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Abstract. The aim of this paper is threefold. We first prove that, on RCD(K,N) spaces, the
boundary measure of any set with finite perimeter is concentrated on the n-regular set Rn, where
n ≤ N is the essential dimension of the space. After, we discuss localization properties of the unit
normal providing representation formulae for the perimeter measure of intersections and unions
of sets with finite perimeter. Finally, we study Gauss-Green formulae for essentially bounded
divergence measure vector fields, sharpening the analysis in [BCM19].
These tools are fundamental for the development of a regularity theory for local perimeter
minimizers on RCD(K,N) spaces in [MS21].
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1. Introduction

In the Euclidean setting, a Borel set E ⊂ Rn has finite perimeter provided its distributional
derivative DχE is a finite Radon measure. A celebrated regularity theorem, due to De Giorgi
[DG54, DG55], says that for any set of finite perimeter E ⊂ Rn, letting

FE :=
{
x ∈ Rn : νE(x) := lim

r→0

DχE(Br(x))
|DχE | (Br(x)) exists and |νE(x)| = 1

}
(1.1)
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be the reduced boundary of E, the following hold:
i) for any x ∈ FE the blow-up of E at x is unique and it is the half-space with interior unit

normal vector νE(x);
ii) the representation formulae DχE = νE |DχE | and |DχE | = H n−1 FE hold;
iii) FE is (n− 1)-rectifiable.

De Giorgi’s theorem motivates the use of boundaries of sets of finite perimeter as a weak notion
of codimension one oriented hypersurface and is at the root of many subsequent developments of
Geometric Measure Theory.

More recently, sets of finite perimeter have been studied also on metric measure spaces, starting
from [A01, A02]. In this framework it is too optimistic to hope for a regularity theorem as strong
as the Euclidean one. However, in [ABS19, BPS19] a counterpart of De Giorgi’s regularity theorem
has been obtained in the setting of RCD(K,N) spaces, with finite N , that are a class of possibly
singular metric measure spaces with Ricci curvature bounded from below and dimension bounded
from above, in synthetic sense.
We recall below two of the main results of [ABS19, BPS19]. By Tanx(X, d,m, E) we shall denote
the set of all possible blow-ups of a set of finite perimeter E at a point x, see Definition 2.19 for
the precise notion.

Theorem 1.1 (Theorem 3.2 and Theorem 4.1 in [BPS19]). Let (X, d,m) be an RCD(K,N) m.m.s.
with essential dimension 1 ≤ n ≤ N , E ⊂ X be a set of finite perimeter. Then, for |DχE |-a.e.
x ∈ X, there exists k = 1, . . . , n such that

Tanx(X, d,m, E) =
{

(Rk, deucl, ckL k, 0k, {xk > 0})
}
.

Moreover, setting
FkE :=

{
x ∈ X : Tanx(X, d,m, E) =

{
(Rk, deucl, ckL k, 0k, {xk > 0})

}}
, (1.2)

it holds that FkE is (|DχE | , k)-rectifiable for any k = 1, . . . , n.

It turns out that it is also possible to reconcile the definition of set of finite perimeter via relaxation,
see Definition 2.16, with the distributional perspective, proving a Gauss-Green integration by parts
formula for sufficiently regular vector fields.

Theorem 1.2 (Theorem 2.4 in [BPS19]). Let (X, d,m) be an RCD(K,N) metric measure space
and let E ⊂ X be a set with finite perimeter and finite measure. Then there exists a unique vector
field νE ∈ L2

E(TX) such that |νE | = 1 holds PerE-a.e. andˆ
E

div v dm = −
ˆ
〈trEv, νE〉d PerE , for any v ∈ H1,2

C (TX) ∩D(div) such that |v| ∈ L∞(m) .

Above, L2
E(TX) denotes the restriction of the tangent module L2(TX) to the boundary of the

set of finite perimeter E, see Theorem 2.21 for the precise definition. The vector field νE plays the
role of the interior unit normal in the smooth setting and the Gauss-Green formula holds when
testing against vector fields in the Sobolev space H1,2

C (TX) (i.e. with L2 covariant derivative, see
(2.10)).

This note is a further contribution to the theory of sets of finite perimeter in this setting. In
particular:

• we will prove that reduced boundaries of sets of finite perimeter have constant dimension,
positively answering to one of the questions left open in [BPS19];
• we will clarify in which sense the blow-up of a set of finite perimeter is orthogonal to its

unit normal at almost every point and develop a series of useful tools suitable to treat cut
and paste operations between sets of finite perimeter in this setting, by analogy with the
Euclidean theory (see for instance [Ma12, Chapter 16]);
• relying on the finite dimensionality assumption N <∞, we will sharpen the Gauss-Green
integration by parts formulae for essentially bounded divergence measure vector fields
studied in [BCM19] on RCD(K,∞) metric measure spaces.

The class of RCD(K,N) metric measure spaces includes as notable examples (pointed measured)
Gromov-Hausdorff limits of smooth manifolds with uniform lower bounds on their Ricci curvature
(the so called Ricci limit spaces) and Alexandrov spaces with sectional curvature bounded from
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below. Our results are meant to be a further development to the Geometric Measure Theory in
this setting and they play a fundamental role in the study of the mean curvature and regularity
of local perimeter minimizers in [MS21]. Furthermore, as the recent [AFP21, APP21, ABFP21]
show, understanding classical questions of Geometric Measure Theory on non smooth RCD(K,N)
spaces is relevant to investigate challenging open problems on smooth manifolds with lower Ricci
curvature bounds, such as the isoperimetric problem.

Below we outline the main achievements of this note, in comparison with the previous literature.

Constancy of the dimension of the reduced boundary. In [BS20] the first and third named
authors proved that for any RCD(K,N) metric measure space (X, d,m) there exists a natural
number 1 ≤ n ≤ N , called essential dimension of X, such that at m-almost every point of X the
unique blow-up of (X, d,m) at x is Rn (with canonical metric measure structure).

One of the questions left open in [BPS19] was the possibility of having sets of finite perimeter
E ⊂ X such that |DχE | (FkE) > 0 for some k < n, where FkE is as in (1.2) and n denotes the
essential dimension of (X, d,m) as above. Our first main result is a negative answer to this question.

Theorem 1.3 (Cf. with Corollary 3.2 below). Let (X, d,m) be an RCD(K,N) metric measure
space for K ∈ R and 1 ≤ N <∞. Let 1 ≤ n ≤ N be its essential dimension. Then for any set of
finite perimeter E ⊂ X it holds that |DχE | (FkE) = 0 for any k 6= n.

The proof of Theorem 1.3 builds on [D20], where Hölder continuity of tangent cones in the
interior of geodesics has been proved on RCD(K,N) spaces (see also the previous [CN12]), and
on a recent characterization of BV functions via test plans concentrated on geodesics [NPS21].
Actually, Theorem 1.3 will be a corollary of a more general result dealing with arbitrary functions
with bounded variation, see Theorem 3.1. Some consequences at the level of the local dimension of
the tangent module L2

E(TX) will also be addressed, see Theorem 3.4.
Notice that it is currently unknown whether on an RCD(K,N) space, or a collapsed Ricci limit

space, with essential dimension n there could be points where all tangent cones are Euclidean of
dimension k < n or not. A corollary of Theorem 1.3 is that there cannot be collapse relative to the
ambient along boundaries of sets of finite perimeter, see Corollary 3.3 below for a precise statement.

Pointwise behaviour of the unit normal and operations with sets of finite perimeter.
The pointwise characterization (1.1) is a key tool for the proof of De Giorgi’s theorem. Moreover,
the fact that blow-ups at reduced boundary points are half-spaces orthogonal to the unit normal is
of fundamental importance for the sake of many applications, for instance to analyze the behaviour
of the unit normal with respect to natural cut and paste operations between sets of finite perimeter,
as in [Ma12, Chapter 16].

In [ABS19, BPS19] a new set of ideas was needed to develop the regularity theory for sets of
finite perimeter, as it was necessary to avoid (1.1) and the use of Besicovitch differentiation theorem.
However, after Theorem 1.2 it is natural to investigate if blow-ups of sets of finite perimeter are
orthogonal to their unit normal, in some sense.
The second main result of this paper is a positive answer to this question.

Definition 1.4 (See Definition 4.6 below). Let (X, d,m) be an RCD(K,N) metric measure space
for some K ∈ R and 1 ≤ N <∞ with essential dimension 1 ≤ n ≤ N and let E ⊂ X be a set of
finite perimeter. Then, for any x ∈ FnE, any n-tuple of harmonic functions (ui) : Brx(x) → Rn
satisfying the following properties is called a system of good coordinates for E at x.

(i) For any i, j ∈ {1, . . . , n},

lim
r→0

 
Br(x)

|∇ui · ∇uj − δij |dm = lim
r→0

 
Br(x)

|∇ui · ∇uj − δij |d |DχE | = 0 .

(ii) For any i ∈ {1, . . . , n} the following limits exist:

νi(x) := lim
r→0

 
Br(x)

νE · ∇ui d |DχE | ,

lim
r→0

 
Br(x)

|νi(x)− νE · ∇ui|d |DχE | = 0 .
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In Proposition 3.6 we are going to prove that good coordinates exist at almost every point
with respect to the perimeter measure and that the vector ν ∈ Rn defined above is of unit length.
Moreover in Proposition 4.8 we characterize the blow-up of a set of finite perimeter as the half-space
orthogonal to the vector ν constructed by means of the good coordinates, providing a counterpart
of the classical Euclidean result.
Building on top of these tools, in Theorem 4.11 we consider the behaviour of the unit normal of
unions and intersections of sets of finite perimeter. With respect to previous results in the literature
(see for instance [APP21]), the main contribution here is the study of the set where the two sets
have mutually tangent boundaries.

Gauss-Green formulae for essentially bounded divergence measure vector fields. In
many situations in (non smooth) Geometric Analysis it is necessary to deal with functions that are
not smooth but satisfy certain second order bounds in a weak sense. A typical example are distance
functions on manifolds with lower Ricci curvature bounds: they are not globally differentiable,
in general, but the Laplacian comparison holds globally in the sense of distributions. There are
usually two possibilities to deal with these functions:

• argue by ad-hoc regularizations, preserving the good bounds while gaining smoothness and
rely on classical tools, then pass to the limit;
• prove that classical tools for smooth functions and domains (such as Gauss-Green formulae
and divergence theorem) hold also under weaker regularity assumptions.

Another main result of this note, going in the second direction hinted above, is the extension of
Theorem 1.2 to the case of essentially bounded divergence measure vector fields.

Definition 1.5. Let (X, d,m) be an RCD(K,N) metric measure space. We say that a vector
field V ∈ L∞(TX) is an essentially bounded divergence measure vector field if its distributional
divergence is a finite Borel measure, that is if divV is a finite Borel measure such that, for any
Lipschitz function with compact support g : X → R, it holdsˆ

X

g d divV = −
ˆ
X

∇g · V dm .

The introduction of this class of vector fields in the Euclidean setting dates back to [An83]. For
the sake of the RCD theory, the key remark is that a large family of essentially bounded divergence
measure vector fields is given by gradients of distance functions, thanks to the Laplacian comparison
theorem [G15].

Gauss-Green integration by parts formulae for sets of finite perimeter and vector fields with such
low regularity in the Euclidean setting have been studied in [CTZ09, CP20]. Later on, in [BCM19]
the theory has been partially extended to locally compact RCD(K,∞) metric measure spaces (see
also the recent [Br21]). Here, fully exploiting the finite dimensionality assumption N <∞ and the
regularity theory for sets of finite perimeter, we achieve a quite complete extension of the Euclidean
results, sharpening those in [BCM19].

Theorem 1.6 (See Theorem 5.2 below). Let (X, d,m) be an RCD(K,N) metric measure space
for some K ∈ R and 1 ≤ N <∞. Let E ⊂ X be a set of finite perimeter and let V ∈ DM∞(X).
Then we have the Gauss-Green integration by parts formulae: for any function ϕ ∈ Lipc(X) it holdsˆ

E(1)
ϕdivV +

ˆ
E

∇ϕ · V dm = −
ˆ
FE

ϕ (V · νE)int d |DχE | ,
ˆ
E(1)∪FE

ϕdivV +
ˆ
E

∇ϕ · V dm = −
ˆ
FE

ϕ (V · νE)ext d |DχE | ,

where (V · νE)int and (V · νE)ext belong to L∞(FE, |DχE |) and satisfy
‖(V · νE)int‖L∞(FE,|DχE |) ≤ ‖V ‖L∞(E,m) ,

‖(V · νE)ext‖L∞(FE,|DχE |) ≤ ‖V ‖L∞(X\E,m) .

We refer to section 5 for the precise definitions of the various terms appearing in the Gauss-Green
formulae above. We just remark that (V · νE)int and (V · νE)ext play the role of the interior and
exterior normal traces of the vector field V on the boundary of the set of finite perimeter E. With
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respect to the case of regular H1,2
C (TX) vector fields, these traces might be different, as it happens

in simple examples where the divergence of V has a singular part on FE.
The precise understanding of the normal traces in Theorem 1.6 allows us also to prove that they

behave well under the natural cut and paste operations (see Proposition 5.4), in analogy with the
Euclidean theory (see for instance [Co20, Chapter 3]).
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2. Preliminaries

2.1. Basic calculus tools. Throughout this paper a metric measure space is a triple (X, d,m),
where (X, d) is a complete and separable metric space and m is a nonnegative Borel measure on X
finite on bounded sets.

We will denote by Br(x) = {d(·, x) < r} and B̄r(x) = {d(·, x) ≤ r} the open and closed balls
respectively, by Lip(X, d) (resp. Lipb(X, d), Lipc(X, d), Lipbs(X, d), Liploc(X, d)) the space of
Lipschitz (resp. bounded Lipschitz, compactly supported Lipschitz, Lipschitz with bounded support,
Lipschitz on bounded sets) functions and for any f ∈ Lip(X, d) we shall denote its slope by

lip f(x) := lim sup
y→x

|f(x)− f(y)|
d(x, y) for every accumulation point x ∈ X

and lip f(x) := 0 elsewhere. We shall use the standard notation Lp(X,m) = Lp(m) for the Lp
spaces and L n for the n-dimensional Lebesgue measure on Rn. We shall denote by ωn the Lebesgue
measure of the unit ball in Rn. If f ∈ L1

loc(X,m) and U ⊂ X is such that 0 < m(U) < ∞, thenffl
U
f dm denotes the average of f over U .
The Cheeger energy Ch : L2(X,m)→ [0,+∞] is the convex and lower semicontinuous functional

defined through

Ch(f) := inf
{

lim inf
n→∞

ˆ
X

(lip fn)2 dm : fn ∈ Lipb(X) ∩ L2(X,m), ‖fn − f‖2 → 0
}

(2.1)

and its finiteness domain will be denoted by H1,2(X, d,m), sometimes we write H1,2(X) omitting
the dependence on d and m when it is clear from the context. Looking at the optimal approximating
sequence in (2.1), it is possible to identify a canonical object |∇f |, called minimal relaxed slope,
providing the integral representation

Ch(f) :=
ˆ
X

|∇f |2 dm ∀f ∈ H1,2(X, d,m) .

Any metric measure space such that Ch is a quadratic form is said to be infinitesimally Hilbertian
[G15]. Let us recall from [AGSa14a, AGSa14b, G13] that, under this assumption, the function

∇f1 · ∇f2 := lim
ε→0

|∇(f1 + εf2)|2 − |∇f1|2

2ε
defines a symmetric bilinear form on H1,2(X, d,m)×H1,2(X, d,m) with values into L1(X,m).

It is possible to define a Laplacian operator ∆ : D(∆) ⊂ L2(X,m)→ L2(X,m) in the following
way. We let D(∆) be the set of those f ∈ H1,2(X, d,m) such that, for some h ∈ L2(X,m), one hasˆ

X

∇f · ∇g dm = −
ˆ
X

hg dm ∀g ∈ H1,2(X, d,m) (2.2)

and, in that case, we put ∆f = h. It is easy to check that the definition is well-posed and that the
Laplacian is linear (because Ch is a quadratic form).

The heat flow Pt is defined as the L2(X,m)-gradient flow of 1
2Ch. Its existence and uniqueness

follow from the Komura-Brezis theory. It can be equivalently characterized by saying that for any
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u ∈ L2(X,m) the curve t 7→ Ptu ∈ L2(X,m) is locally absolutely continuous in (0,+∞) and satisfies
d
dtPtu = ∆Ptu for L 1-a.e. t ∈ (0,+∞) , lim

t↓0
Ptu = u in L2(X,m) .

Under the infinitesimal Hilbertianity assumption the heat flow provides a linear, continuous and
self-adjoint contraction semigroup in L2(X,m). Moreover Pt extends to a linear, continuous and
mass preserving operator, still denoted by Pt, in all the Lp spaces for 1 ≤ p < +∞.

2.2. About normed modules. Here we discuss some basic concepts in the theory of normed
modules (see [G18] after [W00]), whose aim is to provide a solid functional-analytic framework
where to give a notion of ‘vector field’. The original approach to this matter (where normed modules
were defined over a metric space endowed with a Borel measure) is not sufficient for our purposes,
since we would like to work also with vector fields defined capacity-a.e. as in [DGP21]. Accordingly,
we will propose in Definition 2.1 below a notion of normed module which unifies the two theories
studied in [G18] and [DGP21].

Given a metric space (X, d), we denote by B(X) the Borel σ-algebra on X. We say that an
outer measure µ on X is boundedly finite provided µ(E) < +∞ for every E ∈ B(X) bounded.
Moreover, we say that µ is submodular provided

µ(E ∪ F ) + µ(E ∩ F ) ≤ µ(E) + µ(F ) for every E,F ∈ B(X) .

For a non-negative Borel function f : X → [0,+∞], the integral of f with respect to µ on a set
E ∈ B(X) can be defined via Cavalieri’s formula as

ˆ
E

f dµ :=
ˆ +∞

0
µ({χEf > t}) dt .

It holds that the integral operator f 7→
´
X
f dµ is subadditive, i.e.ˆ

X

f + g dµ ≤
ˆ
X

f dµ+
ˆ
X

g dµ for every f, g : X → [0,+∞] Borel ,

if and only if µ is submodular; for a proof we refer to [D94, Chapter 6] (see also [DGP21, Theorem
1.5]). We will mostly consider the cases where

µ is a boundedly finite, submodular outer measure on (X, d) . (2.3)

We will actually deal with two classes of outer measures satisfying (2.3):
i) Boundedly finite Borel measures m on (X, d); by definition, m is defined just on B(X), but

we tacitly adopt the same notation for the induced outer measure obtained via Carathéodory
construction, namely we set

m(S) := inf
{
m(E) : E ∈ B(X), S ⊂ E

}
for every S ⊂ X .

ii) The Sobolev 2-capacity Cap on a metric measure space (X, d,m), which is defined as

Cap(S) := inf
{
‖f‖2H1,2(X)

∣∣∣ f ∈ H1,2(X), f ≥ 1 m-a.e. on a neighbourhood of S
}

for every subset S ⊂ X. We know that Cap satisfies (2.3) and m� Cap, cf. [DGP21].
Given any µ as in (2.3), we define L0(µ) as the space of all the equivalence classes, up to µ-a.e.
equality, of Borel functions f : X → R. We define a distance on L0(µ): let us fix a sequence (An)n
of bounded open subsets of X with An ⊂ An+1 for every n ∈ N and such that for any B ⊂ X
bounded it holds B ⊂ An for some n ∈ N (thus X =

⋃
nAn); then we set

dL0(µ)(f, g) :=
∑
n∈N

1
2n max{µ(An), 1}

ˆ
An

min{|f − g|, 1} dµ for every f, g ∈ L0(µ) .

The fact that dL0(µ) is a distance (more precisely, that it verifies the triangle inequality) follows
from the submodularity of µ. By inspecting the proof of [DGP21, Proposition 1.10], which was
written just for the case µ = Cap, one can realize that limi dL0(µ)(fi, f) = 0 if and only if

lim
i→∞

µ
(
B ∩ {|fi − f | > ε}

)
= 0 for every ε > 0 and B ⊂ X bounded . (2.4)
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In particular, as in [DGP21, Proposition 1.12], (2.4) implies the existence of a subsequence (ij)j
such that fij (x) → f(x) holds for µ-a.e. x ∈ X. The converse implication (which is verified, for
instance, when µ is a Borel measure) in general might fail, see e.g. [DGP21, Remark 1.13].

We now introduce the notion of L0(µ)-normed L0(µ)-module when µ is chosen as in (2.3). Before
doing so, we point out that L0(µ) is a topological vector space and a topological ring when endowed
with the natural pointwise operations and the complete distance dL0(µ).

Definition 2.1 (L0(µ)-normed L0(µ)-module). Let (X, d) be a complete separable metric space.
Let µ be as in (2.3). Let M be an algebraic module over the commutative ring L0(µ). A pointwise
norm on M is a mapping | · | : M → L0(µ) which satisfies in the µ-a.e. sense

|v| ≥ 0 for every v ∈M , with equality if and only if v = 0,
|v + w| ≤ |v|+ |w| for every v, w ∈M ,

|f · v| = |f ||v| for every f ∈ L0(µ) and v ∈M .

We say that (M , | · |), or just M , is an L0(µ)-normed L0(µ)-module provided the distance
dM (v, w) := dL0(µ)(|v − w|, 0) for every v, w ∈M

is complete.

The above definition coincides with the ones in [G18, Definition 1.3.1] and [DGP21, Definition
2.1] when µ is a Borel measure and µ = Cap, respectively.

We define the restriction M |E of an L0(µ)-normed L0(µ)-module M to E ∈ B(X) as
ME :=

{
χE · v : v ∈M

}
.

It holds that M |E inherits from M the structure of L0(µ)-normed L0(µ)-module. Moreover, we
say that an L0(µ)-normed L0(µ)-module H is a Hilbert module provided

|v + w|2 + |v − w|2 = 2|v|2 + 2|w|2 µ-a.e. for every v, w ∈H ,

which we shall refer to as the pointwise parallelogram rule. On Hilbert modules, the formula

〈v, w〉 := |v + w|2 − |v|2 − |w|2

2 for every v, w ∈H

defines an L0(µ)-bilinear and continuous mapping 〈·, ·〉 : H ×H → L0(µ).

Definition 2.2 (Upper dimension bound). Let (X, d) be a complete separable metric space. Let µ
be as in (2.3). Let M be an L0(µ)-normed L0(µ)-module. Fix E ∈ B(X) with µ(E) > 0. Then we
give the following definitions:

i) A family S ⊂M is said to generate M on E provided{ n∑
i=1

(χEfi) · vi
∣∣∣∣ n ∈ N, (fi)ni=1 ⊂ L0(µ), (vi)ni=1 ⊂ S

}
is dense in M |E .

When E = X, we just say that S generates M .
ii) Some elements v1, . . . , vn ∈M are said to be linearly independent on E provided

(fi)ni=1 ⊂ L0(µ),
n∑
i=1

(χEfi) · vi = 0 =⇒ χEfi = 0 µ-a.e. for all i = 1, . . . , n .

When this is not verified, we say that v1, . . . , vn are linearly dependent on E.
iii) We say that the local dimension of M on E does not exceed n ∈ N provided there exists a

generating subset S of M having the following property: if v1, . . . , vn+1 ∈ S and B ∈ B(X)
satisfies B ⊂ E and µ(B) > 0, then v1, . . . , vn+1 are linearly dependent on B.

On Hilbert normed modules, the linear independence can be checked in the following way:

Lemma 2.3. Let (X, d) be a complete separable metric space. Let µ be as in (2.3). Let H be a
Hilbert L0(µ)-normed L0(µ)-module. Let E ∈ B(X) satisfy µ(E) > 0. Then v1, . . . , vn ∈ H are
linearly independent on E if and only if the matrix

Aij := 〈vi, vj〉
is invertible µ-almost everywhere on E.
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Proof. Let us notice that in general Aij is a symmetric nonnegative matrix µ-a.e. on E.
Let us consider functions f1, . . . , fn ∈ L0(µ) and compute∣∣∣∣∣

n∑
i=1

fivi

∣∣∣∣∣
2

=
n∑

i,j=1
Aijfifj , µ-a.e. on E . (2.5)

If we assume that Aij is invertible µ-a.e. on E and
∑n
i=1 fivi = 0 µ-a.e. on E, then Aij is positive

definite µ-a.e. on E and from (2.5) it follows that fi = 0 holds µ-a.e. on E for any i = 1, . . . , n.
Hence v1, . . . , vn are linearly independent on E.

Vice versa, if v1, . . . , vn are linearly independent on E, and we suppose that Aij is singular on
B ⊂ E such that µ(B) > 0, then we can find functions g1, . . . , gn ∈ L0(µ) such that

∑n
i=1 g

2
i > 0

µ-a.e. on B, while
∑n
i,j=1Aijgigj = 0 µ-a.e. on B. Hence

∑n
i=1 givi = 0 µ-a.e. on B, a contradiction

with the linear independence of v1, . . . , vn on E. �

In the case where µ is a Borel measure, the above notions of generating set and linear
(in)dependence are consistent with those introduced in [G18, Definitions 1.4.1 and 1.4.2]. In
that case, they lead to a natural notion of local dimension: one says that M has local dimension
equal to n on E if there exists a local basis v1, . . . , vn ∈M for M on E, i.e. v1, . . . , vn are linearly
independent on E and {v1, . . . , vn} generates M on E; cf. [G18, Definition 1.4.3]. This notion of
local dimension is well-posed, because any two local bases on a given Borel set must have the same
cardinality, see [G18, Proposition 1.4.4]. Once the concept of local dimension is established, it is
possible to get the dimensional decomposition of M [G18, Proposition 1.4.5]: there exists a Borel
partition {Dn(M )}n∈N∪{∞} of X, unique up to µ-a.e. equality, having the property that M has
local dimension equal to n on Dn(M ) for every n ∈ N, while M is not finitely-generated on any
Borel subset of D∞(M ) having positive µ-measure.
The following consistency check is in order. For simplicity, we just focus on Hilbert normed modules
as this is sufficient for our purposes, but the Hilbertianity assumption could be dropped.

Lemma 2.4. Let (X, d,m) be a metric measure space. Let H be a Hilbert L0(m)-normed L0(m)-
module. Then the local dimension of H on E ∈ B(X) does not exceed n ∈ N if and only if

m(E ∩Dk(H )) = 0 for every k ∈ N ∪ {∞} with k > n . (2.6)

Proof. To prove necessity, we argue by contradiction: suppose to have a Borel set B ⊂ E with
m(B) > 0 such that H has dimension at least n+ 1 on B. Then we can find w1, . . . , wn+1 ∈H
which are orthonormal on B, namely 〈wi, wj〉 = δij holds m-a.e. on B for all i, j = 1, . . . , n + 1.
Fix a family S ⊂H which realizes the upper local dimension bound of H on E. Without loss of
generality, we may assume that S is a linear subspace of H . Thanks to Egorov theorem, we can find
a compact set K ⊂ B with m(K) > 0 and elements v1, . . . , vn+1 ∈ S such that |vi − wi| ≤ ε holds
m-a.e. on K for every i = 1, . . . , n+ 1, where ε > 0 is chosen so that (1− 2ε− ε2)− n(ε2 + 2ε) ≥ 1

2 .
Notice that∣∣〈vi, vj〉 − 〈wi, wj〉∣∣ ≤ |vi − wi||vj |+ |wi||vj − wj | ≤ ε(|wj |+ ε

)
+ |wi|ε = ε2 + 2ε , (2.7)

holds m-a.e. on K for every i, j = 1, . . . , n+ 1. Given any f1, . . . , fn+1 ∈ L0(m), it holds that∣∣∣∣ n+1∑
i=1

fivi

∣∣∣∣2 =
n+1∑
i=1

f2
i |vi|2 +

∑
i 6=j

fifj〈vi, vj〉
(2.7)
≥ (1− 2ε− ε2)

n+1∑
i=1

f2
i − (ε2 + 2ε)

∑
i 6=j
|fi||fj |

≥ (1− 2ε− ε2)
n+1∑
i=1
|vi|2 −

1
2(ε2 + 2ε)

∑
i6=j

(
f2
i + f2

j

)
=
[
(1− 2ε− ε2)− n(ε2 + 2ε)

] n+1∑
i=1

f2
i ≥

1
2

n+1∑
i=1

f2
i ,

m-a.e. on K. In particular, if χK
∑n+1
i=1 fivi = 0, then f1 = . . . = fn+1 = 0 m-a.e. on K, which

shows that v1, . . . , vn+1 are linearly independent on K. This leads to a contradiction, proving (2.6).
In order to prove sufficiency, suppose (2.6) holds. Then we can find elements v1, . . . , vn ∈ H

such that for any k ≤ n it holds that v1, . . . , vk is a local basis for H on E ∩Dk(H ). Therefore,
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since the set
⋃
k≤nDk(H ) covers m-a.a. of E by assumption, choosing S := {v1, . . . , vn} it is clear

that the local dimension of H on E does not exceed n, as required. �

Remark 2.5. It is not clear to us whether a dimensional decomposition can be built for all L0(µ)-
normed L0(µ)-modules, when µ is as in (2.3) but is not a Borel measure. One difficulty is, for
instance, the fact that we would need to take µ-essential unions; it is not clear how to do it (in the
case where µ is the 2-capacity, this is pointed out in [DGP21]). However, this is not really relevant
for our purposes, since on L0(Cap)-normed L0(Cap)-modules we are just interested to upper local
dimension bounds, thus we will not investigate further in this direction.

Let (X, d,m) be a metric measure space and µ be as in (2.3). Then we say that m is absolutely
continuous with respect to µ, shortly m� µ, provided it holds that m(N) = 0 for every N ∈ B(X)
with µ(N) = 0. When µ is a Borel measure, this notion coincides with the usual absolute continuity.
Assuming that m � µ, we have a natural projection map πm : L0(µ) → L0(m), which can be
characterized as follows:

πm([f ]µ) = [f ]m for every f : X → R Borel.
One can readily check that the operator πm is well-defined, linear and continuous. It also induces
projection maps at the level of normed modules, as we are going to describe.
Given an L0(µ)-normed L0(µ)-module M , we introduce the following equivalence relation on M :
given any v, w ∈M , we declare that v ∼m w if and only if πm(|v−w|) = 0 holds m-a.e. on X. The
resulting quotient space Mm := M / ∼m is an L0(m)-normed L0(m)-module with respect to the
natural pointwise operations. We denote again by πm : M →Mm the canonical projection map,
which is linear and continuous.
Observe that

H Hilbert L0(µ)-normed L0(µ)-module =⇒ Hm Hilbert L0(m)-normed L0(m)-module.
This can be readily checked by just applying πm to the pointwise parallelogram rule for H .

As one might expect, an upper local dimension bound passes to the quotient:

Lemma 2.6. Let (X, d,m) be a metric measure space and let µ be as in (2.3). Suppose m � µ.
Let H be a Hilbert L0(µ)-normed L0(µ)-module whose local dimension on E ∈ B(X) does not
exceed n ∈ N. Then the local dimension of Hm on E does not exceed n.

Proof. Let S be a generating subset of H on E realizing its upper local dimension bound and
consider Sm := πm(S). Fix any B ∈ B(X) with B ⊂ E and m(B) > 0, and fix any v1, . . . , vn+1 ∈ Sm.
Pick elements w1, . . . , wn+1 ∈ S such that vi = πm(wi). Also, fix any Borel µ-a.e. representative
Āij : X → R of 〈wi, wj〉, thus in particular Āij is an m-a.e. representative of 〈vi, vj〉 = πm(〈wi, wj〉).
We argue by contradiction: suppose v1, . . . , vn+1 are linearly independent on B. Then Lemma 2.3
yields the existence of a Borel set F ⊂ B with m(F ) > 0 (and thus µ(F ) > 0) such that

det
(
Āij(x)

)
i,j
6= 0 for every x ∈ F .

Again by Lemma 2.3, this implies that w1, . . . , wn+1 are linearly independent on F , thus leading to
a contradiction. Therefore, the local dimension of Hm on E does not exceed n, as required. �

2.3. RCD(K,N) metric measure spaces and second order calculus. We assume the reader
to be familiar with the language of RCD(K,N) spaces and the notion of pointed measured Gromov–
Hausdorff convergence (often abbreviated to pmGH).

We recall that any sequence (Xn, dn,mn, xn), n ∈ N of pointed RCD(K,N) spaces such that
mn(B1(xn)) are uniformly bounded and uniformly bounded away from 0 converges, up to the
extraction of a subsequence, to some pointed RCD(K,N) space (X, d,m, x) with respect to the
pmGH-topology. This follows from a compactness argument due to Gromov and the stability of
the RCD(K,N) condition.

We will repeatedly rely on the convergence and stability properties of function spaces and
functions along sequences of RCD(K,N) metric measure spaces converging in the pointed measured
Gromov-Hausdorff sense. We refer to [GMSa15, AH17] for the basic background about this subject.

Gigli in [G18] has developed a second order calculus for RCD(K,∞) metric measure spaces, we
briefly review the main concepts to fix the notation.
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Following [Sa14] we define the space of test functions on an RCD(K,∞) space (X, d,m) as

Test(X) :=
{
f ∈ D(∆) ∩ L∞(X) : |∇f | ∈ L∞(X), ∆f ∈ H1,2(X)

}
.

Test functions are dense in H1,2(X) and it holds 〈∇f,∇g〉 ∈ H1,2(X) whenever f, g ∈ Test(X).
The tangent module L0(TX) and the gradient ∇̄ : Test(X) → L0(TX) are characterized as

follows. The space L0(TX) is the Hilbert L0(m)-normed L0(m)-module generated by the image
of ∇̄, while ∇̄ is the unique linear operator such that |∇̄f | coincides m-a.e. with |∇f | for every
f ∈ Test(X). The tangent module L2(TX) ⊂ L0(TX) is the subset of those v ∈ L0(TX) such that
|v| ∈ L2(m). We denote by L2(T ∗X) the cotangent module over (X, d,m), which is the dual module
of L2(TX).

We recall the notion of Hessian of a test function [G18]: given f ∈ Test(X), we denote by
Hess(f) the unique element of the tensor product L2(T ∗X)⊗L2(T ∗X) (cf. [G18, Section 1.5]) such
that

2
ˆ
hHess(f)(∇g1 ⊗∇g2) dm

=−
ˆ
∇f · ∇g1 div(h∇g2) +∇f · ∇g2 div(h∇g1) + h∇f · ∇(∇g1 · ∇g2) dm

(2.8)

holds for every h, g1, g2 ∈ Test(X). The pointwise norm
∣∣Hess(f)

∣∣ of Hess(f) belongs to L2(m).
The space H2,2(X, d,m) ⊂ H1,2(X, d,m) is defined by taking the closure of Test(X) with respect

to the norm
‖f‖2H2,2 = ‖f‖2H1,2 + ‖|Hess(f)|‖2L2 ,

see [G18, Definition 3.3.1, Definition 3.3.17]. Let us recall that, as proved in [G18, Proposition
3.3.18], we have the inclusion

D(∆) ⊂ H2,2(X, d,m) . (2.9)

To define H1,2
C (TX) ⊂ L2(TX), the space of vector fields with covariant derivative in L2, we

follow a similar path. We first introduce the class of test vector fields

TestV(X) :=
{

m∑
k=1

gk∇fk : fk, gk ∈ Test(X) , m ∈ N

}
,

and, employing an identity analogous to (2.8), we define the covariant derivative ∇v for any v ∈
TestV(X). The Sobolev space H1,2

C (TX) is obtained by taking the closure of TestV(X) ⊂ L2(TX)
with respect to the norm

‖v‖2H1,2
C

(TX) := ‖v‖2L2(TX) + ‖|∇v|‖2L2 , (2.10)

see [G18, Definition 3.4.1, Definition 3.4.3].

A powerful tool in the study of non smooth spaces with lower Ricci curvature bounds are the
so-called (harmonic) δ-splitting maps. Their use goes back to the seminal works of Cheeger-Colding
in the Nineties and more recently they have been employed by the authors in the study of sets
of finite perimeter on RCD spaces in [BPS19]. We refer to [BNS20] and [CJN21] for the sharpest
statements available up to now for splitting maps on RCD and Ricci limit spaces, respectively, even
though for the sake of this note the results of [BPS19] will be sufficient.

Definition 2.7 (Splitting map). Let (X, d,m) be an RCD(−1, N) space. Let x ∈ X and δ > 0 be
given. Then a map u = (u1, . . . , uk) : Br(x)→ Rk is said to be a δ-splitting map provided:

i) ua : Br(x)→ R is harmonic and C(N)-Lipschitz for every a = 1, . . . , k,
ii) r2 ffl

Br(x)
∣∣Hess(ua)

∣∣2 dm ≤ δ for every a = 1, . . . , k,
iii)

ffl
Br(x) |∇ua · ∇ub − δab| dm ≤ δ for every a, b = 1, . . . , k.

The following characterization of the quasi continuous representative of Sobolev functions will be
of relevance for our purposes, see [KM02, KL02] dealing with the more general setting of PI spaces.
Below we shall denote by Cap the 2-capacity of the metric measure space (X, d,m).
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Theorem 2.8. Let (X, d,m) be an RCD(K,N) metric measure space for some K ∈ R and
1 ≤ N <∞. Let x ∈ X and r > 0 be fixed and let u ∈ H1,2(Br(x)). Then the limit

lim
s→0

 
Bs(y)

u(z) dm(z) (2.11)

exists for Cap-a.e. y ∈ Br(x). Moreover,

lim
s→0

 
Bs(y)

|u(y)− u(z)|2 dm(z) = 0 ,

for Cap-a.e. y ∈ Br(x), where we are considering the Cap-a.e. well defined representative of u
given by (2.11).

Using that |∇u|2 ∈ H1,2(Br(x)) whenever u : B2r(x)→ R is harmonic we deduce the following.

Corollary 2.9. Let (X, d,m) be an RCD(K,N) metric measure space for some K ∈ R and
1 ≤ N < ∞. Let BR(x) ⊂ X for some R > 0 and x ∈ X and let u : BR(x) → R be harmonic.
Then the limit

|∇u(y)|2 := lim
r→0

 
Br(y)

|∇u(z)|2 dm(z) , (2.12)

exists for Cap-a.e. y ∈ BR(x). Moreover

lim
r→0

 
Br(y)

||∇u(y)| − |∇u(z)||2 dm(z) = 0 .

Remark 2.10. Relying on the Bochner inequality one can sharpen the conclusion (2.12) by showing
the existence of the limit at any point y ∈ BR(x). Let us briefly sketch the argument for the
reader’s convenience.

By Bochner’s inequality, |∇u|2 has measure valued Laplacian bounded from below by a constant
on BR/2(x). Indeed

∆1
2 |∇u|

2 ≥ −K |∇u|2 m , on BR/2(x) ,

see [Sa14, G18]. Moreover, by [J12], |∇u| is bounded on BR/2(x).
Then we can recall that, on general metric measure spaces supporting doubling and Poincaré

inequalities, subharmonic functions have Lebesgue points everywhere, see [BB11, Proposition 8.24].
In our setting, this regularity result extends to functions with Laplacian locally bounded from
below, since we can always perturb them to locally subharmonic functions by adding a solution of
∆v = c on Br(x) for any given c ∈ R and, again by [J12], v is locally Lipschitz.

Besides quasi-continuous functions, quasi-continuous vector fields play an important role in
the theory of RCD(K,N) spaces. This is made precise by the notion of tangent L0(Cap)-module
L0

Cap(TX) introduced in [DGP21, Theorem 2.6], which we are going to recall. First of all, let
us stress again that 〈∇f,∇g〉 ∈ H1,2(X) whenever f, g ∈ Test(X). In particular, the function
〈∇f,∇g〉 (and thus also |∇f |2) admits a quasi-continuous representative.

The capacitary tangent module L0
Cap(TX) and the capacitary gradient ∇̄ : Test(X)→ L0

Cap(TX)
can be characterized as follows. The space L0

Cap(TX) is the Hilbert L0(Cap)-normed L0(Cap)-
module generated by the image of ∇̄, while ∇̄ is a linear operator such that |∇̄f | coincides Cap-a.e.
with any quasi-continuous representative of |∇f | for every f ∈ Test(X).

2.4. Structure theory for RCD(K,N) spaces. Let us briefly review the main results concerning
the state of the art about the so-called structure theory of RCD(K,N) spaces.

Given a m.m.s. (X, d,m), x ∈ X and r ∈ (0, 1), we consider the rescaled and normalized pointed
m.m.s. (X, r−1d,mxr , x), where

mxr :=
(ˆ

Br(x)

(
1− d(x, y)

r

)
dm(y)

)−1

m = C(x, r)−1m .

Definition 2.11. We say that a pointed m.m.s. (Y, dY , η, y) is tangent to (X, d,m) at x if there
exists a sequence ri ↓ 0 such that (X, r−1

i d,mxri , x) → (Y, dY , η, y) in the pmGH-topology. The
collection of all the tangent spaces of (X, d,m) at x is denoted by Tanx(X, d,m).
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A compactness argument, which is originally due to Gromov, together with the rescaling and
stability properties of the RCD(K,N) condition, yields that Tanx(X, d,m) is non-empty for every
x ∈ X and its elements are all RCD(0, N) pointed m.m. spaces.
Let us recall below the notion of k-regular point and k-regular set.

Definition 2.12. Given any natural 1 ≤ k ≤ N , we say that x ∈ X is a k-regular point if

Tanx(X, d,m) =
{

(Rk, deucl, ckL k, 0)
}
.

We shall denote by Rk the set of k-regular points in X.

Theorem 2.13. Let (X, d,m) be an RCD(K,N) m.m.s. with K ∈ R and 1 ≤ N <∞. Then there
exists a natural number 1 ≤ n ≤ N , called essential dimension of X, such that m(X \ Rn) = 0.
Moreover Rn is (m, n)-rectifiable and m is representable as θH n Rn for some nonnegative density
θ ∈ L1

loc(X,H n Rn).

The rectifiability above was obtained in [MN19], while the behaviour of the reference measure
was studied in the independent works [KM18, DPMR17, GP16a]. The constancy of the dimension
was obtained in [BS20] partially generalizing the previous [CN12], which was dealing with Ricci
limit spaces. In the more recent [D20] the results of [CN12] have been fully generalized to the RCD
framework. In particular we will rely on the following consequence of the main result of [D20].

Proposition 2.14. Let (X, d,m) be an RCD(K,N) metric measure space whose essential dimension
is 1 ≤ n ≤ N . Let γ : [0, 1] → X be a geodesic such that γ(t) ∈ Rn for a.e. t ∈ (0, 1). Then
γ(t) ∈ Rn for every t ∈ (0, 1).

Proof. By [D20] tangent cones coming from the same sequence of scaling radii ri ↓ 0 are continuous
w.r.t. the pGH topology in the interior of minimizing geodesics. Since γ(t) ∈ Rn for a.e. t ∈ (0, 1) it
follows that any tangent cone at any γ(s) for s ∈ (0, 1) is isometric as a metric space to (Rn, deucl).
An iterative application of the splitting theorem [G13] yields that any RCD(0, N) metric measure
space isometric to (Rn, deucl) is actually isomorphic as a metric measure space to (Rn, deucl, cL n).
This implies that γ(s) ∈ Rn for any s ∈ (0, 1). �

2.5. Sets of finite perimeter. Here we recall the basic background about sets of finite perimeter
on metric measure spaces. Then we present some more recent results obtained in the setting of
RCD(K,N) spaces.

Definition 2.15 (Function of bounded variation). We say that f ∈ L1(X,m) belongs to the space
BV(X, d,m) of functions of bounded variation if there exist locally Lipschitz functions fi converging
to f in L1(X,m) such that

lim sup
i→∞

ˆ
X

|∇fi|dm < +∞ .

If f ∈ BV(X, d,m) one can define

|Df | (A) := inf
{

lim inf
i→∞

ˆ
A

|∇fi|dm : fi ∈ Liploc(A), fi → f in L1(A,m)
}
,

for any open A ⊂ X. This set function is the restriction to open sets of a finite Borel measure that
we call total variation of f and still denote by |Df |.

Dropping the global integrability condition on f = χE , let us recall now the analogous definition
of set of finite perimeter in a metric measure space (see again [A02, Mi03, ADM14]).

Definition 2.16 (Perimeter and sets of finite perimeter). Given a Borel set E ⊂ X and an open
set A the perimeter PerE(A) is defined in the following way:

PerE(A) := inf
{

lim inf
n→∞

ˆ
A

|∇un|dm : un ∈ Lipbs(A), un → χE in L1
loc(A,m)

}
.

We say that E has finite perimeter if PerE(X) < ∞. In that case it can be proved that the set
function A 7→ PerE(A) is the restriction to open sets of a finite Borel measure PerE defined by

PerE(B) := inf {PerE(A) : B ⊂ A, A open} .
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Let us remark for the sake of clarity that E ⊂ X with finite m-measure is a set of finite perimeter
if and only if χE ∈ BV(X, d,m) and that PerE = |DχE |. In the following we will say that E ⊂ X
is a set of locally finite perimeter if χE is a function of locally bounded variation, that is to say
ηχE ∈ BV(X, d,m) for any η ∈ Lipbs(X, d).

We recall that a coarea formula holds in this generality, see [Mi03, Proposition 4.2], dealing with
locally compact spaces, and its proof works in the more general setting of metric measure spaces.

Theorem 2.17. Let v ∈ BV(X, d,m). Then, {v > r} has finite perimeter for L 1-a.e. r ∈ R and,
for any Borel function f : X → [0,+∞], it holds

ˆ
X

f d |Dv| =
ˆ +∞

−∞

(ˆ
X

f d Per{v>r}
)

dr . (2.13)

In [A02] a general theory of sets of finite perimeter on metric measure spaces satisfying doubling
and Poincaré inequalities (the so-called PI spaces) was developed. The following asymptotic
doubling property of the perimeter measure will be of some relevance for our purposes.

Proposition 2.18 (Corollary 5.8 in [A02]). Let (X, d,m) be a PI metric measure space and let
E ⊂ X be a set of finite perimeter. Then |DχE | is asymptotically doubling, i.e.

lim sup
r→0

|DχE | (B2r(x))
|DχE | (Br(x)) <∞ , for |DχE |-a.e. x ∈ X .

An important consequence of the asymptotically doubling property is the validity of the Lebesgue
differentiation theorem, i.e. for any f ∈ L1(|DχE |), for |DχE |-a.e. x ∈ X it holds

lim
r→0

 
Br(x)

|f(y)− f(x)|d|DχE |(y) = 0 .

It can be proven by observing that a countable sub-family of {Gr,M : r > 0, M > 1} covers X up
to a |DχE |-negligible set, where

Gr,M := {x ∈ X : |DχE |(B2s(x)) ≤M |DχE |(Bs(x)) for any 0 < s < r} .

On each Gr,M we can apply the standard Lebesgue differentiation theorem for doubling metric
measure spaces.

Let us recall the notion of tangent to a set of finite perimeter that has been introduced in
[ABS19].

Definition 2.19. Let (X, d,m) be an RCD(K,N) m.m.s., x ∈ X and let E ⊂ X be a set of locally
finite perimeter. We denote by Tanx(X, d,m, E) the collection of quintuples (Y, %, µ, y, F ) satisfying
the following two properties:

(a) (Y, %, µ, y) ∈ Tanx(X, d,m) and ri ↓ 0 are such that the rescaled spaces (X, r−1
i d,mrix , x)

converge to (Y, %, µ, y) in the pointed measured Gromov-Hausdorff topology;
(b) F is a set of locally finite perimeter in Y with µ(F ) > 0 and, if ri are as in (a), then the

sequence fi = χE converges in L1
loc to χF .

In [ABS19, BPS19] the following partial generalization of De Giorgi’s classical regularity theorem
for boundaries of sets of finite perimeter has been obtained in the setting of RCD(K,N) metric
measure spaces.

Theorem 2.20 (Theorem 3.2 and Theorem 4.1 in [BPS19]). Let (X, d,m) be an RCD(K,N) m.m.s.
with essential dimension 1 ≤ n ≤ N , E ⊂ X be a set of finite perimeter. Then, for |DχE |-a.e.
x ∈ X, there exists k = 1, . . . , n such that

Tanx(X, d,m, E) =
{

(Rk, deucl, ckL k, 0k, {xk > 0})
}
.

Moreover, setting

FkE :=
{
x ∈ X : Tanx(X, d,m, E) =

{
(Rk, deucl, ckL k, 0k, {xk > 0})

}}
,

it holds that FkE is (|DχE | , k)-rectifiable for any k = 1, . . . , n.
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In [BPS19] a notion of restriction of the tangent module L2(TX) over the boundary of a set
of finite perimeter has been introduced. We recall below the relevant terminology. Let E ⊂ X
be a given set of finite perimeter. As we proved in [BPS19], it holds that |DχE | � Cap, thus in
particular we have a natural trace operator trE : H1,2(X)→ L0(|DχE |) over the boundary of E,
obtained by sending each function f ∈ H1,2(X) to the equivalence class (up to |DχE |-a.e. equality)
of any quasi-continuous representative of f . Concerning vector fields, we have the following result.

Theorem 2.21 (Tangent module over ∂E, Theorem 2.2 in [BPS19]). Let (X, d,m) be an RCD(K,N)
space. Let E ⊂ X be a set of finite perimeter. Then there exists a unique couple

(
L2
E(TX), ∇̄

)
–

where L2
E(TX) is an L2(|DχE |)-normed L∞(|DχE |)-module and ∇̄ : Test(X)→ L2

E(TX) is linear
– such that:

i) The equality |∇̄f | = trE(|∇f |) holds |DχE |-a.e. for every f ∈ Test(X).
ii)
{∑n

i=1 χEi∇̄fi
∣∣ (Ei)ni=1 Borel partition of X, (fi)ni=1 ⊂ Test(X)

}
is dense in L2

E(TX).
The space L2

E(TX) is called tangent module over the boundary of E and ∇̄ is the gradient.

The space L2
E(TX) was in fact obtained as the family of all (2-integrable) sections of the quotient

L0
E(TX) := L0

Cap(TX)|DχE |,
where we adopt the notation for quotient modules that we introduced before Lemma 2.6; this
comment will play a role in Remark 4.10. Observe also that L2

E(TX) is a Hilbert module.
The notion of restriction of the tangent module over the boundary of a set of finite perimeter

is a key tool to prove a Gauss-Green integration by parts formula in this setting, for sufficiently
regular vector fields.

Theorem 2.22 (Theorem 2.4 in [BPS19]). Let (X, d,m) be an RCD(K,N) metric measure space
and let E ⊂ X be a set with finite perimeter and finite measure. Then there exists a unique vector
field νE ∈ L2

E(TX) such that |νE | = 1 holds PerE-a.e. andˆ
E

div v dm = −
ˆ
〈trEv, νE〉d PerE , for any v ∈ H1,2

C (TX) ∩D(div) such that |v| ∈ L∞(m) .

Remark 2.23. For the sake of clarity, let us remark that for a smooth domain on a smooth
Riemannian manifold, the vector field νE above would correspond to the interior unit normal vector
field.

Let us remark that one of the goals of the present note is to lower the regularity assumptions on
the vector fields in the Gauss-Green formula above.

2.6. Geodesic plans and functions with bounded variation. In this section we present a
characterization of BV functions in terms of test plans concentrated on geodesics. It will be relevant
for the purpose of proving that boundaries of sets with finite perimeter have constant dimension.

Let us begin by recalling the concept of test plan, which was introduced in [AGSa13]. Given
a metric measure space (X, d,m) and a Borel probability measure π on the space of continuous
curves C([0, 1], X), we say that π is an ∞-test plan if it is concentrated on an equi-Lipschitz family
of curves and there exists C > 0 such that

(et)∗π ≤ Cm for every t ∈ [0, 1] ,
where et : C([0, 1], X)→ X stands for γ 7→ et(γ) := γt. The minimal such C is denoted by Comp(π),
while Lip(π) stands for the minimal L ≥ 0 such that π is concentrated on L-Lipschitz curves.

The following notion of function having bounded Π-variation, where Π is an arbitrary family
of ∞-test plans, has been recently proposed in [NPS21, Definition 2.7], as a generalization of the
notion of BV space via test plans introduced in [ADM14, Section 5.3].

Definition 2.24. Let (X, d,m) be a metric measure space. Let Π be a family of ∞-test plans on
X. Let f ∈ L1(m) be given. Then we declare that f ∈ BVΠ(X) provided:

i) Given any π ∈ Π, it holds that f ◦ γ ∈ BV(0, 1) for π-a.e. γ.
ii) There exists a finite Borel measure µ ≥ 0 on X such that for every π ∈ Π it holds thatˆ

γ#|D(f ◦ γ)|(B) dπ(γ) ≤ Comp(π)Lip(π)µ(B), for every B ⊂ X Borel. (2.14)
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The minimal measure µ ≥ 0 satisfying (2.14) is denoted by |Df |Π.

The following theorem follows from the results in [NPS21]. It says that, on finite-dimensional
RCD spaces, (a countable family of) ∞-test plans concentrated on geodesics is sufficient to recover
all BV functions and their total variation measures (up to a given multiplicative constant).

Theorem 2.25. Let (X, d,m) be an RCD(K,N) space, where N <∞. Then there exists a sequence
Π = (πi)i of ∞-test plans on X concentrated on Geo(X) such that BVΠ(X) = BV(X) and

|Df |Π ≤ |Df | ≤ 2N |Df |Π , for every f ∈ BV(X) . (2.15)

A few words about Theorem 2.25 are in order. Calling ΠGeo the family of those ∞-test plans on
X that are concentrated on Geo(X), we know from [NPS21, Remark 3.8] that BVΠGeo(X) = BV(X)
and |Df |ΠGeo ≤ |Df | ≤ 2N |Df |ΠGeo for every f ∈ BV(X). Here, the fact that X is non-branching
is ensured by [D20, Theorem 1.3]. Moreover, by using [NPS21, Theorem 3.9 and Remark 3.10] we
can select a countable subfamily Π ⊂ ΠGeo verifying the statement of Theorem 2.25.
Albeit not strictly needed for our purposes, we point out that in the case where either K = 0 or
X is compact, (2.15) improves to the identity |Df |Π = |Df | for every f ∈ BV(X). In fact, it is
strongly believed that this is actually the case on every RCD(K,N) space.

3. Constant dimension along boundaries

In this section we prove that the total variation measure of BV functions is concentrated on the
regular set Rn, where n is the essential dimension of the space. This result, heavily relying on the
continuity of tangent cones along geodesics proven recently in [D20], allows us to positively answer
one of the questions left open in [BPS19]. We can indeed show that boundaries of sets of finite
perimeter are concentrated on Rn, hence they have constant dimension n− 1.

An important consequence is that the tangent module L2
E(TX) over the boundary of a set with

finite perimeter E has dimension n as well.

Theorem 3.1. Let (X, d,m) be an RCD(K,N) space for some K ∈ R and 1 ≤ N < ∞. Let
f ∈ BV(X) be given. Then |Df | is concentrated on Rn, where 1 ≤ n ≤ N stands for the essential
dimension of X.

Proof. Fix a Borel representative f̄ : X → R of f . Let (πi)i be chosen as in Theorem 2.25. Calling
e : C([0, 1], X)× [0, 1] → X the evaluation map (γ, t) 7→ e(γ, t) := γt, for any i ∈ N we have that
e#(πi ⊗ L1) ≤ Comp(πi)m. Since m(X \ Rn) = 0, we deduce that

γt ∈ Rn, for (πi ⊗ L1)-a.e. (γ, t).
Recalling the fact that each πi is concentrated on geodesics, as well as Ulam Lemma, we can find
a σ-compact set Γi ⊂ Geo(X) having the property that for every γ ∈ Γi the following conditions
hold:

f̄ ◦ γ ∈ BV(0, 1), πi(Γci ) = 0, γt ∈ Rn for L1-a.e. t ∈ [0, 1].
The last condition implies that γt ∈ Rn for every γ ∈ Γi and t ∈ (0, 1) by Proposition 2.14. Define

G :=
⋃
i∈N

Gi, where we set Gi :=
{
γt
∣∣ γ ∈ Γi, t ∈ (0, 1)

}
.

Observe that G ⊂ Rn. Moreover, each set Gi, being the continuous image (under e) of the
σ-compact set Γi× (0, 1), is σ-compact itself and accordingly G is Borel. Therefore, it only remains
to show that |Df |(X \G) = 0. Since Π := (πi)i satisfies |Df | ≤ 2N |Df |Π, we just have to check
that ˆ

γ#|D(f ◦ γ)|(X \G) dπi(γ) = 0, for every i ∈ N. (3.1)

To prove it, notice that γ−1(X \Gi) ∩ (0, 1) = ∅ for every γ ∈ Γi by definition of Gi, so thatˆ
γ#|D(f ◦ γ)|(X \G) dπi(γ) =

ˆ
Γi
γ#|D(f̄ ◦ γ)|(X \G) dπi(γ)

≤
ˆ

Γi
γ#|D(f̄ ◦ γ)|(X \Gi) dπi(γ)

=
ˆ

Γi
|D(f̄ ◦ γ)|

(
γ−1(X \Gi)

)
dπi(γ) = 0.
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This yields (3.1) and accordingly the statement. �

We shall denote by Hh the codimension 1 Hausdorff-type measure on (X, d,m) build through
the Carathéodory construction with gauge function h(Br(x)) = m(Br(x))/r, see [BPS19, Definition
1.9]. In [BPS19, Corollary 3.15] it was proved that, for a set of locally finite perimeter E ⊂ X,

|DχE | =
n∑
k=1

ωk−1

ωk
Hh FkE , (3.2)

where 1 ≤ n ≤ N denotes the essential dimension of (X, d,m).

Corollary 3.2. Let (X, d,m) be an RCD(K,N) space with essential dimension n ≤ N . Let E ⊂ X
be a set of finite perimeter. Then PerE is concentrated on Rn. In particular FkE is |DχE |-negligible
for k 6= n and

|DχE | =
ωn−1

ωn
Hh FnE . (3.3)

When (X, d,H N ) is a non collapsed RCD(K,N) space one has H h = ωN
ωN−1

H N−1 and the
identity (3.3) was already proven in [ABS19, BPS19].

Let us point out a remarkable consequence of Theorem 3.1 about noncollapsing of codimension
one hypersurfaces relative to the ambient spaces, even when the ambient manifolds do collapse.

Corollary 3.3. Let K ∈ R and N ≥ 2 be fixed. Let us consider a sequence of pointed smooth
N-dimensional Riemannian manifolds (Mi, di,H N , pi) with Ricci curvature uniformly bounded
from below by K and assume that (Mi, di,H N/H N (B1(pi)), pi) converge in the pmGH topology
to a Ricci limit (X, d,m, p) with essential dimension 1 ≤ n ≤ N . Let moreover Ωi ⊂ Mi be open
domains with smooth boundary such that

1
4 ≤

H N (Ωi ∩B2(pi))
H N (B2(pi))

≤ 3
4 , for any i ∈ N (3.4)

and
H N−1(∂Ωi ∩B2(pi))

H N (B2(pi))
≤ C , for any i ∈ N, for some C > 0 . (3.5)

Then the perimeter measure |DχΩ| of any limit Ω ⊂ X of the sequence Ωi in the L1
loc sense is

concentrated on the n-regular set Rn of X on B1(p).

Proof. Let us observe that the sequence Ωi admits limit points with respect to L1
loc convergence,

thanks to (3.4), (3.5) and [ABS19, Corollary 3.4]. The conclusion then follows from Theorem 3.1. �

3.1. Dimension of the tangent module over the boundary of E. Recall that, by [GP16],
almost everywhere constancy of the dimension at the level of pointed measured GH tangent spaces
on RCD(K,N) spaces can be turned into constancy of the dimension for the tangent module
L2(TX).

Here we wish to show that the same phenomenon occurs, for slightly different reasons, also at
the level of the restriction of the tangent module to the boundary of any set of finite perimeter, as
introduced in [BPS19], see Theorem 2.21 for the relevant definition.

Theorem 3.4. Let (X, d,m) be an RCD(K,N) metric measure space for some K ∈ R and
1 ≤ N <∞. Let E ⊂ X be a set of finite perimeter and let 1 ≤ n ≤ N be the essential dimension
of (X, d,m). Then the dimension of L2

E(TX) is constant and equals n.

The proof of Theorem 3.4 is given in two steps. We first show that the dimension of L2
E(TX) is

smaller than n.

Proposition 3.5. Let (X, d,m) be an RCD(K,N) metric measure space with essential dimension
1 ≤ n ≤ N . Let E ⊂ X be a set of locally finite perimeter. Then the local dimension of L0

Cap(TX)
on FnE does not exceed n. In particular, the local dimension of L2

E(TX) is smaller than or equal
to n.

To prove that the dimension of L2
E(TX) is bigger than or equal to n we employ the first conclusion

of the following proposition and the fact that |DχE |(FkE) = 0 for k < n as a consequence of
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Corollary 3.2. Indeed, given x ∈ X, rx > 0 and (ui) : Brx(x)→ Rn as in (3.6), it is simple to check
that

Ai,j := ∇ui · ∇uj
is invertible |DχE |-a.e. in Br(x) for r < rx small enough. Hence we can apply Lemma 2.3 and
conclude that the dimension of L2

E(TX) is bigger than n.

Proposition 3.6. Let (X, d,m) be an RCD(K,N) metric measure space for some K ∈ R and
1 ≤ N <∞ and let 1 ≤ n ≤ N denote its essential dimension. Let E ⊂ X be a set of finite perimeter.
Then, for |DχE |-a.e. x ∈ X there exist rx > 0 and harmonic functions (ui) : Brx(x) → Rn such
that, for any i, j ∈ {1, . . . , n},

lim
r→0

 
Br(x)

|∇ui · ∇uj − δij |dm = lim
r→0

 
Br(x)

|∇ui · ∇uj − δij |d |DχE | = 0 . (3.6)

Moreover, for any i ∈ {1, . . . , n} the following limits exist:

νi := lim
r→0

 
Br(x)

νE · ∇ui d |DχE | , (3.7)

lim
r→0

 
Br(x)

|νi − νE · ∇ui|d |DχE | = 0 (3.8)

and, setting ν := (ν1, . . . , νn), it holds |ν|Rn = 1.

The last two conclusions of Proposition 3.6 will play a role in section 4. To understand its
meaning let us recall that for sets of finite perimeter E ⊂ Rn a point in ∂∗E is a reduced boundary
point if the limit

νE(x) := lim
r→0

DχE(Br(x))
|DχE | (Br(x)) (3.9)

exists and |νE(x)| = 1, where we recall that DχE is the distributional derivative of χE , which is a
Radon measure under the assumption that E has finite perimeter.
In [ABS19, BPS19] there was the necessity to argue differently, due to the absence of a Besicovitch
differentiation theorem and of a notion of distributional derivative. The properties (3.7) and (3.8)
are the natural replacement of (3.9) in this framework.

We conclude this section by proving Proposition 3.5 and Proposition 3.6.

Proof of Proposition 3.5. The proof is based on a blow-up argument. Assuming linear independence
of the vector fields ∇f1, . . . ,∇fn+1 we find a point x ∈ FnE where the blow-ups of the functions
f1, . . . , fn+1 are linearly independent linear harmonic functions. This will contradict the fact that
the blow-up of (X, d,m) at x is (Rn, deucl,L n, 0n).

We argue by contradiction. Suppose there exist a Borel set B ⊂ FnE with Cap(B) > 0 and
functions f1, . . . , fn+1 ∈ Test(X) such that ∇f1, . . . ,∇fn+1 are linearly independent on B. Then
by Lemma 2.3 the (n+ 1)× (n+ 1) symmetric matrix

Aij(y) := ∇fi(y) · ∇fj(y)

is invertible for Cap-a.e. y ∈ B.
Since PerE � Cap, and since for any test functions f, g ∈ Test(X) it holds that |∇f |2 and ∇f · ∇g
are in H1,2, thanks to Theorem 2.8 there exists x ∈ B such that the following properties hold:

i) the limits

|∇fi|2 (x) := lim
r→0

 
Br(x)

|∇fi|2 (y) dm(y) ,

∇fi(x) · ∇fj(x) := lim
r→0

 
Br(x)

∇fi(y) · ∇fj(y) dm(y)

exist for any i, j ∈ {1, . . . , n+ 1};
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ii) it holds

lim
r→0

 
Br(x)

||∇fi| (y)− |∇fi| (x)|2 dm(y) = 0

and
lim
r→0

 
Br(x)

||∇fi · ∇fj | (y)− |∇fi · ∇fj | (x)|2 dm(y) = 0 ,

for any i, j ∈ {1, . . . , n+ 1};
iii) the matrix Aij(x) = ∇fi(x) · ∇fj(x) is invertible;
iv)

lim
r→0

r2
 
Br(x)

(∆fi(y))2 dm(y) = 0 ,

for any i = 1, . . . , n+ 1.
A by now classical argument implies then that, up to extraction of a subsequence that we do not

relabel, for any sequence rm → 0, the functions
fmi (y) := (fi(y)− fi(x)) /rm

considered on the scaled pointed m.m.s. (X, d/rm,mm, x) converge locally uniformly and in H1,2
loc

to Lipschitz harmonic functions gi : Rn → R, where (Rn, deucl,L n) is the tangent cone of (X, d,m)
at x. Moreover, the functions gi have constant slopes and

∇gi · ∇gj = Aij(x) , mZ-a.e. on Z .
It is now easy to check that this is in contradiction with the fact that the dimension of (Rn, deucl,L n)
is n, see [AnBS19]. Indeed the functions gi are linearly independent splitting functions. This
proves the first part of the statement, while the last part follows from the first one by recalling that
L0
E(TX) = L0

Cap(TX)|DχE |, and by taking Lemma 2.6 and Lemma 2.4 into account. �

Remark 3.7. By arguing as we did in the proof of Proposition 3.5 and using the results in [Ki19],
one can prove that the local dimension of L0

Cap(TX) on the whole X does not exceed n. This upper
dimensional bound cannot be improved to an equality: considering for instance the unit interval
X = [0, 1], we see that the capacitary tangent module vanishes on the boundary {0, 1}, but the
latter has positive capacity.

Proof of Proposition 3.6. We start by recalling that in [BPS19] (see also [S20, Chapter 5] for a
different formulation of the result) the following statement has been proved. For any set of finite
perimeter E ⊂ X and for any ε > 0 there exist countably many k-tuples of harmonic functions
(uji ) : Brj (xj)→ Rkj , where i ∈ {1, . . . , kj}, j ∈ N and kj ≤ n such that, for |DχE |-a.e. x ∈ FkE,
for some j ∈ N such that kj = k it holds that

lim
r→0

 
Br(x)

∣∣∣∇uja · ∇ujb − δab∣∣∣dm ≤ ε . (3.10)

Since |DχE |(Fk) = 0 for any k 6= n, as a consequence of Corollary 3.2, we just consider the
case k = n. Let A := Aj be the set of those x ∈ FnE such that the above condition holds for
(ui) := (uji ) : Brj (xj)→ Rn. It is sufficient to prove that the statement holds for |DχE |-a.e. x ∈ A.
The conclusion will follow since the Aj ’s cover FnE up to an |DχE |-negligible set.

Thanks to Corollary 2.9, we can also restrict A to A′ making the further requirement that

lim
r→0

 
Br(x)

|∇ui(y) · ∇uj(y)−∇ui(x) · ∇uj(x)|dm(y) = 0 , (3.11)

for any x ∈ A′.
By a Lebesgue point argument w.r.t. the asymptotically doubling measure |DχE | (see Proposi-
tion 2.18 and the discussion below), we can also assume that

lim
r→0

 
Br(x)

|∇ui(y) · ∇uj(y)−∇ui(x) · ∇uj(x)|d |DχE | (y) = 0 , (3.12)

for any x ∈ A′.
Above, ∇ui · ∇uj is pointwise defined by Corollary 2.9.
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The combination of (3.10) and (3.11) yields that
|∇ui(x) · ∇uj(x)− δij | ≤ ε for any x ∈ A′ . (3.13)

With an additional Lebesgue point argument (again w.r.t. the asymptotically doubling measure
|DχE |) we can restrict to a set A′′ ⊂ A′ considering only those points for which, in addition to the
properties above, the limits in (3.7) exist and (3.8) holds.

Observe that, for any x ∈ A′′ there exists an invertible n × n matrix Ax such that, setting
u′ := Axu : Br(x)→ Rn, u′ verifies (3.6).
Moreover, the limit in (3.7) still exists for u′ and (3.8) holds.

We are left to verify that, if νx ∈ Rn is defined according to this procedure, then |νx|Rn = 1 for
|DχE |-a.e. x ∈ A′′.

We claim that {∇ui : i = 1, . . . , n} form a basis of L2
E(TX) on A′′. This property follows

from two observations. The first one is that the dimension of L2
E(TX) is not greater than n, by

Proposition 3.5. The second one is that they are linearly independent, in the quantitative sense of
(3.13).
We claim that it is possible to find functions a1 . . . , an ∈ L∞(|DχE |) such that

νE =
n∑
i=1

ai∇ui , |DχE |-a.e. on A′′ . (3.14)

The existence of the coefficients follows in turn from the fact that {∇ui : i = 1, . . . , n} forms a
basis, while the boundedness follows from the quantitative linear independence (3.13). See also the
proof of [G18, Proposition 1.4.5] for similar constructions.

Let us observe that, since |νE |Rn = 1 holds |DχE |-a.e. by Theorem 2.22,∣∣∣∣∣
n∑
i=1

ai∇ui

∣∣∣∣∣
2

=
∑

1≤i,j≤n
aiaj∇ui · ∇uj = 1 , |DχE |-a.e. on A′′ .

Moreover, at |DχE |-a.e. point in A′′, the coefficients ai as in (3.14) are uniquely determined by the
values of

νE · ∇ui and ∇ui · ∇uj ,
for any 1 ≤ i, j ≤ n.

If Ax as above denotes a matrix which transforms the ∇ui(x) into an orthonormal basis ∇u′i(x)
at x, i.e. such that

∇u′i(x) · ∇u′j(x) = δij ,

then, denoting by a′i the coefficients such that

νE(x) =
n∑
i=1

a′i∇u′i(x) ,

the following hold:
a′i = νE · ∇u′i = lim

r→0

 
Br(x)

νE · ∇u′i d |DχE |

and
n∑
i=1

(a′i)2 = 1 ,

concluding the proof of the proposition. �

4. Cut and paste of sets with finite perimeter

Given two sets of finite perimeter E,F ⊂ X it is simple to check that E ∩ F and E \ F are of
finite perimeter as well. In several applications it is relevant to characterize the perimeter measure
and the interior normal of E ∩F and E \F in terms of those of E and F . The main achievement of
this section is to extend classical results in this direction (see [Ma12, Theorem 16.3]) to the setting
of RCD spaces. Recently, with the growing interest towards Geometric Measure Theory on metric
measure spaces, and in particular on RCD spaces, these tools have become relevant also in this
framework, see [APP21, MS21].
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Before stating our main result Theorem 4.11 we need to prove a Federer-type characterization
for sets of finite perimeter on RCD spaces (see Proposition 4.2) and a finer characterization of
blow-ups at boundary points where good coordinates exist (see Proposition 4.8).

4.1. Federer-type characterization of sets with finite perimeter. Let us recall a mild regu-
larity result for sets of finite perimeter which follows again from [BPS19]. It can be considered as a
counterpart tailored for this framework of the Euclidean Federer-type characterization of sets of
finite perimeter, see [Ma12, Theorem 16.2].

Definition 4.1. In order to ease the notation, given a set of finite perimeter E ⊂ X and x ∈ X
we shall denote by

θ(E, x) := lim
r→0

m(E ∩Br(x))
m(Br(x)) ,

whenever the limit exists.

Proposition 4.2. Let (X, d,m) be an RCD(K,N) metric measure space for some K ∈ R and
1 ≤ N <∞ and let E ⊂ X be a set of finite perimeter with finite measure. Then the following hold:

i) For H h-a.e. x ∈ X it holds

θ(E, x) ∈
{

0, 1
2 , 1
}
.

Moreover, up to an H h-negligible set it holds

FE =
{
x ∈ E : θ(E, x) = 1

2

}
.

ii) For H h-a.e. x ∈ X it holds

lim
t↓0

PtχE(x) ∈
{

0, 1
2 , 1
}
.

Moreover, up to a H h-negligible set it holds

FE =
{
x ∈ E : lim

t↓0
PtχE(x) = 1

2

}
.

Proof. Observe that in this framework, the perimeter measure coincides, up to constant, with the
restriction of H h to the reduced boundary FE, see Corollary 3.2 above.

Combining the outcomes of [ABS19, BPS19] and the general theory of sets of finite perimeter on
PI spaces (see [A01, A02]), we also know that the perimeter measure PerE and H h are mutually
absolutely continuous on ∂∗E, where

∂∗E :=
{
x ∈ X : lim sup

r→0

m(Br(x) ∩ E)
m(Br(x)) > 0 and lim sup

r→0

m(Br(x) \ E)
m(Br(x)) > 0

}
, (4.1)

and, by De Giorgi’s theorem for sets of finite perimeter on RCD(K,N) spaces Theorem 2.20,

lim
r→0

m(Br(x) ∩ E)
m(Br(x)) = 1

2 , for PerE-a.e. x ∈ X . (4.2)

In particular, (4.2) holds for H h-a.e. x ∈ ∂∗E.
Observe now that

X \ ∂∗E =
{
x ∈ X : lim

r→0

m(Br(x) ∩ E)
m(Br(x)) = 0

}⋃{
x ∈ X : lim

r→0

m(Br(x) ∩ E)
m(Br(x)) = 1

}
.

The second part of the statement can be proved with an analogous strategy, relying on the
stability of the heat flow together with a blow-up procedure, building on Theorem 2.20. We refer
to [S20, Proposition 4.39, Corollary 5.21] for a more detailed argument. �

Definition 4.3. Given a set of finite perimeter E ⊂ X we set

E(t) := {x ∈ X : θ(E, x) = t} ,
where we recall that the density θ(E, ·) has been introduced in Definition 4.1.
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Remark 4.4. By Proposition 4.2 it holds

X = E(1) ∪ E(1/2) ∪ E(0) , (4.3)

up to an H h-negligible set.

Remark 4.5. By ii) in Proposition 4.2 it holds

X =
{

lim
t→0

PtχE = 0
}
∪
{

lim
t→0

PtχE = 1/2
}
∪
{

lim
t→0

PtχE = 1
}
,

up to a H h-negligible set. A simple blow-up argument shows that

E(0) =
{

lim
t→0

PtχE = 0
}
, E(1/2) =

{
lim
t→0

PtχE = 1/2
}
, E(1) =

{
lim
t→0

PtχE = 1
}
,

up to a H h-negligible set.

In the following we shall adopt the notation M ∼ N to indicate that two Borel sets coincide up
to H h negligible sets, i.e. H h(M∆N) = 0.

It follows from the discussion above that, for any Borel set M ⊂ X, it holds

M ∼ (M ∩ E(1)) ∪ (M ∩ E(0)) ∪ (M ∩ E(1/2)) .

4.2. Good coordinates. In this section we introduce the notion of good coordinates at a boundary
point x and we employ them to give a pointwise notion of interior normal. The latter, very much in
the Euclidean spirit, will be used to characterize blow-up.

Definition 4.6. Let (X, d,m) be an RCD(K,N) metric measure space for some K ∈ R and
1 ≤ N <∞ with essential dimension 1 ≤ n ≤ N and let E ⊂ X be a set of finite perimeter. Then,
for any x ∈ FnE, any n-tuple of harmonic functions (ui) : Brx(x) → Rn satisfying the following
properties is called a system of good coordinates for E at x.

(i) For any i, j ∈ {1, . . . , n},

lim
r→0

 
Br(x)

|∇ui · ∇uj − δij |dm = lim
r→0

 
Br(x)

|∇ui · ∇uj − δij |d |DχE | = 0 .

(ii) For any i ∈ {1, . . . , n} the following limits exist:

νi(x) := lim
r→0

 
Br(x)

νE · ∇ui d |DχE | ,

lim
r→0

 
Br(x)

|νi(x)− νE · ∇ui|d |DχE | = 0 .

As a consequence of Proposition 3.6, good coordinates at x ∈ FnE exist for |DχE |-a.e. point x.
Moreover, setting ν(x) := (ν1(x), . . . , νn(x)), it holds |ν(x)|Rn = 1.

Remark 4.7. Given two sets of finite perimeter E,F ⊂ X, by adapting the argument of the proof
of Proposition 3.6, one can show the existence of (ui) : Br(x)→ Rn that are good coordinates at x
for both E and F , for H h-a.e. x ∈ FE ∩ FF .

Proposition 4.8. Let (X, d,m) be an RCD(K,N) metric measure space for some K ∈ R and
1 ≤ N <∞, and let 1 ≤ n ≤ N be its essential dimension. Let E ⊂ X be a set of finite perimeter.
Then, for |DχE |-a.e. x ∈ X and for any set of good coordinates (ui) : Brx(x)→ Rn, if ν ∈ Rn is
given by Proposition 3.6, then the following holds. If the coordinates (xi) on the tangent space to
(X, d,m) at x (which is Euclidean) are chosen so that the harmonic functions (ui), when rescaled
properly, converge to (xi) : Rn → Rn, then the blow-up of E at x in the sense of sets of finite
perimeter is

Hν := {y ∈ Rn : y · ν ≥ 0} .

Proof. Up to rotating via a orthonormal matrix the harmonic good coordinates, we can assume
without loss of generality that the following holds: for any i ∈ {1, . . . , n− 1}

lim
r→0

 
Br(x)

|νE · ∇ui|d |DχE | = 0 (4.4)
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and
lim
r→0

 
Br(x)

|1− νE · ∇uk|d |DχE | = 0 . (4.5)

Moreover, the blow-up of E at x is an n-dimensional Euclidean half-space and the (ui), when scaled
properly, converge to the coordinate functions (xi) : Rn → Rn.

Under these assumptions we wish to argue as in Step 1 in the proof of [BPS19, Proposition 4.7]
to prove that the blow-up of E, read in these coordinates is

{y ∈ Rn : yn ≥ 0} .

The arguments in [BPS19] prove that, by (4.4), the blow-up of E at x can either be

{y ∈ Rn : yn ≤ 0} , or {y ∈ Rn : yn ≥ 0} .

We claim that (4.5) is sufficient to exclude the first possibility. Let us denote by H the blow-up of
E at x (along a sequence of scalings with the properties above). By (4.5), for any smooth function
with compact support ϕ : Rn → R,ˆ

H

∂ϕ

∂xn
dH n = −

ˆ
FH

ϕdH n−1 (4.6)

which proves that H = {y : yn ≥ 0}.

In order to check (4.6), arguing as in [BPS19] we just need to pass to the limit the Gauss-Green
integration by parts formulae along the sequence of scalings of E converging to the blow-up.
Suppose without loss of generality that ϕ is compactly supported in B1(0n) ⊂ Rn. Then, thanks to
[AH17] we find a sequence of uniformly bounded and uniformly Lipschitz functions ϕm : X → R
compactly supported in Brm(x) such that, when considered along the sequence of scaled spaces
Xm := (X, r−1

m d,mm, x), they converge strongly in H1,2 to ϕ (see [AH17, Definition 5.2]). Let Em
be E ⊂ Xm and umi be the good coordinates scaled by umi (y) = (ui(y)− ui(x))/rm. Then we can
pass to the limit the Gauss-Green formulaeˆ

Em

div(ϕm∇umn ) dmm = −
ˆ
FEm

ϕm∇umn · νEm d |DχEm | ,

which are obtained by scaling from the Gauss-Green integration by parts formula for E, to obtain
(4.6). Indeed the left-hand sides converge to the left-hand side thanks to the strong H1,2-convergence
of ϕm to ϕ. The right-hand sides instead can be written asˆ

FEm
ϕm∇umn · νEm d |DχEm | =

ˆ
FEm

ϕm d |DχEm |+
ˆ
FEm

ϕm (∇umn · νEm − 1) d |DχEm | ,

where the second contribution converges to 0 as m→∞ thanks to (4.5), since∣∣∣∣ˆ
FEm

ϕm (∇umn · νEm − 1) d |DχEm |
∣∣∣∣ ≤ˆ

FEm
|ϕm| |1− νEm · ∇umn |d |DχEm |

≤ max
Brm (x)

|ϕm|
 
Brm (x)

|1− νE · ∇un|d |DχE | → 0 ,

as m→∞. �

4.3. Main result. Below we consider the behaviour of the unit normal vector field and of the
Gauss-Green formula with respect to natural cut and paste operations with sets of finite perimeter.
We refer to [Ma12, Theorem 16.13] for the analogous statement for sets of finite perimeter on Rn.

Definition 4.9. Let (X, d,m) be an RCD(K,N) space with essential dimension 1 ≤ n ≤ N . Let
E,F ⊂ X be sets of finite perimeter. We define

{νE = νF } := {FE ∩ FF : νE = νF } ,

where {FE ∩ FF : νE = νF } is the set of those x ∈ FnE ∩ FnF such that there exist good
coordinates u : Br(x)→ Rn for both E and F , such that νE(x) = νF (x).

The set {νE = −νF } is defined analogously.
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We briefly comment on the well-posedness of the previous definition. Remark 4.7 ensures that
at H h-a.e. x ∈ FnE ∩ FnF one can find good coordinates for both E and F at x simultaneously.
Moreover, the fact that the set {νE = νF } is independent (up to H h-null sets) of the chosen good
coordinates is a consequence of the following equivalent characterization of {νE = νF }.

Remark 4.10. Given that |DχE |, |DχF | � Cap, we have that µE,F := |DχE | + |DχF | � Cap.
Recall that L0

E(TX) = L0
Cap(TX)|DχE | and L0

F (TX) = L0
Cap(TX)|DχF |, where we are using the

notation for quotient modules introduced before Lemma 2.6. For brevity, let us also set
L0
E,F (TX) := L0

Cap(TX)µE,F .
Given that |DχE |, |DχF | ≤ µE,F , it is clear that

L0
E(TX) = L0

E,F (TX)|DχE | , L0
F (TX) = L0

E,F (TX)|DχF | .

Moreover, it is easy to check that the projection map π|DχE | : L0
E,F (TX)→ L0

E(TX) is bijective
if restricted to L0

E,F (TX)|FE , so we denote by iE : L0
E(TX) → L0

E,F (TX) its partial inverse.
Similarly, we can define the map iF : L0

F (TX)→ L0
E,F (TX). Therefore, it holds that

{νE = νF } ∼
{
x ∈ FE ∩ FF : |iE(νE)− iF (νF )|(x) = 0

}
,

as one can easily check with an argument analogous to the one employed in the proof of Theorem 4.11
below.

For the sake of notation, we shall indicate by µE = νE · PerE the Gauss-Green measure, where
we understand that ˆ

E

div v dm = −
ˆ
v dµE ,

for any set of finite perimeter E and any vector field v verifying the assumptions of Theorem 2.22.

Theorem 4.11. Let (X, d,m) be an RCD(K,N) metric measure space for some K ∈ R and
1 ≤ N <∞. Let E,F ⊂ X be sets of finite perimeter. Then E ∩ F , E ∪ F and E \ F are sets of
finite perimeter and

µE∩F = µE F (1) + µF E(1) + νEH h {νE = νF } , (4.7a)

µE∪F = µE F (0) + µF E(0) + νEH h {νE = νF } , (4.7b)

µE\F = µE F (0) − µF E(1) + νEH h {νE = −νF } . (4.7c)

Let us clarify the meaning of (4.7a), the meaning of (4.7b) and (4.7c) can be deduced by analogy.
With this notation we mean that, for any vector field v ∈ H1,2

C (TX)∩D(div) such that |v| ∈ L∞(m),ˆ
E∩F

div v dm =−
ˆ
F (1)
〈trEv, νE〉d PerE −

ˆ
E(1)
〈trF v, νF 〉d PerF

−
ˆ
{νE=νF }

〈trEv, νE〉dH h .

Proof. If E,F ⊂ X are sets of finite perimeter, then (on general ambient metric measure spaces)
E ∩ F , E ∪ F and E \ F are sets of finite perimeter.

Let us make a preliminary observation. By decomposing, for any x ∈ X and for any r > 0,
(E ∪ F ) ∩Br(x) into the disjoint union

(E ∪ F ) ∩Br(x) = ((E \ F ) ∩Br(x)) ∪ ((F \ E) ∩Br(x)) ∪ ((E ∩ F ) ∩Br(x)) ,
we can easily infer that, at any point of existence of the densities θ(·, ·) (see Definition 4.1 for the
relevant notion)

max{θ(E, x), θ(F, x)} ≤ θ(E ∪ F, x) ≤ θ(E, x) + θ(F, x)− θ(E ∩ F, x) . (4.8)
We are going to prove (4.7a), the proofs of the other statements being completely analogous. First,
relying on (4.8) and arguing as in the proof of [Ma12, Theorem 16.3], we obtain that

(E ∩ F )(1/2) ∼
(
F (1) ∩ E(1/2)

)
∪
(
E(1) ∩ F (1/2)

)
∪
(

(E ∩ F )(1/2) ∩ E(1/2) ∩ F (1/2)
)

(4.9)

and that the three sets at the right-hand side have mutually H h-negligible intersections.
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Let us see now how to prove the representation formula (4.7a) for the Gauss-Green measure of
E ∩ F .

Let us briefly recall the strategy in the Euclidean setting. Given (4.9), which identifies the
reduced boundary of E ∩F , and De Giorgi’s theorem, it remains only to determine the unit normal
vector to E ∩F on the different components of the reduced boundary in the decomposition. On Rn
the blow-up of a set of finite perimeter at a reduced boundary point is the half-space orthogonal
to the unit normal vector. As we shall see, the combination of Proposition 3.6, Remark 4.7 and
Proposition 4.8 is a replacement of this fact in our framework.

Let us first deal with µE∩F F (1). We wish to prove that it coincides with µE F (1).
Suppose by contradiction that this is not the case. Then we can find a set of positive H h measure
on (E ∩ F )(1/2) ∩ F (1) where the identity does not hold. In particular, applying Proposition 3.6
Remark 4.7 and Proposition 4.8 to both E and E ∩ F we can find x ∈ X such that:

i) x ∈ F (1) and x ∈ FnE ∩ Fn(E ∩ F );
ii) there exist r > 0 and a set of good coordinates (ui) : Br(x)→ Rn for both E and E ∩ F at

x.
Moreover, by the contradiction assumption, we can suppose that

νE∩F (x) 6= νE(x) , (4.10)
where νE∩F (x), νE(x) ∈ Rn,

(νE∩F (x))i = lim
s→0

 
Bs(x)

νE∩F (y) · ∇ui(y) d |DχE∩F | (y) , for any i = 1, . . . , n , (4.11)

and
(νE(x))i = lim

s→0

 
Bs(x)

νE(y) · ∇ui(y) d |DχE | (y) , for any i = 1, . . . , n. (4.12)

Relying on Proposition 4.8, by (4.10), E and E ∩ F converge to different halfspaces in the L1
loc

sense along a sequence of rescaled pointed spaces Xi := (X, r−1
i d,mrix , x) converging to the tangent

Euclidean space (Rn, deucl,H n, 0n).
We claim that this yields a contradiction. Indeed, x ∈ F (1), equivalently x is a point of density 1 of
F . This easily implies that along the converging sequence Xi, χF converge in the L1

loc sense to the
constant function 1. Since

χE∩F = χE · χF
and L1

loc convergence is stable under multiplication (see for instance [ABS19, Lemma 3.5]), we infer
that E and E ∩ F have the same blow-up along the same sequence of converging scaled pointed
spaces. This provides the sought contradiction, hence

µE∩F F (1) = µE F (1) .

In order to avoid confusion, let us comment on the previous assertion. Since isomorphic (pointed)
metric measure spaces are identified when dealing with pmGH convergence, any two half-spaces in
a Euclidean space should be considered the same from this perspective and this statement might
sound strange. Here the subtle point is that good coordinates are providing a canonical way to
parametrize the tangent. Once the limit coordinates are fixed, the half-spaces are uniquely identified
(in terms of their unit normal vectors).

The argument to prove that
µE∩F E(1) = µF E(1)

is completely analogous, based on the fact that at a point in E(1), the set E, when considered along
a sequence of scalings of the ambient space converging to a tangent, converges to the whole space.
So we omit the details.

In order to prove that
µE∩F {νE = νF } = νEH h {νE = νF } ,

we just need a slight variant of the argument used above. By contradiction, we can find x ∈
Fn(E ∩ F ) ∩ FnE ∩ FnF such that

i) there exist r > 0 and a set of good coordinates (ui) : Br(x)→ Rn for E and F and E ∩ F
at x such that νE(x) = νF (x);
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ii) there exist the limits

(νE∩F (x))i = lim
s→0

 
Bs(x)

νE∩F (y) · ∇ui(y) d |DχE∩F | (y) , for any i = 1, . . . , n ,

and νE∩F (x) 6= νE(x).
Denoting by Er and Fr, respectively, the set E and F in the rescaled pointed spaces Xi :=
(X, r−1

i d,mrix , x) we know that
χEr → HνE(x) , χFr → HνF (x) , χEr∩Fr → HνE∩F (x) ,

in the L1
loc topology, as a consequence of Proposition 4.8. The stability of the L1

loc convergence
under multiplication implies that

χHνE(x) · χHνF (x) = lim
r→0

χEr · χFr = lim
r→0

χEr∩Fr = χHνE∩F (x) ,

which contradicts ii). �

Corollary 4.12. Let (X, d,m) be an RCD(K,N) metric measure space and let E ⊂ F ⊂ X be sets
of finite perimeter. Then νE = νF on FE ∩ FF H h-a.e., and

µE = µE F (1) + νFH h (FE ∩ FF ) .

Proof. From Theorem 4.11 and the identity E = E ∩ F we deduce
µE = µE∩F = µE F (1) + νFH h {νE = νF } .

Hence, it suffices to prove that
FE ∩ FF ∼ {νE = νF } .

The latter follows from the same blow-up argument performed in the proof of Theorem 4.11. �

Remark 4.13. The particular case of the constructions above when E and F have essentially
disjoint reduced boundaries has been considered before in [APP21], see in particular Lemma 2.5
and Proposition 2.31 therein.

5. Gauss-Green formulae for essentially bounded divergence measure vector fields

The aim of this section is to sharpen the integration by parts formulae, introduced in [BCM19]
on RCD(K,∞) metric measure spaces (after the developments of the Euclidean theory in [An83,
CTZ09, CP20]), for essentially bounded divergence vector fields on sets with finite perimeter.

Definition 5.1. Let (X, d,m) be an RCD(K,N) metric measure space. We say that a vector
field V ∈ L∞(TX) is an essentially bounded divergence measure vector field if its distributional
divergence is a finite Radon measure, that is if divV is finite Radon measure such that, for any
Lipschitz function with compact support g : X → R, it holdsˆ

X

g d divV = −
ˆ
X

∇g · V dm . (5.1)

We shall denote the class of these vector fields by DM∞(X) and sometimes, to ease the notation,
we will abbreviate

´
g d divV as

´
g divV .

Analogously, for any open set Ω ⊂ X it is possible to introduce the space DM∞(Ω) of locally
essentially bounded divergence measure vector fields in Ω.

It turns out that, despite not being able to pointwise define a vector field with such low regularity
over the reduced boundary of a set of finite perimeter, it is possible to define interior and exterior
normal traces, possibly different, playing the role of the term V · νE in the Gauss-Green formula.
The rigorous result is the following.

Theorem 5.2. Let (X, d,m) be an RCD(K,N) metric measure space for some K ∈ R and
1 ≤ N < ∞. Let E ⊂ X be a set of finite perimeter and let V ∈ DM∞(X). Then we have the
Gauss-Green integration by parts formulae: for any function ϕ ∈ Lipc(X) it holdsˆ

E(1)
ϕdivV +

ˆ
E

∇ϕ · V dm = −
ˆ
FE

ϕ (V · νE)int d PerE ,
ˆ
E(1)∪FE

ϕdivV +
ˆ
E

∇ϕ · V dm = −
ˆ
FE

ϕ (V · νE)ext d PerE ,
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where (V · νE)int and (V · νE)ext belong to L∞(FE,PerE) and satisfy

‖(V · νE)int‖L∞(FE,PerE) ≤ ‖V ‖L∞(E,m) , (5.2a)
‖(V · νE)ext‖L∞(FE,PerE) ≤ ‖V ‖L∞(X\E,m) . (5.2b)

Given an essentially bounded divergence measure vector field V ∈ DM∞(X), it is proved in
[BCM19, Section 6.5] that there exist a subsequence tk → 0, a function χ̃E ∈ L∞(|divV |) and
measures DχE(χEV ), DχE(χEcV ) such that

PtkχE
∗
⇀χ̃E in L∞(|divV |) ,

∇PtkχE · (χEV ) ⇀DχE(χEV ) ,
∇PtkχE · (χEcV ) ⇀DχE(χEcV ) .

Notice that, a priori, DχE(χEV ), DχE(χEcV ) and χ̃E depend on the choice of the subsequence.
It can be proven that DχE(χEV ) and DχE(χEcV ) are both absolutely continuous w.r.t. |DχE |.
Therefore we are entitled to consider their densities and set

2DχE(χEV ) = (V · νE)int |DχE | , (5.3a)
2DχE(χEcV ) = (V · νE)ext |DχE | , (5.3b)

respectively. In [BCM19, Proposition 6.5] it is shown that

‖(V · νE)int‖L∞(FE,PerE) ≤ 2 ‖V ‖L∞(E,m) , (5.4a)
‖(V · νE)ext‖L∞(FE,PerE) ≤ 2 ‖V ‖L∞(X\E,m) . (5.4b)

In Theorem 6.22 [BCM19] the authors proved that, under the assumption that any weak-star
limit in L∞(|DχE |) of PtχE is constant, for any function ϕ ∈ Lipc(X) it holdsˆ

Ẽ(1)
ϕdivV +

ˆ
E

∇ϕ · V dm = −
ˆ
FE

ϕ (V · νE)int d PerE , (5.5a)
ˆ
Ẽ(1)∪Ẽ(1/2)

ϕdivV +
ˆ
E

∇ϕ · V dm = −
ˆ
FE

ϕ (V · νE)ext d PerE , (5.5b)

where Ẽ(t) := {χ̃E = t}.

Thanks to Proposition 4.2 ii) we have a good understanding of the pointwise behaviour of the
evoluted of the indicator function χE of a set with finite perimeter E ⊂ X through the heat flow.
As proven in Proposition 4.2 ii), sets of finite perimeter on RCD(K,N) spaces have the following
property. The sequence PtχE has a unique weak-star limit as t → 0 in L∞(X, |DχE |), and it is
the constant function 1/2. Hence we are in a position to apply Theorem 6.20 of [BCM19] to get
(5.5a) and (5.5b). This being said it becomes clear that Theorem 5.2 follows from the analysis is
[BCM19] provided we show the following facts:

(a) Ẽ(1) = E(1) and Ẽ(1/2) = FE up to a |divV |-negligible set;
(b) The bounds for the normal traces (5.4a), (5.4b) hold in the improved form (5.2a), (5.2b).

The sharp bound claimed in (b) in the case of vector fields in H1,2
C is already contained in

Theorem 2.22, since in [BPS19] it was proved that |νE | = 1 a.e. w.r.t. |DχE |. It turns out that the
sharp trace bounds can be obtained also for the less regular vector fields in DM∞(X).

As a preliminary step, let us observe that, as it happens in the Euclidean case, the divergence of
an essentially bounded divergence measure vector field is always absolutely continuous w.r.t. H h.

Lemma 5.3. Let (X, d,m) be an RCD(K,N) metric measure space. Then for any vector field
V ∈ DM∞(X) it holds that |divV | �H h.

Proof. Let x ∈ X and r > 0 be such that |divV |(∂Br(x)) = 0. We apply (5.5a) with E = Br(x)
and ϕ = 1. A simple blow-up argument shows that Br(x) ⊂ B̃r(x)(1) ⊂ B̄r(x), hence

|divV (Br(x))| ≤ ‖V ‖L∞ PerBr(x)(X) ≤ C(N)H h(Br(x)) ≤ C(N)m(Br(x))
r

, (5.6)

where we used that FBr(x) ⊂ ∂Br(x) and that h(Br(x)) = m(Br(x))
r is a gauge function for H h.
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Given a Borel set E ⊂ X such that H h(E) = 0 and ε > 0, we consider a cover E ⊂ ∪i∈NBri(xi)
such that, for any i ∈ N, it holds

|divV (B̄ri(xi))| = |divV (Bri(xi))| ≥
1
2 |divV |(Bri(xi)) ,

∑
i∈N

m(Bri(xi))
ri

< ε . (5.7)

By using (5.6) and (5.7) we deduce

|divV |(E) ≤
∑
i∈N
|divV |(Bri(xi)) ≤ 2

∑
i∈N
|divV (Bri(xi))| ≤ C(N)

∑
i∈N

m(Bri(xi))
ri

≤ C(N)ε ,

which implies the sought conclusion. �

Proof of (a). From Lemma 5.3 we know that |divV | � H h, hence ii) in Proposition 4.2 and
Remark 4.5 imply that, up to a |divV |-negligible set, it holds

X = {lim
t→0

PtχE = 0} ∪ {lim
t→0

PtχE = 1/2} ∪ {lim
t→0

PtχE = 1} ,

E(0) = {lim
t→0

PtχE = 0} , E(1/2) = {lim
t→0

PtχE = 1/2} , E(1) = {lim
t→0

PtχE = 1} .

The sought conclusion follows from the fact that E(1/2) = FE up to a |divV |-negligible set as a
consequence of i) in Proposition 4.2 and |divV | �H h. �

Proof of (b). Our goal is to prove that
‖(V · νE)int‖L∞(FE,Per) ≤ ‖V ‖L∞(E,m) .

In order to do so we just slightly refine the last computation in the proof of [BCM19, Lemma
5.2] relying on Theorem 2.20. Basically, all we need to know is that the unit normal vector to the
set of finite perimeter has length one, in a suitable sense, and that the density of the set of finite
perimeter at reduced boundary points is 1/2.

It is sufficient to prove the following: for any nonnegative function ϕ ∈ Cc(X) it holds

lim
t↓0

∣∣∣∣ˆ ϕχE (∇PtχE · V ) dm
∣∣∣∣ ≤ 1

2 ‖V ‖L∞(E)

ˆ
ϕd |DχE | . (5.8)

Let us compute, following the proof of [BPS19, Theorem 2.4] and setting

νt := ∇PtχE
P ∗t |DχE |

, µt := P ∗t |DχE |m ,

lim
t↓0

∣∣∣∣ˆ ϕχE (∇PtχE · V ) dm
∣∣∣∣ = lim

t↓0

∣∣∣∣ˆ eKtϕχE (νt · V ) dµt
∣∣∣∣

≤ lim
t↓0

(
‖ϕ‖∞ ‖V ‖∞

ˆ
X

∣∣1− eKt |νt|∣∣dµt +
ˆ
X

ϕχE

(
νt
|νt|
· V
)

dµt
)
.

(5.9)
The first summand above tends to 0 as t ↓ 0 by [BPS19, Lemma 2.7], see also [ABS19]. Let us deal
with the second one.

We can estimate

lim
t↓0

ˆ
X

ϕχE

(
νt
|νt|
· V
)

dµt ≤‖V ‖L∞(E,m) lim
t↓0

ˆ
ϕχE dµt

= ‖V ‖L∞(E,m) lim
t↓0

ˆ
Pt(ϕχE) d |DχE | . (5.10)

We claim that
lim
t↓0

Pt(ϕχE)(x) = 1
2ϕ(x) , for |DχE |-a.e. x . (5.11)

The validity of (5.11) can be easily checked relying on the continuity of ϕ at any reduced boundary
point of E, with a simple variant of the argument leading to Proposition 4.2 ii). Given (5.11) we
can argue by the dominated convergence theorem that

lim
t↓0

ˆ
Pt(ϕχE) d |DχE | =

1
2

ˆ
ϕd |DχE | .

Hence, by (5.9), we get (5.8). �
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In Theorem 4.11 we have dealt with the relationships between the Gauss-Green integration by
parts formulae over two sets of finite perimeter and those over the sets obtained via elementary
operations between them. Therein, the language was that of the tangent module over the boundary
of a set of finite perimeter L2

E(TX) and vector fields were assumed to be sufficiently smooth to
have pointwise defined representatives PerE-a.e.. Having at disposal a well behaved notion of
interior/exterior normal trace over the boundary of a set of finite perimeter for any vector field
which is bounded and has measure valued divergence, we would like to understand to which extent
those operations are well behaved under these regularity assumptions.

Proposition 5.4. Let (X, d,m) be an RCD(K,N) metric measure space for some K ∈ R and
1 ≤ N <∞. Let E,F ⊂ X be sets of (locally) finite perimeter and let V ∈ DM∞(X). Then the
following relationships between normal traces hold true:

(V · νE)int = (V · νF )int , H h-a.e. on {νE = νF } , (5.12a)

(V · νE∩F )int = (V · νE)int , PerE-a.e. on F (1) , (5.12b)

(V · νE∩F )int = (V · νF )int , PerF -a.e. on E(1) , (5.12c)
(V · νE∩F )int = (V · νE)int , H h-a.e. on {νE = νF } . (5.12d)

Analogous conclusions hold for the exterior normal traces and for the interior and exterior normal
traces on E ∪ F and on E \ F .

Proof. Let us begin by proving (5.12a). We perform a blow-up argument similar to the one in the
proof of Proposition 4.8 and inspired by the proof of [Co20, Proposition 3.4.6], dealing with the
Euclidean case.

We claim that H h-a.e. x ∈ E(1/2) ∩ F (1/2) satisfies the following:
(i)

lim
r→0

 
Br(x)

|(V · νE)int(y)− (V · νE)int(x)|d PerE(y) = 0 ,

lim
r→0

 
Br(x)

|(V · νF )int(y)− (V · νF )int(x)|d PerF (y) = 0 ;

(ii)

lim
r→0

r|divV |((E(1) ∪ F (1)) ∩Br(x))
m(Br(x)) = 0.

The property (i) amounts to say that x is a Lebesgue point for both (V · νE)int ∈ L∞(|DχE |) and
(V · νF )int ∈ L∞(|DχF |). The latter hold for, respectively, |DχE | and |DχF | almost every point
as explained after Proposition 2.18. The claimed conclusion follows by recalling that |DχE | and
|DχF | are equivalent to the measure H h restricted, respectively, to E(1/2) and F (1/2).

We now prove that H h-a.e. x ∈ E(1/2) ∩ F (1/2) satisfies (ii). Assume the existence of B ⊂
E(1/2) ∩ F (1/2) with positive H h-measure such that xi ∈ B, ri < δ and

lim sup
r→0

r|divV |((E(1) ∪ F (1)) ∩Br(x))
m(Br(x)) ≥ ε > 0 , for any x ∈ B .

We can then find a cover B ⊂ ∪i∈NBri(xi) such that

0 < H h(B) ≤ C(N)
∑
i∈N

m(Bri(xi))
ri

,
ri|divV |((E(1) ∪ F (1)) ∩Bri(xi))

m(Bri(xi))
≥ ε/2 ∀ i ∈ N .

In particular,
|divV |((E(1) ∪ F (1)) ∩ {y ∈ X : d(x, y) ≤ δ for some x ∈ B}) ≥ C(N, ε)H h(B) > 0 ,

letting δ → 0 we get the sought contradiction
0 = |divV |((E(1) ∪ F (1)) ∩ (E(1/2) ∩ F (1/2)))

≥ |divV |((E(1) ∪ F (1)) ∩B) ≥ C(N, ε)H h(B) > 0 .

Let us pick a point x ∈ E(1/2) ∩ F (1/2) such that there exits a system of good coordinates
(ui) : Br(x)→ Rn for both E and F such that νE(x) = νF (x) and the properties (i) and (ii) hold.
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Fix a function ϕ ∈ C∞(Rn) compactly supported in B1(0n) ⊂ Rn. Then, thanks to [AH18, Lemma
2.10] we find a sequence of uniformly bounded and uniformly Lipschitz functions ϕm : X → R
compactly supported in Brm(x) such that, when considered along the sequence of scaled spaces
Xm := (X, r−1

m d,mm, x) with mm = m/m(Brm(x)), they converge strongly in H1,2 to ϕ (see [AH17,
Definition 5.2]).
Let Em and Fm be E,F ⊂ Xm and umi be the good coordinates scaled by umi (y) = (ui(y)−ui(x))/rm.
We can assume that umi → xi, the i-th coordinate of Rn, in H1,2 and, as a consequence of
Proposition 4.8, Em → HνE(x) and Fm → HνF (x) in L1

loc.
By Theorem 5.2 it holdsˆ

E(1)
ϕm divV +

ˆ
E

∇ϕm · V dm = −
ˆ
FE

ϕm (V · νE)int d PerE , (5.13)
ˆ
F (1)

ϕm divV +
ˆ
F

∇ϕm · V dm = −
ˆ
FF

ϕm (V · νF )int d PerF . (5.14)

Fix ε > 0 and observe that∣∣∣∣ˆ
E(1)

ϕm divV −
ˆ
F (1)

ϕm divV
∣∣∣∣ ≤ |divV |((E(1) ∪ F (1)) ∩Brm(x)) ≤ εm(Brm(x))

rm
, (5.15)

for rm small enough, as a consequence of (ii).
Recalling that |∇ϕm| ≤ C(N)r−1

m , we get∣∣∣∣ˆ
E

∇ϕm · V dm−
ˆ
F

∇ϕm · V dm
∣∣∣∣ ≤ C(N) ‖V ‖L∞

m(E∆F ∩Brm(x))
rm

≤ εm(Brm(x))
rm

, (5.16)

for rm small enough, where in the last inequality we used Proposition 4.8 and νE(x) = νF (x) to
infer that

lim
m→∞

m(E∆F ∩Brm(x))
m(Brm(x)) = lim

m→∞
mm(Em∆Fm ∩Bm1 (x)) = L n(HνE(x)∆HνF (x) ∩B1(0n)) = 0 .

Subtracting (5.13) and (5.14), taking into account (5.15) and (5.16) we deduce

lim sup
m→∞

∣∣∣∣ rm
Brm(x)

ˆ
FE

ϕm (V · νE)int d PerE −
rm

Brm(x)

ˆ
FF

ϕm (V · νF )int d PerF
∣∣∣∣ ≤ 2ε . (5.17)

On the other hand, by (i),

lim sup
m→∞

∣∣∣∣ rm
Brm(x)

ˆ
FE

ϕm (V · νE)int d PerE − (V · νE)int (x) rm
Brm(x)

ˆ
FE

ϕm d PerE
∣∣∣∣

≤ lim sup
m→∞

C(N) m(Brm(x))
rm PerE(Brm(x))

 
Brm (x)

|(V · νE)int (y)− (V · νE)int (x)|d PerE(y) = 0 .

Finally, observe that

lim
m→∞

rm
Brm(x)

ˆ
FE

ϕm d PerE = lim
m→∞

 
ϕm d PerEm =

 
HνE(x)

ϕdH n−1 ,

which along with (5.17) and the identity νE(x) = νF (x) allows to conclude that

|(V · νE)int (x)− (V · νF )int (x)|
 
HνE(x)

ϕdH n−1 ≤ 2ε .

Since ε > 0 is arbitrary the proof of (5.12a) is complete.

Let us now pass to the proof of (5.12b) and (5.12c). To simplify our notation we assume that
χE and χF are pointwise defined as χE := χE(1) + 1

2χE(1/2) and χF := χF (1) + 1
2χF (1/2) .

Thanks to [BCM19, Theorem 5.3] we know that VE := V χE ∈ DM∞(X), for any V ∈ DM∞(X),
hence as a consequence of [BCM19, Theorem 6.20] it holds

div(V χE∩F ) = div(VEχF ) = χF (1) div(V χF ) + (VE · νF )int|DχF | , (5.18a)
div(V χE) = χE(1) divV + (V · νE)int|DχE | . (5.18b)

In particular, applying again [BCM19, Theorem 6.20], we deduce that
(V · νE∩F )int|DχE∩F | = div(V χE∩F )− χ(E∩F )(1) divV

= χF (1)(V · νE)int|DχE |+ (VE · νF )int|DχF | ,
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which restricted to F (1) implies (5.12b). Arguing symmetrically we get (5.12c).

Let us finally prove (5.12d). Thanks to Theorem 4.11 we know that {νE∩F = νE} = {νE = νF }
up to a H h-negligible set, hence (5.12d) follows from (5.12a) applied to E and E ∩ F . �

6. An example

In this last section we discuss a class of sets of finite perimeter and essentially bounded divergence
measure vector fields to which the theory developed before can be applied: level sets of distance-
type functions. In particular, Proposition 6.1 below applies to distance functions from closed sets,
sufficiently far away from the closed set itself, as it follows from the Laplace comparison theorem,
see [G15, CaM20]. Similar results have been obtained for the distance from a given point in [APP21,
Proposition 2.30].

The interest towards these examples comes from some recent applications, where level sets of
distance-type functions have been used to construct variations of sets of finite perimeter solving
variational problems: in [APP21] variations via balls (that are sublevel sets of distances from points)
have been used in the study of the isoperimetric problem on RCD(K,N) spaces, while in [MS21]
Proposition 6.1 is exploited to prove Laplacian bounds for the distance function from the boundary
of locally perimeter minimizing sets of finite perimeter (corresponding to vanishing of the mean
curvature in the smooth framework) in the same setting.

Proposition 6.1. Let (X, d,m) be an RCD(K,N) metric measure space. Let Ω b Ω′ ⊂ X be open
domains and let ϕ : Ω′ → R be a 1-Lipschitz function such that

i) |∇ϕ| = 1 m-a.e. on Ω′;
ii) there exists L ≤ 0 such that ∆ϕ ≥ L in the sense of distributions on Ω′. In particular, ϕ

has measure valued Laplacian on Ω′.
Then, for L 1-a.e. t such that {ϕ = t}∩Ω 6= ∅ it holds that {ϕ < t} is a set of locally finite perimeter
in Ω and (

∇ϕ · ν{ϕ<t}
)

int =
(
∇ϕ · ν{ϕ<t}

)
ext = −1 Per{ϕ<t} -a.e. in Ω .

Proof. By the coarea formula {ϕ < t} is a set of finite perimeter for L 1-a.e. t.
Since ϕ has measure valued Laplacian on Ω′ and |∇ϕ| = 1 m-a.e., ∇ϕ is a bounded vector field

with measure valued divergence on Ω′, i.e. ∇ϕ ∈ DM∞(Ω′).
Moreover, for L 1-a.e. t, |∆ϕ| ({ϕ = t}) = |div ∇ϕ| ({ϕ = t}) = 0. For any such t, thanks to
[BCM19, Theorem 6.20] we have that(

∇ϕ · ν{ϕ<t}
)

int =
(
∇ϕ · ν{ϕ<t}

)
ext Per{ϕ<t} -a.e. .

Therefore it is sufficient to prove that(
∇ϕ · ν{ϕ<t}

)
int = −1 Per{ϕ<t} -a.e. . (6.1)

We claim that for L 1-a.e. t and for Per{ϕ<t}-a.e. x ∈ {ϕ = t} the following hold:
i) x is a regular point of (X, d,m) i.e. the unique tangent cone of (X, d,m) is Rn, for some

1 ≤ n ≤ N ;
ii) x is a regular reduced boundary point of the set of finite perimeter {ϕ < t}, i.e. any blow-up

of {ϕ < t} at x in the sense of sets of finite perimeter (see Definition 2.19) is a half-space
in Rn;

iii) x is a regular point for ϕ, i.e. any blow-up of the function ϕ at x is a linear function
ϕx : Rn → R;

iv) if Hn ⊂ Rn is the blow-up of {ϕ < t} at x, then ϕx = d±Hn is the signed distance function
from Hn.

We claim that the conditions (i)–(iv) are sufficient to prove that

lim
r↓0

(
∇ϕ · ν{ϕ<t}

)
int Per{ϕ<t}(Br(x))

Per(Br(x)) = −1 . (6.2)

This is the consequence of a blow-up argument, similar to the one in [BNS20, Theorem 7.4]. By
the Gauss-Green integration by parts formulae, the interior normal trace is the density w.r.t. the
perimeter measure of the divergence of the vector field χ{ϕ<t}∇ϕ, which equals ∆ (ϕ− t)−, here
(ϕ− t)− is the negative part of ϕ− t. Under the assumptions (i) – (iv), after blow-up the set of
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finite perimeter converges to a half-space, and the function ϕ converges to the signed distance from
its boundary. In that limit case it is easily verified that(

∇d±Hn · νHn
)

int = −1 ,
by direct computation.
Scaling and stability of the distributional Laplacian allow then to infer (6.2).

Let us prove now that L 1-a.e. t and Per{ϕ<t}-a.e. x verify the properties (i) – (iv). Since
|∇ϕ| = 1 m-a.e. on Ω′, by the coarea formula Theorem 2.17 this is equivalent to ask that (i) – (iv)
are verified m-a.e. on Ω′.

The properties (i) and (ii) follow from the general theory of sets of finite perimeter over RCD(K,N)
spaces, since for any sublevel set {ϕ < t} which has finite perimeter it holds that Per{ϕ<t}-a.e. x is
a regular reduced boundary point, where all tangents are Euclidean half-spaces, see Theorem 2.20.

It remains to prove (iii) and (iv). In order to do so we first point out that for m-a.e. point any
blow-up ϕx of ϕ at x is a linear coordinate function on the tangent Rn. The argument is classical,
and originally due to Cheeger [C99], so we avoid it. Observe that the assumption that |∇ϕ| = 1
m-a.e. on Ω′ here guarantees that the blow-up is a linear function with slope equal to 1. Indeed 

Br(x)
|∇ϕ|2 dm = 1 , for any 0 < r < d(x, ∂Ω) .

Therefore, ϕx : Rn → R, that is obtained as limit of (ϕ− ϕ(x)) /ri along the sequence of scaled
spaces (X, d/ri,mrix , x), is a harmonic function such that 

BRn
r (0)

|∇ϕx|2 dH n = 1 , for any r > 0 ,

hence it is an affine coordinate with slope 1. See also [AHPT21, Theorem 5.4] for a proof of the
almost everywhere harmonicity of blow-ups of harmonic functions more tailored to the setting of
RCD(K,N) metric measure spaces.

We are left to verify that the blow-up of ϕ, that is a coordinate function, hence it is the signed
distance function from a certain hyperplane, is actually the signed distance function from the
boundary of the blow-up of the set of finite perimeter.
In order to do so, observe that (ϕ− t)− ≤ 0 andˆ

{ϕ>t}∩Br(x)
(ϕ− t)− dm = 0 ,

for any x ∈ {ϕ = t}.
This property is stable under blow-up of the set of finite perimeter and of the function ϕ, by the
L1

loc convergence of the indicator functions of the scaled sets of finite perimeter. Hence, also (ϕx)−
vanishes everywhere on the complement of the blow up of {ϕ < t} at x.
Since the blow-up of {ϕ < t} at x is a half-space and the blow-up of ϕ at x is an affine coordinate
function, the only possibility compatible with the observation above is that ϕ blows-up to the
signed distance function from the boundary of the blow-up to {ϕ < t} at x, as we claimed.

To conclude, observe that by (6.2) the density of the interior normal trace of ∇ϕ on the
boundary of {ϕ < t} at x is −1 for Per{ϕ<t}-a.e. x. This is sufficient to prove (6.1) by the
Lebesgue differentiation theorem, since the perimeter measure is asymptotically doubling, see
Proposition 2.18. �

References
[A01] L. Ambrosio: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces,

Adv. Math., 159 (2001), 51–67.
[A02] L. Ambrosio: Fine properties of sets of finite perimeter in doubling metric measure spaces, Set-Valued

Anal., 10 (2002), 111–128.
[ABS19] L. Ambrosio, E. Brué, D. Semola: Rigidity of the 1-Bakry-Émery inequality and sets of finite perimeter

in RCD spaces. Geom. Funct. Anal., 19 (2019), n.4, 949-1001.
[ADM14] L. Ambrosio, S. Di Marino: Equivalent definitions of BV space and of total variation on metric

measure spaces. J. Funct. Anal. 266 (2014), no. 7, 4150–4188.
[AGSa13] L. Ambrosio, N. Gigli, G. Savaré: Density of Lipschitz functions and equivalence of weak gradients in

metric measure spaces. Rev. Mat. Iberoam. 29 (2013), no. 3, 969–996.



32 ELIA BRUÉ, ENRICO PASQUALETTO, AND DANIELE SEMOLA

[AGSa14a] L. Ambrosio, N. Gigli, G. Savaré: Calculus and heat flow in metric measure spaces and applications
to spaces with Ricci bounds from below. Invent. Math. 195 (2014), no. 2, 289–391.

[AGSa14b] L. Ambrosio, N. Gigli, G. Savaré: Metric measure spaces with Riemannian Ricci curvature bounded
from below. Duke Math. J. 163 (2014), no. 7, 1405–1490.

[AH17] L. Ambrosio, S. Honda: New stability results for sequences of metric measure spaces with uniform
Ricci bounds from below. Measure theory in non-smooth spaces, 1–51, Partial Differ. Equ. Meas. Theory,
De Gruyter Open, Warsaw, 2017.

[AH18] L. Ambrosio, S. Honda: Local spectral convergence in RCD∗(K,N) spaces. Nonlinear Anal. 177 (2018),
part A, 1–23.

[AHPT21] L. Ambrosio, S. Honda,J. Portegies, D. Tewodrose: Embedding of RCD∗(K,N) metric measure
spaces in L2 via eigenfunctions, J. Funct. Anal. 280 (2021), no. 10, 108968.

[ABFP21] G. Antonelli, E. Brué, M. Fogagnolo, M. Pozzetta: On the existence of isoperimetric regions in
manifolds with nonnegative Ricci curvature and Euclidean volume growth, preprint arXiv:2107.07318.

[AnBS19] G. Antonelli, E. Brué, D. Semola: Volume bounds for the quantitative singular strata of non collapsed
RCD metric measure spaces, Anal. Geom. Metr. Spaces, 7 2019, no. 1.

[AFP21] G. Antonelli, M. Fogagnolo, M. Pozzetta: The isoperimetric problems on Riemannian manifolds
via Gromov-Hausdorff asymptotic analysis, preprint arXiv:2101.12711.

[APP21] G. Antonelli, E. Pasqualetto, M. Pozzetta: Isoperimetric sets in spaces with lower bounds on the
Ricci curvature, preprint arXiv:2107.03124.

[An83] G. Anzellotti: Pairings between measures and bounded functions and compensated compactness, Ann.
Mat. Pura Appl. (4) 135 (1983), 293–318.

[Br21] M. Braun: Vector calculus for tamed Dirichlet spaces, preprint arXiv:2108.12374.
[BNS20] E. Brué, A. Naber, D. Semola: Boundary regularity and stability for spaces with lower Ricci curvature

bounds, preprint arXiv:2011.08383.
[BPS19] E. Brué, E. Pasqualetto, D. Semola: Rectifiability of the reduced boundary for sets of finite perimeter

over RCD(K,N) spaces, Preprint arXiv:1909.00381.
[BPS20] E. Brué, E. Pasqualetto, D. Semola: Rectifiability of RCD(K,N) spaces via δ-splitting maps, Annales

Fennici Mathematici. 46, (2021), no. 1, 465–482.
[BS20] E. Brué, D. Semola: Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian

flows. Comm. Pure Appl. Math. 73 (2020), no. 6, 1141–1204.
[BCM19] V. Buffa, G. Comi, M. Miranda: On BV functions and essentially bounded divergence measure fields

in metric spaces, to appear on Rev. Mat. Ibero. Preprint arXiv:1906.07432.
[BB11] A. Björn, J. Björn: Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics, 17.

European Mathematical Society (EMS), Zürich, 2011. xii+403 pp.
[CaM20] F. Cavalletti, A. Mondino: New formulas for the Laplacian of distance functions and applications.

Anal. PDE 13 (2020), no. 7, 2091–2147.
[C99] J. Cheeger: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal., 9

(1999), 428–517.
[CJN21] J. Cheeger, W. Jiang, A. Naber: Rectifiability of singular sets of noncollapsed limit spaces with Ricci

curvature bounded below. Ann. of Math. (2) 193 (2021), no. 2, 407–538.
[CTZ09] G.-Q. Chen, M. Torres and W. P. Ziemer: Gauss–Green theorem for weakly differentiable vector

fields, sets of finite perimeter, and balance laws, Comm. Pure Appl. Math. 62 (2009), no. 2, 242–304.
[CN12] T.-H. Colding, A. Naber: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci

curvature bound and applications. Ann. of Math. (2) 176 (2012), no. 2, 1173–1229.
[Co20] G. Comi: Refined Gauss Green formulas and evolution problems for Radon measures, PhD thesis,

available at https://cvgmt.sns.it/paper/4579/.
[CP20] G.-E. Comi, K.-R. Payne: On locally essentially bounded divergence measure fields and sets of locally

finite perimeter. Adv. Calc. Var. 13 (2020), no. 2, 179–217.
[DGP21] C. Debin, N. Gigli, E. Pasqualetto: Quasi-continuous vector fields on RCD spaces. Potential Anal.

54 (2021), no. 1, 183–211.
[DG54] E. De Giorgi: Su una teoria generale della misura (r − 1)-dimensionale in uno spazio ad r dimensioni.

Ann. Mat. Pura Appl. (4) 36 (1954), 191–213.
[DG55] E. De Giorgi: Nuovi teoremi relativi alle misure (r − 1)-dimensionali in uno spazio ad r dimensioni.

Ricerche Mat. 4 (1955), 95–113.
[D20] Q. Deng Hölder continuity of tangent cones in RCD(K,N) spaces and applications to non-branching,

preprint arXiv:2009.07956.
[D94] D. Denneberg: Non-additive measure and integral. Theory and Decision Library. Series B: Mathematical

and Statistical Methods, 27. Kluwer Academic Publishers Group, Dordrecht, 1994. x+178 pp.
[DPMR17] G. De Philippis, A. Marchese, F. Rindler: On a conjecture of Cheeger, Measure theory in non-smooth

spaces, 145–155, Partial Differ. Equ. Meas. Theory, De Gruyter Open, Warsaw, 2017.
[G13] N. Gigli: The splitting theorem in non-smooth context, preprint arXiv:1302.5555.
[G15] N. Gigli: On the differential structure of metric measure spaces and applications. Mem. Amer. Math.

Soc. 236 (2015), no. 1113, vi+91 pp.
[G18] N. Gigli: Nonsmooth differential geometry—an approach tailored for spaces with Ricci curvature bounded

from below. Mem. Amer. Math. Soc. 251 (2018), no. 1196, v+161 pp.



CONSTANCY IN CODIMENSION ONE AND LOCALITY OF UNIT NORMAL ON RCD(K,N) SPACES 33

[GMSa15] N. Gigli, A. Mondino, G. Savaré: Convergence of pointed non-compact metric measure spaces and
stability of Ricci curvature bounds and heat flows. Proc. Lond. Math. Soc. (3) 111 (2015), no. 5,
1071–1129.

[GP16a] N. Gigli, E. Pasqualetto: Behaviour of the reference measure on RCD spaces under charts: preprint
arXiv:1607.05188, to appear on Comm. Anal. Geom.

[GP16] N. Gigli, E. Pasqualetto Equivalence of two different notions of tangent bundle on rectifiable metric
measure spaces Preprint arXiv:1611.09645, to appear on Comm. Anal. Geom.

[J12] R. Jiang: Lipschitz continuity of solutions of Poisson equations in metric measure spaces. Potential
Anal. 37 (2012), no. 3, 281–301.

[KM18] M. Kell, A. Mondino: On the volume measure of non-smooth spaces with Ricci curvature bounded
below. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), no. 2, 593–610.

[KL02] J. Kinnunen, V. Latvala: Lebesgue points for Sobolev functions on metric spaces. Rev. Mat. Iberoamer-
icana 18 (2002), no. 3, 685–700.

[KM02] J. Kinnunen, O. Martio: Nonlinear potential theory on metric spaces. Illinois J. Math. 46 (2002), no.
3, 857–883.

[Ki19] Y. Kitabeppu: A sufficient condition to a regular set being of positive measure on RCD spaces. Potential
Anal. 51 (2019), no. 2, 179–196.

[Ma12] F. Maggi: Sets of finite perimeter and geometric variational problems. An introduction to geomet-
ric measure theory. Cambridge Studies in Advanced Mathematics, 135. Cambridge University Press,
Cambridge, 2012. xx+454 pp.

[Mi03] M. Miranda Jr.: Functions of bounded variation on "good" metric spaces, J. Math. Pures Appl. (9) 82
(2003) 975–1004.

[MN19] A. Mondino, A. Naber: Structure theory of metric measure spaces with lower Ricci curvature bounds.
J. Eur. Math. Soc. (JEMS) 21 (2019), no. 6, 1809–1854.

[MS21] A. Mondino, D. Semola: Weak Laplacian bounds and minimal boundaries in non-smooth spaces with
Ricci curvature lower bounds, preprint arXiv:2107.12344.

[NPS21] F. Nobili, E. Pasqualetto, T. Schultz: On master test plans for the space of BV functions, preprint,
arXiv:2109.04980.

[Sa14] G. Savaré: Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat
flow in RCD(K,∞) metric measure spaces. Discrete Contin. Dyn. Syst. 34 (2014), no. 4, 1641–1661.

[S20] D. Semola: Recent developments about Geometric Analysis on RCD(K,N) spaces, PhD thesis, Scuola
Normale Superiore (2020), available at https://cvgmt.sns.it/paper/4820/.

[W00] N. Weaver: Lipschitz algebras and derivations. II. Exterior differentiation. J. Funct. Anal. 178 (2000),
no. 1, 64–112.


	1. Introduction
	Constancy of the dimension of the reduced boundary
	Pointwise behaviour of the unit normal and operations with sets of finite perimeter
	Gauss-Green formulae for essentially bounded divergence measure vector fields
	Acknowledgements

	2. Preliminaries
	2.1. Basic calculus tools
	2.2. About normed modules
	2.3. RCD metric measure spaces and second order calculus
	2.4. Structure theory for RCD spaces
	2.5. Sets of finite perimeter
	2.6. Geodesic plans and functions with bounded variation

	3. Constant dimension along boundaries
	3.1. Dimension of the tangent module over the boundary of E

	4. Cut and paste of sets with finite perimeter
	4.1. Federer-type characterization of sets with finite perimeter
	4.2. Good coordinates
	4.3. Main result

	5. Gauss-Green formulae for essentially bounded divergence measure vector fields
	6. An example
	References

