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We proveC®* regularity for minimizers: of functionals withp(z)-growth of the type
F(w,Q) = | f(z,w(z), Dw(x))dz,
Q
in the classk := {w € W@ (Q;R) : w > 4}, where the exponent functign: Q — (1, c0) is assumed

to be continuous with a modulus of continuity satisfying

1
lim sup w(p) log <;) < +o0,

p—0

andl < v < p(x) < 72 < +oo. Moreovery € W,..' (Q) is a given obstacle function, whose gradiénp

belongs to a Morrey spaog%f(@) withn — 1 < A < nandq > ~2. We do not assume any quantitative
continuity of the integrand functiofi.
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1 Introduction
The aim of this paper is to prove Holder continuity for lon@himizers of integral functionals of the type
F(u,Q) = | f(z,u(z), Du(z))dz, (1.1)
Q
in the classk := {u € WP (Q R) : u > ¢}, wherey is a fixed obstacle functiof) a bounded open set in
R™andf : Q2 x R x R® — R a Carathéodory function satisfying a non-standard graetidition of the type
L7HP) < fla,€,2) < L(p® + |22, (1.2)

wheneverr € Q, £ € R, 2 € R"; here,u € [0,1],L > 1 and the exponent function : Q@ — (1,00) is
continuous with modulus of continuity satisfying

lim sup w(p) log (1> < +o0. 1.3)
p—0 P

We note that in order to prowe”:« regularity of (local) minimizers: (provided there exists one) of the above
mentioned problem, we need neither quasiconvexity of thhetfanal 7 nor any quantified continuity assump-
tion on the integrand functiofi. On the other hand we have to impose that the obstacle fungtiges in an
appropriate Morrey spaogqo’c’\(Q) (which in particular includes that itself is Holder continuous).
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2 M. Eleuteri and J. Habermann: Holder continuity for obktgroblems with nonstandard growth

Under the before mentioned hypotheses the proof of thé-regularity result is based on the fact that Eke-
land’s variational principle (see [9]) provides a functiowhich is near ta: (our original minimizer) with respect
to the distance i/’ 1-»(*) on a suitable balBr C €. Moreover, it turns out that is a local quasi minimizer (see
Definition 2.3) of a much simpler(z)-growth functional of the type

w (|Dw|p(z) + % + 1) dz.
Br
Here, the quantity (R) depends on the radiug of the ball and the obstacle functign(see (5.6)). At this stage
we use arguments employing Ekeland’s variational primdipla way similar to [7, 17, 18]. It is worth to mention
that the missing continuity properties of the funtiotfaldo not allow a freezing procedure in our problem.
Therefore we apply Ekeland’s variational principle dilga the space$V ' »(#). These spaces are known to be
reflexive Banach spaces in the case that infp, p < supp, p < +oc. We refer the reader to [25], [26] and
[27] for a more detailed discussion of properties of gerneedl Sobolev spaces. Finally, rescaling the problem
to the unit ball in a way that the rescaled functional doesdepiend on the obstacleitself, allows us to apply
arguments of De Giorgi type for generalized )-growth conditions to prove Holder continuity for the reface
functionv. This procedure is only possible since we assume a certaimeylspace condition for the obstacle.
This assumption can be exploited in order to show that thiug@tion term involving? behaves like a certain
power of the involved radius. In conclusion, comparisonBieland’s principle provides the desired result for
u. Note here that already in [15] and [16], De Giorgi classegerieralized type fop(z)-growth conditions
were introduced and Hélder continuity was shown for quaisiimmizers of functionals| f(z, u, Du) dz with
p(z)-growth.

Regularity properties of minimizers of functionals anduimins of equations and systems wijtfx)-growth
have been discussed in a number of papers within the pastéea (forC?> andC regularity see for example
[1, 2,3, 4, 6, 10, 24] and the generalization to higher orgistesns in [22, 23]). They became of more and more
interest since they represent a borderline case betweedastiyy growth andp — ¢ growth conditions (which
were studied for example in [13, 14]). At this stage we woikd to remark that the above introduced continuity
assumption are the weakest ones in the following sense:o¥lsikowed in [29] that condition (1.3) is sufficient
to achieve higher integrability of minimizers, and on thieesthand the failure of (1.3) in general causes the loss
of any type of regularity of minimizers.

Holder continuity for obstacle problems with standardmgiowas already shown in [5] and [11]. Basically, the
proof presented here in thgx)-growth situation is according to the proof in [11]. Nevetdss many difficulties
come up due to the variable growth exponent. Even if ‘fregzis it was done in most of the proofs of Holder
continuity for variable growth problems, is — due to missguntinuity assumptions on the integrand function
f —not possible in the present situation, the quantified oaitii of p expressed by (1.3) allows to control the
distance of maximal and minimal exponents on suitably shalls. In turn, this localization procedure allows to
establish De Giorgi type estimates in the variable growitrasion (see also [15]).

The Holder continuity result of the present paper is useshimv C%“ regularity with a quantified Holder
exponentx in the situation where the modulus of continuityof the exponent functiop fulfills the stronger
conditionw(p) log % — 0 whenp — 0. This is done by the authors in [12].

Acknowledgements The authors wish to acknowledge F. Duzaar and G. Mingionenomy useful discussions.

2 Notation and statements

In the sequef2 will denote an open bounded domainift andB(z, R) the open bal{y € R™ : |z — y| < R}.
We will possibly use in the following also the notati@y (z) to indicate the balB(x, R). If u is an integrable
function defined orB(x, R), we will set

1
(e = ][ u(z)dr = / u(z)dz,
B(z,R) wn " Jp(a,R)

wherew,, is the Lebesgue measure Bf0,1). We shall also adopt the convention of writidigy; and (u)r
instead ofB(x, R) and(u),, r respectively, when the center will not be relevant or it saclfrom the context;
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moreover, unless otherwise stated, all balls consideréidhaie the same center. Finally the lettewill freely
denote a constant, not necessarily the same in any two ecmas, while only the relevant dependences will be
highlighted.

We start with the following definition.

Definition 2.1 A functionw is said to belong to the generalized Sobolev sp&ce’®) (Q; R) if u € LP@)(Q;
R) and the distributional gradieddu € LP(*)(Q;R™). Here the generalized Lebesgue spaée’) (Q;R) is
defined as the space of measurable functipn§® — R such that

/ |f ()P da < .
Q

This is a Banach space equipped with the Luxemburg norm
f

p(z)
Q A

This definition can be extended in a straightforward way todhse of vector-valued functions.
Next, we will set

F(u, A) :z/Af(:v,u(:v),Du(x))dx

for all w € W' () and for allA Q.
We adopt the following notion of local minimizer and logIminimizer:

Definition 2.2 We say that a function € W,..'(2) is a local minimizer of the functional (1.1) iDu(x)[?(*)
€ LL.(©2) and

. f(@, u(z), Du(z))de < » f(@,u(@) + ¢(x), Du(z) + Dp(z))de

for all o € W' (Q) with compact support if.

Definition 2.3 We say that a function € ¥,
if for all v € W,;' () we have

1,1

oe (9) is alocal@ minimizer of the functional (1.1) witl@ > 1,

Flu,H) < QF(v, H),
where we seff := spt(u —v) € Q.
We shall consider the following growth condition, with> 1:

L2 + 2P0 < fla,€,2) < L(p? + |22, (H1)

Moreover letw : R™ — RT be a nondecreasing continuous function, vanishing at zemah represents the
modulus of continuity op :

Ip(z) — p(y)| < w(lz —yl). (H2)

We will always assume that satisfies the following condition:

1
limsupw(R) log <—) < +00; (2.1)
R—0 R

thus in particular, without loss of generality, we may assuhat
w(R) < L|log R|™! (2.2)

forall R < 1.
No differentiability is assumed ofi with respect tar or with respect to:.
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4 M. Eleuteri and J. Habermann: Holder continuity for obktgroblems with nonstandard growth

Since all our results are local in nature, without loss ofegality we shall suppose that

I<mn<pr)<y Ve, (2.3)
and
/ |Du(z)[P™ dr < 400 . (2.4)
Q

Finally we set
K :={ue W'Y (QR) : u >}, (2.5)

wherey € WhP(@)(Q; R) is a fixed function.
Now we recall the definition of Morrey and Campanato spaces fgr example [20]).

Definition 2.4 (Morrey spaces).
LetQ be an open and bounded subseRdf let 1 < p < 400 andX > 0. By LP*(£2) we denote the linear space
of functionsu € L?(Q2) such that, if we se@(xz, p) := QN B(xo, p), we get

1/p
(. :—{ ow g | |u<x>|1’da:} < +o0.
20€S, 0<p< diam(Q2) Q(zo,p)

Itis easy to see thaku||».» ) is @ norm respect to which?*(12) is a Banach space.

Definition 2.5 (Campanato spaces).
Let 2 be an open and bounded subseRdf letp > 1 and\ > 0. By £P*(Q2) we denote the linear space of
functionsu € LP(2) such that, if we se®(zo, p) := Q N B(zo, p), we get

0€Q, 0<p< diam(Q2)

1/p
o = sw [ Ju(e) - P ey <t
Q(mva)

where

il
UWao,p i= T u(x) dz
( ) oF |Q($07p)| Q(zo,p) ( )

is the average of in Q(x, p).
Also in this case it is not difficult to show th&P-* (Q2) is a Banach space equipped with the norm

[[ull 2o @) = llullLr@) + [u]pa-

Remark 2.6 The local variantd.;> () and £[2'(Q2) are defined in a standard way

ue LPA(Q) & ue PNY) VO e

loc

uwe L) & ue LPNDY) VO eq.

loc
The main result of the paper is the following

Theorem 2.7 Letu € WP(*)(Q) be a local minimizer of the functiongl.1) in the class(2.5), where
¥ € Wil (Q) is a given obstacle function fulfilling

Dy € L (), (2.6)

with ¢ = ~, g for someg > 1 andn — y; < A < n, wherevy; and~, have been introduced if2.3) Suppose
moreover that the Lagrangiafi satisfies the growth conditiqiti1) and the functior fulfills assumptiongH?2)
and(2.1). Thenu € C2*(Q2) for somex € (0, 1).

loc
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The strategy of the proof of Theorem 2.7, which is given in@Ba5, is the following: due to (2.1), localizing
allows us to control the difference of maximal and minimabements in a balBg with suitable small radius.
Ekeland’s variational principle then provides a functioan the ballBg, which is near ta: with respect to the
distance in¥»(*)( By) and a free minimizer of a suitably modified functional (5.(sBe Section 5.2) . It turns
out (see Section 5.3) that the minimalitywofranslates int@ minimality of the functional (5.12) with a constant
Q@ which depends only o and the global boundg, and~, of p. Lemma 4.4, which takes into consideration
the fact, that the Morrey condition (2.6) allows to rescéale problem in such a way that the dependency on the
obstacle turns into a radius power, takes use of the De Gigpgiestimates which are shown in Lemma 4.2 for a
rescaled functional on the unit ball. Finally, exploitiftgtcomparison via Ekeland, the control of the oscillations
of v (see (5.14)) carries over to the functiomnd therefore provides the desired Holder continuity.

3 Some known results

The interest of Campanato’s spaces lies mainly in the faligwesult which will be used in the next sections.

Theorem 3.1 Let (2 be a bounded open Lipschitz domainitf, and letn < A < n + p. Then the space
LPA () is isomorphic ta?%(Q) with o = A%”. We also remark that, using Poindamequality, we have that,

for a weakly differentiable function, if Dv € LP*(9Q), thenv € LPPTA(Q).
Remark 3.2 Theorem 3.1 also holds for a larger class of domains (see $&@}. 2.3).
The following well known results will be needed at severabsts of the proof of our main theorem.

Lemma 3.3 ([20], Lemma 7.1)
Leta > 0 and let{x;} be a sequence of real positive numbers, such that

Yit1 < C B X11+a
withC > 0andB > 1. If

Xo < C e BT, (3.1)
we have

Xi < B7a xo
and hence in particular

lim x; = 0.

11— 00

Lemma 3.4 ([20], Lemma 7.3)
Leto(t) be a positive function, and assume that there exists a congnd a number, 0 < 7 < 1 such that
for everyR < Ry

¢(tR) < 7 p(R)+ BR”?
with0 < 8 < §, and
o(t) < qp(t" R)

for everyt in the interval(7*+! R, 7% R) (in particular this inequality holds witly = 1 if ¢ is non-decreasing).
Then for every < R < Ry we have

p(p) < C {(%)ﬁ ¢(R) +Bp"},

whereC' is a constant depending only qnr, § and 3.
We also present the following variant of the previous lemma.
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6 M. Eleuteri and J. Habermann: Holder continuity for obktgroblems with nonstandard growth

Lemma 3.5 Let ®(¢) be a nonnegative and nondecreasing function. Suppose that
B(p) < A [(%) + g] ®(R)+ BR”,

forall p < R < Ry, with A, B, «, f nonnegative constants,< «. Then there exists a constant= ¢, (4, «, )
such thatif: < gg, forall p < R < Ry, then

O(p) <c {(%)ﬁ ®(R) + Bpﬁ} :

wherec is a constant depending an 3, A, but independent aB.
We quote finally a higher integrability result for functideaf type (1.1). This result can be found in [12].

Lemma 3.6 Let O be an open subset 6f, letu € W,;'(O) be a local minimizer in the clag®.5) of the
functional(1.1)with f : O x R x R™ — R satisfying(H1), with the exponent functigmsatisfying(H2), (2.1)
and (2.3)and withg fulfilling condition(2.6). Moreover suppose that

/ |Du(z)|"dz < M,
(@]

for some constant/;. Then, there exist two positive constanjss depending om, ¢, v1, 72, L, M7, whereg is
the quantity appearing in conditiof2.6), such that, ifBr € O, then

(/.

Br/2

1/(1+46)
|Du(x)|p(m)(1+6)dx) < 00]1 | Du(z)|P™ da (3.2)
Br

1/(146)
+co ( ]l (| Dep(z) [P0+ 4 1) d:c) .
Br

The proof of our main result takes use of a well known resoltfiEkeland (see [9]), which we quote here.

Lemma 3.7 Let (X, d) be a complete metric space agd: X — (—oo,+0o0| a lower semicontinouos
funcional for which there holdsif y G < co. For givene letv € X’ be such that(v) < infy G + . Then there
existsv € X such that

d(’t_),l)) S 17
Ggv) < G(v),
G(v) < G(w)+edw,v), foral weX.

4  Preliminaries

In this section we provide the main components for the pré@heorem 2.7. Let us remark at this point that we
will especially have a careful look at the dependencies eftibnstants involved on the exponent functidm).

In particular we have to make sure that the constants do mpatraeon local bounds ¢f, denoted by, andp-,
but only on the global bounds and~, on 2. When necessary and not directly obvious, we will therefive
the detailed arguments for the replacementg,aindp- by ~v; and~- in the appearing constants.

4.1 Arefined iteration lemma

We start by proving the following result which is a generatlian of [20], Lemma 6.1.

Lemmad.llet0<6<1,A>0,B>0,1 <7 <px) <~y <+ooandletf > 0 be abounded function
satisfying

ft) < 0f(s)+A/ dz + B, (4.1)

Br
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forall » <t < s < R, whereh € LP(*)(Bg). Then there exists a constafit= C(6, y2) such that

4],
Br

Proof. Let0 < 7 < 1 be such that

p(z)

i) dz + B

fr<c o

T <1, le.l>7">40.
This means = 7(6, ~v2). Furthermore we define
to:=r, tpt1:=th+(1—-7)7"(R—7)<R.

Exploiting iteratively (4.1) we obtain

f(r) = f(to)
p(x)
< 0f(t)+ A hz) dr + B
Br It1— 1o
< ..
n—1 p(x)
< 0 f(tn)+ D0 A/ LGOI
= Br | tjt1 —
n—1 (x)
. h(x) pe
< 0f(t)+ Y 0 A/ 2 | 7P@ 4y + B
)+ 2,04 | | T=hm=

= (D).

Using the fact that —77(*) < 7=772 we estimate

n—1 ; A h(l’) p(x) n—1 .
< n —72)- ¥
1) < 9f(tn)+Z(eT ) (1_7)72/3 T dx—i—BZb‘
j=0 " J=0
1 A h(z) p(z)
< o S
- 9f(tn)+1—97”72(1—7)’72/BR R—r d:v+1_9
(1—7)" / h(z) p(x) B
= 0"f(tn) + A d .
Fltn) + AT—5 =, s |R—7 SR
Now take
. 1 (1—7)
O'_max{l A — }
and pass to the limit — co. This means’ = C(7,0,v2) = C(0,72). O

4.2 A priori estimate for a reference problem

The following a priori estimate for a fre@ minimizer of a rescaled problem to the unit ball will play antral
role in our proof. Later we will apply this result to our sitiem, determining: and the exponent functignin an
appropriate way.

Lemma 4.2 Letu € W) (B;(0)) be a localQ minimizer of the functional

Flw, B1(0)) = /B . (1Dwl® +1) ay, 4.2)
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8 M. Eleuteri and J. Habermann: Holder continuity for obktgroblems with nonstandard growth

wherep : B1(0) — (1, 00) is a uniformly continuous function, whose modulus of carityrfulfills the condition
(2.1). Suppose furthermore that there exist two constantg, such that

1

:= min < < ma =:py, and —pp < —, 4.3
P1 Bl(o)p(y)_p(y)_ Bl(égp(y) P2 p2—pL< (4.3)

and for the constants,, p2 there holdg1, ps € [y1, 2] with 1 < 3 < 72 < +o0. Suppose moreover that there
exists a constant/ such that

/ | Duf"™ dy < M. (4.4)
B1(0)

Thenw is locally bounded and satisfies the estimates

1/?2
sup [u] < e / iy 41 @.5)
By /2(0) B1(0)

with ¢ = ¢(n, v1,72, @) and

1/p2
sup u< ¢ </ uf? dy) |A071|% +1, (4.6)
By2(0) B1(0)
for some suitabler > 0, whereu, (y) := max{u(y),0} and moreovetdy ; = {x € B1(0) : u(z) > 0}; finally
¢ =c(n,M,y1,72, Q).

Remark 4.3 Estimates (4.5) and (4.6) can be proved (possibly with &éfit constant) with p, inside the
integral replaced by(y) and1/p, outside replaced by/p;. The reason for these choices of the exponents will
be clearer in Proposition 4.12 (see in particular (4.54p&%and (4.57)).

Proof.
First step: De Giorgi type estimates.For anyk € R we define the sets

Ao ={x € B5(0) : u(z) >k}, Bpo:={x € Bs(0):u(z) < k}.

We claim that for any: € R, u satisfies the inequalities

/ |Du(y)[P¥) dy < / CORL] R AV (4.7)
Ak,o Ak,ﬂ' T—0
and
U —k p(y)
/ |Du(y)|p(y) dy < 1 / L dy + ¢2 | B+, (4.8)
Bi,o Bi.» T—0O

foranyl/2 <o < 7 <1, and withcy, c2 = ¢1,¢2(Q, 71, 72)-

Indeed, forl/2 < o < s <t <7 < 1letn € C5°(B1(0)) with spty C B;,n = 1 on B,(0), |Dn| < 2
be a standard cut-off function. We sgt)) := u(y) — nw(y), wherew(y) := max{u(y) — k,0}. Testing theQ
minimality we therefore obtain

/ Du(y)PW dy < / Du(y)lP® dy
Ak,s Ak,t

IN

Q {|Dz(y)|p(y) + 1} dy
Ag.t

Q [|(1—77)Du—D77(u—k)|p(y)+1 dy
Apt
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p(y)

k
dy + | Ag 1|

< Q c/ | Du|P dy+c/ v
A, t\ Ak, s A,

t—s

with ¢ = ¢(v1,72). Adding on both sides of the inequality the quanti@ fAk . | Du(y)[P®¥) da and dividing the
resulting inequality byl 4+ ¢ Q, we obtain ’

p(y)

—k
dy + ClAk,T|a

t—s

Dul)P dy +c [

Ag,r

[ 1Duwp ay <o
Ak s Ak,t

with 6 = 1+cg <l,c= c(Q Y, 72)- Now we apply Lemma 4.1, taking into account assumption) (dith
the particular choiceg(t) := fA | Du(y) P) dy, 6 as aboveA = ¢, B = c|A .| to deduce (4.7) with
c1,02 = c1,62(2Q,71,72).

To prove (4.8), we remark that the functien: is also a@ minimizer of the functional (4.2), so that we may
argue in exactly the same way as above to deduce (4. Addwhere also in the sed;, ; we may replace: by
—u), which easily translates into (4.8).

Second step: Boundedness af estimate(4.5).

Our aim is now to prove (4.5). Therefore we start by showing

1/p2
sup u<c / ul? dy +1], (4.9)
By2(0) B1(0)
whereu, (y) := max{u(y),0}.
Forl/2 < p < r <1 letn be a function of clas€'§° (B,m) withn = 1on B, and|Dn| < = - Denoting

by p} = n"_l’;l the Sobolev conjugate ¢f;, we introduce the quantities

cmg P2_p 2mp) g P2y P2

Py n D1 D1 n

Due to assumption (4.3), we hape < pj. Introducing the quantity
Py, = / (u—k)P? dy,
Ak P

we now show that for arbitrarf < & there holds

Dy < P L ) O o (4.10)
C . .
B N N A Y N R

In a first step, setting = n(u — k), for anyk € R, we deduce by Holder's and Sobolev-Poincaré’s inequalit

/ (u—Fk)2dy = / ¢Prdy < ¢P2 dy
A A

k,p k.p Ap,r
P2

Py
s(z/ cﬁ@] | Ao
Ak,r
P2
P1
< clAuf l/ DCP dy
Ak,
P2
P1
<

¢|Apn|f [/A (IDCP® + 1) dy
k,r
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10 M. Eleuteri and J. Habermann: Holder continuity for alog problems with nonstandard growth

P2

r1

dy + | A, r| | A,

w—k ()

r—p

< ¢ / |Du|p(y)dy+/
Ak’#

Ak, ggT

with ¢ = ¢(n,y1,72, Q). Implementing (4.7) in the previous estimate, we obtairefoyk € R

u—k p(y) %
Jowmrray < el | [ R ] el ) (4.11)
k,p k,r
» P2
_ k 2 P1
< clAk,lf l/ :f dy +C|Ak,r|ﬁa
Ak,T -
with ¢ = ¢(n,y1,72, Q).
Next, we remark that foh < k& we have
U — h p2
i< [ =] (4.12)
h,r
sincew — h > k — h on A, and moreover we deduce
/A (u—Fk)P?dy < /A (u—h)P2dy < /A (u— h)P2 dy. (4.13)
k,r k,r h,r

u—nh
k—h

u—h
T—p

IN

q)k,p

h,r

Introducing these relations in (4.11) we obtain
P2
p2 P1
dy +c /
Apr

(=l o) (L)

1 c 1 1 [
< 8
B Cq’h*(w—mm) hr—p)m*(k—h)m} ’

with ¢ = ¢(n,y1,72, Q), the desired estimate (4.10).
Our aim is now to deduce a decay estimate for the quashiity to decreasing levels on balls of increasing
radii p. For this purpose we will take use of Lemma 3.3. Let us defiresdguences of levels and radii

. 1 .
ki=2d(1—-2771), p= 5 (1+27Y),

and the quantity

Xi =d PPy, , = d P2 / (u — k;)P? dy,
A

ki.pq
whered > 1 is a constant that will be chosen later. First, we note that

d__; 1 __.
kivi —ki= 527", i — piy1 = 727"
+1 5 Pi = Pi+1 4

Exploiting (4.10) with the choices = k; 1, h = k;, p = r;+1,7 = r; and the fact that > 1, we obtain

Xi+1 = d—r q)ki+1,P1:+1

< Cd7p2q)£i,pi (d—12z+1)p2s [(4 92 (d*12”1)p2}p2 p1
(4.14)

= exld =) (d/2) reime [arori 4 (d/2) 2“’2}”/”

< cd%(m*pl)fmﬁxf,

Copyright line will be provided by the publisher



mn header will be provided by the publisher 11

with ¢ = ¢(n, 71,72, Q).
Next we show that with the choice

1/p2
d=1+A4 / ul? dy , (4.15)
B1(0)

where we determine the quantitya bit later, the hypotheses of Lemma 3.3 are fulfilled for #sguence y;);.
To see this, let us first note that, sincec W'»(*)(B,(0)) and by the assumptiom, < p}, via Sobolev-
Poincaré’s inequality, we may conclude tha¢ LP2(B;(0)) and

/ lulP? dy < (M),
B1(0)

This allows us to estimate

/ W dy < / P dy < (M),
B1(0) B1(0)

and therefore

drs (P21 < (M, p1,p2) (1 _i_A%f(prm)) '
Consequently, (4.14) writes as

Xit1 < €(n, M, y1,72, Q) (1 + A%(m_pl)) 2iP20\ 7.

On the other hand, the choicedfnd the fact that > 1 immediately give

—1
Xo =d P2 / (u—d)P?dy < A™P? / ul? dy / (u—d)P2dy < AP,
Aag1 B1(0) Adn

; L dae— ofps — = 22 (p2—p1) - _ p2
We apply Lemma 3.3 with the choic#s= 2°7> > 1,C = ¢ (1 + Ar1 ) >0,a=p8-1=%2.To

guarantee that the conditian < c—1/ap-1/" is satisfied, we have to choose the quantitin such a way that
AP0 = UGG (14 AT P (4.16)

Note that, sinces — 1 = 2 and by assumptiop; — p1 < 1/n, we always have that(3 — 1) > Z—f(pg —

p1), which guarantees that equation (4.16) has a unique solotia A = A(n, M,v1,72,p1,p2, Q) < +00.
Moreover we remark that with our global boungs v, for p we have thaps(8 — 1) = p3/n € [v?/n,~3/n]
andpz/p1(p2 — p1) € [0,72/71 (2 — 71)]. Furthermore the solutiod of equation (4.16) depends continuously
on the parametens andps.

Lemma 3.3 now gives

lim x; =0,
which, noting thatim, .. ¢; = 1/2 andlim, ., k; = 2d, directly translates int@Azd,l/Q\ = 0 and therefore

sup u < 2d.
B12(0)

Taking into account the choice dfin (4.15), we end up with

1/p2
sup u<c / ul? dy +1],
B1/2(0) B1(0)
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12 M. Eleuteri and J. Habermann: Holder continuity for alog problems with nonstandard growth

with ¢ = ¢(n, v1, 72,4, M, Q). At this point the above argumentation for the dependencé oh the bounds
p1 andps allows us to conclude that the constantan be replaced by a constant which depends only on the
global boundsy; and+, instead ofp; andp,. (Note thatc is a continuous function ip; andp, on a compact set

{(p1.p2) € [11,72)% : P2 =M}
An argument similar to the preceding one with the functian using (4.8) instead of (4.7) yields

1/p2
sup (—u) <ce¢ / (—u)? dy +1]. (4.17)
By2(0) B1(0)
Therefore putting together (4.9) and (4.17), we finally delihe desired estimate (4.5). O

Third step: Boundedness ofu: estimate (4.6).
Starting again from (4.11), taking into account (4.12) afd 8) and recalling that for any < k£ andp < r
we have|A4, ,| < |Aj,.|, we deduce instead of (4.10) the slightely different estéma

» /p 1 1 :D2/P1
2 1 1>
(I)k,p S C(TL,’Yl,’YQ, Q)q)h7r |Ah,T| |7’ — p|p2 + |I€ — h|p2 (418)
We observe that
e—fB= P2_a
n
where we can choose suitatlea such that
- -1 — —
i (p2 —1)(p2 — p1) a< p2(p2 pl)'
P1 p1
Taking into account thatdy, ,| < |Ay | so tha 4, ,|* < |Ap|%, we deduce from (4.18)
B / [}+ / 1 1 P2/P1
a p2/P1 p1/n
q)k-ﬁ |Ak-,P| S Cq)h,r |Ahﬂ“| |7° — p|p2 + |]€ — h|p2
At this point, taking into account that
P> (B + 72) &
n - D1
we deduce that
A 3 < LA P4 (DS < 93, e [ L1 )"
T = ,T ,T = “h,r T |T _ p|P2 |k — h|P2
Therefore
_ _ /p1
- f+r2 1 (3+22)a 1 1 bz
] A < Cp, P , P1
k=P| k-,P| = h,r |]€ . h|P2B | h, | |7° _p|p2 + |k— h|p2
Setting
(i)k,t = (I’k,t |Ak,t|&7
we have
- Az [ 1 R
O, < CP, ™ . 4.19
R | e I @29
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To apply Lemma 3.3 we také > 1 which we determine later and set

. 1 .
ki = d(l - 2_1), Ty = 5(1 + 2_1).

and therefore have that

1, d__,
7’i+1—7"i:12 ; ki+1_ki:§2 .

Rewriting (4.19) withp := ;41,7 := ry, k := kip1,h := k; andy; := d—mci)ki,” and exploiting again the fact
thatd > 1, we deduce

Xi+1 = " (i)kiﬂ“i
5 P2
< egpe (i)iwri—f { 1 n 1 1 1 )
- P (i — )P (ki — k)P (ki1 — ki)p2 P
P2 2
4P2 P2 pT op2f3 5.pay A4E2
< d P2 . ‘ . ~dp2(5+p )R
> ¢ {2—11)2 + dp22—1102} dp289—ip2p X
< clnynn, )R p02in R OHE
We now choose
1/p2 ~
di=1+A </ uP? dy) |Ag1|P/P2, (4.20)
Ao,1

where A will be fixed a bit later. Analoguously to the preceding arguntation we observe that

1/p2
B1(0)

and therefore

d%(PZ_Pl) <é (1 _i_A%(pz—m)) 7

with ¢ = é(n, M, y1, 72, 3). Moreover, with (4.20) we have

ond_pz/
A

We setB = 2r2(3+p2/p1) C = ¢ (1 + flm/?’l(?’fpl)), a = 3+ p2/p1 — 1. The assumptions of Lemma 3.3 are
satisfied, if we chooseél in such a way that

AR = g PR (14 ARG

(u — ko)?? dy| Apy ro|? = d"’2|A071|3/ uP? dy < AP,

kg,ro Aop1

(we note thatt and/3 can be chosen in such a way that the preceding equation haguetsolution) < A =

A(n, M, v1,72,p1,p2, Q) < 400).
By Lemma 3.3 we conclude that

lim x; =0
and as
. 1 .
lim r; = 3 lim k; =d,
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14 M. Eleuteri and J. Habermann: Holder continuity for alog problems with nonstandard growth

we have thatA, ;2| = 0, that is, using (4.20)

1/p2
sup u< d=c / uP? dy |A0,1|%+1,
By2(0) Ap1

i.e. (4.6) withc = ¢(n, M,v1,72, A, Q). Again we remark here that by a compactness argument, tmgetth
the notes above, concerning the parametewe conclude that the constantnay be replaced by a constant
CEc(n7M7711727Q)' O

4.3 A priori h élder continuity result.

Let By = B(xo,R) C Qand letp : Bg — (1,00) be a uniformly continuous function which modulus of
continuity fulfills condition (2.1) (and therefore in pantilar (2.2)); suppose that there exist constants- such
that

71 < pr:=minp(z) < p(z) < py := max(z) < o. (4.21)
BR BR
We set
1/171
H(R) = L/ (1DYIP™ +1)dz, K :=K(R):= (1+ H}gf)) :
Br

whereL appears in (2.2) and with given function satisfying (2.6). We moreover set

A—n+
p2>
D2

= 0. (4.22)

Let us note that by (2.2) we may choose the radius R; = R1(n, A\, 71,72, L,w(+)) > 0 so small that

1 r2—Pr1
1\»* 2 N P1
<= - < 1. .
e (D)7 () < 429
SinceH (R) < R%, we immediately deduce
H(R) 1/p1 1, 1/p1 9\ /P .
K=(1+—2>22 <|{1+=R"™" <|= . 4.24
(1 5™ < (1 L) < (2) " 024

On the other hand, by the continuity p&ind (2.2) we obtain

pP2—P1

KPep < (%) T < (R*““’rm))l/pl < (R*M?R))lm <é(n, Ly, 2, w(4),
which yields
K7 > Kr@ > x> Lge s Lo (4.25)
C C

Let noww € W,o")(By) be a free local minimizer of the functional

w i <|Dw|p(m) LHB) 1> dz. (4.26)
Br R"

The aim of this section is to prove thatis locally Holder continuous and provide a useful decayneste
(namely (4.52)). This is the key to the proof of our main theoy since it will turn out that the minimizer of
the original problem in the obstacle class (2.5) is in fadaal freeQ minimizer of the functional above.
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The proof of the Holder continuity af is carried out by means of different steps, namely Lemmas#4%
4.10 and Propositions 4.11, 4.12. Throughout the sectiowilassume that there exists a constafitsuch that

/ | D[P da < M. (4.27)
Br

In a first step we show that a rescaled version for the funetiisra local freeQ minimizer of the functional (4.2)
and therefore locally bounded, satisfying estimates iritsyfi(4.5).

Lemma 4.4 Letv € W,é’cp(””)(BR) be a local Q@ minimizer of the functional4.26) Thenwv satisfies the
following estimates

1/p2
sup v < ¢ <]Z of? d:c) +cR7, (4.28)
Bry/2 Br
1/p2
sup (—v) < ¢ <][ (—v)k? d:v) +cRY, (4.29)
Br/2 Br

with ¢ = ¢(n, 71, 72, Q) and additionally

Pz f4m R
supv§c<][ (v—no)pzdw> ‘—0
Bry/2 Br * R

for some suitablé, for all ko < supp, v and withc = ¢(n, L, v1,72, Q).

Remark 4.5 Estimates (4.28) and (4.29) still holdiifand—uv are replaced respectively by- ko andkg — v,
foranyinfp, v < ko < supg,, v. For the justification on these restrictions ansee Remark 4.6.

Remark 4.6 We just would like to focus our attention on the restrictionsg in (4.30). It is clear that (4.30)
is interesting only for, < supp, v, because otherwise we would have— o) = 0. On the other hand this
makes sense as, by (4.28)yifs a local@ minimizer of the functional (4.26) thenis locally bounded. A similar
argument justifies Remark 4.5. These restrictions@will be used later (see (4.53)).

Proof.

First step: Rescaling the problem.We set

" LR + ko, (4.30)

B(y) = KLRU(;EO + Ry), (4.31)

and now show that is a localQ minimizer of the functional (4.2), wittQ = Q(Q,n, L,y1,72) andp(y) =
p(zo + Ry).
Therefore letp € C°(B1(0)). Thenp(z) := K Rp(*52) € C&(Br(xo)). By the Q minimality of v,
also using (4.25), we obtain (denotifg= spt ) andsS := spt()):
p(zo+Ry)
+ 1) dy

/5 (IDﬁ(y)Iﬁ(y) + 1) dy /S <‘W%T+Ry)

B 1 Du(z) p()
= ﬁ/g <‘ K + 1] dx

(4.25) 1
p(x) P

= Rkn /S ('D“(I” tE 1) dx

1

p(x) P

S RoEm Q/S (IDU(I) + Do(a)|P'™) + K 1) da (4.32)
4 | Du(z) + Dep(a) )
= @< /S ( oo +1) do
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16 M. Eleuteri and J. Habermann: Holder continuity for alog problems with nonstandard growth

(4.25) p(z)
2 Lof (P )
s

- R K
— 0c [ (Do) + DEwI +1) d
S

which yields the desired estimate with= Q(Q, n, L, y1,72) := QF.

Second step: Sup- estimatesThe above estimate shows, thats a localQ minimizer of the functional
(4.2), where the exponent functipns replaced by the rescaled functipnOn the other hand, singg = p- and
p1 = p1, assumption (4.3) is satisfied, if we take the radius. Ry = Ra(n,w(+)) so small thaps — p; < =
Moreover, by (4.27) also (4.4) is satisfied. This allows uafply Lemma 4.2 which yields, that estimates (4 5),
(4.5) and especially (4.9) and (4.17) hold for the function

The desired estimates (4.28) and (4.29) now follow by résgaNoting that

v(zo+Ry) 1

3(y) v(eo+Ry) = — ()
sup o(y)= sup ——==— sup v(xg Y sup v(x).
yEBy 2(0) RycBrp© KR KR o RrycBpa(a0) KR .ny,,

and on the other hand that

1/p2 1/pa 1/p2
_ P2 ] 1
P2 dy — |:/ Y+ - d/x} = (—) |:][ ob? dx:| 5
l /BI(O) * 1 Br (KR) R® KR Br

finally multiplying by K R and taking use of (2.2), (2.6), (4.22) and (4.25), we obtain

)\n+1

A—n P2 P1—P2

KR< cRmn "' =¢R =cRn"R n < cR,
with ¢ = ¢(v1, 72, L), from what we deduce (4.28).

Estimate (4.30) can be achieved via (4.6) by a similar argumtaking into account thatd(0, R)| =
R™|A(0,1)| and then writing — ¢ instead ofv. O

Remark 4.7 We note that the ability of rescaling ti@minimizerv of (4.26) in such a way that one obtains a
Q@ minimizerd of the functional (4.2), which is completely independenthaf obstacle, is mainly due to the fact
that the obstacle lies in an appropriate Morrey space (gartfumentation for (4.25)).

Remark 4.8 If in Lemma 4.4 we replace (4.31) by

(y) := ﬁv(mo + ry).

for anyr such thatB,. € Bg, we have that (4.28), (4.29) and (4.30) still hold wRhreplaced by-; this because
in (4.32) we only used the definition of loc& minimizer which can be applied also in this new situationfas i
p € CX(By(x0)) with B, € Bg, then in particulary € C°(Bg(x)).

Lemma 4.9 Letv € Wl1 p(”)(BR) be a localQ minimizer of the functiondl.26) satisfying(4.27) Then for
every couple of ball®, C B, € Bgr having the same centep and for everyt € R v fulfills the following two
estimates

[ _ | |P@ T
/ |DoP®) da < ¢ / Y dr + |, (4.33)
Ap,p Ap 1T =P |
and
[ _ | |P@) )
/ |DoP®) do < ¢ / Y dr + |, (4.34)
By, B, 1T =P |

with ¢ = ¢(Q, y1,72), where we set
Agr ={z € B, : v(z) >k}, By, ={z € B, : v(x) < k}.
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Proof. We use an argument similar to the one employed to achievg #ad’ (4.8). Fop < t < s < r,
letn € C2°(B,) with spty C B,,n = 1 0on By, |Dn| < -2 be a standard cut-off function. We ssftr) :=
v(xz) — nw(x), wherew(z) := max{v(x) — k,0}. Testing theQ minimality we obtain

DvlP®) dx < 2 4+ |Dvl? p(z)/2 dx
| Dv| I
Ak,t Ak,s

< of (2+|D2)" da:+(Q—1)/ <HSEf) +1> dz.
Ap.s

Ap,s

The second integral we handle, using (2.6), as follows

H
/ ( Ef)+1> dr < / Ls‘"(/ |D¢|P<y>+1dy) dr + | Bs|
Ap,s s Ap.s B
< sfnL/ / |D1/)|p(y)dyd:c+/ / s "Ldydzx + |Bs|
B, JB. B, /B,
< s+ Ls" +w, s < es.

We estimate the first integral as follows:

/ (u2+|Dz|2)p(z)/2 de
Ak,s

x)/2
= /A (M2 + (1 —n)Dv — Dn(v — k)|2)p( 2 e
ks

C/ (‘LL2+|D’U|2)Z)(I)/2 dI‘—'—C/
Ak, s\ Akt Ag,s

—k p(z)
c/ | Dy|P(®) d:c—i—c/ Y dx| .
A, s\ Ak ¢ Ak,s

s—t
Putting these estimates together we deduce

/ |DvP®) dz < ¢Q / | Do[P®) da +/
At Ap s\ Ag,t Ap,s

with ¢ = ¢(n,71,72) andc = c(n, Q, ||D|Lar(p,))- Now, adding on both sides of the inequality the term
Qé [, |Dv[P™) dx and dividing the resulting inequality by+ Q¢, we obtain

/ | D[P dz SG/ | Dy[P(®) da:—i—c/
At Ap.s Ap.s

foranyp <t < s <rwithf = % <1l,e=c¢(n,Q,71,72) andd = 6(n, Q,v1,72). Therefore, taking into
account (4.27), Lemma 4.1 provides the desired inequdliBa).
On the other hand, repeating exactly the same argumentddutittion—v, which is also aQ minimizer of
the functional (4.26), we end up with (4.34). O
Let us introduce some additional notation which we will ugethe rest of this section. For a given radius
and a functiorv we define

p(z)

—k
Y do + |Ag.s|

s —

IN

IN

p(z)

dx

—k
Y —l—cs’\,

s—t

p(z)

Lx)_k da:—i—m")‘,

s—1t

M(r) := supw, m(r) := inf v, (4.35)
B, B
and
osqu,r) := max v — miny. (4.36)
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18 M. Eleuteri and J. Habermann: Holder continuity for alog problems with nonstandard growth

Moreover for a given integere N we define the quantity
ki := M(4r) — 27" tosquv, 4r). (4.37)

The following Lemma is a rather technical one, which will lseful for the proof of Proposition 4.11.

Lemma 4.10 Letv € W,})g’(w)(BR) be a localQ minimizer of the functiong¥.26)and letro = 1 (M (4r) +
m(4r)) for someBy, € Br. Assume that

| Awo2r| < 70 |Bas|  for someyo < 1. (4.38)
If for an integerv it holds that

osc(v, 4r) > 2V, (4.39)
wherey = %, as introduced ir(4.22) then there holds

n(p1—1)

|Ak, 2r] < cpv P1O=D P (4.40)

Wlth Cy = CU(711727 L7 Q)
Proof. In a first step of the proof, let us define for arbitrary < h < k the function

(k—h) if v>k
w(xz) =< (v—~h) if h<v<k
0 if v<k.

Sincew = 0in By, \ Ay,.» and|Ba, \ A, 2-| > (1 — ) | B2, due to (4.38), Sobolev’s inequality provides

11
</ wreT d:c) < c/ |Dw|d:c:/ |Dw|da::c/ |Dv| dx,
Ba,. Ba, A A

where we sef\ = Ay, o, \ A 2. We therefore have

11 Ey
(k—h) | Apar| 7 < (/ Wt d:c> < c|AlVAr </ | DulP! d:c> . (4.41)
Ba, An2r

On the other hand, applying Lemma 4.9, estimate (4.33)tiaddily noting thatv — k < M (4r) — h on the set
Ay 4 we deduce (recalling also that< £ and\ < n)

/ |Dv|p1dx§/ (D@ + 1) da
Ak,27‘ Ak,27‘

<c /
Ak,47‘

< er™TP2 (M(4r) — h)Pr 4 ¢y TPz pAT P2
<ecr™ P2 [(M(4r) — h)Pr P2

v—k p(x)

r

dz +cr? (4.42)

with ¢ = ¢(v1, 72, @, L), where we assumed thaf (4r) — h < 1, due to the fact that > .
Forh < k < k,, we have, using (4.37) and (4.39)

MA4r)y—h> M(4r) —k, > 17, (4.43)
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and hence, combining (4.41), (4.42) and (4.39), we end up wit

n—1 p1=1 n—py 1
(k= h)|Ak2r| ™ <clAlpr ror [(M(4r) — h)P* + 7 P21

(4£3)C |A| e e T (M (4r) — h). (@49
Exploiting the continuity (2.2), and therefore
pPrPz < () < c(L),
the preceding inequality simplifies to
(k= h) [ A7 < c|A]FT 75 (M(ar) — h). (4.45)

In a second step, we apply estimate (4.45) to the levels

k=k; = M(4r) — 27"~ osc(v, 4r), h=Fk_.
Noting that

ki — ki =27" % osc(v,4r)  M(4r) —h = M(4r) — k;_1 = 27 % osc(v, 4r),
and

Ai = Ak171,27‘ \ Ak¢,27‘7

and raising both sides of estimate (4.45) to the po;.;\?gﬁ, we obtain (we recall that; < k,, so|Ag, 2| <
|Aki-,27“|)

pi(n—1) pi(n—1) n—p1
|AkV72T|n(p171) < |Aki72r|n(p171) < ¢rrit |Az|

Summing up the preceding estimate fot 1 ... v and taking into account that, singg = x, there holds

v

Z |Al| = |{$ € Bo,: ko < U(,T) < kl,}l < |Amo,2r|7

i=1
we obtain
p1(n—1) n—p; (438)  pi(n-1)
v Ap, o D < erdi |4, S er R
and the desired inequality follows, with= ¢(v1, 72, L, Q). O

The following proposition is the key to the proof of Holdentinuity of the functiorv. It provides a quanti-
tative estimate for the oscillations ofon shrinking balls, which will turn out to be the key for theamtitative
estimates of Proposition 4.12.

Proposition 4.11 Letv € Wkl,”’(””)(BR) be a local@ minimizer of the functiongl4.26) Thenv is locally

C
Holder continuous iBr and there existd < o < v < 1 (wherey has been introduced i(.22) such that the

following estimate holds

osqu,p) < ¢ { (g)a osquv,r) + po‘} (4.46)

foreveryp < r < R/4, withc = ¢(n, L, y1, 72, Q).
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20 M. Eleuteri and J. Habermann: Holder continuity for alog problems with nonstandard growth

Proof. Let0 < r < R/4 and, as in the lemma befokg = 3 (M (4r) +m(4r)). We may assume without loss
of generality that

1
|Am0,27‘| S 5 |BZT|7 (447)

since otherwise we would hayB,., or| = |Bar| — |Aug.2r| < % | B2,-| which translates into (4.47) if we replace
v by —v. Recalling the definition of; in (4.37), for any given integer we havek, > xg.

First we observe that due to Lemma 4uis locally bounded and satisfies estimate (4.30), which wg ma
write with R replaced by andx, replaced by, :

1/p2
sup(v—k,) <c <]Z (v — k)% da:>
B,./2 Ba,

We note at this point, that the replacementroby r is justified via Lemma 4.8. On the other hand, since we
may guarantee thdt, < M (2r), estimate (4.30) holds, if we replace the h@Jl on the right hand side of the
inequality by the ball of doubled radius;,..

Estimating the integral on the right hand side of the prawgdiequality

&
P2

Ap, 2
ITRv,ar +T’Y

,r.n

]l (v — k,,)’f dox = cr"/ (v —ky,)P? dx < ¢ sup(v — kl,)|AkV_’2T|1/1027
Ba,

Aky,27‘ Bar.
we deduce
A at1
P2
sup (v — k) < &, sup(v — k) ‘ bv 2 + 77, (4.48)
B,/ B, rr
Wlth E1/ = Eu(na L1717’721 Q)
Let us choose now the integeiin such a way that
atl  n(p1—1) a+1 1
&l/ CUP2 v pin=1) pa < -,
-2
wherec, is the constant appearing in (4.40).
In the case that
osqu, 2r) > 2Vt (4.49)

we are in the situation to apply Lemma 4.10, estimate (4.48)4.48) to conclude

a+1

Ap or| P2
M (C) —k, = SUP(U — ku) < ¢, Sup(y _ ku) ’M P2 .
2 B, /s Bay o
1
< 3 (M(4r) — k) +17.

Subtracting on both sides of the inequality the quamit{/g) and using the fact that (
together with the definition of,

£) > m(2r), we have,

r

2

)< tos it ()

1 1 1
— M(4T) — W OSC(U, 47’) + 5 W 050('[},47") —m (g) + 7’7
1 1

= OSC(’U,4T‘) |:1 - ﬁ + 2U+2:| + 77

0sc (v,

(4.50)

1
= 03((1},47“) (1 — m) + ’I"V.

Copyright line will be provided by the publisher



mn header will be provided by the publisher 21

In conclusion, either the function dsc r) satisfies the above relation (4.49), wich implies (4.50klse there
holds

osqu, 4r) < 2V,

In any case we have
r 1 V1 Ay
OSC(’U, 5) < 1-— m OS((U, 47') +2 r,

for any radiug) < » < R/4. Applying Lemma 3.4 with the choices= 1/8 andé = log,. (1 — ﬁ) moreover
settinga := min{4d, v} and requiring in particular thét < « < 1, we obtain (4.46). O

Proposition 4.12 Letv € Wkl)’cp(m)(BR) be a local @ minimizer of the functional4.26) Then, for every
p < R we have

P n+p2 o ntpe o
v — (v rs C\—= V—\V)R X cp .
o= (), do < ¢ (4) [v = (0)R["* d + c p 72 (451)
B, R Br

with ¢ = ¢(n,v1, 72, L, @), and

n—po+ «
/ |Dv|p(z)da:§6(£) o / |Do|P®) da 4 ¢ pnP2tP2 e, (4.52)
B, R Br

with ¢ = ¢(n, v1, 72, L, @, M) and where) < « < 1 is the constant appearing i#.46)

Proof. We shall prove (4.51) first. Let us write (4.28) and (4.29)wit/2 = r andv and —v replaced
by v — (v), and (v), — v respectively (this is possible due to Remarks 4.5 — 4.8, thegewith the fact that
infp, v < (u), <suppg v). Summing both sides of the inequalities obtained

1/p2
osqu,r) < ¢ <]Z v — (v),[P? da:> +cr. (4.53)
Bay

Now we first remark that

1/p2 r 1/p2
o] e[ f o= @l e+ 00 - @]
B2‘l‘ L B27‘

11/p2

[ 1
<c ]l v — (v)2,|P? dx +c
L/ Ba, J

(U)Qr T 5.

<c ]l v — (v)2,|P? dx +c
LJ Bay J

<c ][ v = (v)2,|P? dx ,
L B27‘

with ¢ = ¢(v1,72). Therefore we have

1/p2
osqu,r) < ¢ <]Z v — (v)2,]P? d:c) +er. (4.55)
Ba,
On the other hand, for any< r

]ZB v — (v),[P* dz < osqu, p)P?; (4.56)

P

Copyright line will be provided by the publisher



22 M. Eleuteri and J. Habermann: Holder continuity for alog problems with nonstandard growth

hence, taking into account (4.46), we get for » = R/2 (we recall thatv < )
folo-yri < ostup)
BP
(e p2
() ostnr 1)
c {(g)pzaosc(v,r)m —|—pp2°‘} (4.57)

(4.55) p\P2
< e (5) L o= et e,
R B

with ¢ = ¢(n, v1, 72, L, Q), where in the last line we used the fact that R/2. Therefore we obtained exactly
(4.51). A simple argument shows that (4.51) holds, with ged#nt choice of the constants, for amy R.
Concerning (4.52), we first state a Caccioppoli type indtyugdr v

/ | Do[P®) do < c/
B B

P 2p

IN

IN

o p(x)
Clall COZ7) IR (4.58)

p

it is not difficult to see that (4.58) can be obtained usingrguent similar to the one employed in Lemma 4.9.
On the other hand, due to assumption (2.2) and the localizate havep, < pj and therefore

n( —%) pP1=P2
1 — 2 Pl S c 2, .
r"\'"v) Z g g < (L) RP (4.59)

Finally, the Sobolev Poincaré inequality yields

/BR(U— (U)R)p(:”) dr < C/BR[(U— (v)g) + 1]P? dx

c (/BR[(U — (v)g) + 1) dm)pz/p’{ Rr" (%)

(4.59) b
<  c¢RP (/ | Dv|P* d:v) (4.60)
Br

p2

r1

IN

< ¢RP: U (|DU|P<w>+1)dx]
Br

< c(M)Rm/ (|Dv|P™) +1) d,
Br

where the constant/ appears in (4.27).
Therefore summing up we may deduce, this timeger R/4

(4.58) _ p(x)
/ |Dv|p(z) de < c/ v—(v)2 dz + ¢ p*
B, Bs)p p
_ P2
< c/ v= (V)2 +1dx+cp
Bs, P

= [ e et e
B

% 2p
457 ¢ p\ P2 a
< — (_) _ P2 o 4 n+ps + A
< = [ 7 /BRIU (v)r[P* dz +cp cp
(4.60) n—pz+p2 o
O AT
Br

Copyright line will be provided by the publisher



mn header will be provided by the publisher 23

taking into account that, by definition of, we have thatr — p2 + p2 a < A. Once more a simple argument
shows that (4.52) holds, with a different choice of the cants, for anyp < R. This finishes the proof. O
We finally prove an up-to-the-boundary higher integrapitgsult for the functiorv, which will be needed
later for the comparison af and the original minimize.
Proposition 4.13 Let v be a local@-minimizer of the functional4.26)in the Dirichlet class{v € u +

WoP™)(Bg)}, for someu € W) (Bg), where the functiony fulfills the assumptior2.6). If moreover
| Du[P®) € L1*9 for somes > 0, then there exist = £(n,v1, 72, L) € (0,6) andc = ¢(n, 71, 72, L) such that

1
( ][ | Dofp® (1+2) dx) o
Br
1

3
<c ][ | Do[P@®) dg: 4 <][ | Du[P@A+3) 4| Doy p@)(1+0) 4 dx) .
BR BR

(4.61)

Proof.

Case 1: interior situation. Let0 < p < R andz, € Br be an interior point such tha,(zo) C Bg. Let
t,s € Rwith £ <t < s < p. Letn € C°(B,),0 < n < 1 be a cut-off function withy = 1 on B;, n = 0
outsideB, and|Dn| < ‘Sft‘. We define the function := v — n(v — (v),). Testing thek-minimality of v we
deduce

IN

| D[P dy: / (1% + | Du|?)P@)/2 gy
By B

Q [ G+ Dy dn 4 QL [ (DuP 4 1)ds
B s

o/ (411 =) Do = Do = () )2 e [ (0o 5 1 do

5/ | Dy|P®) dm—i—c/
B.\B; B
whereé = &(Q, 1, 72).

Now, “filling the hole” and applying Lemma 4.1 we deduce thiof@ing

][ | D[P de < ¢ ][
B,/» B

At this point, by Sobolev-Poincaré inequality, there &xjg < 1 such that

IN

IN

U_(U)p
s—t

IN

p(x)
dz + c/ (|Dp|P®) 4+ 1) da,
B

s

s

v = (U)p

p(z)
d:v—l—c/ (| Dy P@) +1) da.
p B,

P

_ p(z) _ P2
][ il G A 1+][ v W™ 4
B, P B, p
X (s —p1) 1/x
< 1+c¢ / (1 + | Dv|P®) da P X ]l |Dv|Pr X dx
B, B,
1/x
< (M) ][ | D[P X dg: +ec.
B,
Therefore summing up we have the following reverse Holdequality
1/x
][ |DuP@ dz < ¢ (][ |DU|p(I)de) + e ][ (|D¢|P<w> + 1) dz, (4.62)
Bp/2 By B,

for some suitable < 1, ¢1, ¢o = 1, ca(n, 71,72, L).
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Case 2: situation at the boundary.We consider a point, € 0Br and0 < p < R. Using the same cut-off
function as before, we define:= v — n(v — ).

On 9Bk we havez = u which yieldsz € u + Wol’p(”)(BR). Defining B;" := B;(x) N Bg and testing the
@Q-minimality for v, we obtain in exactly the same way as before

/ |DuP® dz < ¢ l/ | Do[P(®) da:—i—/ | Du|P™®) da:
B BI\B; Bt

+
BY

Again “filling the hole” and using Lemma 4.1, we obtain

v—u

s—t

p(x)
da:+/ (|D1/)|p(”)+1)da:].
B+

P

o qp(=@)
/ |DoP@) dz < ¢ / v-a dx —i—/ | Du|P®) da: —|—/ (|D1/)|p(z) + 1) dx| .
B;r/z B P B B
Defining
| wv—wu on B:{
10 on B, :=DB,\B}

and applying Sobolev-Poincaré’s inequality in the versi6 [28, Corollary 4.5.3] (note thaz | > 1/2|B,))
we deduce

/ v —uP@ de < / (lo—ulP? +1)dx
B B
= [ P+ v
P
ntpo
B _npy "
« donl2 ([ )
|Bp | B,
We define
Y= np2 .
C (n+p2)p’

we observe that due to the localization, it is possible te tak: 1. Now

P2 1 p2—P1

</B |Dw|p1’<dx>%m </B |Dw|”1’<dx> X </Bp(|Dw|p(m) + 1)d:v>
() ( /B

IN

1/x
|Dw|p1xd:c>

1/x
¢ </ (|Dv—Du|p(w)X+1)d:c> .
By

On the other hand, taking mean values we have first of all

p(x) 1
]l de < / lv — ulP®) da
B} B

p’”f P2

¢ p® 7o) [3541] <][+
B

P

v—Uu

p

IN

1/x
|D(v — u)|P®)x d:c)
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1/x
< (L) <]{5)+ |D(v — u)|p(m)xdx>

P

that brings

1/x
]l |DuP®) dz < ¢ ]l | Du|P@X dg +][ (|Du|p(z) + DY@ 4 1) dz| , (4.63)
BT Bf Bf

p/2 P

with ¢ = ¢(n, 71,72, L).

Note that (4.62) holds for an§, C Br and (4.63) for any) < p < R. Therefore we can apply the global
version of Gehring’s Lemma [8, Theorem 2.4], with the fuanBg := |Dv[P(®)X | f := (| Du[P®) + | Dy [P() 4
1)X to deduce the desired result. O

Remark. Note that the dependency of the higher integrability expbaeand the constants coming up in
Gehring’s Lemma on the exponeptan be replaced by dependencies on the global boynasd~, for p, and
p1. For a detailed discussion of this we refer the reader ta [21]

5 Proof of Theorem 2.7

In this section we prove Holder continuity for the functionTherefore we start with localization of the problem.

5.1 First step: Localization.

We first note that in view of Lemma 3.6 we may find an exporestd(n, ¢, v1,v2, L) > 0 such that
/ | Du|P@+0) gy < 4o,
Q/
Since our results are local in nature we may assume that
| DuP@ 0+ gy < 400, (5.1)
Q

Without loss of generality lef be so small that + § < g, whereg is the quantity in (2.6).
Let Rj; be a maximal radius such that there hald8R,,) < 6/4 andBr C 2 a ball with radiusk < Rj,.
We define

po :=max{p(x) : * € Br}, p1:=min{p(z):x € Br}. (5.2)
By the continuity ofp we therefore deduce

p2—p1 < w(R) < 0/4
p2(l1446/4) < px)(1+6/4+w(R)) < plx)(1+59). (5.3)

Furthermore we note that the localization together withidbend (2.2) for the modulus of continuity provides
foranyR < 8Ry; < 1:
nw(R

R < exp(nl) = ¢(n, L), R T < ¢(n, L). (5.4)

Additionally, in view of (2.4) we may assume that there exigt < +o0o such that
/ |Du(x)|P®) da: < M. (5.5)
Q
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5.2 Second step: Comparison via Ekeland.

Let us consider the functionat on the ballBz. We will show that the minimize: in the obstacle class
Ko ={weu+ W, "' (Bg): w>1}isin acertain sense ‘near’ to the infimum among all functiortbe free
classV = w € u + W' (Bg). We argue as follows.

For fixedd > 0 we chooseis € V such that

Flus, Bg) < Uireﬁ"/]-'[w,BR] +0R".
Sinceus € V is not necessarily an element of the obstacle clégswe definew;s := max{us, v} and the set
¥ :={x € R": us > ¢}. By the minimality ofu we have
Flu, Br] < Flws, Br]
= Flus, 3] + F[¢, Br \ X
< Flus, Br] + F[v, Bg]
< inf Flw, Br] +R" + L [/BR | D[P dz + R™

Lettingd — 0 we obtain with the definition
H(R) =L [/ DY) da + R”} , (5.6)
Br

the estimate

Flu, Br] < ig’/}"[w,BR] + H(R). (5.7)
Let us now introduce the distance

d(vi,v0) == | H(R) 7 R™"0=5)| Doy (x) — Dus(z)| de, (5.8)
Br

and note thatV, d) is a complete metric space afftlis a lower semi-continuous functional in the spéted).
Sinceinf,,cyv Flw, Br] > —oc we may apply Ekeland’s variational principle (Lemma 3.7 )attprovides a
functionv € V such that

H(R)"#» R~"(=5t7) | Du(x) — Dv(z)| dz < 1, (5.9)
Br
f[vaBR] S f[U,BR], (510)
andv is a minimizer in the clas® of the functional
p(x)—1
w — Flw, BR] +/ (H(R)R™") *@ |Dw(z) — Dv(z)| d. (5.11)
Br

5.3 Third step: @ minimality.
Let us show now that the functianis an element of the class+ Wol’p(””) (Br) andv is a localQ minimizer of
the functional

w —

[|Dw|1’<m> AR 1] d, (5.12)
Br

with @ = Q(L).
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To see this letp € Wol"p(””)(BR) be arbitrary. Exploiting the minimality af we deduce

p(z)—1
Flu,sptp] < Flv + ¢, spty) +/ (H(R)an) @ | Dol da.
sptp

At this point, Young's inequality provides

(z)—1
(H(R)R™) 7 |Dy| < e|Dp|"® + c(e, p(x)) H(R)R™,

where, using the explicit form of the constant in Young'sjoality, the fact thatp(z) — 1)/p(x) < (2 —1)/72
and assuming < 1 —1/+2 one can easily see that, p(z)) in the above estimate may be replaced by a constant
c(e,v1,72). This allows us to deduce

H(R
Flo,spto] < Flo + p.sptg] + / D) de + cfe,172) D spig)

st R

< Flv+ ¢, spto] + L_l (/ | D[P dy: +/
2m sptp sptp

|Dv + Dy|P(®) da:) + c¥|sptp|.

n

Using the growth condition (H1), choosirg= 272 we deduce
/ (|Dv|p(m) + ifi) + 1) dx
sptp R

< L7lospy] + sl (T +1)

H(R 1
< LF[v + ¢, sptp] + |sptp] ( (n) + 1) + —/ |Do[P@®) dz
R 2 sptp
1 H(R
+ —/ |Dv + D[P dz + ¢(y1, 72) (n)
2 sptp R

H 1
< Lz/ |Dv 4+ Do[P@ da: + ¢(L, 71, v2) <ﬂ + 1> |spto| + —/ | D[P da.
sptp " 2 sptp

Isptp|

R

Absorbing the last term of the preceding inequality on tlfieland side we obtain the desirédminimality with
Q=Q(L,m,72) > 1.

5.4 Fourth step: Up-to-the-boundary higher integrability

By (5.1) and sincev is a @ minimizer of the functional (5.12), Proposition 4.13 prde$ an exponent =
e(n,v1,7v2, L) € (0,6) such that

1
([ i)™
Br
1

(5.13)
1+5
< C][ Dol di + (][ | DufP@46) 4| Dy pl@)1+) 4 1dx) 7
BR BR

with a constant = ¢(n, L, y1,72).

5.5 Fifth step: Holder continuity for the function v.

Sincev € u + Wol’p(m)(BR) is a localQ minimizer of the functional (5.12), taking into accountttlf&.27) is
fulfilled via (5.5) we may apply Proposition 4.12 to conclullat

n—po+ «
/ |Dv|p(z)da:§6(£) o / | Do|P®) da 4 ¢ pn P2 P2 (5.14)
B, R Br

foranyp < R, with ¢ = ¢(n, v1,7v2, L, Q, M'). We remark that, due to the choice®fwe have that — ps +
poa < A\
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5.6 Sixth step: Comparison and Conclusion.
Now using (5.9) and the fact that

H(R) S C(HDUJHL‘?”\vna L)R)\a

we deduce

][ |Du — Dv| dx
Br/2
1

< c(n)/ RH(R) 7= R"0~5) | Dy — Do| H(R)# R"(=5t0) dz
Br (5.15)

<cR% / RH(R) #» R"("55) Du — Du|dx
Br
< cRAP_En.
We proceed by a standard interpolation argument: chodsing0, 1) such that)/s + 1 — 6 = 1/p,, where we
sets := po(1 + ¢/4) and recalling that € (p2,p2(1 + 6/4)), we exploit higher integrability for the functiom
(Lemma 3.2) and the up-to-the-boundary higher integrigtiir v (Lemma 4.61) to deduce

/ |Du — Dv[P®) da
Brj2

< / (|Du— Dv|P* + 1) dx
Brj2

0 po

s (1-06) p2
<cR" <][ |Du—Dv|sdI> <]Z |Du—Dv|dI> +cR"
Brj2 Bry2

0 po 9 pa

(5.15) Amn (1=0)p2 :
< c¢R" {R ) } ]l |Dul® dx + ][ |Dv|® dx +cR"
Brya Br/2

674 THera
< ¢ R RO-m 1-0) ]Z | Du|P2(48/4) gy n ][ | DulP2(+/4) gy
Bry2 Bry2

+cR"

0 __ 6
(@.61) 1+6/4
< ¢R" R0 ][ | Du|P2 (14079 gy + ][ | Do[P®) dz
Bry2 Bry2

7574 o7
+ <][ |Du|p(z)(1+5/4) da:) + <][ (1+ |D¢|pz(1+5/4)) da:)
Bry2 Br/2

0
674
(5'3)’§(5'10)CR"9 RMN1-6) [ <][ (1+ |Du|p(m)(1+6/4+w(R))) d:v)
Br/2

+cR"

0 0
- (][ | Du[P®) dx) - (1 +][ | Dy|P®)(1+9) dm) +cR"
Bry2 Bry2
52 2 (g4t (R)
< ¢R" RMN179) <][ (1+|Du|p<x))da:>
Br
o 0
+ ][ |Du|p(z) dr | + <][ (1+ |D¢|P(z)(1+5) d:c) +eR™
Br/2 Br
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6 w(R)
(R 1) (]Z
B

0
- (1 +][ | Dy |P(®)(1+9) da:>
Br
(2.6

) 0
< ¢R™ RM179) { [][ (14 | DulP@) dx} + R()‘n)(’} +cR"
Br

S CRné’ R)\(lf(-))

(1 + |DulP™) d:c)

R

+ R"

2
< ¢ RN </ | DulP™ dz + R)‘> +cR",
Br
with ¢ = ¢(n,v1, 72, L, || D¥|| 4.1 ). Now we choosed > 0 small enough such that

0
/\—6—1_9>n—p2+p1a, (5.16)

wherea appears in (5.14). This is possible since, due to the chdicewee have\ > n — ps + p1 a. We set
moreover

0
Therefore we obtain
0
/ |Du — Dv|P® da < ¢ RAN10) </ | DulP®) dx + RA) +cR"
Bry2 Br
0
< ¢ RAN1=0)=80 pBo U | DulP™®) dz + RA] +cR"
Br
o 71-06 4
< ¢ [R’\_ﬁ m} [Rﬁ / | Du|P®) da + R“ﬁ] +c¢R" (5.18)
Br
1-60
< c {RA[} = / |DulP™®) dz + RN P 1;09]
Br
0
X [Rﬁ / | D [P® dx—l—R’\J“ﬁ} +cR"
Br
(5.17).(5.16)
<

cRT/ |DulP® dz 4 ¢ RPP2HPLe
Br

The comparison estimate (5.18) together with the referestimate (5.14) foo, (5.10) and the growth condition
allow us to estimate

/ |DulP® < ¢ / | D[P da: + ¢ / |Du — Du|P®) da: (5.19)
B, B, By
< ¢ [(ﬁ)n_p2+p2 : + RT} / |DulP™) dz 4 ¢ RP2tP2 e,
R Br

Then estimate (5.19) holds for any radik p < R < Ry;. Leteg = eo(n, M, L, 71,72, A, &) be the quantity
provided by Lemma 3.5. We can find a radilds > 0 so small thatR™ < ¢, for any0 < R < R; and thus we
haveR; = Ri(n,v1,7v2, L, M,w, \, «). Now Lemma 3.5 yields

/ |DU(I)|P(I) dr < Cpn7p2+p2 « < Cpnflerpl a7
B

P
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with ¢ = ¢(n, M, L,v1,72, A, @), wheneved < p < R;. Since we have; < p; < ps < 72, we deduce by a
standard covering argument and by Poincaré’s inequalétyy t

ue L),
with &€ = n + 7, a; thus Theorem 3.1 allows us to conclude that Co.*(2). This finishes the proof. O
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