n ≥ 3, and Σi is a point
if n = 2. The following density results appear in [5].

Theorem 6.3 The class R∞1 (Bn,Y) is strongly dense in W 1,1(Bn,Y).

39



Theorem 6.4 The class C1(Bn,Y) is dense in R∞1 (Bn,Y) in the strong W 1,1-topology if and only if
π1(Y) = 0.

Using arguments from the proof of Theorem 2.13, it is not difficult to extend Theorem 6.3 to maps in
BV (Bn,Y), by proving

Theorem 6.5 For every u ∈ BV (Bn,Y) there exists a sequence of maps {uk} ⊂ R∞1 (Bn,Y) such that
uk ⇀ u as k →∞ weakly in the BV -sense and

lim
k→∞

∫

Bn

|Duk| dx = ETV (u,Bn) . (6.2)

As a consequence, by using Theorem 6.4 we immediately obtain

Corollary 6.6 Suppose that π1(Y) = 0. For every u ∈ BV (Bn,Y) there exists a sequence of smooth maps
{uk} ⊂ C1(Bn,Y) such that uk ⇀ u as k →∞ weakly in the BV -sense and (6.2) holds true.

Currents carried by BV -functions. Following Sec. 2, the structure of a function u in BV (Bn,Y)
suggests to associate to u a suitable current G = Tu ∈ BV −graph(Bn × Y), see Definition 2.1, where the
function u(Tu) ∈ BV (Bn,Y) is equal to u and the γx’s in the definition of the jump part GJ

u agree for
every x ∈ Ju with an oriented geodesic arc lx in Y with initial and final points respectively given by u−(x)
and u+(x), so that ∂[[ lx ]] = δu+(x) − δu−(x). We notice that the definition of Tu depends on the choice of
the geodesics lx. In particular, if u ∈ W 1,1(Bn,Y), clearly Tu = T a

u and hence Tu agrees with the current
Gu integration of forms in Dn,1(Bn × Y) over the rectifiable graph of u, see (2.1). Now, Definition 2.5
yields that the parametric variational integral F1,1 associated to the total variation integral is such that for
every Borel set B ⊂ Bn

F1,1(Tu, B × Y) = ETV (u,B) ∀u ∈ BV (Bn,Y) .

Moreover, arguing as in the proof of Theorem 2.13, we readily extend Theorems 6.2 and 6.5 by proving in
any dimension n ≥ 2

Theorem 6.7 For every u ∈ BV (Bn,Y) we find the existence of a sequence of maps {uk} ⊂ R∞1 (Bn,Y)
such that uk ⇀ u weakly in the BV -sense, Guk

⇀ Tu weakly in Zn,1(Bn × Y) and

lim
k→∞

∫

Bn

|Duk| dx = ETV (u,Bn) .

Remark 6.8 If n ≥ 2 in general the current Tu has a non zero boundary in Bn×Y, compare Remark 2.2.
However, as shown by Proposition 6.9 below, ∂Tu is null on every (n − 1)-form ω̃ in Bn × Y which
has no ”vertical” differentials. To this purpose, following Proposition 2.3, any smooth (n − 1)-form ω̃ ∈
Dn−1(Bn × Y) with no vertical differentials can be written as ω̃ := ωϕ ∧ η for some η ∈ C∞0 (Y) and
ϕ = (ϕ1, . . . , ϕn) ∈ C∞0 (Bn,Rn), where ωϕ is given by (2.5). Since dxω̃ = dωϕ ∧ η = div ϕ(x) η(y) dx, by
Definition 2.1 we have

∂xTu(ω̃) := Tu(dxω̃) = Tu(div ϕ(x) η(y) dx)

=
∫

Bn

divϕ(x) · η(u(x)) dx .

We now show that ∂yTu(ω̃) = −∂xTu(ω̃), which yields the assertion.

Proposition 6.9 We have

∂yTu(ωϕ ∧ η) := Tu(dy(ωϕ ∧ η))

= −
∫

Bn

divϕ(x) · η(u(x)) dx =: 〈D(η ◦ u), ϕ〉 .

Proof: Since
dy(ωϕ ∧ η) = (−1)n−1ωϕ ∧ dyη

=
N∑

j=1

n∑

i=1

(−1)n−iϕi(x)
∂η

∂yj
(y) d̂xi ∧ dyj
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taking φj
i = ϕi η,yj

in (2.2), by the definition of Tu we infer

(−1)n−1Tu(ωϕ ∧ dyη) =
N∑

j=1

∫

Bn

∂η

∂yj
(u(x))〈∇uj(x), ϕ(x)〉 dx

+
N∑

j=1

∫

Bn

∂η

∂yj
(u(x)) ϕ(x) dDCuj

+
∫

Ju

(
η(u+(x))− η(u−(x)

)〈ϕ(x), ν(x)〉 dHn−1 .

Therefore, by the chain rule formula for the distributional derivative of η ◦ u, compare [2], we obtain the
assertion, as

Tu(dy(ωϕ ∧ η)) = (−1)n−1Tu(ωϕ ∧ dyη)) = 〈D(η ◦ u), ϕ〉 .
¤

Remark 6.10 If G is any current in BV −graph(Bn×Y) with corresponding function u(G) ∈ BV (Bn,Y)
equal to u, see Definition 2.1, arguing as in Proposition 6.9 we obtain again that

∂xG(ωϕ ∧ η) = −∂yG(ωϕ ∧ η) =
∫

Bn

divϕ(x) · η(u(x)) dx .

Example 6.11 Of course, compare Sec. 2, every Cartesian current T in cart1,1(Bn×Y) may be decomposed
as

T = Tu + ST on Zn,1(Bn × Y) , (6.3)

where u = uT ∈ BV (Bn,Y) is the BV -function corresponding to T and Tu ∈ BV −graph(Bn × Y) is
defined as above, by means of geodesic arcs connecting u−(x) and u+(x) at the points x in the jump set
Ju. However, even in dimension n = 1 and in the particular case Y = S1, the unit sphere, in general it
may happen that the BV -energy of T cannot be recovered by the sum of the BV -energies of its component
Tu and ST in (6.3). If Y = S1, in fact, we have ST,sing = 0, i.e., the equivalence classes of elements in
cart1,1(Bn×S1) have a unique representative, and the energies E1,1(T ) and F1,1(T ) are equal, i.e., no gap
phenomenon occurs. Consider the current T θ ∈ cart1,1(B1 × S1) given by

T θ := [[ (−1, 0) ]]× δP0 + [[ (0, 1) ]]× δPθ
+ δ0 × γθ , θ ∈ [0, 2π] ,

where Pθ = (cos θ, sin θ) and γθ is the simple arc in S1 connecting the points P0 and Pθ in the counter-
clockwise sense. If π < θ < 2π we clearly have

Tu = [[ (−1, 0) ]]× δP0 + [[ (0, 1) ]]× δPθ
+ δ0 × γ̃θ ,

where γ̃θ is the simple arc in S1 connecting the points P0 and Pθ in the clockwise sense, so that we may
decompose T θ as in (6.3) with ST = δ0 × [[S1 ]]. Since

F1,1(Tu) = H1(γ̃θ) = 2π − θ , F1,1(ST ) = 2π ,

we infer that the sum of the energies F1,1(Tu) + F1,1(ST ) is greater than the energy of T θ, as clearly

E1,1(T θ) = F1,1(T θ) = H1(γθ) = θ .

7 The relaxed BV -energy of functions

In this section we analyze the lower semicontinuous envelope of the total variation, defined for every function
u ∈ BV (Bn,Y) by

ẼTV (u) := inf
{

lim inf
k→∞

∫

Bn

|Duk| dx | {uk} ⊂ C1(Bn,Y) , uk ⇀ u weakly in the BV -sense
}

.
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Remark 7.1 Of course one may equivalently require that uk → u strongly in L1(Bn,RN ).

We first recall the following facts.

Definition 7.2 For every k = 2, . . . , n and Γ ∈ Dn−k(Bn), we denote by

mi,Bn(Γ) := inf{M(L) | L ∈ Rn−k+1(Bn) , (∂L) Bn = Γ}
the integral mass of Γ and by

mr,Bn(Γ) := inf{M(D) | D ∈ Dn−k+1(Bn) , (∂D) Bn = Γ}
the real mass of Γ. Moreover, in case mi,Bn(Γ) < ∞, we say that an i.m. rectifiable current L ∈
Rn−k+1(Bn) is an integral minimal connection of Γ if (∂L) Bn = Γ and M(L) = mi,Bn(Γ).

We also recall that by Federer’s theorem [10], and by Hardt-Pitts’ result [18], respectively, in the cases k = n
and k = 2 we have that

mi,Bn(Γ) = mr,Bn(Γ) . (7.1)

Vertical homology classes. Let u ∈ W 1,1(Bn,Y) and let Gu be the current integration of forms in
Dn,1(Bn × Y) over the rectifiable graph of u, see (2.1). We have that ∂Gu(ω) = 0 if ω ∈ Dn−1,1(Bn × Y)
with ω(1) = 0 or dyω = 0. Setting

Bp,1(Bn × Y) := {ω ∈ Dp,1(Bn × Y) | ∃ η ∈ Dp−1,0(Bn × Y) : ω(1) = dyη}
and

Hp,1(Bn × Y) :=
Zp,1(Bn × Y)
Bp,1(Bn × Y)

,

then ∂Gu = 0 on Bn−1,1(Bn×Y) and ∂y∂Gu = 0, whence ∂Gu(ω) depends only on the cohomology class
of ω ∈ Zn−1,1(Bn × Y). As a consequence ∂Gu induces a functional (∂Gu)? on Hn−1,1(Bn ×Y) given by

(∂Gu)?(ω + Bn−1,1) := ∂Gu(ω + Bn−1,1) = ∂Gu(ω) , ω ∈ Zn−1,1 ,

compare [14], Vol. II, Sec. 5.4.1. Therefore, since

Hp,1(Bn × Y) ' Dp−1(Bn)⊗H1
dR(Y) ,

the homology map (∂Gu)? is uniquely represented as an element of Dn−2(Bn;H1(Y;R)). More explicitly,
if φ ∈ Dn−2(Bn), we have [(∂Gu)?(φ)] ∈ H1(Y;R) and for s = 1, . . . , s

〈(∂Gu)?(φ), [ωs]〉 = ∂Gu(π#φ ∧ π̂#ωs) ,

〈, 〉 denoting the de Rham duality between H1(Y;R) and H1
dR(Y): in general (∂Gu)? is non-trivial.

Singularities of Sobolev maps. Following [14], Vol. II, Sec. 5.4.2, we now set

P(u) := (∂Gu)? ∈ Dn−2(Bn; H1(Y;R))

and for each ω ∈ [ω] ∈ H1
dR(Y) we define the current P(u;ω) := −π#((∂Gu) π̂#ω) ∈ Dn−2(Bn), so that

P(u;ω)(φ) = −∂Gu(π̂#ω ∧ π#φ) = Gu(π̂#ω ∧ π#dφ) =
∫

Bn

u#ω ∧ dφ

for every φ ∈ Dn−2(Bn). We also define for every ω ∈ Z1(Y) the current D(u; ω) := π#(Gu π̂#ω) ∈
Dn−1(Bn), so that

D(u; ω)(γ) = Gu(π̂#ω ∧ π#γ) =
∫

Bn

u#ω ∧ γ ∀ γ ∈ Dn−1(Bn) .

The following facts hold:
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(i) for s = 1, . . . , s

P(u;ωs)(φ) = 〈P(u)(φ), [ωs]〉 ,
i.e., P(u; ωs) does not depend on the representative in the cohomology class [ωs];

(ii) ∂ P(u) = 0 and P(u) =
s∑

s=1

P(u; ωs)⊗ [γs], hence it does not depend on the choice of γ1, . . . , γs;

(iii) ∂ D(u; ω)(φ) = 〈P(u)(φ), [ω]〉 and hence ∂ D(u; ω̃s) Bn = P(u; ω̃s) for each representative ω̃s in [ωs].

We can therefore set

Ds(u) := D(u; ωs) , Ps(u) := P(u; ωs) = ∂ Ds(u) Bn , s = 1, . . . , s . (7.2)

Notice that if T ∈ cart1,1(Bn × Y) satisfies

T = Gu + ST , ST =
s∑

s=1

Ls(T )× γs on Zn,1(Bn × Y) ,

where u = uT ∈ W 1,1(Bn,Y) and Ls(T ) ∈ Rn−1(Bn), since

(−1)n−2∂Gu(π̂#ωs ∧ π#φ) = ∂Gu(π#φ ∧ π̂#ωs) = −∂ST (π#φ ∧ π̂#ωs) = −∂ Ls(T )(φ) ,

we infer that
Ps(u) = (−1)n ∂ Ls(T ) Bn ∀ s = 1, . . . , s . (7.3)

Finally, we clearly have P(u) = 0 if u is smooth, say Lipschitz, or at least in W 1,2(Bn,Y).

Results. In the sequel we shall assume that the first homotopy group π1(Y) is commutative. Moreover, we
denote by

Tu := {T ∈ cart1,1(Bn,Y) | uT = u} (7.4)

the class of Cartesian currents T in cart1,1(Bn ×Y) such that the underlying BV -function uT is equal to
u, compare Definition 2.11 and Remark 2.7. We first prove

Theorem 7.3 For every u ∈ BV (Bn,Y) we have ẼTV (u) < ∞.

From the results of the previous sections we then obtain the following representation result.

Theorem 7.4 For any u ∈ BV (Bn,Y) we have

ẼTV (u) = inf{E1,1(T ) | T ∈ Tu}
=

∫

Bn

|∇u(x)| dx + |DCu|(Bn) + inf

{∫

Jc(T )

LT (x) dHn−1(x) | T ∈ Tu

}
,

(7.5)

where Tu, Jc(T ), and LT (x) are given by (7.4), (2.12), and Definition 2.9, respectively.

Proof of Theorem 7.3: We observe that it suffices to show that the class Tu is non-empty, see (7.4).
In this case, in fact, if T ∈ Tu, by Theorem 2.13 we find a smooth sequence {uk} ⊂ C1(Bn,Y) such that
Guk

⇀ T weakly in Zn,1(Bn × Y) and ‖Duk‖L1 → E1,1(T ) as k → ∞; this yields also that uk ⇀ uT

weakly in the BV -sense, where uT = u, whence ẼTV (u) < ∞.
Now let us prove that Tu is non-empty. We first notice that, since Y is smooth and compact, there

exists an absolute constant C > 0, depending on Y, such that

ETV (u,Bn) < C |Du|(Bn) < ∞ .

Let {uk} be the approximating sequence given by Theorem 6.7. Since uk ∈ R∞1 (Bn,Y), the real mass of
the singularities is bounded by the L1-norm of Duk. More precisely, there exists an absolute constant C > 0
such that

mr,Bn(Ps(uk)) ≤ C

∫

Bn

|Duk| dx ∀s = 1, . . . , s ,
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see Definition 7.2. In fact, we have

M
(
Ds(uk)

)
= sup

{∫

Bn

φ ∧ (
u#

k ωs
) | φ ∈ Dn−1(Bn) , ‖φ‖ ≤ 1

}

≤ C

∫

Bn

|Duk| dx ,

see Proposition 7.6 below for the case Y = S1, so that the assertion follows from (7.2). Therefore, since by
Hardt-Pitts’ result (7.1) we have

mi,Bn(Ps(uk)) = mr,Bn(Ps(uk)) ,

we find for every s an i.m. rectifiable current Lk
s ∈ Rn−1(Bn) such that

Ps(uk) = (−1)n (∂ Lk
s) Bn and M(Lk

s) ≤ C

∫

Bn

|Duk| dx , (7.6)

compare (7.3). As a consequence, letting

Tk := Guk
+

s∑
s=1

Lk
s ×γs ,

we readily find that Tk ∈ Dn,1(Bn × Y) has no interior boundary

∂Tk = 0 on Zn−1,1(Bn × Y)

and finite BV -energy

E1,1(Tk) ≤
∫

Bn

|Duk| dx + C(Y)
s∑

s=1

M(Lk
s) ·M(γs) < ∞

for some absolute constant C(Y) > 0. In conclusion, by (7.6) we obtain a sequence {Tk} ⊂ cart1,1(Bn ×Y)
with equibounded energies

sup
k
E1,1(Tk) ≤ sup

k
C

∫

Bn

|Duk| dx ≤ C ETV (u,Bn) < ∞ ,

where C > 0 is an absolute constant. Therefore, by compactness, Proposition 2.18, possibly passing to a
subsequence we find that Tk ⇀ T weakly in Zn,1(Bn × Y) to some T ∈ cart1,1(Bn × Y) satisfying

E1,1(T ) ≤ lim inf
k→∞

E1,1(Tk) < ∞

by lower semicontinuity, Proposition 2.16. In particular, since uk ⇀ u weakly in the BV -sense, we find that
the underlying BV -function uT = u and hence that T ∈ Tu. ¤

Proof of Theorem 7.4: Let {uk} ⊂ C1(Bn,Y) be a sequence of smooth maps with equibounded en-
ergies, supk ‖Duk‖L1 < ∞, weakly converging to u in the BV -sense, see Theorem 7.3. By compactness,
Proposition 2.18, possibly passing to a subsequence we find that Guk

⇀ T weakly in Zn,1(Bn × Y) to
some T ∈ cart1,1(Bn × Y) satisfying uT = u, i.e. T ∈ Tu, see (7.4). Since by lower semicontinuity,
Proposition 2.16,

E1,1(T ) ≤ lim inf
k→∞

∫

Bn

|Duk| dx ,

we readily conclude that
inf{E1,1(T ) | T ∈ Tu} ≤ ẼTV (u) .

To prove the opposite inequality, by applying Theorem 2.13, for every T ∈ Tu we find a smooth sequence
{uk} ⊂ C1(Bn,Y) such that Guk

⇀ T weakly in Zn,1(Bn×Y) and ‖Duk‖L1 → E1,1(T ) as k →∞. Since
the weak convergence Guk

⇀ T yields the convergence uk ⇀ uT weakly in the BV -sense, and uT = u,
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we find that ẼTV (u) ≤ E1,1(T ), which proves the first equality in (7.5). The second equality in (7.5) follows
from the definition of BV -energy, Definition 2.10. ¤

The above results simplify if we specify them to u ∈ W 1,1(Bn,Y) and/or Y = S1, recovering this way
previous results, compare e.g. [13], [8], and [19].

The relaxed W 1,1-energy. The relaxed energy of u ∈ W 1,1(Bn,Y) is of course given by

Ẽ1,1(u) := inf
{

lim inf
k→∞

∫

Bn

|Duk| dx | {uk} ⊂ C1(Bn,Y) , uk → u strongly in L1(Bn,RN )
}

,

see Remark 7.1. In this case, Theorem 7.4 reads as

Corollary 7.5 For any u ∈ W 1,1(Bn,Y) we have Ẽ1,1(u) < ∞. Every T ∈ Tu has the form

T = Gu +
∑

q∈H1(Y)

Lq ×Cq on Zn,1(Bn × Y) ,

where Lq = τ(Lq, 1,
−→L q) is an i.m. rectifiable current in Rn−1(Bn) and Cq ∈ Z1(Y) is an integral 1-cycle

in the homology class q, and its BV -energy is given by

E1,1(T ) =
∫

Bn

|Du| dx +
∑

q∈H1(Y)

∫

Lq

LT (x) dHn−1(x)

where, for x ∈ Lq, we have LT (x) := inf{L(γ) | γ ∈ Γq(x)} and

Γq(x) := {γ ∈ Lip([0, 1],Y) | γ(0) = γ(1) = u(x) , γ#[[ (0, 1) ]] ∈ q} .

The relaxed energy is given by

Ẽ1,1(u) =
∫

Bn

|Du(x)| dx + inf
{ ∑

q∈H1(Y)

∫

Lq

LT (x) dHn−1(x) | T ∈ Tu

}
.

The case Y = S1. Further simplification arises if we assume Y = S1. In this case, in fact, ST,sing = 0, i.e.
the equivalence classes of elements in cart1,1(Bn×S1) have a unique representative, and the energies E1,1(T )
and F1,1(T ) are equal, i.e., no gap phenomenon occurs. Moreover, if x belongs to the jump-concentration
set Jc(T ), the 1-dimensional restriction has the form

π̂#(T {x} × S1) = [[ γx ]] + q [[S1 ]] ,

where q ∈ Z and [[ γx ]] is the current associated to a suitably oriented simple arc γx in S1 connecting the
points u−T (x) and u+

T (x), where uT is the function in BV (Bn, S1) associated to T , and γx = 0 if x /∈ JuT
.

Consequently, in (7.5) we have
LT (x) = H1(γx) + 2π |q|

and hence in cart1,1(Bn × S1) the BV -energy agrees with the energy obtained in [13], compare Thm. 1 of
[14, Vol. II, Sec. 6.2.3].

The singular set. If u ∈ W 1,1(Bn, S1), its singular set is the current P(u) ∈ Dn−2(Bn) given by

P(u)(φ) := − 1
2π

∂Gu(π#ωS1 ∧ π#φ) =
1
2π

∫

Bn

u#ωS1 ∧ dφ (7.7)

for every φ ∈ Dn−2(Bn), where
ωS1 := y1dy2 − y2dy1

is the volume 1-form in S1 ⊂ R2. Therefore, P(u) is the boundary of the current D(u) ∈ Dn−1(Bn) defined
for any γ ∈ Dn−1(Bn) by

D(u)(γ) :=
1
2π

Gu(π#ωS1 ∧ π#γ) =
1
2π

∫

Bn

u#ωS1 ∧ γ .
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Proposition 7.6 For every u ∈ W 1,1(Bn, S1) we have

M(D(u)) ≤ 1
2π

∫

Bn

|Du| dx .

Proof: By the definition of mass we clearly infer

2π M
(
D(u)

) ≤
∫

Bn

‖u#ωS1‖ dx .

Moreover, since u#ωS1 = u1du2 − u2du1, we estimate

‖u#ωS1‖2 ≤
n∑

i=1

|u1 u2
xi
− u2 u1

xi
|2 ≤

n∑

i=1

(|u1| |u2
xi
|+ |u1| |u2

xi
|)2 .

Observe now that for any a, b > 0 and λ, µ > 0 with λ2 + µ2 = 1

λ a + µ b ≤
√

a2 + b2 .

Since |u(x)| = 1, this yields (|u1| |u2
xi
|+ |u1| |u2

xi
|)2 ≤ |Dxi

u|2 and hence the assertion. ¤

We now recover the following estimates about the relaxed energy, compare [8] and [19].

Proposition 7.7 For every u ∈ W 1,1(Bn, S1) we have

Ẽ1,1(u) ≤ 2 E1,1(u) , where E1,1(u) :=
∫

Bn

|Du| dx . (7.8)

Moreover, for every u ∈ BV (Bn, S1) we have

ẼTV (u) ≤ 2 ETV (u) , (7.9)

where ETV (u) is the total variation of u, given by (6.1).

Proof: Let u ∈ W 1,1(Bn, S1). Proposition 7.6 yields that the real mass mr,Bn(P(u)) ≤ E1,1(u,Bn)/2π
and hence, on account of Hardt-Pitts’ result (7.1), the integral mass

mi,Bn(P(u)) ≤ 1
2π
E1,1(u) ,

see Definition 7.2. As a consequence, since for every ε > 0 we find a current T ∈ Tu such that

T = Gu + L× [[S1 ]] and E1,1(T ) = E1,1(u) + 2π M(L) ,

where L ∈ Rn−1(Bn) satisfies M(L) ≤ mi,Bn(P(u)) + ε, taking into account Theorem 7.4 we obtain (7.8).
In the more general case u ∈ BV (Bn, S1), Theorem 6.7 yields the existence of a sequence {uk} ⊂

W 1,1(Bn, S1) such that uk ⇀ u weakly in the BV -sense and E1,1(uk) → ETV (u). Also, for every k we find a
smooth sequence {u(k)

h }h ⊂ C1(Bn, S1) converging to uk strongly in L1 and such that E1,1(u
(k)
h ) → Ẽ1,1(uk)

+1/k as h →∞. Finally, by (7.8) and by a diagonal argument we readily obtain (7.9). ¤

Remark 7.8 As in [20], since π1(Y) is commutative, if u ∈ R∞1 (Bn,Y), for every s = 1, . . . , s we may
find an integral current Ls ∈ Rn−2(Bn) satisfying

(−1)n(∂Ls) Bn = Ps(u) and M(Ls) ≤ C

∫

Bn

|Du| dx

for some absolute constant C > 0 independent of u. Therefore, arguing as above it is not difficult to show
that

Ẽ1,1(u) ≤ C(n,Y) · E1,1(u) ∀u ∈ W 1,1(Bn,Y) , (7.10)
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where C(n,Y) > 0 is an absolute constant, only depending on n and Y. Finally, by Theorem 6.7 we
conclude that

ẼTV (u) ≤ C(n,Y) · ETV (u) ∀u ∈ BV (Bn,Y) ,

where ETV (u) is the total variation given by (6.1) and the optimal constant C(n,Y) is the same as the
optimal constant for W 1,1-functions in (7.10).
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