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Abstract

The assessment and the management of the risks linked to insect pests can be
supported by the use of physiologically-based demographic models. These mod-
els are useful in population ecology to simulate the dynamics of stage-structured
populations, by means of functions (e.g., development, mortality and fecundity
rate functions) realistically representing the nonlinear individuals physiological
responses to environmental forcing variables. Since density-dependent responses
are important regulating factors in population dynamics, we propose a nonlin-
ear physiologically-based Kolmogorov model describing the dynamics of a stage-
structured population in which a time-dependent mortality rate is coupled with
a nonlocal density-dependent term. We prove existence and uniqueness of the
solution for this resulting highly nonlinear partial differential equation. Then,
the equation is discretized by finite volumes in space and semi-implicit back-
ward Euler scheme in time. The model is applied for simulating the population
dynamics of the fall armyworm moth (Spodoptera frugiperda), a highly invasive
pest threatening agriculture worldwide.

Keywords: Physiologically-based models, Pest management, Invasive species,
Solvability of nonlinear Kolmogorov equations, Numerical simulation,
Spodoptera frugiperda.

1. Introduction

Insect pests represent an important threat for agriculture and environment
and pose serious issues linked to human health (Charles and Dukes (2014),
Mazza et al. (2014), Paini et al. (2016)). Among the most dangerous pests, the
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fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) represents one
of the main threats for agriculture worldwide (Day et al. (2017), Early et al.
(2018)). The species is known for its great migratory capacity that facilitates the
spread of the species along wide areas (Kumela et al. (2019)). It feeds on more
than 180 host plant species including economic valuable crops such as maize,
sorghum, rice and millets (Hogg et al. (1982), Oeh et al. (2001), Murúa and Virla
(2004), Busato et al. (2005), Milano et al. (2008), Baudron et al. (2019), Wang
et al. (2020)). The species is native to the tropical and sub-tropical areas of
South and North America. Since 2016, it has been reported in the African con-
tinent (Nigeria, Sao Tomé, Benin and Togo) where it became invasive (Goergen
et al. (2016), FAO (2018)). More recently, the species has been reported in In-
dia (Ganiger et al. (2018)), Myanmar (FAO (2019c)), Sri Lanka (FAO (2019d)),
China (FAO (2019b)), Bangladesh (FAO (2019a)), Thailand (IPPC (2018)) and
Korea Republic (IPPC (2019)).

The high migratory capacity of the species and the risks to import infested
plant products from countries with established population of S. frugiperda raise
concerns for the potential introduction and establishment of the species in Eu-
rope (Early et al. (2018), EFSA PLH Panel (2018a)). Various modelling ap-
proaches have been applied for the assessment and the management of the risks
linked to S. frugiperda (Farias et al. (2008), Valdez-Torres et al. (2012), Rios
et al. (2014a), Rios et al. (2014b), Prasanna et al. (2018), Early et al. (2018),
EFSA PLH Panel (2018b), Garcia et al. (2019), Liu et al. (2020), Wang et al.
(2020), FAO (2020)). Physiologically-Based Demographic Models (PBDMs) are
particularly useful to investigate the population dynamics of stage-structured
populations (Gurtin and Maccamy (1974), Gyori (1990), Gyllenberg and Hanski
(1992), Diekmann et al. (2001), Allen (2009), Ponosov et al. (2020)), account-
ing for the realistic representation of pests’ physiological responses driven by
environmental variables (Barfield et al. (1978), Gutierrez (1996), Garcia et al.
(2019)) at different spatial (from local to regional) and temporal (short to mid-
long terms) levels (Di Cola et al. (1990), Gilioli et al. (2016), Rossi et al. (2019),
Pasquali et al. (2020)).

In the present contribution we present a PBDM based on the Kolmogorov
equation describing the population dynamics of the S. frugiperda. To our knowl-
edge, this is the first PBDM describing the population dynamics of the species.
In PBDMs, the physiological responses of individuals to environmental drivers
are commonly modeled through functions (i.e., development, mortality and fer-
tility rate functions). The model presented here takes into account the nonlin-
ear stage-specific responses of individuals to air temperature (Gutierrez (1996),
Gilioli and Pasquali (2007), Regniere et al. (2012), Ponti et al. (2015)), and
the effects of stochasticity on the development process of the individuals (Dau-
tray and Lions (1988), Cushing (1992), Dautray and Lions (1992), Huffaker and
Gutierrez (1999), Batchelder et al. (2002)).

As already pointed out by Gurtin and Maccamy (1974) and Diekmann et al.
(2001), there are some implicit difficulties linked to using temperature as the
only driver ruling the dynamics of a population. The main shortcoming is
represented by the fact that the solution of the model is unbounded and thus
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a population might potentially grow indefinitely depending on the persistence
over time of favorable environmental conditions. Since the population growth
is ruled not only by abiotic drivers (e.g. temperature, presence and availability
of resources etc.) but also by biotic drivers (e.g. competition for resources
and the effects of crowding) acting as density-dependent regulating factors, an
indefinite population growth is biologically unrealistic (Sinclair and Pech (1996),
Tamburini et al. (2013)). In particular, the population dynamics of several insect
species is regulated also by density-dependent factors acting on the survival of
the species (Deangelis et al. (1980), Clother and Brindley (2000)). This is also
the case of S. frugiperda. Indeed, the species is known for the role of density-
dependent factors, including larval cannibalistic behavior, in ruling the species’
overall population dynamics (Barfield et al. (1978), Andow et al. (2015), Varella
et al. (2015), Garcia et al. (2018)).

In order to provide a realistic description of the population dynamics of
the species under investigation, we consider a Kolmogorov equation perturbed
by a temperature-dependent mortality rate coupled with a nonlinear and non-
local density-dependent term. Many stage-structured population models with
density-dependent mortality terms and nonlocal factors have been proposed in
the last decades (let us cite, withouth any sake of completeness, e.g., Gyori
(1990), Gyllenberg and Hanski (1992), Diekmann et al. (2001), Allen (2009)
Robertson et al. (2018)). However, on the basis of our knowledge, the Kol-
mogorov equation with a nonlinear and nonlocal density-dependent mortality
term has not yet been adressed nor has its mathematical analysis been discussed.

The Kolmogorov equation with nonlinear and nonlocal density-dependent
mortality term is highly nonlinear and faithfully embody three crucial biological
aspects:

1. the simulation of the dynamics of a stage-structured population;

2. the representation of the stage-specific and nonlinear response of individ-
uals to environmental drivers (i.e., air temperature);

3. the introduction of a density dependent control factor influencing the pop-
ulation dynamics of the species;

Let us stress that some existing models can be recovered as special cases of the
model considered in this paper (a detailed comparison can ben found in Section
2).

The paper is organized as follows. Section 2 is devoted to the derivation of
the model. In Section 3 we provide the numerical discretization of the partial
differential equation under study by approximating the system by Finite Vol-
umes in space and by backward Euler method in time. In order to support with
empirical evidence the introduction of the density-dependent mortality term,
in Section 4 we apply the model to a case study by describing the population
dynamics of the fall armyworm Spodoptera frugiperda and show that this new
approach plays a crucial role in the description of the population dynamics.
Numerical results are shown in Section 5, while in Section 6 we suggest future
perspectives. Finally, the Appendix is devoted to the rigorous mathematical
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analysis of the model: we prove the existence of strong solutions as well as
uniqueness and continuous dependence on the initial data.

2. Model derivation

The fall armyworm Spodoptera frugiperda can be considered as a stage struc-
tured population (eggs, larvae, pupae and adults) with discontinuous stage
structure (see, e.g., Kelpin et al. (2000), Buffoni and Cappelletti (2000), Abia
et al. (2004), Angulo and López-Marcos (2004), Buffoni et al. (2004), Buffoni
and Pasquali (2007)). The individual growth in a single stage is described by
the physiological age x ∈ [0, 1] evolving along time t ∈ [0, T ], with T > 0. We
denote by

ϕs(t, x) dx

the average number of individuals at stage s = 1, . . . , S, at time t with physio-
logical age between x and x+ dx, where dx indicates an infinitesimal variation
of age. The strictly positive value S ∈ N stands for the total number of growth
stages: stages from 1 to S− 1 are the immature ones (e.g., eggs, larvae, pupae)
while stage S is the reproductive one.

The seminal von Foerster equation describes the population dynamic at stage
s as

∂tϕ
s(t, x) + ∂xϕ

s(t, x) = −Msϕs(t, x), (t, x) ∈ (0, T )× (0, 1), (1)

with boundary condition

ϕs(t, 0) =

∫ 1

0

Gs(y)ϕs(t, y) dy, (2)

and initial condition
ϕs(0, x) = ϕs0(x), (3)

where Ms and Gs denote the stage-specific mortality and fecundity rate, respec-
tively, while the nonnegative function ϕs0 represents the initial abundance of each
stage. In the last decades, several authors consider the von Foerster equation,
suitably modified both by the introduction of time-dependent rate functions
and density-dependent mortality term. We refer, e.g., to Gyori (1990), Gyllen-
berg and Hanski (1992), Diekmann et al. (2001) , Allen (2009), Robertson et al.
(2018).

Since the development rate among individuals may depend on environmental
conditions, food, assimilation and genetic characteristics, Kolmogorov adopted
a stochastic approach and modified the von Foerster equation (1)–(3) by taking
into account the stage-specific development rate Ss, the diffusion parameters
bs, and by replacing the term ∂xϕ

s(t, x) with ∂xH
s(t, x), where

Hs(t, x) = Ssϕs(t, x)− bs∂xϕs(t, x). (4)

4



The so-called forward Kolmogorov equation is derived from the balance equa-
tion for the density function ϕs(t, x), it is an advection-diffusion equation with
elimination, namely

∂tϕ
s(t, x) + ∂x

(
Ssϕs(t, x)− bs∂xϕs(t, x)

)
= −Msϕs(t, x), (5)

(
Ssϕs(t, x)− bs ∂xϕs(t, x)

)
x=0

= F s
∫ 1

0

Gs(y)ϕs(t, y) dy, (6)(
− bs ∂xϕs(t, x)

)
x=1

= 0, (7)

ϕs(0, x) = ϕs0(x). (8)

The previous system (5)–(8) can be also interpreted as a one-dimensional Fokker-
Planck equation. Denoting by F s a stage-specific positive parameter, the bound-
ary condition (6) models the reproduction process as an input condition at the
beginning of the stage, i.e., at x = 0. On the other hand, the boundary condi-
tion (7) states that Hs(t, x) equals the number of individuals at the end of the
stage itself, i.e., at x = 1. Finally, (8) prescribes the initial conditions of the
system.

The system (5)–(8) has been widely employed in literature: we refer, e.g.,
to Lee et al. (1976), Plant and Wilson (1986), Bergh and Getz (1988), Iannelli
(1994). Let also cite Mazzocchi et al. (2006), where an individual-based model of
copepod populations is considered, and Buffoni and Pasquali (2010), where the
stage structured framework of (5)–(8) is applied to describe the stage structured
dynamics of a copepod population. In particular, Buffoni and Pasquali (2010)
considers the following system: for s = 1, . . . , S

∂tϕ
s(t, x) + ∂x

(
Ssϕs(t, x)− bs∂xϕs(t, x)

)
= −Msϕs(t, x), (9)(

Ssϕs(t, x)− bs ∂xϕs(t, x)
)
x=0

= Fs(t), (10)(
− bs ∂xϕs(t, x)

)
x=1

= 0, (11)

ϕs(0, x) = ϕs0(x), (12)

where the terms

F1(t) = F

∫ 1

0

G(y)ϕS(t, y) dy, (13)

Fs(t) = Ss−1ϕs−1(t, 1), s = 2, . . . , S, (14)

represent the input flux into stage s.
Since the mortality rate Ms of several insects species is related to the abun-

dance of individuals themselves, in the line of Gyori (1990), Diekmann et al.
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(2001) we consider a time-dependent mortality rate Ms : [0, T ] 7→ [0, 1] and the
nonlocal and nonlinear density-dependent function

Ms(t) = Ms(t)

(
1 + as

(∫ 1

0

ϕs(t, y) dy

)2
)ds

, as, ds ∈ (0,+∞), (15)

which will yield the nonlinear reaction term in the model. We observe that the
integral term appearing on the right hand side of (15) represents the abundance
of individuals at stage s at time t, namely

Ns(t) =

∫ 1

0

ϕs(t, y) dy.

By replacing Ms in (9) with the density-dependent mortality term Ms, we are
led to

∂tϕ
s(t, x) + ∂x

(
Ssϕs(t, x)− bs∂xϕs(t, x)

)
= −ϕs(t, x)Ms(t), (16)

for s = 1, . . . , S. Finally, we replace the classical development and reproduction
rates appearing in (9)–(12) with time-dependent ones, i.e., Ss, F s: [0, T ] 7→
[0, 1]. Then, from (16) and (6)–(8) we obtain the Kolmogorov equation with
nonlinear and nonlocal density-dependent mortality term, which is

∂tϕ
s(t, x) + ∂x

(
Ss(t)ϕs(t, x)− bs∂xϕs(t, x)

)
= −ϕs(t, x)Ms(t), (17)(

Ss(t)ϕs(t, x)− bs ∂xϕs(t, x)
)
x=0

= Fs(t), (18)(
− bs ∂xϕs(t, x)

)
x=1

= 0, (19)

ϕs(0, x) = ϕs0(x), (20)

where

F1(t) = F (t)

∫ 1

0

G(y)ϕS(t, y) dy, (21)

Fs(t) = Ss−1(t)ϕs−1(t, 1), s = 2, . . . , S. (22)

Let us stress that some existing models can be recovered as special cases of
(17)–(20): the classical Kolmogorov equation (see (5)–(8)) is obtained by setting
as = 0 in (15); a class of von-Foerster equations perturbed by a nonlinear and
nonlocal density dependent term is obtained by choosing as 6= 0 and bs = 0 in
(15). The von Foester equation considered in Gyori (1990) can be obtained as
particular case by choosing as = 1, bs = 0 and ds = 1 in (15).

In Section 7 we prove that the model (17)–(20) admits a unique solutions
that depends continuously on the data (the latter property ensures that if the
data of the problem are slightly perturbed, e.g., by measurement uncertainty,
then the solution provided by the model is slightly affected by the perturbation
on the data).

Although of fundamental importance, the rigorous mathematical analysis of
the model (17)–(20) is moved to Section 7 in order to make the paper more
readable to non mathematicians.
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3. Numerical discretization

3.1. Discretization of the system (17)–(20) for a single stage

We approximate system (17)–(20) by Finite Volumes in space and the back-
ward Euler method in time (see, e.g., Quarteroni (2017)). Given a positive
integer Nx we set ∆x = 1

Nx
, we define the nodes

xk = (k − 0.5)∆x for k = 1, . . . , Nx, (23)

and we consider the partition of the interval [0, 1] into the control volumes

Ik =
[
xk − ∆x

2 , xk + ∆x
2

]
, for k = 1, . . . , Nx. (24)

Then, for k = 1, . . . , Nx, we denote by xk− 1
2

and xk+ 1
2

the left and right end-

points, respectively, of the volume Ik (see Fig. 1).

x1 x2 xk
∆x

xk+1
2

xk−1
2

x5
2

x3
2

x1
2

xNx

xNx+
1
2

Figure 1: The nodes and the control volumes in the interval [0, 1]

For any t ∈ (0, T ), we restrict the differential equation (59) on each control
volume Ik and we integrate it by parts, we have

∂t

∫
Ik

ϕ(t, x)dx+H(t, x)|x=x
k+1

2

−H(t, x)|x=x
k− 1

2

+

M(t)

(
1 + a

(∫ 1

0

ϕ(t, x)dx

)2
)d ∫

Ik

ϕ(t, x)dx = 0,

(25)

where H(t, x) has been defined in (4).
Then, for any t ∈ (0, T ) let ϕ∆x(t, x) a function that is constant with respect

to the x variable on each control volume Ik and we set

ϕk(t) = ϕ∆x(t, ·)|Ik for k = 1, . . . , Nx and ϕ(t) =


ϕ1(t)
ϕ2(t)

...
ϕNx(t)

 . (26)

ϕk(t) is an approximation of the average on Ik of the unknown function ϕ(t, x).
From now on, for sake of clearness we set

M∆x(ϕ(t)) = M(t)

(
1 + a

(∫ 1

0

ϕ∆x(t, x)dx

)2
)d

, (27)

and we notice that ∫ 1

0

ϕ∆x(t, x)dx = ∆x

Nx∑
k=1

ϕk(t). (28)
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Let us denote by |Ik| the measure of the k−th control volume Ik. The finite
volumes discretization of (25) reads

|Ik|
dϕk(t)

dt
+H+

k (t)−H−k (t) + M∆x(ϕ(t))|Ik|ϕk(t) = 0, (29)

where H−k (t) and H+
k (t) are suitable approximations of H(t, x)|x=x

k− 1
2

and

H(t, x)|x=x
k+1

2

, respectively, obtained by applying second-order (with respect

to ∆x) central finite difference schemes (see, e.g., LeVeque (2002)).
More precisely, after setting

G∆x(ϕ(t)) = ∆x

Nx∑
k=1

G(xk)ϕk(t) (30)

(in fact G∆x(ϕ(t)) is the approximation of the integral
∫ 1

0
G(x)ϕ(t, x)dx by the

composite mid-point rule (see, e.g., Quarteroni et al. (2014))), and in view of
both (4) and the boundary conditions (18)–(19), we have:

H−1 (t) = F (t)G∆x(t)

H−k (t) = S(t)
ϕk(t) + ϕk−1(t)

2
− bϕk(t)− ϕk−1(t)

∆x
, k = 2, . . . , Nx,

H+
k (t) = S(t)

ϕk+1(t) + ϕk(t)

2
− bϕk+1(t)− ϕk(t)

∆x
, k = 1, . . . , Nx − 1,

H+
Nx

(t) = S(t)ϕNx(t).

(31)

By writing (29) for any k = 1, . . . , Nx and by recalling that |Ik| = ∆x for
k = 1, . . . , Nx, the semi-discrete approximation of the system (17)–(20) reads:
given ϕk(0) = ϕ0(xk) for k = 1, . . . , Nx, for any t ∈ (0, T ) look for the functions
ϕ1(t), . . . , ϕNx(t) such that

dϕ1

dt (t) +
[
S(t)
2∆x + b

(∆x)2 + M∆x(ϕ(t))
]
ϕ1(t)

+
[
S(t)
2∆x −

b
(∆x)2

]
ϕ2(t) = F (t)

∆x G∆x(ϕ(t)),

dϕk
dt (t)−

[
S(t)
2∆x + b

(∆x)2

]
ϕk−1(t) +

[
2b

(∆x)2 + M∆x(ϕ(t))
]
ϕk(t)

+
[
S(t)
2∆x −

b
(∆x)2

]
ϕk+1(t) = 0, for k = 2, . . . , Nx − 1

dϕNx
dt (t)−

[
S(t)
2∆x + b

(∆x)2

]
ϕNx−1(t)

+
[
S(t)
2∆x + b

(∆x)2 + M∆x(ϕ(t))
]
ϕNx(t) = 0.

(32)
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By setting

ϕ0 =


ϕ0(x1)
ϕ0(x2)

...
ϕ0(xNx)

 , A(t) =


β1(t) γ1(t) 0 0 · · · 0 0
α2(t) β2(t) γ2(t) 0 · · · 0 0

0 α3(t) β3(t) γ3(t) · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · αNx(t) βNx(t)

 , (33)

with

β1(t) = S(t)
2∆x + b

(∆x)2 , γ1(t) = S(t)
2∆x −

b
(∆x)2 ,

αk(t) = −
(
S(t)
2∆x + b

(∆x)2

)
, βk(t) = 2b

(∆x)2 , γk(t) = S(t)
2∆x −

b
(∆x)2 ,

for k = 2, . . . , Nx − 1

αNx(t) = −
(
S(t)
2∆x + b

(∆x)2

)
, βNx(t) = S(t)

2∆x + b
(∆x)2 ,

and e1 ∈ RNx×1 the array whose first entry is equal to one while all the others
are equal to zero, the algebraic semidiscrete form of (32) reads

dϕ

dt
(t) +A(t)ϕ(t) + M∆x(ϕ(t))ϕ(t) =

F (t)

∆x
G∆x(ϕ(t))e1, t ∈ (0, T )

ϕ(0) = ϕ0.

(34)

In general the constant b is very small compared to the advection coefficient
S(t). To overcome numerical instabilities due to the finite difference approxi-
mation (31), we choose the discretization step ∆x small enough, more precisely,
we ask that (see LeVeque (2002))

∆x ≤ 2b

maxt |S(t)|
.

The full discretization of system (17)–(20) is achieved by applying the Back-
ward Euler method to (34). To this aim let us fix a positive integer NT , denote
by ∆t = T/NT the time discretization step, set tn = n∆t, and denote by ϕn

the approximation of ϕ(tn). It reads: given ϕ0 as in (33), for n = 1, . . . , NT
look for ϕn such that

ϕn −ϕn−1

∆t
+A(tn)ϕn + M∆x(ϕn)ϕn =

F (tn)

∆x
G∆x(ϕn)e1. (35)

In order to overcome the non-linearity in (35)1 (and then to avoid a large
computational effort at each time step tn) we replace the term M∆x(ϕn) with
M∆x(ϕn−1), that means to take into account a delay of size ∆t in the mortality
function. Accordingly, even if the right hand side of (35) is linear with respect to
ϕn, we apply the same delay to it, that is we replace G∆x(ϕn) with G∆x(ϕn−1),
with the purpose to not alterate the tridiagonal pattern of the matrix A(t). As a
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matter of fact, solving a tridiagonal system of size Nx with the Thomas method
(Quarteroni et al., 2014, Sect. 5.6) is very cheap since only O(Nx) floating point
operations are required. On the contrary, should we consider G∆x(ϕn) instead
of G∆x(ϕn−1), the small bandwidth of the matrix A(tn) would be lost, fill-in
of the matrix would occur, and the computational cost in computing ϕn would
increase up to O(N3

x) floating point operations (Quarteroni et al., 2014, Ch. 5).
Then, instead of (35) that is nonlinear, we solve the linearized problem (in

fact we are applying a semi-implicit version of the Backward Euler method):
given ϕ0 as in (33), for n = 1, . . . , NT look for ϕn such that

ϕn −ϕn−1

∆t
+A(tn)ϕn + M∆x(ϕn−1)ϕn =

F (tn)

∆x
G∆x(ϕn−1)e1. (36)

We denote by ϕ̃(t, x) the numerical approximation of the solution ϕ(t, x) of
(17)–(20) obtained so far. ϕ̃(t, x) is a piecewise constant function in both t and
x, more precisely, denoting by ϕnk the k−th component of the array ϕn (for
k = 1, . . . , Nx), we have

ϕ̃(t, x) = ϕnk ∀(t, x) ∈ [tn, tn+1)× Ik. (37)

By using standard arguments (see, e.g., LeVeque (2002); Quarteroni (2017)), it
can be proved that ϕ̃(t, x) is an approximation of ϕ(t, x) that is second order
accurate with respect to ∆x and first-order accurate with respect to ∆t, provided
that both ∆x and ∆t are small enough.

3.2. Discretization of the multistage problem

For any stage s, we proceed as done in the previous Section. We denote by
(ϕs)n the fully discrete solution of the function ϕs at time tn and, similarly, by
As(tn) the Finite Volume matrix at stage s and time tn, and so on for the other
variables.

The approximation of the multistage system (17)–(20) by centered second-
order Finite Volumes in space and semi-implicit Backward Euler method in time
reads:

given (ϕ1)0, . . . , (ϕS)0,

for n = 1, . . . , NT , look for (ϕ1)n, . . . , (ϕS)n such that

(ϕ1)n − (ϕ1)n−1

∆t
+A1(tn)(ϕ1)n + M1

∆x((ϕ1)n−1)(ϕ1)n =

=
F 1(tn)

∆x
G∆x((ϕS)n−1)e1

for s = 2, . . . , S

(ϕs)n − (ϕs)n−1

∆t
+As(tn)(ϕs)n + Ms

∆x((ϕs)n−1)(ϕs)n =

= Ss−1(tn)(ϕs−1)nNxe1,

where we recall that super–index n and sub–index Nx in (ϕs−1)nNx denote the
time–step and the finite volume, respectively.
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4. Application to the case study of Spodoptera frugiperda

The model presented is applied for simulating the population dynamics of S.
frugiperda. We consider the stage-structured model (17)–(20) and specify the
stage-specific functions and the parameters (56)–(57) for stage s = 1, . . . , 4.

According to Buffoni and Pasquali (2010), we fix the diffusion coefficient
bs = 0.001 for every s = 1, . . . , 4 and assume that development, mortality and
fertility rate functions M , S and F introduced in (56)–(57) depend on time only
through the temperature ϑ(t), ϑ ∈ C1([0, T ]), then we define S̃, M̃ and F̃ such
that

S̃(ϑ(t)) = S(t), M̃(ϑ(t)) = M(t), F̃ (ϑ(t)) = F (t). (38)

4.1. Data

The stage-specific development, mortality and fertility rate functions are
estimated with the following procedure. Temperature-dependent responses of
the rate functions are estimated based on data from different laboratory stud-
ies conducted in climate chambers under constant temperature conditions and
collected at the individual level.

For estimating the develelopment rate function we have used data from
Barfield et al. (1978), Hogg et al. (1982), Simmons (1993), Busato et al. (2005),
Milano et al. (2008), Barros et al. (2010a), Ros-Dez and Saldamando-Benjumea
(2011), Garcia et al. (2019).

For estimating the mortality rate function we have used data from Barfield
et al. (1978), Simmons (1993), Murúa and Virla (2004), Busato et al. (2005),
Milano et al. (2008) and Garcia et al. (2019).

For estimating the fertility rate function (see (48)) we have used data from
Barfield et al. (1978), Pashley et al. (1995), Oeh et al. (2001), Milano et al.
(2008), Barros et al. (2010b), Garcia et al. (2018) and Garcia et al. (2019),
which refer to the temperature-dependent average total fecundity [eggs·days−1],
the average daily fecundity [eggs · female−1 · days−1] and the average duration
[days] of the oviposition period. Data used for estimating the oviposition profile
G (see (50)) refer to the age-dependent amount of eggs laid by a female (Murúa
and Virla (2004)) tested under controlled laboratory conditions.

For estimating the parameters of the density-dependent component influ-
encing the larval mortality rate, we use time-series data related to S. frugiperda
adult trap catches. Data collected in Irapuato (Guanajuato, Mexico) in 2015
(Salas-Araiza et al. (2018)) are used to estimate the parameters of the density-
dependent mortality rate function through a calibration procedure (see Section
4.3). Then, we use a second dataset referring to time-series adult trap catches
collected in Gainesville (Florida, US) in 2013 (Garcia et al. (2018)) for model
validation.

Data related to S. frugiperda adult trap catches used for estimating the
parameters of the density dependent mortality term (44) are reported in Salas-
Araiza et al. (2018) and Garcia et al. (2018) referring to the areas of Irapuato
(Guanajuato, Mexico) in 2015 and Gainesville (Florida, US) in 2013, respec-
tively.

11



Table 1: The parameters used to model the functions Ss(t) defined in (39)

s = 1 s = 2 s = 3 s = 4
ps 3.47 · 10−2 5.18 · 10−3 8.81 · 10−3 5.76 · 10−3

ϑsO 10.60 10.90 12.17 5.174
ϑsM 34.90 37.59 40.00 40.00

Time-series of temperature data used in our model have been obtained
considering daily minimum and mamixum air temperature from the NASA
Power Global Meteorology, Surface Solar Energy and Climatology Data Client
(https://power.larc.nasa.gov/, accessed: 15 May 2019). Hourly temperature
data are then calculated using the algorithm described in Gilioli et al. (2014).

4.2. Development rate function

Since the development rate S is null for temperatures under a lower threshold
ϑsO and above a upper threshold ϑsM, it is reasonable to consider the temperature-
dependent development Briére rate proposed in Briere et al. (1999), namely

Ss(t) = S̃s(ϑ) = max(psϑ(ϑ− ϑsO)χ(ϑ)
√
ϑsM − ϑ, 1), s = 1, . . . , 4, (39)

where ps is a positive stretching parameter and χ is the characteristic function
of the interval [ϑsO, ϑ

s
M]. The parameters ps, ϑsO and ϑsM are computed by the

lsqcurvefit function of MATLAB© which finds the coefficients of (39) with
the purpose to best fit the nonlinear function S̃ to the data (see Sec. 4.1) in the
least-square sense. It is straightforward to prove that the optimum development
temperature ϑ̂s does not depend on the parameter ps. Indeed, we have that

ϑ̂s =
4ϑsM + 3ϑsO +

√
16ϑsM

2 + 9ϑsO
2 − 16ϑsMϑ

s
O

10
, s = 1, . . . , 4. (40)

In Table 1 we list the parameters of the functions Ss, s = 1, . . . , 4 defined in
(39), while the corresponding graphs are shown in Figure 2.

4.3. Mortality rate function

For each stage s = 1, . . . , 4, we define the average stage proportional mor-
tality µs, modeled with a convex and continuous function, namely µs(ϑ) =
max(µ̃s(ϑ), 0) with

µ̃s(ϑ) =


ks, ϑ < ϑinfks ,

Asϑ2 +Bsϑ+ Cs, ϑinfks ≤ ϑ ≤ ϑ
sup
ks ,

ks, ϑ > ϑsupks ,

, (41)

where ks ∈ [0, 1] and As > 0. The coefficients As, Bs and Cs are obtained by
linear least-square fitting to the mortality data. Then, fixing a cut-off threshold
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Figure 2: Development rate functions Ss, s = 1 . . . , 4.

ks, we find ϑsupks and ϑinfks in order to guarantee that µs is globally continuous.
In Table 2 we list the parameters used to define µs, while the corresponding
graphs are shown in 3. Then, we consider the function

ms(ϑ) =


cs1l(ϑ− ϑ

inf
ks )2 + cs2l(ϑ− ϑ

sup
ks ) + cs3l, ϑ < ϑsO,

−Ss(ϑ) ln(1− µs(ϑ)), ϑsO ≤ ϑ ≤ ϑsM,

cs1r(ϑ− ϑ
sup
ks )2 + cs2r(ϑ− ϑ

sup
k ) + cs3r, ϑ > ϑsM,

(42)

where the parameters csil and csir, i = 1, 2, 3, of the outer branches of ms are
inferred from the constraints on sign, slope and concavity of the middle branch
in order to guarantee that ms is globally C1. According to Wagner et al. (1984),
we define the mortality rate

Ms(t) = M̃s(ϑ) = min
(
ms(ϑ), 1

)
(43)

and list the parameters of ms in Table 3 and the corresponding graphs in Figure
4, respectively. In order to model the larval competition and cannibalism,
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Figure 3: Average stage proportional mortality µs, s = 1 . . . , 4.

Table 2: The parameters used to model the functions µ̃s(t) defined in (41)

s = 1 s = 2 s = 3 s = 4
ks 0.9 0.9 0.9 0.9
ϑsupks 36.41 37.32 40.91 40.91

ϑinfks 9.22 14.60 11.31 11.31
As 4.89 · 10−3 5.41 · 10−3 3.70 · 10−3 3.70 · 10−3

Bs −2.23 · 10−1 −2.80 · 10−3 −1.93 · 10−1 −1.93 · 10−1

Cs 2.56 3.84 2.62 2.62
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Figure 4: Mortality rate functions Ms, s = 1 . . . , 4.

Table 3: The parameters used to model the functions µ̃s(t) defined in (42)

s = 1 s = 2 s = 3 s = 4
ϑsM 28.08 28.52 21.61 15.78
ϑsO 22.38 15.00 15.00 15.00
cs1l 2.88 · 10−3 7.70 · 10−3 8.4 · 10−3 1.55 · 10−2

cs2l −1.30 · 10−2 −2.35 · 10−1 −2.49 · 10−1 −3.67 · 10−1

cs3l 1.46 1.82 1.86 2.22
cs1r 4.21 · 10−3 7.10 · 10−3 1.22 · 10−2 1.02 · 10−2

cs2r −2.09 · 10−1 −4.01 · 10−2 −7.59 · 10−1 −6.175 · 10−1

cs3r 2.61 5.59 11.84 9.36 · 10−1
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following Pasquali et al. (2020), we consider a density-dependent mortality term

Ms(t) = Ms(t)

(
1 + as

(∫ 1

0

ϕs(t, y) dy

)2
)ds

, (44)

applied only in stage s = 2. The calibration procedure leads to the estimation
of the density-dependent mortality term parameters as and ds (s = 2), obtained
as the minimisers of the root mean square error

RMSE(â, d̂) =

√√√√ 1

n

n∑
i=1

(N4(ti, â, d̂)− N̄4
i )2), (45)

in which N̄4
i (for i = 1, . . . , n) are the measured abundances of the 4th stage

at certain times ti in Irapuato (Guanajuato, Mexico), while N4(ti, â, d̂) are the
abundances computed with our model with a2 and d2 in (44) replaced by â and

d̂, respectively. The minimisers of RMSE have been computed by the interior-
point method (see, e.g., Pólik and Terlaky (2010)) implemented in the fmincon

function of MATLAB©. The parameters obtained are

a2 = 49.92 and d2 = 0.267. (46)

4.4. Fertility rate function

The input flux of eggs in stage s = 1 is defined by

F1(t) =

∫ 1

0

F (t)G(x)ϕ4(t, x) dx, (47)

where D(t, x) = F (t)G(x) is the temperature- and age-dependent fertility rate
function, where F (t) is the temperature-dependent fertility rate and G(x) is
the reproductive profile which depends on adult female age. Since experimental
data suggest that F is concave in a specific temperature range [ϑEm, ϑ

E
M ] with a

peak at the optimal temperature ϑ̂E , the temperature-dependent fertility rate
is defined by the following analytic expression (see, e.g. Royer et al. (1999))

F (t) = F̃ (ϑ) = kEϑχ(ϑ)
(
ϑ− ϑEm

)√
ϑEM − ϑ, kE > 0, (48)

where χ is the characteristic function of the interval [ϑEm, ϑ
E
M ]. The coefficients

kE , ϑEm and ϑEM are computed by the lsqcurvefit function of MATLAB©,
fitting (in the least-square sense) the nonlinear function (48) to the data. We
find

kE = 0.111, ϑEm = 11.442, ϑEM = 35.576. (49)

For estimating the age-dependent fertility rate function G we refer to the
data reported in Murúa and Virla (2004) which provide data that have been
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Figure 5: Functions F and G.

interpolated with the normalized Gamma distribution (see Sporleder et al.
(2004)). Based on Murúa and Virla (2004), we assume that, the maximum
value of eggs occurs at the optimal age xopt = 0.23, and then declines up to a
final age xend = 0.92. Then, we consider the normalized Gamma distribution

G(x) =
xα−1e−βx

‖xα−1e−βx‖L1(0,1)
, (50)

where α and β are positive parameters obtained in order to guarantee that the
maximum age-dependent fertility rate occurs at physiological age xopt = 0.23,
i.e.,

xopt =
α− 1

β
= 0.23 (51)

and that ∫ xend

0

xα−1e−βx dx =
99

100

∫ 1

0

xα−1e−βx dx. (52)

Applying (51)–(52), we find

α = 0.318 · 101, β = 0.948 · 101. (53)

The plots of F and G (see (48) and (50)) are shown in Figure 5.

5. Numerical results

Following the numerical model described in Section 3, we set the number
of finite volumes equal to Nx = 225 for the stage s = 1 and Nx = 100 for
the other stages. The finer discretization in the first stage is justified by the
larger stretching parameters p1 (with respect to the others ps for s ≥ 2; see
formula (39)) which is reflected on the larger Péclet number associated with
the advection-diffusion equation (see Quarteroni (2017)). We can say that the
chosen discretization is sufficiently fine, in fact the relative error between this
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numerical solution and that obtained by doubling the number of finite volumes
in each stage is less than 10−4.

The discretization time-step ∆t is chosen equal to one hour, that is the
frequency at which the data have been measured. This time-step is suitable
to guarantee a sufficient accuracy of the numerical solution; the relative error
between the solutions computed with ∆t = 1 hour and ∆t = 1/2 hour is less
than 1%.
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Figure 6: Numerical solution for the stage s=4 of the model implemented in the location of
Irapuato (Guanajuato, Mexico) with as = 49.92 and ds = 0.267, for s = 2.

The numerical solution of the first year is affected by the initial conditions,
but during the successive years the solution is periodic without blow-ups nor
damping effects (see Figure 6). Therefore, we run the model for five years and
we compare the simulated adult population dynamics of the third year with the
adult monitoring data.

In Figure 7.a the simulated adult population dynamics is compared with
the adult monitoring data extracted from Salas-Araiza et al. (2018) referring to
adult catches through a pheromone-baited trap located in Irapuato (Guanaju-
ato, Mexico) in the year 2015.

In Figure 7.b the simulated adult population dynamics is compared with
the adult monitoring data extracted from Garcia et al. (2018) referring to adult
catches in Gainesville (Florida, US) in the year 2013.

From the numerical results shown in Figure 6 and Figure 7 we evince that
the model proposed in this paper provides a reasonable interpretation of the
main patterns related to the phenology and the abundance of the species.

The resulting values of the root mean square error are RMSE ' 30.47
for the calibration case (Guanajuato, Mexico) and RMSE ' 194.94 for the
validation case (Gainesville, Florida, US).

Comparing population dynamics in simulation results with the validation
dataset, we observe that the model capture the overall pattern of population
dynamics in terms of level of abundance and the overall period of pest presence.
However, there is a remarkable shift in the phenology described by the model
that anticipates observations in the field. The model correctly describe the pop-
ulation reduction in the late seasons associated to unfavourable meteorological
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Figure 7: On the left: numerical solution for the stage s = 4 (continuous blue line) and
experimental data (red asterisks) (Irapuato, Guanajuato, Mexico). On the right (Figure 7.b):
numerical solution for the stage s = 4 (continuous blue line) and experimental data (red
asterisks) (Gainesville, Florida, US). Parameters: a2 = 49.92, d2 = 0.267 and as = ds = 0 for
s 6= 2.

conditions (in the late autumn and winter).
If the density-dependent mortality term is nullified, we obtain a unlimited

(and thus unrealistic) growth of the simulated population abundance. This is a
confirmation that the regulation due to abiotic factors is not sufficient to model
the population dynamics of the species. Although two extra parameters appear
in the equation of our model, the benefits of our approach are considerable
because the density dependent mortality term ensures a realistic limitation of
the population abundance.

6. Conclusions and future perspectives

The model presented is characterised by a high degree of biological real-
ism since it represents the temperature-dependent responses of the life-history
strategies and it includes density-dependent control factors influencing the sur-
vival of the larval stage.

Our work mainly aims to explore the consequences of the introduction of
a density-dependent control term in a stage-structured population dynamics
model that is based on the Kolmogorov equation. We expect that the predictive
performances of the model would improve by increasing the number of datasets
used in the calibration procedure. In particular, it is important to estimate
the model’s parameters using datasets from different locations, thus allowing to
investigate species’ physiological responses to different environmental contexts.
These aspects will be addressed in a subsequent work.

The mechanistic modelling approach we have used in our work allows to de-
scribe population dynamics in terms of variation of population abundance that
is the main driver of the impact on host plants. This model output is particu-
larly useful for supporting the implementation of knowledge-based management
strategies of the pest species at various spatial-temporal scales. For instance, at
the farm level, predictions on the time of emergence and the species’ population
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abundance can be exploited for planning and implementing pest monitoring and
pest control activities (Rossi et al. (2019)). The model presented can also be
applied at the regional level (e.g., at country or continental level) for the devel-
opment of risk maps showing the potential distribution and abundance of the
species under different climatic and risk management scenarios. These informa-
tion are fundamental for guiding the categorization and prioritization of pest
species and for assessing the potential risks of entry, establishment and impacts
of the species (EFSA PLH Panel (2017), EFSA PLH Panel (2018a), EFSA
PLH Panel (2018b), EFSA PLH Panel (2020)).

7. Appendix: Mathematical analysis of the model

We focus on Problem (P ) stated by (17)–(20) in a single stage, omitting for
simplicity the dependence on the stage s. In order to provide the analysis of the
system in the more complex setting, we assume that the input flux F is defined
as in (21), and the coefficients a and d appearing in the mortality term (15) are
strictly positive.

Given the interval (0, 1) and a finite final time T > 0, for every t ∈ (0, T ) we
set

Qt = (0, t)× (0, 1), Q = QT , (54)

and denote for brevity

H = L2(0, 1), V = H1(0, 1), W = H2(0, 1), (55)

with usual norms ‖ · ‖H , ‖ · ‖V and ‖ · ‖W . The symbols V ′ denotes the dual
space of V , while the pair 〈·, ·〉V ′,V represents the duality pairing between V ′

and V . Moreover, we identify H with its dual space. Now, we introduce the
system under study. We assume

a, b, d ∈ (0,+∞), F, S, M ∈ C0([0, T ]), F, S, M ≥ 0, (56)

G ∈ H, ϕ0 ∈ V, G, ϕ0 ≥ 0. (57)

We look for a function

ϕ ∈ H1(0, T ;V ′) ∩ C0([0, T ];H) ∩ L2(0, T ;V ), (58)

which solves Problem (P), namely

∂tϕ(t, x) + ∂x

(
S(t)ϕ(t, x)− b∂xϕ(t, x)

)

+ϕ(t, x)M(t)

(
1 + a

(∫ 1

0

ϕ(t, y) dy

)2
)d

= 0 in QT , (59)

(
S(t)ϕ(t, x)− b ∂xϕ(t, x)

)
x=0

= F (t)

∫ 1

0

G(x)ϕ(t, x) dx, (60)
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(
− b ∂xϕ(t, x)

)
x=1

= 0, (61)

ϕ(0, x) = ϕ0(x). (62)

Omitting the dependence on the variable x ∈ (0, 1) in the integrand terms, we
introduce the variational formulation of Problem (P ), namely

S(t)ϕ(t, 1)v(1) +

∫ 1

0

∂tϕ(t)v dx+

∫ 1

0

(
b∂xϕ(t)− S(t)ϕ(t)

)
∂xv dx

+

∫ 1

0

M(t)ϕ(t)

(
1 + a

(∫ 1

0

ϕ(t, y) dy

)2
)d
v dx− F (t)v(0)

∫ 1

0

Gϕ(t) dx = 0,

for a.e. t ∈ (0, T ) and for all v ∈ V . (63)

The following theorem is the main theoretical result of the paper, its proof
will be developed in the next sections.

Theorem 7.1 (Well-posedness). Assume (56)–(57). Then Problem (P ) stated
by (59)–(62) admits a unique solution ϕ satisfying (58). In particular, denoting
by ϕ0,i, i = 1, 2, a pair of initial data and by ϕi, i = 1, 2, the corresponding
solutions of Problem (P ), the following continuous dependence estimate

‖ϕ1 − ϕ2‖H1(0,T ;V ′)∩C0([0,T ];H)∩L2(0,T ;V ) ≤ c‖ϕ0,1 − ϕ0,2‖H (64)

holds for some positive constant c which depends only on the structure of our
statement.

We split the proof of this theorem in different steps.

7.1. Existence of solutions

7.1.1. The approximating Problem (Pτ )

In order to prove the existence of a solution to Problem (P ) stated by (59)–
(62), fix N ∈ N and consider a time delay τ = T/N . Then, we look for a
function

ϕτ ∈ H1(0, T ;V ′) ∩ C0([0, T ];H) ∩ L2(0, T ;V ), (65)

satisfying the following approximating problem (Pτ ), obtained by assuming a
delay in the last term on the left hand side of (59), namely

∂tϕτ (t, x) + ∂x

(
S(t)ϕτ (t, x)− b∂xϕτ (t, x)

)

+ϕτ (t, x)M(t)

(
1 + a

(∫ 1

0

ϕτ (t− τ, y) dy

)2
)d

= 0 in QT , (66)

(
S(t)ϕτ (t, x)− b ∂xϕτ (t, x)

)
x=0

= F (t)

∫ 1

0

G(x)ϕτ (t, x) dx, (67)
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(
− b ∂xϕτ (t, x)

)
x=1

= 0, (68)

ϕτ (t, x) = ϕ0(x), for every t ≤ 0. (69)

Omitting the dependence on the variable x ∈ (0, 1) in the integrand terms, we
introduce the variational formulation of Problem (Pτ ), namely

S(t)ϕτ (t, 1)v(1) +

∫ 1

0

∂tϕτ (t)v dx+

∫ 1

0

(
b∂xϕτ (t)− S(t)ϕτ (t)

)
∂xv dx

+

∫ 1

0

M(t)ϕτ (t)

(
1 + a

(∫ 1

0

ϕτ (t− τ, y) dy

)2
)d
v dx

−F (t)v(0)

∫ 1

0

Gϕτ (t) dx = 0 for a.e. t ∈ (0, T ) and for all v ∈ V . (70)

Then, we can solve Problem (Pτ ) stated by (66)–(69) in the interval [0, τ ] (see,
e.g., Dautray and Lions (1988), Sec. 3, Ch. XVIII), founding a solution

ϕτ ∈ H1(0, τ ;V ′) ∩ C0([0, τ ];H) ∩ L2(0, τ ;V ). (71)

Since ϕτ ∈ C0([0, τ ];V ), we can start again and get the solution of Problem
(Pτ ) in the interval [τ, 2τ ]. Repeating this explained technique, we can finally
obtain a solution ϕτ of Problem (Pτ ) (66)–(69) satisfying (65) and defined in
the whole interval [0, T ].

7.1.2. A priori estimates on (Pτ )

In the remainder of the paper we often owe to the Hölder inequality and
to the elementary Young inequalities in performing our a priori estimates. For
every x, y > 0, α ∈ (0, 1) and δ > 0 there hold

xy ≤ αx 1
α + (1− α)y

1
1−α , (72)

xy ≤ δx2 +
1

4δ
y2. (73)

Moreover, we also use the inequality deduced from the compactness of the em-
bedding V ⊂ H ⊂ V ′ (see Simon (1987), Lemma 8, p. 84): for all δ > 0 there
exists a constant K > 0 such that

‖z‖H ≤ δ‖z‖V +K‖z‖V ′ for all z ∈ H. (74)

In the following, the symbol c stands for different positive constants which
depend only on the final time T , on the shape of the nonlinearities and on the
constants and the norms of the functions involved in the assumptions of our
statements.

Testing (70) by ϕτ and integrating over (0, t), we obtain

1

2
‖ϕτ (t)‖2H + b

∫ t

0

∫ 1

0

|∂xϕτ (s, x)|2 dx ds
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+
1

2

∫ t

0

S(s)|ϕτ (s, 1)|2 ds+
1

2

∫ t

0

S(s)|ϕτ (s, 0)|2 ds

+

∫ t

0

∫ 1

0

M(s)|ϕτ (s, x)|2
(

1 + a

(∫ 1

0

ϕτ (s− τ, y) dy

)2
)d

dx ds

=
1

2
‖ϕ0‖2H +

∫ t

0

F (s)

(∫ 1

0

G(x)ϕτ (s, x) dx

)
ϕτ (s, 0) ds. (75)

First of all, we observe that the last two terms on the left hand side of (75)
is nonnegative, due to (56)–(57), while the first term on the right hand side is
bounded thanks to (57). In order to estimate the second term on the right hand
side of (75), we observe that

ϕτ (s, 0) = ϕτ (s, x)−
∫ x

0

∂yϕτ (s, y) dy. (76)

Then, integrating (76) over (0, 1), we have that

|ϕτ (s, 0)| ≤
∫ 1

0

|ϕτ (s, x)| dx+

∫ 1

0

∫ x

0

|∂yϕτ (s, y)| dy dx, (77)

and, using (72), we obtain that

|ϕτ (s, 0)| ≤ ‖ϕτ (s)‖H + ‖∂xϕτ (s)‖H , (78)

and, applying an analogous technique

|ϕτ (s, 1)| ≤ ‖ϕτ (s)‖H + ‖∂xϕτ (s)‖H . (79)

Finally, using (56)–(57) and (78), the last term on the right hand side of (75)
can be estimated as follows:∣∣∣∣∣

∫ t

0

F (s)

(∫ 1

0

G(x)ϕτ (s, x) dx

)
ϕτ (s, 0) ds

∣∣∣∣∣
≤
∫ t

0

|F (s)|‖G‖H‖ϕτ (s)‖H
(
‖ϕτ (s)‖H + ‖∂xϕτ (s)‖H

)
ds

≤ ‖F‖C0([0,T ])‖G‖H
(∫ t

0

‖ϕτ (s)‖2H ds+

∫ t

0

‖ϕτ (s)‖H‖∂xϕτ (s)‖H ds

)
≤ c

∫ t

0

‖ϕτ (s)‖2H ds+
b

2

∫ t

0

∫ 1

0

|∂xϕτ (s, x)|2 dx ds. (80)

Combining (75) with (80), we obtain that

1

2
‖ϕτ (t)‖2H +

b

2

∫ t

0

∫ 1

0

|∂xϕτ (s, x)|2 dx ds+
1

2

∫ t

0

S(s)|ϕτ (s, 1)|2 ds
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+

∫ t

0

∫ 1

0

M(s)|ϕτ (s, x)|2
(

1 + a

(∫ 1

0

ϕτ (s− τ, y) dy

)2
)d

dx ds

+
1

2

∫ t

0

S(s)|ϕτ (s, 0)|2 ds ≤ c

(
1 +

∫ t

0

‖ϕτ (s)‖2V ds

)
, (81)

Applying the Gronwall lemma, we infer that

1

2
‖ϕτ (t)‖2H + b

∫ t

0

∫ 1

0

|∂xϕτ (s, x)|2 dx ds

+
1

2

∫ t

0

S(s)|ϕτ (s, 1)|2 ds+
1

2

∫ t

0

S(s)|ϕτ (s, 0)|2 ds

+

∫ t

0

∫ 1

0

M(s)|ϕτ (s, x)|2
(

1 + a

(∫ 1

0

ϕτ (s− τ, y) dy

)2
)d

dx ds ≤ c, (82)

whence we conclude that

‖ϕτ‖C0([0,T ];H)∩L2(0,T ;V ) ≤ c. (83)

Now, we denote

I(t) = |M(t)|

(
1 + a

(∫ 1

0

ϕτ (t− τ, x) dx

)2
)d
, ‖I‖C0([0,T ]) ≤ c. (84)

From (70), recalling that V ⊆ L∞(0, 1) with continuous embedding, (56)–(57)
and (83)–(84) ensure that, for every v ∈ L2(0, T ;V ),∣∣∣∣∣
∫ T

0

〈∂tϕτ (t), v(t)〉V,V ′ dt

∣∣∣∣∣ ≤ c(‖∂xϕτ‖L2(0,T ;H) + ‖S‖C0([0,T ])‖ϕτ‖L2(0,T ;H)

+‖S‖C0([0,T ])‖ϕτ‖L2(0,T ;V ) + 2‖F‖C0([0,T ])‖G‖H‖ϕτ‖L2(0,T ;H) (85)

+‖I‖C0([0,T ])‖ϕτ‖L2(0,T ;H)

)
‖v‖L2(0,T ;V ) ≤ c,

whence we obtain that

‖∂tϕτ‖L2(0,T ;V ′) = sup
v∈L2(0,T ;V ), ‖v‖L2(0,T ;V )=1

∣∣∣∣∣
∫ T

0

〈∂tϕτ (t), v(t)〉V,V ′ dt

∣∣∣∣∣ ≤ c,
which is equivalent to say that

‖∂tϕτ‖L2(0,T ;V ′) ≤ c, ‖ϕτ‖H1(0,T ;V ′) ≤ c. (86)

24



7.1.3. Passage to the limit as τ ↘ 0

Due to (83) and (86), Simon (1987)[Lemma 8, p. 84] (see also Colturato
(2018), Colli and Colturato (2018)) ensures that there exists a subsequence
τk ↘ 0 such that, for every δ ∈ (0, 1),

ϕτk −→ ϕ strongly in L2(0, T ;H1−δ(0, 1)), (87)

which implies that

ϕτk(·, 0) −→ ϕ(·, 0) strongly in L2(0, T ), (88)

ϕτk(·, 1) −→ ϕ(·, 1) strongly in L2(0, T ). (89)

In particular, due to the properties of the translation function, from (88)–(89)
we infer that

ϕτk(· − τk, ·) −→ ϕ strongly in L2(0, T ;H1−δ(0, 1)). (90)

Then, we can pass to the limit as τ ↘ 0 in (66)–(69) obtaining (59)–(62), whence
we conclude that Problem (P ) admits at least a solution satisfying (58).

7.2. Uniqueness and continuous dependence

Assume that a, b, d, S, M , F and G, are given as in (56)–(56) and let ϕ0,i,
i = 1, 2, be a pair of initial data. Denoting by ϕi, i = 1, 2, the corresponding
solutions of Problem (P ) (59)–(62) we set for brevity

Ji(s) =

(
1 + a

(∫ 1

0

ϕi(s, y) dy

)2
)d
, i = 1, 2. (91)

Then, we write Problem (P ) for both ϕi, i = 1, 2 and take the difference between
the respective equations. Denoting by ϕ := ϕ1 − ϕ2, we obtain that

∂tϕ(t, x) + ∂x

(
S(t)ϕ(t, x)− b∂xϕ(t, x)

)
+M(t)[ϕ1(t, x)J1(s)− ϕ2(t, x)J2(s)] = 0 in QT , (92)(
S(t)ϕ(t, x)− b ∂xϕ(t, x)

)
x=0

= F (t)

∫ 1

0

G(y)ϕ(t, y) dy, (93)(
− b ∂xϕ(t, x)

)
x=1

= 0, (94)

ϕ(0, x) = 0. (95)

We observe that, due to (58), there exists a positive constant C such that∣∣∣∣∣
∫ 1

0

ϕ1(s, x) dx

∣∣∣∣∣+

∣∣∣∣∣
∫ 1

0

ϕ2(s, x) dx

∣∣∣∣∣ ≤ C, for every s ∈ [0, T ]. (96)
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Since the real function R : r 7−→ (1 + ar2)d is Lipschitz continuous in the
interval [−C,C], we infer that

|J1(s)− J2(s)| ≤ L

∣∣∣∣∣
∫ 1

0

ϕ1(s, x) dx−
∫ 1

0

ϕ2(s, x) dx

∣∣∣∣∣
≤ L

∫ 1

0

|ϕ1(s, x)− ϕ2(s, x)| dx

= L

∫ 1

0

|ϕ(s, x)| dx ≤ L‖ϕ(s)‖H , (97)

for every s ∈ [0, T ], where L is the Lipschitz constant of the function R. Testing
(92) by ϕ and integrating over Qt, we obtain that

1

2
‖ϕ(t)‖2H + b

∫
Qt

|∂xϕτ (s, x)|2 dx ds

+
1

2

∫ t

0

S(s)|ϕτ (s, 1)|2 ds+
1

2

∫ t

0

S(s)|ϕτ (s, 0)|2 ds

= −
∫
Qt

M(s)[ϕ1(s, y)J1(s)− ϕ2(s, y)J2(s)]ϕ(s, y) dy ds

+

∫ t

0

F (s)ϕ(s, 0)

(∫ 1

0

G(y)ϕ(s, y) dy

)
ds+

1

2
‖ϕ0,1 − ϕ0,2‖2H . (98)

We observe that the first term on the right hand side of (98) can be rewritten
as

−
∫
Qt

M(s)[ϕ1(s, x)J1(s)− ϕ2(s, x)J2(s)]ϕ(s, x) dx ds

= −
∫
Qt

M(s)[(ϕ1(s, x)− ϕ2(s, x))J1(s) + ϕ2(s, x)(J1(s)− J2(s))]ϕ(s, x) dx ds

= −
∫
Qt

M(s)|ϕ(s, x)|2J1(s) dx ds−
∫
Qt

M(s)ϕ2(s, x)[J1(s)−J2(s)]ϕ(s, x) dx ds.

(99)
Then, moving to the left hand side of (98) the nonnegative term∫

Qt

M(s)|ϕ(s, x)|2J1(s) dx ds,

we have only to estimate the last term of (99) using (56)–(57) and (97), namely

−
∫
Qt

M(s)ϕ2(s, x)(J1(s)− J2(s))ϕ(s, x) dx ds

≤ ‖M‖C0([0,T ])‖ϕ2‖C0([0,T ];H)

∫ t

0

|J1(s)− J2(s)|‖ϕ(s)‖H ds
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≤ L‖M‖C0([0,T ])‖ϕ2‖C0([0,T ];H)

∫ t

0

‖ϕ(s)‖2H ds

≤ c
∫ t

0

‖ϕ(s)‖2H ds. (100)

In order to estimate the second term on the right hand side of (98), we observe
that

ϕ(s, 0) = ϕ(s, x)−
∫ x

0

∂yϕ(s, y) dy. (101)

Integrating (101) over (0, 1), we have that

|ϕ(s, 0)| ≤
∫ 1

0

|ϕ(s, x)| dx+

∫ 1

0

∫ x

0

|∂yϕ(s, y)| dy dx

≤
∫ 1

0

|ϕ(s, x)| dx+

∫ 1

0

∫ 1

0

|∂yϕ(s, y)| dy dx, (102)

whence, using (72), we infer that

|ϕ(s, 0)| ≤ ‖ϕ(s)‖H + ‖∂xϕ(s)‖H . (103)

Consequently, due to (56)–(57) and (103), the last term on the right hand side
of (98) can be estimated as follows:∣∣∣∣∣

∫ t

0

F (s)ϕ(s, 0)

(∫ 1

0

G(x)ϕ(s, x) dx

)
ds

∣∣∣∣∣
≤
∫ t

0

|F (s)|‖G‖H‖ϕ(s)‖H
(
‖ϕ(s)‖H + ‖∂xϕ(s)‖H

)
ds

≤ ‖F‖C0([0,T ])‖G‖H
(∫ t

0

‖ϕ(s)‖2H ds+

∫ t

0

‖ϕ(s)‖H‖∂xϕ(s)‖H ds

)
≤ 1

2
‖ϕ0,1 − ϕ0,2‖2H + c

∫ t

0

‖ϕ(s)‖2H ds+
b

2

∫
Qt

|∂xϕ(s, x)|2 dx ds. (104)

Combining (98) with (100) and (104), we obtain that

1

2
‖ϕ(t)‖2H +

b

2

∫
Qt

|∂xϕτ (s, x)|2 dx ds+
1

2

∫ t

0

S(s)|ϕτ (s, 1)|2 ds

+
1

2

∫ t

0

S(s)|ϕτ (s, 0)|2 ds ≤ c
∫ t

0

‖ϕ(s)‖2H ds. (105)

Applying the Gronwall lemma, we infer that

1

2
‖ϕ(t)‖2H +

b

2

∫
Qt

|∂xϕτ (s, x)|2 dx ds+
1

2

∫ t

0

S(s)|ϕτ (s, 1)|2 ds (106)

+
1

2

∫ t

0

S(s)|ϕτ (s, 0)|2 ds ≤ c‖ϕ0,1 − ϕ0,2‖2H , (107)

whence the continuous dependence estimate (64) is proved. In particular, if
ϕ0,1 = ϕ0,2, then (107) ensures that the solution of Problem (P ) is unique.
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