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Abstract. We study the Γ-convergence of nonconvex vectorial integral functionals whose inte-
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scale-dependent weight functions. We prove that under appropriate uniform integrability con-
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1. Introduction

In this paper we study the effective behaviour of scale-dependent integral functionals with
possibly degenerate integrands. Functionals of this kind typically model the energy of a heteroge-
neous material whose physical properties (elastic, thermal, electrical, etc.) may both deteriorate
and vary significantly from point to point, on a mesoscopic scale.

The energy functionals we consider are of the form

Fk(u) =

∫
A
fk(x,∇u) dx, (1.1)

where A ⊂ Rn is an open, bounded, Lipschitz set, k ∈ N is a parameter related to some material
property (e.g., the size of the microstructure) and u : A → Rm represents a physical variable
(e.g., the elastic deformation of the body).

The degeneracy of the integrands fk : Rn ×Rm×n → [0,+∞) is expressed in terms of growth
and coercivity conditions which can depend both on the parameter k and on the spatial variable
x. These are given by introducing weight functions λk : Rn → [0,+∞) which modulate the
typical superlinear growth in the gradient variable. That is, for every x ∈ Rn, ξ ∈ Rm×n, and
k ∈ N the integrands fk satisfy

αλk(x)(|ξ|p − 1) ≤ fk(x, ξ) ≤ βλk(x)(|ξ|p + 1), (1.2)

where p > 1, and α, β > 0 are constants.
If the weight functions λk are bounded in L∞ uniformly in k, then (1.2) reduces to the

standard growth and coercivity of order p > 1. In this case the limit behaviour of Fk is well
understood and can be described using the languange of Γ-convergence. Namely, if k →∞, the
functionals Fk Γ-converge (up to subsequences), on W 1,p(A;Rm), to an integral functional of
the form

F (u) =

∫
A
f0(x,∇u) dx, u ∈W 1,p(A;Rm), (1.3)
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with f0 satisfying the same (nondegenerate) growth conditions satisfied by fk (see [9]). Moreover,
if εk → 0+ and fk(x, ξ) = f(x/εk, ξ) for some nondegenerate f , then the limit integrand f0 is
x-independent and subsequence-independent both in the periodic [6, 29] and in the stationary
random case [15, 16, 27], and given by a so-called homogenisation formula. As a result, in this
case the whole sequence (Fk) Γ-converges to F .

In this paper we consider sequences of weight functions (λk) which are not bounded in general.
Specifically, for every k ∈ N we assume that

λk, λ
−1/(p−1)
k ∈ L1

loc(Rn), (1.4)

moreover, we additionally require the existence of a constant K ≥ 1 such that for every k ∈ N
there holds (

−
∫
Q
λk dx

)(
−
∫
Q
λ
−1/(p−1)
k dx

)p−1

≤ K, (1.5)

for every cube Q ⊂ Rn. The uniform integrability condition (1.5) is known as Muckenhoupt
condition and the functions satisfying it are referred to as Muckenhoupt Ap(K)-weights [28].

In this case, the growth conditions (1.2) satisfied by fk naturally set the problem in the

parameter-dependent weighted Sobolev space W 1,p
λk

(A;Rm) where, for a given Ap(K)-weight λ
we have

W 1,p
λ (A;Rm) =

{
u ∈W 1,1(A;Rm) :

∫
A
λ|u|p dx+

∫
A
λ|∇u|p dx < +∞

}
.

The limit behaviour of functionals Fk with integrands satisfying (1.2) was studied for the first
time in [10], in the convex, scalar case and under the sole integrability condition (1.4). Assuming
that λk converges weakly to some λ∞ in L1, in [10] the authors proved a Γ-convergence and
integral representation result for the Γ-limit of Fk, on the space of Lipschitz functions. The
latter, though, in general is smaller than the domain of the Γ-limit. Moreover, in the setting
considered in [10] the functionals Fk are not equi-coercive and therefore a convergence result for
the associated minimisation problems cannot be derived from the Γ-convergence analysis.

In order to extend the Γ-convergence result in [10] to the domain of the Γ-limit and to
gain compactness, in [17] the Muckenhoupt condition (1.5) was also required together with the
additional bound

c1 ≤ −
∫
Q0

λk dx ≤ c2, (1.6)

where 0 < c1 ≤ c2 < +∞ and Q0 ⊂ Rn is a given cube. The Muckenhoupt condition (1.5)

guarantees the continuous embedding of W 1,p
λk

(A) in the Sobolev space W 1,1+δ(A), for some δ >

0. Then, a combination of (1.5) and (1.6) ensures that sequences with equi-bounded energy are
bounded in W 1,1+δ(A), and hence precompact in L1(A) (whenever A ⊂ Q0). Therefore, in the
setting considered in [17] the equi-coericiveness of the functionals Fk can be recovered. Moreover,
again thanks to (1.5)-(1.6) a lower bound on the Γ-limit can be established, which shows that

its domain is the weighted Sobolev space W 1,p
λ∞

(A), where λ∞ belongs to a Muckenhoupt class

and is the weak L1-limit of (a subsequence of) λk.
Besides the contributions [10, 17], Γ-convergence and relaxation results for functionals of type

(1.1)-(1.2) defined on weighted Sobolev spaces were also established in [18, 19, 11, 22, 3, 21, 31]
without departing, though, from the convex/monotone operator, scalar setting, with the only
exception of [31]. More specifically, in [31] the authors proved a stochastic homogenisation result
for a sequence of discrete nonconvex, vectorial energy functionals with degenerate integrands.
Under suitable assumptions on the random weights, which are weaker than (1.5) in the scalar case
but not really comparable to (1.5) in the vectorial case, the authors showed that in the stationary
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ergodic case the energies homogenise to a nondegenerate deterministic integral functional. We
observe that the case of homogenisation is somehow special since in this case the limit functional
is always nondegenerate and thus defined on the space W 1,p.

In the present paper we extend the analysis in [17] to the nonconvex, vectorial setting,
without assuming any periodicity or stationarity of the integrands fk. Namely, we assume that
fk satisfies (1.2), together with some mild continuity condition in ξ (cf. (3.3)), and that the
weight functions λk are as in (1.4)-(1.6). Under these assumptions we show the existence of a
subsequence (kh), a limit Muckenhoupt weight λ∞, with λkh ⇀ λ∞ in L1(Q0), and a degenerate
integrand f∞ satisfying

αλ∞(x)
( 1

K
|ξ|p − 1

)
≤ f∞(x, ξ) ≤ βλ∞(x)(|ξ|p + 1), (1.7)

a.e. in Q0 and for every ξ ∈ Rm×n, such that the functionals Fkh Γ-converge, with respect to
the strong L1(A;Rm)-convergence, to the integral functional

F∞(u) =

∫
A
f∞(x,∇u) dx, u ∈W 1,p

λ∞
(A;Rm).

We also show that the Γ-convergence holds true, with the same subsequence (kh), for every open,
bounded, Lipschitz set A ⊂ Rn, with A ⊂⊂ Q0. Moreover, we derive an asymptotic formula
for the limit integrand f∞ which can be expressed as a (double) limit of sequences of scaled
minimisation problems as follows:

f∞(x, ξ) := lim sup
ρ→0+

lim
h→∞

1

ρn
inf

{∫
Qρ(x)

fkh(y,∇u+ ξ) dy : u ∈W 1,p
0,λkh

(Qρ(x);Rm)

}
, (1.8)

where Qρ(x) ⊂ Rn denotes the cube centred in x with side-length ρ > 0, and

W 1,p
0,λkh

(Qρ(x);Rm) = W 1,1
0 (Qρ(x);Rm) ∩W 1,p

λkh
(Qρ(x);Rm).

The proof of this result is carried out in a number of intermediate steps. Namely, we first prove
the Γ-convergence and integral representation result on the space W 1,∞(A;Rm) (W 1,p

λ∞
(A;Rm).

To do so, we use the localisation method of Γ-convergence and adapt the approach in [14, 7] to
our setting to get an integral representation result for functionals with degenerate integrands.
We remark here that the most delicate part in the implementation of the localisation method is
the proof of the subadditivity of the Γ-limit, which requires to combine a fundamental estimate
for the functionals Fk together with an ad hoc vectorial truncation argument, in the same spirit
as, e.g., [8, Lemma 3.5]. We then extend the Γ-convergence and integral representation result

to the limit weighted Sobolev space W 1,p
λ∞

(A;Rm). The latter coincides with the domain of F∞,

thanks to (1.7); hence we get a complete description of the Γ-limit of Fkh . The passage from

W 1,∞(A;Rm) to W 1,p
λ∞

(A;Rm) is performed by resorting to classical approximation argument

(see [1, Theorem II.4]) which exploits the property of the maximal function in relation with the
Muckenhoupt weights. More precisely, we can adapt [17, Theorem 3.1] to the vectorial setting
to show that in the liminf inequality, we can replace a sequence (uk), with uk → u in L1(A;Rm)

and equi-bounded W 1,p
λk

(A;Rm)-norm, with a sequence of Lipschitz functions converging to a

W 1,∞(A;Rm)-function which differs from u on a set with vanishing measure. Eventually, the
asymptotic formula for f∞ is obtained by combining a convergence result for minimisation
problems with prescribed Dirichlet conditions together with a derivation formula for f∞ which
is obtained by extending to the weighted Sobolev setting the method developed in [4, 5].

Finally, the general Γ-convergence analysis is complemented by an application to the case of
stationary random weights and integrands, thus generalising the classical stochastic homogeni-
sation result in [15, 16, 27] to the degenerate setting.
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That is, we specialise our general result to the choice

λk(ω, x) = λ
(
ω,

x

εk

)
, fk(ω, x, ξ) = f

(
ω,

x

εk
, ξ
)
,

where ω belongs to the sample space of a given probability space (Ω,F , P ), λ is a random
Muckenhoupt weight (cf. Assumption 2), and f is a degenerate stationary random integrand (cf.
Definition 8.6). Then, following the same approach as in [16], we combine the deterministic
analysis and the subadditive ergodic Theorem [2, Theorem 2.9] to show that, almost surely, the
random functionals

Fk(ω)(u) =

∫
A
f
(
ω,

x

εk
,∇u

)
dx, u ∈W 1,p

λk
(A;Rm)

Γ-converge to a nondegenerate (spatially) homogeneous random functional

Fhom(ω)(u) =

∫
A
fhom(ω,∇u) dx u ∈W 1,p(A;Rm),

where fhom satisfies standard growth conditions of order p > 1 with random coefficients (cf.
(8.10)) and is given by the following asymptotic cell formula

fhom(ω, ξ) = lim
t→∞

1

tn
inf

{∫
Qt(0)

f(ω, x,∇u+ ξ) dx : u ∈W 1,p
0,λ (Qt(0);Rm)

}
. (1.9)

If, moreover, λ and f are ergodic, we show that fhom is deterministic and given by the expected
value of the right hand side of (1.9). Further, in the ergodic case fhom satisfies the following
deterministic growth and coercivity conditions of order p > 1:

α
(∫

Ω
λ(ω, 0)−1/(p−1) dP

)1−p (
|ξ|p − 1

)
≤ fhom(ξ) ≤ β

(∫
Ω
λ(ω, 0) dP

)
(|ξ|p + 1),

for every ξ ∈ Rm×n.

Outline of the paper. The paper is organised as follows. In Section 2 we recall the notions
of Muckenhoupt classes and weights and of weighted Sobolev spaces. Moreover, we recall here
some well-known related results which will be used throughout. In Section 3 we introduce the
functionals we study and state the main result of this paper, Theorem 3.1. The proof of Theorem
3.1 is then carried out in sections 4-7. Namely, in Section 4 we prove a Γ-convergence and integral
representation result in the space W 1,∞, Theorem 4.1. In Section 5 we establish Theorem 5.2
which extends the results in Theorem 4.1 to the weighted Sobolev space W 1,p

λ∞
, also showing that

the latter coincides with the domain of the Γ-limit. On account of Theorem 5.2, in Section 6
we prove that in this setting Γ-convergence is stable under the addition of Dirichlet boundary
conditions and we derive a convergence result for the associated minimisation problems. In
Section 7 we prove a derivation formula for the integrand of the Γ-limit, Theorem 7.1 (see
also Corollary 7.2). Eventually, in Section 8 we prove a stochastic homogenisation result for
stationary random weights and integrands, Theorem 8.11.

2. Preliminaries

In this section we collect some useful definitions and preliminary results which will be used
throughout.
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2.1. Muckenhoupt classes. We start by recalling the definition of the so-called Muckenhoupt
classes. An introduction to the theory of Muckenhoupt classes can be found in [24].

Definition 2.1. Let p > 1 and K ≥ 1. The Muckenhoupt class Ap(K) is defined as the collection

of all nonnegative functions λ : Rn → [0,+∞), with λ, λ−1/(p−1) ∈ L1
loc(Rn), such that(

−
∫
Q
λ dx

)(
−
∫
Q
λ−1/(p−1) dx

)p−1

≤ K,

for every cube Q ⊂ Rn with faces parallel to the coordinate hyperplanes.
Moreover, we set Ap :=

⋃
K≥1Ap(K).

The elements of the class Ap (resp. Ap(K)) are usually referred to as Ap-weights (resp.
Ap(K)-weights). Simple examples of Ap-weights are radially symmetric functions of the type

λ(x) = |x|γ for − n < γ < n(p− 1).

Further examples can be found, e.g., in [25].
We recall the following “reverse Hölder Inequality” which holds for functions in Ap and whose

proof can be found in [13, Theorem IV].

Theorem 2.2. Let p > 1 and K ≥ 1. Then there exist an exponent σ = σ(K, p, n) > 0 and a
constant c = c(K, p, n) > 0 such that(

−
∫
Q
λ1+σ dx

)1/(1+σ)

≤ c
(
−
∫
Q
λ dx

)
, (2.1)(

−
∫
Q
λ−(1+σ)/(p−1) dx

)1/(1+σ)

≤ c
(
−
∫
Q
λ−1/(p−1) dx

)
, (2.2)

for every cube Q and for every λ ∈ Ap(K).

Remark 2.3. We observe that since λ−1/(p−1) ∈ Ap′(K) with p′ := p/(p − 1), then inequality

(2.2) can be obtained by applying (2.1) to the weight λ−1/(p−1).

In this paper we will deal with sequences of Ap(K)-weights. The following result is a conse-
quence of Theorem 2.2 and its proof can be found in [17, Proposition 4.1].

Proposition 2.4. Let K ≥ 1, p > 1, and let (λk) be a sequence of functions in Ap(K). Let
Q0 ⊂ Rn be a cube and assume that there exist two constants c1, c2 with 0 < c1 ≤ c2 such that

c1 ≤ −
∫
Q0

λk dx ≤ c2, (2.3)

for every k ∈ N. Then there exist a subsequence (λkh) ⊂ (λk), a constant c3 = c3(n), depending

only on n, and functions λ∞ and λ̃∞ in Ap(c
p
3K) such that

λkh ⇀ λ∞ in L1+σ(Q0) (2.4)

and

λ
−1/(p−1)
kh

⇀ λ̃−1/(p−1)
∞ in L1+σ(Q0), (2.5)

for some σ > 0. Moreover there holds

λ̃∞ ≤ λ∞ ≤ Kλ̃∞, (2.6)

a.e. in Q0.
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If (2.3) is replaced by the stronger condition

0 < lim inf
k→∞

−
∫
Q
λk dx, lim sup

k→∞
−
∫
Q
λk dx < +∞ for every cube Q ⊂ Rn,

then (2.4) and (2.5) holds true for every cube Q ⊂ Rn, (2.6) holds a.e. in Rn, and λ∞ ∈ Ap(K).

The equi-integrability estimate below is another immediate consequence of Theorem 2.2.

Proposition 2.5. Let p > 1, K ≥ 1, and let (λk) be a sequence of functions in Ap(K) satisfying
(2.3). Then there exist σ = σ(K, p, n) > 0 and c = c(K, p, n) > 0 such that∫

E
λk dx ≤ c c2|Q0|

(
|E|
|Q0|

)σ/(1+σ)

,

for every measurable set E ⊂ Q0 and every k ∈ N.

Proof. Let σ > 0 and c > 0 be the constants given by Theorem 2.2. By (2.3) we get(
−
∫
Q0

λ1+σ
k dx

)1/(1+σ)

≤ c
(
−
∫
Q0

λk dx

)
≤ c c2,

for every k ∈ N. Therefore the Hölder inequality easily gives∫
E
λk dx ≤ |E|σ/(1+σ)|Q0|1/(1+σ)

(
−
∫
Q0

λ1+σ
k dx

)1/(1+σ)

≤ c c2|E|σ/(1+σ)|Q0|1/(1+σ) = c c2|Q0|
(
|E|
|Q0|

)σ/(1+σ)

.

�

2.2. Weighted Sobolev spaces. In this short subsection we recall the definition and the basic
properties of weighted Sobolev spaces. For a comprehensive treatment of this subject we refer
the reader to the monographs [25, 34]. For further relevant results concerning weighted Sobolev
spaces, we will provide a precise reference to the literature whenever these results are used in
the paper.

Let p > 1, let λ ∈ Ap. In all that follows A ⊂ Rn denotes an open and bounded set with
Lipschitz boundary. Let m ∈ N,m ≥ 1; we define the weighted Lebesgue space

Lpλ(A;Rm) :=

{
u ∈ L1(A;Rm) :

∫
A
λ|u|p dx < +∞

}
;

we recall that Lpλ(A;Rm) equipped with the norm

‖u‖Lpλ(A;Rm) :=

(∫
A
λ|u|p dx

)1/p

is a reflexive Banach space. Moreover, we define the weighted Sobolev space W 1,p
λ (A;Rm) as

W 1,p
λ (A;Rm) :=

{
u ∈W 1,1(A;Rm) ∩ Lpλ(A;Rm) :

∫
A
λ|∇u|p dx < +∞

}
,

the latter is also a reflexive Banach space when endowed with the norm

‖u‖
W 1,p
λ (A;Rm)

:=

(∫
A
λ|u|p dx+

∫
A
λ|∇u|p dx

)1/p

.
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We recall that the embedding of W 1,p
λ (A;Rm) in Lpλ(A;Rm) is compact (see, e.g., [23, Lemma

1]). Furthermore, we have the following continuous embeddings:

L∞(A;Rm) ↪→ Lpλ(A;Rm) ↪→ L1+δ(A;Rm),

W 1,∞(A;Rm) ↪→W 1,p
λ (A;Rm) ↪→W 1,1+δ(A;Rm),

for some δ > 0.
Throughout the paper we will also use the fact that C∞(A;Rm) is dense in W 1,p

λ (A;Rm) (see,
e.g., [34, Corollary 2.1.6]).

The following characterisation of W 1,p
λ (A;Rm) will be useful for our purposes.

Proposition 2.6. Let p > 1, λ ∈ Ap, and let A ⊂ Rn be open, bounded, and with Lipschitz
boundary. Define

Ŵ 1,p
λ (A;Rm) :=

{
u ∈W 1,1(A;Rm) :

∫
A
λ|∇u|p dx < +∞

}
,

then Ŵ 1,p
λ (A;Rm) = W 1,p

λ (A;Rm).

Proof. The inclusion W 1,p
λ (A;Rm) ⊂ Ŵ 1,p

λ (A;Rm) is obvious, therefore we only need to show
that

Ŵ 1,p
λ (A;Rm) ⊂W 1,p

λ (A;Rm). (2.7)

To prove (2.7) we will establish the following Poincaré type Inequality: there exists C > 0 such
that

‖u‖Lpλ(A;Rm) ≤ C
(
‖u‖L1(A;Rm) + ‖∇u‖Lpλ(A;Rm×n)

)
, (2.8)

for every u ∈ C∞(A;Rm).
We will obtain (2.8) arguing by contradiction. Were (2.8) false, then for every j ∈ N there

would exist uj ∈ C∞(A;Rm) such that

‖uj‖Lpλ(A;Rm) > j
(
‖uj‖L1(A;Rm) + ‖∇uj‖Lpλ(A;Rm×n)

)
.

Define the renormalised functions vj ∈ C∞(A;Rm) as

vj :=
uj

‖uj‖Lpλ(A;Rm)

, for every j ∈ N.

Then,

‖vj‖Lpλ(A;Rm) = 1 and ‖vj‖L1(A;Rm) + ‖∇vj‖Lpλ(A;Rm×n) <
1

j
, (2.9)

for every j ∈ N. Hence, in particular, the sequence (vj) is bounded in W 1,p
λ (A;Rm). Therefore

by the compact embedding of W 1,p
λ (A;Rm) in Lpλ(A;Rm), up to subsequences (not relabelled),

vj → v in Lpλ(A;Rm), for some v ∈ Lpλ(A;Rm). Moreover, since the embedding of Lpλ(A;Rm)
in L1(A;Rm) is continuous, we also have vj → v in L1(A;Rm). Therefore (2.9) entails both
‖v‖Lpλ(A;Rm) = 1 and v = 0 a.e. in A and hence a contradiction.

Now let u ∈ Ŵ 1,p
λ (A;Rm); by [11, Proposition 3.5] (see also [12, Theorem 6.1]) there exists

(uj) ⊂ C∞(A;Rm) such that

‖uj − u‖L1(A;Rm) + ‖∇uj −∇u‖Lpλ(A;Rm×n) → 0 as j →∞.

Moreover, in view of (2.8) the sequence (uj) is bounded in W 1,p
λ (A;Rm), therefore again ap-

pealing to the compact embedding of W 1,p
λ (A;Rm) in Lpλ(A;Rm) we deduce that uj → u in

Lpλ(A;Rm) and hence u ∈W 1,p
λ (A;Rm), as desired. �
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Remark 2.7. We notice that by the density of C∞(A;Rm) in W 1,p
λ (A;Rm) the inequality (2.8)

actually holds in the whole space W 1,p
λ (A;Rm). That is, there exists a constant C > 0 such that

‖u‖Lpλ(A;Rm) ≤ C
(
‖u‖L1(A;Rm) + ‖∇u‖Lpλ(A;Rm×n)

)
, (2.10)

for every u ∈W 1,p
λ (A;Rm).

Finally, in this paper we will also consider the space

W 1,p
0,λ (A;Rm) := W 1,1

0 (A;Rm) ∩W 1,p
λ (A;Rm).

We recall that W 1,p
0,λ (A;Rm) agrees with the closure of C∞0 (A;Rm) in W 1,p

λ (A;Rm) (see, e.g., [32,

Theorem 1.4] or [17, Proposition 2.1]).

2.3. Maximal function and measure theory. In this subsection we recall the definition of
maximal function and some of its properties which are useful for our purposes. Moreover, for the
readers’ convenience we also recall some classical result in measure theory which we are going
to employ in the paper.

For the theory of maximal functions we refer to [33].

Let u ∈ L1
loc(Rn), then the Hardy maximal function of u at x is defined as

(Mu)(x) := sup
r>0
−
∫
Qr(x)

|u| dy

where Qr(x) is the cube centred at x, with side length r and sides parallel to the coordinate
planes. The following property will be useful for our purposes: there exists a constant c̃ =
c̃(n) > 0 depending only on n such that

|{x ∈ Rn : (Mu)(x) ≥ l}| ≤ c̃(n)

l
‖u‖L1(Rn), (2.11)

for every u ∈ L1(Rn) and every l > 0.

The following result is proven in [28, Theorem 9].

Theorem 2.8. Let p > 1, K ≥ 1, and let λ ∈ Ap(K). Then there exists a constant c4 =
c4(K, p, n) > 0 such that ∫

Rn
λ|Mu|p dx ≤ c4

∫
Rn
λ|u|p dx,

for every u ∈ L1
loc(Rn).

For the following lemma we refer to [1, Lemma I.11].

Lemma 2.9. Let u ∈ C∞0 (Rn) and let l > 0. Set

H l := {x ∈ Rn : (M |∇u|)(x) < l}.
Then there exists a constant c5 = c5(n) > 0 such that

|u(x)− u(y)| ≤ c5 l|x− y|,

for every x, y ∈ H l.

We recall the following result which can be found in [20].

Lemma 2.10. Let G ⊂ Rn be measurable with |G| < +∞. Let (Eh) be a sequence of measurable
subsets of G such that |Eh| ≥ τ for every h ∈ N and for some τ > 0. Then there exists a
subsequence (Ehj ) ⊂ (Eh) such that

⋂
j∈NEhj 6= ∅.
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Eventually, we state the following technical lemma whose proof can be found in [1, Lemma
I.7].

Lemma 2.11. Let (φh) be a bounded sequence in L1(Rn). Then for every τ > 0 there exist a
measurable set Eτ with |Eτ | < τ , δτ > 0, and a sequence (hτj ) such that for every j ∈ N∫

B
|φhτj | dx < τ,

for every measurable set B such that B ∩ Eτ = ∅ and |B| < δτ .

3. Setting of the problem and statement of the main result

In this section we introduce the functionals we are going to study and state the main result
of the paper.

Assumption 1 (Admissible weights). Let p > 1, K ≥ 1, and let Ap(K) denote the Muckenhoupt
class as in Definition 2.1. A sequence of measurable weight functions λk : Rn → [0,+∞) is
admissible if:

• λk ∈ Ap(K), for every k ∈ N;

• there exists a cube Q0 ⊂ Rn such that for every k ∈ N there holds

c1 ≤ −
∫
Q0

λk dx ≤ c2, (3.1)

for some constants 0 < c1 ≤ c2 < +∞.

Let (λk) be a sequence of weights satisfying Assumption 1; in this paper we consider Borel
integrands fk : Rn × Rm×n → [0,+∞) satisfying the two following conditions:

(1) (degenerate growth conditions) there exist two constants α, β > 0 such that for almost
every x ∈ Rn

αλk(x)(|ξ|p − 1) ≤ fk(x, ξ) ≤ βλk(x)(|ξ|p + 1), (3.2)

for every ξ ∈ Rm×n and every k ∈ N;

(2) (continuity in ξ) there exists L > 0 such that for almost every x ∈ Rn

|fk(x, ξ1)− fk(x, ξ2)| ≤ Lλk(x)(|ξ1|p−1 + |ξ2|p−1 + 1)|ξ1 − ξ2|, (3.3)

for every ξ1, ξ2 ∈ Rm×n, and every k ∈ N.

Let A(Q0) denote the collection of all open subsets of Q0 with Lipschitz boundary. We
consider the sequence of localised integral functionals Fk : W 1,1(Q0;Rm) × A(Q0) −→ [0,+∞)
defined as

Fk(u,A) :=


∫
A
fk(x,∇u) dx if u ∈W 1,p

λk
(A;Rm),

+∞ otherwise.
(3.4)

We endow W 1,1(Q0;Rm) with the strong L1(Q0;Rm)-topology. If not otherwise specified,
throughout the paper the Γ-limits will all be computed with respect to this topology.

The following theorem is the main result of this paper.
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Theorem 3.1. Let Fk be the functionals defined in (3.4). Then there exists a subsequence (Fkh)
such that for every A ∈ A(Q0), A ⊂⊂ Q0, the functionals Fkh(·, A) Γ-converge to the functional
F∞(·, A) with F∞ : W 1,1(Q0;Rm)×A(Q0) −→ [0,+∞] given by

F∞(u,A) :=


∫
A
f∞(x,∇u) dx if u ∈W 1,p

λ∞
(A;Rm),

+∞ otherwise,

where, for some c3 = c3(n) > 0, λ∞ belongs to Ap(c
p
3K) and satisfies

λkh ⇀ λ∞ weakly in L1(Q0).

The integrand f∞ : Q0 × Rm×n → [0,+∞) is a Borel function and for a.e. x ∈ Q0 and every
ξ ∈ Rm×n is given by the following asymptotic formula

f∞(x, ξ) := lim sup
ρ→0+

lim
h→∞

mFkh
(uξ, Qρ(x))

ρn
, (3.5)

where, for every A ∈ A(Q0),

mFkh
(uξ, A) := inf

{
Fkh(u,A) : v ∈W 1,p

0,λkh
(A;Rm) + uξ

}
,

with uξ(x) := ξx.
Moreover, f∞ satisfies the following properties for almost every x ∈ Q0:

(i) for every ξ ∈ Rm×n

αλ∞(x)

(
1

K
|ξ|p − 1

)
≤ f∞(x, ξ) ≤ βλ∞(x)(|ξ|p + 1); (3.6)

(ii) for every ξ1, ξ2 ∈ Rm×n

|f∞(x, ξ1)− f∞(x, ξ2)| ≤ L′λ∞(x)(|ξ1|p−1 + |ξ2|p−1 + 1)|ξ1 − ξ2|, (3.7)

for some L′ > 0.

Remark 3.2. We observe that if we replace (3.1) with the following stronger condition:

0 < lim inf
k→∞

−
∫
Q
λk dx, lim sup

k→∞
−
∫
Q
λk dx < +∞ for every cube Q ⊂ Rn, (3.8)

then Theorem 3.1 holds true without the restriction A ⊂⊂ Q0. Specifically, if (3.8) holds,

then if we define the functionals Fk on W 1,1
loc (Rn;Rm)×A0, where A0 is the collection of open,

bounded, and Lipschitz subsets of Rn, thanks to a diagonal argument, it can be shown that the
functionals Fkh(·, A) Γ-converge with respect to the L1

loc(Rn;Rm)-convergence to F∞(·, A), for
every A ∈ A0; moreover, λ∞ ∈ Ap(K) (cf. Proposition 2.4) and f∞ is defined through (3.5) for
a.e. x ∈ Rn.

We notice that (3.8) holds true in the case of admissible periodic or stationary weights (cf.
Section 8 and Remark 8.10).

The proof of Theorem 3.1 will be broken up in several intermediate results and it will be
carried out in sections 4-7. Namely, in Section 4 we prove that (up to subsequences) the func-
tionals Fk Γ-converge to the integral functional F∞ on the space W 1,∞(Q0;Rm). Moreover, in
this section we also prove that the limit integrand f∞ satisfies the desired growth conditions as
well as the continuity property. By means of an approximation argument, in Section 5 we extend
the Γ-convergence result established in Section 4 to the whole W 1,1(Q0;Rm), also showing that

the domain of F∞ coincides with the “limit” weighted Sobolev space W 1,p
λ∞

(Q0;Rm). Eventually,
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by combining the analysis in Section 6 and Section 7, we derive the asymptotic formula (3.5)
for f∞.

4. Γ-convergence and integral representation in W 1,∞

In this section we show that on W 1,∞(Q0;Rm) the sequence (Fk) Γ-converges (up to subse-
quences) to a limit functional which can be represented in an integral form.

The following theorem is the main result of the present section.

Theorem 4.1 (Γ-convergence in W 1,∞). Let Fk be the functionals defined in (3.4). Then there
exists a subsequence (Fkh) such that for every A ∈ A(Q0) the functionals Fkh(·, A) Γ-converge
on W 1,∞(A;Rm) to the functional F (·, A) with F : W 1,∞(Q0;Rm) × A(Q0) −→ [0,+∞) given
by

F (u,A) =

∫
A
f∞(x,∇u) dx, (4.1)

for some Borel function f∞ : Q0 × Rm×n → [0,+∞). Moreover, the function f∞ satisfies the
following properties for almost every x ∈ Q0:

(i) for every ξ ∈ Rm×n

αλ∞(x)

(
1

K
|ξ|p − 1

)
≤ f∞(x, ξ) ≤ βλ∞(x)(|ξ|p + 1), (4.2)

where λ∞ ∈ Ap(cp3K), for some c3 = c3(n) > 0, and λkh ⇀ λ∞ in L1(Q0);
(ii) for every ξ1, ξ2 ∈ Rm×n

|f∞(x, ξ1)− f∞(x, ξ2)| ≤ L′λ∞(x)(|ξ1|p−1 + |ξ2|p−1 + 1)|ξ1 − ξ2|, (4.3)

for some L′ > 0.

The proof of Theorem 4.1 will be achieved in a number of intermediate steps by means of
the so-called localisation method of Γ-convergence (see, e.g., [7, Chapters 9-11] or [14, Chapters
16-19]).

To this end, we consider the localised Γ-liminf and the Γ-limsup of Fk; i.e., we consider the
functionals F ′, F ′′ : W 1,1(Q0;Rm)×A(Q0) −→ [0,+∞] defined as

F ′(u,A) := Γ- lim inf
k→∞

Fk(u,A), (4.4)

F ′′(u,A) := Γ- lim sup
k→∞

Fk(u,A), (4.5)

for u ∈ W 1,1(Q0;Rm) and A ∈ A(Q0). Then, the aim of this section is to show that, up to
subsequences, for every u ∈W 1,∞(Q0;Rm) and A ∈ A(Q0) we have

F ′(u,A) = F ′′(u,A) = F (u,A),

where F is as in (4.1).

Remark 4.2. We observe that F ′ and F ′′ are lower semicontinuous with respect to the strong
topology of L1(Q0;Rm) [14, Proposition 6.8]. They also inherit some of the properties of the
functionals Fk. Namely, as set functions they are both increasing [14, Proposition 6.7], moreover
F ′ is superadditive on pairwise-disjoint sets [14, Proposition 16.12]; while as functionals they
are both local [14, Proposition 16.15].

The upper bound inequality proven in the following lemma shows that the domain of F ′′

(and hence also the domain of F ′) contains the space W 1,p
λ∞

(Q0;Rm).
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Lemma 4.3. Up to subsequences, there holds

F ′′(u,A) ≤ β
∫
A
λ∞(|∇u|p + 1) dx, (4.6)

for every u ∈W 1,p
λ∞

(Q0;Rm) and A ∈ A(Q0), where λ∞ is as in Proposition 2.4.

Proof. Let (λkh) ⊂ (λk) be the subsequence whose existence is established by Proposition 2.4.
Hence, in particular, λkh ⇀ λ∞ weakly in L1(Q0) and λ∞ ∈ Ap(cp3K), for some c3 = c3(n) > 0.

Let u ∈W 1,∞(Q0;Rm) and let A ∈ A(Q0). Therefore, if F ′′ is as in (4.5) with k replaced by
kh, by (3.2) we readily get

F ′′(u,A) ≤ lim sup
h→∞

Fkh(u,A) ≤ lim
h→∞

β

∫
A
λhk(|∇u|p + 1) dx

≤ β
∫
A
λ∞(|∇u|p + 1) dx, (4.7)

hence (4.6) is proven for every u ∈W 1,∞(Q0;Rm).

Now let u ∈W 1,p
λ∞

(Q0;Rm); then there exists (uj) ⊂ C∞(Q0;Rm) ⊂W 1,∞(Q0;Rm) such that

uj → u in W 1,p
λ∞

(Q0;Rm). Hence thanks to (4.7), to the fact that uj → u in L1(Q0;Rm), and to

the lower semicontinuity of F ′′ with respect to the strong L1(Q0;Rm)-convergence, we obtain

F ′′(u,A) ≤ lim inf
j→∞

F ′′(uj , A) ≤ lim
j→∞

β

∫
A
λ∞(|∇uj |p + 1) dx

= β

∫
A
λ∞(|∇u|p + 1) dx

and thus the claim. �

The following lemma shows that Fk (almost) decreases by smooth truncations.

Lemma 4.4. Let Fk be the functionals defined in (3.4). Let A ∈ A(Q0) and let (uk) ⊂
W 1,1(Q0;Rm) be such that

sup
k∈N

(
Fk(uk, A) + ‖uk‖L1(A;Rm)

)
< +∞ (4.8)

Then for every η > 0, M > 0 and for every k ∈ N there exists a Lipschitz function ϕk : Rm → Rm
with Lipschitz constant less than or equal to 1 satisfying

ϕk(y) =

{
y if |y| ≤ ak,
0 if |y| > bk,

for suitable constants ak, bk > 0 with M ≤ ak < bk, such that

Fk(ϕk(uk), A) ≤ Fk(uk, A) + η,

for every k ∈ N. Moreover, the function ϕk can be chosen in a finite family independent of k.

Proof. The proof of this lemma is classical and follows the line of, e.g., [8, Lemma 3.5] with
minor modifications. However, since we work in a different functional setting, we repeat the
proof here for the readers’ convenience.

Let η > 0 and M > 0 be fixed. Let (aj) be a strictly increasing sequence of positive real
numbers such that for every j ∈ N there exists a Lipschitz function ϕj : Rm → Rm with Lipschitz
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constant less than or equal to 1 satisfying

ϕj(y) =

{
y if |y| ≤ aj ,
0 if |y| > aj+1.

For every k ∈ N and every j ∈ N set wjk := ϕj(uk). We have∫
A
fk(x,∇wjk) dx =

∫
A∩{|uk|≤aj}

fk(x,∇uk) dx+

∫
A∩{|uk|>aj+1}

fk(x, 0) dx

+

∫
A∩{aj<|uk|≤aj+1}

fk(x,∇wjk) dx

≤
∫
A
fk(x,∇uk) dx+ β

∫
A∩{|uk|>aj+1}

λk dx

+β

∫
A∩{aj<|uk|≤aj+1}

λk(|∇uk|p + 1) dx,

where to establish the last inequality we have used the nonnegativity of fk together with (3.2).

Let N ∈ N be arbitrary; we now want to estimate 1/N
∑N

j=1 Fk(w
j
k, A), for every k ∈ N.

To this end we start noticing that ({aj < |uk| ≤ aj+1})j∈N is a family of pairwise-disjoint sets.
Therefore we get

1

N

N∑
j=1

Fk(w
j
k, A) ≤ Fk(uk, A) +

β

N

N∑
j=1

∫
A∩{|uk|>aj+1}

λk dx +
β

N

∫
A
λk(|∇uk|p + 1) dx. (4.9)

In view of (3.1) and (4.8) we can find a constant C > 0 such that

β

∫
A
λk(|∇uk|p + 1) dx ≤ C, (4.10)

for every k ∈ N. Moreover, thanks to Proposition 2.5 there exist c, σ > 0 such that∫
A∩{|uk|>aj+1}

λk dx ≤ c c2|Q0|
(
|A ∩ {|uk| > aj+1}|

|Q0|

)σ/(1+σ)

, (4.11)

for every k ∈ N and every j ∈ 1, . . . , N .
Therefore we define the sequence (aj) recursively by imposing the following condition on a1:

|A ∩ {|uk| > a1}| ≤
(

η

2βc c2

)(1+σ)/σ

|Q0|−σ for every k ∈ N, a1 ≥M, (4.12)

which is clearly possible thanks to the boundedness of (uk) in L1(A;Rm). Eventually, by choosing
N ∈ N in a way such that C/N ≤ η/2, gathering (4.9)-(4.12) we obtain

1

N

N∑
j=1

Fk(w
j
k, A) ≤ Fk(uk, A) + η.

Therefore, for every k ∈ N we can find j(k) ∈ {1, . . . , N} such that

Fk(w
j(k)
k , A) ≤ Fk(uk, A) + η,

hence the proof is accomplished by setting ϕk := ϕj(k). Finally, we notice that N is independent
of k. �
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We now use Lemma 4.4 to show that if u ∈ W 1,∞(Q0;Rm) then for every A ∈ A(Q0) the
value of the Γ-limsup F ′′(u,A) can be recovered along a sequence (wk) which is bounded in
L∞(Q0;Rm) and such that uk → u in Lq(Q0;Rm), for every 1 ≤ q < +∞.

Proposition 4.5. Let Fk be the functionals defined in (3.4) and let u ∈ W 1,∞(Q0;Rm). Then
there exists a sequence (wk) ⊂W 1,1(Q0;Rm) satisfying the following properties:

i. supk ‖uk‖L∞(Q0;Rm) < +∞;

ii. wk → u in Lq(Q0;Rm) for every 1 ≤ q < +∞;

iii. lim supk→∞ Fk(wk, A) = F ′′(u,A), for every A ∈ A(Q0).

Proof. Let u ∈ W 1,∞(Q0;Rm); by [14, Proposition 8.1] there exists (uk) ⊂ W 1,1(Q0;Rm) such
that uk → u in L1(Q0;Rm) and

lim sup
k→∞

Fk(uk, A) = F ′′(u,A) < +∞, (4.13)

where the last inequality follows by Lemma 4.3.
Let η > 0 be fixed: by applying Lemma 4.4 to the sequence (uk) with M := ‖u‖L∞(Q0;Rm) we

obtain a sequence (wk) ⊂ W 1,1(Q0;Rm) ∩ L∞(Q0;Rm) which is bounded in L∞(Q0;Rm), such
that wk → u in Lq(Q0;Rm) for every 1 ≤ q < +∞ and

Fk(wk, A) ≤ Fk(uk, A) + η, (4.14)

for every A ∈ A(Q0). Then, taking the lim sup as k → ∞ in (4.14) and appealing to (4.13) we
obtain

lim sup
k→∞

Fk(wk, A) ≤ F ′′(u,A) + η.

Eventually the claim follows by the definition of F ′′ and the arbitrariness of η. �

The following proposition shows that the functionals Fk satisfy the fundamental estimate,
uniformly in k.

Proposition 4.6 (Fundamental estimate). Let Fk be the functionals defined in (3.4) and let
A ∈ A(Q0). For every η > 0 and for every A′, A′′, B ∈ A(Q0) with A′ ⊂⊂ A′′ ⊂⊂ A there exists

a constant Mη > 0 with the following property: for every k ∈ N and for every u, ũ ∈W 1,p
λk

(A;Rm)

there exists a function ϕ ∈ C∞0 (A′′) with ϕ = 1 in a neighbourhood of A′ and 0 ≤ ϕ ≤ 1 such
that

Fk(ϕu+ (1− ϕ)ũ, A′ ∪B)

≤ (1 + η)
(
Fk(u,A

′′) + Fk(ũ, B)
)

+Mη

(∫
S
λk|u− ũ|p dx

)
+ η,

where S := B ∩ (A′′ \A′).

Proof. Let η > 0, A, A′, A′′, B and S be as in the statement. We start observing that by (3.1)
there exists a constant C > 0 such that ∫

S
λk dx ≤ C (4.15)

for every k ∈ N. Let N ∈ N be such that

1

N
max

{
3p−1β

α
, 3pβC

}
≤ η. (4.16)
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Let A1, . . . , AN+1 be N + 1 open sets satisfying A′ ⊂⊂ A1 ⊂⊂ · · · ⊂⊂ AN+1 ⊂⊂ A′′, and for
i = 1, . . . , N consider the function ϕi ∈ C∞0 (A) such that suppϕi ⊂ Ai+1 and ϕi = 1 on a
neighbourhood of Ai. Finally, define

Mη :=
1

N
3p−1 max

1≤i≤N
‖∇ϕi‖∞.

For every k ∈ N and for i = 1, . . . , N we have

Fk(ϕiu+ (1− ϕi)ũ, A′ ∪B)

= F ∗k (u, (A′′ ∪B) ∩Ai) + F ∗k (ũ, B \Ai+1) + Fk(ϕiu+ (1− ϕi)ũ, B ∩ (Ai+1 \Ai))
≤ Fk(u,A′′) + Fk(ũ, B) + Fk(ϕiu+ (1− ϕi)ũ, B ∩ (Ai+1 \Ai)), (4.17)

where F ∗k denotes the extension of Fk to the Borel subsets of Q0.
Denote by Ik,i the last term in (4.17). For every k ∈ N and for i = 1, . . . , N , using (3.2) we

obtain

Ik,i ≤ β
∫
Si

λk|∇(ϕiu+ (1− ϕi)ũ)|p dx+ β

∫
Si

λk dx

≤ 3p−1β

∫
Si

λk(|∇ϕi|p|u− ũ|p + |∇u|p + |∇ũ|p) dx+ β

∫
Si

λk dx

≤ 3p−1β

∫
Si

λk|∇u|p dx+ 3p−1β

∫
Si

λk|∇ũ|p dx

+NMη

∫
Si

λk|u− ũ|p dx+ β

∫
Si

λk dx

≤ 3p−1β

∫
Si

λk(|∇u|p − 1) dx+ 3p−1β

∫
Si

λk(|∇ũ|p − 1) dx

+NMη

∫
Si

λk|u− ũ|p dx+ 3pβ

∫
Si

λk dx,

where Si := B ∩ (Ai+1 \Ai). Therefore, by the growth condition from below (3.2) on fk we get

Ik,i ≤
3p−1β

α
(Fk(u, Si) + Fk(ũ, Si)) +NMη

∫
Si

λk|u− ũ|p dx+ 3pβ

∫
Si

λk(x) dx,

for every k ∈ N and for i = 1, · · · , N . Hence there exists i0 ∈ {1, · · · , N} such that

Ik,i0 ≤
1

N

N∑
i=1

Ik,i ≤
1

N

3p−1β

α
(Fk(u, S) + Fk(ũ, S))

+Mη

∫
S
λk|u− ũ|p dx+

1

N
3pβ

∫
S
λk dx

for every k ∈ N; thus by (4.15) we get

Ik,i0 ≤
1

N

3p−1β

α

(
Fk(u,A

′′) + Fk(ũ, B)
)

+Mη

∫
S
λk|u− ũ|p dx+

1

N
3pβC.

Eventually, in view of (4.16) and (4.17) the proof is accomplished choosing ϕ := ϕi0 . �

With the help of Proposition 4.5 and Proposition 4.6 we can deduce the following result
which will eventually lead to the inner regularity and subadditivity of the set function F ′′(u, ·),
for every u ∈W 1,∞(Q0;Rm).
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Lemma 4.7. Let F ′′ be as in (4.5). Let u ∈ W 1,∞(Q0;Rm) and let A′, A′′, B ∈ A(Q0) be such
that A′ ⊂⊂ A′′ ⊂⊂ A; then

F ′′(u,A′ ∪B) ≤ F ′′(u,A′′) + F ′′(u,B). (4.18)

Proof. Let u ∈ W 1,∞(Q0;Rm); by Proposition 4.5 there exist (uk) ⊂ W 1,p
λk

(A′′;Rm) and (ũk) ⊂
W 1,p
λk

(B;Rm) which are bounded in L∞(Q0;Rm), converge to u in Lq(Q0;Rm) for every q ≥ 1,
and satisfy

lim sup
k→∞

Fk(uk, A
′′) = F ′′(u,A′′) and lim sup

k→∞
Fk(ũk, B) = F ′′(u,B). (4.19)

Let η > 0 be fixed; then, in view of Proposition 4.6 we can find a constant Mη > 0 and a
sequence (ϕk) of cut-off functions between A′ and A′′ such that

Fk(ϕkuk + (1− ϕk)ũk, A′ ∪B)

≤ (1 + η)
(
Fk(uk, A

′′) + Fk(ũk, B)
)

+Mη

∫
S
λk|uk − ũk|p dx+ η,

where S = B ∩ (A′′ \ A′). Since the sequence ϕkuk + (1− ϕk)ũk converges to u in L1(Q0;Rm),
by (4.19) we obtain

F ′′(u,A′ ∪B) ≤ lim sup
k→∞

Fk(ϕkuk + (1− ϕk)ũk, A′ ∪B)

≤ (1 + η)
(
F ′′(u,A′′) + F ′′(u,B)

)
+Mη lim sup

k→∞

∫
S
λk|uk − ũk|p dx+ η.

Now let σ > 0 be the exponent as in Theorem 2.2, using the Hölder Inequality and recalling
(3.1) we get∫

S
λk|uk − ũk|p dx ≤

(∫
S
λ1+σ
k dx

)1/(1+σ)(∫
S
|uk − ũk|p(1+σ)/σ dx

)σ/(1+σ)

≤ c c2|Q0|1/(1+σ)

(∫
Q0

|uk − ũk|p(1+σ)/σ dx

)σ/(1+σ)

.

Therefore since ‖uk − ũk‖Lq(Q0;Rm) → 0 for every q ≥ 1, we immediately obtain

lim sup
k→∞

∫
S
λk|uk − ũk|p dx = 0.

Hence (4.18) follows by the arbitrariness of η > 0. �

The proof of the following proposition is classical, for this reason we only sketch it here, while
we refer the reader to the monographs [7, 14] for further details.

Proposition 4.8 (Γ-convergence and measure property of the Γ-limit). Let Fk be the functionals
defined in (3.4). Then there exist a subsequence (kh) and a functional F : W 1,∞(Q0;Rm) ×
A(Q0) −→ [0,+∞) such that for every u ∈W 1,∞(Q0;Rm) and every A ∈ A(Q0)

F (u,A) = F ′(u,A) = F ′′(u,A), (4.20)

where F ′ and F ′′ are as in (4.4) and (4.5), respectively, with k replaced by kh.
Moreover, for every u ∈W 1,∞(Q0;Rm) the set function F (u, ·) is the restriction to A(Q0) of

a Radon measure on Q0.
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Proof. Let (kh) be the subsequence whose existence is established by Proposition 2.4. Thanks
to the compactness of Γ-convergence [14, Theorem 8.5], a standard diagonal argument gives the
existence of a further subsequence (not relabelled), such that the corresponding functionals F ′

and F ′′ satisfy

sup{F ′(u,B) : B ∈ A(Q0), B ⊂⊂ A} = sup{F ′′(u,B) : B ∈ A(Q0), B ⊂⊂ A} =: F (u,A),

for every u ∈ W 1,∞(Q0;Rm) and for every A ∈ A(Q0). We notice that the set function F (u, ·)
is inner regular by definition.

Moreover, by virtue of Lemma 4.7 we can reason as in [14, Proposition 18.4] to deduce that
F (u, ·) is subadditive.

We now prove that (4.20), which will ensure that F is the Γ-limit of Fk on W 1,∞(Q0;Rm).
Since by definition of F we have F ≤ F ′ ≤ F ′′, to get (4.20) it suffices to show that

F ′′(u,A) ≤ F (u,A), (4.21)

for every u ∈W 1,∞(Q0;Rm) and A ∈ A(Q0).
To prove (4.21) we consider the localised functional H : W 1,∞(Q0;Rm)×A(Q0) −→ [0,+∞)

defined as

H(u,A) :=

∫
A
λ∞(|∇u|p + 1) dx.

Therefore, by Lemma 4.3 we immediately obtain that F ′′(u,A) ≤ H(u,A), for every u ∈
W 1,∞(Q0;Rm) and A ∈ A(Q0). For every fixed u ∈ W 1,∞(Q0;Rm) the set function H(u, ·)
defines a Radon measure on Q0, hence for every η > 0 fixed there exists a compact set Kη ⊂ A
such that H(u,A \Kη) < η. Let now A′, A′′ ∈ A(Q0) be such that Kη ⊂ A′ ⊂⊂ A′′ ⊂⊂ A and
let B = A \Kη. By (4.18) we have

F ′′(u,A) ≤ F ′′(u,A′′) + F ′′(u,A \Kη).

Then by definition of F we readily obtain

F ′′(u,A) ≤ F (u,A) +H(u,A \Kη) ≤ F (u,A) + η,

thus (4.21) follows by the arbitrariness of η > 0.
Finally, the inner regularity and subadditivity of F (u, ·) together with Remark 4.2 allow us

to apply the De Giorgi-Letta measure Criterion (see e.g., [14, Theorem 14.23]) to deduce that
F (u, ·) is the restriction to A(Q0) of a Radon measure on Q0, and thus to conclude. �

Remark 4.9. We observe that for every A ∈ A(Q0) the functional F (·, A) is invariant under
translations in u. Indeed, for given u ∈W 1,∞(Q0;Rm) and A ∈ A(Q0) let (uk) ⊂W 1,1(Q0;Rm)
be such that uk → u in L1(Q0;Rm) and limk→∞ Fk(uk, A) = F (u,A). Let now s ∈ Rm, then
clearly (uk + s) converges to u+ s in L1(Q0;Rm) and by (4.20)

F (u+ s,A) ≤ lim inf
k→∞

Fk(uk + s,A) = lim
k→∞

Fk(uk, A) = F (u,A),

since Fk is invariant under translations in u. On the other hand, the argument above also gives

F (u,A) = F ((u+ s) + (−s), A) ≤ F (u+ s,A)

and thus the claim.

Theorem 4.10 (Integral representation). Let Fk be the functionals defined in (3.4). Then there
exist a subsequence (Fkh) and a Borel function f∞ : Q0×Rm×n → [0,+∞), satisfying (4.2) and
(4.3), such that for every u ∈W 1,∞(Q0;Rm) and every A ∈ A(Q0) there holds

F (u,A) = Γ- lim
h→∞

Fkh(u,A),
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where F : W 1,∞(Q0;Rm)×A(Q0) −→ [0,+∞) is given by

F (u,A) =

∫
A
f∞(x,∇u) dx. (4.22)

Proof. Proposition 4.8 ensures the existence of a subsequence (Fkh) of (Fk) such that Fkh(u,A)
Γ-converges to a functional F (u,A) for every u ∈ W 1,∞(Q0;Rm) and every A ∈ A(Q0). Then,
it remains to prove that the functional F admits an integral representation as in (4.22).

We will break up the proof of the integral representation into a number of steps.

Step 1. Definition of f∞. Let ξ ∈ Rm×n be fixed and set uξ(x) := ξx. By the measure
property of F established in Proposition 4.8, the set function F (uξ, ·) can be extended to a
Radon measure on Q0. Moreover, thanks to Lemma 4.3, F (uξ, ·) is absolutely continuous with
respect to the Lebesgue measure. For every x ∈ Q0 define

f∞(x, ξ) := lim sup
ρ→0+

F (uξ, Qρ(x))

|Qρ(x)|
,

where Qρ(x) is the cube centred at x, with side length ρ > 0, and sides parallel to the coordinate
planes. Then, f∞ is a Borel function and the Lebesgue Differentiation Theorem guarantees that

F (uξ, A) =

∫
A
f∞(x, ξ) dx,

for every A ∈ A(Q0).
We now show that f∞ satisfies the growth and coercivity conditions as in (4.2). To this end,

we start observing that the growth condition from above readily follows from Lemma 4.3. In
fact, choosing in (4.6) u = uξ, A = Qρ(x), with x Lebesgue point for λ∞, the estimate from
above in (4.2) follows by dividing both sides of (4.6) by |Qρ(x)|, and eventually passing to the
limit as ρ→ 0+.

To derive the growth condition from below on f∞ let u ∈ W 1,1(Q0;Rm) and A ∈ A(Q0) be
fixed. By the Hölder Inequality and by the growth condition from below in (3.2) we get(∫

A
|∇u| dx

)p
≤
(∫

A
λk|∇u|p dx

)(∫
A
λ
−1/(p−1)
k dx

)p−1

=

(∫
A
λk(|∇u|p − 1) dx

)(∫
A
λ
−1/(p−1)
k dx

)p−1

+

(∫
A
λk dx

)(∫
A
λ
−1/(p−1)
k dx

)p−1

≤ 1

α
Fk(u,A)

(∫
A
λ
−1/(p−1)
k dx

)p−1

+

(∫
A
λk dx

)(∫
A
λ
−1/(p−1)
k dx

)p−1

,

therefore the following lower bound

α

(∫
A
λ
−1/(p−1)
k dx

)−(p−1)(∫
A
|∇u| dx

)p
− α

(∫
A
λk dx

)
≤ Fk(u,A), (4.23)

for every k ∈ N. Now let u ∈W 1,∞(Q0;Rm) and let (uh) ⊂W 1,1(Q0;Rm) be such that

uh → u in L1(Q0;Rm) and lim
h→∞

Fkh(uh, A) = F (u,A).

Hence, by the lower semicontinuity of u 7→
∫
A |∇u| dx with respect to the L1(Q0;Rm)-topology

and by Proposition 2.4, evaluating (4.23) in (uh) and passing to the limit as h→∞ we find

α

(∫
A
λ̃−1/(p−1)
∞ dx

)−(p−1)(∫
A
|∇u| dx

)p
− α

(∫
A
λ∞ dx

)
≤ F (u,A), (4.24)
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for every u ∈ W 1,∞(A;Rm) and every A ∈ A(Q0). Now let x ∈ Q0 be a Lebesgue point for

λ∞ and λ̃∞ and choose in (4.24) u = uξ and A = Qρ(x); then, dividing both sides of (4.24) by
|Qρ(x)| and passing to the limit as ρ→ 0+ give

α
(
λ̃∞(x)|ξ|p − λ∞(x)

)
≤ f∞(x, ξ), (4.25)

for a.e. x ∈ Q0 and every ξ ∈ Rm×n. Eventually, (2.6) entails the desired bound from below.

Step 2. Integral representation on piecewise affine functions. Let A ∈ A(Q0) and u ∈
W 1,∞(Q0;Rm) be piecewise affine on A; i.e., there exists a finite family of pairwise disjoint open

sets Aj such that |A \
⋃N
j=1Aj | = 0 and

u(x) =
N∑
j=1

χAj (x)(uξj + zj),

for every x ∈ A with ξj ∈ Rm×n, zj ∈ Rm for j = 1, . . . , N . By Remark 4.9 and Step 1, taking
into account the locality of F , we have

F (u,A) =

N∑
j=1

F (u,Aj) =

N∑
j=1

∫
Aj

f∞(x, ξj) dx =

∫
A
f∞(x,∇u) dx,

that is, the integral representation (4.22) on piecewise affine functions.

Step 3. Convexity properties of f∞. For every A ∈ A(Q0) the functional F (·, A) is lower
semicontinuous on W 1,∞(Q0;Rm) with respect to the strong convergence of L1(Q0;Rm), thus,
in particular, it is lower semicontinuous with respect to the weak∗ W 1,∞(Q0;Rm)-convergence.
Therefore, the function ξ → f∞(x, ξ) is W 1,∞-quasiconvex (and rank-1-convex) for a.e. x ∈ Q0

(see e.g., [7, Proposition 4.3, Corollary 4.12]). Then, it is easy to check that the growth condition
(4.2) together with the convexity property of f∞(x, ·) yield the local Lipschitz continuity in (4.3)
(see e.g., [7, Remark 4.13]).

Step 4. Integral representation. For u ∈W 1,p
λ∞

(Q0;Rm) consider the functional

u 7→
∫
A
f∞(x,∇u) dx. (4.26)

We observe that the local Lipschitz condition (4.3) satisfied by f∞ ensures that, for every A ∈
A(Q0), the functional (4.26) is continuous with respect to the strong W 1,p

λ∞
(A;Rm)-convergence.

Indeed, using Hölder’s Inequality we easily get∫
A
|f∞(x,∇u1)− f∞(x,∇u2)| dx

≤ 3
1
p−1L′

(∫
A
λ∞(|∇u1|p + |∇u2|p + 1) dx

)(p−1)/p(∫
A
λ∞|∇u1 −∇u2|p dx

)1/p

for every u1, u2 ∈ W 1,p
λ∞

(Q0;Rm). Moreover, arguing as in the proof of Lemma 4.7 we can

deduce that (4.26) is also continuous with respect to the strong convergence of W 1,q(Q0;Rm),
for q ≥ p(1 + σ)/σ.

Let u ∈ W 1,∞(Q0;Rm) and A ∈ A(Q0) be given; then there exists a sequence (uj) ⊂
W 1,q(Q0;Rm) strongly converging to u in W 1,q(Q0;Rm) for any q ∈ [1,∞) such that its re-
strictions to A are piecewise affine. Since F is lower semicontinuous with respect to the strong
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topology of L1(Q0;Rm), appealing to Step 2 and to the continuity of (4.26) we then obtain

F (u,A) ≤ lim inf
j→∞

F (uj , A) = lim inf
j→∞

∫
A
f∞(x,∇uj) dx =

∫
A
f∞(x,∇u) dx.

Hence to represent F in an integral form it only remains to prove the opposite inequality. To this

end fix u ∈W 1,∞(Q0;Rm) and consider the functional F̃ : W 1,∞(Q0;Rm)×A(Q0) −→ [0,+∞)
defined as

F̃ (v,A) := F (u+ v,A).

We observe that F̃ satisfies the same properties as F , hence there exists a Carathéodory function
h∞ : Q0 × Rm×n → [0,+∞) such that

F̃ (v,A) ≤
∫
A
h∞(x,∇v) dx,

for every v ∈ W 1,∞(Q0;Rm) and every A ∈ A(Q0). Notice that the equality holds whenever v
is piecewise affine on A.

Let (uj) be the sequence of piecewise affine functions considered above. Then∫
A
h∞(x, 0) dx = F̃ (0, A) = F (u,A) ≤

∫
A
f∞(x,∇u) dx

= lim
j→∞

∫
A
f∞(x,∇uj) dx = lim

j→∞
F (uj , A) = lim

j→∞
F̃ (uj − u,A)

≤ lim
j→∞

∫
A
h∞(x,∇(uj − u)) dx =

∫
A
h∞(x, 0) dx,

hence the equality in (4.22) holds for every u ∈W 1,∞(Q0;Rm) and every A ∈ A(Q0). �

Remark 4.11. From (4.25) it can be seen that actually f∞ satisfies the growth conditions

α
(
λ̃∞(x)|ξ|p − λ∞(x)

)
≤ f∞(x, ξ) ≤ β λ∞(x)

(
|ξ|p + 1

)
,

for a.e. x ∈ Q0 and every ξ ∈ Rm×n, which then reduce to those established in [6, 9, 29] when
λk ≡ 1.

5. Γ-convergence and integral representation in W 1,p
λ∞

Consider now the integral functional F∞ : W 1,1(Q0;Rm)×A(Q0) −→ [0,+∞] defined as

F∞(u,A) :=


∫
A
f∞(x,∇u) dx if u ∈W 1,p

λ∞
(A;Rm),

+∞ otherwise,
(5.1)

with f∞ as in Theorem 4.10.
The purpose of this section is to show that (up to subsequences) there holds

F ′(u,A) = F ′′(u,A) = F∞(u,A), (5.2)

for every u ∈ W 1,1(Q0;Rm) and every A ∈ A(Q0), where F ′ and F ′′ are as in (4.4) and (4.5),
respectively. In other words we will show that, up to subsequences, the functionals Fk defined
in (3.4) Γ-converge on the whole space W 1,1(Q0;Rm) to the functional F∞, whose domain is the

(limit) weighted Sobolev space W 1,p
λ∞

(Q0;Rm).

To do so we will make use of the following approximation result whose proof follows the line
of that of [1, Theorem II.4] (see also [17, Theorem 3.1]).
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Theorem 5.1. Let Fk be the functionals defined in (3.4). Let A ⊂⊂ Q0 be open and with

Lipschitz boundary, let u ∈W 1,1(Q0;Rm) and let (uk) ⊂W 1,p
λk

(A;Rm) be such that

uk → u in L1(A;Rm) and sup
k∈N

∫
A
λk|∇uk|p dx < +∞. (5.3)

Then, for every τ > 0 there exist: βτ > 0 with βτ → 0 as τ → 0+, Lτ > 0 with Lτ → +∞ as
τ → 0+, a sequence (vτk) and a function vτ in W 1,∞(Rn;Rm) with Lipschitz constant c(n)Lτ ,
for some c(n) > 0 depending only on n, such that:

(1) vτk → vτ in L∞(Q0;Rm) as k →∞;

(2) |{x ∈ A : vτ (x) 6= u(x)}| ≤ (m+ 1)τ ;

(3) the following estimate holds for every τ > 0 :

lim inf
k→∞

∫
A
fk(x,∇uk) dx ≥ lim inf

k→∞

∫
Aτ

fk(x,∇vτk) dx− βτ , (5.4)

for some open set Aτ ⊂ A with |A \Aτ | < τ .

Proof. Without loss of generality we can assume that liminf in the left hand side of (5.4) is
actually a limit. Moreover we can also assume that (uk) ⊂ C∞0 (Rn;Rm), supp(uk) ⊂⊂ Q0, and

sup
k∈N

∫
Rn
λk|∇uk|p dx < +∞. (5.5)

Indeed, thanks to (2.10) from (5.3) we have

sup
k∈N
‖uk‖W 1,p

λk
(A;Rm)

< +∞,

then, since A ⊂⊂ Q0, the extension result [34, Theorem 2.1.13] allows us to replace (uk) with a

sequence of functions in W 1,p
λk

(Rn;Rm), whose support is compactly contained in Q0, and such

that (5.5) holds. Moreover, since for fixed k the space C∞0 (Rn;Rm) is dense in W 1,p
λk

(Rn;Rm) (see

e.g., [34, Corollary 2.1.6]), a diagonal argument provides us with a sequence (wk) ⊂ C∞0 (Rn;Rm),
with supp(wk) ⊂⊂ Q0, such that

‖uk − wk‖W 1,p
λk

(Rn;Rm)
<

1

k
. (5.6)

Then, we readily get

sup
k∈N

∫
Rn
λk|∇wk|p dx < +∞, (5.7)

and by the compact embedding of W 1,p
λk

(Q0;Rm) in L1(Q0;Rm), (5.6) also implies that wk → u

in L1(A;Rm).
Further, we observe that uk and wk are close in energy so that once we establish the estimate

(5.4) along (wk), the same estimate will hold true along (uk). In fact (3.3) gives

|Fk(wk, A)− Fk(uk, A)|

≤ 3
1
p−1L

(∫
A
λk(|∇wk|p + |∇uk|p + 1) dx

)(p−1)/p(∫
A
λk|∇wk −∇uk|p dx

)1/p

, (5.8)

hence gathering (5.6)-(5.8) yields

|Fk(wk, A)− Fk(uk, A)| < C

k
,



22 C. D’ONOFRIO AND C.I. ZEPPIERI

for some constant C > 0.
Therefore, in all that follows, with a little abuse of notation, (uk) denotes a sequence in

C∞0 (Rn;Rm), with supp(uk) ⊂⊂ Q0, and such that (5.5) holds.

For k ∈ N and i ∈ {1, . . . ,m}, let u
(i)
k denote the i-th component of the vector-valued function

uk. By applying Theorem 2.8 to |∇u(i)
k | ∈ L

1(Rn) we deduce∫
Rn
λk(M |∇u

(i)
k |)

p dx ≤ c4

∫
Rn
λk|∇u

(i)
k |

p dx, (5.9)

for every k ∈ N, every i = 1, . . . ,m, and for some c4 > 0. Hence by combining (5.5) and (5.9)

it follows that the sequence (λk(M |∇u
(i)
h |)

p) is bounded in L1(Rn), for every i = 1, . . . ,m. Let
now τ > 0, then Lemma 2.11 ensures the existence of a measurable set Eτ , with

|Eτ | < τ, (5.10)

of a constant δτ > 0, and a subsequence (kτj ) such that∫
B
λkτj (M |∇u(i)

kτj
|)p dx < τ,

for every j ∈ N, every i = 1, . . . ,m, and for every measurable set B with B ∩ Eτ = ∅ and
|B| < δτ .

To simplify the notation we drop the dependence of the sequence on j and τ , thus we write∫
B
λk(M |∇u

(i)
k |)

p dx < τ, (5.11)

for every k ∈ N, every i = 1, . . . ,m, and every measurable B with B ∩ Eτ = ∅ and |B| < δτ .
By the Hölder Inequality we deduce(∫
Rn
|∇u(i)

k | dx
)p

=

(∫
Q0

|∇u(i)
k | dx

)p
≤
(∫

Q0

λk|∇u
(i)
k |

p dx

)(∫
Q0

λ
−1/(p−1)
k dx

)p−1

, (5.12)

hence by (3.1), (5.5), and (5.12), since λk belongs to Ap(K) we get(∫
Rn
|∇u(i)

k | dx
)p
≤ CK

c1
, (5.13)

for every k ∈ N, i = 1, . . . ,m, and some C > 0. In its turn (5.13) together with (2.11) provide

us with a constant Lτ ≥ (c̃/τ)(CK/c1)1/p such that for every k ∈ N, and i = 1, . . . ,m

|{x ∈ Rn : (M |∇u(i)
k |)(x) ≥ Lτ}| ≤ min{τ, δτ}. (5.14)

For k ∈ N, and i = 1, . . . ,m define the sets

Hτ
i,k := HLτ

i,k := {x ∈ Rn : (M |∇u(i)
k |)(x) < Lτ}, Hτ

k :=
m⋂
i=1

Hτ
i,k.

Then Lemma 2.9 yields

|u(i)
k (x)− u(i)

k (y)| ≤ c5(n)Lτ |x− y|

for every k ∈ N, i = 1, . . . ,m, and every x, y ∈ Hτ
k . Namely the functions u

(i)
k are Lipschitz

continuous on Hτ
k with Lipschitz constant c5(n)Lτ , for every k ∈ N and every i = 1, . . . ,m.
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Appealing to McShane’s Theorem we can extend u
(i)
k from Hτ

k ∩Q0 to Rn keeping the same

Lipschitz constant c5(n)Lτ . We denote this extension with v
τ,(i)
k and notice that we can assume

that v
τ,(i)
k (x) = 0 if dist(x,Q0) > 1. We then have

v
τ,(i)
k = u

(i)
k , ∇vτ,(i)k = ∇u(i)

k a.e. in Hτ
h ∩Q0

and

‖∇vτ,(i)k ‖L∞(Rn;Rn) ≤ c5(n)Lτ . (5.15)

Now let x′ ∈ Rn be such that dist(x′, Q0) > 1, then

|vτ,(i)k (x)| = |vτ,(i)k (x)− vτ,(i)k (x′)| ≤ c5(n)Lτ (diam(Q0) + 2), (5.16)

for every x ∈ Q0. Hence, gathering (5.15) and (5.16) entails

sup
k
‖vτ,(i)k ‖W 1,∞(Q0) < +∞,

for every i = 1, . . . ,m, and every τ > 0. Therefore, up to subsequences (not relabelled), for
every τ > 0 fixed, we get that in particular

v
τ,(i)
k → vτ,(i) in L∞(Q0)

as k →∞, with

‖∇vτ,(i)‖L∞(Q0;Rn) ≤ c5(n)Lτ ,

for every i = 1, . . . ,m. Finally, set

vτk := (v
τ,(1)
k , . . . , v

τ,(m)
k ), vτ := (vτ,(1), . . . , vτ,(m)).

Now define the set Bτ := {x ∈ A : vτ (x) 6= u(x)}, then it must hold

|Bτ | ≤ (m+ 1)τ. (5.17)

To prove (5.17) we start observing that there exists a subsequence (kj) such that if

E := {x ∈ A : lim
j→∞

ukj (x) = u(x)}

then |A \ E| = 0; hence, as a consequence, |Bτ ∩ E| = |Bτ |. Moreover, since vτk → vτ in
L∞(A;Rm) as k →∞ we have that

lim
k→∞

vτk(x) = vτ (x) (5.18)

for every x ∈ A and hence, in particular, for every x ∈ Bτ .
Assume by contradiction that |Bτ | > (m+ 1)τ , then by (5.14) we obtain

|Bτ ∩ E ∩Hτ
kj
| = |Bτ ∩Hτ

kj
| > τ, (5.19)

for every j ∈ N. Therefore, by (5.19) and Lemma 2.10 there exists (kjh) ⊂ (kj) such that⋂
h∈N

(Bτ ∩ E ∩Hτ
kjh

) 6= ∅.

Thus, if x belongs to the set above by (5.18) we get

vτ (x) = lim
h→∞

vτkjh
(x) = lim

j→∞
ukjh (x) = u(x),

which is a contradiction in view of the definition of Bτ . Therefore (5.17) holds.
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To conclude it only remains to prove the energy estimate (5.4). Let Eτ be as in (5.10); by
the nonnegativity of fk we have∫

A
fk(x,∇uk) dx ≥

∫
(A\Eτ )∩Hτ

k

fk(x,∇vτk) dx

=

∫
(A\Eτ )

fk(x,∇vτk) dx−
∫

(A\Eτ )\Hτ
k

fk(x,∇vτk) dx. (5.20)

By (5.14) we get

|(A \ Eτ ) \Hτ
h | ≤

m∑
i=1

|(A \ Eτ ) \Hτ
i,h| < mmin{τ, δτ}, (5.21)

hence invoking (3.2), (5.15), (5.14), (5.11), (2.3), Proposition 2.5, and (5.21) we obtain∫
(A\Eτ )\Hτ

k

fk(x,∇vτk) dx ≤ β
∫

(A\Eτ )\Hτ
k

λk(|∇vτk |p + 1) dx

≤ βmp−1c5(n)pLpτ

∫
(A\Eτ )\Hτ

k

λk dx+ β

∫
A\Hτ

k

λk dx

≤ βmp−1c5(n)pLpτ

m∑
i=1

∫
(A\Eτ )\Hτ

i,k

λk dx+ βcc2|Q0|
(
|A \Hτ

k |
|Q0|

)σ/(1+σ)

≤ βmp−2c5(n)p
m∑
i=1

∫
(A\Eτ )\Hτ

i,k

λk(M |∇u
(i)
k |)

p dx+ βcc2|Q0|
(
mτ

|Q0|

)σ/(1+σ)

≤ βmp−1c5(n)pτ + ατ , (5.22)

where ατ := βcc2|Q0|
(
mτ
|Q0|

)σ/(1+σ)
; thus ατ → 0, as τ → 0+.

Now let Aτ ⊂ A be an open set containing A \ Eτ and such that∣∣∣∣∣
∫
Aτ

fk(x,∇vτk) dx−
∫
A\Eτ

fk(x,∇vτk) dx

∣∣∣∣∣ < τ. (5.23)

We notice that this choice is always possible thanks to the growth conditions satisfied by fk
(3.2), to (5.15), and in view of Proposition 2.5. Indeed we have∫

Aτ\(A\Eτ )
fk(x,∇vτk) dx ≤ β(mp−1c5(n)pLpτ + 1)

∫
Aτ\(A\Eτ )

λk dx

≤ β(mp−1c5(n)pLpτ + 1)cc2|Q0|
(
|Aτ \ (A \ Eτ )|

|Q0|

)σ/(1+σ)

,

moreover, |A \Aτ | ≤ |Eτ | < τ .
Eventually, by combining (5.20), (5.22), and (5.23) we deduce∫

A
fk(x,∇uk) dx ≥

∫
Aτ

fk(x,∇vτk) dx− ατ − τ(βmp−1c5(n)p + 1),

and hence the claim follows with βτ := ατ + τ(βmp−1c5(n)p + 1). �

We are now in a position to show that, up to subsequences, the functionals Fk Γ-converge to
F∞.
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Theorem 5.2. Let Fk and F∞ be the functionals defined in (3.4) and (5.1), respectively. Then
there exists a subsequence (kh) such that for every u ∈ W 1,1(Q0;Rm) and for every A ∈ A(Q0)
with A ⊂⊂ Q0 there holds

F ′(u,A) = F ′′(u,A) = F∞(u,A), (5.24)

where F ′ and F ′′ are, respectively, as in (4.4) and (4.5) with k replaced by kh.

Proof. In all that follows (kh) denotes the subsequence provided by Theorem 4.10.
We divide the proof into two main steps.

Step 1: Lower bound. In this step we prove that

F ′(u,A) ≥ F∞(u,A), (5.25)

for every u ∈W 1,1(Q0;Rm) and every A ∈ A(Q0) with A ⊂⊂ Q0.

To this end, let u ∈W 1,1(Q0;Rm) and A ∈ A(Q0), A ⊂⊂ Q0 be fixed.

Substep 1.1: u ∈ W 1,p
λ∞

(A;Rm). By [14, Proposition 8.1] there exists (uh) ⊂ W 1,1(Q0;Rm)

with uh → u in L1(Q0;Rm) such that

F ′(u,A) = lim inf
h→∞

Fkh(uh, A). (5.26)

We observe that Lemma 4.3 guarantees that F ′(u,A) < +∞; therefore, (uh) ⊂ W 1,p
λh

(A;Rm)

and (up to possibly passing to a subsequence) by (3.2) we get

sup
h∈N

∫
A
λkh |∇uh|

p dx < +∞.

Now let τ > 0 be fixed and arbitrary; Theorem 5.1 provides us with (βτ ), infinitesimal as τ → 0+,
Aτ ⊂ A, with |A \Aτ | < τ , and (vτh), vτ in W 1,∞(Rn;Rm), such that vτh → vτ in L1(Q0;Rm), as
h→∞. Moreover, by (5.26) and (5.4) we obtain

F ′(u,A) = lim inf
h→∞

∫
A
fkh(x,∇uh) dx

≥ lim inf
h→∞

∫
Aτ

fkh(x,∇vτh) dx− βτ ≥
∫
Aτ

f∞(x,∇vτ ) dx− βτ , (5.27)

where the last inequality follows by Theorem 4.10, since vτ ∈W 1,∞(Q0;Rm).
Now let Bτ := {x ∈ A : vτ (x) 6= u(x)} be as in the proof of Theorem 5.1 and recall that

|Bτ | ≤ (m+ 1)τ. (5.28)

By (5.27) and the nonnegativity of f∞ we have

F ′(u,A) ≥
∫
Aτ\Bτ

f∞(x,∇u) dx− βτ , (5.29)

for every τ > 0. Now, since |A \Aτ | < τ , using (5.28) we get

|A \ (Aτ \Bτ )| ≤ (m+ 2)τ, (5.30)

thus, thanks to (4.2) and (5.30), we can pass to the limit as τ → 0+ in (5.29) and obtain

F ′(u,A) ≥
∫
A
f∞(x,∇u) dx = F∞(u,A), (5.31)

hence the lower bound for u ∈W 1,p
λ∞

(A;Rm).
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Substep 1.2: u /∈ W 1,p
λ∞

(A;Rm). In this case, from (5.1) we have F∞(u,A) = +∞, hence to

conclude we need to show that F ′(u,A) = +∞. Assume by contradiction that

F ′(u,A) < +∞.
If this is the case, we may argue exactly as in Substep 1.1 and get

+∞ > F ′(u,A) ≥
∫
Aτ\Bτ

f∞(x,∇u) dx− βτ .

By the Fatou Lemma, (4.2), and Proposition 2.6 this yields u ∈ W 1,p
λ∞

(A;Rm) and hence a
contradiction.

Step 2. Upper bound. In this step we prove that

F ′′(u,A) ≤ F∞(u,A), (5.32)

for every u ∈W 1,1(Q0;Rm) and every A ∈ A(Q0) with A ⊂⊂ Q0.
To this end, let u ∈ W 1,1(Q0;Rm) and A ∈ A(Q0), A ⊂⊂ Q0 be fixed. We start observing

that by the definition of F∞, if u /∈ W 1,p
λ∞

(A;Rm) then there is nothing to prove. Therefore we

only consider the case u ∈W 1,p
λ∞

(A;Rm).

Since A is Lipschitz, by [34, Theorem 2.1.13] we can find a function ũ ∈ W 1,p
λ∞

(Q0;Rm)

with u = ũ a.e. in A. Then, by density (see e.g., [34, Corollary 2.1.6]) there exists (uj) ⊂
W 1,∞(Q0;Rm) such that uj → ũ in W 1,p

λ∞
(Q0;Rm). Then, by the locality of F ′′ and F∞, the

continuity of F∞ in W 1,p
λ∞

(Q0;Rm), and the L1(Q0;Rm)-lower semicontinuity of F ′′, invoking
Theorem 4.10 we deduce

F∞(u,A) = F∞(ũ, A) = lim
j→∞

F∞(uj , A)

= lim inf
j→∞

F ′′(uj , A) ≥ F ′′(ũ, A) = F ′′(u,A),

thus the upper bound.
Eventually (5.24) follows by gathering (5.25) and (5.32). �

6. Convergence of minimisation problems

In this section we modify the domain of the functionals Fk by prescribing boundary conditions
of Dirichlet type. We then study the Γ-convergence of the corresponding functionals and prove
a convergence result for the associated minimisation problems.

We start by proving a preliminary energy bound.

Proposition 6.1. Let Fk be the functionals defined in (3.4). Then there exist an exponent δ > 0
and a constant C > 0 such that(∫

A
|∇u|1+δ dx

)p/(1+δ)

≤ C
(
Fk(u,A) + 1

)
, (6.1)

for every A ∈ A(Q0), every u ∈W 1,p
λk

(A;Rm), and every k ∈ N.

Proof. By Theorem 2.2 we can deduce the existence of an exponent σ > 0 and a constant c > 0
such that (

−
∫
Q
λ
−(1+σ)/(p−1)
k dx

)1/(1+σ)

≤ c
(
−
∫
Q
λ
−1/(p−1)
k dx

)
, (6.2)

for every cube Q and for every k ∈ N.
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Now let A ∈ A(Q0) and u ∈ W 1,p
λk

(A;Rm) be arbitrary, and let δ > 0 to be chosen later. By
the Hölder Inequality we have∫

A
|∇u|1+δ dx ≤

(∫
A
λk|∇u|p dx

)(1+δ)/p(∫
A
λ
−(1+δ)/(p−1−δ)
k dx

)(p−1−δ)/p
.

For δ := (p− 1)σ/(p+ σ) it is immediate to check that

1 + δ

p− 1− δ
=

1 + σ

p− 1
; (6.3)

hence by (6.2) we readily get ∫
A
|∇u|1+δ dx

≤ c(p−1−δ)(1+σ)/p|Q0|(p−1−δ)/p
(∫

A
λk|∇u|p dx

)(1+δ)/p(
−
∫
Q0

λ
−1/(p−1)
k dx

)(p−1−δ)(1+σ)/p

.

Moreover, since λk belongs to Ap(K), by (3.1) we also deduce that(
−
∫
Q0

λ
−1/(p−1)
k dx

)p−1

≤ K

c1

and therefore∫
A
|∇u|1+δ dx ≤ c(p−1−δ)(1+σ)/p|Q0|(p−1−δ)/p

(
K

c1

)(p−1−δ)(1+σ)/p(p−1)(∫
A
λk|∇u|p dx

)(1+δ)/p

.

Eventually, gathering (3.1), (3.2), and (6.3) gives(∫
A
|∇u|1+δ dx

)p/(1+δ)

≤ cp−1|Q0|(p−1)/(1+σ)

(
K

c1

)∫
A
λk(x)(|∇u|p − 1) dx+ cp−1|Q0|(p−1)/(1+σ)

(
K

c1

)∫
A
λk(x) dx

≤ cp−1|Q0|(p−1)/(1+σ)

(
K

c1α

)
Fk(u,A) + cp−1|Q0|(p−1)/(1+σ)

(
K

c1

)
c2|Q0|,

for every k ∈ N. Hence (6.1) immediately follows by choosing C := max{C1, C2} with

C1 := cp−1|Q0|(p−1)/(1+σ)

(
K

c1α

)
and C2 := αc2|Q0|C1.

�

Let Fk be functionals defined in (3.4). We consider Fψk : W 1,1(Q0;Rm)×A(Q0) −→ [0,+∞]
given by

Fψk (u,A) :=

{
Fk(u,A) if u ∈W 1,p

0,λk
(A;Rm) + ψ,

+∞ otherwise,
(6.4)

with ψ ∈W 1,∞(Q0;Rm).

We are now in a position to prove a Γ-convergence result for the functionals Fψk .

Theorem 6.2 (Γ-convergence with boundary data). Let Fψk be the functionals defined in (6.4).
Then there exists a subsequence (kh) such that for every A ∈ A(Q0), A ⊂⊂ Q0

Fψ∞(·, A) = Γ- lim
h→∞

Fψkh(·, A),
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where Fψ∞ : W 1,1(Q0;Rm)×A(Q0) −→ [0,+∞] is given by

Fψ∞(u,A) :=

{
F∞(u,A) if u ∈W 1,p

0,λ∞
(A;Rm) + ψ,

+∞ otherwise,
(6.5)

with F∞ as in (5.1).

Proof. Let u ∈ W 1,1(Q0;Rm) and A ∈ A(Q0), with A ⊂⊂ Q0 be fixed and let (kh) be the
subsequence whose existence is guaranteed by Theorem 5.2.

We divide the proof into two main steps.

Step 1: Lower bound. Let (uh) ⊂ W 1,1(Q0;Rm) be such that uh → u in L1(Q0;Rm). In this
step we want to show that

lim inf
h→∞

Fψkh(uh, A) ≥ Fψ∞(u,A). (6.6)

We notice that we can always assume that

lim inf
h→∞

Fψkh(uh, A) < +∞, (6.7)

otherwise there is nothing to prove. Moreover, without loss of generality, we may also assume

that the liminf in (6.7) is actually a limit. Then, by the definition of Fψkh we have that (uh) ⊂
W 1,p

0,λkh
(A;Rm) + ψ; while by Theorem 5.2 we get that u ∈W 1,p

λ∞
(A;Rm) and

F∞(u,A) ≤ lim inf
h→∞

Fkh(uh, A) = lim inf
h→∞

Fψkh(uh, A).

Since W 1,p
0,λ∞

(A;Rm) = W 1,1
0 (A;Rm) ∩W 1,p

λ∞
(A;Rm), to conclude it is enough to show that u

belongs to W 1,1
0 (A;Rm) + ψ.

To this end, we start observing that thanks to (6.7), Proposition 6.1 yields the existence of
an exponent δ > 0 and of a constant C > 0 such that∫

A
|∇uh|1+δ dx ≤ C,

for every h ∈ N. Then, by Poincaré’s Inequality the sequence (uh) is bounded in W 1,1+δ(A;Rm).
This readily implies that, up to subsequences, uh ⇀ u in W 1,1+δ(A;Rm). Since (uh) ⊂
W 1,1+δ

0 (A;Rm) +ψ and this space is weakly closed, we immediately get u ∈W 1,1+δ
0 (A;Rm) +ψ,

and therefore the claim.

Step 2: Upper bound. We start by considering the case u ∈ C∞0 (A;Rm) + ψ.

By Proposition 4.5 and Theorem 5.2 there exists a sequence (uh) ⊂ W 1,p
λkh

(A;Rm) such that

uh → u in Lq(Q0;Rm) for every 1 ≤ q < +∞ and

lim sup
h→∞

Fkh(uh, A) ≤ F∞(u,A) = Fψ∞(u,A). (6.8)

Starting from uh we now want to construct a recovery sequence which also satisfies the boundary
condition. To this purpose let η > 0 be fixed. By the equi-integrability of the sequence (λkh)
(cf. Proposition 2.5) there exists a compact set Kη ⊂ A such that∫

A\Kη
λkh |∇u|

p dx ≤ ‖∇u‖p
L∞(A;Rm×n)

∫
A\Kη

λkh dx < ‖∇u‖
p
L∞(A;Rm×n)

η, (6.9)

for every h ∈ N.
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Choose A′, A′′ ∈ A(Q0) such that Kη ⊂ A′ ⊂⊂ A′′ ⊂⊂ A. Then Proposition 4.6 ensures the
existence of a positive constant Mη and a sequence (ϕh) of cut-off functions between A′ and A′′

such that

Fkh(ϕhuh + (1− ϕh)u,A)

≤ (1 + η)
(
Fkh(uh, A

′′) + Fkh(u,A \Kη)
)

+Mη

∫
A
λkh |uh − u|

p dx+ η. (6.10)

Set wh := ϕhuh + (1 − ϕh)u; then by definition (wh) ⊂ W 1,p
0,λkh

(A;Rm) + ψ and wh → u in

Lq(Q0;Rm) for every 1 ≤ q < +∞. Moreover by (6.10) and (3.2) we get

Fkh(wh, A) ≤ (1 + η)Fkh(uh, A)

+(1 + η)β

∫
A\Kη

λkh(|∇u|p + 1) dx+Mη

∫
A
λkh |uh − u|

p dx+ η. (6.11)

Hence, by (6.8), (6.9), and (6.11) we have

Γ- lim sup
h→∞

Fψkh(u,A) ≤ lim sup
h→∞

Fψkh(wh, A)

≤ (1 + η) lim sup
h→∞

Fkh(uh, A) + (1 + η)β(‖∇u‖p
L∞(A;Rm×n)

+ 1)η + η

≤ (1 + η)Fψ∞(u,A) + (1 + η)β(‖∇u‖p
L∞(A;Rm×n)

+ 1)η + η.

Therefore by the arbitrariness of η > 0 we conclude that

Γ- lim sup
h→∞

Fψkh(u,A) ≤ Fψ∞(u,A), (6.12)

for every u ∈ C∞0 (A;Rm) + ψ.

Now let u ∈W 1,p
0,λ∞

(A;Rm)+ψ. We extend u to ψ outside A; we clearly have that the extended

function (still denoted by u) belongs to W 1,p
0,λ∞

(Q0;Rm) + ψ. Now let (uj) ⊂ C∞0 (Q0;Rm) be

such that uj → u in W 1,p
λ∞

(Q0;Rm), hence, in particular, uj → u strongly in L1(Q0;Rm). By

the W 1,p
λ∞

(Q0;Rm)-continuity of Fψ∞, by (6.12), and by the lower semicontinuity of the Γ-limsup

with respect to the strong topology of L1(Q0;Rm) we get

Fψ∞(u,A) = lim
j→∞

Fψ∞(uj , A) ≥ lim
j→∞

Γ- lim sup
h→∞

Fψkh(uj , A) ≥ Γ- lim sup
h→∞

Fψkh(u,A),

for every u ∈W 1,p
0,λ∞

(A;Rm) + ψ, and therefore the upper bound. �

The following result shows that the functionals Fψk are equi-coercive with respect to the
strong L1(Q0;Rm)-topology.

Proposition 6.3 (Equi-coerciveness). Let Fψk be functionals defined in (6.4), let A ∈ A(Q0),
A ⊂⊂ Q0, and let (uk) ⊂W 1,1(A;Rm) be such that

sup
k∈N

Fψk (uk, A) < +∞. (6.13)

Then there exists a subsequence (ukh) ⊂ (uk) and an exponent δ > 0 such that

ukh ⇀ u weakly in W 1,1+δ(A;Rm),

with u ∈ W 1,p
0,λ∞

(A;Rm) + ψ. Moreover, if we extend ukh and u to Q0 by setting ukh := ψ and

u := ψ in Q0 \A, respectively, then ukh → u in L1(Q0;Rm).
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Proof. By (6.13) and by (6.4) we have uk ∈ W 1,p
0,λk

(A;Rm) + ψ, for every k ∈ N. Then, arguing

exactly as in the proof of Theorem 6.2 we may deduce the existence of a subsequence (ukh) ⊂ (uk)

which weakly converges in W 1,1+δ(A;Rm) to a function u ∈W 1,1
0 (A;Rm) +ψ. Furthermore, by

the compact embedding of W 1,1+δ(A;Rm) in L1,1+δ(A;Rm) we have that, in particular, ukh → u
in L1(A;Rm). Now extend ukh and u by setting ukh := ψ, u := ψ in Q0 \ A. Then, clearly
ukh → u in L1(Q0;Rm). Hence by Theorem 6.2 and by (6.13) there holds

Fψ∞(u,A) ≤ lim inf
h→∞

Fψkh(ukh , A) < +∞,

thus by (6.5) we get u ∈W 1,p
0,λ∞

(A;Rm) + ψ. �

Thanks to the fundamental property of Γ-convergence, by combining Theorem 6.2 and Propo-
sition 6.3 we obtain the following convergence result for the associated minimisation problems.

Theorem 6.4. Let A ⊂ A(Q0) with A ⊂⊂ Q0. Let fk be functions satisfying (3.2) and (3.3)
and set

Mk := inf

{∫
A
fk(x,∇u) dx : u ∈W 1,p

0,λk
(A;Rm) + ψ

}
.

Let (uk) ⊂W 1,p
0,λk

(A;Rm) + ψ be such that

lim
k→∞

(Fψk (uk, A)−Mk) = 0.

Then, up to subsequences (not relabelled), uk → u∞ in L1(A;Rm) with u∞ solution to

M∞ := min

{∫
A
f∞(x,∇u) dx : u ∈W 1,p

0,λ∞
(A;Rm) + ψ

}
,

Moreover, we have Mk →M∞, as k → +∞.

7. Asymptotic formula for f∞

In this section we derive an asymptotic formula for the integrand of the Γ-limit, f∞. This
formula will be particularly useful when proving the homogenisation result in Section 8.

In all that follows F∞ : W 1,1(Q0;Rm)×A(Q0) −→ [0,+∞] denotes the Γ-limit of (Fkh) where
(kh) as in Theorem 5.2. That is, F∞ coincides with the integral functional

F∞(u,A) =

∫
A
f∞(x,∇u) dx,

for every u ∈W 1,p
λ∞

(Q0;Rm), where for a.e. x ∈ Q0 and for every ξ ∈ Rm×n

f∞(x, ξ) = lim sup
ρ→0+

F∞(uξ, Qρ(x))

|Qρ(x)|
; (7.1)

moreover, f∞ satisfies (4.2) and (4.3) (cf. Theorem 4.1). We also recall that, being F∞ a Γ-limit,
it is lower semicontinuous with respect to the strong L1(Q0;Rm)-convergence.

The following theorem is the main result of this section.

Theorem 7.1. For almost every x ∈ Q0 and every ξ ∈ Rm×n there holds

f∞(x, ξ) := lim sup
ρ→0+

mF∞(uξ, Qρ(x))

ρn
, (7.2)
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where, for every A ∈ A(Q0),

mF∞(uξ, A) := min
{
F∞(v,A) : v ∈W 1,p

0,λ∞
(A;Rm) + uξ

}
.

The proof of Theorem 7.1 will be achieved by combining Lemma 7.3, Lemma 7.4, and Lemma
7.5 below, by following the same strategy as in [4, Section 3] (see also [5, Section 2.2]).

As an immediate corollary of Theorem 6.4 and Theorem 7.1 we also obtain the following
asymptotic formula for f∞.

Corollary 7.2 (Asymptotic formula for f∞). For almost every x ∈ Q0 and every ξ ∈ Rm×n
there holds

f∞(x, ξ) := lim sup
ρ→0+

lim
h→∞

mFkh
(uξ, Qρ(x))

ρn
, (7.3)

where, for every A ∈ A(Q0),

mFkh
(uξ, A) := inf

{
Fkh(v,A) : v ∈W 1,p

0,λkh
(A;Rm) + uξ

}
.

We now turn to the proof of Theorem 7.1; to this end we need to introduce the following
notation. Set A∗ := {Qρ(x) : x ∈ Q0, ρ > 0} and let δ > 0. For A ∈ A(Q0) define

mδ
F∞(uξ, A) := inf

{ ∞∑
i=1

mF∞(uξ, Qi) : Qi ∈ A∗, Qi ∩Qj = ∅, diam(Qi) < δ, |A \ ∪∞i=1Qi| = 0

}
.

We notice that mδ
F∞

is decreasing in δ; hence for every A ∈ A(Q0) we can consider

m∗F∞(uξ, A) := lim
δ→0+

mδ
F∞(uξ, A). (7.4)

We start by proving the following technical lemma which is an adaptation of [4, Lemma 3.3] to
the setting of weighted Sobolev spaces.

Lemma 7.3. Let A ∈ A(Q0), A ⊂⊂ Q0; there holds

F∞(uξ, A) = m∗F∞(uξ, A).

Proof. We observe that the inequality

F∞(uξ, A) ≥ m∗F∞(uξ, A) (7.5)

is an immediate consequence of the definition of m∗F∞ . Indeed, let δ > 0 be fixed and let (Qi)

be an admissible sequence in the sense of the definition of mδ
F∞

(uξ, A), then

mδ
F∞(uξ, A) ≤

∞∑
i=1

mF∞(uξ, Qi) ≤
∞∑
i=1

F∞(uξ, Qi) = F∞(uξ, A),

thus (7.5) follows by taking the limit as δ → 0+.
We now prove the converse inequality; i.e.,

F∞(uξ, A) ≤ m∗F∞(uξ, A). (7.6)

To this end, let δ > 0 be fixed and let (Qδi ) be an admissible sequence in the definition of
mδ
F∞

(uξ, A) such that

∞∑
i=1

mF∞(uξ, Q
δ
i ) ≤ mδ

F∞(uξ, A) + δ. (7.7)
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By definition of mF∞ , for every i ∈ N we can choose vδi ∈W
1,p
0,λ∞

(Qδi ;Rm) + uξ such that

F∞(vδi , Q
δ
i ) ≤ mF∞(uξ, Q

δ
i ) + δ|Qδi |. (7.8)

Set

vδ :=
∞∑
i=1

vδi χQδi
+ uξχQ0\∪∞i=1Q

δ
i
;

we claim that vδ ∈W 1,p
λ∞

(Q0;Rm). To prove the claim define

vδ,N :=

N∑
i=1

vδi χQδi
+ uξχQ0\∪Ni=1Q

δ
i
,

clearly vδ,N ∈W 1,p
λ∞

(Q0;Rm) and vδ,N → vδ a.e. in Q0, as N →∞. Since vδi ∈W
1,p
0,λ∞

(Qδi ;Rm) +

uξ for every i = 1, . . . , N , by the Poincaré Inequality in weighted Sobolev spaces (see e.g., [23,
Corollary 1]) we have

‖vδ,N − uξ‖pW 1,p
λ∞ (Q0;Rm)

=
N∑
i=1

‖vδi − uξ‖
p

W 1,p
λ∞ (Qδi ;Rm)

≤ C(δ, p)
N∑
i=1

‖∇vδi − ξ‖
p

Lpλ∞ (Qδi ;Rm×n)
,

for some C(δ, p) > 0. By (4.2), (7.7), and (7.8) we get

‖vδ,N − uξ‖pW 1,p
λ∞ (Q0;Rm)

≤ C(δ, p)

(
K

N∑
i=1

∫
Qδi

λ∞

(
1

K
|∇vδi |p − 1

)
dx+ (K + |ξ|p)

N∑
i=1

∫
Qδi

λ∞ dx

)

≤ C(δ, p)

(
K

α

∞∑
i=1

F∞(vδi , Q
δ
i ) + (K + |ξ|p)‖λ∞‖L1(A)

)
≤ C(δ, p,K, α)

(
mδ
F∞(uξ, A) + δ + δ|A|+ (1 + |ξ|p)‖λ∞‖L1(A)

)
.

Hence, for δ > 0 fixed, the sequence (vδ,N ) is bounded in W 1,p
λ∞

(Q0;Rm), uniformly in N . Then,

by [25, Theorem 1.32] vδ belongs to W 1,p
λ∞

(Q0;Rm) and the claim is proven. Moreover, we have

F∞(vδ, A \ ∪∞i=1Q
δ
i ) = 0; (7.9)

indeed, by (4.2)

F∞(vδ, A \ ∪∞i=1Q
δ
i ) ≤ β(|ξ|p + 1)

∫
A\∪∞i=1Q

δ
i

λ∞ dx = 0

since λ∞ ∈ L1(Q0) and |A \ ∪∞i=1Q
δ
i | = 0. By combining (7.7)-(7.9) we deduce that

F∞(vδ, A) =

∞∑
i=1

F∞(vδi , Q
δ
i ) + F∞(vδ, A \ ∪∞i=1Q

δ
i ) ≤

∞∑
i=1

mF∞(uξ, Q
δ
i ) + δ

∞∑
i=1

|Qδi |

≤ mδ
F∞(uξ, A) + δ + δ|A|. (7.10)

We now claim that vδ → uξ in L1(Q0;Rm). If so, by virtue of the lower semicontinuity of F∞
with respect to the strong L1(Q0;Rm)-convergence, passing to the limit as δ → 0+ in (7.10)
would give

F∞(uξ, A) ≤ lim inf
δ→0+

F∞(vδ, A) ≤ lim
δ→0+

mδ
F∞(uξ, A) = m∗F∞(uξ, A)
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and therefore (7.6). Hence, to conclude the proof it only remains to show that vδ → uξ
in L1(Q0;Rm). Since, in particular, vδi ∈ W 1,1

0 (Qδi ;Rm) + uξ, by the Poincaré Inequality in
W 1,1(Qi;Rm) there exists a constant C > 0 such that

‖vδ − uξ‖L1(Q0;Rm) = ‖vδ − uξ‖L1(A;Rm) =
∞∑
i=1

‖vδi − uξ‖L1(Qδi ;Rm)

≤ Cδ
∞∑
i=1

‖∇vδi − ξ‖L1(Qδi ;Rm×n). (7.11)

Moreover, arguing similarly as above, by (4.2), (7.7), and (7.8) we deduce
∞∑
i=1

‖∇vδi − ξ‖
p

Lpλ∞ (Qδi ;Rm×n)
≤ K

α

∞∑
i=1

F∞(vδi , Q
δ
i ) + (K + |ξ|p)‖λ∞‖L1(A)

≤ mδ
F∞(uξ, A) + δ + δ|A|+ (1 + |ξ|p)‖λ∞‖L1(A). (7.12)

Therefore, gathering (7.4), (7.11) and (7.12) gives the desired convergence and completes the
proof. �

We also need the following lemma.

Lemma 7.4. Let A ∈ A(Q0), δ > 0 and define Aδ := {x ∈ A : dist(x, ∂A) > δ}. Then

lim
δ→0+

mF∞(uξ, Aδ) = mF∞(uξ, A).

Proof. Let δ, η > 0. By the definition of mF∞ , we can choose v ∈W 1,p
0,λ∞

(Aδ;Rm) + uξ such that

F∞(v,Aδ) ≤ mF∞(uξ, Aδ) + η. (7.13)

Set

w =

{
v in Aδ,

uξ in Q0 \Aδ,

clearly w ∈W 1,p
0,λ∞

(A;Rm) + uξ. Using (4.2) and (7.13) we have

mF∞(uξ, A) ≤ F∞(w,A) = F∞(v,Aδ) + F∞(uξ, A \Aδ)

≤ F∞(v,Aδ) + β(|ξ|p + 1)

∫
A\Aδ

λ∞ dx

≤ mF∞(uξ, Aδ) + η + β(|ξ|p + 1)

∫
A\Aδ

λ∞ dx.

Letting η → 0+ we conclude that

mF∞(uξ, A) ≤ mF∞(uξ, Aδ) + β(|ξ|p + 1)

∫
A\Aδ

λ∞ dx,

and therefore

mF∞(uξ, A) ≤ lim inf
δ→0+

mF∞(uξ, Aδ),

since λ∞ ∈ L1(A).

Conversely, let η > 0 and choose v ∈W 1,p
0,λ∞

(A;Rm) + uξ such that

F∞(v,A) ≤ mF∞(uξ, A) + η. (7.14)
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Let (vj) ⊂ C∞0 (A;Rm) + uξ be such that vj → v in W 1,p
λ∞

(A;Rm). We can find δ0 > 0 small

enough so that (vj) ⊂ C∞0 (Aδ;Rm) + uξ for every 0 < δ < δ0, hence

mF∞(uξ, Aδ) ≤ F∞(vj , Aδ) (7.15)

for every j ∈ N. By the continuity of F∞(·, A) with respect to the strong convergence of

W 1,p
λ∞

(A;Rm), (7.14) and (7.15) we deduce that

mF∞(uξ, Aδ) ≤ lim
j→∞

F∞(vj , Aδ) = F∞(v,Aδ) ≤ F∞(v,A) ≤ mF∞(uξ, A) + η. (7.16)

Letting first δ → 0+ and then η → 0+ we eventually get

lim sup
δ→0+

mF∞(uξ, Aδ) ≤ mF∞(uξ, A).

�

Eventually, we are in a position to prove the following lemma which, in its turn, yields the
desired derivation formula (7.2) (cf. (7.1)).

Lemma 7.5. For a.e. x ∈ Q0 there holds

lim sup
ρ→0+

F∞(uξ, Qρ(x))

|Qρ(x0)|
= lim sup

ρ→0+

mF∞(uξ, Qρ(x))

|Qρ(x)|
.

Proof. The proof follows arguing exactly as in [4, Lemma 3.5], now using Lemma 7.3 and Lemma
7.4. �

8. Stochastic homogenisation

In this last section we illustrate an application of the Γ-convergence result Theorem 3.1 to
the case of stochastic homogenisation.

We start by recalling some basic notions and results from ergodic theory.

8.1. Ergodic theory. Let d ≥ 1 be an integer; in all that follows Bd denotes the Borel σ-algebra
of Rd; if d = 1 we set B := B1.

Let (Ω,F , P ) be a probability space and let τ = (τy)y∈Rn denote a group of P -preserving
transformations on (Ω,F , P ); i.e., τ is a family of measurable mappings τy : Ω → Ω satisfying
the following properties:

• τyτy′ = τy+y′ , τ
−1
y = τ−y, for every y, y′ ∈ Rn;

• the map τy preserves the probability measure P ; i.e., P (τyE) = P (E), for every y ∈ Rn
and every E ∈ F ;
• for any measurable function ϕ on Ω, the function φ(ω, x) := ϕ(τyω) is F⊗Bn-measurable

on Ω× Rn.

If in addition every τ -invariant set E ∈ F has either probability 0 or 1, then τ is called ergodic.

We also need to recall the notion of subadditive process. In what follows A0 denotes the
family of all open, bounded subsets of Rn with Lipschitz boundary.

Definition 8.1 (Subadditive process). Let τ = (τy)y∈Rn be a group of P -preserving transfor-
mations on (Ω,F , P ). A subadditive process is a function µ : Ω × A0 → [0,+∞) satisfying the
following properties:

(1) for every A ∈ A0, µ(·, A) is F-measurable;
(2) for every ω ∈ Ω, A ∈ A0, and y ∈ Rn

µ(ω,A+ y) = µ(τyω,A);
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(3) for every ω ∈ Ω, for every A ∈ A0, and for every finite family (Ai)i∈I ⊂ A0 of pairwise
disjoint sets such that Ai ⊂ A for every i ∈ I and |A \ ∪i∈IAi| = 0, there holds

µ(ω,A) ≤
∑
i∈I

µ(ω,Ai);

(4) there exists a constant c > 0 such that for every A ∈ A0

0 ≤
∫

Ω
µ(ω,A) dP ≤ c|A|.

Moreover, if τ := (τy)y∈Rn is ergodic then µ is called a subadditive ergodic process.

We now state a version of the subadditive ergodic Theorem, originally proven by Akcoglu
and Krengel [2], which is suitable for our purposes (see [26, Theorem 4.3]).

Theorem 8.2. Let µ : Ω × A0 → [0,+∞) be a subadditive process. Then there exist a F-
measurable function φ : Ω→ [0,+∞) and a set Ω′ ∈ F with P (Ω′) = 1 such that

lim
t→∞

µ(ω, tQ)

|tQ|
= φ(ω),

for every ω ∈ Ω′ and for every cube Q in Rn with sides parallel to the coordinate planes.
If in addition µ is ergodic, then φ is constant.

For later use we also recall the Brikhoff ergodic Theorem. To this end, we preliminary need
to fix some notation. Let ϕ be a measurable function on (Ω,F , P ); we denote with E[ϕ] the
expected value of ϕ; i.e.,

E[ϕ] :=

∫
Ω
ϕ(ω)dP.

For every ϕ ∈ L1(Ω) and for every σ-algebra F ′ ⊂ F , we denote with E[ϕ|F ′] the conditional
expectation of ϕ with respect to F ′. We recall that E[ϕ|F ′] is the unique L1(Ω)-function satis-
fying ∫

E
E[ϕ|F ′](ω) dP =

∫
E
ϕ(ω) dP,

for every E ∈ F ′.
We now state the following version of the Birkhoff ergodic Theorem which is convenient for

our purposes.

Theorem 8.3 (Birkhoff’s ergodic Theorem). Let ϕ ∈ L1(Ω), let τ = (τy)y∈Rn be a group of
P -preserving transformations on (Ω,F , P ), and let Fτ denote the σ-algebra of τ -invariants sets.

Then there exists a set Ω̃ ∈ F with P (Ω̃) = 1 such that

lim
t→∞
−
∫
B
ϕ(τtyω) dy = E[ϕ|Fτ ](ω), (8.1)

for every ω ∈ Ω̃ and for every measurable bounded set B ⊂ Rn with |B| > 0.

Remark 8.4. We notice that if τ is ergodic, then Fτ reduces to the trivial σ-algebra, therefore
(8.1) becomes

lim
t→∞
−
∫
B
ϕ(τtyω) dy = E[ϕ]. (8.2)
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8.2. Setting of the problem and main results. In this section we introduce the random
integral functionals we are going to analyse. To this end, we preliminary need to define the class
of admissible random weights.

Assumption 2 (Admissible random weights). Let τ = (τy)y∈Rn be a group of P -preserving
transformations on (Ω,F , P ). A function λ : Ω× Rn → [0,+∞) is an admissible weight if:

• λ is F ⊗ Bn-measurable;

• λ is stationary; i.e., λ(ω, x+ y) = λ(τyω, x), for every ω ∈ Ω, x, y ∈ Rn;

• λ(ω, ·) ∈ Ap(K), for every ω ∈ Ω;

• λ(·, 0) > 0 in Ω;

• λ(·, 0), λ(·, 0)−1/(p−1) ∈ L1(Ω).

Remark 8.5. We notice that λ = λ(ω, x) is τ -stationary if and only if for every ω ∈ Ω and
every x ∈ Rn there holds

λ(ω, x) = λ̃(τxω), (8.3)

with λ̃(ω) := λ(ω, 0).

Since by assumption λ(ω, 0) > 0 for every ω ∈ Ω, we then have E[λ̃|F ′](ω) > 0, for every

F ′ ⊂ F . Moreover, we also observe that if we assume λ̃, λ̃−1/(p−1) ∈ L1(Ω), then the Fubini

Theorem yields λ(ω, ·), λ−1/(p−1)(ω, ·) ∈ L1
loc(Rn), for every ω ∈ Ω. However, in order to apply

Theorem 3.1 we need the stronger condition λ(ω, ·) ∈ Ap(K), for every ω ∈ Ω.

Below we introduce the notion of stationary random integrand.

Definition 8.6 (Stationary random integrand). Let τ = (τy)y∈Rn be a group of P -preserving
transformations on (Ω,F , P ) and let λ : Ω× Rn → [0,+∞) satisfy Assumption 2.

(i) We say that f : Ω× Rn × Rm×n → [0,+∞) is a random integrand if:

• f is (F ⊗ Bn ⊗ Bm×n,B)-measurable;

• for every ω ∈ Ω and for every x ∈ Rn, the two following conditions hold:

αλ(ω, x)(|ξ|p − 1) ≤ f(ω, x, ξ) ≤ βλ(ω, x)(|ξ|p + 1), (8.4)

for every ξ ∈ Rm×n and for some α, β > 0, and

|f(ω, x, ξ1)− f(ω, x, ξ2)| ≤ Lλ(ω, x)(|ξ1|p−1 + |ξ2|p−1 + 1)|ξ1 − ξ2|, (8.5)

for every ξ1, ξ2 ∈ Rm×n and for some L > 0.

(ii) We say that a random integrand f is stationary if for every ω ∈ Ω, for every x, y ∈ Rn
and every ξ ∈ Rm×n it holds:

• f(ω, x+ y, ξ) = f(τyω, x, ξ).

(iii) We say that a stationary random integrand f is ergodic if τ = (τy)y∈Rn is ergodic.

Let f be a stationary random integrand in the sense of Definition 8.6. Let ω ∈ Ω be fixed
and consider the integral functional F (ω) : W 1,1

loc (Rn;Rm)×A0 −→ [0,+∞] defined as

F (ω)(u,A) :=


∫
A
f(ω, x,∇u) dx if u ∈W 1,p

λ (A;Rm),

+∞ otherwise.
(8.6)
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Moreover, for every ω ∈ Ω, A ∈ A0, and ξ ∈ Rm×n set

mF (ω)(uξ, A) := inf

{∫
A
f(ω, x,∇u) dx : u ∈W 1,p

0,λ (A;Rm) + uξ

}
(8.7)

= inf

{∫
A
f(ω, x,∇u+ ξ) dx : u ∈W 1,p

0,λ (A;Rm)

}
.

The following proposition shows that for every fixed ξ ∈ Rm×n, the minimisation problem in
(8.7) defines a subadditive process.

Proposition 8.7. Let f be a stationary random integrand; let F (ω) and mF (ω) be as in (8.6)

and (8.7), respectively. Then for every ξ ∈ Rm×n the function

(ω,A) 7→ mF (ω)(uξ, A)

defines a subadditive process on (Ω,F , P ).
Moreover, for every ξ ∈ Rm×n and A ∈ A0

0 ≤
∫

Ω
mF (ω)(uξ, A) dP ≤ β(|ξ|p + 1)E[λ̃]|A|, (8.8)

where λ̃ is as in (8.3).

Proof. Let ξ ∈ Rm×n and A ∈ A0 be fixed. We first show that ω 7→ mF (ω)(uξ, A) is F-

measurable. To this end fix u ∈ W 1,p
λ (A;Rm), then the function (ω, x) 7→ f(ω, x,∇u + ξ) is

F ⊗ Ln-measurable, hence by Fubini’s Theorem

ω 7→ F (ω)(u+ uξ, A) =

∫
A
f(ω, x,∇u+ ξ) dx

is F-measurable. Observe now that W 1,p
0,λ (A;Rm) endowed with the norm ‖∇ · ‖Lpλ(A;Rm×n) is a

separable Banach space and that, by virtue of (8.5), the map u 7→ F (ω)(u+uξ, A) is continuous

with respect to the same norm. Then there exists a countable dense set D ⊂W 1,p
0,λ (A;Rm) such

that

mF (ω)(uξ, A) = inf
u∈D

F (ω)(u+ uξ, A),

hence the map ω 7→ mF (ω)(uξ, A) is F-measurable.

We now show that for every fixed ξ ∈ Rm×n there holds

mF (ω)(uξ, A+ y) = mF (τyω)(uξ, A),

for every ω ∈ Ω, A ∈ A0, and y ∈ Rn. Indeed, a change of variables and the stationarity of f
yield

mF (ω)(uξ, A+ y) = inf

{∫
A
f(ω, x+ y,∇u+ ξ) dx : u ∈W 1,p

0,λ(ω,x+y)(A;Rm)

}
= inf

{∫
A
f(τyω, x,∇u+ ξ) dx : u ∈W 1,p

0,λ(τyω,x)(A;Rm)

}
= mF (τyω)(uξ, A).

Let ξ ∈ Rm×n and ω ∈ Ω be fixed. We now prove that the function A 7→ mF (ω)(uξ, A) is
subadditive in the sense of Definition 8.1. To this end let A ∈ A0 and let (Ai)i∈I be a finite
family of pairwise disjoint sets in A0 such that Ai ⊂ A, for every i ∈ I, and |A \ ∪i∈IAi| = 0.
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Let η > 0 and choose ui ∈W 1,p
0,λ (Ai,Rm) such that F (ω)(ui+uξ, Ai) ≤ mF (ω)(uξ, Ai)+η. Define

u ∈W 1,p
0,λ (A;Rm) by setting u :=

∑
i∈I uiχAi . Then by the locality of F (ω) we have

mF (ω)(uξ, A) ≤ F (ω)(u+ uξ, A) =
∑
i∈I

F (ω)(ui + uξ, Ai) ≤
∑
i∈I

mF (ω)(uξ, Ai) + η,

which proves the subadditivity thanks to the arbitrariness of η > 0.
Finally, by definition of mF (uξ, A), choosing u = 0, by (8.4) we have

0 ≤ mF (ω)(uξ, A) ≤ β(|ξ|p + 1)

∫
A
λ(ω, x) dx, (8.9)

for every ξ ∈ Rm×n, every ω ∈ Ω, and every A ∈ A0. Therefore integrating on Ω both sides of
(8.9) and using the stationarity of λ we get

0 ≤
∫

Ω
mF (ω)(uξ, A) dP ≤ β(|ξ|p + 1)

∫
Ω

∫
A
λ̃(τxω) dx dP = β(|ξ|p + 1)E[λ̃]|A|,

where to establish the last equality we have used the Tonelli Theorem together with a change of
variables in ω. Eventually, we deduce both (8.8) and that (ω,A) 7→ mF (ω)(uξ, A) is a subadditive
process. �

By combining Proposition 8.7 together with the subadditive ergodic Theorem 8.2 we are now
able to establish the existence of the homogenisation formula which will eventually define the
integrand of the Γ-limit (cf. Theorem 8.11 below).

Proposition 8.8. Let f be a stationary random integrand. Then there exist a set Ω′ ∈ F with
P (Ω′) = 1 and a F ⊗Bm×n-measurable function fhom : Ω×Rm×n → [0,+∞) such that for every
ω ∈ Ω′, ξ ∈ Rm×n, and every cube Q in Rn there holds

fhom(ω, ξ) := lim
t→∞

mF (ω)(uξ, tQ)

tn|Q|
.

Moreover, for every ω ∈ Ω′, fhom satisfies the following conditions:

αE[λ̃|Fτ ](ω)

(
1

K
|ξ|p − 1

)
≤ fhom(ω, ξ) ≤ β E[λ̃|Fτ ](ω)(|ξ|p + 1), (8.10)

|fhom(ω, ξ1)− fhom(ω, ξ2)| ≤ L′ E[λ̃|Fτ ](ω)(|ξ1|p−1 + |ξ2|p−1 + 1)|ξ1 − ξ2|, (8.11)

for every ξ, ξ1, ξ2 ∈ Rm×n and for some L′ > 0, where λ̃ is as in (8.3).
If in addition f is ergodic, then fhom does not depend on ω and

fhom(ξ) = lim
t→∞

1

tn

∫
Ω
mF (ω)(uξ, Qt(0)) dP, (8.12)

for every ξ ∈ Rm×n. Moreover, in this case (8.10) and (8.11) become, respectively,

αE[λ̃]

(
1

K
|ξ|p − 1

)
≤ fhom(ξ) ≤ β E[λ̃](|ξ|p + 1) (8.13)

and

|fhom(ξ1)− fhom(ξ2)| ≤ L′ E[λ̃](|ξ1|p−1 + |ξ2|p−1 + 1)|ξ1 − ξ2|, (8.14)

for every ξ, ξ1, ξ2 ∈ Rm×n.
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Proof. Let ξ ∈ Rm×n be fixed; Theorem 8.2 and Proposition 8.7 ensure the existence of a set
Ωξ ∈ F with P (Ωξ) = 1 and of a F-measurable function φξ : Ω −→ [0,+∞) such that

φξ(ω) = lim
t→∞

mF (ω)(uξ, tQ)

|tQ|
, (8.15)

for every ω ∈ Ωξ and for every cube Q in Rn.
Now let t > 0 and denote with Qt = Qt(0) the cube centered at the origin and with side

length t. Let fhom : Ω× Rm×n → [0,+∞) be the function defined as

fhom(ω, ξ) := lim sup
t→∞

mF (ω)(uξ, Qt)

|Qt|
.

Let ω ∈ Ω and A ∈ A0 be fixed; we start by showing that the function

ξ 7→
mF (ω)(uξ, A)

|A|
is locally Lipschitz continuous. To this end let ξ1, ξ2 ∈ Rm×n, let η > 0 be arbitrary, and let
u ∈W 1,p

0,λ (A;Rm) be such that

F (ω)(u+ uξ2 , A) ≤ mF (ω)(uξ2 , A) + η.

Then, appealing to (8.5) and to the Hölder Inequality we deduce

mF (ω)(uξ1 , A)

|A|
−
mF (ω)(uξ2 , A)

|A|
≤ 1

|A|
(
F (ω)(u+ uξ1 , A)− F (ω)(u+ uξ2 , A) + η

)
≤ 1

|A|

∫
A
|f(ω, x,∇u+ ξ1)− f(ω, x,∇u+ ξ2)| dx+

η

|A|

≤ L

|A|

∫
A
λ(ω, x)|ξ1 − ξ2|(|∇u+ ξ1|p−1 + |∇u+ ξ2|p−1 + 1) dx+

η

|A|

≤ L

|A|
C(p)|ξ1 − ξ2|

(∫
A
λ(ω, x) dx

) 1
p
(∫

A
λ(ω, x)(|ξ1|p + |ξ2|p + |∇u+ ξ2|p + 1) dx

) p−1
p

+
η

|A|
,

(8.16)

where C(p) > 0 depends only on p. By using (8.4) (see also (8.9)) we get

α

∫
A
λ(ω, x)(|∇u+ ξ2|p − 1) dx ≤ F (ω)(u+ uξ2 , A) ≤ mF (ω)(uξ2 , A) + η

≤ β(|ξ2|p + 1)

∫
A
λ(ω, x) dx+ η. (8.17)

Therefore, plugging (8.17) into (8.16) gives

mF (ω)(uξ1 , A)

|A|
−
mF (ω)(uξ2 , A)

|A|

≤ C L

|A|
|ξ1 − ξ2|

(∫
A
λ(ω, x) dx

) 1
p
(

(|ξ1|p−1 + |ξ2|p−1 + 1)

(∫
A
λ(ω, x) dx

) p−1
p

+ η(p−1)/p

)
+

η

|A|
,

where C > 0 depends on p, α, β. Hence, by the arbitrariness of η > 0 we get

mF (ω)(uξ1 , A)

|A|
−
mF (ω)(uξ2 , A)

|A|
≤ L′ −

∫
A
λ(ω, x) dx

(
|ξ1|p−1 + |ξ2|p−1 + 1

)
|ξ1 − ξ2|. (8.18)

Thus, the claim simply follows by interchanging the role of ξ1 and ξ2.
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Now choose A = tQ in (8.18) with Q cube of Rn and t > 0. By the stationarity of λ and a
change of variables we obtain

mF (ω)(uξ1 , tQ)

|tQ|
−
mF (ω)(uξ2 , tQ)

|tQ|
≤ L′ −

∫
Q
λ̃(τtxω) dx

(
|ξ1|p−1 + |ξ2|p−1 + 1

)
|ξ1 − ξ2| (8.19)

and, as above, the other inequality follows by exchanging the role of ξ1 and ξ2. Therefore, taking

the lim sup as t → ∞ and invoking Theorem 8.3, we deduce the existence of a set Ω̃ ∈ F with

P (Ω̃) = 1 such that

lim sup
t→∞

∣∣∣∣mF (ω)(uξ1 , tQ)

|tQ|
−
mF (ω)(uξ2 , tQ)

|tQ|

∣∣∣∣ ≤ L′ E[λ̃|Fτ ](ω)
(
|ξ1|p−1 + |ξ2|p−1 + 1

)
|ξ1 − ξ2|,

(8.20)

for every ω ∈ Ω̃. We also observe that choosing in (8.19) Q = Q1(0), it is immedate to check

that fhom(ω, ·) satisfies the local Lipschitz condition (8.20), for every ω ∈ Ω̃.

Set Ω′ :=
(
∩ξ∈Qm×nΩξ

)
∩ Ω̃, clearly P (Ω′) = 1 and (8.15) holds true for every fixed ξ ∈ Qm×n

and every ω ∈ Ω′. Let now ξ ∈ Rm×n be fixed and let (ξj) ⊂ Qm×n be such that ξj → ξ, as
j →∞. For ω ∈ Ω′ we have∣∣∣∣fhom(ω, ξ)−

mF (ω)(uξ, tQ)

|tQ|

∣∣∣∣ ≤ |fhom(ω, ξ)− fhom(ω, ξj)|

+

∣∣∣∣fhom(ω, ξj)−
mF (ω)(uξj , tQ)

|tQ|

∣∣∣∣+

∣∣∣∣mF (ω)(uξj , tQ)

|tQ|
−
mF (ω)(uξ, tQ)

|tQ|

∣∣∣∣ .
Then, view of (8.11), (8.15), and (8.20) we get that for every j ∈ N there holds

lim sup
t→∞

∣∣∣∣fhom(ω, ξ)−
mF (ω)(uξ, tQ)

|tQ|

∣∣∣∣ ≤ 2L′ E[λ̃|Fτ ](ω)
(
|ξ|p−1 + |ξj |p−1 + 1

)
|ξ − ξj |.

Thus, by letting j →∞ we obtain

fhom(ω, ξ) = lim
t→∞

mF (ω)(uξ, tQ)

tn|Q|
,

for every ω ∈ Ω′ and every ξ ∈ Rm×n, as desired.
Then, it only remains to show that fhom(ω, ·) satisfies the growth condition (8.10) for every

ω ∈ Ω′. The growth condition from above readily follows from

mF (ω)(uξ, tQ)

tn|Q|
≤ β(|ξ|p + 1)−

∫
tQ
λ(ω, x) dx = β(|ξ|p + 1)−

∫
Q
λ̃(τtxω) dx (8.21)

passing to the limit as t→∞, and using Theorem 8.3.
We now establish the growth condition from below. To this end let u ∈ W 1,p

0,λ (tQ;Rm) be

arbitrary; then the Hölder’s inequality and (8.4) give

α |ξ|p|tQ|p = α

(∫
tQ
|∇u+ ξ| dx

)p
≤ F (ω)(u+ uξ, tQ)

(∫
tQ
λ(ω, x)−1/(p−1) dx

)p−1

+α

(∫
tQ
λ(ω, x) dx

)(∫
tQ
λ(ω, x)−1/(p−1) dx

)p−1

.

Dividing both sides by |tQ|p and taking the infimum over W 1,p
0,λ (tQ;Rm) we get

α|ξ|p
(
−
∫
tQ
λ(ω, x)−1/(p−1) dx

)−(p−1)

− α
(
−
∫
tQ
λ(ω, x) dx

)
≤
mF (ω)(uξ, tQ)

|tQ|
,
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then, recalling that λ(ω, ·) ∈ Ap(K) we find

α

(
−
∫
tQ
λ(ω, x) dx

) (
1

K
|ξ|p − 1

)
≤
mF (ω)(uξ, tQ)

|tQ|
.

Therefore, passing to the limit as t → ∞ and using again the Birkhoff ergodic Theorem we
finally obtain the growth conditions from below in (8.10).

We notice that the F ⊗ Bm×n-measurability of fhom follows from the F-measurability of
ω 7→ fhom(ω, ξ) and the continuity of ξ 7→ fhom(ω, ξ).

If f is ergodic, then Theorem 8.2 ensures that fhom does not depend on ω. Moreover, by
(8.21) and the Birkoff ergodic Theorem we can invoke a generalised version of the dominated
convergence Theorem to deduce (8.12). Eventually (8.13) and (8.14) follow, respectively, by
integrating (8.10) and (8.11) on Ω and using the definition of conditional expectation. �

Remark 8.9. From the proof of Proposition 8.8 it can be actually seen that in the ergodic case
fhom satisfies the standard growth conditions

αE[λ̃−1/(p−1)]1−p(|ξ|p − 1) ≤ fhom(ξ) ≤ β E[λ̃](|ξ|p + 1),

for every ξ ∈ Rm×n (and similarly in the general stationary case), which then reduce to those
established in [15, 16, 27] when λ ≡ 1.

Now let (εk) ↘ 0 be a vanishing sequence of strictly positive real numbers and let f be a

stationary random integrand. For ω ∈ Ω let Fk(ω) : W 1,1
loc (Rn;Rm) × A0 −→ [0,+∞] be the

functionals defined as

Fk(ω)(u,A) :=


∫
A
f

(
ω,

x

εk
,∇u

)
dx if u ∈W 1,p

λk
(A;Rm),

+∞ otherwise,
(8.22)

where for every ω ∈ Ω and x ∈ Rn we set

λk(ω, x) := λ
(
ω,

x

εk

)
, (8.23)

with λ satisfying Assumption 2.

Remark 8.10. If λk is as in (8.23) then by Assumption 2 and the Birkhoff ergodic Theorem
there exists Ω′ ∈ F with P (Ω′) = 1 such that (3.8) holds true for every ω ∈ Ω′.

The following homogenisation theorem is the main result of this section.

Theorem 8.11 (Stochastic homogenisation). Let f be a stationary random integrand and let
Fk(ω) be as in (8.22). Then there exists Ω′ ∈ F with P (Ω′) = 1 such that for every ω ∈ Ω′ and
every A ∈ A0

Γ(L1
loc(Rn;Rm))- lim

k→∞
Fk(ω)(u,A) = Fhom(ω)(u,A),

where Fhom(ω) : W 1,1
loc (Rn;Rm)×A0 −→ [0,+∞] is the random functional defined as

Fhom(ω)(u,A) :=


∫
A
fhom(ω,∇u) dx if u ∈W 1,p(A;Rm),

+∞ otherwise,
(8.24)

with fhom as in Proposition 8.8.
If in addition f is ergodic, then Fhom is deterministic with integrand given by

fhom(ξ) = lim
t→∞

1

tn

∫
Ω

inf

{∫
Qt(0)

f(ω, x,∇u+ ξ) dx : u ∈W 1,p
0,λ (Qt(0);Rm)

}
dP,
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for every ξ ∈ Rm×n.

Proof. Let Ω′ ∈ F be the measurable set whose existence is ensured by Proposition 8.8. In all
that follows we fix ω in Ω′.

In view of Remark 8.10, Theorem 3.1 provides us with a subsequence (kh) such that for every
A ∈ A0 the functionals Fkh(ω)(·, A) Γ-converge to the integral functional F∞(ω)(·, A) with

respect to the strong L1
loc(Rn;Rm)-convergence, where F∞(ω) : W 1,1

loc (Rn;Rm)×A0 −→ [0,+∞]
is given by

F∞(ω)(u,A) :=


∫
A
f∞(ω, x,∇u) dx if u ∈W 1,p(A;Rm),

+∞ otherwise,

we notice that f∞ is nondegenerate since, by assumption, E[λ̃|Fτ ](ω) > 0. Moreover, again
invoking Theorem 3.1, we have

f∞(ω, x, ξ) = lim sup
ρ→0+

1

ρn
lim
h→∞

mFkh (ω)(uξ, Qρ(x)), (8.25)

for a.e. x ∈ Rn and for every ξ ∈ Rm×n. Hence, from (8.25) by a change of variables we
immediately get

f∞(ω, x, ξ) = lim sup
ρ→0+

lim
h→∞

εnkh
ρn

mF (ω)

(
uξ, Qρ/εkh

( x

εkh

))
= lim

t→∞

1

tn
mF (ω)(uξ, Qt(0)) = fhom(ω, ξ), (8.26)

where (8.26) follows by Proposition 8.8 by setting t := ρ/εkh →∞, as h→∞.
As a consequence we deduce that f∞ is independent of the subsequence (kh) and hence the

Urysohn Property of Γ-convergence (see [14, Proposition 8.3]) allows us to conclude that the
whole sequence (Fk(ω)) Γ-converges to Fhom(ω), for every ω ∈ Ω′.

Eventually, in the ergodic case the claim readily follows from the corresponding statement in
Proposition 8.8. �
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