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ABSTRACT. We study the I'-convergence of nonconvex vectorial integral functionals whose inte-
grands satisfy possibly degenerate growth and coercivity conditions. The latter involve suitable
scale-dependent weight functions. We prove that under appropriate uniform integrability con-
ditions on the weight functions, which shall belong to a Muckenhoupt class, the corresponding
functionals I'-converge, up to subsequences, to a degenerate integral functional defined on a
limit weighted Sobolev space.

The general analysis is then applied to the case of random stationary integrands and weights
to prove a stochastic homogenisation result for the corresponding functionals.
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1. INTRODUCTION

In this paper we study the effective behaviour of scale-dependent integral functionals with
possibly degenerate integrands. Functionals of this kind typically model the energy of a heteroge-
neous material whose physical properties (elastic, thermal, electrical, etc.) may both deteriorate
and vary significantly from point to point, on a mesoscopic scale.

The energy functionals we consider are of the form

Fk(u):/Afk(:c,Vu)d:c, (1.1)

where A C R" is an open, bounded, Lipschitz set, k € N is a parameter related to some material
property (e.g., the size of the microstructure) and u: A — R represents a physical variable
(e.g., the elastic deformation of the body).

The degeneracy of the integrands f: R™ x R™*™ — [0, 4+00) is expressed in terms of growth
and coercivity conditions which can depend both on the parameter k£ and on the spatial variable
x. These are given by introducing weight functions A\;: R" — [0,+00) which modulate the
typical superlinear growth in the gradient variable. That is, for every z € R", £ € R™*"™ and
k € N the integrands f satisfy

adr(@)([€]" = 1) < fr(2,€) < BAR(2)(I€]° + 1), (1.2)

where p > 1, and «, § > 0 are constants.

If the weight functions A; are bounded in L*° uniformly in k, then (1.2) reduces to the
standard growth and coercivity of order p > 1. In this case the limit behaviour of Fj is well
understood and can be described using the languange of I'-convergence. Namely, if & — oo, the
functionals F), I-converge (up to subsequences), on W1P(A4;R™), to an integral functional of
the form

F(u) = /Afo(:c, Vu)dz, ue WHP(A;R™), (1.3)
1
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with fj satisfying the same (nondegenerate) growth conditions satisfied by fx (see [9]). Moreover,
if e — 0% and fi(z,€) = f(x/ex, &) for some nondegenerate f, then the limit integrand fy is
z-independent and subsequence-independent both in the periodic [6, 29] and in the stationary
random case [15, 16, 27], and given by a so-called homogenisation formula. As a result, in this
case the whole sequence (F}) I'-converges to F'.

In this paper we consider sequences of weight functions (\x) which are not bounded in general.
Specifically, for every k € N we assume that

moreover, we additionally require the existence of a constant K > 1 such that for every k € N

there holds
p—1
<][ A da:> <][ A D) dx> <K, (1.5)
Q Q

for every cube @) C R™. The uniform integrability condition (1.5) is known as Muckenhoupt
condition and the functions satisfying it are referred to as Muckenhoupt A, (K )-weights [28].

In this case, the growth conditions (1.2) satisfied by fr naturally set the problem in the
parameter-dependent weighted Sobolev space WAII;p (A;R™) where, for a given Ap,(K)-weight A
we have

W;’p(A;Rm) = {u e WHHA; R™): / AMulP dx —l—/ AVulP dz < —|—oo}.
A A

The limit behaviour of functionals Fj with integrands satisfying (1.2) was studied for the first
time in [10], in the convex, scalar case and under the sole integrability condition (1.4). Assuming
that A, converges weakly to some Ay in L', in [10] the authors proved a I'-convergence and
integral representation result for the I'-limit of Fj, on the space of Lipschitz functions. The
latter, though, in general is smaller than the domain of the I'-limit. Moreover, in the setting
considered in [10] the functionals F} are not equi-coercive and therefore a convergence result for
the associated minimisation problems cannot be derived from the I'-convergence analysis.

In order to extend the I'-convergence result in [10] to the domain of the I'-limit and to
gain compactness, in [17] the Muckenhoupt condition (1.5) was also required together with the
additional bound

cl §][ A dx < eo, (1.6)
Qo

where 0 < ¢; < ¢g < +00 and @y C R" is a given cube. The Muckenhoupt condition (1.5)
guarantees the continuous embedding of W;l;p (A) in the Sobolev space Wh119(A), for some § >
0. Then, a combination of (1.5) and (1.6) ensures that sequences with equi-bounded energy are
bounded in W1+9(A), and hence precompact in L'(A) (whenever A C Qq). Therefore, in the
setting considered in [17] the equi-coericiveness of the functionals F}, can be recovered. Moreover,
again thanks to (1.5)-(1.6) a lower bound on the I'-limit can be established, which shows that
its domain is the weighted Sobolev space Wiof (A), where Ao belongs to a Muckenhoupt class
and is the weak L'-limit of (a subsequence of) M.

Besides the contributions [10, 17], I-convergence and relaxation results for functionals of type
(1.1)-(1.2) defined on weighted Sobolev spaces were also established in [18, 19, 11, 22, 3, 21, 31]
without departing, though, from the convex/monotone operator, scalar setting, with the only
exception of [31]. More specifically, in [31] the authors proved a stochastic homogenisation result
for a sequence of discrete nonconvex, vectorial energy functionals with degenerate integrands.
Under suitable assumptions on the random weights, which are weaker than (1.5) in the scalar case
but not really comparable to (1.5) in the vectorial case, the authors showed that in the stationary
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ergodic case the energies homogenise to a nondegenerate deterministic integral functional. We
observe that the case of homogenisation is somehow special since in this case the limit functional
is always nondegenerate and thus defined on the space WP,

In the present paper we extend the analysis in [17] to the nonconvex, vectorial setting,
without assuming any periodicity or stationarity of the integrands f;. Namely, we assume that
fr satisfies (1.2), together with some mild continuity condition in & (cf. (3.3)), and that the
weight functions Ay are as in (1.4)-(1.6). Under these assumptions we show the existence of a
subsequence (ky), a limit Muckenhoupt weight A, with Ag, — A in L1(Qp), and a degenerate
integrand [, satisfying

o) (TP 1) < Fool,€) < B} (I + 1), (1.7

a.e. in Qo and for every £ € R™*", such that the functionals F}y, I'-converge, with respect to
the strong L'(A; R™)-convergence, to the integral functional

Fyo(u) = /AfOO(LVu) de, wue€ W;g(A;Rm).

We also show that the I'-convergence holds true, with the same subsequence (ky,), for every open,
bounded, Lipschitz set A C R™, with A CC @Qy. Moreover, we derive an asymptotic formula
for the limit integrand f which can be expressed as a (double) limit of sequences of scaled
minimisation problems as follows:

foo(x,&) :=limsup lim 1inf{/

p—0+ h—oc0 pn Qp( )

o0 Vut € dys € W, @eiRM} (19
where Q,(x) C R™ denotes the cube centred in = with side-length p > 0, and
Wok, (Qo(@);R™) = Wy (Qu(a); R™) N W, (Qp(a); R™).

The proof of this result is carried out in a number of intermediate steps. Namely, we first prove
the T-convergence and integral representation result on the space W1 (A4; R™) C W/\lg(A; R™).
To do so, we use the localisation method of I'-convergence and adapt the approach in [14, 7] to
our setting to get an integral representation result for functionals with degenerate integrands.
We remark here that the most delicate part in the implementation of the localisation method is
the proof of the subadditivity of the I'-limit, which requires to combine a fundamental estimate
for the functionals F} together with an ad hoc vectorial truncation argument, in the same spirit
as, e.g., [8, Lemma 3.5]. We then extend the I'-convergence and integral representation result
to the limit weighted Sobolev space W/\I;f(A; R™). The latter coincides with the domain of Fi,
thanks to (1.7); hence we get a complete description of the I'-limit of Fj,. The passage from
Whee(4;R™) to Wi’p (A;R™) is performed by resorting to classical approximation argument

(see [1, Theorem II.4]>3> which exploits the property of the maximal function in relation with the
Muckenhoupt weights. More precisely, we can adapt [17, Theorem 3.1] to the vectorial setting
to show that in the liminf inequality, we can replace a sequence (ug), with ux — u in L'(A; R™)
and equi-bounded W;;ﬁp (A; R™)-norm, with a sequence of Lipschitz functions converging to a

W1 (A; R™)-function which differs from u on a set with vanishing measure. Eventually, the
asymptotic formula for f is obtained by combining a convergence result for minimisation
problems with prescribed Dirichlet conditions together with a derivation formula for f., which
is obtained by extending to the weighted Sobolev setting the method developed in [4, 5].

Finally, the general I'-convergence analysis is complemented by an application to the case of
stationary random weights and integrands, thus generalising the classical stochastic homogeni-
sation result in [15, 16, 27] to the degenerate setting.
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That is, we specialise our general result to the choice

X

Ae(w, ) = )\(w, ;), frelw,z,8) = f(w, i,f),

where w belongs to the sample space of a given probability space (2, F,P), A is a random
Muckenhoupt weight (cf. Assumption 2), and f is a degenerate stationary random integrand (cf.
Definition 8.6). Then, following the same approach as in [16], we combine the deterministic
analysis and the subadditive ergodic Theorem [2, Theorem 2.9] to show that, almost surely, the
random functionals

Fe@)(w) = |

A f(w, %, Vu) dr, u€ Wil’ﬁp(A;Rm)

I-converge to a nondegenerate (spatially) homogeneous random functional
Fhom(w)(u) = / From(w, Vu)dz u e WHP(A;R™),
A

where fhom satisfies standard growth conditions of order p > 1 with random coefficients (cf.
(8.10)) and is given by the following asymptotic cell formula

Jhom(w, &) = lim ln inf {/ flw,z,Vu+§)dx: u e W&f(@t(O);Rm)} ) (1.9)
t—oo t Q:(0) )

If, moreover, A and f are ergodic, we show that from is deterministic and given by the expected
value of the right hand side of (1.9). Further, in the ergodic case fpom satisfies the following
deterministic growth and coercivity conditions of order p > 1:

o ([ M0y 0 aP) 7 (6 = 1) < frm(©) < 5 ( [ Aw.0)dP) (P + )

for every £ € R™*™,

Outline of the paper. The paper is organised as follows. In Section 2 we recall the notions
of Muckenhoupt classes and weights and of weighted Sobolev spaces. Moreover, we recall here
some well-known related results which will be used throughout. In Section 3 we introduce the
functionals we study and state the main result of this paper, Theorem 3.1. The proof of Theorem
3.1 is then carried out in sections 4-7. Namely, in Section 4 we prove a I'-convergence and integral
representation result in the space W Theorem 4.1. In Section 5 we establish Theorem 5.2
which extends the results in Theorem 4.1 to the weighted Sobolev space Wiﬁ, also showing that
the latter coincides with the domain of the I'-limit. On account of Theorem 5.2, in Section 6
we prove that in this setting I'-convergence is stable under the addition of Dirichlet boundary
conditions and we derive a convergence result for the associated minimisation problems. In
Section 7 we prove a derivation formula for the integrand of the I'-limit, Theorem 7.1 (see
also Corollary 7.2). Eventually, in Section 8 we prove a stochastic homogenisation result for
stationary random weights and integrands, Theorem 8.11.

2. PRELIMINARIES

In this section we collect some useful definitions and preliminary results which will be used
throughout.
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2.1. Muckenhoupt classes. We start by recalling the definition of the so-called Muckenhoupt
classes. An introduction to the theory of Muckenhoupt classes can be found in [24].

Definition 2.1. Letp > 1 and K > 1. The Muckenhoupt class Ap(K) is defined as the collection
of all nonnegative functions A: R — [0, +00), with A\, \"Y/®=Y € LL (R™), such that

p—1
<][ Adm) <][ A1) dm) <K,
Q Q

for every cube Q@ C R™ with faces parallel to the coordinate hyperplanes.
Moreover, we set Ap =g~ Ap(K).

The elements of the class A, (resp. Ap(K)) are usually referred to as Ap-weights (resp.
Ap(K)-weights). Simple examples of Ay,-weights are radially symmetric functions of the type

AMz)=|z|7 for —n<~vy<n(p-1).

Further examples can be found, e.g., in [25].
We recall the following “reverse Holder Inequality” which holds for functions in A, and whose
proof can be found in [13, Theorem IV].

Theorem 2.2. Let p > 1 and K > 1. Then there exist an exponent o = o(K,p,n) > 0 and a
constant ¢ = ¢(K,p,n) > 0 such that

1/(140)
(][ At da;) <c (][ Adx) : (2.1)
Q Q
1/(140)
(][ A=+ (-1) dm) <o (][ A=) dx), (2.9)
Q Q

for every cube Q and for every A € Ap(K).

Remark 2.3. We observe that since \™//?=1) € A, (K) with p’ := p/(p — 1), then inequality
(2.2) can be obtained by applying (2.1) to the weight A\~1/(—1),

In this paper we will deal with sequences of A, (K )-weights. The following result is a conse-
quence of Theorem 2.2 and its proof can be found in [17, Proposition 4.1].

Proposition 2.4. Let K > 1, p > 1, and let (\y) be a sequence of functions in A,(K). Let
Qo C R™ be a cube and assume that there exist two constants c1,co with 0 < ¢1 < co such that

c1 S][ Ak dx < e, (2.3)
0
for every k € N. Then there exist a subsequence (A, ) C (M), a constant c3 = c3(n), depending
only on n, and functions Ass and A in A,(hK) such that
Mo, — Aoo 0 LIT7(Qo) (2.4)
and
A /O S 0D p1(Qg), (2.5)
for some o > 0. Moreover there holds

a.e. in Q.
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If (2.3) is replaced by the stronger condition

0 < lim inf][ Apdr, lim sup][ Apdx < 400 for every cube Q C R",
Q Q

k—o0 k—oo
then (2.4) and (2.5) holds true for every cube Q@ C R™, (2.6) holds a.e. in R™, and A € Ap(K).
The equi-integrability estimate below is another immediate consequence of Theorem 2.2.

Proposition 2.5. Let p > 1, K > 1, and let (\;) be a sequence of functions in Ap(K) satisfying
(2.3). Then there exist 0 = o(K,p,n) >0 and ¢ = ¢(K,p,n) > 0 such that

|E| o/(14+0)
/ A dz < cealQol () ,
E |Qol

for every measurable set E C Qo and every k € N.

Proof. Let o > 0 and ¢ > 0 be the constants given by Theorem 2.2. By (2.3) we get

1/(140)
<][ )\,1;“7 daz) <c <][ AL da:) < cco,
Qo Qo

for every k € N. Therefore the Holder inequality easily gives

1/(140)
B Qo

/(140) . 1/ (140) B 7/
< e EI7TV T Q0| 7 = cea|Qol (!Qo\)

g

2.2. Weighted Sobolev spaces. In this short subsection we recall the definition and the basic
properties of weighted Sobolev spaces. For a comprehensive treatment of this subject we refer
the reader to the monographs [25, 34]. For further relevant results concerning weighted Sobolev
spaces, we will provide a precise reference to the literature whenever these results are used in
the paper.

Let p > 1, let A € Aj. In all that follows A C R™ denotes an open and bounded set with
Lipschitz boundary. Let m € N;m > 1; we define the weighted Lebesgue space

LY (A;R™) = {u € LY(A;R™): /A)\\u|p dx < +oo};

we recall that L% (A; R™) equipped with the norm

1/p
fullzg ey = ( [ M)

is a reflexive Banach space. Moreover, we define the weighted Sobolev space I/V/\1 P(A;R™) as
WP (A;R™) = {u e WHH(A;R™) N L5 (A;R™): / A\ VulP dz < —i—oo},
A

the latter is also a reflexive Banach space when endowed with the norm

1/p
= p p
HuHWi!p(A;Rm) : </A)\’U d:r—l—/A)\]Vu| dx) .
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We recall that the embedding of W,P(A;R™) in L% (A;R™) is compact (see, e.g., [23, Lemma
1]). Furthermore, we have the following continuous embeddings:

L®(A;R™) — LR (A;R™) «— LYO(A4;R™),

WL (A;R™) 5 Wy P(A;R™) — WHH (A4 R™),
for some § > 0.

Throughout the paper we will also use the fact that C°°(A4;R™) is dense in VV/\1 P(A;R™) (see,
e.g., [34, Corollary 2.1.6]).

The following characterisation of I/V/\1 P(A;R™) will be useful for our purposes.

Proposition 2.6. Let p > 1, A € Ay, and let A C R"™ be open, bounded, and with Lipschitz
boundary. Define

Wi’p(A;Rm) = {u e WHH(A; R™): / A VulP de < —i—oo},
A

then WiP(A;R™) = WP(A;R™).

Proof. The inclusion W;’p (4;R™) C Wi’p (A;R™) is obvious, therefore we only need to show
that
WIP(A;R™) C WP(A;R™). (2.7)
To prove (2.7) we will establish the following Poincaré type Inequality: there exists C' > 0 such
that
HU||L§(A;Rm) < C(H“HLl(A;Rm) + HquLf\(A;RmX"))a (2.8)
for every u € C°(4; R™).
We will obtain (2.8) arguing by contradiction. Were (2.8) false, then for every j € N there
would exist u; € C°°(A;R™) such that

il e camemy > 5 (1]l 1 asmy + V5]l 2 (agemxn))-

Define the renormalised functions v; € C*(4;R™) as

uj

vj , forevery j € N.

HujHL’;(A;Rm)

Then,
lvjll 2 (ammy =1 and  [[vjllpragrm) + [Vl 22 (Ammnny < ;7 (2.9)

for every j € N. Hence, in particular, the sequence (v;) is bounded in Wi’p (A;R™). Therefore
by the compact embedding of Wi P(A;R™) in LA (A;R™), up to subsequences (not relabelled),
v; — v in L (A;R™), for some v € LY (A;R™). Moreover, since the embedding of L (A;R™)
in L'(4;R™) is continuous, we also have v; — v in L'(4;R™). Therefore (2.9) entails both
”UHLI;(A;Rm) =1and v =0 a.e. in A and hence a contradiction.

Now let u € /W;’p(A;Rm); by [11, Proposition 3.5] (see also [12, Theorem 6.1]) there exists
(uj) € C*°(A;R™) such that

luj — ullpramm) + [Vuj = Vul[pp(agm=ny = 0 as j — oo.
Moreover, in view of (2.8) the sequence (u;) is bounded in WAl’p (A;R™), therefore again ap-

pealing to the compact embedding of W;’p (A;R™) in LE(A;R™) we deduce that u; — w in
LZ(A;R™) and hence u € W, P (A;R™), as desired. O
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Remark 2.7. We notice that by the density of C°°(A; R™) in VV/\1 P(A;R™) the inequality (2.8)
actually holds in the whole space Wi’p (A;R™). That is, there exists a constant C' > 0 such that

ull 22 (agemy < Cllull 21 (ammy + IVl L2 agmxny), (2.10)
for every u € W/\l’p(A; R™).

Finally, in this paper we will also consider the space
WP (A;R™) == Wyt (A;R™) N WP (A;R™).

We recall that WOI’)I\’(A; R™) agrees with the closure of C§°(A;R™) in Wi’p(A; R™) (see, e.g., [32,
Theorem 1.4] or [17, Proposition 2.1]).

2.3. Maximal function and measure theory. In this subsection we recall the definition of
maximal function and some of its properties which are useful for our purposes. Moreover, for the
readers’ convenience we also recall some classical result in measure theory which we are going
to employ in the paper.

For the theory of maximal functions we refer to [33].

Let u € L (R"), then the Hardy maximal function of u at z is defined as
(Mu)(@) i=sup | Juldy
r>0JQ ()

where @Q,(x) is the cube centred at x, with side length r and sides parallel to the coordinate
planes. The following property will be useful for our purposes: there exists a constant ¢ =
¢(n) > 0 depending only on n such that

n ¢(n)
[{z € R": (Mu)(z) 2 U} < == lull 11 (m), (2.11)
for every u € L'(R") and every [ > 0.

The following result is proven in [28, Theorem 9].

Theorem 2.8. Let p > 1, K > 1, and let A\ € Ay(K). Then there exists a constant ¢4 =
c4(K,p,n) > 0 such that

/ )\\Mu|pdac§04/ MulP dz,
n Rn

for every u € LL (R™).

For the following lemma we refer to [1, Lemma I.11].
Lemma 2.9. Let u € C§°(R"™) and let I > 0. Set

H' := {z e R": (M|Vu|)(z) < I}.
Then there exists a constant cs = c5(n) > 0 such that
u(z) = u(y)| < esllz —yl,

for every x,y € H'.

We recall the following result which can be found in [20].

Lemma 2.10. Let G C R" be measurable with |G| < +o00. Let (E},) be a sequence of measurable
subsets of G such that |Ey| > 7 for every h € N and for some 7 > 0. Then there ezists a
subsequence (Ep;) C (Ep) such that ;e En; # 0.
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Eventually, we state the following technical lemma whose proof can be found in [1, Lemma
L.7].

Lemma 2.11. Let (¢3) be a bounded sequence in L'(R™). Then for every T > 0 there exist a
measurable set E- with |E;| <7, 6; >0, and a sequence (k) such that for every j € N

/ sl do < 7,
B
for every measurable set B such that BN E; =0 and |B| < .

3. SETTING OF THE PROBLEM AND STATEMENT OF THE MAIN RESULT

In this section we introduce the functionals we are going to study and state the main result
of the paper.

Assumption 1 (Admissible weights). Letp > 1, K > 1, and let A,(K) denote the Muckenhoupt
class as in Definition 2.1. A sequence of measurable weight functions A\p: R™ — [0, +00) is
admissible if:

o )\, € Ay(K), for every k € N;
o there exists a cube Qo C R™ such that for every k € N there holds

C1 S][ )\k dzx S C2, (3.1)
Qo

for some constants 0 < ¢1 < g < 400.

Let (Ax) be a sequence of weights satisfying Assumption 1; in this paper we consider Borel
integrands fi : R™ x R™*™ — [0, +00) satisfying the two following conditions:

(1) (degenerate growth conditions) there exist two constants «, 8 > 0 such that for almost
every x € R"

aAr(@) (€7 = 1) < fir(2,€) < BAR(2) (€7 + 1), (3.2)

for every £ € R™*™ and every k € N;
(2) (continuity in &) there exists L > 0 such that for almost every x € R"

i@, &1) = fr(@, &) < LA(@) (|G + &P + 16 - &, (3.3)
for every &1,& € R™*™ and every k € N.

Let A(Qp) denote the collection of all open subsets of p with Lipschitz boundary. We
consider the sequence of localised integral functionals Fy : W1 (Qg; R™) x A(Qg) — [0, +00)
defined as

/Afk(x, Vu)dz ifue Wi;ﬁp(A;Rm),

Fi(u, A) = (3.4)

400 otherwise.

We endow W(Qo;R™) with the strong L'(Qq; R™)-topology. If not otherwise specified,
throughout the paper the I'-limits will all be computed with respect to this topology.

The following theorem is the main result of this paper.
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Theorem 3.1. Let F}, be the functionals defined in (3.4). Then there exists a subsequence (Fy, )
such that for every A € A(Qo), A CC Qo, the functionals Fy, (-, A) I'-converge to the functional
Fool-, A) with Foyo : WEH(Qo; R™) x A(Qo) — [0, +00] given by
y 17 . m
Fo(u, A) = /Afoo(x,Vu) dr if u€ WA::(A,R ),

~+00 otherwise,

where, for some cz = cg(n) >0, Ao belongs to Ay(EK) and satisfies
My, = Aoo  weakly in L' (Qo).

The integrand fso: Qo X R™*™ — [0, +00) is a Borel function and for a.e. x € Qo and every
& € R™*™ js given by the following asymptotic formula

meg, (u§, Qﬂ(x))

h

foo(x, &) :=limsup lim — , (3.5)
p—0+ h—oo P
where, for every A € A(Qy),
mp,, (ug, A) := inf {Fy, (u,A): v e WOl,fkh (A;R™) + ug b,
with ug(x) := &
Moreover, fs satisfies the following properties for almost every x € Qp:
(i) for every & € R™*™
1
(o) (160 ~1) < (0,9 < )P + 1) (3.5
(i) for every &1,& € R™*™
[foo(,€1) = foo (2, 62)] < L'hoo(@) (1617 + 2P + 1)Ié1 — &, (3.7)
for some L' > 0.
Remark 3.2. We observe that if we replace (3.1) with the following stronger condition:
0 < lim inf][ A dz, lim sup][ Ay dz < 400 for every cube Q C R"”, (3.8)
k=oo Jg k—oo JQ

then Theorem 3.1 holds true without the restriction A CC Qp. Specifically, if (3.8) holds,
then if we define the functionals Fj on VV&)’CI(R”, R™) x Ay, where Ay is the collection of open,
bounded, and Lipschitz subsets of R, thanks to a diagonal argument, it can be shown that the
functionals Fj, (-, A) I'-converge with respect to the Li (R";R™)-convergence to Fuo(-, A), for
every A € Ap; moreover, Ao € A,(K) (cf. Proposition 2.4) and f is defined through (3.5) for
a.e. r € R".

We notice that (3.8) holds true in the case of admissible periodic or stationary weights (cf.

Section 8 and Remark 8.10).

The proof of Theorem 3.1 will be broken up in several intermediate results and it will be
carried out in sections 4-7. Namely, in Section 4 we prove that (up to subsequences) the func-
tionals F), T-converge to the integral functional F., on the space W1>°(Qo; R™). Moreover, in
this section we also prove that the limit integrand f., satisfies the desired growth conditions as
well as the continuity property. By means of an approximation argument, in Section 5 we extend
the I'-convergence result established in Section 4 to the whole W1!(Qg; R™), also showing that
the domain of Fi, coincides with the “limit” weighted Sobolev space Wii(@o; R™). Eventually,
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by combining the analysis in Section 6 and Section 7, we derive the asymptotic formula (3.5)
for foo.

4. T-CONVERGENCE AND INTEGRAL REPRESENTATION IN W1

In this section we show that on W% (Qo; R™) the sequence (F},) I'-converges (up to subse-
quences) to a limit functional which can be represented in an integral form.

The following theorem is the main result of the present section.

Theorem 4.1 (I-convergence in W1°). Let F}, be the functionals defined in (3.4). Then there
exists a subsequence (Fy,) such that for every A € A(Qo) the functionals Fy, (-, A) I'-converge
on WH2(A;R™) to the functional F(-, A) with F : Wh%°(Qo; R™) x A(Qo) — [0, +00) given
by

F(u,A):Afm(x,Vu)d:z:, (4.1)

for some Borel function foo : Qo X R™*™ — [0, 4+00). Moreover, the function fs satisfies the

following properties for almost every x € Qp:
(i) for every & € R™*"

(o) (167 ~1) < (09 < Pe)(P + 1), (4.2

where Moo € Ap(chK), for some c3 = c3(n) >0, and A, — Moo in L (Qo);
(ii) for every &;,& € R™*™

|foo(,€1) = fool(2,€2)| < LA (@)(|11P" + [P~ + 1)|&1 — &l (4.3)
for some L' > 0.

The proof of Theorem 4.1 will be achieved in a number of intermediate steps by means of
the so-called localisation method of I'-convergence (see, e.g., [7, Chapters 9-11] or [14, Chapters
16-19]).

To this end, we consider the localised I'-liminf and the I'-limsup of F}; i.e., we consider the
functionals F', F": W11(Qo; R™) x A(Qo) — [0, +0c] defined as

F'(u, A) :==T- likminf Fi(u, A), (4.4)
—00

F"(u, A) := T-limsup Fy(u, A), (4.5)
k—o0

for u € WH1(Qp;R™) and A € A(Qo). Then, the aim of this section is to show that, up to
subsequences, for every u € W5H(Qg; R™) and A € A(Qg) we have

F'(u,A) = F"(u, A) = F(u, A),
where F'is as in (4.1).

Remark 4.2. We observe that F’ and F” are lower semicontinuous with respect to the strong
topology of L'(Qo; R™) [14, Proposition 6.8]. They also inherit some of the properties of the
functionals Fy. Namely, as set functions they are both increasing [14, Proposition 6.7], moreover
F’ is superadditive on pairwise-disjoint sets [14, Proposition 16.12]; while as functionals they
are both local [14, Proposition 16.15].

The upper bound inequality proven in the following lemma shows that the domain of F”
(and hence also the domain of F”’) contains the space W/\li)(Qo; R™).
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Lemma 4.3. Up to subsequences, there holds
F'(u, A) < 5/ ([Tl + 1) da, (4.6)
A

for every u € W;ﬁ (Qo; R™) and A € A(Qo), where M\ is as in Proposition 2.4.

Proof. Let (Ag,) C (Mg) be the subsequence whose existence is established by Proposition 2.4.
Hence, in particular, A, — Ao weakly in L'(Qo) and Ao € A,(c4K), for some c3 = c3(n) > 0.

Let u € Wh*°(Qo; R™) and let A € A(Qo). Therefore, if F” is as in (4.5) with k replaced by
kn, by (3.2) we readily get

F"(u, A) < limsup Fy, (u, A) < hlim B/ Ay, (IVul? + 1) dz
— 00 A

h—o00

gﬁ/AAoo(lvuypﬂ)dm, (4.7)

hence (4.6) is proven for every u € Wh°(Qq; R™).

Now let u € Wiﬁ(Qo;Rm); then there exists (uj) C C®(Qg; R™) C W1°°(Qg; R™) such that
uj — u in Wic’f(Qo; R™). Hence thanks to (4.7), to the fact that u; — u in L1 (Qo; R™), and to
the lower semicontinuity of F” with respect to the strong L!(Qq; R™)-convergence, we obtain

Jj—00

F"(u, A) <liminf F"(uj, A) < lim 5/ Moo (|Vui [P + 1) da
J]—00 A

= ﬁ/ Aoo(|VulP 4+ 1) dx
A
and thus the claim. O

The following lemma shows that Fj, (almost) decreases by smooth truncations.

Lemma 4.4. Let Fy be the functionals defined in (3.4). Let A € A(Qo) and let (ug) C
WhL(Qo; R™) be such that

sup (B (s 4) + Juglla(agemy ) < +00 (4.8)
keN

Then for everyn > 0, M > 0 and for every k € N there exists a Lipschitz function @i : R™ — R™
with Lipschitz constant less than or equal to 1 satisfying

0 if [yl > bk,

for suitable constants ay, by, > 0 with M < ajp, < by, such that
Fr(pr(ur), A) < Fig(ug, A) + 1,
for every k € N. Moreover, the function pi can be chosen in a finite family independent of k.

Proof. The proof of this lemma is classical and follows the line of, e.g., [8, Lemma 3.5] with
minor modifications. However, since we work in a different functional setting, we repeat the
proof here for the readers’ convenience.

Let n > 0 and M > 0 be fixed. Let (a;) be a strictly increasing sequence of positive real
numbers such that for every j € N there exists a Lipschitz function ¢; : R™ — R™ with Lipschitz
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constant less than or equal to 1 satisfying

y if [y| < ay,
pily) = .
/ {0 if ]y| > Gj41.

For every k € N and every j € N set wi = ¢;(ug). We have

[ tavulyao= [ e,V di+ fil, 0) de
A An{|ug|<a;}

An{|ug|>aj+1}

+/ fr(z, Vwi) dz
An{a; <|uk|<a;i1}

< / fk(:L',Vuk) dx + 3 A dx
A

An{|ug|>a;+1}

+ [ Me(Vugl? +1) da,
An{a;<|ug|<aji1}

where to establish the last inequality we have used the nonnegativity of fj together with (3.2).
Let N € N be arbitrary; we now want to estimate 1/N Ejvzl Fj(wi, A), for every k € N.

To this end we start noticing that ({a; < |ux| < ajq1});en is a family of pairwise-disjoint sets.
Therefore we get

— ka],A < Fp(ug, A) + — /
¥Rl A) < Bld) = 53 [

In view of (3.1) and (4.8) we can find a constant C' > 0 such that

e dar + ﬂ/ Ml Vul? + 1) do. (4.9)
N J4

N{luk|>aj4+1}

B/ )\k(\Vuk\p + 1) dx < C, (4.10)
A
for every k € N. Moreover, thanks to Proposition 2.5 there exist ¢, > 0 such that

A . 0'/(1—‘,—0')
/ b = e (AT > aH)
An{|uk|>a;j41} Qo

for every k € N and every j € 1,...,N.
Therefore we define the sequence (a;) recursively by imposing the following condition on a;:

(4.11)

(140) /0
AN {Jug] > a1}| < [ = Qo= forevery k€N, aj > M, (4.12)
2Bccoy

which is clearly possible thanks to the boundedness of (uy) in L*(A4; R™). Eventually, by choosing
N € N in a way such that C/N < /2, gathering (4.9)-(4.12) we obtain

N

1 ,

I E Fi(wy, A) < Fy(ug, A) + 1.
i=1

Therefore, for every k € N we can find j(k) € {1,..., N} such that
Fi(w™, 4) < Fi(ug, A) +1,

hence the proof is accomplished by setting ¢y := ¢;). Finally, we notice that N is independent
of k. O
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We now use Lemma 4.4 to show that if u € W1H°(Qg; R™) then for every A € A(Qo) the
value of the I'-limsup F”(u, A) can be recovered along a sequence (wy) which is bounded in
L>(Qo; R™) and such that ur — u in L9(Qo; R™), for every 1 < g < +oc.

Proposition 4.5. Let Fy, be the functionals defined in (3.4) and let u € WH°(Qo; R™). Then
there exists a sequence (wy) C WH(Qo; R™) satisfying the following properties:
i. supy, [[ugl Lo (@rm) < 4007
ii. w — u in LY (Qo; R™) for every 1 < q < +00;
iii. im supy,_, o Fi(wg, A) = F"(u, A), for every A € A(Qp)-
Proof. Let u € WH*(Qo; R™); by [14, Proposition 8.1] there exists (uy) C W1(Qo; R™) such
that up — u in L'(Qo; R™) and
lim sup F(ug, A) = F"(u, A) < 400, (4.13)
k—o0

where the last inequality follows by Lemma 4.3.

Let n > 0 be fixed: by applying Lemma 4.4 to the sequence (uy) with M := ||u[ oo (gy:rm) We
obtain a sequence (wy) C WH1(Qo; R™) N L>=(Qo; R™) which is bounded in L>(Qo; R™), such
that wy — u in L1(Qp; R™) for every 1 < ¢ < 400 and

Fy(wg, A) < Fy(ug, A) +1, (4.14)

for every A € A(Qp). Then, taking the limsup as kK — oo in (4.14) and appealing to (4.13) we
obtain

lim sup Fy(wg, A) < F"(u, A) +n.

k—o00

Eventually the claim follows by the definition of F” and the arbitrariness of 7. O

The following proposition shows that the functionals Fj satisfy the fundamental estimate,
uniformly in k.

Proposition 4.6 (Fundamental estimate). Let F}, be the functionals defined in (3.4) and let
A € A(Qo). For everyn > 0 and for every A’, A", B € A(Qo) with A’ CC A” CC A there exists

a constant M, > 0 with the following property: for every k € N and for every u,u € W/\ll;p(A; R™)

there ezists a function ¢ € C§°(A") with ¢ = 1 in a neighbourhood of A’ and 0 < ¢ < 1 such
that

Fr(ou+ (1 —¢)ua, A’ UB)
< (1+n) (Fx(u,A") + Fy(a,B)) + M, (/ Ne|u — al? dx) +1,
S
where S := BN (A"\ 4.

Proof. Let n >0, A, A’, A”, B and S be as in the statement. We start observing that by (3.1)
there exists a constant C' > 0 such that

/ Apdr < C (4.15)
S
for every k € N. Let V € N be such that

1 Pl

Nmax{gaﬁ,?jpﬁC}Sn. (4.16)
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Let Ai,...,Ans1 be N + 1 open sets satisfying A’ CC A; cC --- CC Ayy1 cC A”, and for
i =1,...,N consider the function ¢; € C§°(A) such that suppy; C Aj4q1 and ¢; = 1 on a
neighbourhood of A;. Finally, define

1
M, = —3r~1 N oo -
= ydt T max [[Veille

For every k € N and for i = 1,..., N we have
Fi(piu+ (1 — ¢i)u, AU B)
= Fji(u, (A" U B) N A;) + Fi (@, B\ Aiy1) + Fi(piu + (1 — )i, BN (Ais1 \ 4y))
< Fy(u, A") + Fio(a, B) + Fy(piu + (1 — i), BN (Ais \ A7), (4.17)

where F}; denotes the extension of Fj, to the Borel subsets of Q.
Denote by I, ; the last term in (4.17). For every k € N and for i = 1,..., N, using (3.2) we
obtain

o <5 [ MV Gu+ (1= P o +5 [ Ao
Si Si
<3718 [ M(Veillu— P+ VuP + (Vi) o +6 [ s
S; Si
<3715 [ NV do+ 3715 [ AVl do
Si Si
+NM,7/ )\k|u—ﬂ|pdx+ﬁ/ Ak dz
Sl' Si
<975 [ €lI9ur = 1) de 371 [ (9P~ 1) de
S; Si

+NM,7/ Ailu — @? dm+3pﬂ/ A dz,
Si S’i

where S; := BN (A;41 \ A;). Therefore, by the growth condition from below (3.2) on f;, we get

p—1
I; <

B (Fy(u. S:) + Fiu(@, 51)) + NM, [ ulu—ardo s 35 [ Nia)da,
Si Si
for every k € N and for i = 1,---, N. Hence there exists iy € {1,--- , N} such that

N
1 1313 _

1
+M77/ )\k|u — ﬂ‘pdl‘—F 3pﬁ/ Ak dx
s N s
for every k € N; thus by (4.15) we get
197
N
Eventually, in view of (4.16) and (4.17) the proof is accomplished choosing ¢ := ;. O

1
Ik,io < (Fk(u,A”) + Fk(ﬂ,B)) + Mﬂ/ /\k\u — a‘p dx + N?J’BC
S

With the help of Proposition 4.5 and Proposition 4.6 we can deduce the following result
which will eventually lead to the inner regularity and subadditivity of the set function F”(u,-),
for every u € Wh™(Qg; R™).
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Lemma 4.7. Let F” be as in (4.5). Let u € WH(Qo; R™) and let A, A", B € A(Qo) be such
that A’ cc A" CcC A; then

F"(u, A’ UB) < F"(u, A") + F"(u, B). (4.18)

Proof. Let u € WH*°(Qo; R™); by Proposition 4.5 there exist (uy,) C Wil’cp(A”;]Rm) and () C
W;I’cp(B; R™) which are bounded in L*(Qo;R™), converge to u in LI(Qo;R™) for every q > 1,
and satisfy

lim sup F(ug, A”) = F"(u, A") and lim sup Fy(ty, B) = F"(u, B). (4.19)

k—oo k—o00

Let 7 > 0 be fixed; then, in view of Proposition 4.6 we can find a constant M, > 0 and a
sequence (p) of cut-off functions between A’ and A” such that

Fy(prur + (1 — ¢p)ug, A" U B)

< (1+n) (Fi(ug, A") + Fy(ug, B)) + Mn/ Aelug — g |P dz + 1,
s

where S = BN (A”\ A’). Since the sequence pjug + (1 — @)1y, converges to u in L'(Qo; R™),
by (4.19) we obtain

F"(u, AU B) < limsup Fy(ogug + (1 — ¢ )tg, A’ U B)

k—o0

<(1+n) (F'(u, A") + F"(u, B)) + M, limsup/ Ae|ug, — ag|P dz + 1.
S

k—oo

Now let ¢ > 0 be the exponent as in Theorem 2.2, using the Holder Inequality and recalling
(3.1) we get

1/(1+0) o/(1+0)
/ Nelug — Ugl? da < </ Ao dx) (/ g, — iy [PAF)/7 da:)
s s s
o/(140)
< CCQ’QOP/(H_U) (/ lug — ﬂk!p(p’a)/” d:n) .
Qo

Therefore since ||ug — @k La(Qyrm) — 0 for every ¢ > 1, we immediately obtain
limsup/ Ailug — ag|P de = 0.
k—oo JS

Hence (4.18) follows by the arbitrariness of n > 0. O

The proof of the following proposition is classical, for this reason we only sketch it here, while
we refer the reader to the monographs [7, 14| for further details.

Proposition 4.8 (I'-convergence and measure property of the I'-limit). Let F}. be the functionals
defined in (3.4). Then there erist a subsequence (kj) and a functional F: W5H(Qgp; R™) x
A(Qo) — [0, +00) such that for every u € WH(Qo; R™) and every A € A(Qo)

Flu, A) = F'(u, A) = F"(u, A), (4.20)

where F' and F" are as in (4.4) and (4.5), respectively, with k replaced by ky,.
Moreover, for every u € WH>(Qq; R™) the set function F(u,-) is the restriction to A(Qo) of
a Radon measure on Qq.
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Proof. Let (kp,) be the subsequence whose existence is established by Proposition 2.4. Thanks
to the compactness of I'-convergence [14, Theorem 8.5], a standard diagonal argument gives the
existence of a further subsequence (not relabelled), such that the corresponding functionals F’
and F” satisfy

sup{F'(u, B): B € A(Qo), B cC A} = sup{F"(u,B): B € A(Qy), B CC A} =: F(u, A),

for every u € WhH(Qp; R™) and for every A € A(Qp). We notice that the set function F(u, )
is inner regular by definition.

Moreover, by virtue of Lemma 4.7 we can reason as in [14, Proposition 18.4] to deduce that
F(u,-) is subadditive.

We now prove that (4.20), which will ensure that F is the T-limit of Fj, on W1°(Qg; R™).

Since by definition of F' we have F < F' < F" to get (4.20) it suffices to show that

F"(u, A) < F(u, A), (4.21)

for every u € W1°(Qg; R™) and A € A(Qo).
To prove (4.21) we consider the localised functional H : W1>°(Qo; R™) x A(Qg) — [0, +0c0)
defined as

H(u, A) = /A)\oo(\Vu|p+1)dx.

Therefore, by Lemma 4.3 we immediately obtain that F”(u,A) < H(u,A), for every u €
WH(Qe;R™) and A € A(Qp). For every fixed u € Wh*(Qp;R™) the set function H (u,-)
defines a Radon measure on (o, hence for every n > 0 fixed there exists a compact set K, C A
such that H(u, A\ K,) <n. Let now A", A" € A(Qo) be such that K, C A’ cC A” CC A and
let B= A\ K,. By (4.18) we have
F'(u, A) < F"(u, A") + F"(u, A\ K,,).
Then by definition of F' we readily obtain
F//(U,A) S F(U7A) +H(uaA\KT]) S F(U)A) +T’a

thus (4.21) follows by the arbitrariness of n > 0.

Finally, the inner regularity and subadditivity of F'(u,-) together with Remark 4.2 allow us
to apply the De Giorgi-Letta measure Criterion (see e.g., [14, Theorem 14.23]) to deduce that
F(u,-) is the restriction to A(Qq) of a Radon measure on @y, and thus to conclude. O

Remark 4.9. We observe that for every A € A(Qq) the functional F'(-, A) is invariant under
translations in u. Indeed, for given u € WH*(Qg; R™) and A € A(Qo) let (uz) C WH(Qo; R™)
be such that u — u in L'(Qo; R™) and limg_,eo Fi(ug, A) = F(u, A). Let now s € R™, then
clearly (uy + s) converges to u + s in L'(Qq; R™) and by (4.20)

Flu+s,A) < li]giC)I.}f Fr(ug + s, A) = klglgo Fy(ug, A) = F(u, A),
since F}, is invariant under translations in u. On the other hand, the argument above also gives
Fu,A) =F((u+s)+(=s),A) < F(u+s,A)
and thus the claim.

Theorem 4.10 (Integral representation). Let Fy, be the functionals defined in (3.4). Then there
exist a subsequence (Fy, ) and a Borel function fo : Qo X R™*™ — [0, 400), satisfying (4.2) and
(4.3), such that for every u € W1 (Qo; R™) and every A € A(Qo) there holds

F(u,A) =T- lim Fy, (u, A),
h—o00



18 C. D’ONOFRIO AND C.I. ZEPPIERI
where F : WH2(Q; R™) x A(Qg) — [0, +00) is given by
F(u,A) = / foolz, Vu) dz. (4.22)
A

Proof. Proposition 4.8 ensures the existence of a subsequence (F}, ) of (Fj) such that Fy, (u, A)
I'-converges to a functional F(u, A) for every u € W1°(Qg; R™) and every A € A(Qq). Then,
it remains to prove that the functional F' admits an integral representation as in (4.22).

We will break up the proof of the integral representation into a number of steps.

Step 1. Definition of foo. Let & € R™" be fixed and set u¢(x) := {x. By the measure
property of I established in Proposition 4.8, the set function F'(ug,-) can be extended to a
Radon measure on (g. Moreover, thanks to Lemma 4.3, F'(ug, -) is absolutely continuous with
respect to the Lebesgue measure. For every = € ¢ define

foo(lf,g) = hmsup W’

p—0t

where @, () is the cube centred at x, with side length p > 0, and sides parallel to the coordinate
planes. Then, f., is a Borel function and the Lebesgue Differentiation Theorem guarantees that

F(u£,A):Afm(m,f)dw,

for every A € A(Qo).

We now show that f, satisfies the growth and coercivity conditions as in (4.2). To this end,
we start observing that the growth condition from above readily follows from Lemma 4.3. In
fact, choosing in (4.6) v = u¢, A = Q,(x), with = Lebesgue point for Ay, the estimate from
above in (4.2) follows by dividing both sides of (4.6) by |Q,(x)|, and eventually passing to the
limit as p — 0*.

To derive the growth condition from below on fo, let u € W1(Qo;R™) and A € A(Qo) be
fixed. By the Holder Inequality and by the growth condition from below in (3.2) we get

p p—1
</ |Vul dx) < </ k| Vul? dm) </ A;l/(p_l) dx>
A A A
_ » 1/-n .\ /1) 4\
= Ae(|VulP = 1) dx AL dz + Ak dx AL dz
A A A A
1 —1/(p—1 Pt —1/(p—1) Pt
< ZFi(u, A) (/ A )dx) + </ Akdﬂc> </ AP d:c) ,
o A A A

therefore the following lower bound

a ( /A A D) d:n) o ( /A Yl dm)p _a < /A " dw) < Fu(wd),  (423)

for every k € N. Now let u € WH*(Qo; R™) and let (u) € WH(Qo;R™) be such that
up —u in LY(Qo;R™) and hlim Fy, (up, A) = F(u, A).
—00

Hence, by the lower semicontinuity of u — [, [Vu|dz with respect to the LY (Qo; R™)-topology
and by Proposition 2.4, evaluating (4.23) in (u;) and passing to the limit as h — oo we find

o (/A AL/ =) dx) o (/A |Vl dx)p —« (/A Moo da:) < F(u, A), (4.24)
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for every u € W (A;R™) and every A € A(Qp). Now let € Qo be a Lebesgue point for
Ao and Ao and choose in (4.24) u = u¢ and A = Q,(x); then, dividing both sides of (4.24) by
|Q,(x)| and passing to the limit as p — 07 give

(Ao (@) €7 = Ao ()) < fool,€), (4.25)
for a.e. x € Qo and every £ € R™*". Eventually, (2.6) entails the desired bound from below.

Step 2. Integral representation on piecewise affine functions. Let A € A(Qo) and u €
W (Qp; R™) be piecewise affine on A; i.e., there exists a finite family of pairwise disjoint open

sets A; such that |A\ U;VZI Aj| =0 and

N
u(r) =Y xa, (@) (ug + 2),
j=1

for every x € A with &/ € R™*" z; € R™ for j = 1,..., N. By Remark 4.9 and Step 1, taking
into account the locality of F', we have

N N ‘
F(u, A) :;F(U,A]‘) :JZ::l/Aj foolz, &) dx = /Afoo(as,Vu)dx,

that is, the integral representation (4.22) on piecewise affine functions.

Step 3. Convexity properties of foo. For every A € A(Qg) the functional F(-, A) is lower
semicontinuous on W1>(Qg; R™) with respect to the strong convergence of L'(Qq; R™), thus,
in particular, it is lower semicontinuous with respect to the weak* W1>°(Qq; R™)-convergence.
Therefore, the function & — foo(x,€) is Wh>-quasiconvex (and rank-1-convex) for a.e. z € Qo
(see e.g., [7, Proposition 4.3, Corollary 4.12]). Then, it is easy to check that the growth condition
(4.2) together with the convexity property of foo(z,-) yield the local Lipschitz continuity in (4.3)
(see e.g., [7, Remark 4.13]).

Step 4. Integral representation. For u € W;C’ﬁ(Qo; R™) consider the functional

ur—>/Afoo(:E,Vu) dx. (4.26)

We observe that the local Lipschitz condition (4.3) satisfied by fo, ensures that, for every A €
A(Qo), the functional (4.26) is continuous with respect to the strong W;i’(A; R™)-convergence.
Indeed, using Holder’s Inequality we easily get

/A |f00($7 vul) - foo(x, V'UQ)’ dx

1 (p—1)/p 1/p
<3r 1L (/ Moo ([Vur|? + [Vua|P 4 1) daz) </ Aoo|Vur — Vug P dx)
A A

for every wui,us € W/\léf(Qo;Rm). Moreover, arguing as in the proof of Lemma 4.7 we can
deduce that (4.26) is also continuous with respect to the strong convergence of W14(Qg; R™),
for g > p(1+0)/o.

Let u € Wh™(Qp;R™) and A € A(Qo) be given; then there exists a sequence (uj) C
Wha(Qg; R™) strongly converging to u in W19(Qg; R™) for any q € [1,00) such that its re-
strictions to A are piecewise affine. Since F' is lower semicontinuous with respect to the strong
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topology of L'(Qo; R™), appealing to Step 2 and to the continuity of (4.26) we then obtain

F(u,A) <liminf F(u;, A) —hmmf/ Joo(z, Vuj) dx—/foo x,Vu) dz

J—00 J—00

Hence to represent F' in an integral form it only remains to prove the opposite inequality. To this
end fix u € WH°(Qo; R™) and consider the functional F': W1 (Qg; R™) x A(Qo) — [0, +00)
defined as

F(v,A) = F(u+v, A).

We observe that F satisfies the same properties as F', hence there exists a Carathéodory function
heo : Qo X R™*™ — [0, +00) such that

F(v,A) < / hoo (, V) dz,
A

for every v € Wh*°(Qp; R™) and every A € A(Qp). Notice that the equality holds whenever v
is piecewise affine on A.
Let (u;) be the sequence of piecewise affine functions considered above. Then

/ hoo (2,0) dar = F(0, A) = F(u, A) < / Fool, V) da
A

= lim [ fo(z,Vu;)der = lim F(u;, A) = lim F( i —u, A)
j—00

Jj—0 J A j—0o0

< lim [ heo(z,V(uj —u))de = / heo(z,0) dx,
A

J]—00 A
hence the equality in (4.22) holds for every u € W1 (Qq; R™) and every A € A(Qo). O

Remark 4.11. From (4.25) it can be seen that actually f. satisfies the growth conditions

a (Ao (@)[EP = Ao (@) < fool2,€) < BAco(@)(JE]F +1),

for a.e. x € Qp and every £ € R™*"  which then reduce to those established in [6, 9, 29] when
)‘k; =1.

5. '-CONVERGENCE AND INTECGRAL REPRESENTATION IN Wi’p

Consider now the integral functional Fi,: WH1(Qo; R™) x A(Qo) — [0, +00] defined as

/foox Vu)dz if uEW’p(A R™),

Foo(u, A) (5.1)

+00 otherwise,

with f. as in Theorem 4.10.
The purpose of this section is to show that (up to subsequences) there holds

F'(u, A) = F"(u, A) = Fx(u, A), (5.2)

for every u € Wh1(Qo; R™) and every A € A(Qo), where F’ and F” are as in (4.4) and (4.5),
respectively. In other words we will show that, up to subsequences, the functionals Fj defined
in (3.4) I'-converge on the whole space W11 (Qq; R™) to the functional F,,, whose domain is the
(limit) weighted Sobolev space W;Cf(Qo; R™).

To do so we will make use of the following approximation result whose proof follows the line
of that of [1, Theorem II.4] (see also [17, Theorem 3.1]).
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Theorem 5.1. Let F}, be the functionals defined in (3.4). Let A CC Qo be open and with
Lipschitz boundary, let u € WH1(Qo; R™) and let (uy) C Wif(A;Rm) be such that

up — uw in LY(A;R™)  and sup/ M| Vug|P dx < +00. (5.3)
keNJ A

Then, for every T > 0 there exist: 3, > 0 with 8, — 0 as 7 — 0%, L, > 0 with L, — 400 as
T — 0%, a sequence (v}) and a function v™ in WH(R™;R™) with Lipschitz constant c(n)L.,
for some c¢(n) > 0 depending only on n, such that:

(1) v = v" in L®(Qo;R™) as k — oo;
(2) {z € A:v™(z) # uw(@)} < (m+1)7;
(8) the following estimate holds for every 7 >0 :

lim inf/ fr(z, Vug) dz > lim inf/ fr(x, Vug) de — B;, (5.4)
k—oco Ja k—oo JA.

for some open set Ar C A with |[A\ A;| <.

Proof. Without loss of generality we can assume that liminf in the left hand side of (5.4) is
actually a limit. Moreover we can also assume that (u;) C C5°(R™;R™), supp(ux) CC Qo, and

sup/ M| Vug P dx < +00. (5.5)
keN JR"
Indeed, thanks to (2.10) from (5.3) we have

Sup ||Uk || 111.0/ 4. < +00
heN || HW/\;’(AJRW) )

then, since A CC Qp, the extension result [34, Theorem 2.1.13] allows us to replace (ux) with a
sequence of functions in WAII’CP (R™; R™), whose support is compactly contained in @, and such
that (5.5) holds. Moreover, since for fixed k the space C5°(R™; R™) is dense in Wi]’cp (R™;R™) (see

e.g., [34, Corollary 2.1.6]), a diagonal argument provides us with a sequence (wg) C C5°(R™; R™),
with supp(wg) CC Qq, such that

lJur — wkHWAl];p(Rn;Rm) < % (5.6)
Then, we readily get
sup M| Vwg|P dz < 400, (5.7)
keN JR
and by the compact embedding of W/\ll’gp(Qo; R™) in L'(Qo;R™), (5.6) also implies that w;, — u

in L'(A;R™).
Further, we observe that u; and wy are close in energy so that once we establish the estimate
(5.4) along (wy), the same estimate will hold true along (ug). In fact (3.3) gives

1 (p—1)/p 1/p
< 3r-1], </ /\k(\Vwk]p + ]Vuk\p + 1) dl‘) (/ /\k\Vwk - V’U,k’p dx) s (5.8)
A A
hence gathering (5.6)-(5.8) yields

C
\Fk(wk,A) —Fk(uk,A)\ < E’
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for some constant C' > 0.
Therefore, in all that follows, with a little abuse of notation, (ug) denotes a sequence in
C5°(R™; R™), with supp(ux) CC Qo, and such that (5.5) holds.

Fork e Nandi € {1,...,m}, let u,(;) denote the i-th component of the vector-valued function
ug. By applying Theorem 2.8 to \Vu,(;)\ € LY(R"™) we deduce

/ MMVl )P de < e / Al VP de, (5.9)
n R
for every k € N, every i = 1,...,m, and for some ¢4 > 0. Hence by combining (5.5) and (5.9)

it follows that the sequence (/\k(M|Vu§f)|)p) is bounded in L!(R"), for every i = 1,...,m. Let
now 7 > 0, then Lemma 2.11 ensures the existence of a measurable set E., with

E.| <, (5.10)

of a constant d, > 0, and a subsequence (k7) such that
/ )\kr(M|Vu,(€Q|)p dx <,
B '’ J

for every j € N, every ¢ = 1,...,m, and for every measurable set B with BN E, = () and
|B| < .
To simplify the notation we drop the dependence of the sequence on j and 7, thus we write

/ Ae(M VUl )P da: < 7, (5.11)
B

for every k € N, every i = 1,..., m, and every measurable B with BN E; = and |B| < ¢,.
By the Holder Inequality we deduce

. p ) D ) 1 1 p—1
</ |vu,(;>|dx> :</ |vu,(;)|dx) g(/ Ak|vu,(;)\pda;) </ Ay /(p)da:> . (5.12)
R™ 0 0 0

hence by (3.1), (5.5), and (5.12), since A\; belongs to A,(K) we get

p
’ K
</R |vu,§>|dx> <O (5.13)

for every k € N, i = 1,...,m, and some C' > 0. In its turn (5.13) together with (2.11) provide
us with a constant L, > (¢/7)(CK/c1)'/? such that for every k € N, and i = 1,...,m

{z e R*: (M|Vul?))(z) > L,}| < min{r,5,}. (5.14)

For Kk € N, and i = 1,...,m define the sets
. m
k= Hf]; ={x eR": (M|Vu,(€l)|)(a:) < L:}, H] = ﬂHZk
i=1

Then Lemma 2.9 yields

) (2) = ) )] < es(n) Lela — g
for every k € N, 7 = 1,...,m, and every z,y € H]. Namely the functions u,(:) are Lipschitz
continuous on H] with Lipschitz constant cs(n)L,, for every k € N and every i = 1,...,m.
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Appealing to McShane’s Theorem we can extend ug) from H] N Qo to R™ keeping the same

Lipschitz constant ¢s(n)L,. We denote this extension with v,:’(i) and notice that we can assume

that v;’(i)(a:) = 0 if dist(x, Qo) > 1. We then have
v,:’(i) = u,(f), VU]:’(i) = Vu,(f) a.e. in Hj N Qo
and
HVUZ,(i)”Loo(]Rn;]Rn) < ¢s(n)L;. (5.15)
Now let 2’ € R™ be such that dist(z’, Qo) > 1, then
og V@) = oV () = o (@) < es(n) Lo (diam(Qo) +2), (5.16)
for every x € Qo. Hence, gathering (5.15) and (5.16) entails

sup g .00 0y < +00,

for every i = 1,...,m, and every 7 > 0. Therefore, up to subsequences (not relabelled), for
every 7 > 0 fixed, we get that in particular

v,:’(i) PO L*°(Qo)
as k — oo, with

V0™ | Lo (@yirny < €5(n) L,

for every i = 1,...,m. Finally, set
T 7,(1 \m T T T,(m
vk::(vk(),...,vk( )), v ::(v’(l),...,v’( )).
Now define the set B, := {x € A: v"(x) # u(x)}, then it must hold
|B-| < (m+1)7. (5.17)

To prove (5.17) we start observing that there exists a subsequence (k;) such that if

E:={zecA: Jliglo ug; () = u(z)}

then |A\ E| = 0; hence, as a consequence, |B. N E| = |B;|. Moreover, since v — v” in
L>*(A;R™) as k — oo we have that
lim vf(x) =v"(z) (5.18)
k—o0

for every « € A and hence, in particular, for every z € B, .
Assume by contradiction that |B;| > (m + 1)7, then by (5.14) we obtain

|B:NENH|=|B-NH|>T, (5.19)
for every j € N. Therefore, by (5.19) and Lemma 2.10 there exists (kj,) C (k;) such that

() (B- NENH )#0.
heN

Thus, if x belongs to the set above by (5.18) we get

V(@) = fim of, () = lim w, (2) = u(e),

which is a contradiction in view of the definition of B;. Therefore (5.17) holds.
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To conclude it only remains to prove the energy estimate (5.4). Let E; be as in (5.10); by
the nonnegativity of f; we have

[ e Vu o= Fol, Vo) di
A (A\E-)NHT

:/ fr(z, Vi) de —/ fr(x, Vi) dz. (5.20)
(A\Er) (A\E-)\H}
By (5.14) we get

(AN E-) \ Hf| <Y |(A\ Er) \ H,| < mmin{r, &}, (5.21)

i=1
hence invoking (3.2), (5.15), (5.14), (5.11), (2.3), Proposition 2.5, and (5.21) we obtain
/ fr(z, Vog)dx < 3 Ae(|[VoL|P 4+ 1) dx
(A\E:)\H] (A\E)\H]

< BmPtes(n)PLP / A dx + A dx
(A\E,)\H] A\HT

m

< s les(oprz Y |
=1

‘A \ H]:’)O’/(l"'a')
(BT,

>\k d$ + /BCCQ|Q0’ <‘C20|

Q) mr o/(1+0)
)\k(M]Vuk ’)p dx + 6062’@0| (’Q(ﬂ)

< BmP~les(n)PT + (5.22)

)0'/(1+U)

where a, := Beea|Qol (% :thus a, — 0, as 7 — 0.

Now let A, C A be an open set containing A \ E, and such that

/ fr(z, Vi) dx—/ fr(x, Vog) dz| < . (5.23)
A A\E,

We notice that this choice is always possible thanks to the growth conditions satisfied by fi
(3.2), to (5.15), and in view of Proposition 2.5. Indeed we have

/ fr(z, Vol) de < B(mP~tes(n)PLP + 1)/ A dx
A\(A\E;) A\(A\E7)
o/(1+0)
< ﬁ(mp—ICS(n)pLz; + 1)002|Q0] <W> ,
0

moreover, |[A\ A;| < |E-| <.
Eventually, by combining (5.20), (5.22), and (5.23) we deduce

/ fr(x, Vuy) dx > / fr(x, Vop) de — a; — T(ﬂmpflcg,(n)p +1),
A A,

and hence the claim follows with 3, := o, + 7(BmP~tes(n)P + 1). O

We are now in a position to show that, up to subsequences, the functionals F}, I'-converge to
Fy.
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Theorem 5.2. Let Fj, and F be the functionals defined in (3.4) and (5.1), respectively. Then
there exists a subsequence (ky) such that for every u € WH1(Qo; R™) and for every A € A(Qo)
with A CC Qg there holds

F'(u, A) = F"(u, A) = Fso(u, A), (5.24)
where F' and F" are, respectively, as in (4.4) and (4.5) with k replaced by ky,.

Proof. In all that follows (kj) denotes the subsequence provided by Theorem 4.10.
We divide the proof into two main steps.

Step 1: Lower bound. In this step we prove that
F'(u, A) > Fxo(u, A), (5.25)
for every u € Wh1(Qo; R™) and every A € A(Qo) with A CC Q.
To this end, let u € W1(Qo; R™) and A € A(Qo), A CC Qo be fixed.
Substep 1.1: u € W/\li’(A;Rm). By [14, Proposition 8.1] there exists (up) C WhH1(Qg; R™)
with uj, — v in L'(Qo; R™) such that
F'(u,A) = lihn_1>i£f Fy, (up, A). (5.26)

We observe that Lemma 4.3 guarantees that F”(u, A) < +o0; therefore, (up) C W;LP(A;R’”)
and (up to possibly passing to a subsequence) by (3.2) we get

sup/ Ay, |Vup|P da < 4-o0.
heNJ A

Now let 7 > 0 be fixed and arbitrary; Theorem 5.1 provides us with (3, ), infinitesimal as 7 — 07,
Ar C A, with [A\ A;| < 7, and (v]), v™ in WH(R";R™), such that v] — v™ in L'(Qo; R™), as
h — oco. Moreover, by (5.26) and (5.4) we obtain

F'(u,A) = liminf/ Ir, (x, Vuy,) dz
h—oo [ 4

> lim inf/ fr, (x, Vup,) de — 7 > / foolz, V) dx — 37, (5.27)
A, A,

h—o00

where the last inequality follows by Theorem 4.10, since v7 € W1°(Qq; R™).
Now let B; := {x € A: v"(x) # u(z)} be as in the proof of Theorem 5.1 and recall that

|B-| < (m+1)r. (5.28)

By (5.27) and the nonnegativity of fo, we have
F'(u, A) > / foolz, Vu)dz — f-, (5.29)

A-\B-

for every 7 > 0. Now, since |A \ A;| < 7, using (5.28) we get
A\ (A:\ B;)| < (m+2)T, (5.30)
thus, thanks to (4.2) and (5.30), we can pass to the limit as 7 — 0% in (5.29) and obtain

F'(u, A) > /Afoo(x, Vu)dr = Fyo(u, A), (5.31)

hence the lower bound for u € Wiof (A;R™).
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Substep 1.2: u ¢ Wi;f(A;Rm). In this case, from (5.1) we have Fi(u, A) = 400, hence to
conclude we need to show that F'(u, A) = +00. Assume by contradiction that
F'(u, A) < +o0.
If this is the case, we may argue exactly as in Substep 1.1 and get
+00 > F'(u, A) 2/ foo(z, Vu)dx — B;.
A\B:

By the Fatou Lemma, (4.2), and Proposition 2.6 this yields u € Wii’(A;Rm) and hence a
contradiction.

Step 2. Upper bound. In this step we prove that
F"(u, A) < Fyo(u, A), (5.32)

for every u € WH1(Qg; R™) and every A € A(Qp) with A CC Qo.
To this end, let u € WH1(Qp; R™) and A € A(Qy), A CC Qo be fixed. We start observing
that by the definition of Fi, if u ¢ W;of (A;R™) then there is nothing to prove. Therefore we

only consider the case u € W;Cf(A; R™).

Since A is Lipschitz, by [34, Theorem 2.1.13] we can find a function @ € W/\lg(Qo;Rm)
with v = @ a.e. in A. Then, by density (see e.g., [34, Corollary 2.1.6]) there exists (u;) C
WL(Qo; R™) such that u; — @ in W;i(QO;Rm). Then, by the locality of F” and Fj,, the
continuity of Fy in Wiﬁ(QO;Rm), and the L'(Qo;R™)-lower semicontinuity of F”, invoking
Theorem 4.10 we deduce

Foo(u, A) = Fo (0, A) = lim Fo(uj, A)
j—o0
= liminf F"(uj, A) > F"(a, A) = F"(u, A),
J—00
thus the upper bound.
Eventually (5.24) follows by gathering (5.25) and (5.32). O

6. CONVERGENCE OF MINIMISATION PROBLEMS

In this section we modify the domain of the functionals F}, by prescribing boundary conditions
of Dirichlet type. We then study the I'-convergence of the corresponding functionals and prove
a convergence result for the associated minimisation problems.

We start by proving a preliminary energy bound.

Proposition 6.1. Let F}, be the functionals defined in (3.4). Then there exist an exponent § > 0
and a constant C > 0 such that

p/(1+6)
</ V|0 dm) < C(Fy(u, A) + 1), (6.1)
A

for every A € A(Qq), every u € Wi;p(A; R™), and every k € N.

Proof. By Theorem 2.2 we can deduce the existence of an exponent ¢ > 0 and a constant ¢ > 0

such that
1/(1+0)
< ][ A/ =1 dx) <c < ][ AV D dx) 7 (6.2)
Q Q

for every cube @ and for every k € N.
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Now let A € A(Qo) and u € Wi]’cp(A; R™) be arbitrary, and let 6 > 0 to be chosen later. By
the Holder Inequality we have

(1+8)/p (p—1-8)/p
/ ‘vu’1+5 dr < </ )\klvu‘p d$> </ )\]:(1—‘,—5)/(]3—1_6) d.’IJ) )
A A A

For § := (p—1)o/(p+ o) it is immediate to check that
1+6  1+4+o0
p—1—-6 p—1’

/ V| '+ da
A
(146)/p
< P=1=0)1+0) by (9-1-0)/p < / el Vul? dx) ( ][ ATV gy
A Qo

Moreover, since A\ belongs to A,(K), by (3.1) we also deduce that

p—1 K
( ATV @D dz) <K
Qo ‘1

hence by (6.2) we readily get

) (p—1-6)(1+0)/p

and therefore
K\ p=1-8)(1+0)/p(p—1) (1+5)/p
/ |Vul' 0 dz < (P=1=0)(1+0)/p | | (P=1=0)/p () (/ Ak | VulP dx) )
A C1 A
Eventually, gathering (3.1), (3.2), and (6.3) gives

6
</ ‘vu’1+§dw>p/(1+ )
A

K K
< Q[P D/t (Cl> /A)\k(l')(’VUFD— 1) da + P~ Q| P~/ (1+9) (q) /AM(:E) dx

K K
< @ Quf ) () B )+ ol (1) ol
1 C1
for every k € N. Hence (6.1) immediately follows by choosing C' := max{C}, C2} with
K
O = 71 Qo| /(1) () and  C 1= aca|Qo|C1.
[65)e%
([l
Let Fj be functionals defined in (3.4). We consider F,zp : WHH(Qo; R™) x A(Qg) — [0, +o<]
given by
Fy(u, A) if ue Wyl (A;R™) + 1,

400 otherwise,

P, A) = { (6.4

with ¢ € WH(Qg; R™).
We are now in a position to prove a ['-convergence result for the functionals F,:f’ .

Theorem 6.2 (I'-convergence with boundary data). Let F]j) be the functionals defined in (6.4).
Then there exists a subsequence (ky) such that for every A € A(Qop), A CC Qo

V(. A)=T- 1 v
FY(,A) =T hli)H;oFkh( JA),
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where FY : WE(Qo: R™) x A(Qo) — [0, 400] is given by
Foo(u, A) ifue Wyt (A;R™) + ),

. (6.5)
400 otherwise,

FY(u, A) := {

with Fso as in (5.1).

Proof. Let u € WH1(Qo;R™) and A € A(Qo), with A CC Qp be fixed and let (kz) be the
subsequence whose existence is guaranteed by Theorem 5.2.

We divide the proof into two main steps.
Step 1: Lower bound. Let (up) C WH1(Qo; R™) be such that uj, — u in L'(Qo; R™). In this

step we want to show that
lim inf F}! (un, A) > FY (u, A). (6.6)

h—o00

We notice that we can always assume that
liminf F (up, A) < 400, (6.7)
h—so00 h

otherwise there is nothing to prove. Moreover, without loss of generality, we may also assume
that the liminf in (6.7) is actually a limit. Then, by the definition of F]:i we have that (up) C

Wol,fkh (A; R™) + 1; while by Theorem 5.2 we get that u € W;:(A; R™) and
Foo(u, A) <liminf Fy, (up, A) = liminf F,zi (up, A).

h—o0 h—o0
Since Wol’foo(A;Rm) = W()I’I(A;Rm) N W;i(A;Rm), to conclude it is enough to show that u

belongs to Wol’l(A;Rm) + 1.
To this end, we start observing that thanks to (6.7), Proposition 6.1 yields the existence of
an exponent d > 0 and of a constant C' > 0 such that

/ |V da < C,
A

for every h € N. Then, by Poincaré’s Inequality the sequence (uy,) is bounded in WH1+9(A4; R™).
This readily implies that, up to subsequences, u; — wu in W1’1+5(A; R™). Since (up) C
W01,1+6 (A;R™) 4 and this space is weakly closed, we immediately get u € W&’H‘S(A; R™) 4+,
and therefore the claim.

Step 2: Upper bound. We start by considering the case u € C§°(A;R™) + 1.
By Proposition 4.5 and Theorem 5.2 there exists a sequence (up) C W;];p (A;R™) such that
h
up, — u in LIY(Qo; R™) for every 1 < ¢ < +oo and
lim sup Fj, (up, A) < Foo(u, A) = F2 (u, A). (6.8)
h—o0

Starting from u, we now want to construct a recovery sequence which also satisfies the boundary
condition. To this purpose let > 0 be fixed. By the equi-integrability of the sequence (A, )
(cf. Proposition 2.5) there exists a compact set K, C A such that

fus

mn

Ak‘h’vu|p dﬁC S ||VUHZOO(A7]Rm><n) /:4\1( >\k’h d.ZU < HVU‘HPOO(A;Rmxn)/IL (69)

1

for every h € N.
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Choose A, A" € A(Qo) such that K, C A’ cC A” CC A. Then Proposition 4.6 ensures the
existence of a positive constant M, and a sequence (py,) of cut-off functions between A" and A”
such that

F, (opun + (1 — @p)u, A)
< (L+n) (Fr, (un, A”) + F, (u, A\ Ky)) + My, / Ak [un — ul? dz + 1. (6.10)
A

Set wy, 1= ppup + (1 — pp)u; then by definition (wp) C Wol’fk (A;R™) 4+ ¢ and wy, — u in
Rh
L1(Qo; R™) for every 1 < ¢ < +00. Moreover by (6.10) and (3.2) we get

Fkh (whv A) < (1 + 77)Fkh (Um A)
+(1+77)5/ )\kh(|Vu|p+1)d:L‘—|—Mn/ Ak, [un, — ul?P dx + 1. (6.11)
A\K;, A

Hence, by (6.8), (6.9), and (6.11) we have
I- limsupFli(u,A) < limsung;(wh,A)

h—o0 h—o0

< (1 =+ 77) limsup Fkh (uh7A) + (1 + n)ﬁ(Hvu”poo(A;Rmxn) + 1)77 +n

h—o0
< (L4 n)FL (u, A) + (L4 0) BVl o gy + L+ 10
Therefore by the arbitrariness of 7 > 0 we conclude that
I-limsup FY (u, A) < F¥ (u, A), (6.12)
h—o0 h

for every u € C§°(A; R™) + 1.

Now let u € Wol,’/]\?oo (A; R™)+1). We extend u to ¥ outside A; we clearly have that the extended
function (still denoted by w) belongs to Wol,foo (Qo; R™) + 4. Now let (u;) C C5°(Qo;R™) be
such that u; — v in Wiﬁ(QO;Rm), hence, in particular, u; — u strongly in L'(Qo;R™). By
the Wic’i’(Qo; R™)-continuity of F%, by (6.12), and by the lower semicontinuity of the I-limsup
with respect to the strong topology of L'(Qo; R™) we get

FY%(u, A) = lim F¥(uj, A) > lim T- limsupF,i(uj,A) >I- limsupFli(u,A),

h—o0

for every u € whp A;R™) + 1, and therefore the upper bound. O
0,X00

The following result shows that the functionals Flgj are equi-coercive with respect to the
strong L' (Qo; R™)-topology.

Proposition 6.3 (Equi-coerciveness). Let F,g’ be functionals defined in (6.4), let A € A(Qo),
A CC Qo, and let (uy) C WHL(A;R™) be such that

sup F;p(uk,A) < +00. (6.13)
keN
Then there exists a subsequence (ug, ) C (ug) and an exponent 6 > 0 such that
U, — u  weakly in W9 (A; R™),

with u € W(:)[’f\?oo (A;R™) + 4. Moreover, if we extend uy, and u to Qo by setting uy, = v and
u:=1 in Qo \ A, respectively, then uy, — u in L*(Qo; R™).
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Proof. By (6.13) and by (6.4) we have uy € W&’fk (A;R™) + 9p, for every k € N. Then, arguing
exactly as in the proof of Theorem 6.2 we may deduce the existence of a subsequence (uy, ) C (u)
which weakly converges in W11+ (4; R™) to a function u € WOLI(A; R™) 4 4. Furthermore, by
the compact embedding of W1+9(A; R™) in L11+9(A; R™) we have that, in particular, uy, — u
in L'(4;R™). Now extend ug, and u by setting uy, := v, u := 1 in Qo \ A. Then, clearly
ug, — u in L'(Qo; R™). Hence by Theorem 6.2 and by (6.13) there holds

FY (u, A) < lim inf FY (ug,, A) < +00,

thus by (6.5) we get u € W()l”fw(A;Rm) + . =

Thanks to the fundamental property of I'-convergence, by combining Theorem 6.2 and Propo-
sition 6.3 we obtain the following convergence result for the associated minimisation problems.

Theorem 6.4. Let A C A(Qo) with A CC Q. Let fr be functions satisfying (3.2) and (3.3)
and set
M, := inf {/ fr(x,Vu)dz: u € W&’fk(A;Rm) + 1!}} .
A b
Let (uy) C Wol’f\gk (A;R™) 4+ 4 be such that

(FY (ug, A) — My,) = 0.

lim
k—o0

Then, up to subsequences (not relabelled), up — Uso in LY (A;R™) with us solution to

M, := min {/ foo(z, Vu)dz: u e Wol’f\o (A;R™) —H/)} ;
A K oo
Moreover, we have My — My, as k — —+o0.

7. ASYMPTOTIC FORMULA FOR foo

In this section we derive an asymptotic formula for the integrand of the I'-limit, f.,. This
formula will be particularly useful when proving the homogenisation result in Section 8.

In all that follows Fuo: W1 (Qo; R™) x A(Qo) — [0, +00] denotes the I-limit of (Fy, ) where
(kp) as in Theorem 5.2. That is, F coincides with the integral functional

Foo(ujA):/Afoo(x,Vu) dx,

for every u € W/\li(Qo; R™), where for a.e. z € Qo and for every £ € R™*"

) Foo(ug, Q,(x
foo(z,€) = h;rjﬁp W; (7.1)
moreover, fo, satisfies (4.2) and (4.3) (cf. Theorem 4.1). We also recall that, being Fi, a I'-limit,
it is lower semicontinuous with respect to the strong L!'(Qq; R™)-convergence.
The following theorem is the main result of this section.
Theorem 7.1. For almost every x € Qo and every & € R™*"™ there holds

foo(l' f) = hmsup MFy (uf’ Qp((]?))
7 p—0+ "

; (7.2)
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where, for every A € A(Qo),

mp, (ug, A) :==min { Fao (v, A): v € Wol,foo (A;R™) + ue .
The proof of Theorem 7.1 will be achieved by combining Lemma 7.3, Lemma 7.4, and Lemma
7.5 below, by following the same strategy as in [4, Section 3] (see also [5, Section 2.2]).

As an immediate corollary of Theorem 6.4 and Theorem 7.1 we also obtain the following
asymptotic formula for foo.

Corollary 7.2 (Asymptotic formula for f). For almost every x € Qo and every & € R™*"™
there holds

foo(x, &) :=limsup lim MEk, (ug, Qp())

p—0+ h—oo "

, (7.3)

where, for every A € A(Qy),
mp, (ug, A) := inf {Fy, (v, A): v € Wol,fkh (A;R™) + ug ).

We now turn to the proof of Theorem 7.1; to this end we need to introduce the following
notation. Set A* :={Q,(x): x € Qo, p > 0} and let 6 > 0. For A € A(Qo) define

m$,_(ug, A) := inf {ZmFm (ug, Qi): Qi € A*, QiNQ; =0, diam(Q;) < 5,4\ U2, Q;| = 0} .

i=1
We notice that m%oo is decreasing in d; hence for every A € A(Qo) we can consider

mp_(ug, A) := 51_1)%1+ m%oo (ug, A). (7.4)

We start by proving the following technical lemma which is an adaptation of [4, Lemma 3.3] to
the setting of weighted Sobolev spaces.

Lemma 7.3. Let A € A(Qo), A CC Qo; there holds
Foo(ug, A) = mp_(ue, A).
Proof. We observe that the inequality
Foo(ue, A) > mp_(ug, A) (7.5)

is an immediate consequence of the definition of mj, . Indeed, let § > 0 be fixed and let (Q;)
be an admissible sequence in the sense of the definition of m‘SFoo (ug, A), then

mi (ug, A) <3 mp (ue, Qi) < Foolug, Qi) = Foolug, A),
=1 =1

thus (7.5) follows by taking the limit as 6 — 0%,
We now prove the converse inequality; i.e.,

Fuolug, A) < mi,_ (ug, A). (7.6)

To this end, let § > 0 be fixed and let (Q?) be an admissible sequence in the definition of
m‘}w (ug, A) such that

Zmpoo (e, Q) < m%oo (ug, A) + 0. (7.7)
=1
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By definition of mp_, for every i € N we can choose v) € VVO1 1 (Q2;R™) + g such that

Foo (0], Q)) < mp (ug, Q) + Q7). (7.8)
Set
o0
13 é
= vixgs + ueXgouz, 0
i=1
we claim that v € Wiﬁ(@o; R™). To prove the claim define
N

5N 9
0% = Zvi XQ;S + UEXQO\Uﬁ\LlQ?7
i=1

clearly v>V ¢ W ’p(Qo,]Rm) and v>Y — v? a.e. in Qp, as N — oo. Since v) € WO’)I\) (Q%;R™) +

ug for every i = 1,..., N, by the Poincaré Inequality in weighted Sobolev spaces (see e.g., [23,
Corollary 1]) we have

N N
o,N 1)
HU ’ ué.Hp 1P(QO Rm 2””1 _u£||p 11’(@6 Rm —_ C((S?p)zuvv é” Q5 Rmxn)
1=

for some C(d,p) > 0. By (4.2), (7.7), and (7.8) we get

WiP (QoiR™)
N
< C(8,p) (KZ/Qs |vu5|p—1> dz + (K + |€]P) Z/Q Moo da:)
=1 i =1

<C@ (fz (02,@0) + <K+15\PHAOO\L1>

< (6.9, K, ) (mip (e, 4) + 6+ 34 + (1 + 1€ Pocllica)) -

[0 — e[}

Hence, for § > 0 fixed, the sequence (v*V) is bounded in W;i(@o; R™), uniformly in N. Then,
by [25, Theorem 1.32] v? belongs to Wl’p (Qo; R™) and the claim is proven. Moreover, we have

Foo(v®, A\ U, QF) = 0; (7.9)
indeed, by (4.2)
( AN\ UZ 1Qé)<5(‘§|p+1)/ Moo dx =0
A\UoolQé
since oo € L'(Qp) and |A \ U, Q?| = 0. By combining (7.7)-(7.9) we deduce that

ZF 00,Q9) + Foo (5,A\U§>il@?)SZmFm(u§aQ?)+5ZIQ?I
=1 =1

< m%_(ug, A) + 8+ 5|Al. (7.10)

We now claim that v — ug¢ in L'(Qo; R™). If so, by virtue of the lower semicontinuity of Fu,
with respect to the strong L!(Qo; R™)-convergence, passing to the limit as § — 0% in (7.10)
would give

Foo(ug, A) < liminf Foo(v°, A) < lim mY,_(ug, A) = m}_ (ug, A)

6—0t 6—0t
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and therefore (7.6). Hence, to conclude the proof it only remains to show that v® — wug
in L'(Qo;R™). Since, in particular, v} € WO1 ’I(Qf;Rm) + u¢, by the Poincaré Inequality in

WH(Q;; R™) there exists a constant C' > 0 such that

oo
) ) 5
[v° — UEHLl(Qo;Rm) = [lv° — UEHLl(A;Rm) = Jv; — U£||L1 Q9:R™
(Q¢;R™)
=1

< C(SZHV@? — &l (@simmxny- (7.11)
i=1

Moreover, arguing similarly as above, by (4.2), (7.7), and (7.8) we deduce

o0 oo
K
S U9 =€y gpmeny S o 3 Foolu, Q8 (K + I A1
i=1 =1
< mi (ug, A) + 6 + 0] A| + (1 + [€P) [ Aocll 1 ) (7.12)
Therefore, gathering (7.4), (7.11) and (7.12) gives the desired convergence and completes the
proof. O

We also need the following lemma.

Lemma 7.4. Let A € A(Qo), 6 > 0 and define As := {z € A: dist(z,0A) > 0}. Then

Proof. Let §,n > 0. By the definition of mp_, we can choose v € Wol’foo (As; R™) 4+ ug such that

Foo(v, As) < mp (ug, As) + 1. (7.13)
Set
v in Ag,
w = ) _
u§ m Qo \ Ag,

clearly w € whe A;R™) + uge. Using (4.2) and (7.13) we have
0,00 3
me(u§,A) < Foo(wv A) = FOO(U7A5) + Foo(“{a A \ A&)

< Fo(v, As) + B(IEP +1) /A\A Ao dx

< mi, (ug, Ag) + 1+ BEP +1) / N da
A\As
Letting n — 0% we conclude that
me (v, A) < mi(ue, A9) + 8P + 1) [ A,
A\As
and therefore

M (ug, A) < liminfmp, (ug, As),

since Ao € L1(A).
Conversely, let n > 0 and choose v € W‘Jl,foo (A;R™) + ug such that

Foo(v,A) <mp, (ue, A) + 1. (7.14)
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Let (vj) € Cg°(A;R™) + ug¢ be such that v; — v in Wi;f(A;Rm). We can find §p > 0 small
enough so that (v;) C C5°(As; R™) + u¢ for every 0 < 6 < dp, hence

mpg (u§, A(g) < Foo(’l)j, A5) (715)

for every j € N. By the continuity of Fuo(-, A) with respect to the strong convergence of
W/\l;f(A;Rm), (7.14) and (7.15) we deduce that

mp, (ug, As) < Jliglo Foo(vj, As) = Foo (v, As) < Foo(v, A) < mp (ug, A) + 1. (7.16)

Letting first § — 0™ and then 7 — 0 we eventually get

limsup mp, (ue, As) < mp (ug, A).
6—0t

g

Eventually, we are in a position to prove the following lemma which, in its turn, yields the
desired derivation formula (7.2) (cf. (7.1)).

Lemma 7.5. For a.e. x € QQy there holds

L Fa(ue, Q@) . mp (e, Q)
1 — T 7 7 ] .
o T1Q,(x0)] o 1Qp()]

Proof. The proof follows arguing exactly as in [4, Lemma 3.5], now using Lemma 7.3 and Lemma
74. 0

8. STOCHASTIC HOMOGENISATION

In this last section we illustrate an application of the I'-convergence result Theorem 3.1 to
the case of stochastic homogenisation.

We start by recalling some basic notions and results from ergodic theory.

8.1. Ergodic theory. Let d > 1 be an integer; in all that follows B¢ denotes the Borel o-algebra
of R%: if d = 1 we set B := Bl.

Let (92, F, P) be a probability space and let 7 = (7)yecrr denote a group of P-preserving
transformations on (2, F, P); i.e., T is a family of measurable mappings 7, : Q@ — Q satisfying
the following properties:

o TyTy = Tyty's Ty_l = T1_y, for every y,y € R";

e the map 7, preserves the probability measure P; i.e., P(r,E) = P(E), for every y € R"
and every F € F;

e for any measurable function ¢ on €, the function ¢(w, ) := ¢(ryw) is F @ B"-measurable
on 2 x R™,

If in addition every t-invariant set £ € F has either probability 0 or 1, then 7 is called ergodic.

We also need to recall the notion of subadditive process. In what follows Ay denotes the
family of all open, bounded subsets of R™ with Lipschitz boundary.

Definition 8.1 (Subadditive process). Let 7 = (7,)ycrn be a group of P-preserving transfor-
mations on (0, F, P). A subadditive process is a function p: Q x Ay — [0,4+00) satisfying the
following properties:

(1) for every A € Ay, p(-, A) is F-measurable;

(2) for every w € Q, A€ Ay, and y € R"

p(w, A+y) = p(ryw, A);
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(3) for every w € Q, for every A € Ay, and for every finite family (A;)icr C Ao of pairwise
disjoint sets such that A; C A for every i € I and |A\ UjerA4;| =0, there holds

plw, A) <Y plw, Ai);
el

(4) there exists a constant ¢ > 0 such that for every A € Ay
0< / w(w, A)dP < c|A.
Q

Moreover, if T := (7y)yerr is ergodic then p is called a subadditive ergodic process.

We now state a version of the subadditive ergodic Theorem, originally proven by Akcoglu
and Krengel [2], which is suitable for our purposes (see [26, Theorem 4.3]).

Theorem 8.2. Let 1 : Q x Ay — [0,+00) be a subadditive process. Then there exist a F-
measurable function ¢ : Q — [0,+00) and a set Q' € F with P(Y) =1 such that

lim p(w, tQ)

e W = ¢(w),

for every w € ' and for every cube @ in R™ with sides parallel to the coordinate planes.
If in addition u is ergodic, then ¢ is constant.

For later use we also recall the Brikhoff ergodic Theorem. To this end, we preliminary need
to fix some notation. Let ¢ be a measurable function on (€2, F, P); we denote with E[p] the
expected value of ;3 i.e.,

Blyl = [ p(u)aP

For every ¢ € LY(Q) and for every o-algebra F' C F, we denote with E[p|F’] the conditional
expectation of ¢ with respect to /. We recall that E[p|F'] is the unique L'(2)-function satis-

fying
[ BeiP1@ P = [ pw)ap

for every E € F'.
We now state the following version of the Birkhoff ergodic Theorem which is convenient for
our purposes.

Theorem 8.3 (Birkhoff’s ergodic Theorem). Let ¢ € LY(2), let 7 = (7,)yern be a group of
P-preserving transformations on (2, F, P), and let F, denote the o-algebra of T-invariants sets.

Then there ezists a set Q € F with P(Q2) =1 such that

lim £ @(mw) dy = Elp| Fr](w), (8.1)

t—o00 B
for every w € Q and for every measurable bounded set B C R™ with |B| > 0.

Remark 8.4. We notice that if 7 is ergodic, then F; reduces to the trivial o-algebra, therefore
(8.1) becomes

lim + ¢(ryw)dy = E[g]. (8.2)

t—o00 B
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8.2. Setting of the problem and main results. In this section we introduce the random
integral functionals we are going to analyse. To this end, we preliminary need to define the class
of admissible random weights.

Assumption 2 (Admissible random weights). Let 7 = (7)yern be a group of P-preserving
transformations on (2, F, P). A function X : Q x R™ — [0,400) is an admissible weight if:

e )\ is F ® B"-measurable;

o ) is stationary; i.e., Nw,z +y) = Mryw,x), for every w € Q, x,y € R";

o \Nw,-) € A,(K), for every w € §;

o \(-,0) >0 in Q;

e \(-,0),A(-,0)"YP=D ¢ L1(Q).

Remark 8.5. We notice that A = A(w,x) is 7-stationary if and only if for every w € Q and
every x € R" there holds

Mw, z) = AM1pw), (8.3)

with A(w) := A\(w,0).

Since by assumption A(w,0) > 0 for every w € €, we then have E[XF'](w) > 0, for every
F' C F. Moreover, we also observe that if we assume A\, \~V®=1 ¢ LY(€2), then the Fubini
Theorem yields A(w, ), \™"®=D(w,.) € L. _(R"), for every w € Q. However, in order to apply

loc

Theorem 3.1 we need the stronger condition A(w,-) € A,(K), for every w € €.
Below we introduce the notion of stationary random integrand.
Definition 8.6 (Stationary random integrand). Let 7 = (7,)ycrn be a group of P-preserving
transformations on (2, F, P) and let A:  x R™ — [0, +00) satisfy Assumption 2.
(i) We say that f: Q x R™ x R™*™ — [0, 400) is a random integrand if:
o fis (F®B"®B™" B)-measurable;

o for every w € Q) and for every x € R™, the two following conditions hold:

ad(w,z)([{F = 1) < f(w,2,§) < BAw, z)([€[7 + 1), (8.4)
for every & € R™*™ and for some o, 5 > 0, and
flw,z,&1) = flw,2,&)| < LAw,2) (|6~ + &P + 1)l — &, (8.5)

for every &1,& € R™*™ and for some L > 0.

(1i) We say that a random integrand f is stationary if for every w € Q, for every x,y € R"
and every & € R™*™ it holds:

L4 f(wax +y7§) = f(Tyw7$7§)-
(i13) We say that a stationary random integrand f is ergodic if T = (T,)yern is ergodic.

Let f be a stationary random integrand in the sense of Definition 8.6. Let w € € be fixed
and consider the integral functional F(w) : W-! (R"; R™) x Ay — [0, +00] defined as

: loc

3 Lo g.pm
F(w)(u, A) = /Af(w,q:,Vu)da: if u € W "(A;R™), (8.6)

400 otherwise.



I'-CONVERGENCE IN WEIGHTED SOBOLEV SPACES 37

Moreover, for every w € 0, A € Ap, and £ € R™*" set

Mp(w) (e, A) = inf {/A flw,z,Vu)dx: u € Wol”f(A;Rm) + “5} (8.7)

. 1, .
= inf {/Af(w,x,Vu+§) dr:u € WOK(A,R’”)} .
The following proposition shows that for every fixed £ € R™*™ the minimisation problem in

(8.7) defines a subadditive process.

Proposition 8.7. Let f be a stationary random integrand; let F(w) and mp(, be as in (8.6)
and (8.7), respectively. Then for every & € R™*"™ the function

(w, A) = mp(ug, A)

defines a subadditive process on (2, F, P).
Moreover, for every £ € R™*™ and A € Ay

0< /Q M) (e, A) dP < AP + DE[N|AIL (8.8)

where X is as in (8.3).

Proof. Let £ € R™™ and A € Ap be fixed. We first show that w = mp(ue, A) is F-

measurable. To this end fix u € Wi’p(A;Rm), then the function (w,z) — f(w,x, Vu + &) is
F ® L"-measurable, hence by Fubini’s Theorem

w— Fw)(u+ug, A) = / flw,z, Vu+§) dx
A

is F-measurable. Observe now that Wol’){’(A; R™) endowed with the norm ||V - HLz;(A;Ran) is a
separable Banach space and that, by virtue of (8.5), the map u — F(w)(u+u¢, A) is continuous
with respect to the same norm. Then there exists a countable dense set D C I/VO1 V(A;R™) such
that

M) (ug, A) = inf Flw)(u+ug, A),

hence the map w — mp,)(ug, A) is F-measurable.
We now show that for every fixed £ € R™*" there holds

M) (Ue, A+ Y) = Mp(r,w) (ue, A),

for every w € 0, A € Apy, and y € R™. Indeed, a change of variables and the stationarity of f
yield

mpw)(ug, A +y) = inf {/ flw,z+y,Vu+§&)de: u e Wol’f(w x+y)(A;Rm)}
A b b
= inf {/A flryw,z,Vu+§)dx: u € W&’f(Tyw@)(A;Rm)} = Mp(rw) (e, A).
Let § € R™™ and w € Q be fixed. We now prove that the function A — mp(,)(ue, A) is

subadditive in the sense of Definition 8.1. To this end let A € Ay and let (4;);er be a finite
family of pairwise disjoint sets in Ay such that A; C A, for every i € I, and |A \ Ujer4;| = 0.
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Let n > 0 and choose u; € Wol’f(Ai, R™) such that F'(w)(u; +ue, Ai) < mp()(ue, Ai) +n. Define
u € Wol’f\’(A; R™) by setting u := > ,.; uiX4,.- Then by the locality of F(w) we have
M) (ug, A) < F(w)(u+ug, A) =Y F(w)(u; + ug, Ai) < mp) (ug, Ai) +n,
iel el
which proves the subadditivity thanks to the arbitrariness of n > 0.
Finally, by definition of mp(u¢, A), choosing u = 0, by (8.4) we have

0 < mpgo(ue A) < AP +1) [ Ao o (5.9)

for every & € R™*" every w € €, and every A € Ag. Therefore integrating on 2 both sides of
(8.9) and using the stationarity of A we get

0< /Q e (g, A)dP < B + 1) /Q /A A(raw) de dP = B(|EP + DE[N|A],

where to establish the last equality we have used the Tonelli Theorem together with a change of
variables in w. Eventually, we deduce both (8.8) and that (w, A) = mp(,,)(ue, A) is a subadditive
process. ]

By combining Proposition 8.7 together with the subadditive ergodic Theorem 8.2 we are now
able to establish the existence of the homogenisation formula which will eventually define the
integrand of the I'-limit (cf. Theorem 8.11 below).

Proposition 8.8. Let f be a stationary random integrand. Then there exist a set Q' € F with
P(Y) =1 and a F @ B™"*"-measurable function fuom : Q& X R™*"™ — [0, 400) such that for every
we, e R™ " and every cube Q in R™ there holds

o mpy (ug, tQ)
Jhom(w, &) = tligloW

Moreover, for every w € ', fuom satisfies the following conditions:

QBN 167 = 1) < fuom(w:6) < SERIEI)(EP + 1), (5.10)

| from (@, &1) = from(w, &) < L'ENF(w)(|& P! + &P~ + 1)]é — &, (8.11)

for every €,&1,& € R™™ and for some L' > 0, where X is as in (8.3).
If in addition f is ergodic, then funom does not depend on w and

1
() = Jim 2 [ (e, @1(0) aP, (812
for every & € R™*™. Moreover, in this case (8.10) and (8.11) become, respectively,
QB (167~ 1) < foom(®) < SE + 1) (5.13)
and
| from (€1) = faom(€2)| < L'EN (|G P71 + [P~ + 1)[&1 — &, (8.14)

Jor every &,&1, & € R™*™.
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Proof. Let £ € R™*™ be fixed; Theorem 8.2 and Proposition 8.7 ensure the existence of a set
Qf € F with P(9¢) =1 and of a F-measurable function ¢* : Q — [0, +0c) such that

¢§(w) — lim mF(w)(ufth)

lim e (8.15)

for every w € Q¢ and for every cube Q in R™.
Now let ¢ > 0 and denote with @; = Q¢(0) the cube centered at the origin and with side
length t. Let fuom : © X R™*™ — [0, +00) be the function defined as

fhom(w, &) := lim sup —mF(w)(u§, Qt).
t—ro0 |Qt‘
Let w € Q and A € Ay be fixed; we start by showing that the function
MFP(w) (ug, A)
Al
is locally Lipschitz continuous. To this end let £1,& € R™*™ let n > 0 be arbitrary, and let
u € Wol”f\)(A; R™) be such that

&

F(w)(u + Ugys A) < mMp(w) (urfz’A) + 1.
Then, appealing to (8.5) and to the Holder Inequality we deduce

A A

A A 4]
< ’/11‘/A|f(w,x,Vu+£1) ~ fw,x, Vu+ &) d + %
< 77 [ Aol —@l(Vur &l + [Fut &P+ 1 de+
< ryCwis — &l ([ Meondo)” ([ MwalieP + el +1Vut &P+ 1>d:c)pp +(§%'6}
where C(p) > 0 depends only on p. By using (8.4) (see also (8.9)) we get |
a/A)\(w,x)(|Vu + &) —1)de < F(w)(u + ug,, A) < mF(w)(u&,A) +n
<B(&l+1) [ Nwa)do (8.17)

Therefore, plugging (8.17) into (8.16) gives
Mpe(w) (u& ,A) MFE(w) (u£27 A)

|A] A

p—1

< e -al( [ Awnar) (tap +lap 0 ( [ Mewar) T am) 4 L

where C' > 0 depends on p, «, 5. Hence, by the arbitrariness of n > 0 we get

w ’A w aA
Mp( )’1(5‘51 ) M )‘j(f‘& ) <L ][ Mw, z) da (‘gl‘p—l + ’£2|p—1 + 1)‘& — &) (8.18)
A

Thus, the claim simply follows by interchanging the role of £; and &s.
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Now choose A = t@ in (8.18) with @ cube of R™ and ¢t > 0. By the stationarity of A\ and a
change of variables we obtain

Me(w) (ufl ) tQ) Mpe(w) (u§2 ) tQ) / X 1 1
0 _ i <L ]éA(Ttmw)d:c(Eﬂp + &P+ 1) - & (8.19)

and, as above, the other inequality follows by exchanging the role of {; and ;. Therefore, taking
the limsup as t — oo and invoking Theorem 8.3, we deduce the existence of a set 2 € F with

P(©2) =1 such that

lim su Mpw) (uﬁlatQ) _ Mpw) (u§2a tQ)
oo | Q) Q|

‘ < UENF )W) (16~ + (&P~ + 1) & - &,
(8.20)

for every w € €. We also observe that choosing in (8.19) Q = Q1(0), it is immedate to check
that fhom(w,-) satisfies the local Lipschitz condition (8.20), for every w € Q.

Set ' := (Neegmxn°) N, clearly P(€) = 1 and (8.15) holds true for every fixed £ € Qm*™
and every w € . Let now £ € R™*" be fixed and let (§;) C Q™*™ be such that {; — &, as
j — 0o. For w € Q' we have

w) (e, T
fhom(waf) - W‘ < |fhom(wu§) - fhom(wuéj”
L e (ug, 1Q)| [ mpw)(ug Q) mp(w)(ug, 1Q)
F [ fhom(e &) = =g M W

Then, view of (8.11), (8.15), and (8.20) we get that for every j € N there holds

wylug, T
fhom(wa 5) - W

Thus, by letting j — co we obtain

<20 BAF)(w) (IEP7 + 1177 + 1) 1€ = &1

lim sup
t—o0

M) (ug, tQ)
fhom(wv é) - tli{& tn|Q| Y
for every w € € and every £ € R™*", as desired.

Then, it only remains to show that fhom(w, ) satisfies the growth condition (8.10) for every
w € Q. The growth condition from above readily follows from

M) (ug, 1Q) - i
— o < B(EP + 1) ftQ AMw, z) dz = B(|E]P + 1) ]2 Nriow) dz (8.21)

passing to the limit as ¢ — oo, and using Theorem 8.3.
We now establish the growth condition from below. To this end let u € WO1 P(tQ;R™) be
arbitrary; then the Holder’s inequality and (8.4) give

p p—1
algPQP = a </tQ [V + ¢ dw) < F(w)(u+ ug, 1Q) (/tQ Aw, z) /@D dx)

+a (/tQ AMw, z) dx) (/tQ Aw, 2) "V =1 dx)p_l.

Dividing both sides by [tQ[P and taking the infimum over WO1 T(tQ;R™) we get

—(p—1)
okl <]{Q Alw, )~/ dw) Tl a <]{Q Aw, ) d:c) < W7
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then, recalling that A(w,-) € A,(K) we find

i - mF(w) (ufa tQ)
(] o) () 2t

Therefore, passing to the limit as ¢ — oo and using again the Birkhoff ergodic Theorem we
finally obtain the growth conditions from below in (8.10).

We notice that the F ® B"™*™-measurability of fyom follows from the F-measurability of
W > fhom(w, &) and the continuity of £ — from(w,§).

If f is ergodic, then Theorem 8.2 ensures that fhom does not depend on w. Moreover, by
(8.21) and the Birkoff ergodic Theorem we can invoke a generalised version of the dominated
convergence Theorem to deduce (8.12). Eventually (8.13) and (8.14) follow, respectively, by
integrating (8.10) and (8.11) on 2 and using the definition of conditional expectation. O

Remark 8.9. From the proof of Proposition 8.8 it can be actually seen that in the ergodic case
fhom satisfies the standard growth conditions

aBATY DI (€ — 1) < from(€) < BEN(EP + 1),

for every £ € R™*" (and similarly in the general stationary case), which then reduce to those
established in [15, 16, 27] when A = 1.

Now let (gx) “\( 0 be a vanishing sequence of strictly positive real numbers and let f be a
stationary random integrand. For w € Q let Fi(w) : Wlicl (R™;R™) x Ay — [0, +00] be the
functionals defined as

x ; 1, .Tom
Fi(w) (. A) = /Af<w, p— Vu> dr if u € WyP(A;R™), (8.22)

400 otherwise,

where for every w € Q2 and = € R"™ we set
Me(w, ) := /\<w, 3), (8.23)
with A satisfying Assumption 2.

Remark 8.10. If )\ is as in (8.23) then by Assumption 2 and the Birkhoff ergodic Theorem
there exists ' € F with P(Q') = 1 such that (3.8) holds true for every w € V.

The following homogenisation theorem is the main result of this section.

Theorem 8.11 (Stochastic homogenisation). Let f be a stationary random integrand and let
Fi(w) be as in (8.22). Then there exists Q' € F with P(Q') =1 such that for every w € Q' and
every A € Ay

F(Lfoc(R";Rm))-kliﬂgo Fio(w)(u, A) = From(w)(u, A),

where Fhom(w) : WL (R™ R™) x Ag — [0, 4-00] is the random functional defined as

. loc

/fhom(w,Vu) dx zfu c Wl,P(A;Rm)’
A

400 otherwise,

Fhom(w)(u, A) := (8.24)

with froom as in Proposition 8.8.
If in addition f is ergodic, then Fyhom s deterministic with integrand given by

Jrhom (&) = 1tlim i/Qinf {/Q o flw,z,Vu+§&)dx: u e Wolf\’(Qt(O);Rm)} dP,
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for every £ € R™*",

Proof. Let Q' € F be the measurable set whose existence is ensured by Proposition 8.8. In all
that follows we fix w in €.

In view of Remark 8.10, Theorem 3.1 provides us with a subsequence (k) such that for every
A € Ag the functionals Fy, (w)(:, A) I'-converge to the integral functional Fi(w)(-, A) with
respect to the strong L] (R™; R™)-convergence, where Fu(w) : I/Vl(ljc1 (R™R™) x Ay — [0, +)]
is given by

1, m
Fo () (1, A) /foowau)dx if u e WHP(A;R™),

400 otherwise,

we notice that fo, is nondegenerate since, by assumption, IE[:\|.7:T] (w) > 0. Moreover, again
invoking Theorem 3.1, we have

1
foo(w,x,§) = limsup — hm mp,, () (ug, Qp(7)), (8.25)
p—0t p"
for a.e. z € R™ and for every £ € R™*". Hence, from (8.25) by a change of variables we
immediately get
n

foo(w,z,&) = limsup lim kap <u§ Qp/akh< ih)>

p_>0+ h—o00

= Jim o (g, Qu(0)) = fuom (), (8.26)

t—o00

where (8.26) follows by Proposition 8.8 by setting t := p/ej, — 00, as h — oo.

As a consequence we deduce that fo, is independent of the subsequence (kj) and hence the
Urysohn Property of I'-convergence (see [14, Proposition 8.3]) allows us to conclude that the
whole sequence (Fj(w)) I'-converges to Fyom(w), for every w € €.

Eventually, in the ergodic case the claim readily follows from the corresponding statement in
Proposition 8.8. g
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