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We proveC0,α regularity for minimizersu of functionals withp(x)-growth of the type

F(w,Ω) :=

Z

Ω

f(x,w(x),Dw(x)) dx,

in the classK := {w ∈ W 1,p(x)(Ω; R) : w ≥ ψ}, where the exponent functionp : Ω → (1,∞) is assumed
to be continuous with a modulus of continuity satisfying

lim sup
ρ→0

ω(ρ) log

„

1

ρ

«

< +∞,

and1 < γ1 ≤ p(x) ≤ γ2 < +∞. Moreover,ψ ∈ W
1,1
loc (Ω) is a given obstacle function, whose gradientDψ

belongs to a Morrey spaceLq,λ
loc (Ω) with n − γ1 < λ < n andq > γ2. We do not assume any quantitative

continuity of the integrand functionf .
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1 Introduction

The aim of this paper is to prove Hölder continuity for localminimizers of integral functionals of the type

F(u,Ω) :=

∫

Ω

f(x, u(x), Du(x)) dx, (1.1)

in the classK := {u ∈ W 1,p(x)(Ω,R) : u ≥ ψ}, whereψ is a fixed obstacle function,Ω a bounded open set in
R

n andf : Ω × R × R
n → R a Carathéodory function satisfying a non-standard growthcondition of the type

L−1|z|p(x) ≤ f(x, ξ, z) ≤ L(µ2 + |z|2)p(x)/2, (1.2)

wheneverx ∈ Ω, ξ ∈ R, z ∈ R
n; here,µ ∈ [0, 1], L ≥ 1 and the exponent functionp : Ω → (1,∞) is

continuous with modulus of continuityω satisfying

lim sup
ρ→0

ω(ρ) log

(

1

ρ

)

< +∞. (1.3)

We note that in order to proveC0,α regularity of (local) minimizersu (provided there exists one) of the above
mentioned problem, we need neither quasiconvexity of the functionalF nor any quantified continuity assump-
tion on the integrand functionf . On the other hand we have to impose that the obstacle function ψ lies in an
appropriate Morrey spaceLq,λ

loc (Ω) (which in particular includes thatψ itself is Hölder continuous).
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2 M. Eleuteri and J. Habermann: Hölder continuity for obstacle problems with nonstandard growth

Under the before mentioned hypotheses the proof of theC0,α-regularity result is based on the fact that Eke-
land’s variational principle (see [9]) provides a functionv which is near tou (our original minimizer) with respect
to the distance inW 1,p(x) on a suitable ballBR ⊂ Ω. Moreover, it turns out thatv is a local quasi minimizer (see
Definition 2.3) of a much simplerp(x)-growth functional of the type

w 7→

∫

BR

(

|Dw|p(x) + H(R)
Rn + 1

)

dx.

Here, the quantityH(R) depends on the radiusR of the ball and the obstacle functionψ (see (5.6)). At this stage
we use arguments employing Ekeland’s variational principle in a way similar to [7, 17, 18]. It is worth to mention
that the missing continuity properties of the funtionalF do not allow a freezing procedure in our problem.
Therefore we apply Ekeland’s variational principle directly in the spacesW 1,p(x). These spaces are known to be
reflexive Banach spaces in the case that1 < infBR p ≤ supBR

p < +∞. We refer the reader to [25], [26] and
[27] for a more detailed discussion of properties of generalized Sobolev spaces. Finally, rescaling the problem
to the unit ball in a way that the rescaled functional does notdepend on the obstacleψ itself, allows us to apply
arguments of De Giorgi type for generalizedp(x)-growth conditions to prove Hölder continuity for the reference
functionv. This procedure is only possible since we assume a certain Morrey-space condition for the obstacle.
This assumption can be exploited in order to show that the perturbation term involvingH behaves like a certain
power of the involved radius. In conclusion, comparison viaEkeland’s principle provides the desired result for
u. Note here that already in [15] and [16], De Giorgi classes ofgeneralized type forp(x)-growth conditions
were introduced and Hölder continuity was shown for quasi minimizers of functionals

∫

f(x, u,Du) dx with
p(x)-growth.

Regularity properties of minimizers of functionals and solutions of equations and systems withp(x)-growth
have been discussed in a number of papers within the past ten years (forC0,α andC1,α regularity see for example
[1, 2, 3, 4, 6, 10, 24] and the generalization to higher order systems in [22, 23]). They became of more and more
interest since they represent a borderline case between standardp growth andp − q growth conditions (which
were studied for example in [13, 14]). At this stage we would like to remark that the above introduced continuity
assumption are the weakest ones in the following sense: Zhikov showed in [29] that condition (1.3) is sufficient
to achieve higher integrability of minimizers, and on the other hand the failure of (1.3) in general causes the loss
of any type of regularity of minimizers.

Hölder continuity for obstacle problems with standard growth was already shown in [5] and [11]. Basically, the
proof presented here in thep(x)-growth situation is according to the proof in [11]. Nevertheless many difficulties
come up due to the variable growth exponent. Even if ‘freezing’ as it was done in most of the proofs of Hölder
continuity for variable growth problems, is – due to missingcontinuity assumptions on the integrand function
f – not possible in the present situation, the quantified continuity of p expressed by (1.3) allows to control the
distance of maximal and minimal exponents on suitably smallballs. In turn, this localization procedure allows to
establish De Giorgi type estimates in the variable growth situation (see also [15]).

The Hölder continuity result of the present paper is used toshowC0,α regularity with a quantified Hölder
exponentα in the situation where the modulus of continuityω of the exponent functionp fulfills the stronger
conditionω(ρ) log 1

ρ → 0 whenρ→ 0. This is done by the authors in [12].

Acknowledgements The authors wish to acknowledge F. Duzaar and G. Mingione formany useful discussions.

2 Notation and statements

In the sequelΩ will denote an open bounded domain inR
n andB(x,R) the open ball{y ∈ R

n : |x − y| < R}.
We will possibly use in the following also the notationBR(x) to indicate the ballB(x,R). If u is an integrable
function defined onB(x,R), we will set

(u)x,R = −

∫

B(x,R)

u(x)dx =
1

ωnRn

∫

B(x,R)

u(x)dx,

whereωn is the Lebesgue measure ofB(0, 1). We shall also adopt the convention of writingBR and (u)R

instead ofB(x,R) and(u)x,R respectively, when the center will not be relevant or it is clear from the context;
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moreover, unless otherwise stated, all balls considered will have the same center. Finally the letterc will freely
denote a constant, not necessarily the same in any two occurrences, while only the relevant dependences will be
highlighted.

We start with the following definition.

Definition 2.1 A functionu is said to belong to the generalized Sobolev spaceW 1,p(x)(Ω; R) if u ∈ Lp(x)(Ω;
R) and the distributional gradientDu ∈ Lp(x)(Ω; Rn). Here the generalized Lebesgue spaceLp(x)(Ω; R) is
defined as the space of measurable functionsf : Ω → R such that

∫

Ω

|f(x)|p(x) dx <∞.

This is a Banach space equipped with the Luxemburg norm

||f ||Lp(x)(Ω;R) = inf

{

λ > 0 :

∫

Ω

∣

∣

∣

∣

f

λ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

.

This definition can be extended in a straightforward way to the case of vector-valued functions.

Next, we will set

F(u,A) :=

∫

A

f(x, u(x), Du(x))dx

for all u ∈ W 1,1
loc (Ω) and for allA ⊂ Ω.

We adopt the following notion of local minimizer and localQ minimizer:

Definition 2.2 We say that a functionu ∈ W 1,1
loc (Ω) is a local minimizer of the functional (1.1) if|Du(x)|p(x)

∈ L1
loc(Ω) and

∫

sptϕ
f(x, u(x), Du(x))dx ≤

∫

spt ϕ
f(x, u(x) + ϕ(x), Du(x) +Dϕ(x))dx

for all ϕ ∈ W 1,1
0 (Ω) with compact support inΩ.

Definition 2.3 We say that a functionu ∈ W 1,1
loc (Ω) is a localQ minimizer of the functional (1.1) withQ ≥ 1,

if for all v ∈W 1,1
loc (Ω) we have

F(u,H) ≤ QF(v,H),

where we setH := spt(u − v) ⋐ Ω.

We shall consider the following growth condition, withL ≥ 1:

L−1(µ2 + |z|2)p(x)/2 ≤ f(x, ξ, z) ≤ L(µ2 + |z|2)p(x)/2. (H1)

Moreover letω : R
+ → R

+ be a nondecreasing continuous function, vanishing at zero,which represents the
modulus of continuity ofp :

|p(x) − p(y)| ≤ ω(|x− y|). (H2)

We will always assume thatω satisfies the following condition:

lim sup
R→0

ω(R) log

(

1

R

)

< +∞ ; (2.1)

thus in particular, without loss of generality, we may assume that

ω(R) ≤ L| logR|−1 (2.2)

for all R < 1.
No differentiability is assumed onf with respect tox or with respect toz.
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4 M. Eleuteri and J. Habermann: Hölder continuity for obstacle problems with nonstandard growth

Since all our results are local in nature, without loss of generality we shall suppose that

1 < γ1 ≤ p(x) ≤ γ2 ∀x ∈ Ω , (2.3)

and
∫

Ω

|Du(x)|
p(x)

dx < +∞ . (2.4)

Finally we set

K := {u ∈ W 1,p(x)(Ω; R) : u ≥ ψ}, (2.5)

whereψ ∈ W 1,p(x)(Ω; R) is a fixed function.
Now we recall the definition of Morrey and Campanato spaces (see for example [20]).

Definition 2.4 (Morrey spaces).
Let Ω be an open and bounded subset ofR

n, let 1 ≤ p < +∞ andλ ≥ 0. By Lp,λ(Ω) we denote the linear space
of functionsu ∈ Lp(Ω) such that, if we setΩ(x0, ρ) := Ω ∩B(x0, ρ), we get

||u||Lp,λ(Ω) :=

{

sup
x0∈Ω, 0<ρ< diam(Ω)

ρ−λ

∫

Ω(x0,ρ)

|u(x)|pdx

}1/p

< +∞.

It is easy to see that||u||Lp,λ(Ω) is a norm respect to whichLp,λ(Ω) is a Banach space.

Definition 2.5 (Campanato spaces).
Let Ω be an open and bounded subset ofR

n, let p ≥ 1 andλ ≥ 0. By Lp,λ(Ω) we denote the linear space of
functionsu ∈ Lp(Ω) such that, if we setΩ(x0, ρ) := Ω ∩B(x0, ρ), we get

[u]p,λ =

{

sup
x0∈Ω, 0<ρ< diam(Ω)

ρ−λ

∫

Ω(x0,ρ)

|u(x) − (u)x0,ρ|
p dx

}1/p

< +∞,

where

(u)x0,ρ :=
1

|Ω(x0, ρ)|

∫

Ω(x0,ρ)

u(x) dx

is the average ofu in Ω(x0, ρ).

Also in this case it is not difficult to show thatLp,λ(Ω) is a Banach space equipped with the norm

||u||Lp,λ(Ω) = ||u||Lp(Ω) + [u]p,λ.

Remark 2.6 The local variantsLp,λ
loc (Ω) andLp,λ

loc (Ω) are defined in a standard way

u ∈ Lp,λ
loc (Ω) ⇔ u ∈ Lp,λ(Ω′) ∀Ω′

⋐ Ω

u ∈ Lp,λ
loc (Ω) ⇔ u ∈ Lp,λ(Ω′) ∀Ω′

⋐ Ω.

The main result of the paper is the following

Theorem 2.7 Let u ∈ W 1,p(x)(Ω) be a local minimizer of the functional(1.1) in the class(2.5), where
ψ ∈W 1,1

loc (Ω) is a given obstacle function fulfilling

Dψ ∈ Lq,λ
loc (Ω), (2.6)

with q = γ2 q̃ for someq̃ > 1 andn − γ1 < λ < n, whereγ1 andγ2 have been introduced in(2.3). Suppose
moreover that the Lagrangianf satisfies the growth condition(H1) and the functionp fulfills assumptions(H2)
and (2.1). Thenu ∈ C0,α

loc (Ω) for someα ∈ (0, 1).
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The strategy of the proof of Theorem 2.7, which is given in Chapter 5, is the following: due to (2.1), localizing
allows us to control the difference of maximal and minimal exponents in a ballBR with suitable small radius.
Ekeland’s variational principle then provides a functionv on the ballBR, which is near tou with respect to the
distance inW 1,p(x)(BR) and a free minimizer of a suitably modified functional (5.11)(see Section 5.2) . It turns
out (see Section 5.3) that the minimality ofv translates intoQ minimality of the functional (5.12) with a constant
Q which depends only onL and the global boundsγ1 andγ2 of p. Lemma 4.4, which takes into consideration
the fact, that the Morrey condition (2.6) allows to rescale the problem in such a way that the dependency on the
obstacle turns into a radius power, takes use of the De Giorgitype estimates which are shown in Lemma 4.2 for a
rescaled functional on the unit ball. Finally, exploiting the comparison via Ekeland, the control of the oscillations
of v (see (5.14)) carries over to the functionu and therefore provides the desired Hölder continuity.

3 Some known results

The interest of Campanato’s spaces lies mainly in the following result which will be used in the next sections.

Theorem 3.1 Let Ω be a bounded open Lipschitz domain ofR
n, and letn < λ < n + p. Then the space

Lp,λ(Ω) is isomorphic toC0,α(Ω̄) with α = λ−n
p . We also remark that, using Poincaré inequality, we have that,

for a weakly differentiable functionv, if Dv ∈ Lp,λ(Ω), thenv ∈ Lp,p+λ(Ω).

Remark 3.2 Theorem 3.1 also holds for a larger class of domains (see [20], Sect. 2.3).

The following well known results will be needed at several stages of the proof of our main theorem.

Lemma 3.3 ([20], Lemma 7.1)
Leta > 0 and let{χi} be a sequence of real positive numbers, such that

χi+1 ≤ C Bi χ1+a
i

with C > 0 andB > 1. If

χ0 ≤ C− 1
a B− 1

a2 , (3.1)

we have

χi ≤ B− i
a χ0

and hence in particular

lim
i→∞

χi = 0.

Lemma 3.4 ([20], Lemma 7.3)
Letϕ(t) be a positive function, and assume that there exists a constant q and a numberτ , 0 < τ < 1 such that
for everyR < R0

ϕ(τ R) ≤ τδ ϕ(R) + BRβ

with 0 < β < δ, and

ϕ(t) ≤ q ϕ(τk R)

for everyt in the interval(τk+1 R, τk R) (in particular this inequality holds withq = 1 if ϕ is non-decreasing).
Then for everyρ < R ≤ R0 we have

ϕ(ρ) ≤ C

{

( ρ

R

)β

ϕ(R) +B ρβ

}

,

whereC is a constant depending only onq, τ, δ andβ.

We also present the following variant of the previous lemma.
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6 M. Eleuteri and J. Habermann: Hölder continuity for obstacle problems with nonstandard growth

Lemma 3.5 LetΦ(t) be a nonnegative and nondecreasing function. Suppose that

Φ(ρ) ≤ A
[( ρ

R

)α

+ ε
]

Φ(R) +BRβ ,

for all ρ ≤ R ≤ R0, withA,B, α, β nonnegative constants,β < α. Then there exists a constantε0 ≡ ε0(A,α, β)
such that ifε < ε0, for all ρ ≤ R ≤ R0, then

Φ(ρ) ≤ c

[

( ρ

R

)β

Φ(R) +Bρβ

]

,

wherec is a constant depending onα, β,A, but independent ofB.

We quote finally a higher integrability result for functionals of type (1.1). This result can be found in [12].

Lemma 3.6 Let O be an open subset ofΩ, let u ∈ W 1,1
loc (O) be a local minimizer in the class(2.5) of the

functional(1.1)with f : O × R × R
n → R satisfying(H1), with the exponent functionp satisfying(H2), (2.1)

and (2.3)and withψ fulfilling condition(2.6). Moreover suppose that
∫

O

|Du(x)|
p(x)

dx ≤M1

for some constantM1. Then, there exist two positive constantsc0, δ depending onn, q̃, γ1, γ2, L,M1, whereq̃ is
the quantity appearing in condition(2.6), such that, ifBR ⋐ O, then

(

−

∫

BR/2

|Du(x)|p(x)(1+δ)dx

)1/(1+δ)

≤ c0 −

∫

BR

|Du(x)|p(x)dx (3.2)

+c0

(

−

∫

BR

(|Dψ(x)|p(x)(1+δ) + 1) dx

)1/(1+δ)

.

The proof of our main result takes use of a well known result from Ekeland (see [9]), which we quote here.

Lemma 3.7 Let (X , d) be a complete metric space andG : X → (−∞,+∞] a lower semicontinouos
funcional for which there holdsinfX G <∞. For givenε let v ∈ X be such thatG(v) ≤ infX G + ε. Then there
existsv̄ ∈ X such that

d(v̄, v) ≤ 1,

G(v̄) ≤ G(v),

G(v̄) ≤ G(w) + εd(w, v̄), for all w ∈ X .

4 Preliminaries

In this section we provide the main components for the proof of Theorem 2.7. Let us remark at this point that we
will especially have a careful look at the dependencies of the constants involved on the exponent functionp(x).
In particular we have to make sure that the constants do not depend on local bounds ofp, denoted byp1 andp2,
but only on the global boundsγ1 andγ2 onΩ. When necessary and not directly obvious, we will thereforegive
the detailed arguments for the replacements ofp1 andp2 by γ1 andγ2 in the appearing constants.

4.1 A refined iteration lemma

We start by proving the following result which is a generalization of [20], Lemma 6.1.

Lemma 4.1 Let0 < θ < 1, A > 0, B ≥ 0, 1 < γ1 ≤ p(x) ≤ γ2 < +∞ and letf ≥ 0 be a bounded function
satisfying

f(t) ≤ θf(s) +A

∫

BR

∣

∣

∣

∣

h(x)

s− t

∣

∣

∣

∣

p(x)

dx+B, (4.1)
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for all r ≤ t < s ≤ R, whereh ∈ Lp(x)(BR). Then there exists a constantC ≡ C(θ, γ2) such that

f(r) ≤ C

[

A

∫

BR

∣

∣

∣

∣

h(x)

R− r

∣

∣

∣

∣

p(x)

dx+B

]

.

Proof. Let 0 < τ < 1 be such that

τ−γ2θ < 1, i.e. 1 > τγ2 > θ.

This meansτ ≡ τ(θ, γ2). Furthermore we define

t0 := r, tn+1 := tn + (1 − τ)τn(R− r) ≤ R.

Exploiting iteratively (4.1) we obtain

f(r) = f(t0)

≤ θf(t1) +A

∫

BR

∣

∣

∣

∣

h(x)

t1 − t0

∣

∣

∣

∣

p(x)

dx+B

≤ . . .

≤ θnf(tn) +

n−1
∑

j=0

θj

[

A

∫

BR

∣

∣

∣

∣

h(x)

tj+1 − tj

∣

∣

∣

∣

p(x)

dx+B

]

≤ θnf(tn) +
n−1
∑

j=0

θj

[

A

∫

BR

∣

∣

∣

∣

h(x)

(1 − τ)(R − r)

∣

∣

∣

∣

p(x)

τ−jp(x) dx +B

]

=: (1).

Using the fact thatτ−jp(x) ≤ τ−jγ2 we estimate

(1) ≤ θnf(tn) +

n−1
∑

j=0

(

θτ−γ2
)j A

(1 − τ)γ2

∫

BR

∣

∣

∣

∣

h(x)

R− r

∣

∣

∣

∣

p(x)

dx+ B

n−1
∑

j=0

θj

≤ θnf(tn) +
1

1 − θτ−γ2

A

(1 − τ)γ2

∫

BR

∣

∣

∣

∣

h(x)

R− r

∣

∣

∣

∣

p(x)

dx+
B

1 − θ

= θnf(tn) +A
(1 − τ)−γ2

1 − θτ−γ2

∫

BR

∣

∣

∣

∣

h(x)

R− r

∣

∣

∣

∣

p(x)

dx +
B

1 − θ
.

Now take

C := max

{

1

1 − θ
,
(1 − τ)−γ2

1 − θτ−γ2

}

and pass to the limitn→ ∞. This meansC ≡ C(τ, θ, γ2) ≡ C(θ, γ2). �

4.2 A priori estimate for a reference problem

The following a priori estimate for a freeQ minimizer of a rescaled problem to the unit ball will play a central
role in our proof. Later we will apply this result to our situation, determiningu and the exponent functionp in an
appropriate way.

Lemma 4.2 Letu ∈W 1,p(x)(B1(0)) be a localQ minimizer of the functional

F̃(w,B1(0)) :=

∫

B1(0)

(

|Dw|p(y) + 1
)

dy, (4.2)
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8 M. Eleuteri and J. Habermann: Hölder continuity for obstacle problems with nonstandard growth

wherep : B1(0) → (1,∞) is a uniformly continuous function, whose modulus of continuity fulfills the condition
(2.1). Suppose furthermore that there exist two constantsp1, p2 such that

p1 := min
B1(0)

p(y) ≤ p(y) ≤ max
B1(0)

p(y) =: p2, and p2 − p1 ≤
1

n
, (4.3)

and for the constantsp1, p2 there holdsp1, p2 ∈ [γ1, γ2] with 1 < γ1 ≤ γ2 < +∞. Suppose moreover that there
exists a constantM such that

∫

B1(0)

|Du|p(y) dy ≤ M. (4.4)

Thenu is locally bounded and satisfies the estimates

sup
B1/2(0)

|u| ≤ c





(

∫

B1(0)

|u(y)|p2 dy

)1/p2

+ 1



 , (4.5)

with c ≡ c(n, γ1, γ2,Q) and

sup
B1/2(0)

u ≤ c

(

∫

B1(0)

up2

+ dy

)1/p2

|A0,1|
α
p2 + 1, (4.6)

for some suitableα > 0, whereu+(y) := max{u(y), 0} and moreoverA0,1 = {x ∈ B1(0) : u(x) > 0}; finally
c ≡ c(n,M, γ1, γ2,Q).

Remark 4.3 Estimates (4.5) and (4.6) can be proved (possibly with a different constantc) with p2 inside the
integral replaced byp(y) and1/p2 outside replaced by1/p1. The reason for these choices of the exponents will
be clearer in Proposition 4.12 (see in particular (4.54), (4.56) and (4.57)).

Proof.
First step: De Giorgi type estimates.For anyk ∈ R we define the sets

Ak,σ = {x ∈ Bσ(0) : u(x) > k}, Bk,σ := {x ∈ Bσ(0) : u(x) < k}.

We claim that for anyk ∈ R, u satisfies the inequalities

∫

Ak,σ

|Du(y)|p(y) dy ≤ c1

∫

Ak,τ

∣

∣

∣

∣

u(y) − k

τ − σ

∣

∣

∣

∣

p(y)

dy + c2 |Ak,τ |, (4.7)

and

∫

Bk,σ

|Du(y)|p(y) dy ≤ c1

∫

Bk,τ

∣

∣

∣

∣

u(y) − k

τ − σ

∣

∣

∣

∣

p(y)

dy + c2 |Bk,τ |, (4.8)

for any1/2 ≤ σ < τ ≤ 1, and withc1, c2 ≡ c1, c2(Q, γ1, γ2).
Indeed, for1/2 ≤ σ ≤ s < t ≤ τ ≤ 1 let η ∈ C∞

0 (B1(0)) with sptη ⊂ Bt, η ≡ 1 onBs(0), |Dη| ≤ 2
t−s

be a standard cut-off function. We setz(y) := u(y) − η w̃(y), wherew̃(y) := max{u(y) − k, 0}. Testing theQ
minimality we therefore obtain

∫

Ak,s

|Du(y)|p(y) dy ≤

∫

Ak,t

|Du(y)|p(y) dy

≤ Q

∫

Ak,t

[

|Dz(y)|p(y) + 1
]

dy

= Q

∫

Ak,t

[

|(1 − η)Du−Dη(u− k)|p(y) + 1
]

dy

Copyright line will be provided by the publisher
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≤ Q

[

c

∫

Ak,t\Ak,s

|Du|p(y) dy + c

∫

Ak,t

∣

∣

∣

∣

u− k

t− s

∣

∣

∣

∣

p(y)

dy + |Ak,t|

]

,

with c ≡ c(γ1, γ2). Adding on both sides of the inequality the quantitycQ
∫

Ak,s
|Du(y)|p(y) dx and dividing the

resulting inequality by1 + cQ, we obtain

∫

Ak,s

|Du(y)|p(y) dy ≤ θ

∫

Ak,t

|Du(y)|p(y) dy + c

∫

Ak,τ

∣

∣

∣

∣

u− k

t− s

∣

∣

∣

∣

p(y)

dy + c|Ak,τ |,

with θ ≡ cQ
1+cQ < 1, c ≡ c(Q, γ1, γ2). Now we apply Lemma 4.1, taking into account assumption (4.4) with

the particular choicesf(t) :=
∫

Ak,t
|Du(y)|p(y) dy, θ as above,A = c, B = c|Ak,τ | to deduce (4.7) with

c1, c2 ≡ c1, c2(Q, γ1, γ2).
To prove (4.8), we remark that the function−u is also aQ minimizer of the functional (4.2), so that we may

argue in exactly the same way as above to deduce (4.7) for−u (where also in the setAk,s we may replaceu by
−u), which easily translates into (4.8).

Second step: Boundedness ofu: estimate(4.5).
Our aim is now to prove (4.5). Therefore we start by showing

sup
B1/2(0)

u ≤ c





(

∫

B1(0)

up2

+ dy

)1/p2

+ 1



 , (4.9)

whereu+(y) := max{u(y), 0}.
For 1/2 ≤ ρ < r ≤ 1 let η be a function of classC∞

0 (B ρ+r
2

) with η ≡ 1 onBρ and|Dη| ≤ 4
r−ρ . Denoting

by p∗1 := np1

n−p1
the Sobolev conjugate ofp1, we introduce the quantities

ε := 1 −
p2

p∗1
=
p2

n
−

(p2 − p1)

p1
, β := ε+

p2

p1
= 1 +

p2

n
.

Due to assumption (4.3), we havep2 ≤ p∗1. Introducing the quantity

Φk,ρ :=

∫

Ak,ρ

(u − k)p2 dy,

we now show that for arbitraryh < k there holds

Φk,ρ ≤ cΦβ
h,r

(

1

|k − h|p2

)ε [
1

|r − ρ|p2
+

1

|k − h|p2

]p2/p1

. (4.10)

In a first step, settingζ = η(u−k)+ for anyk ∈ R, we deduce by Hölder’s and Sobolev-Poincaré’s inequality
∫

Ak,ρ

(u− k)p2 dy =

∫

Ak,ρ

ζp2 dy ≤

∫

Ak,r

ζp2 dy

≤ c

[

∫

Ak,r

ζp∗

1 dy

]

p2
p∗

1

|Ak,r|
ε

≤ c |Ak,r|
ε

[

∫

Ak,r

|Dζ|p1 dy

]

p2
p1

≤ c |Ak,r|
ε

[

∫

Ak,r

(|Dζ|p(y) + 1) dy

]

p2
p1

Copyright line will be provided by the publisher



10 M. Eleuteri and J. Habermann: Hölder continuity for obstacle problems with nonstandard growth

≤ c





∫

A
k,

ρ+r
2

|Du|p(y) dy +

∫

A
k,

ρ+r
2

∣

∣

∣

∣

u− k

r − ρ

∣

∣

∣

∣

p(y)

dy + |Ak,r|





p2
p1

|Ak,r|
ε,

with c ≡ c(n, γ1, γ2,Q). Implementing (4.7) in the previous estimate, we obtain foranyk ∈ R

∫

Ak,ρ

(u− k)p2 dy ≤ c |Ak,r|
ε

[

∫

Ak,r

∣

∣

∣

∣

u− k

r − ρ

∣

∣

∣

∣

p(y)

dy

]

p2
p1

+ c |Ak,r |
β (4.11)

≤ c |Ak,r|
ε

[

∫

Ak,r

∣

∣

∣

∣

u− k

r − ρ

∣

∣

∣

∣

p2

dy

]

p2
p1

+ c |Ak,r|
β ,

with c ≡ c(n, γ1, γ2,Q).
Next, we remark that forh < k we have

|Ak,r| ≤

∫

Ah,r

∣

∣

∣

∣

u− h

k − h

∣

∣

∣

∣

p2

dy, (4.12)

sinceu− h > k − h onAk,r, and moreover we deduce
∫

Ak,r

(u− k)p2 dy ≤

∫

Ak,r

(u− h)p2 dy ≤

∫

Ah,r

(u − h)p2 dy. (4.13)

Introducing these relations in (4.11) we obtain

Φk,ρ ≤ c

(

∫

Ah,r

∣

∣

∣

∣

u− h

k − h

∣

∣

∣

∣

p2

dy

)ε (
∫

Ah,r

∣

∣

∣

∣

u− h

r − ρ

∣

∣

∣

∣

p2

dy

)

p2
p1

+ c

(

∫

Ah,r

∣

∣

∣

∣

u− h

k − h

∣

∣

∣

∣

p2

dy

)β

≤ cΦβ
h,r

(

1

|k − h|p2

)ε [
1

(r − ρ)p2
+

1

(k − h)p2

]

p2
p1

,

with c ≡ c(n, γ1, γ2,Q), the desired estimate (4.10).
Our aim is now to deduce a decay estimate for the quantityΦk,ρ to decreasing levelsk on balls of increasing

radii ρ. For this purpose we will take use of Lemma 3.3. Let us define the sequences of levels and radii

ki = 2 d (1 − 2−i−1), ρi =
1

2
(1 + 2−i),

and the quantity

χi := d−p2Φki,ρi = d−p2

∫

Aki,ρi

(u− ki)
p2 dy,

whered ≥ 1 is a constant that will be chosen later. First, we note that

ki+1 − ki =
d

2
2−i, ρi − ρi+1 =

1

4
2−i.

Exploiting (4.10) with the choicesk = ki+1, h = ki, ρ = ri+1, r = ri and the fact thatd ≥ 1, we obtain

χi+1 = d−p2Φki+1,ρi+1

≤ cd−p2Φβ
ki,ρi

(

d−12i+1
)p2ε

[

(4 · 2i)p2 +
(

d−12i+1
)p2
]p2/p1

= c χβ
i d

−p2(1−β)(d/2)−p2ε2ip2ε
[

4p22p2i + (d/2)
−p2 2ip2

]p2/p1

≤ c d
p2
p1

(p2−p1)2ip2βχβ
i ,

(4.14)
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with c ≡ c(n, γ1, γ2,Q).
Next we show that with the choice

d := 1 + A

(

∫

B1(0)

up2

+ dy

)1/p2

, (4.15)

where we determine the quantityA a bit later, the hypotheses of Lemma 3.3 are fulfilled for the sequence(χi)i.
To see this, let us first note that, sinceu ∈ W 1,p(x)(B1(0)) and by the assumptionp2 ≤ p∗1, via Sobolev-

Poincaré’s inequality, we may conclude thatu ∈ Lp2(B1(0)) and
∫

B1(0)

|u|p2 dy ≤ c(M).

This allows us to estimate
∫

B1(0)

up2

+ dy ≤

∫

B1(0)

|u|p2 dy ≤ c(M),

and therefore

d
p2
p1

(p2−p1) ≤ c(M,p1, p2)
(

1 + A
p2
p1

(p2−p1)
)

.

Consequently, (4.14) writes as

χi+1 ≤ c̃(n,M, γ1, γ2,Q)
(

1 + A
p2
p1

(p2−p1)
)

2ip2βχβ
i .

On the other hand, the choice ofd and the fact thatd ≥ 1 immediately give

χ0 = d−p2

∫

Ad,1

(u− d)p2 dy ≤ A−p2

(

∫

B1(0)

up2

+ dy

)−1
∫

Ad,1

(u− d)p2 dy ≤ A−p2 .

We apply Lemma 3.3 with the choicesB ≡ 2βp2 > 1, C ≡ c̃
(

1 + A
p2
p1

(p2−p1)
)

> 0, a ≡ β − 1 = p2

n . To

guarantee that the conditionχ0 ≤ C−1/aB−1/a2

is satisfied, we have to choose the quantityA in such a way that

Ap2(β−1) = B1/(β−1)c̃
(

1 + A
p2
p1

(p2−p1)
)

. (4.16)

Note that, sinceβ − 1 ≡ p2

n and by assumptionp2 − p1 < 1/n, we always have thatp2(β − 1) > p2

p1
(p2 −

p1), which guarantees that equation (4.16) has a unique solution 0 < A ≡ A(n,M, γ1, γ2, p1, p2,Q) < +∞.
Moreover we remark that with our global boundsγ1, γ2 for p we have thatp2(β − 1) = p2

2/n ∈ [γ2
1/n, γ

2
2/n]

andp2/p1(p2 − p1) ∈ [0, γ2/γ1(γ2 − γ1)]. Furthermore the solutionA of equation (4.16) depends continuously
on the parametersp1 andp2.

Lemma 3.3 now gives

lim
i→∞

χi = 0,

which, noting thatlimi→∞ φ1 = 1/2 andlimi→∞ ki = 2d, directly translates into
∣

∣A2d,1/2

∣

∣ = 0 and therefore

sup
B1/2(0)

u ≤ 2d.

Taking into account the choice ofd in (4.15), we end up with

sup
B1/2(0)

u ≤ c





(

∫

B1(0)

up2

+ dy

)1/p2

+ 1



 ,
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12 M. Eleuteri and J. Habermann: Hölder continuity for obstacle problems with nonstandard growth

with c ≡ c(n, γ1, γ2,A,M,Q). At this point the above argumentation for the dependence ofA on the bounds
p1 andp2 allows us to conclude that the constantc can be replaced by a constant which depends only on the
global boundsγ1 andγ2 instead ofp1 andp2. (Note thatc is a continuous function inp1 andp2 on a compact set
{(p1, p2) ∈ [γ1, γ2]

2 : p2 ≥ p1}.
An argument similar to the preceding one with the function−u, using (4.8) instead of (4.7) yields

sup
B1/2(0)

(−u) ≤ c





(

∫

B1(0)

(−u)p2

+ dy

)1/p2

+ 1



 . (4.17)

Therefore putting together (4.9) and (4.17), we finally deduce the desired estimate (4.5). �

Third step: Boundedness ofu: estimate(4.6).
Starting again from (4.11), taking into account (4.12) and (4.13) and recalling that for anyh < k andρ ≤ r

we have|Ak,ρ| ≤ |Ah,r|, we deduce instead of (4.10) the slightely different estimate

Φk,ρ ≤ c(n, γ1, γ2,Q)Φ
p2/p1

h,r |Ah,r|
ε

[

1

|r − ρ|p2
+

1

|k − h|p2

]p2/p1

. (4.18)

We observe that

ε− β̃ =
p2

n
− α̃

where we can choose suitableβ̃, α̃ such that

β̃ >
(p2 − 1)(p2 − p1)

p1
α̃ <

p2(p2 − p1)

p1
.

Taking into account that|Ak,ρ| ≤ |Ah,r| so that|Ak,ρ|
α̃ ≤ |Ah,r|

α̃, we deduce from (4.18)

Φk,ρ |Ak,ρ|
α̃ ≤ cΦ

p2/p1

h,r |Ah,r|
β̃+p1/n

[

1

|r − ρ|p2
+

1

|k − h|p2

]p2/p1

.

At this point, taking into account that

p2

n
≥

(

β̃ +
p2

p1

)

α̃

we deduce that

|Ah,r|
β̃+

p1
n ≤ |Ah,r|

β̃ |Ah,r|
(β̃+

p2
p1

) α̃
≤ Φβ̃

h,r |Ah,r|
(β̃+

p2
p1

) α̃

[

1

|r − ρ|p2
+

1

|k − h|p2

]p2/p1

.

Therefore

Φk,ρ |Ak,ρ|
α̃ ≤ C Φ

β̃+
p2
p1

h,r

1

|k − h|p2 β̃
|Ah,r|

“

β̃+
p2
p1

”

α̃
[

1

|r − ρ|p2
+

1

|k − h|p2

]p2/p1

.

Setting

Φ̃k,t := Φk,t |Ak,t|
α̃,

we have

Φ̃k,t ≤ C Φ̃
β̃+

p2
p1

k,t

[

1

|r − ρ|p2
+

1

|k − h|p2

]p2/p1 1

|k − h|p2 β̃
. (4.19)
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To apply Lemma 3.3 we taked ≥ 1 which we determine later and set

ki := d(1 − 2−i), ri :=
1

2
(1 + 2−i).

and therefore have that

ri+1 − ri =
1

4
2−i, ki+1 − ki =

d

2
2−i.

Rewriting (4.19) withρ := ri+1, r := ri, k := ki+1, h := ki andχi := d−p2Φ̃ki,ri and exploiting again the fact
thatd ≥ 1, we deduce

χi+1 = d−p2 Φ̃ki,ri

≤ c d−p2 Φ̃
β̃+

p2
p1

ki,ri

[

1

(ri+1 − ri)p2
+

1

(ki+1 − ki)p2

]

p2
p1 1

(ki+1 − ki)p2 β̃

≤ c d−p2

[

4p2

2−ip2
+

2p2

dp22−ip2

]

p2
p1 2p2β̃

dp2β̃2−ip2β̃
d

p2(β̃+
p2
p1

)
χ

β̃+
p2
p1

i

≤ c(n, γ1, γ2, β̃)d
p2
p1

(p2−p1)2ip2(β̃+
p2
p1

)χ
β̃+

p2
p1

i .

We now choose

d := 1 + Ã

(

∫

A0,1

up2 dy

)1/p2

|A0,1|
β̃/p2 , (4.20)

whereÃ will be fixed a bit later. Analoguously to the preceding argumentation we observe that

d ≤ 1 + Ã

(

∫

B1(0)

up2

+ dy

)1/p2

|B1(0)|β̃/p2 ≤ c(n,M, p2, β̃)(1 + Ã),

and therefore

d
p2
p1

(p2−p1) ≤ c̄
(

1 + Ã
p2
p1

(p2−p1)
)

,

with c̄ ≡ c̄(n,M, γ1, γ2, β̃). Moreover, with (4.20) we have

χ0 = d−p2

∫

Ak0,r0

(u− k0)
p2 dy|Ak0,r0 |

β̃ = d−p2 |A0,1|
β̃

∫

A0,1

up2 dy ≤ Ã−p2 .

We setB ≡ 2p2(β̃+p2/p1), C ≡ c̄
(

1 + Ãp2/p1(p2−p1)
)

, a ≡ β̃ + p2/p1 − 1. The assumptions of Lemma 3.3 are

satisfied, if we choosẽA in such a way that

Ã
β̃+

p2
p1

−1
= c̄B

(β̃+
p2
p1

−1)−1
(

1 + Ã
p2
p1

(p2−p1)
)

.

(we note that̃α andβ̃ can be chosen in such a way that the preceding equation has a unique solution0 < Ã ≡
Ã(n,M, γ1, γ2, p1, p2,Q) < +∞).

By Lemma 3.3 we conclude that

lim
i→∞

χi = 0

and as

lim
i→∞

ri =
1

2
, lim

i→∞
ki = d,
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14 M. Eleuteri and J. Habermann: Hölder continuity for obstacle problems with nonstandard growth

we have that|Ad,1/2| = 0, that is, using (4.20)

sup
B1/2(0)

u ≤ d = c

(

∫

A0,1

up2 dy

)1/p2

|A0,1|
α
p2 + 1,

i.e. (4.6) withc ≡ c(n,M, γ1, γ2,A,Q). Again we remark here that by a compactness argument, together with
the notes above, concerning the parameterÃ, we conclude that the constantc may be replaced by a constant
c ≡ c(n,M, γ1, γ2,Q). �

4.3 A priori h ölder continuity result.

Let BR ≡ B(x0, R) ⊂ Ω and letp : BR → (1,∞) be a uniformly continuous function which modulus of
continuity fulfills condition (2.1) (and therefore in particular (2.2)); suppose that there exist constantsγ1, γ2 such
that

γ1 ≤ p1 := min
BR

p(x) ≤ p(x) ≤ p2 := max
BR

(x) ≤ γ2. (4.21)

We set

H(R) = L

∫

BR

(|Dψ|p(x) + 1) dx, K := K(R) :=

(

1 +
H(R)

Rn

)1/p1

,

whereL appears in (2.2) and withψ given function satisfying (2.6). We moreover set

γ :=
λ− n+ p2

p2
> 0. (4.22)

Let us note that by (2.2) we may choose the radiusR ≤ R1 ≡ R1(n, λ, γ1, γ2, L, ω(·)) > 0 so small that

R ≤

(

1

L

)
1

n−λ

,

(

2

L
Rλ

)

p2−p1
p1

≤ 1. (4.23)

SinceH(R) ≤ Rλ

L , we immediately deduce

K =

(

1 +
H(R)

Rn

)1/p1

≤

(

1 +
1

L
Rλ−n

)1/p1

≤

(

2

L

)1/p1

R
λ−n
p1 . (4.24)

On the other hand, by the continuity ofp and (2.2) we obtain

Kp2−p1 ≤

(

2

L

)

p2−p1
p1 (

Rλ−n
)

p2−p1
p1 ≤

(

R−n(p2−p1)
)1/p1

≤
(

R−nω(2R)
)1/p1

≤ c̄(n,L, γ1, γ2, ω(·)),

which yields

Kp2 ≥ Kp(x) ≥ Kp1 ≥
1

c̄
Kp2 ≥

1

c̄
Kp(x). (4.25)

Let nowv ∈ W
1,p(x)
loc (BR) be a free localQ minimizer of the functional

w 7→

∫

BR

(

|Dw|p(x) +
H(R)

Rn
+ 1

)

dx. (4.26)

The aim of this section is to prove thatv is locally Hölder continuous and provide a useful decay estimate
(namely (4.52)). This is the key to the proof of our main theorem, since it will turn out that the minimizeru of
the original problem in the obstacle class (2.5) is in fact a local freeQ minimizer of the functional above.
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The proof of the Hölder continuity ofv is carried out by means of different steps, namely Lemmas 4.4, 4.9,
4.10 and Propositions 4.11, 4.12. Throughout the section wewill assume that there exists a constantM such that

∫

BR

|Dv|p(x) dx ≤ M. (4.27)

In a first step we show that a rescaled version for the functionv is a local freeQ̃ minimizer of the functional (4.2)
and therefore locally bounded, satisfying estimates in spirit of (4.5).

Lemma 4.4 Let v ∈ W
1,p(x)
loc (BR) be a localQ minimizer of the functional(4.26). Thenv satisfies the

following estimates

sup
BR/2

v ≤ c

(

−

∫

BR

vp2

+ dx

)1/p2

+ cRγ , (4.28)

sup
BR/2

(−v) ≤ c

(

−

∫

BR

(−v)p2

+ dx

)1/p2

+ cRγ , (4.29)

with c ≡ c(n, γ1, γ2,Q) and additionally

sup
BR/2

v ≤ c

(

−

∫

BR

(v − κ0)
p2

+ dx

)
1

p2

∣

∣

∣

∣

Aκ0,R

Rn

∣

∣

∣

∣

α̃
p2

+Rγ + κ0, (4.30)

for some suitablẽα, for all κ0 ≤ supBR
v and withc ≡ c(n,L, γ1, γ2,Q).

Remark 4.5 Estimates (4.28) and (4.29) still hold ifv and−v are replaced respectively byv−κ0 andκ0− v,
for anyinfBR v ≤ κ0 ≤ supBR

v. For the justification on these restrictions onκ0 see Remark 4.6.

Remark 4.6 We just would like to focus our attention on the restriction on κ0 in (4.30). It is clear that (4.30)
is interesting only forκ0 ≤ supBR

v, because otherwise we would have(v − κ0)+ = 0. On the other hand this
makes sense as, by (4.28), ifv is a localQ minimizer of the functional (4.26) thenv is locally bounded. A similar
argument justifies Remark 4.5. These restrictions onκ0 will be used later (see (4.53)).

Proof.
First step: Rescaling the problem.We set

ṽ(y) :=
1

KR
v(x0 +Ry), (4.31)

and now show that̃v is a localQ̃ minimizer of the functional (4.2), with̃Q ≡ Q̃(Q, n, L, γ1, γ2) andp̃(y) :=
p(x0 +Ry).

Therefore letϕ̃ ∈ C∞
c (B1(0)). Thenϕ(x) := KR ϕ̃(x−x0

R ) ∈ C∞
c (BR(x0)). By theQ minimality of v,

also using (4.25), we obtain (denoting̃S := spt(ϕ̃) andS := spt(ϕ)):

∫

S̃

(

|Dṽ(y)|p̃(y) + 1
)

dy =

∫

S̃

(

∣

∣

∣

∣

Dv(x0 +Ry)

K

∣

∣

∣

∣

p(x0+Ry)

+ 1

)

dy

=
1

Rn

∫

S

(

∣

∣

∣

∣

Dv(x)

K

∣

∣

∣

∣

p(x)

+ 1

)

dx

(4.25)
≤

1

RnKp1

∫

S

(

|Dv(x)|p(x) +Kp1

)

dx

≤
1

RnKp1
Q

∫

S

(

|Dv(x) +Dϕ(x)|p(x) +Kp1

)

dx (4.32)

=
1

Rn
Q

∫

S

(

|Dv(x) +Dϕ(x)|p(x)

Kp1
+ 1

)

dx
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16 M. Eleuteri and J. Habermann: Hölder continuity for obstacle problems with nonstandard growth

(4.25)
≤

1

Rn
Qc̄

∫

S

(

∣

∣

∣

∣

Dv(x) +Dϕ(x)

K

∣

∣

∣

∣

p(x)

+ 1

)

dx

= Qc̄

∫

S̃

(

|Dṽ(y) +Dϕ̃(y)|p̃(y) + 1
)

dy,

which yields the desired estimate with̃Q ≡ Q̃(Q, n, L, γ1, γ2) := Qc̄.
Second step: Sup– estimates.The above estimate shows, thatṽ is a localQ̃ minimizer of the functional

(4.2), where the exponent functionp is replaced by the rescaled functionp̃. On the other hand, sincẽp2 = p2 and
p̃1 = p1, assumption (4.3) is satisfied, if we take the radiusR ≤ R2 ≡ R2(n, ω(·)) so small thatp2 − p1 ≤ 1

n .
Moreover, by (4.27) also (4.4) is satisfied. This allows us toapply Lemma 4.2 which yields, that estimates (4.5),
(4.5) and especially (4.9) and (4.17) hold for the functionṽ.

The desired estimates (4.28) and (4.29) now follow by rescaling. Noting that

sup
y∈B1/2(0)

ṽ(y) = sup
Ry∈BR/2(0)

v(x0 +Ry)

KR
=

1

KR
sup

x0+Ry∈BR/2(x0)

v(x0 +Ry) =
1

KR
sup

x∈BR/2

v(x).

and on the other hand that
[

∫

B1(0)

ṽp̃2

+ dy

]1/p̃2

=

[
∫

BR

( v+
KR

)p2 1

Rn
dx

]1/p2

=

(

1

KR

) [

−

∫

BR

vp2

+ dx

]1/p2

,

finally multiplying byKR and taking use of (2.2), (2.6), (4.22) and (4.25), we obtain

KR ≤ cR
λ−n
p1

+1 = cR
λ−n+p1

p1 = cR
p2
p1

γ R
p1−p2

p1 ≤ cRγ ,

with c ≡ c(γ1, γ2, L), from what we deduce (4.28).
Estimate (4.30) can be achieved via (4.6) by a similar argument, taking into account that|A(0, R)| =

Rn |A(0, 1)| and then writingv − κ0 instead ofv. �

Remark 4.7 We note that the ability of rescaling theQ minimizerv of (4.26) in such a way that one obtains a
Q minimizer ṽ of the functional (4.2), which is completely independent ofthe obstacle, is mainly due to the fact
that the obstacle lies in an appropriate Morrey space (see the argumentation for (4.25)).

Remark 4.8 If in Lemma 4.4 we replace (4.31) by

ṽ(y) :=
1

K(r) r
v(x0 + ry).

for anyr such thatBr ⋐ BR, we have that (4.28), (4.29) and (4.30) still hold withR replaced byr; this because
in (4.32) we only used the definition of localQ minimizer which can be applied also in this new situation as if
ϕ ∈ C∞

c (Br(x0)) with Br ⋐ BR, then in particularϕ ∈ C∞
c (BR(x0)).

Lemma 4.9 Letv ∈W
1,p(x)
loc (BR) be a localQ minimizer of the functional(4.26), satisfying(4.27). Then for

every couple of ballsBρ ⊂ Br ⋐ BR having the same centerx0 and for everyk ∈ R v fulfills the following two
estimates

∫

Ak,ρ

|Dv|p(x) dx ≤ c

[

∫

Ak,r

∣

∣

∣

∣

v − k

r − ρ

∣

∣

∣

∣

p(x)

dx+ rλ

]

, (4.33)

and
∫

Bk,ρ

|Dv|p(x) dx ≤ c

[

∫

Bk,r

∣

∣

∣

∣

v − k

r − ρ

∣

∣

∣

∣

p(x)

dx + rλ

]

, (4.34)

with c ≡ c(Q, γ1, γ2), where we set

Ak,r = {x ∈ Br : v(x) > k}, Bk,r = {x ∈ Br : v(x) < k}.
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Proof. We use an argument similar to the one employed to achieve (4.7) and (4.8). Forρ ≤ t < s ≤ r,
let η ∈ C∞

c (Br) with sptη ⊂ Bs, η ≡ 1 onBt, |Dη| ≤ 2
s−t be a standard cut-off function. We setz(x) :=

v(x) − η w(x), wherew(x) := max{v(x) − k, 0}. Testing theQ minimality we obtain
∫

Ak,t

|Dv|p(x) dx ≤

∫

Ak,s

(

µ2 + |Dv|2
)p(x)/2

dx

≤ Q

∫

Ak,s

(

µ2 + |Dz|2
)p(x)/2

dx+ (Q− 1)

∫

Ak,s

(

H(s)

sn
+ 1

)

dx.

The second integral we handle, using (2.6), as follows
∫

Ak,s

(

H(s)

sn
+ 1

)

dx ≤

∫

Ak,s

Ls−n

(
∫

Bs

|Dψ|p(y) + 1 dy

)

dx+ |Bs|

≤ s−nL

∫

Bs

∫

Bs

|Dψ|p(y) dy dx+

∫

Bs

∫

Bs

s−nLdy dx+ |Bs|

≤ csλ + Lsn + ωn s
n ≤ csλ.

We estimate the first integral as follows:
∫

Ak,s

(

µ2+|Dz|2
)p(x)/2

dx

=

∫

Ak,s

(

µ2 + |(1 − η)Dv −Dη(v − k)|2
)p(x)/2

dx

≤

[

c

∫

Ak,s\Ak,t

(

µ2 + |Dv|2
)p(x)/2

dx+ c

∫

Ak,s

∣

∣

∣

∣

v − k

s− t

∣

∣

∣

∣

p(x)

dx+ |Ak,s|

]

≤

[

c

∫

Ak,s\Ak,t

|Dv|p(x) dx+ c

∫

Ak,s

∣

∣

∣

∣

v − k

s− t

∣

∣

∣

∣

p(x)

dx

]

.

Putting these estimates together we deduce

∫

Ak,t

|Dv|p(x) dx ≤ c̃Q

[

∫

Ak,s\Ak,t

|Dv|p(x) dx+

∫

Ak,s

∣

∣

∣

∣

v − k

s− t

∣

∣

∣

∣

p(x)

dx

]

+ csλ,

with c ≡ c(n, γ1, γ2) andc ≡ c(n,Q, ||Dψ||Lq,λ(BR)). Now, adding on both sides of the inequality the term
Qc̃
∫

Ak,t
|Dv|p(x) dx and dividing the resulting inequality by1 + Qc̃, we obtain

∫

Ak,t

|Dv|p(x) dx ≤ θ

∫

Ak,s

|Dv|p(x) dx+ c

∫

Ak,s

∣

∣

∣

∣

v(x) − k

s− t

∣

∣

∣

∣

p(x)

dx+ c rλ,

for anyρ ≤ t < s ≤ r with θ ≡ Qc̃
1+Qc̃ < 1, c ≡ c(n,Q, γ1, γ2) andθ ≡ θ(n,Q, γ1, γ2). Therefore, taking into

account (4.27), Lemma 4.1 provides the desired inequality (4.33).
On the other hand, repeating exactly the same argument for the function−v, which is also aQ minimizer of

the functional (4.26), we end up with (4.34). �

Let us introduce some additional notation which we will use for the rest of this section. For a given radiusr
and a functionv we define

M(r) := sup
Br

v, m(r) := inf
Br

v, (4.35)

and

osc(v, r) := max
Br

v − min
Br

v. (4.36)

Copyright line will be provided by the publisher



18 M. Eleuteri and J. Habermann: Hölder continuity for obstacle problems with nonstandard growth

Moreover for a given integeri ∈ N we define the quantity

ki := M(4r) − 2−i−1osc(v, 4r). (4.37)

The following Lemma is a rather technical one, which will be useful for the proof of Proposition 4.11.

Lemma 4.10 Letv ∈W
1,p(x)
loc (BR) be a localQ minimizer of the functional(4.26)and letκ0 = 1

2 (M(4r) +
m(4r)) for someB4r ⋐ BR. Assume that

|Aκ0,2r| ≤ γ0 |B2r| for someγ0 < 1. (4.38)

If for an integerν it holds that

osc(v, 4r) ≥ 2ν+1 rγ , (4.39)

whereγ ≡ λ−n+p2

p2
, as introduced in(4.22), then there holds

|Akν ,2r| ≤ cν ν
−

n(p1−1)

p1(n−1) rn, (4.40)

with cν ≡ cν(γ1, γ2, L,Q).

Proof. In a first step of the proof, let us define for arbitraryκ0 < h < k the function

w(x) =















(k − h) if v ≥ k

(v − h) if h < v < k

0 if v ≤ k.

Sincew = 0 in B2r \Aκ0,r and|B2r \Aκ0,2r| ≥ (1 − γ0) |B2r|, due to (4.38), Sobolev’s inequality provides

(
∫

B2r

w
n

n−1 dx

)1− 1
n

≤ c

∫

B2r

|Dw| dx =

∫

∆

|Dw| dx = c

∫

∆

|Dv| dx,

where we set∆ = Ah,2r \Ak,2r. We therefore have

(k − h) |Ak,2r |
1− 1

n ≤

(
∫

B2r

w
n

n−1 dx

)1− 1
n

≤ c |∆|1−
1

p1

(

∫

Ah,2r

|Dv|p1 dx

)
1

p1

. (4.41)

On the other hand, applying Lemma 4.9, estimate (4.33), additionally noting thatv − k ≤M(4r) − h on the set
Ak,4r we deduce (recalling also thath < k andλ < n)

∫

Ak,2r

|Dv|p1 dx ≤

∫

Ak,2r

(|Dv|p(x) + 1) dx

≤ c

∫

Ak,4r

∣

∣

∣

∣

v − k

r

∣

∣

∣

∣

p(x)

dx+ c rλ

≤ c rn−p2 (M(4r) − h)p1 + c rn−p2 rλ−n+p2

≤ c rn−p2 [(M(4r) − h)p1 + rγ p2 ] ,

(4.42)

with c ≡ c(γ1, γ2,Q, L), where we assumed thatM(4r) − h ≤ 1, due to the fact thath > κ0.
Forh ≤ k ≤ kν , we have, using (4.37) and (4.39)

M(4r) − h ≥ M(4r) − kν ≥ rγ , (4.43)
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and hence, combining (4.41), (4.42) and (4.39), we end up with

(k − h) |Ak,2r |
n−1

n ≤ c |∆|
p1−1

p1 r
n−p2

p1 [(M(4r) − h)p1 + rγ p2 ]
1

p1

(4.43)
≤ c |∆|

p1−1
p1 r

n−p1
p1 r

p1−p2
p1 (M(4r) − h).

(4.44)

Exploiting the continuity (2.2), and therefore

rp1−p2 ≤ r−ω(r) ≤ c(L),

the preceding inequality simplifies to

(k − h) |Ak,2r |
n−1

n ≤ c |∆|
p1−1

p1 r
n−p1

p1 (M(4r) − h). (4.45)

In a second step, we apply estimate (4.45) to the levels

k = ki = M(4r) − 2−i−1 osc(v, 4r), h = ki−1.

Noting that

ki − ki−1 = 2−i 1

2
osc(v, 4r) M(4r) − h = M(4r) − ki−1 = 2−i osc(v, 4r),

and

∆i = Aki−1,2r \Aki,2r,

and raising both sides of estimate (4.45) to the powerp1

p1−1 , we obtain (we recall thatki ≤ kν , so |Akν ,2r| ≤

|Aki,2r|)

|Akν ,2r|
p1(n−1)

n(p1−1) ≤ |Aki,2r|
p1(n−1)

n(p1−1) ≤ c r
n−p1
p1−1 |∆i|.

Summing up the preceding estimate fori = 1 . . . ν and taking into account that, sincek0 = κ0, there holds

ν
∑

i=1

|∆i| = |{x ∈ B2r : k0 < v(x) ≤ kν}| ≤ |Aκ0,2r|,

we obtain

ν |Akν ,r|
p1(n−1)

n(p1−1) ≤ c r
n−p1
p1−1 |Aκ0,r|

(4.38)
≤ c r

p1(n−1)
p1−1

and the desired inequality follows, withc ≡ c(γ1, γ2, L,Q). �

The following proposition is the key to the proof of Hölder continuity of the functionv. It provides a quanti-
tative estimate for the oscillations ofv on shrinking balls, which will turn out to be the key for the quantitative
estimates of Proposition 4.12.

Proposition 4.11 Let v ∈ W
1,p(x)
loc (BR) be a localQ minimizer of the functional(4.26). Thenv is locally

Hölder continuous inBR and there exists0 < α < γ < 1 (whereγ has been introduced in(4.22)) such that the
following estimate holds

osc(v, ρ) ≤ c
{(ρ

r

)α

osc(v, r) + ρα
}

(4.46)

for everyρ < r < R/4, with c ≡ c(n,L, γ1, γ2,Q).
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20 M. Eleuteri and J. Habermann: Hölder continuity for obstacle problems with nonstandard growth

Proof. Let 0 < r < R/4 and, as in the lemma beforeκ0 = 1
2 (M(4r)+m(4r)). We may assume without loss

of generality that

|Aκ0,2r| ≤
1

2
|B2r|, (4.47)

since otherwise we would have|Bκ0,2r| = |B2r| − |Aκ0,2r| ≤
1
2 |B2r| which translates into (4.47) if we replace

v by−v. Recalling the definition ofki in (4.37), for any given integerν we havekν > κ0.
First we observe that due to Lemma 4.4,v is locally bounded and satisfies estimate (4.30), which we may

write withR replaced byr andκ0 replaced bykν :

sup
Br/2

(v − kν) ≤ c

[

(

−

∫

B2r

(v − kν)p2

+ dx

)1/p2
∣

∣

∣

∣

Akν ,2r

rn

∣

∣

∣

∣

α̃
p2

+ rγ

]

.

We note at this point, that the replacement ofR by r is justified via Lemma 4.8. On the other hand, since we
may guarantee thatkν ≤ M(2r), estimate (4.30) holds, if we replace the ballBr on the right hand side of the
inequality by the ball of doubled radiusB2r.

Estimating the integral on the right hand side of the preceding inequality

−

∫

B2r

(v − kν)p2

+ dx = crn

∫

Akν ,2r

(v − kν)p2 dx ≤ c sup
B2r

(v − kν)|Akν ,2r|
1/p2 ,

we deduce

sup
Br/2

(v − kν) ≤ c̃ν sup
B2r

(v − kν)

∣

∣

∣

∣

Akν ,2r

rn

∣

∣

∣

∣

α̃+1
p2

+ rγ , (4.48)

with c̃ν ≡ c̃ν(n,L, γ1, γ2,Q).
Let us choose now the integerν in such a way that

c̃ν c
α̃+1
p2

ν ν
−

n(p1−1)

p1(n−1)
α̃+1
p2 ≤

1

2
,

wherecν is the constant appearing in (4.40).
In the case that

osc(v, 2r) ≥ 2ν+1 rγ , (4.49)

we are in the situation to apply Lemma 4.10, estimate (4.40) and (4.48) to conclude

M
( r

2

)

− kν = sup
Br/2

(v − kν) ≤ c̃ν sup
B2r

(v − kν)

∣

∣

∣

∣

Akν ,2r

rn

∣

∣

∣

∣

α̃+1
p2

+ rγ

≤
1

2
(M(4r) − kν) + rγ .

Subtracting on both sides of the inequality the quantitym
(

r
2

)

and using the fact thatm
(

r
2

)

≥ m(2r), we have,
together with the definition ofkν

osc
(

v,
r

2

)

≤ kν +
1

2
(M(4r) − kν) + rγ −m

(r

2

)

= M(4r) −
1

2ν+1
osc(v, 4r) +

1

2

1

2ν+1
osc(v, 4r) −m

(r

2

)

+ rγ

= osc(v, 4r)

[

1 −
1

2ν+1
+

1

2ν+2

]

+ rγ

= osc(v, 4r)

(

1 −
1

2ν+2

)

+ rγ .

(4.50)
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In conclusion, either the function osc(v, r) satisfies the above relation (4.49), wich implies (4.50), orelse there
holds

osc(v, 4r) ≤ 2ν+1 rγ .

In any case we have

osc
(

v,
r

2

)

≤

(

1 −
1

2ν+2

)

osc(v, 4r) + 2ν+1 rγ ,

for any radius0 < r < R/4. Applying Lemma 3.4 with the choicesτ = 1/8 andδ = logτ

(

1 − 1
2ν+2

)

, moreover
settingα := min{δ, γ} and requiring in particular that0 < α < 1, we obtain (4.46). �

Proposition 4.12 Let v ∈ W
1,p(x)
loc (BR) be a localQ minimizer of the functional(4.26). Then, for every

ρ < R we have

∫

Bρ

|v − (v)ρ|
p2 dx ≤ c

( ρ

R

)n+p2 α
∫

BR

|v − (v)R|
p2 dx+ c ρn+p2 α (4.51)

with c ≡ c(n, γ1, γ2, L,Q), and

∫

Bρ

|Dv|p(x) dx ≤ c
( ρ

R

)n−p2+p2 α
∫

BR

|Dv|p(x) dx+ c ρn−p2+p2 α, (4.52)

with c ≡ c(n, γ1, γ2, L,Q,M) and where0 < α < 1 is the constant appearing in(4.46).

Proof. We shall prove (4.51) first. Let us write (4.28) and (4.29) with R/2 = r andv and−v replaced
by v − (v)r and (v)r − v respectively (this is possible due to Remarks 4.5 – 4.8, together with the fact that
infBr v ≤ (u)r ≤ supBr

v). Summing both sides of the inequalities obtained

osc(v, r) ≤ c

(

−

∫

B2r

|v − (v)r|
p2 dx

)1/p2

+ c rγ . (4.53)

Now we first remark that

[

−

∫

B2r

|v − (v)r|
p2 dx

]1/p2

≤ c

[

−

∫

B2r

|v − (v)2r|
p2 dx+ |(v)2r − (v)r |

p2

]1/p2

≤ c

[

−

∫

B2r

|v − (v)2r|
p2 dx

]1/p2

+ c

∣

∣

∣

∣

(v)2r −
1

rn

∫

Br

v(y) dy

∣

∣

∣

∣

≤ c

[

−

∫

B2r

|v − (v)2r|
p2 dx

]1/p2

+ c

∣

∣

∣

∣

1

rn

∫

Br

(v − (v)2r) dy

∣

∣

∣

∣

≤ c

[

−

∫

B2r

|v − (v)2r|
p2 dx

]1/p2

,

(4.54)

with c ≡ c(γ1, γ2). Therefore we have

osc(v, r) ≤ c

(

−

∫

B2r

|v − (v)2r|
p2 dx

)1/p2

+ c rγ . (4.55)

On the other hand, for anyρ < r

−

∫

Bρ

|v − (v)ρ|
p2 dx ≤ osc(v, ρ)p2 ; (4.56)
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hence, taking into account (4.46), we get forρ < r = R/2 (we recall thatα < γ)

−

∫

Bρ

|v − (v)ρ|
p2 dx ≤ osc(v, ρ)p2

≤ c
{(ρ

r

)α

osc(v, r) + ρα
}p2

≤ c
{(ρ

r

)p2 α

osc(v, r)p2 + ρp2 α
}

(4.57)

(4.55)
≤ c

( ρ

R

)p2 α

−

∫

BR

|v − (v)R|
p2 dx+ c ρp2 α,

with c ≡ c(n, γ1, γ2, L,Q), where in the last line we used the fact thatr = R/2. Therefore we obtained exactly
(4.51). A simple argument shows that (4.51) holds, with a different choice of the constants, for anyρ < R.

Concerning (4.52), we first state a Caccioppoli type inequality for v

∫

Bρ

|Dv|p(x) dx ≤ c

∫

B2ρ

∣

∣

∣

∣

v − (v)2ρ

ρ

∣

∣

∣

∣

p(x)

dx+ c ρλ; (4.58)

it is not difficult to see that (4.58) can be obtained using an argument similar to the one employed in Lemma 4.9.
On the other hand, due to assumption (2.2) and the localization we havep2 ≤ p∗1 and therefore

R
n

„

1−
p2
p∗

1

«

= Rp2 Rn
p1−p2

p1 ≤ c(L)Rp2 . (4.59)

Finally, the Sobolev Poincaré inequality yields
∫

BR

(v − (v)R)p(x) dx ≤ c

∫

BR

[(v − (v)R) + 1]p2 dx

≤ c

(
∫

BR

[(v − (v)R) + 1]p
∗

1 dx

)p2/p∗

1

R
n

„

1−
p2
p∗

1

«

(4.59)
≤ cRp2

(
∫

BR

|Dv|p1 dx

)

p2
p1

(4.60)

≤ cRp2

[
∫

BR

(|Dv|p(x) + 1) dx

]

p2
p1

≤ c(M)Rp2

∫

BR

(|Dv|p(x) + 1) dx,

where the constantM appears in (4.27).
Therefore summing up we may deduce, this time forρ < R/4

∫

Bρ

|Dv|p(x) dx
(4.58)
≤ c

∫

B2ρ

∣

∣

∣

∣

v − (v)2ρ

ρ

∣

∣

∣

∣

p(x)

dx+ c ρλ

≤ c

∫

B2ρ

∣

∣

∣

∣

v − (v)2ρ

ρ

∣

∣

∣

∣

p2

+ 1 dx+ c ρλ

=
c

ρp2

∫

B2ρ

|v − (v)2ρ|
p2 dx+ c ρλ

(4.57)
≤

c

ρp2

[

( ρ

R

)n+p2 α
∫

BR

|v − (v)R|
p2 dx+ c ρn+p2 α

]

+ c ρλ

(4.60)
≤ c

( ρ

R

)n−p2+p2 α
∫

BR

|Dv|p(x) dx+ c ρn−p2+p2 α,
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taking into account that, by definition ofα, we have thatn − p2 + p2 α ≤ λ. Once more a simple argument
shows that (4.52) holds, with a different choice of the constants, for anyρ < R. This finishes the proof. �

We finally prove an up-to-the-boundary higher integrability result for the functionv, which will be needed
later for the comparison ofv and the original minimizeru.

Proposition 4.13 Let v be a localQ-minimizer of the functional(4.26) in the Dirichlet class{v ∈ u +

W
1,p(x)
0 (BR)}, for someu ∈ W 1,p(x)(BR), where the functionψ fulfills the assumption(2.6). If moreover

|Du|p(x) ∈ L1+δ for someδ > 0, then there existε ≡ ε(n, γ1, γ2, L) ∈ (0, δ) andc ≡ c(n, γ1, γ2, L) such that

(

−

∫

BR

|Dv|p(x)(1+ε) dx

)
1

(1+ε)

≤ c −

∫

BR

|Dv|p(x) dx +

(

−

∫

BR

|Du|p(x)(1+δ) + |Dψ|p(x)(1+δ) + 1 dx

)
1

1+δ

.

(4.61)

Proof.
Case 1: interior situation. Let 0 < ρ < R andx0 ∈ BR be an interior point such thatBρ(x0) ⊂ BR. Let

t, s ∈ R with ρ
2 < t < s < ρ. Let η ∈ C∞

c (Bρ), 0 ≤ η ≤ 1 be a cut-off function withη ≡ 1 onBt, η ≡ 0

outsideBs and|Dη| ≤ 2
|s−t| . We define the functionz := v − η(v − (v)ρ). Testing theQ-minimality of v we

deduce
∫

Bt

|Dv|p(x) dx ≤

∫

Bs

(µ2 + |Dv|2)p(x)/2 dx

≤ Q

∫

Bs

(µ2 + |Dz|2)p(x)/2 dx+QL

∫

Bs

(|Dψ|p(x) + 1) dx

≤ Q

∫

Bs

(µ2 + |(1 − η)Dv −Dη(v − (v)ρ)|
2)p(x)/2 + c

∫

Bs

(|Dψ|p(x) + 1) dx

≤ c̄

∫

Bs\Bt

|Dv|p(x) dx+ c

∫

Bs

∣

∣

∣

∣

v − (v)ρ

s− t

∣

∣

∣

∣

p(x)

dx+ c

∫

Bs

(|Dψ|p(x) + 1) dx,

wherec̄ ≡ c̄(Q, γ1, γ2).
Now, “filling the hole” and applying Lemma 4.1 we deduce the following

−

∫

Bρ/2

|Dv|p(x) dx ≤ c −

∫

Bρ

∣

∣

∣

∣

v − (v)ρ

ρ

∣

∣

∣

∣

p(x)

dx+ c

∫

Bs

(|Dψ|p(x) + 1) dx.

At this point, by Sobolev-Poincaré inequality, there existsχ < 1 such that

−

∫

Bρ

∣

∣

∣

∣

v − (v)ρ

ρ

∣

∣

∣

∣

p(x)

dx ≤ 1 + −

∫

Bρ

∣

∣

∣

∣

v − (v)ρ

ρ

∣

∣

∣

∣

p2

dx

≤ 1 + c

(

∫

Bρ

(1 + |Dv|p(x)) dx

)

p2−p1
p1 χ

ρ−
(p2−p1) n

p1 χ

(

−

∫

Bρ

|Dv|p1 χ dx

)1/χ

≤ c(M̃)

(

−

∫

Bρ

|Dv|p(x) χ dx

)1/χ

+ c.

Therefore summing up we have the following reverse Hölder inequality

−

∫

Bρ/2

|Dv|p(x) dx ≤ c1

(

−

∫

Bρ

|Dv|p(x) χ dx
)1/χ

+ c2 −

∫

Bρ

(

|Dψ|p(x) + 1
)

dx, (4.62)

for some suitableχ < 1, c1, c2 ≡ c1, c2(n, γ1, γ2, L).
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Case 2: situation at the boundary.We consider a pointx0 ∈ ∂BR and0 < ρ < R. Using the same cut-off
function as before, we definez := v − η(v − u).

On∂BR we havez = u which yieldsz ∈ u +W
1,p(x)
0 (BR). DefiningB+

t := Bt(x0) ∩ BR and testing the
Q-minimality for v, we obtain in exactly the same way as before

∫

B+
t

|Dv|p(x) dx ≤ c

[

∫

B+
s \B+

t

|Dv|p(x) dx+

∫

B+
s

|Du|p(x) dx

+

∫

B+
s

∣

∣

∣

∣

v − u

s− t

∣

∣

∣

∣

p(x)

dx+

∫

B+
ρ

(|Dψ|p(x) + 1) dx

]

.

Again “filling the hole” and using Lemma 4.1, we obtain

∫

B+
ρ/2

|Dv|p(x) dx ≤ c

[

∫

B+
ρ

∣

∣

∣

∣

v − u

ρ

∣

∣

∣

∣

p(x)

dx+

∫

B+
ρ

|Du|p(x) dx +

∫

B+
ρ

(

|Dψ|p(x) + 1
)

dx

]

.

Defining

w̄ :=

{

v − u on B+
ρ

0 on B−
ρ := Bρ \B+

ρ

and applying Sobolev-Poincaré’s inequality in the version of [28, Corollary 4.5.3] (note that|B−
ρ | ≥ 1/2|Bρ|)

we deduce
∫

B+
ρ

|v − u|p(x) dx ≤

∫

B+
ρ

(|v − u|p2 + 1) dx

=

∫

Bρ

(|w|p2 + 1) dx

≤ c(n, γ2)
|Bρ|

|B−
ρ |

(

∫

Bρ

|Dw|
np2

n+p2 dx

)

n+p2
n

+ ρn.

We define

χ :=
np2

(n+ p2) p1
;

we observe that due to the localization, it is possible to takeχ < 1. Now

(

∫

Bρ

|Dw|p1 χ dx

)
1
χ

p2
p1

=

(

∫

Bρ

|Dw|p1 χ dx

)
1
χ
(

∫

Bρ

(|Dw|p(x) + 1) dx

)

p2−p1
χ p1

≤ c(M̃)

(

∫

Bρ

|Dw|p1 χ dx

)1/χ

= c

(

∫

B+
ρ

(|Dv −Du|p(x) χ + 1) dx

)1/χ

.

On the other hand, taking mean values we have first of all

−

∫

B+
ρ

∣

∣

∣

∣

v − u

ρ

∣

∣

∣

∣

p(x)

dx ≤
1

ρn p2

∫

B+
ρ

|v − u|p(x) dx

≤ c ρ
(p1−p2)

h

n
p2

+1
i

(

−

∫

B+
ρ

|D(v − u)|p(x) χ dx

)1/χ
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≤ c(L)

(

−

∫

B+
ρ

|D(v − u)|p(x) χ dx

)1/χ

that brings

−

∫

B+
ρ/2

|Dv|p(x) dx ≤ c





(

−

∫

B+
ρ

|Dv|p(x)χ dx

)1/χ

+ −

∫

B+
ρ

(

|Du|p(x) + |Dψ|p(x) + 1
)

dx



 , (4.63)

with c ≡ c(n, γ1, γ2, L).
Note that (4.62) holds for anyBρ ⊂ BR and (4.63) for any0 < ρ ≤ R. Therefore we can apply the global

version of Gehring’s Lemma [8, Theorem 2.4], with the functionsg := |Dv|p(x)χ, f := (|Du|p(x) + |Dψ|p(x) +
1)χ to deduce the desired result. �

Remark. Note that the dependency of the higher integrability exponent ε and the constants coming up in
Gehring’s Lemma on the exponentχ can be replaced by dependencies on the global boundsγ1 andγ2 for p2 and
p1. For a detailed discussion of this we refer the reader to [21].

5 Proof of Theorem 2.7

In this section we prove Hölder continuity for the functionu. Therefore we start with localization of the problem.

5.1 First step: Localization.

We first note that in view of Lemma 3.6 we may find an exponentδ ≡ δ(n, q̃, γ1, γ2, L) > 0 such that

∫

Ω′

|Du|p(x)(1+δ) dx < +∞.

Since our results are local in nature we may assume that

∫

Ω

|Du|p(x)(1+δ) dx < +∞. (5.1)

Without loss of generality letδ be so small that1 + δ ≤ q̃, whereq̃ is the quantity in (2.6).
LetRM be a maximal radius such that there holdsω(8RM ) ≤ δ/4 andBR ⊂ Ω a ball with radiusR ≤ RM .

We define

p2 := max{p(x) : x ∈ BR}, p1 := min{p(x) : x ∈ BR}. (5.2)

By the continuity ofp we therefore deduce

p2 − p1 ≤ ω(R) ≤ δ/4;

p2(1 + δ/4) ≤ p(x)(1 + δ/4 + ω(R)) ≤ p(x)(1 + δ). (5.3)

Furthermore we note that the localization together with thebound (2.2) for the modulus of continuity provides
for anyR ≤ 8RM ≤ 1:

R−nω(R) ≤ exp(nL) = c(n,L), R− nω(R)
1+ω(R) ≤ c(n,L). (5.4)

Additionally, in view of (2.4) we may assume that there existsM < +∞ such that

∫

Ω

|Du(x)|p(x) dx ≤M. (5.5)
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5.2 Second step: Comparison via Ekeland.

Let us consider the functionalF on the ballBR. We will show that the minimizeru in the obstacle class
K0 ≡ {w ∈ u+W 1,1

0 (BR) : w ≥ ψ} is in a certain sense ‘near’ to the infimum among all functionsin the free
classV ≡ w ∈ u+W 1,1

0 (BR). We argue as follows.
For fixedδ > 0 we chooseuδ ∈ V such that

F [uδ, BR] ≤ inf
w∈V

F [w,BR] + δRn.

Sinceuδ ∈ V is not necessarily an element of the obstacle classK0, we definewδ := max{uδ, ψ} and the set
Σ := {x ∈ R

n : uδ ≥ ψ}. By the minimality ofu we have

F [u,BR] ≤ F [wδ, BR]

= F [uδ,Σ] + F [ψ,BR \ Σ]

≤ F [uδ, BR] + F [ψ,BR]

≤ inf
w∈V

F [w,BR] + δRn + L

[
∫

BR

|Dψ|p(x) dx+Rn

]

Letting δ → 0 we obtain with the definition

H(R) := L

[
∫

BR

|Dψ|p(x) dx+Rn

]

, (5.6)

the estimate

F [u,BR] ≤ inf
w∈V

F [w,BR] +H(R). (5.7)

Let us now introduce the distance

d(v1, v2) :=

∫

BR

H(R)−
1

p(x)R−n(1− 1
p(x))|Dv1(x) −Dv2(x)| dx, (5.8)

and note that(V, d) is a complete metric space andF is a lower semi-continuous functional in the space(V, d).
Sinceinfw∈V F [w,BR] > −∞ we may apply Ekeland’s variational principle (Lemma 3.7) which provides a

functionv ∈ V such that
∫

BR

H(R)−
1

p(x)R−n(1− 1
p(x) )|Du(x) −Dv(x)| dx ≤ 1, (5.9)

F [v,BR] ≤ F [u,BR], (5.10)

andv is a minimizer in the classV of the functional

w 7→ F [w,BR] +

∫

BR

(

H(R)R−n
)

p(x)−1
p(x) |Dw(x) −Dv(x)| dx. (5.11)

5.3 Third step: Q minimality.

Let us show now that the functionv is an element of the classu+W
1,p(x)
0 (BR) andv is a localQ minimizer of

the functional

w 7→

∫

BR

[

|Dw|p(x) + H(R)
Rn + 1

]

dx, (5.12)

with Q ≡ Q(L).
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To see this letϕ ∈ W
1,p(x)
0 (BR) be arbitrary. Exploiting the minimality ofv we deduce

F [v, sptϕ] ≤ F [v + ϕ, sptϕ] +

∫

sptϕ

(

H(R)R−n
)

p(x)−1
p(x) |Dϕ| dx.

At this point, Young’s inequality provides

(

H(R)R−n
)

p(x)−1
p(x) |Dϕ| ≤ ε|Dϕ|p(x) + c(ε, p(x))H(R)R−n,

where, using the explicit form of the constant in Young’s inequality, the fact that(p(x)− 1)/p(x) ≤ (γ2 − 1)/γ2

and assumingε < 1−1/γ2 one can easily see thatc(ε, p(x)) in the above estimate may be replaced by a constant
c(ε, γ1, γ2). This allows us to deduce

F [v, sptϕ] ≤ F [v + ϕ, sptϕ] + ε

∫

sptϕ
|Dϕ|p(x) dx+ c(ε, γ1, γ2)

H(R)

Rn
|sptϕ|

≤ F [v + ϕ, sptϕ] +
ε

2γ1−1

(
∫

sptϕ
|Dv|p(x) dx+

∫

sptϕ
|Dv +Dϕ|p(x) dx

)

+ c
H(R)

Rn
|sptϕ|.

Using the growth condition (H1), choosingε = 2γ1−2 we deduce
∫

sptϕ

(

|Dv|p(x) +
H(R)

Rn
+ 1
)

dx

≤ LF [v, sptϕ] + |sptϕ|

(

H(R)

Rn
+ 1

)

≤ LF [v + ϕ, sptϕ] + |sptϕ|

(

H(R)

Rn
+ 1

)

+
1

2

∫

sptϕ
|Dv|p(x) dx

+
1

2

∫

sptϕ
|Dv +Dϕ|p(x) dx+ c(γ1, γ2)

H(R)

Rn
|sptϕ|

≤ L2

∫

sptϕ
|Dv +Dϕ|p(x) dx+ c(L, γ1, γ2)

(

H(R)

Rn
+ 1

)

|sptϕ| +
1

2

∫

sptϕ
|Dv|p(x) dx.

Absorbing the last term of the preceding inequality on the left hand side we obtain the desiredQ minimality with
Q ≡ Q(L, γ1, γ2) > 1.

5.4 Fourth step: Up-to-the-boundary higher integrability

By (5.1) and sincev is a Q minimizer of the functional (5.12), Proposition 4.13 provides an exponentε ≡
ε(n, γ1, γ2, L) ∈ (0, δ) such that

(

−

∫

BR

|Dv|p(x)(1+ε) dx

)
1

(1+ε)

≤ c −

∫

BR

|Dv|p(x) dx +

(

−

∫

BR

|Du|p(x)(1+δ) + |Dψ|p(x)(1+δ) + 1 dx

)
1

1+δ

,

(5.13)

with a constantc ≡ c(n,L, γ1, γ2).

5.5 Fifth step: Hölder continuity for the function v.

Sincev ∈ u + W
1,p(x)
0 (BR) is a localQ minimizer of the functional (5.12), taking into account that (4.27) is

fulfilled via (5.5) we may apply Proposition 4.12 to concludethat
∫

Bρ

|Dv|p(x) dx ≤ c
( ρ

R

)n−p2+p2 α
∫

BR

|Dv|p(x) dx+ c ρn−p2+p2 α; (5.14)

for anyρ < R, with c ≡ c(n, γ1, γ2, L,Q,M). We remark that, due to the choice ofα, we have thatn − p2 +
p2 α < λ.
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5.6 Sixth step: Comparison and Conclusion.

Now using (5.9) and the fact that

H(R) ≤ c(||Dψ||Lq,λ , n, L)Rλ,

we deduce

−

∫

BR/2

|Du−Dv| dx

≤ c(n)

∫

BR

R−nH(R)−
1

p(x) R−n(1− 1
p(x) ) |Du−Dv|H(R)

1
p(x) Rn (1− 1

p(x)) dx

≤ cR
λ−n
p2

∫

BR

R−nH(R)−
1

p(x) R−n(1− 1
p(x)) |Du−Dv| dx

≤ cR
λ−n
p2 .

(5.15)

We proceed by a standard interpolation argument: choosingθ ∈ (0, 1) such thatθ/s+ 1 − θ = 1/p2, where we
sets := p2(1 + ε/4) and recalling thats ∈ (p2, p2(1 + δ/4)), we exploit higher integrability for the functionu
(Lemma 3.2) and the up-to-the-boundary higher integrability for v (Lemma 4.61) to deduce

∫

BR/2

|Du−Dv|p(x) dx

≤

∫

BR/2

(|Du−Dv|p2 + 1) dx

≤ cRn

(

−

∫

BR/2

|Du−Dv|s dx

)

θ p2
s
(

−

∫

BR/2

|Du−Dv| dx

)(1−θ) p2

+ cRn

(5.15)
≤ cRn

[

R
λ−n
p2

](1−θ)p2





(

−

∫

BR/2

|Du|s dx

)

θ p2
s

+

(

−

∫

BR/2

|Dv|s dx

)

θ p2
s



+ cRn

≤ cRnR(λ−n) (1−θ)





(

−

∫

BR/2

|Du|p2(1+δ/4) dx

)
θ

1+δ/4

+

(

−

∫

BR/2

|Dv|p2(1+ε/4) dx

)
θ

1+ε/4





+cRn

(4.61)
≤ cRn θ Rλ(1−θ)

[(

−

∫

BR/2

|Du|p2(1+δ/4) dx

)
θ

1+δ/4

+

(

−

∫

BR/2

|Dv|p(x) dx

)θ

+

(

−

∫

BR/2

|Du|p(x)(1+δ/4) dx

)
θ

1+δ/4

+

(

−

∫

BR/2

(1 + |Dψ|p2(1+δ/4)) dx

)
θ

1+δ/4
]

+ cRn

(5.3),(5.10)
≤ cRn θ Rλ(1−θ)

[(

−

∫

BR/2

(1 + |Du|p(x)(1+δ/4+ω(R))) dx

)
θ

1+δ/4

+

(

−

∫

BR/2

|Du|p(x) dx

)θ

+

(

1 + −

∫

BR/2

|Dψ|p(x)(1+δ) dx

)θ ]

+ cRn

(3.2)
≤ cRnθ Rλ(1−θ)

[

(

−

∫

BR

(1 + |Du|p(x)) dx

)

θ (1+δ/4+ω(R))
1+δ/4

+

(

−

∫

BR/2

|Du|p(x) dx

)θ

+

(

−

∫

BR

(1 + |Dψ|p(x)(1+δ) dx

)θ
]

+ cRn
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≤ cRnθ Rλ(1−θ)

[

(

R−n θ ω(R)
1+δ/4 + 1

)

(

−

∫

BR

(1 + |Du|p(x)) dx

)

+

(

1 + −

∫

BR

|Dψ|p(x)(1+δ) dx

)θ
]

+Rn

(2.6)
≤ cRnθ Rλ(1−θ)

{

[

−

∫

BR

(1 + |Du|p(x)) dx

]θ

+R(λ−n)θ

}

+ cRn

≤ cRλ(1−θ)

(
∫

BR

|Du|p(x) dx+Rλ

)θ

+ cRn,

with c ≡ c(n, γ1, γ2, L, ||Dψ||Lq,λ). Now we chooseβ > 0 small enough such that

λ− β
θ

1 − θ
> n− p2 + p1 α, (5.16)

whereα appears in (5.14). This is possible since, due to the choice of α we haveλ > n − p2 + p1 α. We set
moreover

τ := min

{

λ− β
θ

1 − θ
, β

}

> 0. (5.17)

Therefore we obtain

∫

BR/2

|Du−Dv|p(x) dx ≤ cRλ(1−θ)

(
∫

BR

|Du|p(x) dx+Rλ

)θ

+ cRn

≤ cRλ(1−θ)−β θ Rβ θ

[
∫

BR

|Du|p(x) dx+Rλ

]θ

+ cRn

≤ c
[

Rλ−β θ
1−θ

]1−θ
[

Rβ

∫

BR

|Du|p(x) dx+Rλ+β

]θ

+ cRn (5.18)

≤ c

[

Rλ−β θ
1−θ

∫

BR

|Du|p(x) dx+Rλ−β θ
1−θ

]1−θ

×

[

Rβ

∫

BR

|Du|p(x) dx+Rλ+β

]θ

+ cRn

(5.17),(5.16)
≤ cRτ

∫

BR

|Du|p(x) dx+ cRn−p2+p1 α.

The comparison estimate (5.18) together with the referenceestimate (5.14) forv, (5.10) and the growth condition
allow us to estimate

∫

Bρ

|Du|p(x) ≤ c

∫

Bρ

|Dv|p(x) dx+ c

∫

Bρ

|Du−Dv|p(x) dx (5.19)

≤ c

[

( ρ

R

)n−p2+p2 α

+Rτ

]
∫

BR

|Du|p(x) dx + cRn−p2+p2 α.

Then estimate (5.19) holds for any radii0 < ρ ≤ R ≤ RM . Let ε0 ≡ ε0(n,M,L, γ1, γ2, λ, α) be the quantity
provided by Lemma 3.5. We can find a radiusR1 > 0 so small thatRτ < ε0 for any0 < R ≤ R1 and thus we
haveR1 ≡ R1(n, γ1, γ2, L,M, ω, λ, α). Now Lemma 3.5 yields

∫

Bρ

|Du(x)|p(x) dx ≤ c ρn−p2+p2 α ≤ c ρn−p1+p1 α,
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30 M. Eleuteri and J. Habermann: Hölder continuity for obstacle problems with nonstandard growth

with c ≡ c(n,M,L, γ1, γ2, λ, α), whenever0 < ρ < R1. Since we haveγ1 ≤ p1 ≤ p2 ≤ γ2, we deduce by a
standard covering argument and by Poincaré’s inequality that

u ∈ Lγ1,ξ
loc (Ω),

with ξ = n+ γ1 α; thus Theorem 3.1 allows us to conclude thatu ∈ C0,α
loc (Ω). This finishes the proof. �
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