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Abstract. Let Y be a smooth compact oriented Riemannian manifold without boundary, and assume that its 1-
homology group has no torsion. Weak limits of graphs of smooth maps uy : B" — Y with equibounded total variation
give rise to equivalence classes of Cartesian currents in cartl’l(B” X Y) for which we introduce a natural BV -energy.
Assume moreover that the first homotopy group of Y is commutative. In any dimension n we prove that every
element T in cart™*(B™ x ) can be approzimated weakly in the sense of currents by a sequence of graphs of smooth
maps ug : B" — Y with total variation converging to the BV -energy of T. As a consequence, we characterize the
lower semicontinuous envelope of functions of bounded variations from B™ into ).

In this paper we deal with sequences of smooth maps uy : B™ — ) with equibounded total variation
sup 1,1 (ug) < 00, E1a1(ug) = / | Duy,| dx
k n

and their limit points. Here B™ is the unit ball in R™ and ) is a smooth oriented Riemannian manifold
of dimension M > 1, isometrically embedded in RY for some N > 2. We shall assume that ) is compact,
connected, without boundary. In addition, we assume that the integral 1-homology group H;(Y) := H1(V;Z)
has no torsion.

Modulo passing to a subsequence the (n,1)-currents G,, , integration over the graphs of u of n-forms
with at most one vertical differential, converge to a current T € cart™!(B™ x )), see Sec. 2 below. To
every T € cart™!(B™ x )) it corresponds a function ur € BV (B",)), i.e., ur € BV (B",R") such that
ur(z) € Y for L™ae. = € B™, compare [14, Vol. I, Sec. 4.2] [14, Vol. II, Sec. 5.4]. Also, the weak
convergence G, — T yields the convergence u, — ur weakly in the BV -sense.

In order to analyze the weak limit currents, it is relevant first to consider the case n = 1. Therefore
in Sec. 1 we study some of the structure properties of 1-dimensional Cartesian currents in B! x Y, i.e., of
currents in cart(B! x RY) with support sptT C B x Y, compare [14, Vol. I]. In the simple case Y = S*,
the unit circle in R?, and in any dimension n, for any current T € cart(B™ x S') we can find a sequence of
smooth maps {uy} C C*(B",S') such that G,, weakly converges to T and the area of the graph of the
uy’s converges to the mass of T, i.e., M(G,,) — M(T), see [13] and [14, Vol. II, Sec. 6.2.2]. However, in
case of general target manifolds, and even in dimension n = 1, a gap phenomenon occurs. More precisely,
setting

M(T) := inf{lim inf M(Gy,) [ {ue} € CH(BLY), Gu, =T weakly in Dy(B' x )},

there exist currents T' € cart(B! x )) for which
M(T) < M(T),
i.e., for every smooth sequence {uy} C C*(B',Y) such that G,, — T weakly in D;(B! x J) we have that

liminf M(G,,) > M(T) + C,

k—o0

where C' > 0 is an absolute constant and, we recall, the mass of G,, is the area of the graph of wuy

M(G.,) = Alug) :== /B1 vV 1+ |Dug|? dx.



In order to deal with this gap phenomenon, we introduce the class cart!'!(B! x V) of equivalence classes
of currents in cart(B! x )), where the equivalence relation is given by

T~T — T(w)=T(w) YweZ"(B'xY),

see Definition 1.6. Here ZV!(B! x ) denotes the class of smooth forms w € D!(B! x )) such that
dyw(l) = 0, where d = d, + dy denotes the splitting into a horizontal and a vertical differential, and w®
is the component of w with exactly one vertical differential. In other words cart’!(B! x )) is the class
of vertical homological representatives of the elements of cart(B! x ))). Notice that if Y = S!, actually
cartV 1 (B! x S') agrees with the class cart(B' x S'). We then introduce on cart!(B! x ) the following

energy
A(T) = /Bl\/1+|VuT(x)|2dx+|DCuT|(Bl)+ S (),

z€J(T)

where Vugp and DCup are respectively the absolutely continuous and the Cantor part of the distributional
derivative of the underlying function uy € BV (B!,)), and the countable set J.(T) is the union

Jo(T) = Ty Uz ri=1,..., I}

of the discontinuity set J,, of ur and of the finite set of points x; where the mass of T' concentrates. In
the above formula, L£r(x) denotes the minimal length L£(y) among all Lipschitz curves ~ : [0,1] — Y, with
end points equal to the one-sided approximate limits of up on x € J.(T'), such that their image current
~v2[(0,1)] is equal to the 1-dimensional restriction Tyu(TL {x} x Y) of T over the point z. In the case
Y = S, it turns out that A(T) agrees with the mass of T, compare [13] and [14, Vol. II, Sec. 6.2.2].

We will show that the functional T +— A(T) is lower semicontinuous in cart!(B* x )), Theorem 1.7,
and that for every T there exists a sequence of smooth maps {u;} C C1(B',)) such that G,, — T and
M(Gy,) — A(T) as k — oo, Theorem 1.8. As a consequence, we conclude that A(T) coincides with the
relazed area functional

A(T) == inf {liminf A(ug) | {ur} € C'(BLY), Gu, =T}

In Sec. 2, we deal with the n-dimensional case, n > 2, introducing the class cart’!(B™ x ))) of vertical
homological representatives. The BV -energy of a current T € cart’!(B™ x ))) is then defined by

= up(x)|dz “u " x iy
Ea(r) = [ Vur@ldr 10l 4 [ oot

see Definition 2.10, where J.(T) is the countably H™ !-rectifiable subset of B™ given by the union of the
Jump set J,,. of up and of the (n — 1)-rectifiable set of mass-concentration of T. Finally, the integrand
Lr(z) is defined as above, by taking into account that the 1-dimensional restriction 7 (T L {x} xY) of T
is well-defined for H"!-a.e. point z € J.(T).

Notice that, if T = G, where u : B® — Y is smooth or at least in W', then & 1(Gy) = &11(u).
Moreover, in the case ) = S!, we have cart!'!(B" x S') = cart(B™ x S') and, due to the absence of gap
phenomenon, the functional & 1(T") agrees with the parametric variational integral associated to the total
variation integral, see Definition 2.5, and can be dealt with as in [13], see also [14, Vol. II, Sec. 6.2], 8], [19].

The functional T +— & 1(T) turns out to be lower semicontinuous in cart’!(B" x ), see Theorem 2.12
and Sec. 3. Moreover, assuming in addition that the first homotopy group 71(Y) is commutative, in Sec. 4
and Sec. 5 we will prove in any dimension n > 2 that for every T € cart"!(B™ x ))) there exists a sequence
of smooth maps {uy} C C*(B™,Y) such that G,, =T and & 1(ux) — &1.1(T) as k — oo, Theorem 2.13.
Consequently, we show that a closure-compactness property holds in cart'!(B™ x )), Theorem 2.17. We
stress that the commutativity hypothesis on 71()) cannot be removed, see Remark 5.2.

In Sec. 6, extending the classical notion of total variation of vector-valued maps, compare e.g. [1], we
introduce in a natural way the total variation of functions u € BV (B™,)), given by

Erv(u) = /B” |Vu(x)|dx+|DCu|(B”)+/J HY(1,) dH L (z),



where, for any z € J,, we let H!(l,) denote the length of a geodesic arc I, in Y with initial and final
points u~(z) and w*(z). Extending the density result of Bethuel [5], in Theorem 6.5 we will show that for
every u € BV(B",)) we can find a sequence of maps {ux} C R$*(B",)) such that u — u as k — o0
weakly in the BV -sense and

lim \Duk| dx = ETV(u) .

k—oo Jpn
If n =1, the class R$°(B",Y) agrees with C1(B™,Y). If n > 2, it is given by all the maps u € W11 (B",))
which are smooth except on a singular set which is discrete, if n = 2, and is the finite union of smooth
(n — 2)-dimensional subsets of B"™ with smooth boundary, if n > 3. Therefore, if 71()) = 0, we obtain that
smooth maps in C*(B™,Y) are dense in BV (B™,)) in the strong sense above mentioned.

However, in Sec. 7 we will show that Ery (u) does not agree with the relazed of the total variation

Ery(u) = inf{likminf/ |Duy|dz | {ur} € CY(B™,Y), wu, —u weakly in the BV-sense}

if n > 2, and we have 5/;‘//(u) < 00, Theorem 7.3, and that
Erv(u) =inf{&1(T) | T € T,.}

Theorem 7.4, where 7, is the class of Cartesian current 7' in cart’»!(B" x ) with underlying BV -function
ur equal to wu, this way obtaining the representation formula

gT\\J/(u) = / \Vu(x)| dx + |Du|(B™) + inf {/ Lr(x)dH" ' (z) |T € Tu} .
Br Jo(T)

We finally specify the above relaxation results to u € W11(B" )) and/or J = S!, recovering in
particular previous results in [13], [8], and [19].

1 Cartesian currents in dimension one

In this section we discuss some features of 1-dimensional Cartesian currents in B' x ) and, in particular,
we discuss a gap phenomenon and the relaxed area functional.

First let us introduce a few notation about BV -functions and Cartesian currents in the general context
B" x ).

Vector valued BV -functions. Let u: B® — R" be a function in BV(B™,RM), ie., u = (u!,...u")
with all components u/ € BV (B™). The Jump set of u is the countably H" !-rectifiable set J,, in B" given
by the union of the complements of the Lebesgue sets of the u/’s. Let v = v,(x) be a unit vector in R"
orthogonal to J, at H" '-a.e. point z € J,. Let u*(z) denote the one-sided approximate limits of u on
Ju, so that for H" !-a.e. point z € J,

lim p_"/ lu(x) — ut(x)|dx =0,
0% B (x)

where B;,t(x) ={y € By(x) : £(y —z,v(x)) > 0}. Note that a change of sign of v induces a permutation of
uT and v~ and that only for scalar functions there is a canonical choice of the sign of v which ensures that
ut(z) > u™ (x). The distributional derivative of u is the sum of a ”"gradient” measure, which is absolutely
continuous with respect to the Lebesgue measure, of a ”jump” measure, concentrated on a set that is o-finite
with respect to the H"~!-measure, and of a ”Cantor-type” measure. More precisely,

Du = D% + D’u+ D%,

where
D%y =Vu-dz, D7u= (uT(z) —u () @ v(z)H" 'L J,,



Vu := (Vyu,...,V,u) being the approximate gradient of u, compare e.g. [2] or [14, Vol. I]. We also recall
that {uy} is said to converge to u weakly in the BV -sense, uy — u, if u, — u strongly in L'(B", RY)
and Duy — Du weakly in the sense of (vector-valued) measures. We will finally denote

BV(B™Y) :={u e BV(B",RY) |u(z) €Y for L™ae. z & B"}.

Cartesian currents. The class of Cartesian currents cart(B™ x RY), compare [14, Vol. 1], is defined as
the class of integer multiplicity (say i.m.) rectifiable currents 7 in R, (B™ x RY) which have no inner
boundary, T'L B™ x RY = 0, have finite mass, M(T') < oo, and are such that

IT|l; < oo, 7x(T)=[B"] and T° >0,

where
IT ||y := sup{T (¢(z,y)lyl dz) | ¢ € CZ(B" x RY) and |||l <1}

and T is the Radon measure in B” x RN given by
T(p(z,y)) = T(p(z,y)dz) Ve CHB" xRN).

Finally, here and in the sequel 7 : R™™" — R” and 7 : R"™ — RY denote the projections onto the first
n and the last IV coordinates, respectively.
It is shown in [14, Vol. 1] that for every T € cart(B"™ x RY) there exists a function uz € BV (B",R"Y)
such that
T(¢p(x,y)de) = [ ¢z, ur(x))dx (1.1)
B"L
for all ¢ € C°(B™ x RY) such that |¢(z,y)| < C (1+ |y|), and

()" (@)l Ndy') = (Didpe) = = [ () Digla) do

for all ¢ € C}(B™), where

o~

dat :=dx' A deT P ANd T A N da
In particular, we have ||T||; = |lur|p1(gn V)

Definition 1.1 If n =1 we set
cart(B' x ) := {T € cart(B* x RY) | spt T C B' x V}.

Notice that the class cart(B! x ))) contains the weak limits of sequences of graphs of smooth maps wy :
B! — Y with equibounded W!!'-energies. Moreover, it is closed under weak convergence in D (B! x )
with equibounded masses. Finally, the BV-function ur associated to currents 7' in cart(B! x )) clearly
belongs to BV (B1,)).

Restriction over one point. Let T € cart(B! x ))). Since T has finite mass, 7 — T(xB, () N n), where
x € B! and 0 <r <1 — |z|, defines a current in D;()). The 1-dimensional restriction of T over the point
x

7a(TL{z} x V) € Dy(Y)
is the limit
Fe(Ti{a} xV)(n) == lim T(xp.@ An),  n€D).

Canonical decomposition. There is a canonical way to decompose a current T € cart(B! x )). We first
observe that the 1-dimensional restriction of T over any point x in the jump set J,, of ur is given by

Fu(TL{z} xY) =T,

I, being a 1-dimensional integral chain on ) such that oT', = (5@(%) - (5u;(x), where ur(z) and ur(z)

here and in the sequel denote the right and left limits of uy at z, respectively. Therefore, by applying



Federer’s decomposition theorem [9], we find an indecomposable 1-dimensional integral chain v, on ),
satisfying 0v, = 5@(@ — 5u;(x), and an integral 1-cycle C, in ), satisfying 0C, = 0, such that

Iy =7 +C; and M(T,) = M(y,) + M(Cy). (1.2)

Currents associated to graphs of BV -functions. Next we associate to any T € cart(B! x ))) a current
Gt € D1(B! x ) carried by the graph of the function ur € BV(B*',Y) corresponding to 7', and acting in
a linear way on forms w in D'(B' x ) as follows. We first split w = w(®) +w™) according to the number
of vertical differentials, so that

N
WO =gz, y)de  and WD =3¢/ (x,y) dy’

for some ¢,¢7 € C5°(B* x V). We then decompose Gr into its absolutely continuous, Cantor, and Jump
parts

Gr=T"+T°+T’
and define T¢(w©®) = T7(w(®) =0 and
T4(w®) = o(z, ur(x)) dx

Bl

T(w®) = Z ¢unT )Vl (z) da
T¢wm) = Z<DCUT7¢’(~ ()

T () = Z/u( D)y ) vl dH(e).

Here, 7, is the indecomposable 1-dimensional integral chain defined by means of the 1-dimensional restriction
of T over the point = € Jy,., see (1.2).

Notice that the definition of G obviously depends on <, and hence, in conclusion, on the current
T € cart(B* x Y). Moreover, we readily infer that the mass of Gr is given by

M(Gr) = M(T*) + M(T“) + M(T"),

where
M(T"):/BI\/1+|VUT(m)|2dx, M(T¢) = |Dur|(BY), M(TJ):/J H () dH  (z) .

A density result. We recall from [14] that if v : B! — ) is smooth, or at least e.g. u € Wh1(BLY),
the current G, integration of 1-forms in D*(B! x V) over the rectifiable graph of u is defined in a weak
sense by G, := (Id < u)y[B'], i.e., by letting Gy (w) = (Id > u)#(w) for every w € DY(B! x V), where
(Id > u)(x) := (z,u(x)). Moreover, the mass of G, agrees with the area A(u) of the graph of u

M(G,) = A(u) = /B1 V14 |Du(x)|?dx.

By a straightforward adaptation of the proof of Theorem 1.8 below, we readily obtain the following strong
density result for the mass of Grp.

Proposition 1.2 For every T € cart(B* x ))) there exists a sequence of smooth maps {u} C CY(B*,))
such that up — ur weakly in the BV -sense, Gy, — Gt weakly in D1(B* x V) and M(G,,) — M(Gr)
as k — oo.



Vertical Homology. Let now Z11(B! x ) denote the class of vertically closed forms
ZVY(B' x Y) :={w e D'(B' x V) | dyw'") =0},
where d = d, + d, denotes the splitting of the exterior differential d into a horizontal and a vertical

differential. We say that T), — T weakly in 21 1(B! x V) if Ty(w) — T(w) for every w € ZHH(B! x Y).

Homological vertical part. By Proposition 1.2, since by Stokes’ theorem 9G,, L B! x Y = 0, whereas
Gy, — Gr, we obtain that
OGrLB'xY=0.

Remark 1.3 In higher dimension n > 2 in general G has a non-zero boundary, i.e., 0Gr L B" x Y # 0,
see Remark 2.2.

Setting then
ST =T — GT 5

by (1.1) we infer that Sr(¢(z,y)dr) = 0 and Sp(d¢) = 0 for every ¢ € C§°(B' x V). Therefore, by
homological reasons, since

inf{M(C) | C € Z,(Y), C is non trivial in Y} > 0,
similarly to [14, Vol. II, Sec. 5.3.1] we infer that

I
Sr=Y 6, xC; on Z“(B'xY),
i=1

where {x; :i=1,...,I} is a finite disjoint set of points in B!, possibly intersecting the Jump set .J,,., and
C; is a non-trivial homological integral 1-cycle in Y. Notice that the integral 1-homology group H;()) is
finitely generated.

Remark 1.4 Setting

I
ST,sing =T - GT - Z(Stl X C? ’

i=1
it turns out that St ¢ng is nonzero only possibly on forms w with non-zero vertical component, w® £ 0,
and such that dyw(l) # 0. Therefore, St sing is @ homologically trivial i.m. rectifiable current in R1(31 xY).

Consequently, setting for T € cart(B! x ))

I
T = "6, x Ci, (1.3)
=1

T decomposes into the absolutely continuous, Cantor, Jump, Homological, and Singular parts,
T=T"+T°+T +T% + St 5ing -
Gap phenomenon. However, a gap phenomenon occurs in cart(B! x )). More precisely, if we set
M(T) := inf {lim inf M(G,) | {u} € C(B',Y), Gu, =T weakly in Di(B' x V)},
we see that there exist Cartesian currents T € cart(B* x )) for which
M(T) < M(T).

For example, as in [14, Vol. I, Sec. 4.2.5], if T = G,, + dp x C, where u = P € ) is a constant map and
C € ZYY) is a 1-cycle in Y, it readily follows that for every smooth sequence {uy} C C1(B',)) such that
Gy, — T weakly in D;(B' x Y) we have that

likm inf M(G,,) > M(T) + 2d, d = disty (P,spt C),

where disty denotes the geodesic distance in Y.



Remark 1.5 This gap phenomenon is due to the structure of the area integrand u — /14 |Du|?, and
it is typical of integrands with linear growth of the gradient, e.g., the total variation integrand w — |Dul,
since the images of smooth approximating sequences may have to ”connect” the point P to the cycle C,
this way paying a cost in term of the distance d. This does not happen e.g. for the Dirichlet integrand
U %|Du|2 in dimension 2, compare [15]. In this case, in fact, the connection from one point P to any
2-cycle C € Z5()) can be obtained by means of ”cylinders” of small 2-dimensional mapping area and,
therefore, of small Dirichlet integral, on account of Morrey’s e-conformality theorem.

Homological theory. In order to study the currents which arise as weak limits of graphs of smooth maps
1 B! — Y with equibounded total variations, supy, [|Dug|/z1 < oo, the previous facts lead us to consider
vertical homology equivalence classes of currents in cart(B! x ))). More precisely, we give the following

Definition 1.6 We denote by cart®!(B! x ) the set of equivalence classes of currents in cart(B! x )),
where N N
T~T = Tw)=T(w) VYwe Z"Y(B'xY).

If T ~ f, then the underlying BV -functions coincide, i.e., ur = ug. Therefore, we have T = T¢ and
T¢ =T, whereas in general T7 # T”. However, we have that

/417" =T/ +T"  on Z“Y(B'xY).
Jump-concentration points. For future use, we let
Jo(T) i = Jyp U{zy si=1,..., I} (1.4)

denote the set of points of jump and concentration, where the x;’s are given by (1.3). We infer that J.(T")

is an at most countable set which does not depend on the representative T i.e., Jo(T') = Jo(T) if T ~ T.
By extending the notion of 1-dimensional restriction 74 (7L {z} x ) to equivalence classes, we infer that
Tu(TL{z} xY)=0 if x ¢ J.(T). As to jump-concentration points, letting

Z'(Y):={n € DY) [ dyn =0},
if x € Jy,, with x # z;, we infer that
Tp(TL{z} xY) =7 on 2Z'()),
where 7, is the indecomposable 1-dimensional integral chain defined by (1.2), and if x = x;, see (1.4),
Tp(TL{z} x V) =7, +C;  on ZY(Y),
where C; € Z1()) is the non-trivial 1-cycle defined by (1.3), and 7., =0 if z; ¢ Jy,..

Vertical minimal connection. For every Cartesian current 7' € cart!'!(B!x)) and every point = € J.(T)
we will denote by

Tr(x) = {y € Lip((0,1,Y) | 7(0) =ugz(z), ~(1) =uz(z), (1.5)
1 00,1)](n) =7x(T{z} x V)(n) VYne Z'(V)} '

the family of all smooth curves v in Y, with end points w3 (z), such that their image current v4[(0,1)]
agrees with the 1-dimensional restriction 74 (7L {z}xY) on closed 1-forms in Z*(Y). Moreover, we denote
by

Lr(x) :=inf{L(y) |y € Tr(z)}, x € J(T), (1.6)

the minimal length of curves 7 connecting the ”vertical part” of T over x to the graph of wur. For future
use, we remark that the infimum in (1.6) is attained, i.e.,

Vee J.(T), dyelp(z) : L(y)=Lr(x). (1.7)



Relaxed area functional. We finally introduce the functional

A(T, B) := /B V14 |Vur(z)|2de + |Dur|(B) + /J Lr(z) dH®(z)

(T)NB

for every Borel set B C B!, and we let
A(T) := A(T,B").

Notice that for every T € cart''!(B! x )) we have
min{M(T) : T ~ T} < A(T). (1.8)
Main results. We first prove the following lower semicontinuity property.

Theorem 1.7 Let T € cart! (B! x )). For every sequence of smooth maps {ux} C C*(B',Y) such that
Gu, — T weakly in Z11(B' x V), we have

lim inf M(Gly, ) > A(T) .-

Then we prove the following density result.

Theorem 1.8 Let T € cartV1 (B! x ))). There exists a sequence of smooth maps {uy} C C*(B',Y) such
that Gy, = T weakly in Z11(B' xY) and M(G,,) — A(T) as k — oo.

As a consequence, if we denote, in the same spirit as Lebesgue’s relaxed area,
A(T) = inf {lim inf A(ur) | {w} € C'(BY), Gu, =T weakly in Z1,1(B' x )},
by Theorems 1.7 and 1.8 we readily conclude that
A(T)=A(T) VT ecart" (B' x V).
Properties. From Theorems 1.7 and 1.8, (1.8) and the closure of the class cart(B! x ) we infer:

(i) the functional T — A(T) is lower semicontinuous in cart’!(B! x J)) w.r.t. the weak convergence in
Z11(Bt x Y);

(ii) the class cart™!(B! x Y) is closed and compact under weak convergence in Z; (B! x Y) with equi-
bounded .A-energies.

We finally notice that similar properties hold if one considers the total variation integrand w — |Du]
instead of the area integrand w+— /1 4 |Dul?. In particular, setting

= ur(x X CU 1 x 0 X
Ea(n) = [ Dur@lde £ 0Curl(8) + [ o)),

for every T € cart™(B! x )) we have
&11(T) = inf{likminf/ |Dug|dx | {ux} € C*(BY,Y), G., —T weaklyin Z;,(B* x y)}.
— 00 Bl

Remark 1.9 For future use, we denote
V. :={y e RY | dist(y,)) < ¢}

the e-neighborhood of ) and we observe that, since ) is smooth, there exists €y > 0 such that for 0 < ¢ < gg
the nearest point projection II. of V. onto ) is a well defined Lipschitz map with Lipschitz constant L, — 17
as ¢ — 0. Note that for 0 < & < g¢ the set ). is equivalent to ) in the sense of the algebraic topology. In
particular, we have

m (Vo) =m(Y).



PROOF OF THEOREM 1.7: Let {z;}i~; C B! be the at most countable set of discontinuity points in
Jur \{x; :i=1,...,I}, see (1.4). By the properties of Y we have

Lp(z;) <O - |uf(x) —ugp(z)|  Vi>1T,

where C'= C(Y) > 0 is an absolute constant, see (1.6). Therefore, since

o0

|D”ur|(B') = Z Jug (2:) — ug(2)] < o0,
i=1

for every € > 0 we find I(¢) > I such that
i Lr(z;) <e. (1.9)
i=1(e)+1
After rearranging in an increasing way the set {z; : i <I(¢)}, and setting x¢ = —1, x;5)41 = 1, we let
20 =20(e) :==min{|z; —zi41]:9=0,...,l(e)} > 0.
For i € {1,...,l(e)}, due to the weak convergence wu — wur in the BV-sense, possibly passing to a

subsequence, we find the existence of sequences of points ai, €]z; —§/k, z;[ and b} €]x;, z; +/k[ such that

disty (ug(aj,), ur(2;)) < and disty (g (b)), ut(2;)) < (1.10)

il
| =

for every k, where disty denotes the geodesic distance in ).
Let ~} : [0,1] — Y be the Lipschitz reparametrization with constant velocity of the smooth curve
Up|(ai pi]- From the weak convergence Gy, — T we infer that

Tl O, D)]() = T (TLA{a} x V)(m)  Vne 2'(Y) (1.11)

as k — oo, where Tu(TL {z} x V) is the previously defined restriction of 7' over x. Moreover, by
connecting the end points uk(a,'c) and ug (%) with up(z;) and ut (), respectively, due to (1.10) we find
a sequence of Lipschitz arcs 7i : [0,1] — Y, with end points 7i(0) = uy(x;) and 7%(1) = uf(z;), such that
(yk#[[(o ] - 'yk#[[(O 1)])( ) — 0 for every n € Z1()) as k — co and

NZ- L2
L) < L) + T VEk.

By the construction we also infer that {¥i}; is a sequence of equibounded and equicontinuous maps.
Therefore, by Ascoli’s theorem, possibly passing to a subsequence, we find that ¥} converges uniformly to
a Lipschitz arc 3" : [0,1] — ), with end points uf (x;), satisfying by (1.11)

Tl 0. D)](n) =7p(T{z} x V)(n) ~ Vne Z'().

We then obtain that 5¢ € I'r(x;), according to the definition (1.5). Moreover, by the lower semicontinuity
of the length functional w.r.t. the uniform convergence, we have

L(F) < liminf £(F}).
By (1.6) and by the above estimates we conclude that
Lr(x;) Slikminfﬁ(%i) Vi=1,...,1(c). (1.12)

Now, since by the weak BV-convergence of up — upr we have

/ 1+ |Vur(x)2de 4 |Dur|(BY) < hmlan(uk)

— 00



by the previous argument, taking into account (1.9) and (1.12), we readily infer that
A(T) —e < likm inf A(uyg)
and hence the assertion, by letting & ™\, 0. O

PROOF OF THEOREM 1.8: Let {x;};>5, l(¢) and § = §(¢) be defined as in the proof of Theorem 1.7, so
that (1.9) holds true. Let v € I'p(x;) be such that L£(v') < Lr(z;) +e-27¢, see (1.5) and (1.6). For fixed
5 €(0,6(¢)), and for every i =1,...,1(g), we first define u§ : [x; — J,2; + §] — Y by reparametrising with
the same orientation the arc ~;, i.e.,

(1 1
€ — A = P e
) =" (5 + g5e -0
Setting I; :=|z; + 0,241 —0[ if i =1,...,1(e) =1, and I :=] — 1,21 — 6[, [je) :=]xy(c) + 6, 1], we then
extend u§ to the whole of B! by letting u§(z) := uyp(¥,(z)) if z € I; for some i =0,...,l(¢), where ¥; is

the bijective and increasing affine map between the intervals I; and ]z;, 2;41[. We then apply a mollification
procedure to the function u§, defining this way a smooth map vj§ : B' — R¥ such that

lvs —u§ll LBy <0 and /Bl |Dv§| dx < \Dug\(Bl)—i—é.

Since wp is continuous outside the Jump set J,, and (1.9) holds true, for every o > 0 we find n =
n(o,d,e) > 0 such that, in the a.e. sense,

Ve,ye B, fr—yl<n = |uj(e) —us(y) <o+e.
As a consequence, we may and do define v§ in such a way that in particular
dist(v§(x),Y) < e Ve B,

Setting now w§ := II. o v§ : B! — ), compare Remark 1.9, taking first § small w.r.t. e, and letting then
€ — 0, by a diagonal procedure we find a smooth approximating sequence. O

2 Cartesian currents, BV -energy and weak limits

In this section we deal with the weak limits of graphs of smooth maps wu; : B™ — )Y with equibounded
Wl energies. We first state a few preliminary results.

Homological facts. Since H;()) has no torsion, there are generators [y1],...,[vs], i.e. integral 1-cycles

in Z1(})), such that B
Hl(y) - {Zns [’YS} ‘ ng € Z} 5
s=1

see e.g. [14], Vol. I, Sec. 5.4.1. By de Rham’s theorem the first real homology group is in duality with the
first cohomology group Hj,(Y), the duality being given by the natural pairing

(Ll =1 = (@, blemER), [l € Hin®).
8!
We will then denote by [w'],...,[w"] a dual basis in Hip(Y) so that vs(w") = s, where J5,. denotes the
Kronecker symbols.

D
where P := min(p, M), M = dim())), and the wU)’s are the p-forms that contain exactly j differentials in

D,,,1-currents. For p =1,...,n, every differential p-form w € DP(B™ x ) splits as a sum w = Z w

b
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the vertical ) variables. We denote by DP'1(B™ x )) the subspace of DP(B™ x )) of p-forms of the type
w=w®+wM® and by D, ;(B"xY) the dual space of DP*}(B"x ). Every (p,1)-current T € D, ;(B" x))
splits as 1" = T{o) + 1(1), where T(;(w) := T(w). For example, if v € W(B",)), then G, is an (n,1)-
current in D,, 1(B™ x V) defined in an approximate sense by

Gy = (Idu)x[B"], (2.1)

where (Id>u)(z) := (z,u(x)), compare [14], see also [4].

Weak D,, 1-convergence. If {T}} C D, 1(B" xY), we say that {T}} converges weakly in D,, 1(B" x ),
T, — T, if Ti(w) — T(w) for every w € D™(B™ x V). Trivially, the class D, 1(B™ x ) is closed under
weak convergence.

E11-norm. For w € D" (B" x Y) and T € D, 1(B™ x Y) we set
|W(O) (z,9)| / (1) }
w = max < sup ————=—, sup |w' (z,y)|dx ¢,
ol = max {sup 5 ] up o)
|T|e, , = sup{T(w) |lwe DY (B"xY), |wle, < 1}

It is not difficult to show that || T'||g, , is a norm on {T' € D, 1(B" x V) : || T||¢,, < oo}. Moreover, |- |¢, ,
is weakly lower semicontinuous in D, 1, so that {T' € D, 1(B"™ x Y) : ||T|ls,, < oo} is closed under weak
D,,,1-convergence with equibounded &;1-norms. Finally, if supy ||Tk||e,, < oo there is a subsequence that
weakly converges to some T' € Dy, 1(B" x V) with [|T|lg, , < oo.

Boundaries. The exterior differential d splits into a horizontal and a vertical differential d = d, + dy. Of
course 9,7 (w) := T(dyw) defines a boundary operator 9 : Dy, 1(B" X Y) — D,,_1,1(B" x Y). Now, for any
we D" LB x ), dyw belongs to D™ (B™ x Y) if and only if d,w™) = 0. Then 9,7 makes sense only
as an element of the dual space of Z"~11(B™ x ), where

ZPYB" x V) := {w € DP(B" x ) | dywV) = 0}.

Graphs of BV-maps. We introduce a class of D,, j;-currents associated to the graphs of BV-functions.
To this aim, we observe that any form w = w® € D»(B™ x ) can be written as

n N
WM =3 "N (1) (2, y) dat A dy? (2:2)
i=1 j=1
for some ¢! € C5°(B" x V), and we will set ¢/ := (¢7,...,¢%).

Definition 2.1 We say that a current G € Dy, 1(B™ x Y) is in BV —graph(B™ x Y) if it decomposes into
its absolutely continuous, Cantor, and Jump parts

G:=G"+G+G’,
where G%) = G‘(JO) =0, and its action on forms in D™ (B™ x V) is given for any ¢ € C(B" x Y) b

G(o(x,y) dr) = G (p(x,y) dx) := |  (z,u(z))dx

B’IL
for some function u = u(G) € BV(B™,Y) and, on forms w =w®) satisfying (2.2), by

N . .
G wM) = Z/ﬂ(Vu3,¢-7(x,u(x))>dx
il '

GC(wM) = Z qu x))dDw’
() o= ZZ/( Gl dy) ) ).
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where 7y, is a 1-dimensional integral chain in Y satisfying 0V = Oy+(z) — Ou-(z) and v = (V1,...,Vp) is
the unit normal to J, at x, for H" '-a.e. x € J,.

Remark 2.2 If n > 2 in general the current G has a non-zero boundary in B™ x ), even if u €
Whi(BY), ie., if G = G* Take for example n = 2, Y = St C R? and u(zr) = x/|z|, so that
G =G, = (Idxu)4[B?] and hence

OGLB?* x S* = —§y x [S'],

where §g is the unit Dirac mass at the origin. However, as we shall see in Remark 6.10 below, the boundary
OG is null on every (n — 1)-form @ in B™ x ) which has no ”vertical” differentials.

Weak limits of smooth graphs. Let {u;} C C'(B™,)) be a sequence of smooth maps with equibounded
Whlenergies, sup, |[Dug|1 < oo. The currents G, carried by the graphs of the wuy’s are well defined
currents in D, 1(B™ x )) with equibounded &; j-norms. Therefore, possibly passing to a subsequence, we
infer that G,, — T weakly in D, 1(B"™ x Y) to some current T € D,, 1(B" x V), and uj — ur weakly in
the BV-sense to some function ur € BV (B™,Y). Therefore, we clearly have that

T(¢(x,y)dx) = o ¢(z,up(x))de Vo e CX(B" xY). (2.3)

Moreover, by lower semicontinuity we have ||T'||¢,, < oo whereas, since the G,,’s have no boundary in
B™ x Y, by the weak convergence we also infer

OT =0 on Z" MYB"xY). (2.4)

Currents associated to graphs of BV -functions. Arguing as in Sec. 1, we associate to the weak limit
current T a current Gp € BV —graph(B™ x )), see Definition 2.1, where the function v = u(Gr) €
BV(B™,Y) is given by ur and the ~,’s in the definition of the jump part G are the indecomposable 1-
dimensional integral chains defined as in the previous section, but for H" 1-a.e. x € J,,., since IT|le,, < oo,
compare (1.2) and Definition 2.8 below. In general Gt L B™ x ) # 0. However, setting

St =T —Gr,
we clearly have Sp(é(x,y)dr) =0 for every ¢ € C(B™ x V). Moreover, we also have:
Proposition 2.3 Sy(w) =0 for every form w = w) such that w = dyw for some @ € D" 1O0(B" x ).
PROOF: Write @ := w, An for some 1 € C§°(Y) and ¢ = (o', ..., ") € C5°(B™,R"), where
n —~
Wy 1= Z(—l)i_lgoi(a:) dzt. (2.5)
i=1

Since
d(wy An) = dive(z)n(y) dx + (—1)"71wv A dyn

and T'(d(w, A1) = 0T (w, An) =0, we have
(=1)"T(divep(z)n(y) dz) = T(wy A dyn) ,

so that
St(we Adyn) = (=1)"T(dive(x)n(y) dz) — Gr(we A dyn) .

Moreover, since T(g) = Gr(o), by (2.3) we have

T(divp(z)n(y) dx) = / dive(z)n(ur(2)) de = —(D(nour), ¢)

n
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whereas, taking ¢{ = D, n in (2.2), by the definition of G, since 0v, = 5u;(w) -4, 5 e infer

7 (

N
(0 Galg ndn) = Y- [ TV (o). o) da
j=1 )

+ / (n(u(2)) — n(ug (@) (), v(z)) dHL.

Finally, by the chain rule for the derivative D(nour) we obtain
(=1)""'Gr(wy Adyn) = (D(nour), )
and hence that Sp(w, A dyn) = 0. O

In conclusion, similarly to [14], Vol. II, Sec. 5.4.3, we infer that the weak limit current T is given by
T=Gr+Sr, Sr=)» L(T)xy on Z"(B"x)), (2.6)
s=1

where Ls(T') € Dp,—1(B") is defined by
Ls(T) = (—=1)" 'a#(Sp L 7% w?), s=1,...,5, (2.7)

so that
Ls(T)(¢) = Sr(r#p ATHWw®) V¢ € D" H(B").

Notice that by (2.4) we have
OLs(T)L B™ = (—1)" 14 ((0G7) L 7% w®) Vs=1,...,5.
Finally, setting

ST,sing =T - GT - ZLS(T) X Vs (28)
s=1
see Remark 1.4, it turns out that St g is nonzero only possibly on forms w with non-zero vertical
component, w # 0, and such that dyw(l) # 0.

Parametric polyconvex l.s.c. extension of the total variation. Following [14], Vol. II, Sec. 1.2, we
recall that the parametric polyconvex l.s.c. extension || - ||ry of the total variation integrand of mappings
from B™ to RY has the form

I€llry =€y V€ € ALR™™N  such that €% >0, (2.9)

where €% denotes the coefficient of the first component of any n-vector ¢ € A,R*™ and |€c1y| s the
euclidean norm of the component &y of { in A, 1R"® A RN . We have

Proposition 2.4 The parametric polyconver Ls.c. extension F(x,u,€): B" x RV x A, R"N — R' of the
total variation integrand of mappings from B™ into any smooth manifold Y C RN is given by

+o00 otherwise ,

where ||&||lrv is given by (2.9) and T,) is the tangent space to Y at u.
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Parametric total variation. If 7' € D, 1(B" x ))) is such that ||Tg, , < co, we denote by

N
T = ||T||51,1 LT

the Radon-Nikodym decomposition of 7" with respect to the £; ;-norm, T' being identified with the RI+N7.
valued linear functional

T:= (T (T9)gnn), i=1,...n, j=1,...N,

where _ ~ e
T(¢) :=T(pdx),  TY(¢):=T(¢pdx’ Ady'), ¢eC(B"x)).

Definition 2.5 The parametric variational integral associated to the total variation integral is defined for
every Borel set B C B™ by

Fia(T, B x V) = /B 7). T @) diT e, (2

where F(z,u,&) is given by (2.10), and we let F11(T) = F11(T,B" x ).

Gap phenomenon. If T € D, 1(B™ x )) is the weak limit of a sequence {G,,} of graphs of smooth
maps {ux} C CY(B",Y) with equibounded W'l-energies, since Fi1(Gy,) = ||Duk|z1, by the lower
semicontinuity of Fi 1 with respect to the weak convergence in D,, ; we infer that F; 1(T") < co. Moreover,
if T decomposes as in (2.6) on the whole of D™!(B™ x ), i.e., the singular part St sin, defined in (2.8)
vanishes, and if the Ls(7)’s are i.m. rectifiable currents, an explicit formula can be obtained. However,
similarly to the case of dimension n = 1, a gap phenomenon occurs. More precisely, in general for every
smooth sequence {ux} C C*(B",Y) such that G,, — T weakly in D,, 1(B™ x ) we have that

hkminffl,l(Guk) > .7:171(T) +C

— 00

for some absolute constant C' > 0, see Remark 1.5.

Vertical homology classes. As in Definition 1.6, we are therefore led to consider wertical homology

equivalence classes of currents satisfying the same structure properties as weak limits of graphs of smooth
maps uy : B" — ) with equibounded total variation, supy, ||Dug|/p1 < co. More precisely, we say that

T~T < TwW) =T(w) Vwe Z"Y(B"xY). (2.11)
Moreover, we will say that T, — T weakly in Z, 1(B" x Y) if Ti(w) — T(w) for every w € Z™1(B™ x Y).

Definition 2.6 We denote by & 1 —graph(B™ x Y) the set of equivalence classes, in the sense of (2.11), of
currents T in Dy, 1(B™ x V) which have no interior boundary,

oT =0 on 2" “Y(B"x)),

finite & 1-norm, i.e.
T, = sup{ 706 |10 € 228" x D).l <1} < o0,
and decompose as
T=Gr+Sr, Sr= iLS(T) Xy on ZMU(B"x D),
s=1

where Gp € BV —graph(B™ x Y), see Definition 2.1, and Lg(T) is an i.m. rectifiable current in R,_1(B™)
for every s.
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Remark 2.7 If T ~ T, in general G # Gr. However, the corresponding BV-functions coincide, i.e.,
u(Gr) = u(Gg), see Definition 2.1. This yields that we may refer to the underlying functions ur €
BV (B™,Y) associated to currents T in & ; —graph(B” x Y).

Jump-concentration set. Moreover, if £(T) denotes the (n — 1)-rectifiable set given by the union of the
sets of positive multiplicity of the Ls(7T)’s, we infer that the union

Jo(T) i= Ju, UL(T) (2.12)

does not depend on the choice of the representative in 7. As in dimension one, the countably H"!-rectifiable
set J.(T) is said to be the set of points of jump-concentration of T.

Restriction over points of jump-concentration. Let T € & 1 —graph(B™ x )) and let vp : J.(T) —
S"~1 denote an extension to J.(T) of the unit normal v,, to the Jump set J,,. Forany k=1,...,n—1,

n—=k
let P be an oriented k-dimensional subspace in R™ and P := P+Z - Aiv; the family of oriented k-planes

parallel to P, where X := (A1,...,\,_1) € R"* span(vi,...,v,_ 1) being the orthogonal space to P. Since
T has finite £; ;-norm, similarly to the case of normal currents, for £ ¥-a.e. X such that Py N B™ # (), the
slice T L= 1(Py) of T over m~1(Py) is a well defined k-dimensional current in &; ; —graph((B" N Py) x ))
with finite &; ;-norm. Moreover, for any such A we have

J(TLm Y Py)) = J(T) N Py in the H* 1-a.e. sense,

whereas the BV -function associated to T'L_ 7w~ (Py) is equal to the restriction ug|p, of ur to Pyx. Therefore,
in the particular case k=1, as in Sec. 1 the 1-dimensional restriction

Ta(TLa ' (P))L{z} x V) € D1(Y) (2.13)

of the 1-dimensional current T'L w~!(Py) over any point x € J.(T) N Py such that v7(x) does not belong
to P is well defined. In this case, from the slicing properties of BV -functions, if © € (J.(T)\ Ju,) N Py we
have ur|p, (¥) = ur(z). Moreover, if z € J,, N Py, the one-sided approximate limits of ur are equal to
the one-sided limits of the restriction ug|p,, i.e.

u;‘PA (z) =uf(z) and U py () =up(z),

provided that (v, vy, (z)) > 0, where v is an orienting unit vector to P, compare Theorem 3.2. We finally
infer that for H" l-a.e. point x € J.(T) the 1-dimensional restriction (2.13), up to the orientation, does
not depend on the choice of the oriented 1-space P and on A € R™™! provided that = € Py, and vp(z)
does not belong to P. As a consequence we may and do give the following

Definition 2.8 For H" '-a.e. point x € J.(T), the 1-dimensional restriction Ty (T L {z} x V) is well-
defined by (2.13) for any oriented 1-space P and X € R"™1 such that x € Py and (v,vr(x)) > 0, where v
is the orienting unit vector to P.

BV-energy. The gap phenomenon and the properties previously described lead us to define the BV -energy
of a current T € & 1 —graph(B” x V) as follows.

Definition 2.9 For H" '-a.e. point x € J.(T) we define T'r(x) and Lr(z) by (1.5) and (1.6), respec-
tively, where this time Tu(T L {z} x V) is the 1-dimensional restriction given by Definition 2.8.

Definition 2.10 The BV-energy of a current T € &1 —graph(B™ x Y) is defined for every Borel set
B CB" by

E11(T,BxY):= / |Vur(z)|de + |Dur|(B) +/ Lr(x)dH"(z).
B J.(T)NB

We also let
5171(T) = 5171(T7 B™ x y) .
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Of course, if T = G, is the current integration of n-forms in D™!(B" x ) over the graph of a smooth
Whl_function u: B™ — Y, then
&1a(u) = &11(Gu) = [|Dul|pr .

Definition 2.11 We denote by cart}(B™ x Y) the class of currents T in &1 —graph(B™ x V) such that
51,1(T) < 00.

Lower semicontinuity. Using the lower semicontinuity result in dimension n = 1, see Theorem 1.7, and
applying arguments as for instance in [7], in Sec. 3 we will prove in any dimension

Theorem 2.12 Let n > 2 and T € cart»(B"xY). For every sequence of smooth maps {ux} C C*(B",))
such that G, — T weakly in Z,1(B™ x )), we have

liminfé'l,l(uk) Z 51,1(T) .

k—oo
A strong density result. In all the results stated below, we shall always assume that the first homotopy
group m1(Y) is commutative. We shall prove in any dimension n > 2

Theorem 2.13 Let T € cart'(B"™ x ))). There exists a sequence of smooth maps {uy} C C*(B™,Y) such
that Gy, — T weakly in Z,1(B™ xY) and &11(ug) — E11(T) as k — oo.

More precisely, in Sec. 4 we will prove

Theorem 2.14 Let T € cart»}(B" x V). We can find a sequence of currents {Ty} C cartV1(B™ x Y) such
that
T, =T weakly in Z,1(B" xY), E11(Tx) — &E11(T)

and for all k the corresponding function uy := ug, in BV (B™,Y) has no Cantor part, i.e, |Dui| =0 for
every k. Moreover, uy weakly converges to ur in the BV -sense and

lim [Dug|(B") = [Dur|(B").

In Sec. 5 we will then prove

Theorem 2.15 Let T € cartV!(B™ x V) be such that the corresponding BV -function ur € BV (B",))
has no Cantor part, i.e, |D%ur| = 0. There exists a sequence of smooth maps {uy} C C*(B™,)) such that
Gy, — T weakly in 2, 1(B" xY) and the energy &11(uk) — E11(T) as k — 0.

By a diagonal argument we then clearly obtain Theorem 2.13.

Relaxed total variation functional. As a consequence, setting
E:(T) = inf{likminf/ |Dug|dx : {ux} € CH(B™,Y), G, —T weaklyin Z,(B" x y)} ,
— 00 Bn

by Theorems 2.12 and 2.13 we conclude that
E11(T)=E1(T) VT e cart" (B x V).
Properties. By Theorems 2.12 and 2.13 we readily infer the following lower semicontinuity result.

Proposition 2.16 Let {T}} C cart""!(B™ x Y) converge weakly in Z,1(B" x Y), T, — T, to some
T € cartb(B"™ x V). Then
51,1(T) S hkmlnf 8171(Tk) .
— 00

As a consequence of Theorem 2.13, in the final part of this section we prove that the class of Cartesian
currents cart!(B™ x ) is closed under weak convergence with equibounded energies.

Theorem 2.17 Let {T}} C cart™(B™ x Y) converge weakly in Z,1(B™ x Y), T, — T, to some T €
D,,1(B" xY), and supy, E11(Ty) < oo. Then T € cart™ (B™ x )).
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By the relative compactness of & j-bounded sets in D, 1(B™ x V), we then readily infer the following
compactness property.

Proposition 2.18 Let {Tj} C cart®!(B™ x Y) be such that sup, & 1(Tx) < oo. Then, possibly passing to
a subsequence, T, — T weakly in Z,1(B™ x Y) to some T € cart"!(B™ x ).

PROOF OF THEOREM 2.17: By Theorem 2.13, and by a diagonal procedure, we may and will assume that
T, = Gy, for some smooth sequence {uy} C C1(B™,Y). As a consequence, by the first part of this section
we infer that T' satisfies (2.4) and (2.6). It then remains to show that the Ls(T)’s in (2.6) are i.m. rectifiable
current in R, _1(B"). In this case, in fact, since ||T|g, , < oo, we obtain that T € &£,; —graph(B" x ))), see
Definition 2.6, and hence, by lower semicontinuity, Theorem 2.12, and the condition supj &1,1(Gy,) < o0,
we conclude that & 1(T) < oo, which yields T' € cart’!(B™ x ), according to Definition 2.11. To prove
that the Ls(7T)’s are i.m. rectifiable currents we make use of the following slicing argument.

Asbefore, let P be an oriented 1-space in R” and { Py} ecrn-1 the family of oriented straight lines parallel
to P. For H" l-a.e. X the slice TL 7w~ 1(Py) of T over w=1(Py) is well defined on ZL1((B"NPy) xY) and
Gy, L 1(Py) belongs to cart™!((B"NPy) xY) for every k. Moreover, since Gy, — T weakly in Z, 1, for
H"1-a.e. A, passing to a subsequence we have G, L7~ (Py) = T L 7w }(Py) weakly in Z; 1((B"NPy\) xY),
with sup, M(G,, L7~ 1(Py)) < 0o, so that by the closure-compactness of cart!:! on 1-dimensional domains,
we infer that T'L w~1(Py) € cart™((B" N Py) x V).

Therefore, the 0-dimensional slices Ls(T)L 7~ (Py) are rectifiable in Ro(B™ N Py), as T L7~ (Py)
belongs to cart!((B" N Py) x V) and Ls(T)L7 1 (Py) = Lo(T L7 1(Py)). Since the L(T)’s are flat
chains, see Lemma 2.19 below, arguing as in [12], by White’s rectifiability criterion [23], see also [3], we infer
that Ls(T) is an i.m. rectifiable current in R,_1(B™) for every s, as required. O

Lemma 2.19 The Ls(T)’s are flat chains in B™.

Proor: By Theorem 2.13, we may and will assume that 7T is the weak limit of G,, for some smooth
sequence {uy} C C1(B™,Y) such that supy ||uk|w1.1 < co. The proof follows the same lines as the proof of
[17, Thm. 2.15]. Since uj € BV (B™,Y) is smooth, for all k¥ and s we infer that Ls(Gy, ) = 74 (G, L T w®)
is a flat chain with equibounded flat norms. Recall that the flat norm F(LS(Guk)) of Ls(Gy,) is given by

F(LS(Guk)) 1= sup{Ls(Gu,)(¢) | ¢ € Dn_l(Bn)v F(¢) <1},

where

P(0) = max{ sup )], sup o)) |

reBn

Next, since up — ur weakly in the BV -sense, we deduce that {Ls(Gy, )(¢)}x is a Cauchy sequence for every
¢ such that F(¢) < 1. If F*~1(B") denotes a countable dense subset of smooth forms ¢ in D"~1(B")
satisfying F(¢) < 1, by a diagonal argument we infer that

sup{ (Ls(Gu,) — Ls(Gu,)) (9) | ¢ € F*7H(B™)}
is small for k, h large. This yields that {Ls(Gy, )} is a Cauchy sequence w.r.t. the flat norm, i.e., that
F(Ls(Gu,) = Ls(Gu,)) = sup{(Ls(Guy) — Ls(Gu,))(9) | ¢ € D"7H(B"), F(¢) <1}

is small for k, h large and therefore, due to weak convergence of G, to T, that R := my(TL7%w?) is a
flat chain. Similarly, by using a trivial extension of Theorem 6.7 below, we infer that Dy := 74 (Gr L 7#w®)
is a flat chain and hence, since (—1)""!Ls(T) = Rs — D5, compare (2.6) and (2.7), we conclude that Ls(7T')
is a flat chain, too. O

3 Lower semicontinuity

In this section we prove Theorem 2.12, by recovering it from the one dimensional case. To this aim, we recall
the following properties from BV -functions theory, compare [2, Sec. 3.11].
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One-dimensional restrictions of BV -functions. Let 2 C R" be an open set. Given v € S"! we
denote by m, the hyperplane in R™ orthogonal to v and by 2, the orthogonal projection of Q on m,.
For any y € Q, we let

Qy={teR|y+treQ}

denote the (non-empty) section of 2 corresponding to y. Accordingly, for any function u: B C Q — RY
and any y € B, the function uy : By — RY is defined by
uy (t) = u(y +tv).

Proposition 3.1 Let u € L*(2,RY). Then u € BV (Q,RY) if and only if there exist n linearly independent
unit vectors v; such that ul' € BV(Q,RN) for L -a.e. y€Q,, and

/ Du () der (y) <o Wi=1,...n.

127

Theorem 3.2 If u€ BV(Q,RY) and v € S"7!, then

(Du,v) = L"'LQ, ® Du, (D%u,v) = L 'L Q, @ D*ul,
(D u,v) = L1 LQ, @ D'ul, (D%,v) = L1 Q, @ DU
In addition, for L 1-a.e. y €, the precise representative u* has classical directional derivatives along
v Ll-a.e. in Qy, the function (u*)Z is a good representative in the equivalence class of uy, its Jump set is
(Ju)y and
ou*
ov

Finally, o(t) := (v,v,(y +tv)) #0 for L t-a.e. y € Q, and L'-a.e. t € Qy, and

(y+tv) = (Vuly + tv),v) for L'-a.e. t € Q.

1i£rt1 u*(y + sv) = ut(y + tv), li%rtl u(y+sv)=u (y+tv) if ot)>0
S S
lifnu*(y +sv)=u (y+tv), lilTrnu*(y +sv)=ut(y+tv) if o(t)<0.
slt st
One-dimensional restrictions of Cartesian currents. If T € cart''!(B",)), taking ) = B", for any

v € 8" 1 the 1-dimensional slice
T; = TL(B")Z x Y

defines a Cartesian current T, € cart™!'((B™)) x V) for L '-a.e. y € (B"),. Also, by Theorem 3.2 and

by Definition 2.10, we infer that the BV-energy of T}/ is given for Lrlae. ye (B"), by

Ea(Ty), Ay x V) = / (Vur(y +tv),v)|dt+ D (ur)y[(A)) + > Lo(y+tv) (3.1)
Ay te(Jo(T)NA)Y

for any open set A C B™.

PROOF OF THEOREM 2.12: We follow [2, Thm. 5.4], [7]. Since {ux} C C'(B",Y) is such that G,, — T
weakly in Z, 1(B™ x V), for L' 1-a.e. y € (B"), we infer that

(Guk)z -1y weakly in 2y 1 ((B"), x)),

where
(Guk)z = G(uk);j , (uk)’;(t) =up(y+tv) € Cl((Bn);y).

Therefore, arguing as in the proof of Theorem 1.7, we readily infer that

Eva(Ty, Ay x V) < limint € (wn)y, AY) (3.2)
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for any open set A C B™, where
Era((ur)y, Ay) = E11(Gupyy, Ay x V) = / |(Vug(y + tv),v)| dt .

We now denote by v an extension to the countably H"™ !-rectifiable set J.(T) of the outward unit
normal to the Jump set J,,.. By the coarea formula, for any v € S”~! and any open set A C B", we have

/ (@), v)| f(x) dH™( / f(y + tv)dLm ()
Je(T)NA ote(J, (T)OA)”

for any Borel function f: J.(T)N A — [0,40c]. Moreover, Theorem 3.2 gives

[uias = [ ([ wenioia) o)

(DCur, |(A) = / D€ (ur ) |(AY) L™ ().
Therefore, setting for every open set A C B® and v € S"!
(T, A x V,v) = / (Vur, )] dz + |(DCur, v)|(A) + / (@), )| L1 (z) dH"(z),
A J.(T)NA

by (3.1) we obtain the identity
EL1(T, A x Y,v) = / E1(TV, AY x V)AL (y). (3.3)

Similarly, for every k we obtain

Eia(u, A v) = /|Vuk, >|da:f/ Era((ug)y, Ay)dLm™ Yy). (3.4)

v

We also notice that
5171(T,A X y, l/) S 5171(T7A X y) and 51,1(uk,A, l/) S 51,1(uk,A) .

Since

lim </ |(ur)y — (ur)y | dt) AL (y) = khm lup — ur|dz =0,
v \J Ay —Ja

k—oo J .
we can find a sequence {k(h)} such that

likm inf & 1 (ugk, A,v) = hlim E11(ugny, A, v)

and (G, )y converges to T,/ weakly in Z;1(A4j x V) as h — oo for L7 lae. y € m,. The lower
semicontinuity property in dimension one, see (3.2), implies then

AZ) Z 51,1(T;aAZ X y)

lihniiorgf Era((ur(ny)y s

for £Lr71-a.e. y € ,. Integrating both sides on m,, using Fatou’s lemma and (3.3), (3.4), we get

liminf & 1 (ug, A,v) = lim &1 (uppy, A,v) > E11(T, A x Y, v).
k—o0 h—oo

Let A := L" + Ly(:)H" 'L J.(T) + |Dr| and let {r;} C S™ ! be a countable dense sequence.
Choosing an L"-negligible set £ C B™ \ J.(T) on which |D%ur| is concentrated, we can define

[(Vur(z),v;)] if zeB"\(EUJ,(T))
oila) = { Wl Cr(o) A€ Je(T)
ur, Vi .

W(I) if zeFE
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and obtain from (3.3) that
1i]€minf5171(uk,A) > hkmlnf 5171(uk, A, l/i) > 5171(T,A X y, I/i) = / ©; d\
— 00 — 00 A
for any ¢ € N and any open set A C B™. By the superadditivity of the liminf operator, we obtain that

for any finite family of pairwise disjoint open sets A; C B™. We now recall that by [2, Lemma 2.35]

sup id/\:sup{ / id)\},
/B’" i€EN 4 Z A; v

il
where the supremum is taken over all finite sets I C N and all families {A4;};er of pairwise disjoint open
sets with compact closure in B™. We then conclude that

lim inf 51’1 (uk, Bn) > / sup @; dA
k—oo Bn ieN

= / |Vur(z)| de + |DcuT|(B") + / Lr(x)dH"(z)
Bn Jo(T)
= 5171(T7 B™ x y) .

4 The density theorem: part I

In this section we prove Theorem 2.14. To this aim we first recall that every T € cart:!(B" x)) decomposes
as

T =Gr+ Sr, Sr =Y Li(T)xv on Z“Y(B"x)Y),
s=1

see Definition 2.11. Let u = ur € BV(B™,Y) be the BV-function associated to T, according to Remark 2.7.
For every Borel set B C B" we have

Ei1(T,BxY) = / |Vu(z)|de + |Dcu\(B) +/ Lr(z)dH" (z),
B Je(T)NB

where J.(T), T'r(z), and Lr(x) are given by (2.12), (1.5), and (1.6), respectively, compare Definition 2.10.

Slicing properties. Similarly to the case of normal currents, for every point zy € B™ and for a.e. radius
r € (0,70), where 2rq := dist(zo, dB™), the slice

<T, dfbovr> = <GT’dmovr> + <ST’dzovr> s

where d,,(z,y) := |z — x|, is a well-defined Cartesian current in cart'!(9B,(x¢) x )). More precisely,
let w(4y) = woB, (x,) be the restriction of u to B, (xp), which is a function in BV (9B, (x¢),)) with
jump set satisfying Jy, , , = Ju N 0Br(zo) in the H" la.e. sense. The slice (Gr,dy,,r) is an (n — 1)-
dimensional current in BV —graph(dB,(x¢) x V) such that its action on forms in D"~V1(dB,.(zg) x V),
according to a straightforward extension of Definition 2.1, depends on the restriction wu(,,,) and on the
1-dimensional integral chains ~, in Y associated to the current Gr € BV —graph(B" x }), so that in
particular 0v, = d,+ (@)~ o, - ) for H" l-ae. z€.J Also,

Wi
(r,@0) Ur,ag) (rmeo)

s

(S7,dsy, 1) = Z(}LS(T),éIO,ﬂ X Vs on Z"VMYOB,.(xz9) x V),

s=1
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where §,,(z) := |x — x0|. Finally, letting

J((T,dyy, 1)) = J,

U(r,zg)

UL{T,dzy,7)),

where L((T,dy,,r)) denotes the (n — 2)-rectifiable set given by the union of the sets of positive multiplicity
of the (Ls(T),8.,,7)’s, we have, in the H" 1-a.e. sense,

J((T,dyy, 7)) = Jo(T) N OB (x0) ,

where J.(T') is given by (2.12). In this case we say that r is a good radius for T at xg. Moreover, by the
argument preceding Definition 2.8, we also infer that for any good radius

Li1.d,,.r) (@) = Lr(2) for H" t-ae. © € J.((T,dy,, 7)) .

As a consequence, according to Definition 2.10, we infer that the BV-energy of (T',d,,,r) is given by

E11((T,dyy,7), 0B, (z0) X V) = / IV ey | AH™ ™ + | DEu| (OB, (o))
aB,,.(wo) (41)

+ Lr(x) d’H"_Q(x) ,
J(TYNOB,(x0)

where D, and V., denote the distributional derivative and the approximate gradient w.r.t. an orthonormal
frame 7 tangential to 9B, (xo), respectively.

PROOF OF THEOREM 2.14: We make use of an inductive argument on the dimension n. More precisely, we
will assume that Theorem 2.13 holds true in dimension n — 1, and we use Theorem 1.7 in the case n = 2.
Therefore, taking into account the slicing properties previously outlined, we may and will assume that for
every xg € B" and for a.e. radius r € (0,r(zg)), where r(zg) > 0 is suitably chosen, by the inductive
hypothesis we find a sequence of smooth functions {vy} C C1(9B,(z0),)) such that

Gy, — (T, dyy, 1) weakly in = Z,_11(90B,(x9) X V)

and
/ |Dyvg| dH™ ™Y — E11((T, dyy,7), 0By (z0) X V) . (4.2)
6Br,~(220)

In particular, we have that vy, — u(.,,) weakly in the BV-sense. We divide the proof of Theorem 2.14 in
six steps.

Step 1: Definition of the fine cover F,,. We define for every m € N a suitable fine cover F,, of B™\ J.(T)
consisting of closed balls of radius smaller than 1/m. To this aim, let pg and pj. be the mutually singular
Radon measures on B" given for every Borel set B C B™ by

ja(B) = / Vur(@)|dz + [DCur|(B),  pye(B) = / Lo(a)dH" (x). (4.3)
B J.(T)NB

Definition 2.10 yields that the BV-energy of T° decomposes into the ”diffuse” and ”jump-concentration”
part, i.e., setting
KT ‘= Hd + HJc

for every Borel set B C B™ we have
&1 (T, B x Y) = pr(B) = pa(B) + pye(B) -

By the decomposition of the derivative Dug, compare [2, Prop. 3.92], we infer that for any point zy in
B"\ J.(T) we have

lim i(IJlf BT 2riTo)) (Br(0))

— lim inf 2(Br(@0))

rn—1 r—0 rn—1

=0.
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Moreover, since pj. = pijeL Jo(T), where J.(T) is a countably H"~!-rectifiable set, and ur(J.(T)) < oo,
for every m € N we find a closed subset J,,, C J.(T) such that

1
Im C Im+1 and pr(Je(T)\ Im) = tge(Je(T)\ Im) < o Vm.
This yields in particular that
1
I D up|(Juy \ Jim) < —.

Setting now

Q= B"\ J.(T),

Jm being closed, for every zo € § there exists a positive radius r = r(zg, m), smaller than the distance of
Zo to the boundary OB™, such that for every 0 < r < r(xg,m)

Br({L‘()) NJp=0.

Finally, by (4.1), if xg € Q, for every 0 < r < r(xg, m) we find a good radius p € (r/2,r) such that

9 _
51,1(<T7 dzo,p>,3Bp(:U0) X y) < ;51,1(T7 Br(xo) X y) .

We then denote by F,, the union of all the closed balls centered at points zg € 2 and with good radii
0 < r < min{r(zg,m)/2,1/m} such that

2 _
E11((T,dyy, 1), 0Br(z0) x V) < - E11(T, Bar(x0) X V) (4.4)
and
1 — 1
W E11(T, Bar(x0) x V) < oot (4.5)

The above construction yields that F,, is a fine cover of €2 such that
UJFm € B\ .

Step 2: Covering argument. We apply the following extension of the classical Vitali-Besicovitch covering
theorem, see e.g. [2, Thm. 2.19], with respect to the positive Radon measure

=LY+ pr = L" + pg + frye,

where L™ is the Lebesgue measure and pg, pj. are given by (4.3). In the sequel, for any closed ball B we
will denote by B the closed ball centered as B and with radius twice the radius of B, i.e.,

B := Ezr(xo) if B = Er(x(]) .

Theorem 4.1 (Vitali-Besicovitch) Let Q@ C R™ be a bounded Borel set, and let F be a fine cover of
made of closed balls. For every positive Radon measure u in R™ there is a disjoint countable family F' of

F such that
M(Q\U]:/) =0.

Moreover, we have

> uB)<Cp(Q),

BeF’

where C'= C(n) > 0 is an absolute constant, only depending on the dimension n.
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PrOOF: Following the notation in [2, Thm. 2.19], setting Ag := , for every h € Nt at the h'" step we
may and do apply the Besicovitch theorem [2, Thm. 2.17] by selecting the fine cover of Ap_; given by all
the closed balls B of F such that the corresponding balls B are contained in Ay _1. Besicovitch’s theorem
yields the existence of a countable family made of closed balls B which do not intersect more than £ times
and such that their doubles B do not intersect more that 7 times, where £ = £(n) and n = n(n) are
absolute constants. Therefore, the disjoint family G; satisfies

S u(B) < p(Anm)

Begy

whereas, letting Ap, := Ap_1 \ |JGn, we have

1
((Ap) <6 p(Ap-),  d=1- % <

Therefore, since u(Ay) < 8" - u(Ag) for every h, we obtain

Begy,
and finally
DouB)=> > uB) <Dy 9" @)
BeF! h=1 B€G, h=1
which yields the assertion, by taking C :=n/(1 — 9). |

By Theorem 4.1 we obtain for every m a suitable denumerable disjoint family F,, of closed balls
contained in B™\ J,,, and with radii smaller than 1/m. We finally label

Fn={Bi}i2,, Qm=UB
j=1
and notice that 1
re(Qm) < pge(B™\ Jm) < - and wa(B™\ Q) =0. (4.6)

Step 3: Smoothing of the boundary data. If B; = B,(xo) € F/,, arguing as in Gagliardo’s theorem [11,
Thm. 1.IT], that states the existence of a Whl-extension of any L!-function, we are able to modify the
boundary datum (T,d,,,r) to a smooth Whl-map with values into ). This can be done by paying an
arbitrary small amount of energy.

More precisely, due to the inductive hypothesis, see (4.2), we find a sequence of smooth maps {v}(f )} C

WUL(8B;,Y) such that [[0f) — wop,|l11o8,) — 0,

G o) — (T,dy,,7) weakly in 2,1 1(0B; x Y) (4.7)
as h — oo and
| D1 < 611 (T i), 085 < 9) - (14271 (45)

J

for every h. Taking k sufficiently large, we now define a map W,gj) € Wl’l(A;k,RN), where 0 < p, < r
and A; denotes the annulus

A7 = Er(xo)\Bﬂ(xO), O<p<r,

in such a way that W,Elg Br(zo) = WOB, (wo) in the sense of traces,

1 r—x 1 r—Xx
W’?)(“”k |xx§|) :”’?)(“"0“ |xx§|)
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and the energy [ an \DW(j )| dx is arbitrarily small, if px " r sufficiently rapidly.

Ph+1

The function W(j ) is obtained by parametrizing in a sequence of annuli of the type Aj, ", for a suitable

sequence {pp}n>k of radii pp /" r, the affine homotopies
o + A=t =t 0], pi=le—al,
where ¢,(p) is the affine map such that t,(pn) = 1 and t5(pp+1) = 0. Therefore, if we show that for every
t€1[0,1] and h > k the L*-distance of tvg) +(1-1%) v;H)_l from Y is small, we find that
dist(W,gj)(x), V) < e for L™"-a.e. z € Ap, (4.9)

and hence we may and do define w( D= =1l 0 W(J) on A7 .
given by Remark 1.9.

To prove (4.9), due to the L!'-convergence and to (4.8), by applying Poincaré inequality we find an
absolute constant ¢, > 0 such that, if k is sufficiently large, for H" '-a.e. x € dB,(x) and every h > k

we have
/ 0 (@) — u(y)| dH" ()
OB, (z0)

where II., is the Lipschitz projection on Y

< o (@) = v @ - () + 1oy = ull L2 o8, (o)
OB, (z0)
<cpr |DTv,(f)|dH"_1 + Hv,(f) — u|| L1 (8B, (z0))
0B, (x0)

S 2071 r- g171(<T7 dwO,T>,6Bj X y) .
As a consequence, by (4.4) and (4.5) we obtain

rn—l

[ -l ae ) <2 e T
8B, (z0)

m

and hence, by convexity, for any ¢ € [0,1] we have

/ £ (@) + (1 — ) o), (2) — uly)| dH (1)
OB, (x0)

< [0 (x) = u(y)| dH" "} (y) +/ (o) () = u(y)| dH" (1)
9B, (o) 9B, (z0
< H"‘l(aBT(xo)) - €0

provided that m € N is large enough so that 2"72.¢, - 1/m < & - n - w,, where w, is the measure of the
unit n-ball. Therefore, arguing as in Schoen-Uhlenbeck density theorem [21], we obtain

dist(t v,(lj)(x) +(1- )v,(fll(gc) V) <eo for H" 'ae. € dB,(x0), (4.10)

which yields (4.9), as required.

We remark that due to the strong convergence (4.7) (4.8), the sequence {w,(j )} , this way obtained also
satisfies the boundary condition
<Gu)l(cj),dmo,7'> = (T, dy,,T). (4.11)

Finally, for future use, we extend w,(cj ) to the whole ball B; by the map w(] ). Epk (xg) — Y given by

(] i
() _ o ra)($> it ze AT 20 4.12
Wy () : { UO Dr,5) (z) if € B,._ss(x0), 2

where o =1 — pi, V(o) : A5, — AL

r—o

is the reflection map

Tr — X
)) |2 — g

77[}(RU)(I) = (*|$ —xzo|+2(r—o
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and ¢, ) : Br_25(20) — Br(xo) is the homothetic map

r
— 20

P(r,0) (x) =20+ " (x — xp).

Notice that {D](Cj ) is smooth on A”~% and that, taking o small, by the property above we may and do

r—20
assume that -
D@ (B, (x0)) < 2|Dul(By(x0)). (4.13)

Step 4: Approzimation on the balls of F/,. Let B; = B,.(zo) € F/,. Making use of arguments from [5], we
now define an approximating sequence on B;.
We first fix some notation. For any p > 0, we let

Qp = [=p,p]" CR"

denote the n-dimensional cube of side 2p and Zf) the i-dimensional skeleton of @y, so that U ZZ’l =0Q}.
Let ||z|| := max{|z1],...,|z.|}, so that

QZz{xE]R":Hngp}, 5QZ:{xER”:||xH:p}.
Ifv:Qp — RY is any given BV-function, and F is any i-face of Zﬁ), in the sequel we will denote
Er1(v, F) := |Dup|(F)

where Dv|p is the distributional derivative of the restriction vjp of v to F', and we let

Elle ZEllvF
Fexy

Recall that Y ¢ RN, and denote by
—N
By(y,e) =B (y,e)NY

the intersectiori of Y with the closed N-ball of radius € centered at y. If y € Y and 0 < ¢ < gg, we let
Uiye): RY — By(y,¢) be the retraction map given by Uy.e)(2) :=TIc 0 §(y ), where

2 if 2eB (ye)

R = T TS SR

and IL. : V. — ) is the projection map given by Remark 1.9. Of course, ¥(,.) is a Lipschitz continuous
function with Lip ¥(, .y = LipIIl. — 17 as ¢ — 0.

First, letting p = pr from Step 3, by means of a deformation and slicing argument, we may and do
define a bilipschitz homeomorphism v; : B,(z9) — @ such that [[Dyjlec < K, [|Dip; Yoo < K for some
absolute constant K > 0, only depending on n. Moreover we may and do deﬁne ¥; in such a way that

¥j(Br(z0) = QR YRE(p/2,p). (4.14)

Finally, for any given BV -function v : B,(x¢) — Y, smooth on dB,(xo), if v; : Q) — Y is the corresponding
map given by v; :=7vo wj_l, we also may and do define ; in such a way that

El’l(vj,Z;)<C~;~E171(vj,E’p+l) Vizl,...,n—27 (415)

where C' > 0 is an absolute constant, not depending on v.
Taking v = v; := @l(f) from (4.12), i.e., letting

v = a ol Q- Y, (4.16)
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by (4.8) and (4.15) we readily infer that
Ei1(v;,30) <2C K p' " &1 (T, dyy,7),0B; x V) Vi=1,...,n—1
and hence, by (4.4), that
Br1(v;,58) < Cp " &1 (T, Bar(z0) xY)  Vi=1,...,n—1. (4.17)
On the other hand, since we may assume p > r/2, due to (4.5) and (4.13), by (4.17) we also obtain

1

FEl,l(vj,z;’,) <C Vi=1,...,n, (4.18)

1
m
where in the above formulas C' > 0 is an absolute constant.

Remark 4.2 Let &, := 1/y/m. By the Sobolev embedding theorem, if m € N is sufficiently large, e.g.,
m > 462, the inequality (4.18), with ¢ = 1, yields that the oscillation of v; on the 1-skeleton E; is smaller
than e,,/2, if v; is smooth. Therefore, the image v;(X}) is contained in a small geodesic ball By (y;,&m/2)
centered at some given point y; € Y. Actually, since the total variation of 1-dimensional BV -functions
estimates the oscillation, we infer that the above property holds for BV-function v;, provided that in (4.18)
we consider the total variation of the 1-dimensional restriction of v to Ell). We also notice that

lim e, -m=+00
m——+oo

whereas, on account of Remark 1.9,

Lip¥(y, e, = Lipll,, — 1+ as m — +00.

The case n = 2. In case of dimension n = 2, we define wj : Q% — By(yj,em) by

wj =W (y, e,,) 005,

where v; is given by (4.16), so that
|Dw; [(Q3) = E11(w;,Q%) < (LipIL.,) - By1(vy,Q2).

Remark 4.2 yields that w; agrees with v; on the boundary of Qf). Moreover, letting R := p — o, by (4.12),
(4.14) and (4.16) we infer that w; is smooth on @2\ Q% and that

w](x) = \Ij(yj,ﬁm) © (u o ¢(T7U)) © wj_l(x) Vl‘ € Q2R .

Since the image of Q% by wj; is contained in the geodesic ball By(yj,em), E)Vy means of a convolution
argument we can approximate w; on Q% by a smooth sequence o) Q% — B (y;,em) which converges
in the L!-sense to wj)q2, and with total variation converging to the total variation |Dw;| (Q%). We finally set
wéj) =1l o vgj) : Q% — Y, see Remark 1.9, so that clearly wéj) — w,; weakly in BV( %,RN), whereas

Ei1(w?,Q%) < (LiplL.,,) - E1,1 (v, Q%)

so that 4
limsup Ey 1 (w, Q%) < (LipTl., )2 - E11(vj, Q%). (4.19)

e—0
Moreover, by suitably defining the convolution kernel, we may and do assume that the traces are equal, so
that wéj‘ E))Q% = US‘ gQ% = Wj|aQ2,- Most importantly, by the construction we may and do assume that the
boundaries of the graphs agree on 9Q%, so that

aGw(j) LaQ% X 3) = 6GU<J-) LGQ% X y = 8ij LaQ% X y . (420)
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Finally, letting ng) =w; on Q;ﬁ \ Q%, we define u,(g) : Br(x9) — Y by

W ()= L w8 0i(@) i 2 €By(w)
k w (x) if 2 € Bn(z) \ Bylzo),

where p = pr and e \, 0 along a sequence.
The case n > 3. For 0 := p(1 —n), where 1:=1/q and q € NT, we let ®, s : Q) — Qj be given by

Q5 () =(1-n)x.

Note that ' _ _
El,l(vj © é(_p%(;)a 226) = (1 - ’r])7471 El,l(vjv Zzp) ) (421)

so that (4.18) yields

1 e~
FE]J(’U]‘ o (b(p%é)’ Eé) S C

Define w; : QF — By (yj,em) by

Vi=1,...,n. (4.22)

1
m

S URTIRT (4:23)
where v; is given by (4.16), so that

|Dw;|(QF) = Br1(w;, QF) < (LipIL.,,) - Eva(vy 0 @[5, QF) -

Remark 4.2 yields that w; agrees with v; o @&15) on the 1-skeleton X} of Q%. Moreover, letting R :=
(p—0)(1 —mn), by (4.12) and (4.14) we infer that w,; is smooth on Qf \ Q% and that

wj(z) =Yy ey 0 (W0 Pprgy) © %—1 o (I)(_p%é) (x) VreQp.

Now, since the image of Q% by w; is contained in the geodesic ball By (y;,em), as in the case of dimension

. j =N . .
n = 2, we approximate w; by a smooth sequence véj ). Q% — B (yj,em) which converges in the L'-sense to

wj|Qn » With total variation converging to the total variation |Dw;|(QF). Setting wt = Hemovgj) QL =Y,

we have wt) — w; weakly in BV (Q%, RY), whereas

Ei(w?, Q) < (LipIl,,) - Era (v, QR),
so that again we have

limsup By 1 (wl, Q) < (LipIle,,)* - Era(v; 0 @05, QF). (4.24)

e—0

Moreover, we may and do assume that the traces of ng) and w; on 0Q% are equal, wgan = WjjaqQn,
R

and that the boundaries of the graphs agree on 0Q%, i.e.,

G i) LOQR XY =0G,, LOQR X Y. (425)
Finally set wéj) =wj; on QF \ Q%.

In order to extend the approximating map to Q} \ QF, we use an argument from [5]. If S, is one of the
(n — 1)-faces of X727', where h = 1,...,2n, we may and do define a partition of Sy, into (¢ + 1)"~" small
(n — 1)-dimensional ”cubes” C}, in such a way that the following facts hold:

i) If [Cy )i denotes the i-dimensional skeleton of the boundary of Cj, the restriction of v; to [C )i
belongs to W1, for every i = 1,...,n — 2; in particular, v; is continuous on the 1-skeleton [C} p];.
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ii) If n =3, we have

(q+1)?
Z E1,1(’Uj, 80lvh) <K (El,l(vj, 6Sh) + %El,l(vj, Sh)) , (4.26)

=1
where K > 0 is an absolute constant.

iii) If n >4, and [Sy]; denotes the i-dimensional skeleton of Sy, for every i =1,...,n —2 we have

(q+1)" !

S Eraloy. [Cual) < K- Z() By (03, 1S)) (4.27)

=1

where K > 0 is an absolute constant.

iv) All the Cjj’s are bilipschitz homeomorphic to the (n — 1)-cube [—p/q,p/q)"~" by linear maps fi
such that ||Dfinllec < K, [Df;lle < K.
Moreover, the inequality (4.18), with ¢ = 2,...,n — 1, yields that if m € N is sufficiently large, and ¢

satisfies
< 1 Em m
< ————="—F 'm,
5(n—2)C 2

we may and do define the partition of S} in such a way that

E11(vj, [Crph) < 7’“ Vi=1,....,(¢g+ )", VYh=1,...,2n. (4.28)
Therefore, in the sequel we will take
q = integer part of (C - &, - m) (4.29)
for some fixed constant C' > 0, say C :=1/(12(n — 2) C).

Remark 4.3 Again by Remark 4.2, since the image v;(2}) is contained in By (y;,&m/2), the inequalities
in (4.28) yield that the image of [Cy]1 by v; is contained in the geodesic ball By(y;,ée.,) for every I and

h. By (4.23), this yields that the function w;, and hence the wéj)’s, agrees with v; o @@15) on the 1-skeleton
i}s of 0Q% given by
+1)"7
X5 = ‘I’(p,s)(U U [Cinl >
h=1 I=1

Finally, if m, ) : Q) \ @F — 0Q) is the projection map 7, s)(z) := px/||z||, setting

o2n (q-‘rl)nil
M(p’(g) = 7T(7p}6) o (I)(p#;) ( U U 8Clyh>

h=1 =1

it turns out that the (n — 1)-skeleton
Nips) = Mo U 0Qp U OQ5

is the union of boundary of n-dimensional "cubes” @, satisfying Cj, C 9Qy for every ! and h, that
partition Q7 \ Qf. Moreover, each Q; is b1hpsch1tz homeomorphic to the n-cube [—p/q, p/q]™ by linear

maps fl r such that HDfl rlleo < K, ||Dfl 'loe < K, where K > 0 is an absolute constant.

We now extend the approximating map to the interior of @) \ Q%, first considering the simpler case
n=3.
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The case n = 3. We first set w; :=v; on GQE’) and
wj 1= vj o m, 5 () on M, s .

By Remark 4.3, the function w; is smooth on the 2-skeleton N, ). We then extend w; to the whole of
Qf’, \ Qg by means of a radial extension on each cube @y, i.e., by setting

(@) =, [ P.W»
wj(z) : wj<fz,h (q Hﬁh(x)H , x € Qup, Vi, h. (4.30)

The function w; this way constructed is smooth on the closure of Qi \ @3, up to a discrete set of points.

Moreover, denoting by C' > 0 an absolute constant, possibly varying from line to line, but not depending
on p or m, we have

E1q(wj, Qun) <C g Ei 1 (wj,0Qun) ,

whereas

B3, 0Qun) < € (Buaoy. Cua) + £ Bnalog001) )
Therefore, by (4.26), and by summing on ! and h, we estimate
P p\?
E11(w;, @3\ Q3) <C (q Er11(v5,52) + <q> E1 1 (vy, 2,1))) :
Finally, by (4.29) and (4.17) we obtain, for m > 1/C2,

Era(w;,Q3\Q3) < C E11(T, Bar(20) X V). (4.31)

m
The case n > 4. According to Remark 4.3, we first set w; :=v; on 0Q} and
-1 (31
wj = ’Uj O’]T(p75)(.’£) on W(p’g)(zé) .
To extend w; to the whole of Q7 \ QF, we argue by iteration on the dimension ¢ = 3...,n. More precisely,
if F is any i-dimensional face of [Q;]; with disjoint interior from both 0@y and 0Qy, we extend w; to

the interior of F' by means of a suitable radial extension of the boundary datum of w; on OF similar to the
one in (4.30), so that

El,l(wj,F) S C g E171(wj,aF) .

Therefore, by the construction, and for (4.27), we readily infer that
n—1 p n—i )
Bl G\ <0 (L) Bualw ),
i=1
so that by (4.29) and (4.17) we obtain again, for m > 1/C2,

E171(1Uj, QZ \ Qg) < C 5171(T,§2r(x0) X ))) . (432)

Em - M

Remark 4.4 For future use, we notice that for any n > 3 the function w; this way constructed is smooth
on the closure of @ \ QfF, up to a "smooth” closed (n — 3)-dimensional set. This yields that the graph of
wj; has no boundary in the interior of Q) \ QF, i.e.,

0Gyw, =0 on Z" MN(int(Q)\ Q) x V).
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We finally set for any n > 3

(5) : n
) (). ) w(2) i zEQ
ws (@) '_{ wj(z) if xEQ%\Q?

and define u,(fj) : Br(x9) — Y by

, ~() , : 7B
u](cj)(x) — { ZE@ o 1hj(x) ?f z € Eﬂ(mo)
k

where p = pr and e \, 0 along a sequence.

Step 5: Approzimating maps on the whole domain. For any n > 2 we define now ulgm) :B" =Y by

() : : >
m)y, y._ ) uw'(z) if ze€B;, jeN Q. = B. 433
e (@) {uT(x) if  z€ B\ O, ng i (4.33)

By Step 4 we know that ug) € WH1(B;,Y) for every j and k. Moreover, by (4.6), and since ufcj) = up
on 0B; for every j, we infer that u,(Cm) is for every k a function in BV (B",)), with null Cantor part,
IDCu{™| = 0.

We now deal with the energy estimates of u,(fm), first considering the simpler case n = 2.

The case n = 2. By (4.19) and Step 3 we infer that

limsup By 1 (u{™, Q) < (LipTl.,)? - [Dug|(2m) ,

k—o0

whereas by (4.6)

1
‘DUT‘(Qm) < pa(Qm) + me

By a diagonal argument, setting u,, := u,(::) for a suitable sequence k,, — oo as m — oo, we infer that

lim |Du,,|(B?) = |Dur|(B?).
m—00
The case n > 3. By (4.31) and (4.32) we infer that

1
Em M

Z&J(T, Ej x ),

Jj=1

S Bua(u™ @\ Q) < C
j=1
whereas by Theorem 4.1, on account of (4.3), we obtain
281’1(T7 Ej X y) <(C- (51’1(T, B™ x y) +£n(Bn)> < 00,

Jj=1

and 1/(ey,-m) — 0 as m — oo, see Remark 4.2. On the other hand, by (4.24), and since n — 0 as m — oo
in (4.21), as in the case n =2 we estimate the energy of ufcm) on the sets w;l(QgL). In particular, setting

Uy, 1= u,(;:) for suitable sequence k,, — oo as m — oo, we infer that
oo
i —1
Tim " By (i, 057 (QR)) = a(B)
j=1

and hence, by Step 3, that for any n > 2
lim |[Duy,|(B™) = |Dur|(B"). (4.34)

m—0o0
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Moreover, in any dimension n > 2, since for every j the radius of the ball Bjin F,, is smaller than 1/m,
and u!™
k

large

= ur on 0By, the above energy estimates and the Poincaré inequality yield that for m sufficiently

- (m) - 1 1 n
/Bn |umquszl/Bj Juy” —uT\d:rng::lCn-EﬂDuﬂ(Bj)§C’n~a-|DuT|(B ),

where C,, > 0 is an absolute constant. This proves the L'-convergence of u,, to ur as m — oo, and hence
weakly in the BV -sense.

Finally, for future use, we observe that by the definition of u,,, on account of (4.6), the previous con-
struction yields that the jump part of Du,, strictly converges to the jump part of Dup. Therefore, denoting
by

ﬁum := D%, + DUy, , EuT := D% + Dur,
the diffuse part of Du,, and Dur, where we recall that the Cantor part |D%u,,|(B™) =0 for every m, by

(4.34) we have
Duy, — Dup  and  |Duy,|(B") — |Dur|(B"). (4.35)

Step 6: Approximating currents. For every m and k let T,gm) € D, 1(B™ x )) be given by
7™ = > G L imt(By) x Y+ TL(B"\ Q) x Y,
j=1

where u;cj) € WH(B;,Y) is defined by (4.33). Since the boundary 0G o) L int(By) x Y = 0, whereas
k
(G o L int(By) x V) = (T, dy,, 1),
k
we readily infer that T,gm) € cartb!(B™ x )), with corresponding function in BV (B™,))) given by u,gm),
see (4.33). Setting T, := TISZ), where the sequence k,, — oo is defined as in Step 5, by (4.6) and (4.35)

we readily infer that B
lim gl,l(Tman X ))) = |D’LLT|(Bn), (436)

m—00

which clearly yields that
lim 5171(Tm,Bn X y) = 5171(T, B™ x y) .

m—00

It therefore remains to show that, possibly taking a subsequence,
T, —~T weakly in Z, 1(B" x Y). (4.37)

By applying Theorem 2.15, the proof of which is independent of the one of Theorem 2.14, every T, is
the weak limit of a sequence of smooth graphs of maps v,(gm) € CY(B™,)), with energies converging to the
energy of T,,. Therefore, since sup,, &11(Tm, B™ X V) < oo, arguing as in the first part of Sec. 2, by a
diagonal argument we may and do assume that, possibly passing to a subsequence, T}, weakly converges
in Z,1(B" xY) to some current T € cart!(B" x Y). Similarly, by the lower semicontinuity theorem for
smooth graphs, Theorem 2.12, we infer that for any open set A C B™ we have

E1(T, AxY) <liminf & 1 (T, AX V). (4.38)

Moreover, since the sequence of functions {u,,} C BV (B™,)) corresponding to the T,,’s weakly converges
in the BV-sense to up € BV (B",)), we infer that wr is the BV-function corresponding to T
We first show that T agrees with 7" on  x ), where

Q= B"\ J.(T),

31



Jo(T) being the set of points of jump-concentration of 7. Fix mg € N. Since
QCQ, CAy, Ap i=B"\ I,
and {J,,} is an increasing sequence of closed sets, for any m > mg we infer that

Amg = Qi U [(JC(T) \ Jmo) \Qm] )
with disjoint union. Moreover, we recall that T, is equal to T out of Q,, x Y. Therefore, since by (4.6)

E1 (T [(Je(T) \ Jong) \ O] X ) < mi ,

by (4.38) and (4.36) we obtain

IA

E11(T, Ay x¥) < [Dur|(B") + himinf & (T, [(Je(T)\ Ty \ Q] % V)
< |Dug|(B") + liminf & 1 (T, [(Jo(T) \ Jp) \ 2] % V)

< |Dug|(B™) +1/mq.

A

By outer regularity, since |Dug|(Jo(T)) =0 and A,, \, Q as m — oo, we infer that
E1(T, Q2 x V) < |Durp|(Q).

Therefore, decomposing the energy of T into its diffuse and jump-concentration part, see (4.3), we infer
that the jump-concentration part is concentrated in the jump-concentration set of T, so that

JT)CJ(T) and TLOAXY=TLQxY.

We now show that T agrees with 7' on Jo(T) x Y, which concludes the proof. As before, since T, is
equal to T out of Q,,, x Y, and Qy,, N Iy, = 0 if m > my, for every form w € Z™1(B" x ))) we have

(F = T) g x V)@) = (T = To) L Jong X Y)(@) + (T = T) L oy % Y)()
(T —Tm)L Ty x Y)(w) — 0

as m — oo, by the weak convergence of T,, to T. This yields that
T dmg XY =T 0L Jpy XY

and finally the assertion, by inner regularity, since J,, / J.(T) in the H" l-sense as m — oc. O

5 The density theorem: part II

In this section we prove Theorem 2.15. Extending the notation from the previous section, see (4.3), in the

sequel for every current T e cart11(B™ x ) we will denote by u Je7 the Radon measure on B™ given for
every Borel set B C B™ by

o 7(B) = / () dH"\(2), (5.1)

J.(T)NB
that corresponds to the jump-concentration part of the BV-energy 51,1(T, B x Y). We also recall that if
T € cart™!(B" x ) satisfies |[D%uz| = 0, for every Borel set B C B"

(T, B x V) / V(@) do+ 1, #(B).
B
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Moreover, for any T as above, in this section we will denote by F(T) the flat norm given by

F(T) :=sup{T(¢) | p € Z"71(B" x V), F(¢) < 1},
where

F(¢) ¢=maX{ sup l¢(2)[|,  sup ||d¢(2)||}7

zEB" XY z€EB" XY
and we notice that the flat convergence F(Tp — T) — 0 yields the weak convergence T, — T weakly in
Zp,1(B™ x Y), compare [22].

PROOF OF THEOREM 2.15: It is based on the following

Proposition 5.1 Let T € cart™}(B™ x ) be such that |DCuz|(B™) = 0. Let € € (0,1/2) and k € N. We
can find a current T € cart™ (B" x Y) such that

E11(T,B" x V) < &1 (T,B" x V) + £, F(T-T)<cek

1 N (5.2)
fye7(B") < 3 M7 (B") and |D%uz|=0.

In fact, for any e € (0,1/2) we apply iteratively Proposition 5.1 as follows. Letting 75 := T, at the k'"
step, in correspondence of T := Ty _; we find T := T} such that (5.2) holds true. By induction on k € N,
we define T° := T<, € cart’!(B" x ))) such that

E11(T¢,B" x V) < &1(T,B" x V) + Zg’f < E1(T,B" x V) + 2
k=1

and |D%ug-| = 0. Moreover, since for every k
fyers (B") <275 pyer(B"),
letting k — oo we obtain that . r<(B™) = 0. Finally, since

oo

F(I°-T) < F(If Tk1<i

k=1 k=1
letting T} := T+ for some sequence g \, 0, and uy, := ur, , we infer that the sequence {T}} C cartl’l(B" X
V) weakly converges to T with &;1(T)) — E11(T) as k — oo. Moreover, since |D%u|(B") = 0 and
piet, (B™) = 0 for every k, we obtain that u, € WH'(B",)) and that T}, agrees with the current G,
given by the integration of forms in Z™!(B™ x )) over the rectifiable graph of wy, see (2.1), so that
E11(Tx) = &1 (ug).

By means of Bethuel’s density theorem [5], for every k we find a smooth sequence {ug@)} nCCHB™Y)
that strongly converges to u;, in the Wll-sense as h — oo. In fact, even if the first homotopy group m())
is non-trivial, being commutative it is homeomorphic to the first homology group H;()). Therefore, the
null-boundary condition

0G,, =0 on Z"LMY(B"xY) (5.3)
allows to remove the (n — 2)-dimensional singularities, compare [6] and e.g. [16]. Lower dimensional singu-
larities are removed as in [5]. Since the strong convergence yields Gugﬂ — G, with 51,1(u§lk)) — &1.1(ug),

the assertion follows by means of a diagonal argument. O

Remark 5.2 This is the exact point where the commutativity hypothesis on the first homotopy group
m1(Y) is used, in addition to (5.3). If m1(}) is non-abelian, even in dimension n = 2 we find functions
u € WH(B2,Y), smooth outside the origin and satisfying (5.3), such that for every sequence of smooth
maps up, : B" — Y for which G,, = G, weakly in Z, 1(B™ x Y) we have

h—o0

liminf/ \Duh|dx20+/ |Du| dx
B2 B2

for some absolute constant C > 0, compare [17].
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PROOF OF PROPOSITION 5.1: We set T = T, for simplicity, and divide the proof in four steps.

Step 1: Blow-up argument. We apply the argument by Federer [9, 4.2.19]. The rectifiable measure pj. 1
can be written as
pier = LrH* L J(T),

where the jump-concentration set J.(T) is countably H"~l-rectifiable and the density L7(x) is a non-
negative H"~!L J.(T)-summable function on J.(T). Therefore, by [9, 3.2.29] there exists a countable
family G of (n — 1)-dimensional C''-submanifolds M of B™ such that pj.r-almost all of B™ is covered
by G. Moreover, since pj.r(B"™) < 0o, we can find a positive number 6 > 0 so that the subset

J = {z € J(T) | Lr(z) > 0}

satisfies the following properties:
1
W) <00 and  pug(BUNJ) < o rer(B) (5.4)

Let o > 0 to be fixed. By [9, 2.10.19], by the Vitali-Besicovitch theorem, Theorem 3.2, and by the
properties of the class cart''!(B™ x )) we can find a number t, € (0,1), a countable disjoint family of
closed balls Bj, contained in B™ and centered at points in J, and a bilipschitz homeomorphism 1, from
B™ onto itself satisfying the properties listed below, where ¢ > 0 is an absolute constant, possibly varying
from line to line, which is independent of o and of the radii 7; of the balls B;.

i) paer(B"\U; B;) = 0.
ii) If Bj := B(pj;,r;), for every j there is a manifold M; of G such that p; € M;.
iii) Since H""!(J) < oo, then

S o< e () < o0 (5.5)

j=1
iv) Letting C; := B(pj,tor;) N M,;, we have
prer(B(pj,ri) \ Cj) < o pyer(B(pj,rs)) V. (5.6)

v) If p; ¢ Ju,, it is a Lebesgue point of up whereas, if p; € Jy,, the one-sided approximate limits of
ur at p; are well-defined.

vi) The 1-dimensional restriction 74 (T L {p;} x V) is well-defined, compare Definition 2.8, and
T(TLApi} x V) =T}
for some integral chain T'; € Dy(Y).

vii) If 7y, 2 : R® x RN — R" x RN denotes the ”blow-up” map n,, A(z,y) := (a:—)\z)j7y)7 the limit

current
Sj(w) = Ahnol+ M,z T (W), we ZmH(B" xY)

is well-defined, and the flat distance of 1" from S; is small on B; x Y, i.e.
F(S;LB;xY-TLBjxY)<c-o-r;"". (5.7)
viii) Since |Durp|(B) < pr(B), we have

|Dur|(B(pj,rj) \ Cy)

Wp—17;"7 1

<c-o, (5.8)

where w,_1 is the measure of the (n — 1)-dimensional unit ball.
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ix) Since Lr(p;) is the (n — 1)-dimensional density of pj.r at p;, we have
s (By) = Lo(ps) - wn1r" | <o wpar" (5.9)

x) Lipy, <2 and Lipy;* < 2. Moreover, ¢, maps bijectively B; onto B;, with YoloB; = Idjgp, and
Yy (pj) = p; for all j, and v, is equal to the identity outside the union of the balls B;.

xi) ¥y(Cj) = B(pj, pj) N (pj + Tan(M;, p;)) for every j, where Tan(Mj, p;) is the (n — 1)-dimensional
tangent space to M; at p; and p; € (Tj/2a7"j)'

As a consequence, defining 7 € Dy, 1(int(B;) x V) for any j by
17 = (Yo < Idgpn )4 (T int(B;) x V),

we infer that 77 belongs to Cartlwl(int(Bj) x ) and its corresponding function ug = urs € BV (int(B;),Y)
is given by
ug = (ur 0¥y ) ine(B,) -
Moreover, we clearly have
trery = Vou (e L int(B;)).

Step 2: Approzimation on the balls B;. We now apply for every j a ”dipole construction” to approximate
almost all the Jump-concentration part of T7. Set

r=(T,r,) € R xR.
Without loss of generality we may and will assume that
Bj =By, Bpjp;)=B's 0<r<R,
where B]' := B"(0,r), so that R=1r; and r = p;, and
B(pj, pj) N (p; + Tan(M;,p;)) = D, x {0} CR" ' xR, D, := B" *(Ogn-1,7).

Let y(Z) := (r —|Z|) denote the distance of Z from the boundary of the (n — 1)-disk D,. For § > 0 small,
let

(]55(1‘) = (%7 @5(y(f))zn)a x € Dy X [_17 1} ) (Pé(y) = min{y7 6} :
Let Qs := ¢s(D, x [—1,1]) be the "neighborhood” of D, x {0} in B}% given by
Qs ={(@zn) |TE Dy, p=<psy(@))},

where p:=|z,|, and let

Qs := ¢5(Dy x [-1/2,1/2]) = {(F.20) | T € Dy, p < 05(y(7))/2} -

Also, set
Q(’I",5) = Qg \ (DT X {O}) .

Let vf @ (Qs\ Qs) — Y be given by v (z) = uf o Y7 (x), where ¥7 : Qs '\ Qs — Q(r,5) is the bijective

map V7 (F, ) = <§’ (2 - %(i@))> xn) .

Since we have
(Vo7 (2)] < c|Vui (T, (2 — ¢s(y(@))/p) mn)| - (1 + 05(y(T))/p) »

and @5(y())/p €]1/2,1], we infer that v7 € BV (Qs \ Q5,Y), with

/ |Vv7|dz < ¢ / |Vu]|dx . (5.10)
Qg\ﬁg Qs
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Moreover, the current N
T7 = ((6) ™" b L) (T L (0t(Q.5) X V)

belongs to cart’!(int(Qs \ Qs) x V), its underlying BV-function is v7, and T satisfies

#ge g (it (€2 \ 0s)) < pers (0t(Qs)))

so that by (5.6) we have N
ps (in(2 \ 04) < copary (BY). (5.11)

We now define w? : (Q5 \ Qs) — RN by

where =+ is the sign of z,, and zjjE are the one-sided approximate limits of uf at the point 0 € Ju;7 so that

. —n o _ .+ _
pgr{)l+p /B} [u(z) — z;7|dz =0,

if p; belongs to the jump set of u7, and they agree with the Lebesgue value of uj at p;, otherwise.
If r—d<|z|<r and (r—|z|)/2 < p < (r — |Z|), then

o C o o
[Vwi|(z) < ] [0 () = 25| + ¢ |Vo] (2)],

— |
whereas if |Z| <r —6 and §/2 < p < §, we estimate
o Ci o + o
[Vwil(z) < 5107 (2) = 25| + ¢ [Vof ()]

Moreover, by (5.8) and the Poincaré inequality we infer that the oscillation of uj on the upper and lower
half-balls
Bf .= {z € B" | +z,, > 0}
is smaller than co, so that
+
107 () = 2 [0 p\a, < €O

As a consequence, on account of (5.10) we obtain

/ _|Vwilde < coﬁ"(Qa\Qa)‘FC/ _ [Voflde
s\ 35 Q5\Qs (5.12)
caﬁ"(Q5\Qg)+c/ |Vu] | dx

Qs

IN

which is small if 6 and o are small, by the absolute continuity. Also, since the oscillation of w{ is smaller
than co, by projecting w? into the manifold Y, see Remark 1.9, we may and will assume that w{ is a

e J
function in BV (s \ Q5,Y). We finally observe that
w? (%, +05(y(@))/2) =2f  VF€D,.
Now, by means of the vertical part of the current T;, we may and do define a current TJ‘»’ € carth! (int(Qs\
Q5) x V), with underlying BV-function w?, such that

] )
g7 (6(Q5 \ Q5)) < € 77 (08(25 \ 25))

and fj‘»’ satisfies the boundary condition

Ty =0T LI x Y+ [00s N B ] x 6+ — [0 N By | x 0 -
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In particular, by (5.11) and (5.12), taking & small, we infer that Tj” satisfies the energy estimate

E11(T7, int(Q \ Q) x V) = / [Vwf | do + p 5 i (i08(95 \ Qs))

Q5\Qs
< cor™+copgers (BY).

Due to the property vi) above, setting
17 =17 +T7 L (B \ Q) x Y,

we infer that JA“J‘? belongs to cart!((B} '\ Q5) x V), satisfies the boundary condition

Ty = OT7LOBY x Y —[0D, x {0}] x T; 13
+ [[8(2503;“]]x52_+—[[89503;]]><6z_7 ( )
and the energy estimate
E1(T7, (BR\ Q) x < vulld
W@ B3\ <) < [ (ulde _—

R
+ cor"l4 copyers (BY).

To extend IA’j” to a current in cart™!(int(B;) x Y), we notice that Je(T7) = o (Je(T) N int(B;)).
Moreover, if 7; € I'r(p;) satisfies (1.7), of course 7; belongs to I're (p;) and satisfies

L(v;) = Lrs (p;) = L7(p;)

and ;%[ (0,1)] = T';, see property vi). We define v : Qs — Y by setting
1 x
() == +—2—), ZTeD,, p< 7))/2,
7(@) =5 @a(y(x))) p < es(y(@)/

where the orientation of ~; is chosen in such a way that 7;(0) = z; and 7(1) = z;-r, so that O[~;] =
d,+ —d,—. Since

vf (2) = (vo gy )(x), =€ ds(Drx[-1/2,1/2]),
where v: D, x [-1/2,1/2] — Y is given by v(Z,t) :=7,(1/2 +t), we readily estimate

/~ |Dvf|dz < L(v;)- (L" N (Dr—s) + L H(D; \ Dr—s))
Qs
or"t+ L Y(Dy) - Lo (ps)

(5.15)

IN

if § > 0 is small. Setting now

(o) ._ o

T] «— T] + G»U;_T 3
where Gv;v is the current integration over the graph of vf, the above construction and the boundary
condition (5.13) yield that TN“J-(U) has no boundary in int(B;)x Y, so that Tj(a) belongs to cart!!(int(B;) x V).
Moreover, by (5.14) and (5.15), on account of the property vi) above, we obtain that

E (T, int(By) x ¥) < &1(T7, B x )

+ corml4 copyery (By). (5.16)
We finally notice that ZIN’j(U) agrees with 77 outside {25 x V.
Step 3: Flat distance. We now show that for J§ small enough
F(I\" LBy xY-T/ LBExY)<c-o-R"". (5.17)
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In fact, by the property vii) above the blow-up current
§j (w) := ,\li,rf)l+ no,,\#TJf’(w) , we ZWH (B xY)
is well-defined, and by property vi) it satisfies
S; =[Bf]x 6.+ +[Brlxd.- +[D.]xT;,
where OI'; = J,+ — 0,-. On the other hand, (5.7) yields that
F(S;LBpxY-T/LByxY)<c-o-R"". (5.18)
Also, by the definition of v§ we infer that for 6 > 0 small
F(gjLﬁg xy—Gv;LKNZ(; xY)<c-o-r" L,

Moreover, the BV-energy of fj(a) on (Qs\ 55) x Y is small if ¢ is small, whereas fj(a) agrees with 77
outside Qs x Y. By (5.18) we then obtain

F(S;L (Bi\ Q) x Y~ T\ L (BR\Qs)x V) <c-o- R
and finally (5.17), as r € (R/2, R).
Step 4: Approzimation on the whole domain. Setting now
T\ = (¢, ! b Idgn ) 4 (1,7 L int(B;) x V),

by (5.16), since r = p; € (r;/2,7;), we infer that for every j

5171(T;0), int(B;) x Y) < / [Vur|de + (1+co) pyer(Bj) + carjnfl , (5.19)

whereas by (5.17), since R = r;, we obtain that
F(T\7 L int(B;) x Y — TL int(B;) x ¥) < c-o ;"L (5.20)
Let now 77 € cart!"!(B"™ x ))) be given by
17 =3 T+ T (B | int(B;)) x V.
j=1 j=1

By (5.19) and (5.5) we obtain that

E11(T7,B" x Y) < / \Vur|dr + (1 + co) py. r(B™) +coH" (),
so that if o =o(e, k, J, pje,r) > 0 is small, we have

E11(T7,B" x V) < E1(T,B™ x V) + .
Moreover, by (5.4) and (5.6), taking o small, the above construction yields that

Wiers(B") < CZ tye,r(Bj\ Cj) + pye,r(B™\ J)
=1

< copger(B") +

1

1
er(B™) < = - pger(B™).
4 K ,T( ) 9 g 7T( )
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Finally, by (5.20) we have

STR(I7 L int(By) x Y — T int(B;) x V)

FT°-T) <
j=1
o0
< c~aer"_1 < ek
j=1
if 0 =0(e,k) >0 is small. Since Dup- has no Cantor part, the proof is complete. O

6 The total variation of BV -functions

Extending the classical notion of total variation of vector-valued maps, to every map u € BV (B",)) we
associate in a natural way its total variation, essentially in the sense of Jordan, given for every Borel set
B C B" by

Erv (u, B) ::/B|Vu(x)\d:r+|DCu|(B)+/J H (1) dH" (z) . (6.1)

wNB

Here, for any = € J,, we let H'(l,) denote the length of a geodesic arc I, in Y with initial and final points
u~(x) and ut(x). Moreover we set
5Tv(u) = (‘:Tv(u, Bn) .

Note that if u is smooth, at least in W1(B", ), then
Erv(u,B) = &11(u, B) ::/ |Du| dzx .
B

Moreover, clearly for every w € BV(B™,)) we have
\Dul(B) < Erv(u. B).

Lower semicontinuity. In a way similar to Theorems 1.7 and 2.12; it is not difficult to prove in any
dimension n the following

Proposition 6.1 Let u € BV(B™,Y). For every sequence of smooth maps {ui} C CY(B",Y) such that
up — u weakly in the BV -sense, we have

Erv(u) < likm inf Epy (ug) -

The previous definition is motivated by the 1-dimensional case, n = 1. In fact, similarly to Theorem 1.8,
we can prove the following

Theorem 6.2 For every u € BV (BY,)) there exists a sequence of smooth maps {ui} C C(B,Y) such
that up — u weakly in the BV -sense and Ery(ug) — Ery(u) as k — oo.

Density results for Sobolev maps. If n > 2, we denote by R$°(B™,)) the set of all the maps u €
WHL(B™, Y) which are smooth except on a singular set (u) of the type

Z(u):UEi, reN,

where ¥; is a smooth (n — 2)-dimensional subset of B™ with smooth boundary, if n > 3, and ¥; is a point
if n = 2. The following density results appear in [5].

Theorem 6.3 The class R°(B™,Y) is strongly dense in WH1(B", ).
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Theorem 6.4 The class C1(B™,)) is dense in R$°(B™,Y) in the strong Wht-topology if and only if
™1 (y) =0.

Using arguments from the proof of Theorem 2.13, it is not difficult to extend Theorem 6.3 to maps in
BV (B™,Y), by proving

Theorem 6.5 For every w € BV (B™,Y) there exists a sequence of maps {ux} C R¥(B™,Y) such that
up —u as k — oo weakly in the BV -sense and

lim |Duy| dx = Ery (u, B"). (6.2)
Bﬂ,

k—o00
As a consequence, by using Theorem 6.4 we immediately obtain

Corollary 6.6 Suppose that 7 (Y) = 0. For every w € BV (B™,)) there exists a sequence of smooth maps
{up} € CY(B™,Y) such that u, — u as k — oo weakly in the BV -sense and (6.2) holds true.

Currents carried by BV-functions. Following Sec. 2, the structure of a function v in BV(B™,))
suggests to associate to u a suitable current G = T,, € BV —graph(B" x }), see Definition 2.1, where the
function w(T,) € BV(B™,Y) is equal to u and the 7,’s in the definition of the jump part G; agree for
every = € J, with an oriented geodesic arc I, in ) with initial and final points respectively given by u™ ()
and u'(x), so that 0[l;] = dy+ () — Ou—(x)- We notice that the definition of T}, depends on the choice of
the geodesics [,. In particular, if u € WH1(B"Y), clearly T,, = T and hence T, agrees with the current
G, integration of forms in D™!(B™ x ))) over the rectifiable graph of wu, see (2.1). Now, Definition 2.5
yields that the parametric variational integral Fj ; associated to the total variation integral is such that for
every Borel set B C B"

fl,l(Tu,B Xy) :ST\/(U,B) VuGBV(B”,y)

Moreover, arguing as in the proof of Theorem 2.13, we readily extend Theorems 6.2 and 6.5 by proving in
any dimension n > 2

Theorem 6.7 For every u € BV (B",)) we find the existence of a sequence of maps {ur} C R (B™,Y)
such that ur — u weakly in the BV -sense, Gy, — T, weakly in Z,1(B™ x)) and

lim |Duk\ dr = ET\/(U, Bn) .

k—oo Bn
Remark 6.8 If n > 2 in general the current 7, has a non zero boundary in B™ x ), compare Remark 2.2.
However, as shown by Proposition 6.9 below, 9T, is null on every (n — 1)-form @ in B™ x ) which
has no "vertical” differentials. To this purpose, following Proposition 2.3, any smooth (n — 1)-form @ €
D" 1(B™ x Y) with no vertical differentials can be written as @ = w, A n for some n € C§°(Y) and
o= (p'....9") € C(B™,R"), where w, is given by (2.5). Since d,& = dw, An = dive(x) n(y) dz, by
Definition 2.1 we have

= / divep(z) - n(u(z)) de .
BTL
We now show that 9,7, (&) = —0,T,(w), which yields the assertion.

Proposition 6.9 We have

OyTu(wy Am) = Tyu(dy(we A1)
= =] dive(e) afula)) de = (Do w).).
PROOF: Since
dy(we An) = (1) tw, Adyn
Al n—i i on T i
= YT @ ) i Ady
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taking (bg = ¢'n,, in (2.2), by the definition of T, we infer

—1 al 377 j
(U Tl ndy) = 3 [ (@) (Ve (@), pla)) da
ngl

+ Z/ﬂ ﬁ(u(x))gp(w) dDCw!
+ /(TI(U+(I))*Tl(uf(ﬂf))@(x),l/(x))d?'l"*l~

u

Therefore, by the chain rule formula for the distributional derivative of 1 o u, compare [2], we obtain the
assertion, as
Tu(dy(wo Am)) = (1) Tu(w, Adyn)) = (D(nou), ).
O

Remark 6.10 If G is any current in BV —graph(B™ x)) with corresponding function u(G) € BV (B™,))
equal to wu, see Definition 2.1, arguing as in Proposition 6.9 we obtain again that

n

0.G(wy A1) = —0yG(wy, A1) = / divp(z) - n(u(z)) dz .

Example 6.11 Of course, compare Sec. 2, every Cartesian current 7T in cart!'!(B"x))) may be decomposed
as
T=T,+Sr on Z"™Y(B"xY), (6.3)

where u = ur € BV(B",)) is the BV-function corresponding to T and T, € BV —graph(B™ x Y) is
defined as above, by means of geodesic arcs connecting v~ (z) and u™'(z) at the points z in the jump set
Ju. However, even in dimension n = 1 and in the particular case Y = S', the unit sphere, in general it
may happen that the BV-energy of T' cannot be recovered by the sum of the BV -energies of its component
T, and St in (6.3). If Y = S, in fact, we have St.sing = 0, i.e., the equivalence classes of elements in
cart!(B™ x S!) have a unique representative, and the energies & 1(T') and Fi 1(T) are equal, i.e., no gap
phenomenon occurs. Consider the current 7% € cart!* (B! x S') given by

T :=[(~=1,0)] x dp, + [(0,1)] x 6p, + do X 7a 6 € 0,27,

where Py = (cosf,sin) and y is the simple arc in S' connecting the points Py and P in the counter-
clockwise sense. If m < 0 < 27 we clearly have

Tu:[[(—l,())]] X5p0+[[(071)]] ><5p8+§0 X”\y'g,

where 7 is the simple arc in S' connecting the points Py and Ps in the clockwise sense, so that we may
decompose T? as in (6.3) with St = dy x [S*]. Since

.7:1,1(Tu) = Hl(ﬁg) = 27‘&' — 9, f1,1(ST) = 27T,
we infer that the sum of the energies 1 1(T,) + F1,1(S7) is greater than the energy of TG, as clearly
5171(T0) = .7'—171(T9) = Hl(’}/(;) =40.

7 The relaxed BV -energy of functions

In this section we analyze the lower semicontinuous envelope of the total variation, defined for every function
u € BV(B™ YY) by

S/Tvv(u) := inf {likminf/ |Duyg|dz | {ur} € CY(B™,Y), wup—u weakly in the BV—sense} .
— 00 Bn
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Remark 7.1 Of course one may equivalently require that uj — u strongly in L'(B" RY).
We first recall the following facts.
Definition 7.2 For every k=2,...,n and T € D,,_x(B™), we denote by

m; pn (L) :=inf{M(L) | L € Rpy_4+1(B"), (OL)LB" =T}
the integral mass of I' and by
my pn(I') := inf{M(D) | D € D,,_p41(B"),(0D)_B" =T}

the real mass of I'.  Moreover, in case m; pn(I') < oo, we say that an i.m. rectifiable current L €
Rp—k+1(B™) is an integral minimal connection of I' if (OL)L B™ =T and M(L) = m; g~(T').

We also recall that by Federer’s theorem [10], and by Hardt-Pitts’ result [18], respectively, in the cases k =n
and k =2 we have that
mi o (T) = my, e (T) (7.1)

Vertical homology classes. Let u € WhY(B" Y) and let G, be the current integration of forms in
DY (B™ x Y) over the rectifiable graph of u, see (2.1). We have that 9G,(w) =0 if w € D"~11(B" x ))
with w( =0 or d,w = 0. Setting

BPY(B" x V) :={weDPY(B" x V) | 3n e DP LB x V) : wM =d,n}
and

ZPY(B" x Y)
,1 n —
HPL(B™ x V) = BB )

then 0G, =0 on B" 11(B" xY) and 9,0G, = 0, whence 0G,(w) depends only on the cohomology class
of we Z""LY(B" x V). As a consequence dG,, induces a functional (9G,), on H" 11(B™ x Y) given by

(0Gu)u(w + B M) 1= 0G, (w + B" 1Y) = 8G, (w),  we Z2"7H,
compare [14], Vol. II, Sec. 5.4.1. Therefore, since
HPY(B™ x V) ~DPH(B™) @ Hjp(Y),

the homology map (9G,, ). is uniquely represented as an element of D,,_o(B™; H1(Y;R)). More explicitly,
if ¢ € D""2(B"), we have [(0G,)«(¢)] € H1(Y;R) and for s=1,...,5

((0Gu)«(9), [w*]) = 0Gu (1§ A TH W),

(,) denoting the de Rham duality between Hy(Y;R) and H,(Y): in general (0G,), is non-trivial.

Singularities of Sobolev maps. Following [14], Vol. II, Sec. 5.4.2, we now set
[P’(u) = (OGU)* € Dn_2<B"; H1 (y,R))

and for each w € [w] € Hip(Y) we define the current P(ujw) := —mx((0G,) L 7#w) € D,_o(B™), so that
P(u;w)(¢) = —0G,(FFw A7 ¢) = G (77w A 17 dp) = / uw A do

n

for every ¢ € D" 2(B"). We also define for every w € Z1(Y) the current D(u;w) = m4(Gy L 7T7w) €
Dy—1(B™), so that

n

D(u;w)(y) = G (7FFw AT y) = / oAy  YyeDVH(B").

The following facts hold:
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(i) for s=1,...,3
P(u;w)(9) = (P(w)(9), [w’]),

i.e., P(u;w?®) does not depend on the representative in the cohomology class [w®];
(ii) OP(u) =0 and P(u) = ZIP(u; w?®) ® [7ys], hence it does not depend on the choice of ~q,...,7s;
s=1

(iii) OD(u;w)(p) = (P(u)(¢), [w]) and hence dD(u;w®) L B™ = P(u;@®) for each representative @w® in [w®].
We can therefore set
Ds(u) := D(u; w?®), Ps(u) := P(u;w®) = ODs(u) L B™, s=1,...,58. (7.2)
Notice that if 7' € cart™!(B™ x ))) satisfies

T=G,+Sr, Sr=)Y Li(T)xv on Z™Y(B"x)),
s=1

where u = ur € WHY(B",Y) and Ls(T) € R,_1(B™), since
(=1)" 720G (77w A1) = 0G, (7 d ANTH W) = —0Sr (77 ¢ ATHWw®) = —0Ls(T)(6),
we infer that
Ps(u) = (—1)"0Ls(T)LB" Vs=1,...,5. (7.3)
Finally, we clearly have P(u) = 0 if u is smooth, say Lipschitz, or at least in W12(B™,)).
Results. In the sequel we shall assume that the first homotopy group w1 ()) is commutative. Moreover, we

denote by
T, = {T c Cartl,l(Bn7y) | up = u} (7.4)

the class of Cartesian currents 7 in cart!(B™ x ))) such that the underlying BV-function ur is equal to
u, compare Definition 2.11 and Remark 2.7. We first prove

Theorem 7.3 For every u € BV (B™,Y) we have Ery(u) < o.
From the results of the previous sections we then obtain the following representation result.

Theorem 7.4 For any uw € BV (B",)) we have
Erv(u) = inf{&(T)|T €T}

/ \Vu(z)| dz + |Du|(B™) +inf{/ Lr(z)dH" V() | T € Tu} 7 (7.5)
B Je(T)

where T, J.(T), and Lr(x) are given by (7.4), (2.12), and Definition 2.9, respectively.

PROOF OF THEOREM 7.3: We observe that it suffices to show that the class 7, is non-empty, see (7.4).
In this case, in fact, if T € 7,,, by Theorem 2.13 we find a smooth sequence {ux} C C'(B™,Y) such that
Gy, — T weakly in Z,1(B" xY) and ||Dug||pr — &£11(T) as k — oo; this yields also that w, — up
weakly in the BV-sense, where ur = u, whence gg/(u) < oo.

Now let us prove that 7, is non-empty. We first notice that, since ) is smooth and compact, there
exists an absolute constant C' > 0, depending on ), such that

Erv(u, B") < C|Du|(B") < 0.

Let {ux} be the approximating sequence given by Theorem 6.7. Since uy € R°(B",)), the real mass of
the singularities is bounded by the L'-norm of Duy. More precisely, there exists an absolute constant C' > 0
such that

my gn (Ps(ug)) §C’/ | Duy,| dz Vs=1,...,5,
B'VL
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see Definition 7.2. In fact, we have

M(D, (u) = sup{ [ ontute) oD isn), ||¢||s1}
C Duyld
< /B | Dugldo

see Proposition 7.6 below for the case ) = S, so that the assertion follows from (7.2). Therefore, since by
Hardt-Pitts’ result (7.1) we have

mi,gn (Ps(uk)) = my gn (Ps(ur)) ,

we find for every s an i.m. rectifiable current LY € R,,_;(B") such that
P.(ux) = (—1)" (OLY)L B" and M(LF) <C | Dug| dz (7.6)
Bﬂ,

compare (7.3). As a consequence, letting

Ty = Guk + ZLE XYs 4

s=1
we readily find that Ty € Dy, 1(B™ x )) has no interior boundary
T, =0 on Z" MYB"xY)

and finite BV -energy

Ea(T) < [ Dunlde+ C) S MLE) - M) < o0

n

for some absolute constant C'()) > 0. In conclusion, by (7.6) we obtain a sequence {T}} C cart’!(B" x )
with equibounded energies

sup&1.1(Ty) <supC |Duy|dz < CEry(u, B") < 00,
k k Bn

where C > 0 is an absolute constant. Therefore, by compactness, Proposition 2.18, possibly passing to a

subsequence we find that Ty — T weakly in Z, 1(B" x )) to some T € cart’!(B" x ))) satisfying

5171(T) < hkmlnfé'lvl(Tk) < 0

by lower semicontinuity, Proposition 2.16. In particular, since u; — u weakly in the BV -sense, we find that
the underlying BV -function up = v and hence that T € 7,,. a

PROOF OF THEOREM 7.4: Let {ux} C C*(B",)) be a sequence of smooth maps with equibounded en-
ergies, supy ||Dug||p1 < oo, weakly converging to u in the BV-sense, see Theorem 7.3. By compactness,
Proposition 2.18, possibly passing to a subsequence we find that G,, — T weakly in Z, 1(B™ x Y) to
some T € cartb'!(B" x )) satisfying ur = u, i.e. T € 7T,, see (7.4). Since by lower semicontinuity,
Proposition 2.16,
E1(T) < liminf/ | Duy| dz |
Bn

k—oo
we readily conclude that .
inf{&1(T) | T € 7,} < Erv(u).

To prove the opposite inequality, by applying Theorem 2.13, for every T € 7, we find a smooth sequence
{ur} € CY(B™,Y) such that G, — T weakly in Z,1(B"xY) and ||Dug|/z1 — £11(T) as k — oo. Since
the weak convergence G,, — T yields the convergence up — ur weakly in the BV-sense, and ur = u,
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we find that Epy (u) < &11(T), which proves the first equality in (7.5). The second equality in (7.5) follows
from the definition of BV-energy, Definition 2.10. ]

The above results simplify if we specify them to u € W1(B" Y) and/or ) = S, recovering this way
previous results, compare e.g. [13], [8], and [19].

The relaxed Whl-energy. The relaxed energy of u € WH(B" ) is of course given by
E:(u) := inf {likminf/ |Duy|dz | {ux} € CY(B™,Y), wu — u strongly in Ll(B”JRN)} ,

see Remark 7.1. In this case, Theorem 7.4 reads as
Corollary 7.5 For any u € WH(B",)) we have g’:(u) < 00. Bvery T € 7T, has the form

T=G,+ Y 1LgxC; on Z"(B"xY),
qeH1(Y)

where Ly = 7(Ly, 1, fq) is an i.m. rectifiable current in R,_1(B™) and C,; € Z1(Y) is an integral 1-cycle
in the homology class q, and its BV -energy is given by

51,1(T)=/ |Dul| dx + Z /ﬁT ) dH" ()

where, for x € L4, we have Lp(z) :=inf{L(y) |~y € Fq(x)} and
Iy(z) := {7 € Lip([0,1], ) [7(0) = (1) = u(z), %[0, 1)]€q}.

The relazed energy is given by

é}j(u):/ \Du(x )d:c+1nf{ 3 /,cT ) dH"~ 1()|TeT}

qEH(Y)

The case Y = S*. Further simplification arises if we assume ) = S'. In this case, in fact, St sing =0, i.e.
the equivalence classes of elements in cart’!(B" x S') have a unique representative, and the energies & 1(T")
and Fi1(T) are equal, i.e., no gap phenomenon occurs. Moreover, if  belongs to the jump-concentration
set J.(T), the 1-dimensional restriction has the form

Tp(TL{z} x §1) =[] +q[S'],

where ¢ € Z and [+, ] is the current associated to a suitably oriented simple arc v, in S! connecting the
points uy(r) and uf(z), where ur is the function in BV (B"™, S1) associated to T, and 7, = 0 if = ¢ Jo,.
Consequently, in (7.5) we have

Lr(x) =H'(7.) + 27 |q]

and hence in cart’'!(B™ x S') the BV-energy agrees with the energy obtained in [13], compare Thm. 1 of
[14, Vol. II, Sec. 6.2.3].

The singular set. If u € WH1(B", Sl), its singular set is the current P(u) € D, _2(B™) given by
# 1 ¥
P(u)(¢) := —— aG (r#wsr AT g) = o u”wgt Adg (7.7)
for every ¢ € D"~2(B"), where
wer =y dy® — yPdy’

is the volume 1-form in S* C R?. Therefore, P(u) is the boundary of the current D(u) € D,,—1(B") defined
for any v € D"~Y(B") by

1

1
D(u)() i= 5 Gulrhws Am#9) = 5= [ ubusgi A,
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Proposition 7.6 For every u € W(B",S') we have

M(D(u)) < %/B |\ Dul dz .

PROOF: By the definition of mass we clearly infer
2 M(D(u)) S/ lu?wgr || dz .
Bn,
Moreover, since u#wg: = u'du® — u?du’, we estimate

).

n
et ws ]| < fut uf, — u? g 2

i=1

n
<D (g + ] g,
i=1

Observe now that for any a,b >0 and A, p >0 with A2 +p? =1

Aa+pb< Va2 +0b2.

Since |u(z)| =1, this yields (Ju'||u2 |+ |[u'||u2 |)* < |D,,ul* and hence the assertion. O

We now recover the following estimates about the relaxed energy, compare [8] and [19].

Proposition 7.7 For every u € Wh(B",S') we have
Ei1(u) <2&1(u),  where  Ep1(u) ;:/ |Dul . (7.8)

Moreover, for every u € BV (B™,S') we have
Erv(u) < 2Erv (u), (7.9)

where Epy (u) is the total variation of u, given by (6.1).

PrOOF: Let u € WH1(B", S'). Proposition 7.6 yields that the real mass m, g« (P(u)) < & 1(u, B")/2m
and hence, on account of Hardt-Pitts’ result (7.1), the integral mass

1
mi g (P(u) < 5 E1a(u),
see Definition 7.2. As a consequence, since for every ¢ > 0 we find a current T' € 7,, such that
T=G,+Lx[S'] and & 1(T)=E1(u)+2rM(L),

where L € R,,_1(B") satisfies M(L) < m; g»(P(u)) + ¢, taking into account Theorem 7.4 we obtain (7.8).

In the more general case u € BV(B",S!), Theorem 6.7 yields the existence of a sequence {uj} C
Whl(B", S1) such that up — u weakly in the BV -sense and &1 1(ux) — Ery (u). Also, for every k we find a
smooth sequence {uék)}h c CY(B",S') converging to uy strongly in L! and such that 8171(u§bk)) — &1 (ug)
+1/k as h — oo. Finally, by (7.8) and by a diagonal argument we readily obtain (7.9). |

Remark 7.8 As in [20], since 71()) is commutative, if v € R®(B",)), for every s = 1,...,5 we may
find an integral current Ls € R,,_o(B™) satisfying

(=1)"(0Ls) L B"™ = Ps(u) and M(L;) < C |Du| dx
Bﬂ.

for some absolute constant C' > 0 independent of u. Therefore, arguing as above it is not difficult to show
that
E1(u) <C(n,Y)-E1a(w)  Yue WH(B",Y), (7.10)
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where C(n,)) > 0 is an absolute constant, only depending on n and Y. Finally, by Theorem 6.7 we
conclude that

Erv(u) < Cn,Y) Ery(u)  Vue BV(B™Y),

where Ery(u) is the total variation given by (6.1) and the optimal constant C(n,)) is the same as the
optimal constant for W1!-functions in (7.10).
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