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THE ISOPERIMETRIC PROBLEM

IN 2D DOMAINS WITHOUT NECKS

GIAN PAOLO LEONARDI AND GIORGIO SARACCO

Abstract. We give a complete characterization of all isoperimetric sets

contained in a domain of the Euclidean plane, that is bounded by a

Jordan curve and satisfies a no-neck property. Further, we prove that

the isoperimetric profile of such domain is convex above the volume of

the largest ball contained in it, and that its square is globally convex.

1. Introduction

Given a bounded, open set Ω ⊂ Rn, n ≥ 2, we consider the isoperimetric

problem among Borel subsets of Ω, that is, the minimization of the perimeter

P (E) of a Borel set E ⊂ Ω subject to a volume constraint |E| = V , where

by perimeter we mean the distributional one in the sense of Caccioppoli–De

Giorgi, and where |E| denotes the Lebesgue measure of E and V ∈ [0, |Ω|].
Moreover, we are interested in the properties of the total isoperimetric profile

J (V ) := inf {P (E) : |E| = V, E ⊂ Ω } , (1.1)

as a function defined on [0, |Ω|]. If RΩ denotes the inradius of Ω (i.e., the

radius of the largest ball contained in Ω) and if ωn represents the Lebesgue

measure of the unit ball in Rn, then the classical isoperimetric inequality

in Rn implies that the unique minimizers for volumes 0 < V ≤ ωnR
n
Ω are

balls, up to null sets. Thus, finding and characterizing minimizers, as well as

computing J (V ), is a trivial problem whenever V ≤ ωnRnΩ, while it becomes

a challenging problem for larger V .

By well-known compactness and semicontinuity properties of the perime-

ter, proving the existence of minimizers is a quite straightforward task. An

alternative approach to solve (1.1) is through the minimization of the un-

constrained problem

Fκ[E] := P (E)− κ|E| , (1.2)

where κ > 0 is a fixed constant and E ⊂ Ω. The functional Fκ is usually

referred to as the prescribed mean curvature functional, since any nontrivial
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minimizer Eκ is such that ∂Eκ ∩Ω is analytic up to a closed singular set of

Hausdorff dimension at most n−8, and has constant mean curvature equal to

(n−1)−1κ. Whenever a set Eκ minimizes Fκ, it is as well a minimizer of (1.1)

for the prescribed volume V = |Eκ|. Constructing minimizers of (1.1) via

the unconstrained problem (1.2) is a viable strategy only when the constant

κ is chosen greater than or equal to the Cheeger constant of Ω

hΩ := inf

{
P (E)

|E|
: E ⊂ Ω

}
. (1.3)

Indeed, when κ < hΩ the functional (1.2) has the empty set as the unique

minimizer, therefore we gain no useful information in this case. In fact, this

program has been carried out in [2] in the n-dimensional case for convex, C1,1

regular sets Ω, and in our recent paper [21] in the 2d case for a special class

of simply-connected domains that includes all (open, bounded) convex sets.

Any minimizer of (1.3) is referred to as a Cheeger set of Ω. In the settings

of [2, 21], among all Cheeger sets of Ω, the ones with least and greatest

volumes (the so-called minimal and maximal Cheeger sets) are unique, and

we shall denote them, respectively, by EmhΩ
and EMhΩ

(in the setting of [2]

it is a consequence of [1], while we refer to [21, Theorem 2.3] for the other

setting). Then, it is shown in [2, 21] that for all volumes V greater than

or equal to the volume of the minimal Cheeger set |EmhΩ
|, one can find a

curvature κ and a minimizer Eκ of (1.2) such that |Eκ| = V , and thus

P (Eκ) = J (V ).

Unless Ω is itself a ball, one always has the strict inequality ωnR
n
Ω <

|EmhΩ
|, and one can easily exhibit sets for which |EmhΩ

| − ωnRnΩ is as big as

one wishes, see Section 5 for some examples in dimension n = 2. Thus,

there is a possibly very wide range of volumes for which we cannot tackle

directly the isoperimetric problem through the unconstrained minimization

of Fκ for suitable values of κ. In particular, this approach fails because the

functional Fκ is uniquely minimized by the empty set for values κ < hΩ.

However, by suitably shrinking the class of competitors we can altogether

avoid this problem. Namely, we consider the minimization problem

inf{Fκ[E] := P (E)− κ|E| : E ∈ C(κ) } , (1.4)

where the class of competitors C(κ) is set as follows:

C(κ) =

{
E ⊂ Ω Borel , if κ > hΩ ,

E ⊂ Ω Borel s.t. |E| ≥ (n− 1)nωnκ
−n , if n−1

RΩ
≤ κ ≤ hΩ .

(1.5)

In principle, one could also consider a mean curvature κ
n−1 smaller than

RΩ
−1, as long as ωn(n − 1)nκ−n ≤ |Ω|, which ensures that C(κ) 6= ∅. Nev-

ertheless, the choice R−1
Ω ≤ κ

n−1 is key to get full information on the mean

curvature of the minimizers, see Remark 3.3.
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We shall thus consider the minimization problem (1.4), when Ω is a 2d

set whose boundary is a Jordan curve with zero 2-dimensional Lebesgue

measure, and such that Ω has no necks of radius r for all r ≤ h−1
Ω (see

Definition 2.1), which corresponds to the setting of our previous paper [21].

In particular, for κ ≥ hΩ we recover the results1 of [21]. In the case R−1
Ω ≤

κ < hΩ, the addition of a lower bound on the volume as an extra constraint

prevents the empty set, and in general any set of small volume, from being

a minimizer. One of the core results of this paper is Theorem 2.3, which

shows that all minimizers of (1.4), for any fixed κ ≥ R−1
Ω , are geometrically

characterized as “suitable unions of balls of radius κ−1 contained in Ω”.

This characterization extends [21, Theorem 2.3], where it was proved only

for minimizers of Fκ with the least and the greatest volumes, and under the

restrictive assumption κ ≥ hΩ.

This geometric characterization allows us to find, for any given volume

V ≥ πR2
Ω, a curvature κ ≥ R−1

Ω and a minimizer Eκ of (1.4) such that

|Eκ| = V . Hence, we can characterize all minimizers of (1.1) and provide

an extension of [36, Theorem 3.32], which was proved only for convex sets

in dimension n = 2. For the sake of completeness, we recall that this latter

result was not completely new at the time: the dual problem (maximize

volume under a perimeter constraint among subsets of a convex, 2d set) had

been first discussed in [5, Variant III] under the assumption of convexity of

minimizers, which was later shown to be redundant in [32] (for P ≤ P (Ω)).

Additionally, the characterization [36, Theorem 3.32] was known for trian-

gles since the papers of Steiner [33, 34], see also [8], and for circumscribed

polygons [22].

Our approach of building isoperimetric sets as minimizers of Fκ for a

suitable κ also allows us to prove some convexity properties of both the

isoperimetric profile J , which we show to be convex for V ≥ πR2
Ω, and its

square J 2, which we show to be globally convex. Besides the trivial fact that

the total isoperimetric profile is concave up to V ≤ πR2
Ω, we are not aware

of any result in the literature concerning its convexity properties until the

last year, when few results were first proved. Indeed, in [7, Section 3] it was

proved that a suitable relaxation of (1.1) is convex, while in our previous

paper [21, Section 6], we proved that, for the same class of domains now

under consideration, there exists a threshold volume V (which is the volume

of the minimal Cheeger set of Ω, |EmhΩ
|), above which the isoperimetric profile

is convex. Essentially, here we prove that one can lower this threshold all

1In this former paper we considered C(hΩ) = {E ⊂ Ω}, but we explicitly ruled out

from our results the empty set, considering as minimizers of (1.2) for κ = hΩ only those

of (1.3). By changing the class of competitors and considering (1.4), we now avoid treating

κ = hΩ as a special case.
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the way down to πR2
Ω. This finally means that J is convex for all volumes

V ≥ πR2
Ω. In some sense, the presence of the boundary of Ω as an obstacle

forces the isoperimetric profile to switch from concave to convex, in the

range of volumes where the interaction between isoperimetric sets and the

obstacle ∂Ω becomes effective.

Finally, it is worth noting that our proof of convexity does not rely on

knowing the shape of minimizers, but rather on knowing that for all volumes

above a certain threshold V one can find isoperimetric sets as minimizers

of Fκ for a suitable κ. Thanks to the results in [2], we infer convexity of J
above V = |EmhΩ

| for n-dimensional, bounded, C1,1 regular, convex sets Ω. If

one could extend the arguments of [2], which exploit the maximum principle

and Korevaar’s comparison principle [13, 14], to (n− 1)R−1
Ω ≤ κ < hΩ, then

one would immediately get the convexity of J for all V ≥ ωnR
n
Ω and the

global convexity of its n(n− 1)−1 power by following our same proofs.

It is interesting to compare these convexity properties, to those of the

relative isoperimetric profile

Jrel(V ) := inf {P (E; Ω) : |E| = V, E ⊂ Ω } ,

that have been well studied: the first result in this direction were obtained

for bounded, C2,α regular, convex sets Ω, and it was shown that the pro-

file is concave [35] and so it is its n(n − 1)−1 power [15]; these have been

later extended to bounded, convex bodies without any further regularity as-

sumption on their boundaries [24, Section 6], see also [27]; then to arbitrary,

unbounded, convex bodies [18].

The paper is structured as follows. In Section 2 we give the definition

of the class of sets Ω we will consider along with the main results. In

Section 3 we prove several properties of minimizers of (1.4) and then prove

the geometric characterization of its minimizers. Section 4 deals with the

isoperimetric profile. Finally, Section 5 completes the paper with few explicit

examples.

2. Main results

In this section we state and comment the main results of the paper. We

start by the following definition, first introduced in [16].

Definition 2.1. A set Ω has no necks of radius r, with r ∈ (0, RΩ] if the

following condition holds. If Br(x0) and Br(x1) are two balls of radius r

contained in Ω, then there exists a continuous curve γ : [0, 1]→ Ω such that

γ(0) = x0, γ(1) = x1, Br(γ(t)) ⊂ Ω, ∀t ∈ [0, 1].
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Before stating our main results, we need to recollect the following propo-

sition which introduces some of the notation that we will need later on.

For the sake of completeness, we recall that a Jordan curve is the image

of a continuous and injective map Φ : S1 → R2 and a Jordan domain is

the domain bounded by such a curve, which is well defined thanks to the

Jordan–Schoenflies Theorem. We also recall that for r ≤ RΩ, the set Ωr is

the (closed) inner parallel set of Ω at distance r, i.e.,

Ωr := {x ∈ Ω : dist(x; ∂Ω) ≥ r } .

The reach of a closed set A, which was introduced in the seminal paper [9]

(see also the recent book [26]) is defined as

reach(A) := sup{ r : ∀x ∈ A⊕Br , x has a unique projection onto A } ,

where ⊕ denotes the Minkowski sum, and we use the notation Br = Br(0).

In the next proposition we collect various results from [21] (in particular,

see Proposition 2.1, Remark 4.2, Lemma 5.3, and Remark 5.4).

Proposition 2.2. Let Ω be a Jordan domain with no necks of radius r. The

following properties hold:

(a) if Ωr is nonempty but has empty interior, then either it consists of

a single point or there exists an embedding γ : [0, 1] → R2 of class

C1,1, with curvature bounded by r−1, such that γ([0, 1]) = Ωr;

(b) if int(Ωr) 6= ∅, then there exist two (possibly empty) families Γ1
r and

Γ2
r of embedded curves contained in Ωr with the following properties.

For each i = 1, 2 and each γ ∈ Γir,

(i) γ : [0, 1] → Ωr is nonconstant and of class C1,1, with curvature

bounded by r−1;

(ii) if i = 1, then int(Ωr) ∩ γ = {γ(0)};

(iii) if i = 2, then int(Ωr) ∩ γ = {γ(0), γ(1)};

(iv) Γ1
r is a finite collection of curves;

(v) we have

Ωr \ int(Ωr) =
⋃
γ∈Γ1

r

γ ((0, 1]) ∪
⋃
γ∈Γ2

r

γ ((0, 1)) .

Moreover, for every θ : Γ1
r → [0, 1] the compact set

Cθ = int(Ωr) ∪
⋃
γ∈Γ2

r

γ([0, 1]) ∪
⋃
γ∈Γ1

r

γ([0, θ(γ)]) ,
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γ2 γ1

Ω

Ωr

Figure 1. A set with a curve in Γ1
r and one in Γ2

r .

is simply connected and such that reach(Cθ) ≥ r. By C0 and C1 we

shall denote the sets obtained with the choices θ(γ) ≡ 0, 1 for every

γ ∈ Γ1
r.

Finally, if Ω has no necks of radius r for all r ∈ [r̄, r̄ + ε], and for

given r̄ > 0 and ε > 0, then Γ2
r = ∅ for all such r.

To have a better picture of the situation described in Proposition 2.2,

we refer to Figure 1. Loosely speaking, curves in Γ1
r correspond to the

presence of “tendrils” of width r in Ω, while curves in Γ2
r correspond to

“handles” of width r between different connected components of int(Ωr).

For the sake of completeness, we notice that the last part of the previous

statement, corresponding to [21, Remark 4.2], is written here in a local form,

while it was originally stated under the global assumption of no necks for

all r ∈ [0, r̄]. The proof of this part is exactly the same as the one outlined

in that remark.

The next result provides a precise, geometric characterization of all min-

imizers of Fκ.

Theorem 2.3. Let Ω be a Jordan domain with |∂Ω| = 0 and let κ ≥ R−1
Ω be

fixed. Assume Ω has no necks of radius r = κ−1. Let Eκ be a minimizer of

problem (1.4), that is, of the functional Fκ restricted to the class C(κ). Then,

with reference to the notation introduced in Proposition 2.2, the following

properties hold:

(i) if r < RΩ and Γ1
r 6= ∅, then there exists θ : Γ1

r → [0, 1] such that

Eκ = Cθ ⊕Br ,

and in particular

Emκ = C0 ⊕Br, EMκ = C1 ⊕Br = Ωr ⊕Br
are, respectively, the unique minimal and maximal minimizers of Fκ;

(ii) if r < RΩ and Γ1
r = ∅, then Eκ is the unique minimizer of Fκ, given

by

Eκ = Ωr ⊕Br;
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(iii) if r = RΩ, then Ωr is a closed curve of class C1,1 (possibly reduced

to a point) and there exists a connected subset K ⊂ Ωr such that

Eκ = K ⊕Br .

Moreover any ball of radius r centered on Ωr is a minimal minimizer,

while EMκ = Ωr ⊕Br is the unique maximal minimizer.

Apart from the technical assumption |∂Ω| = 0, the other hypotheses

of Theorem 2.3 are sharp, as showed by suitable examples (see [16, 20]).

Moreover, the minimizers appearing in the theorem are also solutions of the

isoperimetric problem (1.1) (with V equal to their own volume).

The next result shows the converse, that is, any solution of the isoperi-

metric problem (1.1), for a prescribed volume V ≥ πR2
Ω, is also a minimizer

of Fκ for some κ ≥ R−1
Ω . As a consequence, all isoperimetric solutions are

geometrically characterized as in Theorem 2.3.

Theorem 2.4. Let Ω be a Jordan domain with |∂Ω| = 0 and without necks

of radius r, for all r ∈ (0, RΩ]. Then, for all V ∈ [πR2
Ω, |Ω|) there exists a

unique κ ∈ [R−1
Ω ,+∞) such that a set E of volume V is isoperimetric if and

only if it minimizes Fκ in C(κ).

This theorem has few consequences. First, it represents an extension

of [36, Theorem 3.32], where the authors classify isoperimetric sets within

2d convex sets, to the much richer class of Jordan domains without necks (for

instance, the Koch snowflake belongs to this class, see [16, Section 6]). Sec-

ond, it supports some algorithmic procedures for the construction of isoperi-

metric sets and for the computation of the isoperimetric profile, see [37],

where the authors had in mind the political phenomenon of gerrymander-

ing, which can be discussed using isoperimetric arguments, see also [7, 30].

Indeed, in [37] the authors numerically computed the isoperimetric profile

of a Jordan domain Ω by implicitly assuming the characterization of mini-

mizers that we have now completely proved here. We remark that in such

numerical applications, the way to go is to consider the cut locus C (also

known as medial axis), i.e., the set of points in Ω where the distance func-

tion from the boundary is not differentiable. This happens precisely because

such points have more than one projection on the boundary. To every x ∈ C
one can associate the so-called medial axis transform f(x) = dist(x; ∂Ω),

which simply evaluates the distance from the boundary. Then, one notices

that f attains its maximum on the set ΩRΩ . As the cut locus has a tree

structure, see [16, Section 3], one can prove that the function f decreases

while moving away from ΩRΩ , and it is locally constant at x only if the set

Ω is such that Γ1
f(x) 6= ∅. Then, in order to build isoperimetric sets, one is
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lead to consider the union ⋃
x∈C

f(x)>r

Br(x) .

Whenever Ω is such that Γ1
r = ∅ for all r ≤ RΩ, Theorem 2.3 and Theo-

rem 2.4 guarantee that the above procedure yields all isoperimetric sets.

Third and finally, it allows us to prove the following result about convex-

ity properties of the isoperimetric profile J (see Section 4.1).

Theorem 2.5. Let Ω be a Jordan domain with |∂Ω| = 0 and without necks

of radius r, for all r ∈ (0, RΩ]. Then, the isoperimetric profile J is convex

in [πR2
Ω, |Ω|], while J 2 is convex in [0, |Ω|].

The proof of convexity of J essentially relies on the existence of a thresh-

old V such that minimizers of J also minimize Fκ for a suitable κ. It is

worth noticing that it does not rely on the precise shape of the minimizer.

Indeed, using the results of [2], we can prove as well that the isoperimetric

profile for V ≥ |EmhΩ
| is convex for n-dimensional, convex, C1,1 regular sets

Ω, see Section 4.2.

3. Shape of minimizers

This section is dedicated to the proof of Theorem 2.3, which is contained

in Section 3.3. We recall that from now on (unless explicitly stated) Ω

denotes an open bounded set in R2. Prior to the proof, we need to discuss

some properties of minimizers of (1.4), see Section 3.1. Moreover, when Ω is

a Jordan domain, one has some additional properties, see Section 3.2. These

results are generalizations and/or adaptations of those already known in the

case κ ≥ hΩ. Whenever the adaptation is straightforward, no proof is given

and a reference is provided.

3.1. Properties of minimizers. First thing we need to prove is that there

exist minimizers of Fκ when R−1
Ω ≤ κ < hΩ. One easily checks it by taking

a minimizing sequence which, up to subsequences, is shown to converge in

the BV topology. By lower semicontinuity of the perimeter, the limit set is

a minimizer, provided it belongs to C(κ). Details are given in the following

proposition.

Proposition 3.1. Let κ ≥ R−1
Ω . There exist non trivial minimizers of (1.4),

that is, of Fκ restricted to the class C(κ).

Proof. If κ ≥ hΩ this is well known. Let now R−1
Ω ≤ κ < hΩ, and notice that

this choice ensures that the class of competitors is nonempty. Moreover, the

functional is clearly bounded from below by −κ|Ω|, thus we can pick {Eh}h
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a minimizing sequence in C(κ). Without loss of generality we may assume

that

P (Eh)− κ|Eh| ≤ inf
C(κ)
{Fκ[E]}+ 1 ,

and thus

P (Eh) ≤ inf
C(κ)
{Fκ[E]}+ 1 + κ|Ω| ≤ const ,

as Ω is bounded. Therefore, up to subsequences, Eh converges in the L1

topology to a limit set E. As |Eh| ≥ πκ−2 for all h, by taking the limit as

h → ∞ we infer |E| ≥ πκ−2. This shows that E belongs to C(κ), hence

the lower semicontinuity of the perimeter yields the fact that E is indeed a

nontrivial minimizer of Fκ in C(κ). �

There are several, well-established properties of non trivial minimizers of

Fκ, for κ ≥ hΩ, which hold the same for κ ≥ R−1
Ω . We recall them below.

Proposition 3.2. Let Eκ be a minimizer of (1.4), that is, of Fκ restricted

to C(κ). Then, the following statements hold true:

(i) ∂Eκ ∩Ω is analytic and coincides with a countable union of circular

arcs of curvature κ, with endpoints belonging to ∂Ω;

(ii) the length of any connected component of ∂Eκ ∩ Ω cannot exceed

πκ−1;

(iii) for Ω with locally finite perimeter, if x ∈ ∂Eκ ∩ ∂∗Ω, then x ∈ ∂∗Eκ
and νΩ(x) = νEκ(x).

Point (i) for κ > hΩ comes from the regularity of perimeter minimizers,

and the condition of the curvature directly from writing down the first vari-

ation of the functional, refer for instance to [23, Section 17.3]. For κ ≤ hΩ

one has to consider two cases in view of the definition of C(κ). Either

|Eκ| > πκ−2, and then one is allowed to make variations changing the vol-

ume both from above and below, thus obtaining the same result. Or the

equality |Eκ| = πκ−2 holds, and then Ω contains a ball of curvature κ

because it contains a ball of radius RΩ. Therefore, by the isoperimetric

inequality, all such balls are the only minimizers of Fκ. Point (ii) can be

proved exactly the same as in [17, Lemma 2.11]. Point (iii) comes from reg-

ularity properties of (Λ, r0)-minimizers; a proof for Lipschitz Ω is available

in [10], while for sets Ω with just locally finite perimeter we refer to [19,

Theorem 3.5].

Remark 3.3. There is nothing preventing us from minimizing Fκ in the class

{E ⊂ Ω ,Borel, s.t. |E| ≥ πκ−2 }, for
√
π|Ω|−

1
2 ≤ κ < R−1

Ω (this choice of κ

ensures that the class is nonempty). The issue here is that property (i) can
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be no more guaranteed. Indeed, if a minimizer Eκ has volume exactly equal

to πκ−2, we are only allowed to make outer variations, obtaining that the

curvature of ∂Eκ ∩ Ω is not smaller than κ. In other words, the lack of a

ball contained in Ω with volume at least πκ−2 prevents us from recovering

an equality on the curvature, leaving us just with an inequality. A similar

remark is valid in the general, n-dimensional case.

For κ ≥ hΩ it is well-known that the class of minimizers is closed with

respect to countable union and intersections, see for instance the first part

of the proof of [21, Proposition 3.2] or [6, Lemma 2.2 and Remark 4.2]. As

κ drops below hΩ this is still true, provided that the intersection is still a

viable competitor, as we show in the next lemma.

Proposition 3.4. Let κ ∈ [R−1
Ω , hΩ), and let Eκ, Fκ be minimizers of Fκ.

Assume that |Eκ∩Fκ| ≥ πκ−2. Then, the union Eκ∪Fκ and the intersection

Eκ ∩ Fκ are minimizers of Fκ.

Proof. By minimality we have

P (Eκ) + P (Fκ)− 2 minFκ = κ(|Eκ|+ |Fκ|) = κ|Eκ ∪ Fκ|+ κ|Eκ ∩ Fκ|
≤ P (Eκ ∪ Fκ) + P (Eκ ∩ Fκ)− 2 minFκ .

By the well-known inequality (see for instance [23, Lemma 12.22])

P (Eκ ∪ Fκ) + P (Eκ ∩ Fκ) ≤ P (Eκ) + P (Fκ) ,

and provided that |Eκ ∩ Fκ| ≥ πκ−2, we obtain

P (Eκ) + P (Fκ)− 2 minFκ = κ|Eκ ∪ Fκ|+ κ|Eκ ∩ Fκ|
≤ P (Eκ ∪ Fκ) + P (Eκ ∩ Fκ)− 2 minFκ
≤ P (Eκ) + P (Fκ)− 2 minFκ ,

therefore the two last inequalities must be equalities. But this can happen

if and only if

P (Eκ ∪ Fκ)− κ|Eκ ∪ Fκ| = P (Eκ ∩ Fκ)− κ|Eκ ∩ Fκ| = minFκ . �

We stress the necessity of requiring that the measure of the intersection

is big enough, otherwise one can easily produce counterexamples, as shown

in Figure 2. The choice κ = R−1
Ω is not restrictive, as one can find coun-

terexamples for general κ ∈ [R−1
Ω , hΩ) by considering a suitable “balanced

dumbbell”, namely two identical squares linked by a very thin corridor, as

in Figure 3.
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(a) A minimizer (b) A minimizer (c) The intersection (d) The union

Figure 2. On the left two minimizers for κ = R−1
Ω ; on the

right their intersection and union which are not minimizers.

As the class of minimizers is not closed under (countable) unions or inter-

sections when R−1
Ω ≤ κ < hΩ, one cannot directly define the maximal mini-

mizer as the union of all minimizers, or the minimal minimizer as the inter-

section of all minimizers (for κ > hΩ) as in [21, Definition 2.2, Proposition 3.2

and Remark 3.3] or [6, Definition 2.1, Lemma 2.2 and Lemma 2.5]. Never-

theless, we can give an alternative definition in terms of maximal/minimal

volume.

Definition 3.5. A minimal minimizer of Fκ is a set Emκ belonging to

arg min{ |Eκ| : Eκ is a minimizer of Fκ } .

Similarly, a maximal minimizer is a set EMκ belonging to

arg max{ |Eκ| : Eκ is a minimizer of Fκ } .

Proposition 3.6. There exist both minimal and maximal minimizers of Fκ.

Proof. Take any extremizing sequence of minimizers. Up to subsequences,

it converges to a limit set E, such that its volume is the infimum (or the

supremum) of the volumes. As in the proof of Proposition 3.1, one sees that

E is a minimizer. �

When dealing with R−1
Ω ≤ κ < hΩ, we remark that in contrast with

the case κ ≥ hΩ one might have multiple maximal minimizers, and in con-

trast with κ > hΩ multiple minimal minimizers. Consider for instance a

balanced dumbbell, depicted in Figure 3. If the handle is thin enough, for

all κ ∈ [R−1
Ω , hΩ), there are exactly two minimizers, corresponding to the

two components shaded in gray in the figure. Both are at the same time

maximal and minimal minimizers, while their union and intersection are

not minimizers (indeed, the value of Fκ on the union is twice the positive

infimum of Fκ, while the intersection is empty and hence not in Cκ).

Finally, we provide an extended version of the rolling ball lemma [17,

Lemma 2.12], which also extends [16, Lemma 1.7]. This lemma, already

known in the case κ = hΩ, holds for a general κ and its proof is an easy
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Figure 3. For values κ ∈ [R−1
Ω , hΩ), a balanced dumbbell

has two minimizers. Both are maximal and minimal at the

same time.

adaptation of the original one. Before stating the lemma, we introduce some

needed terminology. Given two balls Br(x0), Br(x1) ⊂ Ω, with same radius

but possibly different centers, we say that Br(x0) can be rolled onto Br(x1)

if there exists a continuous curve γ : [0, 1] → Ω with γ(0) = x0, γ(1) = x1

and such that Br(γ(t)) ⊂ Ω for all t ∈ [0, 1] (such γ will be called a rolling

curve).

Lemma 3.7 (Rolling ball - extended version). Let κ = r−1 ≥ R−1
Ω be fixed,

and let Eκ be a minimizer of Fκ. Then the following properties hold:

(i) if Eκ contains a ball Br(x0), then it contains any ball Br(x1) with

x1 ∈ int(Ωr), and such that Br(x0) can be rolled onto Br(x1);

(ii) if Eκ contains two balls Br(x0) and Br(x1) that can be rolled onto

each other, then it contains all balls of radius r centered on the points

of the rolling curve;

(iii) if Eκ is a maximal minimizer of Fκ such that Br(x0) ⊂ Eκ for some

x0, then Eκ contains any other ball Br(x1), which Br(x0) can be

rolled onto.

Proof. Point (iii) was first proved in [17, Lemma 2.12] and later refined

in [16, Lemma 1.7].

As for point (i), one can argue by contradiction assuming that Br(x1) is

not contained in Eκ. Then, fix γ : [0, 1]→ Ω with γ(0) = x0, γ(1) = x1 and

such that Br(γ(t)) ⊂ Ω for all t ∈ [0, 1], and assume that γ is parametrized

by a multiple of the arc-length. Denote by α+(t) the half-circle made by

the points of the form γ(t) + rν, with ν such that |ν| = 1 and ν · γ̇(t) > 0.

Denote as t∗ the supremum of t ∈ [0, 1] such that Br(γ(s)) ⊂ Eκ for all

s ∈ [0, t]. Clearly we have t∗ < 1. Arguing as in [17, Lemma 2.12], we infer

that α+(t∗) coincides with a connected component of ∂Eκ ∩ Ω, and the set

Ẽκ = Eκ ∪
⋃
s∈[t∗,1]Br(γ(s)) turns out to be a minimizer as well. Thus by

Proposition 3.2 (i) and (ii), a connected component of ∂Ẽκ ∩ Ω not larger
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(a) A cuspidal type singular-

ity for ∂E on ∂Ω

(b) A rounded X-type singu-

larity for ∂E ∩ Ω

Figure 4. The singularities occurring in Lemma 3.7. The

boundary of Ω is represented by the thick continuous lines.

than a half-circle should be contained in ∂Br(x1), which is a compact subset

of Ω, hence its endpoints should belong to Ω ∩ ∂Ω = ∅, a contradiction.

The proof of point (ii) is achieved through a similar argument to the one

used for proving point (i). Let t∗ denote the supremum of t ∈ [0, 1] such that

Br(γ(s)) ⊂ Eκ for all s ∈ [0, t], and similarly let t∗ be the infimum of t ∈ [0, 1]

such that Br(γ(s)) ⊂ Eκ for all s ∈ [t, 1]. Assume by contradiction that t∗ <

t∗. Denoting by α−(t) the half-circle whose points are of the form γ(t) + rν,

with ν such that |ν| = 1 and ν · γ̇(t) < 0, we have that both α+(t∗) and

α−(t∗) coincide with two distinct connected components of ∂Eκ∩Ω. Finally,

by rolling Br(γ(t∗)) towards Br(γ(t∗)) we could construct a minimizer that

would exhibit either a non-admissible singularity of cuspidal type on ∂Ω, see

Figure 4a, or a non-admissible singularity of “rounded X” type for ∂E ∩Ω,

see Figure 4b. Both cannot happen, as “cutting the singularity” would

produce a competitor with smaller perimeter and greater volume. �

3.2. Additional properties when Ω is a Jordan domain. When the

set Ω is a Jordan domain, satisfying the technical assumption |∂Ω| = 0, the

minimizers enjoy some additional properties, which we recall here. These

were originally proved in [16] for the case κ = hΩ, and their proofs are easily

adapted to a general κ, hence we shall omit the details here.

Proposition 3.8. Suppose Ω ⊂ R2 is a Jordan domain with |∂Ω| = 0, and

let Eκ be a minimizer of Fκ. Then,

(i) the curvature of ∂Eκ is bounded from above by κ in both variational

and viscous senses;
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(ii) Eκ is Lebesgue-equivalent to a finite union of simply connected open

sets, hence its measure-theoretic boundary ∂Eκ is a finite union of

pairwise disjoint Jordan curves;

(iii) Eκ contains a ball of radius κ−1.

For the definitions of curvature in variational and in viscous senses we

refer to, resp., [4] and [16, Definition 2.3]. The proof of (i), for κ ≥ hΩ is

obtained as in [16, Lemma 2.2 and Lemma 2.4]. When κ ∈ [R−1
Ω , hΩ) and

|Eκ| > πκ−2, one can analogously show that Eκ is a (Λ, r0)-minimizer of

the perimeter (see [23]) with r0 = r0(|Eκ|) > 0, and the same reasoning

applies. Whenever the minimizer is such that |Eκ| = πκ−2, as we have

already discussed immediately after Proposition 3.2, the minimizer needs to

be a ball, and thus the claim is trivial. The proof of (ii) follows from the

same argument of [16, Propositions 2.9 and 2.10]. Point (iii) follows from (i)

and (ii) paired with [16, Theorem 1.6].

Remark 3.9. We observe that Proposition 3.8 implies that every minimizer,

for κ ∈ [R−1
Ω , hΩ), has a unique P-connected component, that is the analog

of connected component in the theory of sets of finite perimeter (see [3]).

Indeed, the bound on the variational curvature stated in (i) holds on every

P-connected component. By (ii) each of these components is a simply con-

nected open set, whose boundary is a Jordan curve. Then, (iii) holds for

each component, and hence each component has volume at least πκ−2 and

thus it belongs to C(κ). Assume now by contradiction that Eκ has more

than one P-connected component, say without loss of generality E1
κ and E2

κ,

which, by the above discussion, are competitors for (1.4). Recall that in the

regime κ ∈ [R−1
Ω , hΩ) one has minFκ > 0, and thus

Fκ[Eiκ] > 0 , i = 1, 2 .

The contradiction now is reached, since Fκ[Eκ] = Fκ[E1
κ] + Fκ[E2

κ] and

removing a component produces a competitor with a strictly smaller energy.

3.3. Characterization of the minimizers of Fκ. This subsection is de-

voted to the proof of Theorem 2.3. At the end, we will obtain as a corollary

the monotonicity (in the set inclusion sense) of minimizers of Fκ with respect

to κ.

First, we shall see that assuming that Ω has no necks of radius r = κ−1,

and combining Proposition 3.8 (iii) and Lemma 3.7 yield the following result.

Corollary 3.10. Let Ω be a Jordan domain with |∂Ω| = 0 and let κ > R−1
Ω

be fixed. Assume Ω has no necks of radius r = κ−1. Let Eκ be a minimizer

of Fκ. Then,



THE ISOPERIMETRIC PROBLEM IN 2D DOMAINS... 15

(i) Eκ contains C0 ⊕ Br, where C0 is defined as in Proposition 2.2,

namely

C0 = int(Ωr) ∪
⋃
γ∈Γ2

r

γ([0, 1]) ;

(ii) there exists a unique maximal minimizer, EMκ ;

(iii) EMκ coincides with the union of all minimizers.

Points (ii) and (iii) hold the same for κ = R−1
Ω .

Proof. Let κ > R−1
Ω be fixed. By Proposition 3.8 (iii) we know that Eκ

contains a ball Br(x) with x ∈ Ωr. By the no neck assumption, it then

must contain any ball of radius r centered on int(Ωr). If this were not the

case, we could find y ∈ int(Ωr) such that Br(y) is not contained in Eκ, thus

obtaining a contradiction with Lemma 3.7 (i). Hence Eκ ⊃ int(Ωr) ⊕ Br.
By definition of Γ2

r , and thanks to Lemma 3.7(ii), Eκ must also contain any

ball of radius r centered on every point of γ ∈ Γ2
r . This establishes point (i).

Regarding point (ii), argue by contradiction and assume there are two

distinct maximal minimizers. Since they both contain C0 ⊕ Br, their in-

tersection has volume at least πκ−2. Hence by Proposition 3.4, their union

is a viable competitor with greater volume. This is a contradiction and

point (ii) follows. Point (iii) follows with the same reasoning, again exploit-

ing point (i).

For κ = R−1
Ω , Proposition 3.8 (iii) paired with Lemma 3.7 (iii) implies

that Eκ contains ΩRΩ ⊕ BRΩ
. This is enough to prove points (ii) and (iii),

by following the same reasoning used for general κ > R−1
Ω . �

Second, we recall a lemma about the so-called arc-ball property for mini-

mizers of Fκ. This property was first shown for Cheeger sets in planar strips

in [17] and later extended to Cheeger sets in Jordan domains without necks

in [16]. The proof follows that of [16, Theorem 1.4].

Lemma 3.11 (Arc-ball property). Let Ω be a Jordan domain with |∂Ω| = 0,

and let κ ≥ R−1
Ω be fixed. Assume Ω has no necks of radius r = κ−1 and

let Eκ be a minimizer of Fκ. Then any connected component of ∂Eκ ∩Ω is

contained in the boundary of a ball of radius r contained in Eκ.

Proof. Let α be a connected component of ∂Eκ ∩Ω. By Proposition 3.2 (i)

we know that α is a circular arc of radius r belonging to a ball Br(x). If

Br(x) is contained in Eκ we have nothing to prove. Otherwise, let y ∈ α
be the midpoint of α and consider the largest 0 < t < r such that setting

zt = y + t (x−y)
|x−y| we have Bt(zt) ⊂ Eκ. One can now argue exactly as in the

proof of [16, Theorem 1.4, pag. 21]. �



16 G. P. LEONARDI AND G. SARACCO

Proof of Theorem 2.3. For κ = hΩ the characterization of minimal and max-

imal minimizers was proved in [16, Theorem 1.4], and later extended to

κ ≥ hΩ in [21, Theorem 2.3]. Here we generalize those previous proofs in

order to deduce the complete classification of minimizers of the prescribed

curvature problem.

The proof of the structure of the maximal minimizer EMκ in the case

κ ∈ [R−1
Ω , hΩ) is essentially the same as the one for κ ≥ hΩ. By Corol-

lary 3.10 (ii), we already know that it is unique. The assumption of no

necks of radius r paired with Lemma 3.7(iii) implies that EMκ ⊇ Ωr ⊕ Br.
The opposite inclusion follows by reasoning exactly as in the proof of The-

orem 1.4 in [16].

Proof of (i). We assume r = κ−1 < RΩ and Γ1
r 6= ∅. We start by proving

that Cθ ⊕ Br minimizes Fκ for any θ : Γ1
r → [0, 1], using the fact that

EMκ = C1 ⊕ Br = Ωr ⊕ Br. Indeed, by Proposition 2.2 we know that Cθ
is contractible and satisfies reach(Cθ) ≥ r. Therefore we can use Steiner’s

formulas, see for instance [9] and [16, Section 2.3], and write

|Cθ ⊕Br| = |Cθ|+ rMo(Cθ) + πr2 , P (Cθ ⊕Br) =Mo(Cθ) + 2πr , (3.1)

where Mo(F ) is the outer Minkowski content of F , i.e.,

Mo(F ) = lim
t→0

|F ⊕Bt| − |F |
t

.

Since |Cθ| = |C1| by definition, using (3.1) and r = κ−1, it is immediate to

check that the equality Fκ[Cθ⊕Br] = Fκ[EMκ ] holds. By Corollary 3.10 (i),

this implies in particular that C0 ⊕Br is the unique minimal minimizer.

Let now Eκ be any minimizer. By Corollary 3.10 (i), it contains C0⊕Br.
Given θ, θ′ : Γ1

r → [0, 1], we write θ ≤ θ′ if θ(γ) ≤ θ′(γ) for every γ ∈ Γ1
r .

Let θr be maximal (in the sense of the order relation ≤) among those θ for

which Cθ ⊕Br ⊂ Eκ.

In order to conclude that Eκ = Cθr ⊕ Br, we only need to show the

inclusion Eκ ⊂ Cθr ⊕ Br. We can assume without loss of generality that

θr 6≡ 1, as otherwise Eκ would coincide with the maximal minimizer EMκ
given by C1 ⊕ Br. By Corollary 3.10 (iii) Eκ ⊂ EMκ , therefore we can find

γ ∈ Γ1
r and a point z in the interior of Eκ\(Cθr⊕Br), such that z ∈ Br(γ(τ))

for some τ ∈ (θr(γ), 1).

We now have the following alternative: either it is Br(γ(τ)) ⊂ Eκ, or it

is ∂Eκ ∩Br(γ(τ)) 6= ∅.

In the first case, using Lemma 3.7 (ii), and the no neck assumption,

immediately gives a contradiction to the maximality of θr. In the second case

the intersection ∂Eκ∩Br(γ(τ)) must necessarily be a single arc of curvature

κ contained in a connected component α of ∂Eκ ∩Ω. By Lemma 3.11 there
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exists a ball Br(y) ⊂ Eκ such that α ⊂ ∂Br(y), and with z ∈ Br(y) and

y /∈ Cθr . Again, by using Lemma 3.7(ii) we reach a contradiction with the

maximality of θr.

Proof of (ii). This is immediate because, as in the previous case, we have

Ωr ⊕ Br ⊂ Eκ. However, thanks to the assumption Γ1
r = ∅, we also have

Eκ ⊂ EMκ = Ωr ⊕Br, which gives (ii) at once.

Proof of (iii). By Proposition 2.2 (a) we have that either Ωr is reduced to

a point, or it is a C1,1-diffeomorphic image of the interval [0, 1]. In the first

case, the inball of Ω is easily seen to represent the unique minimizer. In the

second case if [a, b] ⊂ [0, 1] and γ : [0, 1]→ Ωr is a C1,1-diffeomorphism with

curvature bounded by κ, one can show that γ([a, b]) ⊕ Br is a minimizer,

arguing as we did for (i). Viceversa, let Eκ be a minimizer, for which we

know that there exists a ball Br(x) centered at some x ∈ Ωr and contained

in Eκ. Denote by [a, b] the largest closed subinterval of [0, 1] such that

K := γ([a, b]) contains x and K ⊕ Br ⊂ Eκ. Of course, if [a, b] = [0, 1] we

conclude that Eκ = EMκ = Ωr ⊕ Br. Otherwise, we argue as in the proof

of (i) and finally obtain the opposite inclusion Eκ ⊂ K ⊕ Br. This finally

shows (iii) and concludes the proof of the theorem. �

Corollary 3.12. Let Ω be a Jordan domain such that |∂Ω| = 0 and let

κ2 > κ1 ≥ R−1
Ω . If Ω has no necks of radius κ−1

2 and κ−1
1 , then one has

EMκ2
⊇ Emκ2

⊇ EMκ1
⊇ Emκ1

.

Proof. One reasons in the same way as in [21, Corollary 5.6]. Fix ri = κ−1
i

for i = 1, 2, with r2 < r1. Trivially the set int(Ωr2) contains Ωr1 , and

thus int(Ωr2)⊕Br2 contains Ωr1 ⊕Br1 . The claim immediately follows from

Theorem 2.3. �

Remark 3.13. The inclusion Emκ2
⊇ EMκ1

is strict as soon as κ1 < κ2 and

0 < |EMκ1
| < |Ω|. Indeed, this information on the volume is equivalent

to say EMκ1
6= Ω and EMκ1

6= ∅. Assuming then EMκ1
= Emκ2

one obtains

∂EMκ1
∩ Ω = ∂Emκ2

∩ Ω 6= ∅, whence κ1 = κ2, a contradiction.

4. The isoperimetric profile

In this section we use Theorem 2.3 to characterize all isoperimetric sets

of a Jordan domain Ω with no necks of any radius. The full characterization

is the content of Theorem 2.4, and this will be employed to prove some

convexity properties of the isoperimetric profile, see Section 4.1. Before the

proof of Theorem 2.4, that is the core of the section, we need to prove the

following lemma.
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Lemma 4.1. Let R > 0 be fixed and let Ω be a Jordan domain with no

necks of radius r, for all r ≤ R. Let m(r) and µ(r) be the functions defined

as

m(r) =Mo(Ω
r) , µ(r) =Mo(int(Ωr)) .

Then, m is upper semicontinuous in (0, R], while µ is lower semicontinuous

in (0, R). Consequently, one has

lim sup
r→r̂

|EMr−1 | ≤ |EMr̂−1 |, lim inf
r→r̂

|Emr−1 | ≥ |Emr̂−1 | (4.1)

for every r̂ ∈ (0, R].

Proof. Thanks to [21, Lemma 6.1], we already have the upper (resp., lower)

semicontinuity of m (resp., µ) on the open interval (0, R). The very same

proof yields as well the upper semicontinuous up to R included of m, and

thus we refer the reader to the original one. Then, by coupling Steiner’s

formulas

|EMr−1 | = πr2 + rm(r) + |Ωr| ,

|Emr−1 | = πr2 + r µ(r) + |int(Ωr)|

with the properties of m(r) and µ(r), and the fact that |Ωr| = | int(Ωr)| for

each r > 0, we obtain (4.1). �

Proof of Theorem 2.4. Assume πR2
Ω < V < |Ω| without loss of generality,

and note that the thesis is a consequence of the following claim:

∃ κ̂ ≥ R−1
Ω , ∃Eκ̂ ∈ arg minFκ̂ with |Eκ̂| = V . (4.2)

Indeed, let EV be such that |EV | = V and P (EV ) = J (V ). Assuming that

(4.2) is verified, we would deduce that EV minimizes Fκ̂ since

P (EV )− κ̂V ≤ P (Eκ̂)− κ̂V = inf
C(κ̂)
Fκ̂

(note that the previous inequality is in fact an identity). In order to prove

(4.2), we define

κ∗ = inf{κ : |EMκ | > V }, κ∗ = sup{κ : |Emκ | < V } .

Notice that both sets are nonempty, hence the infimum and supremum are

finite. Indeed, being Ω an open set, we can approximate it in L1 by sets

of the form Ωr ⊕ Br, for 0 < r ≤ RΩ, which shows that the first set is

nonempty. The second set is obviously nonempty, as it contains at least the

curvature of the inball of Ω by Theorem 2.3 (iii).

We now claim that κ∗ = κ∗. Indeed, let us first assume by contradiction

that κ∗ < κ∗. Then we would find two curvatures κ1, κ2 such that

κ∗ < κ1 < κ2 < κ∗ .
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By definition of κ∗ and of κ∗ we would have

|Emκ2
| < V < |EMκ1

| ,

against the fact Emκ2
⊇ EMκ1

, as granted by Corollary 3.12. By a similar

argument we can also exclude the case κ∗ < κ∗. Indeed, assume that the

strict inequality holds and, for any κ ∈ (κ∗, κ
∗), let Eκ be a minimizer of Fκ.

On the one hand, the lower bound κ > κ∗ implies |Emκ | ≥ V , while the upper

bound κ < κ∗ implies |EMκ | ≤ V . Hence, we have |EMκ | = |Emκ | = V for all

κ ∈ (κ∗, κ
∗). Since V < |Ω|, this yields a contradiction with Corollary 3.12

(see also Remark 3.13).

Let now κ̂ := κ∗ = κ∗ and r̂ = 1/κ̂, hence by Lemma 4.1 we infer that

|EMκ̂ | ≥ V ≥ |Emκ̂ | .

Now, if one of these two inequalities is an equality, we are done. If they

are both strict, by Theorem 2.3 we necessarily have that Γ1
r̂ is not empty.

As the parametrized sets Cθ ⊕ Br and K ⊕ Br, defined in Theorem 2.3,

form a family of minimizers with volumes varying continuously from |Emκ̂ |
up to |EMκ̂ |, we can always find one of them with volume exactly V , which

proves (4.2) and thus the theorem. �

Remark 4.2. Nestedness of the isoperimetric sets is not true in general. How-

ever, with reference to Theorem 2.3, one can always select a one-parameter

family of nested isoperimetric sets. In the case r < RΩ, this family is of the

form Cθs ⊕ Br. The choice of θs can be made in such a way that the map

s 7→ |Cθs⊕Br| is continuous, θs is increasing in s ∈ [0, 1] with respect to the

order relation ≤, θ0 ≡ 0, and θ1 ≡ 1. Similarly, in the case r = RΩ, one can

set Ks as the image of the interval [0, s] through the C1,1-parametrization

γ of the set Ωr, and consider the nested family Ks ⊕Br.

Corollary 4.3. Let Ω be a Jordan domain with |∂Ω| = 0 and without necks

of radius r, for all r ∈ (0, RΩ]. Suppose that ΩRΩ = {x}. Then the following

hold:

(i) if the set Γ1
r consists of at most one curve for all r < RΩ, then there

exists a unique isoperimetric set for all V ∈ [πR2
Ω, |Ω|);

(ii) if the set Γ1
r is empty for all r < RΩ, and if we let κ be the curvature

of ∂E ∩ Ω, where E is the unique isoperimetric set of volume V ≥
πR2

Ω, then the map Φ(V ) = κ is a bijection.

Proof. Let V ≥ πR2
Ω be fixed, and let κ be the unique curvature such that

|Emκ | ≤ V ≤ |EMκ |, as in the proof of Theorem 2.4. If Emκ and EMκ coincide,

i.e., Γ1
r = ∅, uniqueness follows. If otherwise Γ1

r consists of exactly one curve
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γ, then by Theorem 2.3 all the possible minimizers of Fκ are given by the

one-parameter family

Et :=
(

int(Ωr) ∪ γ(0, t)
)
⊕Br .

As t 7→ |Et| is strictly increasing, there exists a unique t ∈ [0, 1] such that

the corresponding minimizer has volume exactly V , hence the uniqueness.

Regarding the second point, by Theorem 2.3, we already know that for

each volume V there exists a unique curvature κ, thus we are left to prove

that the map is injective. Under the assumptions of the corollary, for each

κ we have the set equality Emκ = EMκ . Pairing this with the nestedness

property granted by Corollary 3.12, yields the injectivity. �

Corollary 4.4. Let Ω be a Jordan domain with |∂Ω| = 0 and without necks

of radius r, for all r ∈ (0, RΩ]. For all V ≥ πR2
Ω, let Φ(V ) be the map defined

as in Corollary 4.3 (ii). Then the image Φ([πR2
Ω, |Ω|)) is a finite interval

[R−1
Ω , κ̄) if and only if Ω satisfies an interior ball condition of curvature κ̄,

that is, reach(R2 \ Ω) ≥ κ̄−1.

Proof. First notice that in general one has

Ω = lim
r→0

(
Ωr ⊕Br

)
.

By the characterization of minimizers given in Theorem 2.3, and the nest-

edness granted by Corollary 3.12, the image Φ([πR2
Ω, |Ω|)) is a finite interval

[R−1
Ω , κ̄) if and only if

Ω = lim
κ→κ̄

(
Ωrκ ⊕Brκ

)
= Ωrκ̄ ⊕Brκ̄ ,

where rκ = κ−1 as usual, and the limit is meant in a set-wise sense. This

happens if and only if Ω minimizes Fκ̄. If Ω is such a minimizer, then the

claim is immediate. Conversely, an interior ball condition of radius r̄ = κ̄−1

implies Ω = Ωr̄⊕Br̄, see [31, Lemma 3.1], thus the opposite claim is as well

established. �

4.1. Convexity properties. In this section we establish some convexity

properties of the isoperimetric profile J and of its square J 2. The key

point is to prove that, for V ∈ [πR2
Ω, |Ω|], J (V ) is the Legendre transform

of a convex function.

We remark that the following is the natural extension of Proposition 6.2

in [21], which allowed us to establish the Legendre duality for the smaller

interval [|EmhΩ
|, |Ω|]. Exploiting Theorem 2.4, we can prove that this duality

holds true for the larger interval [πR2
Ω, |Ω|].
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Proposition 4.5. Let Ω be a Jordan domain with |∂Ω| = 0 and with no

necks of radius r = κ−1 for all r ∈ (0, RΩ]. Then, the isoperimetric profile

J (V ) restricted to V ∈ [πR2
Ω, |Ω|) is the Legendre transform of

G(κ) = − min
E∈C(κ)

Fκ(E)

restricted to κ ≥ R−1
Ω , where C(κ) is defined as in (1.5).

Proof. The convexity of G follows as in the proof of [21, Proposition 6.2].

Indeed, thanks to the geometric characterization of the minimizers obtained

in Theorem 2.3, and for any admissible choice κ ≥ R−1
Ω , all minimizers of Fκ

contain at least a ball of radius RΩ. Therefore, for any choice of κ, one can

minimize over the smaller class of competitors C(R−1
Ω ) in place of the larger

one C(κ) without affecting the value of the minimum or the minimizers.

We are left to show that the Legendre transform G∗ of G coincides with the

isoperimetric profile J on the claimed interval. By definition the Legendre

transform is

G∗(V ) := sup
κ≥R−1

Ω

{κV − G(κ) } (4.3)

= sup
κ≥R−1

Ω

{
κV + min

E∈C(R−1
Ω )
{P (E)− κ|E| }

}
,

and we refer the interested reader to [28, Part V, Chap. 26] for the basic

definitions and results on the Legendre transform. By Theorem 2.4 for all

V ≥ |BR| there exist (a unique) κ̄ ≥ R−1
Ω and a minimizer Eκ̄ of Fκ̄ with

|Eκ̄| = V and such that J (V ) = P (Eκ̄). Hence, on the one hand

G∗(V ) ≥ κ̄V + min
E∈C(R−1

Ω )
{P (E)− κ̄|E| }

= κ̄V + P (Eκ̄)− κ̄|Eκ̄| = P (Eκ̄) = J (V ).

On the other hand, for all κ we have

κV − G(κ) = κV + min
E∈C(R−1

Ω )
Fκ(E)

≤ κV + P (Eκ̄)− κ|Eκ̄| = P (Eκ̄).

Thus, by this inequality and (4.3) one has

G∗(V ) ≤ P (Eκ̄) = J (V ),

and the claim follows at once. �

Remark 4.6. We remark that the isoperimetric profile J is differentiable at

V ∈ (0, |Ω|), and its derivative is given by the curvature of ∂E ∩Ω, being E

any isoperimetric set of volume V . For volumes less than or equal to πR2
Ω

it is an immediate computation. For volumes above this threshold it follows

from the fact that J coincides with the Legendre transform of G. To see this,
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we first note that G = (G∗)∗, since G is convex and lower semicontinuous.

Second, from the equalities G = (G∗)∗ and G∗ = J we have

G(κ) = sup
V≥πR2

Ω

{κV − J (V )} = κV − J (V ) , (4.4)

for some (possibly non unique) V . The equalities in (4.4) imply that κ

belongs to the subdifferential ∂J (V ) because

κV − J (V ) ≥ κV ′ − J (V ′)

for all V ′ ≥ πR2
Ω. Now one concludes, since Theorem 2.4 implies that for

any volume V there exists a unique curvature κ, (and necessarily κ = κ),

for which (4.4) is attained by V . Thus the subdifferential ∂J (V ) reduces

to the single element κ, and being J convex this means that it is differen-

tiable at V with derivative given by κ. We also note that the link between

the derivative of the isoperimetric profile and the (mean) curvature of the

(internal) boundary of the minimizer is a classical fact, see for instance [29].

Remark 4.7. By closely following the proof of Proposition 4.5, one notices

that the key ingredient is to find a minimizer of Fκ for every choice of volume

above a certain threshold V , in this case V ≥ πR2
Ω.

Remark 4.8. Thanks to our geometric characterization, one can still obtain

convexity of J on subintervals of [πR2
Ω, |Ω|] for sets Ω which have no necks of

radius r with r ∈ [r1, r2]. Indeed, Theorem 2.4 can be applied for all volumes

V ∈ [|Em
r−1
2

|, |EM
r−1
1

|], finding then a suitable curvature κ̄ ∈ [r−1
2 , r−1

1 ]. Thus,

one obtains convexity of J on such an interval of volumes by following the

proof of Proposition 4.5.

Remark 4.9. It is easy to verify that whenever Γ1
r 6= ∅, the isoperimetric

profile J is linear in the interval of volumes [|Emr−1 |, |EMr−1 |], and viceversa.

There exist sets with no necks of radius r for all r ≤ RΩ that have such a

linear growth on countably many intervals (of volume), i.e., such that Γ1
r 6= ∅

for countably many r, see for instance [21, Example 5.8 and Figure 4].

We are now ready to prove Theorem 2.5 which establishes the convexity

properties of J and of J 2 .

Proof of Theorem 2.5. On the one hand, as the Legendre transform maps

convex maps into convex maps, one immeditaly obtains by Proposition 4.5

the convexity of J for V ≥ πR2
Ω. Therefore J 2 is convex as well on such

interval. On the other hand, for volumes V up to πR2
Ω, any ball of volume

V is a minimizer. An immediate computation gives

J 2(V ) = 4πV , for V ∈ [0, πR2
Ω] ,
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which is linear and thus convex. We are then left to show that the piecewise

convex function J 2 is globally convex. First, notice that J is continuous

and so it is J 2. Second, recall that a function f : [a, b]→ R is convex if and

only f ′−(x) ≤ f ′+(x) for all x ∈ (a, b). To conclude the claim, it is enough to

show that (J 2)′−(V0) ≤ (J 2)′+(V0) at V0 = πR2
Ω. Clearly both the left and

right derivatives are well defined, and one trivially has

(J 2)′−(V0) = 4π .

Let us now denote by I(V ) the isoperimetric profile of R2, i.e.,

I(V ) := inf{P (E) : |E| = V ,E ⊂ R2 } ,

for which we know I2(V ) = 4πV . By the isoperimetric inequality we have

I2(V ) ≤ J 2(V ) , ∀V > 0 .

The previous inequality, paired with I2(V0) = J 2(V0), immediately implies

(J 2)′−(V0) = (I2)′(V0) ≤ (J 2)′+(V0) ,

whence the claim follows. �

4.2. Few words on dimension n. As seen in the previous section, The-

orem 2.4 provides solutions of the isoperimetric problem by solving a (par-

tially) unconstrained problem, i.e., the minimization of Fκ on the class C(κ).

In the planar setting of Jordan domains Ω satisfying a no neck property, a

full geometric characterization of minimizers is provided. Unfortunately,

in higher dimension n ≥ 3, we cannot expect to find such a precise char-

acterization of minimizers of Fκ for a given, bounded, open set Ω ⊂ Rn.

Nevertheless, as noticed in Remark 4.7, the convexity of the profile above

some threshold V would simply follow by knowing that among the mini-

mizers of J for volumes greater than V , one can find minimizers of Fκ for

suitable κ.

This program has been partially carried on in [2], for convex sets Ω ⊂ Rn

of class C1,1 and with V ≥ |EhΩ
|, being EhΩ

the unique Cheeger set of Ω,

as we hereafter recall.

Theorem 4.10 (Theorem 11 of [2]). Let Ω ⊂ Rn be convex and of class

C1,1. Then, for each volume |EhΩ
| ≤ V ≤ |Ω| there exists κ ∈ [hΩ,+∞)

such that the unique minimizer Eκ of Fκ satisfies

|Eκ| = V , J (V ) = P (Eκ) .

Thanks to Theorem 4.10 we immediately obtain the following convexity

property of the isoperimetric profile J for Ω ⊂ Rn convex, bounded and of

class C1,1, in any dimension n ≥ 2.
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Theorem 4.11. Let n ≥ 2 and let Ω ⊂ Rn be convex, bounded, and of class

C1,1. Then the isoperimetric profile J is convex in [|EhΩ
|, |Ω|].

Proof. Immediate consequence of Remark 4.7 and Theorem 4.10. �

The proofs in [2] which lead to Theorem 4.10 heavily rely on the compar-

ison principle and Korevaar’s concavity maximum principle (see [13, 14]) to

study Fκ, with κ ≥ hΩ. It would be of great interest to see if the approach

of [2] can be extended to curvatures κ ∈ [R−1
Ω , hΩ) by considering the same

functional Fκ with the additional lower bound to the volume, just as we did

here, in order to prevent the empty set to be a minimizer. Were it possible

to extend their approach to κ ∈ [R−1
Ω , hΩ), one would easily find out that

J
n
n−1 is convex, just by repeating the arguments of our Proposition 4.5 and

Theorem 2.5.

5. Examples

In this final section we explicitly compute and plot the isoperimetric

profile for two class of sets: rectangles, and cross-shaped sets, which are non

convex.

5.1. Rectangles. Take a rectangle which, up to scaling, has a fixed side

of length 2 and the other side of length L ≥ 2, and denote it as RL. The

inradius of RL is 1. Notice that for all r < 1 the set Γ1
r is empty, therefore

for any prescribed curvature κ > 1 there exists a unique minimizer of Fκ.

We have the following

i) for volumes V ≤ π, the minimizer is a ball of radius
√
π−1V ;

ii) for volumes V ∈ (π, π + 2(L− 2)], any minimizer is the convex hull

of two balls of radius 1;

iii) for volumes V > π + 2(L − 2), there exists κ > 1 such that Eκ =

(RL)κ−1 ⊕Bκ−1 is the unique minimizer.

An easy computation yields

J (V ) =


2
√
πV , V ∈ [0, π]

π + V , V ∈ (π, π + 2(L− 2)]

−2
√

4− π
√

2L− V + 2(2 + L) , V ∈ (π + 2(L− 2), 2L]

By Theorem 2.5 we already know that J 2 is globally convex. As a visual

confirmation of this fact, in Figure 5a (resp., Figure 5b) one can see the plot

of J (resp., J 2) for R4.

Finally, we notice that if one were interested in computing the Cheeger

constant h(RL), one would be led to look for critical points of V −1J (V ),

whose plot is shown in Figure 5c, for R4. By [16, Theorem 1.4] the inner
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Figure 5. Plots of J (V ), J 2(V ) and V −1J (V ) for R4.

Cheeger set of RL cannot be empty, thus the minimum of V −1J (V ) occurs

in the interval (2L+ π − 4, 2L). The Cheeger constant of h(RL) is by now

well-known to be

h(RL) =
1

2
· 4− π
L
2 + 1−

√
(L2 − 1)2 + πL2

,

see for instance [25, Section 3.1] or the discussion following [12, Theorem 3]

together with the correction done in [11, Open problem 1]. Rationalizing

the above ratio, one can easily see that h(RL) converges to 1 as L → +∞,

and precise asymptotic estimates are given in [17, Theorem 3.2]. Therefore,

the length of the interval [|EhΩ
|, |RL|] converges to 4−π, while the length of

the interval [π, |EhΩ
|] diverges. This example shows that with Theorem 2.3

we can cover a range of volumes, [π, |RL|], that can be significantly larger

than the range covered by [21, Theorem 2.3], [|EhΩ
|, |RL|]. This can also

happen for non convex sets, as the next example shows.

5.2. Cross-shaped sets. We consider now a cross-shaped domain XL, given

by the union of two rectanglesRL in such a way that they share the barycen-

ter and their boundaries meet orthogonally, refer also to Figure 6. Assuming

that L ≥ 4, their intersection is a square of side 2. Hence, it is immediate

to see that inr(XL) =
√

2. Then, we are in the following situation:

i) for volumes V ≤ 2π, the minimizer is a ball of radius
√
π−1V ;

ii) for volumes V ∈ (2π, 2π+ 4], any minimizer is given by the intersec-

tion of the two rectangles (a square of side 2) topped by four circular

segments of radius r decreasing from
√

2 to 1 as V increases;
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Figure 6. The cross-shaped set χL, for L = 4, and its inball.

iii) for volumes V ∈ (2π + 4, 4L + 2π − 12], a minimizer is the suitable

union of balls of radius 1, and it is not difficult to show that there

exists a unique one which is central-symmetric;

iv) for volumes V ∈ (4L+ 2π− 12, 4L− 4], there exists κ > 1 such that

Eκ = (XL)κ
−1 ⊕Bκ−1 is the unique minimizer.

The corresponding profile is given by

J (V ) =


2
√
πV , V ∈ [0, 2π]

8r(V ) arcsin
(

1
r(V )

)
, V ∈ (2π, 2π + 4]

2π + V − 4 , V ∈ (2π + 4, 4L+ 2π − 12]

−2
√

2
√

4− π
√

4L− 4− V + 4L , V ∈ (4L+ 2π − 12, 4L− 4]

where r(V ) is the unique solution2 in [1,
√

2] of the equation

V = 4

(
1 + r2 arcsin

(
1

r

)
−
√
r2 − 1

)
.

In Figure 7 the plots of J (V ), J 2(V ) and of V −1J (V ) are shown for the

choice L = 4. Regarding the Cheeger constant, we recall that the inner

Cheeger formula tells us that r = h−1
Ω satisfies the equality

|Ωr| = πr2 ,

since for r ≥ 1 we have |Ωr| ≥ 4 − π, and it is immediate to see that the

minimum of V −1J (V ) always lies in the fourth interval of definition of J .

Thus, just as for the rectangles, one can see that as L → +∞ the length

of the interval [|EhΩ
|, |XL|] is bounded from above by 8 − 2π (actually, it

converges to), while the length of the interval [2π, |EhΩ
|] diverges, showing

again how relevant the extension provided by Theorem 2.3 can be, with

respect to previously known results.

2Uniqueness follows from the fact that V (r) is strictly increasing, thus the inverse

function exists.
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Figure 7. Plots of J (V ), J 2(V ) and V −1J (V ) for X4.
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